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Abstract

This paper offers an algorithmic solution to the problem of obtaining “economi-
cal” formulae for some maps in Simplicial Topology, having, in principle, a high
computational cost in their evaluation. In particular, maps of this kind are used
for defining cohomology operations at the cochain level. As an example, we obtain
explicit combinatorial descriptions of Steenrod kth powers exclusively in terms of
face operators.
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1 Introduction

In this paper we deal with problems in the field of Combinatorial Topology. We
work with simplicial sets, which provide combinatorial descriptions of topo-
logical spaces. A simplicial set (see [16]) is a graded set K = {Kq}q≥0 whose
q-dimensional “building blocks” are q–simplices and whose “mortar” is face
(∂i : Kq+1 → Kq) and degeneracy (si : Kq → Kq+1) operators. It is an elemen-
tary fact that any composition of face and degeneracy operators of a simplicial
set K can be expressed in the “normalized” form:

sjt · · · sj1∂i1 · · ·∂is ,

where jt > · · · > j1 ≥ 0 and is > · · · > i1 ≥ 0, due to certain commutativity
properties. Roughly speaking, we are interested here not only in “normalizing”
some compositions of face and degeneracy operators, but also in determining
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which of them involve exclusively face operators. In particular, we simplify
compositions that are used for defining important cohomology operations such
as Steenrod squares [22], Steenrod kth powers [23] or Adem secondary coho-
mology operations [1,2]. In fact, from a simplicial viewpoint and taking into
account that we deal with homological information given in terms of explicit
chain homotopy equivalences [20,6], the description of invariants in Algebraic
Topology can be reduced to the study of compositions of certain specific maps
given essentially in terms of face and degeneracy operators. The fundamental
maps involved are the AW, EML and SHI operators given in the Eilenberg–
Zilber Theorem [5]. This theorem states that there is a chain homotopy equiv-
alence (AW,EML, SHI) from the normalized chain complex CN(K × L) of
the cartesian product of K and L to the tensor product CN(K) ⊗ CN(L) of
the normalized chain complexes CN(K) and CN(L). Whereas the number of
summands in the formula for AW grows linearly, the number of summands
in the formulae for EML and SHI grow exponentially, then in order to de-
fine “computable” algebraic–combinatorial invariants, it seems that the right
strategy is reduced to determine compositions of maps in which the morphism
AW is involved. For example, the cup product on cohomology is essentially
determined at the cochain level by the morphism AW and the diagonal map.
All of this fits well with the results of Kristensen [13,14], where a representa-
tion result for stable primary and secondary cohomology operations in terms
of cochain maps is given; and that of Klaus [11,12], extending Kristensen’s
results to prove that any cohomology operation module p can be described in
terms of polynomials of coface operators at the cochain level. This approach
is also corroborated in [19], [7] and [9] where Steenrod squares, Steenrod kth
powers and Adem secondary cohomology operations are seen at the cochain
level essentially as compositions of the type

H = AW(p)trSHI(p)tr−1 · · ·SHI(p)t1SHI(p) : C
N(K×p) → CN(K)⊗p (1)

where ti are permutations of p factors and AW(p) and SHI(p) are, respectively,
the AW and SHI operators given by the Eilenberg–Zilber Theorem for p sim-
plicial sets. It is evident that an algorithm for computing these cohomology
operations based on the previous formulation shows extremely high computa-
tional costs. Because of this, a normalization of compositions of face and de-
generacy operators and a following step of the elimination of those summands
of the normalized formula for H with a factor having a degeneracy operator
in its expression are done in order. This “simplification” process allows to
reach to a combinatorial description for H having the minimum number of
face operators involved.

In this paper, we work with a general simplicial expression of type (1), where
the ti can be any permutation. We have developed a software using Mathe-

matica that deduces its “minimal” simplicial formulation. In particular, the
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solution to this combinatorial problem provides a way to design an efficient
algorithm for computing any Steenrod cohomology operation on any cohomol-
ogy class of any degree. This work has been presented in [10].

The paper is organized as follows: In Section 2 we review the necessary theo-
retical background. In Section 3 we develop simplification techniques for ob-
taining an “economical” formulation for operations of the type (1). Finally,
Section 4 is devoted to show an application of our method: an algorithm for
computing the Steenrod kth power P k

p on the cohomology of any locally finite
simplicial set is developed.

2 Preliminaries

In this section we introduce the notation and terminology used throughout
this paper. References for this material appear in [16] and [15].

A simplicial set K is a graded set indexed by the non–negative integers to-
gether with face and degeneracy operators ∂i : Kq → Kq−1 and si : Kq → Kq+1,
0 ≤ i ≤ q, satisfying the following identities:

(i) ∂i∂j = ∂j−1∂i, i < j;

(ii) sisj = sj+1si, i ≤ j;

(iii) ∂isj = sj−1∂i, i < j;

∂isj = sj∂i−1, i > j + 1;

∂jsj = 1Kq
= ∂j+1sj .

The elements of Kq are called q–simplices. A simplex x is degenerate if x =
si(y) for some simplex y and degeneracy operator si; otherwise, x is non–

degenerate. Let K and L be two simplicial sets. A map f =
∑

fq : Kq → Lq

of degree zero is a simplicial map if it commutes with face and degeneracy
operators, i.e., fq∂i = ∂ifq+1 and fqsi = sifq−1.

The cartesian product K × L is a simplicial set whose simplices and face and
degeneracy operators are given by

(K × L)q = Kq × Lq , ∂i(x, y) = (∂ix, ∂iy) , si(x, y) = (six, siy).

