Math. Ann. 267, 449-452 (1984)

The η -Invariant and Wall Non-Additivity

H. D. Rees

Department of Mathematics, Princeton University, Princeton, NJ 08544, USA

Let M^{4k-1} be a closed 4k-1 dimensional Riemannian manifold. In [1] was studied the following invariant of M^{4k-1} ,

$$\eta(M^{4k-1}) = \int_{X^{4k}} \mathscr{L}_{4k} - \sigma(X^{4k}), \qquad (1)$$

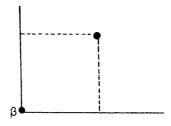
where X^{4k} is a 4k-dimensional Riemannian manifold with $\partial X = M^{4k-1}$ and a neighborhood of ∂X metrically of the form $M \times [0, 1)$, \mathscr{L}_{4k} denotes the 4k degree term in the total \mathscr{L} -polynomial built from the curvature forms on X, and $\sigma(X^{4k})$ denotes the signature (or index) of X^{4k} . That (1) defines an invariant of M follows essentially from the additive nature of signature. That is, if X^{4k} , Y^{4k} are two manifolds-with-boundary, $\partial X \cong \partial Y$, then the signature of the manifold obtained by gluing X to Y is determined by the signature of X and Y as follows:

$$\sigma(X \cup_{\partial} - Y) = \sigma(X) - \sigma(Y).$$
⁽²⁾

We now wish to define an invariant analogous to the η -invariant above for the pairs $(M^{4k-1}, \beta^{4k-2}), \beta \in M$ a separating closed submanifold which possesses a neighborhood metrically of the form $\beta \times (-1, 1)$. We define

$$\eta(M^{4k-1},\beta^{4k-2}) = \int_{X^{4k}} \mathscr{L}_{4k} - \sigma(X^{4k})$$
(3)

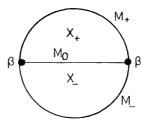
where X^{4k} is a 4k-dimensional Riemannian manifold with a corner at β . More precisely $\partial X^{4k} = M^{4k-1}$ with a neighborhood of $M - \beta$ of the form $(M - \beta) \times [0, 1)$ and a neighborhood of β of the form $\beta \times ([0, 1) \times [0, 1))$ metrically.



We will write $\tilde{\partial} X = (M, \beta)$ and (M, β) as a manifold with a bend.

Proposition 1. $\eta(M^{4k-1}, \beta^{4k-2})$ is a well-defined invariant of the pair (M, β) . That is, if X_1^{4k}, X_2^{4k} are two manifolds as above with $\tilde{\partial}X_i = (M, \beta)$, then $\int_X \mathcal{L} - \sigma(X_1) = \int_{X_2} \mathcal{L} - \sigma(X_2)$.

This proposition will follow from study of what happens to signature when manifolds with boundary are glued together only along portions of their boundary. The setup goes as follows. Let X_{\pm}^{4k} denote two 4k-dimensional Riemannian manifolds with $\partial X_{\pm}^{4k} = M_{\pm}^{4k-1} \cup M_{0}^{4k-1}$ where M_{\pm} and M_{0} are 4k-1 dimensional manifolds-with-boundary and $\partial M_{\pm} = \partial M_{0} = M_{\pm} \cap M_{0} \subset \partial X_{\pm}^{4k}$. Let $\beta = \partial M_{\pm} = \partial M_{0}$.



Wall, in [3], defines an invariant $\delta(\beta; M_-, M_0, M_+)$, which we will refer to as Wall's non-additivity invariant and which fits into the following formula relating the signatures of $X_+ \cup_{M_0} X_-$ and X_{\pm} :

$$\sigma(X_{+}\cup_{M_{0}}-X_{-}) = \sigma(X_{-}) - \sigma(X_{+}) + \delta(\beta; M_{-}, M_{0}, M_{+}).$$
(4)

We will discuss δ more fully in Sect. 1 when we give the proofs of our results.

The second observation we wish to discuss relates the η -invariant of closed manifolds to η -invariants for pairs as discussed above. Let M^{4k-1} be a closed manifold. Assume that there exists a Riemannian manifold X^{4k} such that

a) $\partial X = M$ with a neighborhood metrically of the form $M \times [0, 1)$,

b) there exists $\beta^{4k-2} \subset M$ a closed separating submanifold with a metric neighborhood in X of the form $\beta \times ([0, 1) \times (-1, 1))$, and

c) there exists $M_0^{4k-1} \subset X$ a submanifold, $\partial M_0 = \beta = \partial X \cap M_0$, separating X into 2 components X_+ , X_- such that there are neighborhoods of β in X_{\pm} metrically of the form $\beta \times [0, 1) \times [0, 1)$ and neighborhoods of M_0 in X_{\pm} of the form $M_0 \times [0, 1)$ metrically.

