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Problems Concerning Embeddings of Manifolds *

Elmer Rees

(University of Edinburgh) .

Abstract

Very little is known in general about estimating the smallest integer ¢ such that
a manifold M" embeds in R**#+! if it immerses in R*+%, Indeed there are relafively
few examples where % and I can be vestimated accurately. There are old examples (!0l
for which 7 is known to be arbitrarily large, for those examples I can grow like logn
and there are recent examples®l where I can grow linearly with #. The main difficul-
ty in resolving questions of this kind is that the only general methods known for pr-
oving non-embedding and non-immersion results involve doing calculations with char-
acteristic -classes and the estimates that they give are very similar for the two pro-
blems. In this paper an account is given of various methods that can be used 4o study

examples.

The first methods are the classical ones of algebraic topology—characteristic clas—
ses and the Wu-Haefliger—Hirsch obstructions, The next is that of studying the Thom
complex of the normal bundle; this can give both negative and positive embedding
results, This method leads naturally to the study of possible complements in a sphe-
re, a method refined by G, Cooke (5] The third method( § 5) is a reformulation and
extension of Whitney’s method described by J F P, Hudson['Y] , This can be used
to show that one can have the maximal possible difference between the immersion and
embedding dimensions when the target manifold is not necessarily Euclidean space,
The immersion §"—»RP™ is not homotopic to an embedding in RP"xR"™, Finally,

some - interesting special cases are studied and some open questions are highlighted,

§ 1 Characteristic Classes

Suppose M is a closed manifold and let
w(M) =1+w (M) +w,(M) + o -

# This paper is based on a survey lecture given at the Institute of Systems Science,
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his visit 1o the Institute.
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be its total (tangential) Stiefel-Whitney class and '

. WM) =1+@,(M) +Wy(M) + ses
be defined by w(M)m(M) =1,

Then if M™ immerses in R™** one knows that @,(M) =¢ for i>k, and, if M*®
embeds in R™** then @,(M) also vanishes,

Any attempts to improve directly on these methods lead to the study of second—
ary and higher order characteristic classes- but they quickly become unmanageable ; The

next approach seems more tractable,

§ 2 Wu-Haefliger-Hirsch Method

First it is convenient to define certain useful ranges of dimensions, Suppose f:
M*>Q9 is 4 map between manifolds, The set Xy (f) consisting of the k-tuple points
of f is the subset of M of which at least k distinct points are identified under
f. If f is in general position then, by linear algebra, one has that

dim 2y (fH<kn-(k-1)q,
The various ranges of dimensions referred to above are those that imply, using this
inequality, that various Xy (f) are empty, So the stable range is where 21— g<< i.e,
q>2n, the metastable range is where 2¢>>3n etc,

Let S(tM) denote the sphere bundle of the tangent - bundle of M and M x M\A
be the deleted square (A is the diagonal), Both these spaces have free involutions,
the first by taking the antipodal map in each fibre and the second by switching the
factors, The normal bundle of A in M x M can be identified with M and hence one
can. construct- an equivariant inclusion '

S(tM)->M><M\A.
A theorem of Wul?4) states that, in the metastable range, there is an embed-
ding of ‘M in R? if there is an equivariant: map
M x M\A—>§7-1,
Analogously, the theorem of Haefliger and Hirsch states that, in the same range,
there is an immersion of M in RY if there is an equivariant map
S(tM)—> 8§11, ‘
So, from this viewpoint, since the inclusion S(M)sM x M\A seems complicated,
there is no reason to expect to find embeddings when one knows that there is an im-
mersion in a particular Euclidean space, In terms of the notation introduced at the
beginning of this paper, one seeks a small [ such that therc is always an extension

G
f -
S(tM) —s Snti-i
M x M\A——> Sntkt+i-1
’ g
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Below the me‘tastabie range, it is known that there af.e exampies, of exotic spheres
Z™ that do not embed in very low codimension(® , Being stably parallelizable, all
exotic spheres immerse in Euclidean space with codimension one, The paper [ 97 redu-
ces the .problem of embedding a given homotopy sphere to a problem in the homoto—
f)y groups of spheres, Now that information about these homotopy groups is much
more substantial, a:more general pattern can be seen, I have been informed by M,
Mahowald that he believes that using the homotopy elements described in [13] one
can construct homotopy spheres of dimension 27+1 that do not embed in codimension
233, This would essentially be a maximal possible difference between the embed-
ding and immersion dimensions for an exotic sphere since they all embed at the bot-
tom of the metastable range, because they embed topologically and hence smoothly
by [2]. | |

§ 3 The Thom Construction

o If a compact M™ embeds in R"** with normal bundle » then the Thom const—
ruction gives a map S"** —>T(p) of degree one onto the Thom space, This impli-
es that T'(v) is homotopy equivalent to S"*#\/X where X is homotopy equivalent to
the. Thom complex of y resiricted to M\point, Under very favourable circumstances
one - might be able to show that this: cannot happen, A list of all :possible normal
bundles » would be made and then a check that each possible T'(v) does not decom-
pose as above, ' :

One case where this method works particularly well is when one is considering
codimension one embeddings, If M is orientable, then the only possible normal bun-
dle is the:trivial line .bundle, so if M™ embeds in R"*!, there would be a degree
one map S§"*!—> XM, the suspension of M, As examples, consider RP®, RP7 wh-
ich are parallelizable and hence have immersions in codimension one, There is a non-
zero cohomology operation—the Postnikov square with values in H**W(ZM;Z/4) in
both these cases and so XM does not decompose, The same argument can be used
for some lens spaces, It was pointed out by Epstein(® that, in this codimension one
case, if M\point embeds in R"*! then the fact that ZM decomposes can already .be
deduced,