Let R be a commutative ring with identity 1 6= 0. The chain complex of a
simplicial set K with coefficients in R, denoted by C∗(K), is constructed as
follows. Let Cn(K) denote the free R–module on the setKn. The face operators
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∂i linearly extend to module maps ∂i : Cn(K) → Cn−1(K). The alternating
sum

dn =
n
∑

i=0

(−1)i∂i : Cn(K) → Cn−1(K)

is an R–module endomorphism of degree −1 such that dndn+1 is null for every
n ≥ 0; it is called the differential on C∗(K). The normalized chain complex
CN

∗ (K) is defined by the quotient

CN

n (K) = Cn(K)/s(Cn−1(K)),

where s(Cn−1(K)) denotes the free R–module on the set of all the degenerate
n–simplices of K. Since we always work with normalized chain complexes, we
simplify notation and write C∗(K) instead of CN

∗ (K). Zn(K) = ker dn is the
module of n–cycles in C∗(K); Bn(K) = Im dn+1 is the module of n–boundaries
in C∗(K); the quotient Hn(K) = Zn(K)/Bn(K) is the nth homology module

of K. The homology class of a cycle a ∈ Zn(K) is denoted by [a].

Given an abelian group G, form the abelian group

Cn(K;G) = HomR(Cn(K), G)

for each n; the elements of Cn(K) are called the n–cochains of C∗(K;G). The
differential d on C∗(K) induces a codifferential δ : C∗(K;G) → C∗+1(K;G) of
degree +1 via δc = cd; the cohomology of K is the family of abelian groups

Hn(K;G) = ker δn/Im δn−1.

Bn(K;G) = Im δn−1 is the module of n–coboundaries; Zn(K;G) = ker δn is
the module of n–cocycles. Furthermore, if G is a ring, H∗(K;G) is an algebra
with respect to the cup product

⌣: H i(K;G)⊗Hj(K;G) → H i+j(K;G)

defined for [ci] ∈ H i(K;G) and [cj ] ∈ Hj(K;G) by [ci] ⌣ [cj] = [ci ⌣ cj ],
where

(

ci ⌣ cj
)

(x) = µ(ci(∂i+1 · · ·∂i+jx)⊗ cj(∂0 · · ·∂i−1x))

for x ∈ Ci+j(K); here µ is the multiplication on G.

Whenever two graded objects x and y of degree p and q are interchanged
we apply the Koszul’s convention and introduce the sign (−1)pq . The tensor

product of chain complexes C∗(K) and C∗(L) is the chain complex C∗(K) ⊗
C∗(L) with differential dC∗(K)⊗C∗(L) = dC∗(K) ⊗ 1C∗(L) + 1C∗(K) ⊗ dC∗(L). Thus if
xp ∈ Cp(K) and yq ∈ Cq(L), an application of the Koszul convention gives
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dC∗(K)⊗C∗(L) (xp ⊗ yq)= (dC∗(K) ⊗ 1C∗(L) + 1C∗(K) ⊗ dC∗(L))(xp ⊗ yq)

= dC∗(K)(xp)⊗ yq + (−1)qxp ⊗ dC∗(L)(yq) .

Amodule homomorphism f : C∗(K) → C∗(L) of degree zero such that df = fd
is a chain map. If f : C∗(K) → C∗(L) and g : C∗(K

′) → C∗(L
′) are chain

maps, so is f ⊗ g : C∗(K) ⊗ C∗(K
′) → C∗(L) ⊗ C∗(L

′). Examples of chain
maps are:

• The diagonal map ∆ : C∗(K) → C∗(K
×n) defined by ∆(x) = (x, n times. . . , x).

• The cyclic permutations

t : C∗(K
×n) → C∗(K

×n) and T : C∗(K)⊗n → C∗(K)⊗n

such that
t(x1, x2, . . . , xn) = (x2, . . . , xn, x1)

and

T (x1 ⊗ x2 ⊗ . . .⊗ xn) = (−1)|x1|(|x2|+···+|xn|)(x2 ⊗ . . .⊗ xn ⊗ x1) .

A contraction from C∗(K) to C∗(L) is a triple of homomorphisms r = (f, g, φ),
respectively referred to as the projection, inclusion and homotopy operator,
with the following properties:

• f : C∗(K) → C∗(L) is a surjective chain map,
• g : C∗(L) → C∗(K) is an injective chain map,
• φ : C∗(K) → C∗+1(K) is an endomorphism of degree +1,
• dC∗(K)φ+ φdC∗(K) = 1C∗(K) − gf .

Furthermore, f, g and φ satisfy the following identities:

φg = 0 , fφ = 0 and φφ = 0.

A contraction will be denoted by r = (f, g, φ) : C∗(K) ⇒ C∗(L). Two contrac-
tions r = (f, g, φ) : C∗(K) ⇒ C∗(L) and r′ = (f ′, g′, φ′) : C∗(K

′) ⇒ C∗(L
′)

can be canonically combined to form new contractions in the following ways:

• The tensor product contraction given by

r⊗r′ = (f⊗f ′, g⊗g′, φ⊗g′f ′+1⊗φ′) : C∗(K)⊗C∗(K
′) ⇒ C∗(L)⊗C∗(L

′) .

• If L = K ′, the composition contraction given by

r′r = (f ′f, gg′, φ+ gφ′f) : C∗(K) ⇒ C∗(L
′) .

Let p and q be non–negative integers. A (p, q)–shuffle (α, β) is a partition

{α1 < · · · < αp} ∪ {β1 < · · · < βq}
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of the set {0, 1, . . . , p+ q − 1}. The signature of (α, β) is given by

sig(α, β) =
∑

1≤i≤p

αi − (i− 1).