Then if we let M_{\pm} be the component of $M - \beta$ lying in X_{\pm} , we see that $(M_{\pm} \cup_{\beta} M_0 = N_{\pm}, \beta)$ defines a pair of manifolds as above for each of \pm . Our second observation is

Proposition 2. $\eta(M^{4k-1}) = \eta(N^{4k-1}, \beta^{4k-2}) - \eta(N^{4k-1}, \beta) + \delta(\beta; M_-, M_0, M_+).$

Notice that this proposition decomposes the calculation of the a priori global invariant $\eta(M)$ into similar sorts of pieces each of which have at least a chance of being more simple than $\eta(M)$ itself, together with a global homological invariant of the configuration. So on the one hand Proposition 2 chops up the η -invariant of a closed manifold into the sum of two η -invariants of manifolds with corners and a

homological term. While on the other hand Proposition 2 gives an analytical calculation of Wall's non-additivity invariant. The obvious question now though concerns whether $\eta(N, \beta)$ is a spectral invariant of the pair (N, β) . To answer the question along the lines of the study done in [1] one would need a careful analysis of a parametrix for the signature operator in a neighborhood of the corner β in X. As of now such an analysis by this author is not complete.

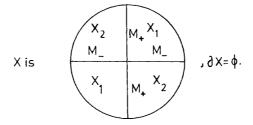
1

For the proofs of Propositions 1 and 2 we need but two facts concerning $\delta(\beta; M_-, M_0, M_+)$. First that δ is defined in the following situation. If M_1, M_2, M_3 are 4k-1 dimensional manifolds with boundary, and $\beta = \partial M_1 = \partial M_2 = \partial M_3$, then $\delta(\beta; M_1, M_2, M_3)$ is defined as an invariant of the kernels of the inclusion induced maps of $H_{2k-1}(\beta; \mathbb{R})$ into $H_{2k-1}(M_i; \mathbb{R})$. Second that δ is an alternating function of its final three arguments.

To prove Proposition 1 let (M, β) and X_1, X_2 be given and let $M - \beta = M_+ \cup M_-$. Then $X_{\pm} = X_1 \cup_{M_{\pm}} X_2$ for \pm are smooth Riemannian manifolds with smooth boundaries

 $\partial X_{\pm} = M_{\mp} \cup_{\beta} M_{\mp} = D(M_{\mp})$ the double of M_{\mp} .

Now construct $X = X_+ \cup_{D(M)} X_+$. Schematically,



The Hirzebruch signature formula [2] gives

$$\int_X \mathscr{L} = \sigma(X) \, .$$

But our assumptions on the metrics and the orientations necessary to glue manifolds compatibly gives

$$\int_{X} \mathscr{L} = 2 \left\{ \int_{X_1} \mathscr{L} - \int_{X_2} \mathscr{L} \right\} = \sigma(X) = 2\sigma(X_+)$$

by Novikov additivity. Wall non-additivity then provides

$$\sigma(X_+) = \sigma(X_1) - \sigma(X_2) + \delta(\beta; M_-, M_+, M_-).$$

Finally, the antisymmetric nature of δ 's dependence on its arguments means that $\delta(\beta; M_-, M_+, M_-) = 0$ and so

$$\int_{X_1} \mathscr{L} - \int_{X_2} \mathscr{L} = \sigma(X_1) - \sigma(X_2)$$

Then $\eta(M,\beta)$ is independent of X with $\tilde{\partial} X = (M,\beta)$. The proof of Proposition 2 is just as simple. We are given M^{4k-1} such that $M = \partial X$, $X = X_+ \cup_{M_0} X_-$, and

$$\tilde{\partial}X_{\pm} = (N_{\pm}, \beta)$$

Now

$$\eta(M) = \int_{X} \mathscr{L} - \sigma(X) = \int_{X_+} \mathscr{L} - \int_{X_-} \mathscr{L} - \{\sigma(X_+) - \sigma(X_-) + \delta(\beta; M_+, M_0, M_-)\}$$

where $\partial X_{\pm} = M_{\pm} \cup_{\beta} M_0$. By Proposition 1

$$\eta(N_{\pm},\beta) = \int_{X_{\pm}} \mathscr{L} - \sigma(X_{\pm}),$$

and so

$$\eta(M) = \eta(N_{+},\beta) - \eta(N_{-},\beta) + \delta(\beta;M_{-},M_{0},M_{+})$$

References

- Atiyah, M., Patodi, V., Singer, I.: Spectral asymmetry and Riemannian geometry. I. Math. Proc. Cam. Phil. Soc. 77, 43–69 (1975)
- 2. Milnor, J.: Characteristic classes. Annals of Math. Studies, Vol. 76. Princeton: Princeton University Press 1974
- 3. Wall, C.T.C.: Non-additivity of the signature. Invent. Math. 7, 269-274 (1969)

Received July 15, 1983