Let γ = {γ1, . . . , γr} be a set of integers. Then sγ denotes the composition of
the degeneracy operators sγr · · · sγ1 .

An Eilenberg–Zilber contraction [5] from the chain complex C∗(K × L) to
the tensor product of chain complexes C∗(K) and C∗(L) is a triple rEZ =
(AW,EML, SHI) such as:

• The Alexander–Whitney operator AW : C∗(K × L) −→ C∗(K) ⊗ C∗(L) is
defined by

AW(xm, ym) =
∑

0≤i≤m

∂i+1 · · ·∂mxm ⊗ ∂0 · · ·∂i−1ym ,

where (xm, ym) ∈ Cm(K × L).
• The Eilenberg–Mac Lane operator EML : C∗(K)⊗C∗(L) −→ C∗(K ×L) is
defined by

EML(xp ⊗ yq) =
∑

(α,β)∈{(p,q)–shuffles}

(−1)sig(α,β)(sβxp, sαyq) ,

where xp ⊗ yq ∈ Cp(K)⊗ Cq(L).
• And the Shih operator SHI : C∗(K × L) −→ C∗+1(K × L) is defined by

SHI(x0, y0) = 0 ,

SHI(xm, ym)

=
∑

T (m)

(−1)ǫ(α,β) (sβ̄+m̄∂m−q+1 · · ·∂mxm, sα+m̄∂m̄ · · ·∂m−q−1ym) ,

where

T (m) = {0 ≤ p ≤ m− q − 1 ≤ m− 1 , (α, β) ∈ {(p+ 1, q)–shuffles}},

m̄ = m− p− q,

α + m̄ = {α1 + m̄, . . . , αp+1 + m̄},

β̄ + m̄ = {m̄− 1, β1 + m̄, . . . , βq + m̄, },

ǫ(α, β) = m̄− 1 + sig(α, β).

A recursive formula for the SHI operator appears in [4]. The explicit formula
given here was stated by Rubio in [21] and proved by Morace in the appendix
of [19]. It is evident that the AW operator has a polynomial nature (concretely,
the number of face operators involved in its formula is O(m2)). However, the
EML and SHI operator have an essential “exponential” character, because
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shuffles of degeneracy operators are involved in their respective formulations.
In [18], Prouté determines that EML is unique and there is only two possibil-
ities for AW, both of its formulae being of the same complexity. Concerning
SHI, all the possible formulae have in common their exponential nature.

There is a contraction from C∗(K
×n) to C∗(K)⊗n obtained by appropriately

composing Eilenberg–Zilber contractions. For any positive integers s < n, let
us denote by rEZ(n,s) = (AW(n,s),EML(n,s), SHI(n,s)) the contraction

rEZ(n,s) ⊗ 1⊗s−1 = (AW⊗ 1⊗s−1,EML⊗ 1⊗s−1, SHI⊗ 1⊗s−1)

from C∗(K
×n−s×K)⊗C∗(K)⊗s−1 to C∗(K

×n−s)⊗C∗(K)⊗C∗(K)⊗s−1. Then,
the composition rEZ(n,n−1) · · · rEZ(n,2)rEZ(n,1) is a contraction from C∗(K

×n) to
C∗(K)⊗n. We denote it by

rEZ(n) = (AW(n),EML(n), SHI(n)) : C∗(K
×n) ⇒ C∗(K)⊗n .

Observe that the expression of AW(n) is:

AW(n)(x) = AW(n,n−1) AW(n,n−2) · · ·AW(n,2)AW(n,1)(x)

=
∑

0≤i1···≤in−1≤m

∂i1+1 · · ·∂mx1

⊗∂0 · · ·∂i1−1∂i2+1 · · ·∂mx2

...

⊗∂0 · · ·∂in−2−1∂in−1+1 · · ·∂mxn−1

⊗∂0 · · ·∂in−1−1xn

(2)

where x = (x1, . . . xn) ∈ Cm(K
×n). The number of face operators taking part

in this formula is O(n ·mn).

On the other hand, the expression of SHI(n) in terms of the component mor-
phisms of the previous Eilenberg–Zilber contractions is:

∑

1≤ℓ+1<n

EML(n,1) · · ·EML(n,ℓ)SHI(n,ℓ+1)AW(n,ℓ) · · ·AW(n,1)

= SHI(n,1)

+EML(n,1)SHI(n,2)AW(n,1)

...

+EML(n,1) · · ·EML(n,n−2)SHI(n,n−1)AW(n,n−2) · · ·AW(n,1).

7



Observe that whereas the number of summands in the formula for AW(n)

grows in polynomial time (fixed n), the number of summands in the formulae
for EML(n) and SHI(n) grow exponentially.

3 Simplification Techniques

Let us recall that our motivation here is to simplify any composition of the
type

AW(p)trSHI(p)tr−1 · · ·SHI(p)t1SHI(p) =
∑

AW(p)trESA(p,ℓr) · · · t1ESA(p,ℓ1)

where every ti is any kind of permutation of p factors,

ESA(p,ℓ) = EML(p,1) · · ·EML(p,ℓ)SHI(p,ℓ+1)AW(p,ℓ) · · ·AW(p,1)

and the sum is taken over the set {1 ≤ i ≤ r, 0 ≤ ℓi ≤ p− 2, 1 ≤ ki ≤ p− 1}.

We will use the following basic properties:

• Any composition of face and degeneracy operators of K can be put in a
unique “normalized” form:

sjt · · · sj1∂i1 · · ·∂ir ,

where jt > · · · > j1 ≥ 0 and is > · · · > i1 ≥ 0.
• Any summand on the tensor product of n copies of C∗(K) having a factor
(in the normalized form) with degeneracy operators in its expression, is
degenerate.

Let i, j,m be integers such that 0 ≤ i ≤ j ≤ m. The interval [i, j) denotes the
set of consecutive integers from i to j − 1.

• The face–interval ∂[i,j), denotes the composition ∂0 · · ·∂i−1∂j+1 · · ·∂m .
• If i = 0 then ∂[0,j) = ∂j+1 · · ·∂m.
• If j = m then ∂[i,m) = ∂0 · · ·∂i−1.
• In the case i = j then ∂[i,i) = ∂0 · · ·∂i−1∂i+1 · · ·∂m.

The notation ∂[i,j) must be interpreted as the interval [i, j) representing the
indexes ℓ, 0 ≤ ℓ ≤ m − 1, such that ∂0 · · ·∂ij−1−1∂ij+1 · · ·∂msℓ is degenerate.
Whereas j1 ≤ i2, define the following “composition”:

∂[i1,j1)∂[i2,j2) = ∂0 · · ·∂i1−1∂j1+1 · · ·∂i2−1∂j2+1 · · ·∂m .

This composition can be extended without problems to the composition of n
face–intervals.
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With the new notation, we can rewrite the expression of AW(n) given in page
7 as:

AW(n)(x) =
∑

P (m,n)

∂[1]x1 ⊗ ∂[2]x2 · · · ⊗ ∂[n]xn ,

where [ℓ] represents the interval [iℓ−1, iℓ) and P (m,n) is the set of all the
possible partitions of [0, m+ 1) in n intervals.

First, in order to gradually show our technique, let us simplify the composition
AW(n)t

kESA(n,0)(x) = AW(n)t
kSHI(n,1)(x), where 1 ≤ k ≤ n− 1:

AW(n)t
kESA(n,0)(x)

=
∑

P (m+1,n)

∑

T (m)

(−1)ǫ(α,β) ∂[1]sβ+m̄∂m−q+1 · · ·∂mxk+1

...

⊗∂[n−k−1]sβ+m̄∂m−q+1 · · ·∂mxn−1

⊗∂[n−k]sα+m̄∂m̄ · · ·∂m−q−1xn

⊗∂[n−k+1]sβ+m̄∂m−q+1 · · ·∂mx1

...

⊗∂[n]sβ+m̄∂m−q+1 · · ·∂mxk .

(3)

On one hand,

(α + m̄) ∪ (β + m̄) = [m̄− 1, m+ 1) and m̄− 1 ∈ β + m̄ .

On the other hand, the non–degenerate summands of (3) satisfy that

(α+m̄)∩[in−k−1, in−k) = ∅ and (β+m̄)∩([0, in−k−1) ∪ [in−k, m+ 1)) = ∅ .

We immediately obtain that

β + m̄ ⊂ [in−k−1, in−k) and α + m̄ ⊂ [0, in−k−1) ∪ [in−k, m+ 1) ,

therefore in−k−1 ≤ m̄− 1, in−k = m− p,

β + m̄ = [m̄− 1, in−k) and α + m̄ = [in−k, m+ 1) .

Now, we denote

i′j =



























ij 0 ≤ j < n− k ,

ij − q − 1 n− k ≤ j ≤ n ,

m j = n+ 1 .
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and we can rewrite (3) as:

∑

P (m,n+1)

(−1)τ0 ∂[1]xk+1 ⊗ · · · ⊗ ∂[n−k−1]xn−1 ⊗ ∂[n−k]∂[n+1]xn

⊗∂[n−k+1]x1 ⊗ · · · ⊗ ∂[n]xk

where

τ0 = m̄− 1 + (p+ 1)q = i′n−k + (i′n − i′n−k)(i
′
n+1 − i′n)

= |1|+ · · ·+ |n− k|+ (|n− k + 1|+ · · ·+ |n|)|n+ 1| ,

|ℓ| being i′ℓ − i′ℓ−1.

In the same way, the expression of AW(n)t
kESA(n,1)(x) is:

∑

0≤ι≤m
P (m+1,n), T (ι)

(a,b)∈{(ι+1,m−ι)–sh.}

(−1)sig(a,b)+ǫ(α,β)

∂[1]sbsβ+ῑ∂ι−q+1 · · ·∂mxk+1

...

⊗∂[n−k−2]sbsβ+ῑ∂ι−q+1 · · ·∂mxn−2

⊗∂[n−k−1]sbsα+ῑ∂ῑ · · ·∂ι−q−1∂ι+1 · · ·∂mxn−1

⊗∂[n−k]sa∂0 · · ·∂ι−1xn

⊗∂[n−k+1]sbsβ+ῑ∂ι−q+1 · · ·∂mx1

...

⊗∂[n]sbsβ+ῑ∂ι−q+1 · · ·∂mxk .

(4)

On one hand, a ∪ b = [0, m + 1) and on the other hand, the non–degenerate
summands satisfy that

a ∩ [in−k−1, in−k) = ∅ and b ∩ ([0, in−k−1) ∪ [in−k, m+ 1)) = ∅,

then b = [in−k−1, in−k) and a = [0, in−k−1) ∪ [in−k, m+ 1). We denote

i′j =











ij 0 ≤ j < n− k ,

ij+1 −m+ ι n− k ≤ j ≤ n− 2 .
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Therefore (4) becomes

∑

0≤ι≤m
P (ι+1,n−1), T (ι)

(−1)sig(a,b)+ǫ(α,β) ∂[1]sβ+ι∂ι−q+1 · · ·∂mxk+1

...

⊗∂[n−k−2]sβ+ι∂ι−q+1 · · ·∂mxn−2

⊗∂[n−k−1]sα+ι∂ῑ · · ·∂ι−q−1∂ι+1 · · ·∂mxn−1

⊗∂0 · · ·∂ι−1xn

⊗∂[n−k]sβ+ι∂ι−q+1 · · ·∂mx1

...

⊗∂[n−1]sβ+ι∂ι−q+1 · · ·∂mxk .

(5)

and sig(a, b) is (m− ι)(ι+1− i′n−k−1). Now, we can observe that if k+1 = n
then the composition above is degenerate, else

i′n−k−2 ≤ ῑ− 1 , β + ῑ = [ῑ− 1, i′n−k−2) and α + ῑ = [i′n−k−1, ι+ 1) .

We denote

i′′j =























































i′j 0 ≤ j < n− k − 1 ,

i′j − q − 1 n− k − 1 ≤ j ≤ n− 2 ,

ι− q j = n− 1 ,

ι j = n ,

m j = n+ 1

therefore (5) is

∑

P (m,n+1)

(−1)τ1 ∂[1]xk+1 ⊗ · · · ⊗ ∂[n−k−2]xn−2 ⊗ ∂[n−k−1]∂[n]xn−1 ⊗ ∂[n+1]xn

⊗∂[n−k]x1 ⊗ · · · ⊗ ∂[n−1]xk

and the sign:

τ1 =(m− ι)(ι+ 1− i′n−k−1) + ῑ− 1 + (p+ 1)q

=(i′′n+1 − i′′n)(i
′′
n + 1− i′′n−k−1 + i′′n−1 − i′′n − 1)

+i′′n−k−1 + (i′′n−1 − i′′n−k−1)(i
′′
n − i′′n−1)

= i′′n−k−1 + (i′′n−1 − i′′n−k−1)(i
′′
n+1 − i′′n−1)

= |1|+ · · ·+ |n− k − 1|+ (|n− k|+ · · ·+ |n− 1|)(|n|+ |n+ 1|) .
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Now, let us study the general case. As we said before, we are interested in
simplifying any composition of the form

AW(n)trESA(n,ℓr) · · · t1ESA(n,ℓ1) . (6)

We will do it inductively. Let h : C∗(K
×n) → C∗(K)⊗n be a morphism of

degree r whose normalized expression is:

h(x) =
∑

P (m,n+r)

(−1)sign{[1],...,[n+r]}∂[ ]xk1 ⊗ ∂[ ]xk2 · · · ⊗ ∂[ ]xkn

such that (xk1 , . . . , xkn) = tλ(x1, . . . , xn) where tλ : C∗(K
×n) → C∗(K

×n)
is any permutation. and each ∂[ ] denotes a composition of non–consecutive
elements of the set {∂[1], ∂[2], . . . , ∂[n+r]} where {[1], [2], . . . , [n+r]} ∈ P (m,n+
r); moreover, each ∂[j], 1 ≤ j ≤ n + r, appears exactly once in the expression
of h(x). Our goal is to simplify the composition H = hESA(n,ℓ), where 0 ≤
ℓ ≤ n− 2.

Proposition 1 If one of the following conditions holds on h:

• There is not any face–interval preceding xj for 1 ≤ j ≤ n;
• There exists a factor in h(x) with more than one face–interval preceding

xn+1−u for some 1 ≤ u ≤ ℓ;
• The face–interval ∂[j] immediately before xn−ℓ in h(x) satisfies that

j = max {v such that ∂[v] appears preceding some xu for 1 ≤ u ≤ n− ℓ} ;

then all the summands of H are degenerate.

From now on, let us suppose that h(x) does not satisfy any of the conditions of
the proposition above. Let us denote by ∂[ju] the unique face–interval preceding
xn+1−u for 1 ≤ u ≤ ℓ.

Lemma 2 If the composition ∂[ju−1]∂[ju+1] appears in the expression of h for

some u, 1 ≤ u ≤ ℓ, then all the summands of H are degenerate.

Theorem 3 Simplification Algorithm.

Input: The morphism h : C∗(K
×n) → C∗(K)⊗n of degree r described

above such that it does not satisfy either Proposition 1

or Lemma 2.

Output: The simplified expression of H(x) = hESA(n,ℓ)(x).

For u = 1 to u = ℓ do
replace ∂[ju] preceding xn+1−u by ∂[n+r+2−u].

End for.
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Let {∂[v1], . . . , ∂[vn+r−ℓ]}, v1 < · · · < vn+r−ℓ, denote the set of the face-intervals

preceding xu for 1 ≤ u ≤ n− ℓ.

For s = 1 to s = n+ r − ℓ do
replace ∂[vs] by ∂[s].

End for.

Replace xn−ℓ by ∂[n+r−ℓ+1]xn−ℓ.

Starting from the sign of h of degree m+ 1, we obtain the sign of H of degree

m as follows.

Step 1:

For u = 1 to u = ℓ do
replace |ju| by |n+ r − u+ 1|+ 1.
For j = ju + 1 to j = n+ r − u+ 1 do

replace |j| by |j − 1|.
End for;

add (|n+ r − u+ 1|+ 1)(|ju|+ · · ·+ |n+ r − u|)
End for.

Let ∂[v] be the face–interval immediately before xn−ℓ. Starting from the mod-

ified sign of H do

Step 2:

For j = n+ r − ℓ+ 2 to j = n+ r do

replace |j| by |j + 1|.
End for;

replace |n+ r − ℓ+ 1| by |n+ r − ℓ+ 2| − 1;
replace |v| by |n+ r − ℓ + 1|+ 1;
add |1|+ · · ·+ |v|+ (|v + 1|+ · · ·+ |n+ r − ℓ|)|n+ r − ℓ+ 1|.

PROOF.

For the sake of simplicity but without lost of generality, we consider that the
expression of h(x) is

∑

P (m,n+r)

(−1)sign{[1],...,[n+r]}∂[ ]x1 ⊗ · · ·∂[ ]xn−ℓ ⊗⊗∂[jℓ]xn−ℓ+1 ⊗ · · · ⊗ ∂[j1]xn ;

consequently, the expression of H(x) is:
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∑

P (m+1,n+r), T (ιℓ)

0≤ιℓ≤ιℓ−1≤···≤ι1≤m

{(aj,bj)∈{(ιj+1,m−ιj )–sh.}: 1≤j≤ℓ}

(−1)sign{[1],...,[n+r]}+sig(a1,b1)+···+sig(aℓ,bℓ)+ǫ(α,β)

∂[ ]sb1 · · · sbℓsβ+ιℓ∂ιℓ−q+1 · · ·∂mx1

...

⊗∂[ ]sb1 · · · sbℓsβ+ιℓ∂ιℓ−q+1 · · ·∂mxn−ℓ−1

⊗∂[ ]sb1 · · · sbℓsα+ιℓ∂ιℓ · · ·∂ιℓ−q−1∂ιℓ+1 · · ·∂mxn−ℓ

⊗∂[jℓ]sb1 · · · sbℓ−1
saℓ∂0 · · ·∂ιℓ−1∂ιℓ−1+1 · · ·∂mxn−ℓ+1

...

⊗∂[j2]sb1sa2∂0 · · ·∂ι2−1∂ι1+1 · · ·∂mxn−1

⊗∂[j1]sa1∂0 · · ·∂ι1−1xn .

(7)

The non–degenerate summands of H(x) satisfy that

a1 = [0, ij1−1) ∪ [ij1 , m+ 1) and b1 = [ij1−1, ij1) .

Then,

i1j = ij for 0 ≤ j < j1,

i1j = ij+1 −m+ ι1 for j1 ≤ j < n+ r − 1,

i1n+r−1 = ι1 + 1,

i1n+r = m.

Therefore, we have that

ij = i1j for 0 ≤ j < j1,

ij = i1j−1 + i1n+r − i1n+r−1 + 1 for j1 ≤ j ≤ n + r − 1,

in+r = i1n+r + 1 .

So, in sign{[1], . . . , [n + r]}, |j1| is replaced by |n + r|+ 1, |j| is replaced by
|j − 1| for j1 < j ≤ n + r and

sig(a1, b1)= (m− ι1)(ι1 + 1− ij1−1) = (i1n+r − i1n+r−1 + 1)(i1n+r−1 − i′j1−1)

= (|n+ r|+ 1)(|j1|+ · · ·+ |n+ r − 1|) ,

is added.

In general, fixed u, 1 ≤ u ≤ ℓ, we have that

au = [0, iu−1
ju−1) ∪ [iu−1

ju , ιu−1 + 1) and bu = [iu−1
ju−1, i

u−1
ju ) .
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Then,

iuj = iu−1
j for 0 ≤ j < ju,

iuj = iu−1
j+1 − ιu−1 + ιu for ju ≤ j < n + r − u,

iun+r−u = ιu + 1,

iun+r−u+1 = ιu−1.

Therefore,

iu−1
j = iuj for 0 ≤ j < ju and n+ r − u+ 2 ≤ j ≤ n+ r,

iu−1
j = iuj−1 + iun+r−u+1 − iun+r−u + 1 for ju ≤ j ≤ n+ r − u,

iu−1
n+r−u+1 = iun+r−u+1 + 1 .

So, in sign{[1], . . . , [n + r]}, |ju| is replaced by |n + r − u + 1| + 1 and |j| is
replaced by |j − 1| for ju < j ≤ n+ r − u+ 1. Also,

sig(au, bu) = (ιu−1 − ιu)(ιu + 1− iu−1
j1−1)

= (|n+ r − u+ 1|+ 1)(|ju|+ · · ·+ |n+ r − u|) ,

is added. Therefore, the expression of (7) is:

∑

P (ιℓ+1,n+r−ℓ), T (ιℓ)
0≤ιℓ≤ιℓ−1≤···≤ι1≤m

(−1)sign{[1],...,[n+r]}+ǫ(α,β)

∂[ ]sβ+ιℓ∂ιℓ−q+1 · · ·∂mx1

...

⊗∂[ ]sβ+ιℓ∂ιℓ−q+1 · · ·∂mxn−ℓ−1

⊗ · · ·∂[v]sα+ιℓ∂ιℓ · · ·∂ιℓ−q−1∂ιℓ+1 · · ·∂mxn−ℓ

⊗∂0 · · ·∂ιℓ−1∂ιℓ−1+1 · · ·∂mxn−ℓ+1

...

⊗∂0 · · ·∂ι2−1∂ι1+1 · · ·∂mxn−1

⊗∂0 · · ·∂ι1−1xn .

Now, α + ιℓ = [iℓv, ιℓ + 1) and β + ιℓ = [ιℓ − 1, iℓv), then

iℓ+1
j = iℓj for 0 ≤ j ≤ v − 1 , iℓ+1

j = iℓj − q − 1 for v ≤ j ≤ n+ r − ℓ− 1 ,

iℓ+1
n+r−ℓ = ιℓ− q, iℓ+1

n+r−ℓ+1 = ιℓ , iℓ+1
j+1 = iℓj for n+ r− ℓ+1 ≤ j ≤ n+ r .
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That is,

iℓj = iℓ+1
j for 0 ≤ j ≤ v − 1 , iℓj = iℓ+1

j + q + 1 for v ≤ j ≤ n+ r − ℓ− 1 ,

iℓn+r−ℓ = iℓ+1
n+r−ℓ+1 + 1 , iℓj = iℓ+1

j+1 for n + r − ℓ+ 1 ≤ j ≤ n+ r .

So, in sign{[1], . . . , [n+r]}, |j| is replaced by |j+1| for n+r−ℓ+2 ≤ j ≤ n+r,
|v| is replaced by |n+r−ℓ+1|+1 and |n+r−ℓ+1| is replaced by |n+r−ℓ+2|−1.
Finally,

ǫ(α, β)= ιℓ − 1 + (p+ 1)q

= iℓ+1
v + (iℓ+1

n+r−ℓ − iℓ+1
v )(iℓ+1

n+r−ℓ+1 − iℓ+1
n+r−ℓ)

= |1|+ · · ·+ |v|+ (|v + 1|+ · · ·+ |n+ r − ℓ|)|n+ r − ℓ+ 1|

is added. ✷

Theorem 4 The number of face operators taking part in the normalized for-

mula for AW(p)trSHI(p) · · · t1SHI(p) is, in the worst case, O(pr+1mp+r+1).

PROOF.

On one hand, the number of summands of the form (6) is (p − 1)r. On the
other hand, the number of summands in the simplified formula for each mor-
phism (6) is O(mp+r) and the number of face operators in each summand is
O(pm) . Therefore the number of face operators taking part in the normalized
formula for AW(p)trSHI(p)tr−1 · · ·SHI(p)t1SHI(p) is O((p− 1)rmp+rpm) that is
O(pr+1mp+r+1). ✷

4 An Example: Algorithm for Computing P k
p

In this section we study the computation of the cohomology operations Steen-
rod kth powers P k

p [23] as an application of the technique given in the section
above. First, we give the definition of these operations at the cochain level due
to Steenrod [23]. We next show explicit formulae developed in [7] for these op-
erations in terms of Eilenberg–Zilber contractions at the cochain level. Finally,
we develop an algorithm for computing P k

p at the cohomology level on any lo-
cally finite simplicial set.

An infinite sequence of morphisms {Dn
r : C∗(K) → C∗(K)⊗n}r≥0 of degree r

such that:

Dn
0 = AW(n)∆ ; dC∗(K)⊗nDn

r + (−1)r−1Dn
r dC∗(K) = αrD

n
r−1 , r > 0; (8)

16



where αr : C∗(K)⊗n → C∗(K)⊗n is defined by

αr =











T − 1 if r odd,

1 + T + · · ·+ T n−1 if r even,

called a higher diagonal approximation [23] “measures” the lack of commuta-
tivity of AW(n).

In the particular case of p = 2, it is possible to define cochain mappings called
cup–i product,

⌣i: C
q(K;G)⊗ Cp(K;G) → Cq+p−i(K;G)

by c ⌣i c
′ = µ(c ⊗ c′)D2

i . Observe that the expression of c ⌣0 c′ coincides
with that of the cup product given in page 4. Taking [c] ∈ Hj(K;Z2), the
cohomology operations Steenrod squares [22] are defined by Sqi[c] = [c ⌣j−i

c] ∈ Hj+i(K;Z2).

Now, let p > 2 be a prime number. Starting from the sequence (8), the Steenrod
kth power P k

p : Hq(K;Zp) → Hq+2k(p−1)(K;Zp), q ≥ 2k, is defined at the
cochain level as follows. If c ∈ Zq(K;Zp), then

P k
p (c) = Rµc⊗pDp

(q−2k)(p−1) ∈ Zq+2k(p−1)(K;Zp) , (9)

where µ is the natural product on Zp andR = (−1)(p−1)(k+ 1
2
q(q−1))

((

p−1
2

)

!
)2k−q

.

The acyclic model method [3] is used for guaranteeing the existence of the
morphisms Dn

r (n and r being non–negative integers). An alternative of the
previous method is to obtain the morphisms Dn

r using algebraic fibrations with
a cartesian product of n copies of a given simplicial setK as the base space and
a subgroup of the symmetric group Sn as the fiber space. This last point of view
has been established in [19] and [7] for Steenrod operations, in [9] for secondary
cohomology operations and generalized in [6] for any cohomology operation.
In [7] we obtain explicit formulae for a higher diagonal approximation in terms
of the component morphisms of a given Eilenberg–Zilber contraction. Let γj :
C∗(K

×n) → C∗(K
×n) define by

γj =











t if j odd

t+ · · ·+ tn−1 if j even.

then

Dn
r = AW(n)γrSHI(n) · · · γ1SHI(n)∆ =

∑

AW(n)t
krESA(n,ℓr) · · · t

k1ESA(nℓ1)∆
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where the sum is taken over all the possible 1 ≤ ℓi + 1, ki < n, where ki = 1
if i+ r odd; for all 1 ≤ i ≤ r.

Observe that an algorithm based on these formulae for Dn
r is not useful in

practice, due to the exponential nature of the morphisms involved. Neverthe-
less, we can apply the Simplification Algorithm explained before in order to
obtain a pure combinatorial definition of Dn

r only in terms of face operators.
Notice that for obtaining a normalized expression of Dn

r , we have to apply
Theorem 3 (n− 1)⌊r/2⌋(n− 1)r times in the worst case. However, taking into
account Proposition 1, the non–degenerate summands of Dn

r can only appear
when ki + ℓi < n for 1 ≤ i ≤ r. Moreover, if ki + ℓi < n and ki < ℓi+1 then
the non–degenerate summands of Dn

r can only appear when ki + ℓi < ℓi+1 for
1 ≤ i < r. Examples of the simplification process are:

Dn
1 (x) =

∑

P (m,n+1)

(−1)τ1 ∂[1]x⊗ · · · ⊗ ∂[n−ℓ−2]x⊗ ∂[n−ℓ−1]∂[n−ℓ+1]x

⊗∂[n−ℓ+2]x⊗ · · · ⊗ ∂[n+1]x⊗ ∂[n−ℓ]x ,

where τ1 = |1|+ · · ·+ |n− ℓ− 1|+ |n− ℓ|(|n− ℓ+ 1|+ · · ·+ |n+ 1|) and

Dn
2 (x) =

∑

0<ℓ2+1≤ℓ1<n−1
0<k<n

P (m,n+2)

(−1)τ2 ∂[1]x⊗ · · · ⊗ ∂[n−k−ℓ1−1]x⊗ ∂[n−k−ℓ1]∂[n−ℓ1+1]x

⊗∂[n−ℓ1+2]x⊗ · · · ⊗ ∂[n−ℓ2−1]x⊗ ∂[n−ℓ2]∂[n−ℓ2+2]x

⊗∂[n−ℓ2+3]x⊗ · · · ⊗ ∂[n+2]x⊗ ∂[n−ℓ2+1]x

⊗∂[n−k1−ℓ1+1]x⊗ · · · ⊗ ∂[n−ℓ1]x

−
∑

0<ℓ+1,k<n
P (m,n+2)

(−1)τ3 ∂[1]x⊗ · · · ⊗ ∂[n−k−ℓ−2]x⊗ ∂[n−k−ℓ−1]∂[n−ℓ+2]x

⊗∂[n−ℓ+3]x⊗ · · · ⊗ ∂[n+2]xn ⊗ ∂[n−k−ℓ]∂[n−ℓ+1]x

⊗∂[n−k−ℓ+1]x⊗ · · · ⊗ ∂[n−ℓ]x

where τ2 = (|n− k1 − ℓ1 + 1|+ · · ·+ |n− ℓ1|)(|n− ℓ1 + 1|+ · · ·+ |n− ℓ2 − 1|
+|n− ℓ2 + 1|+ 1 + · · ·+ |n+ 1|+ 1) + |n− k1 − ℓ1 + 1|+ · · ·+ |n− ℓ2|
+|n− ℓ2 + 1|(|n− ℓ2 + 2|+ 1 + · · ·+ |n+ 2|+ 1)
and τ3 = |n−k−ℓ−1|+(|n−k−ℓ+1|+|n−ℓ+1|)(|n−ℓ+2|+1)+|n−ℓ+3|+1+
· · ·+|n+2|+1+(|n−k−ℓ+1|+· · ·+|n−ℓ|)(|n−ℓ+1|+|n−ℓ+4|+· · ·+|n+1|).

Taking into account the sign and organization of the intervals in a general
summand of the normalized expression of Dn

1 and Dn
2 , it should be possible

to obtain a general expression of any Dn
r but this study exceeds the scope of

this paper.
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On the other hand, bearing in mind the expression at the cochain level of the
Steenrod power operation P k

p (c) where c ∈ Zq(K,Zp), since c is a q–cochain,
we only consider those summands in the normalized formula for Dp

(q−2k)(p−1)

with exactly 2k(p− 1) face operators in each factor.

Since the explicit formulae for the Steenrod powers operations P k
p are given

at the cochain level, in order to design an algorithm for computing them
at the cohomology level, we first compute an explicit contraction (f, g, φ)
from C∗(K) to H∗(K), K being a simplicial set finite in each degree and Zp

being the ground ring. This contraction can be constructed using the classical
matrix algorithm [17] based on reducing certain matrices (corresponding to
the differential at each degree) to their Smith normal form [8]. The complexity
of this method is O(M3) where M is the number of simplices of K.

Since the ground ring is a field, then the homology and cohomology are iso-
morphic. Moreover, if α is a generator of homology of degree q, then α∗ :
Hq(K) → Zp such that

α∗(β) =











0 if α 6= β ∈ Hq(K)

1 if β = α,

is a generator of cohomology of degree q. Fixed k, suppose that the normalized
description of the morphism Dp

(q−2k)(p−1) obtained using Theorem 3, and a
contraction (f, g, φ) from C∗(K) toH∗(K) using the algorithm described above
are given. Then, (9) becomes at the cohomology level as:

P k
p (α

∗) =
u
∑

j=1

R
(

µ(α∗f)⊗pDp
(q−2k)(p−1)g(γj)

)

· γ∗
j

where {γ1, . . . , γu} is a basis of Hq+2k(p−1).

Summing up, we have designed an algorithm for computing any Steenrod
reduced kth powers on any class of cohomology for any locally finite simplicial
set.
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di Ferrara, sezione VII, Scienze Matematiche XLII (1996) 57–63.

[20] P. Real, Homological Perturbation Theory and Associativity, Homology,
Homotopy and Applications 2 (2000) 51–88.

20



[21] J. Rubio, Homologie effective des espaces de lacets itérés: un logiciel, Thèse de
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