In a higher range of dimensions, codimension at least three for piecewise linear
and the metastable range of smooth, the criterion that T'(y) is homotopy equivalent to
S*+k\/ X is almost necessary and sufficient for the existence of an embedding (see
Browder ] for a survey), The existence of an embedding can be deduced only in
one greater codimension, The codimension two case has been considered by Cappell
and Shaneson 8] | In the case of RP? this method was used in [15] to find embed-

dings ,
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§4 The Study of Complements

‘First, we give another method for proving the non-existence of codimension one
embeddings, Suppose M™ embeds in §™y it divides S™*1 into two connected pieces
A and B which we can take to be such that A\ B =M, Then, using the Mayer—
Vietoris sequence, we see that

Hy (M)=H, (AYDH,(B) for 1<r<n,
indeed, there is a map M —>ZA\/ 5B inducing this isomorphism
By duality, one has
H,(A)=F*""(B) for all r,

In suitable cases, this information already leads to a contradiction, For example  sup~
pose.RP3 embeds in S* Then Z/2gH1(RP3):_’\:H1(A)@H1(B), Suppose H,(A) =
Z /2 and H (B)=(. Then Hy(AsZ /2)==2Z /2 and so Hy(B;Z /2) =0, This contra—
dicts the duality isorﬁorphism, The same argument applies to three dimensional lens
spaces and, using Steenrod squares, to RP? An interesting example to show what
happens when one has a codimension one embedding is the following, see Massey 1141
Let Q%=8%/7 where & is the subgroup. of unit quaternions {il,—l_—i,j:]',ik}, then
there is an embedding Q*—S* whose complements A, B both deformation reciract
onto RP?  The suspension of Q\point is the .suspension of RP2\/RP2, reflecting
the fact that the abelianisation of 7 is Z/2PZ)2,

In higher codimensions there have been a number of studies of complements,
culminating in the paper by G Cooke (¥ which, unfortunately, contains a small er—
ror in the details—as pointed out by Connolly and Williams (4] _ Cooke’s results(when
corrected) are based on the following result,

Suppose that K is a two cell complex embedded in §m+r+i+2 yith complement
homotopy equivalent to I If the attaching map in K is GE Ty, 8™ and that in. [
is €, ;S then Z"a:(~1)'"’Z”’/5’Enr+m+lS”’”, In particular, if one knows that
2''q does not desuspend [+ 1 times then one knows that m<_l, In his paper [1] Adams
proved that the Whitehead product [v,_;, 1, ]:82m~3 5 gn-1 does not desuspend
p(n) times where p(n) is the Radon-Hurwitz number, Based on this. fact, Hsiang
and Sczcarba gave the first examples of manifolds that require arbitrary more dimen—
sions hefore it is possible to deform an immersion to an embedding, Over S*~1 there
is an n-pm) dimensional vector bundle ¢ such that EDtrivial == 7(S""1), Let
M be the ft—p(n) dimensional sphere bundle over Sty M=8(@e'y, Then M is
homotopy equivalent to

(S"—P\/S"“I)Uwugezn_p”l
where J, TpgSOr) —>m,,, ,S" is the J-homomorphism and w is the Whitehead

product of the two identity maps, By the definition of ¢, Z”’“l]f:[tn_l,tn_lj,
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Now, suppose this manifold M embeds in §2r-p-1-F Let {:87-1—>M be the
inclusion (induced by the obvious non-vanishing section of ¢(sg), then by adding a
cone on i one has an embedding of a complex that is homotopy equivalent to S"~#
Uyseg€®"~ P71 in §2%=2+# and whose complement is homotopy equivalent to S*(J,
e"*t~1 By Cooke’s result, X" ?f=42*J¢; hence either X*Jf~0 so k>>p(n), or
ZPmkmlf = L 2P so n—Te—1<Cp(n), If n>>16 one has p(n)<{n—p(n)+1 so k>
p(n) in all such cases, As p(n) is an unbounded function of n, this gives the re-
quired result, In the case n=16 (p(16) =9), it seems still not known whether M?22
can be embedded in R29,

The method outlined here is very useful for relatively simple manifolds such as
sphere bundles over spheres, It gives results which are non-embedding results up to
homotopy, This will imply piecewise linear non-embedding results in codimension
three or more by the Casson-Sullivan Theorem(see [227) ,and smooth nonembedding

results in the metastable range [27,

§ 5 Hudson’s Method

In 1944 H, Whitney (28] gave a method for proving that manifolds M™ embed
in R2" His idea was to consider the double points of an immersion and to show
that they occurred in pairs that could be cancelled, In his book [117,J.F P, Hudson
recast and generalised this method, He worked in the piecewise linear category,

Let F;, M®»——>Q"** be a PL mapping in general position and such that there
are no triple points (this is automatic in the metastable range 3n<2k), Let S,F be
the double point ‘set of the map F,

8;(F) = {x& M|there is y=£x such that F(x) = F(y)}.

We assume that M has been triangulated so that S,(F) is a subcomplex, If o, 0,
are (zn—q)—dimensic')nal simplices in S,(F) whose images coincide, let S,,S; be th-
eir links in M and let 2 be the link of F(o,) in Q, The map F embeds §; and S,
in' 2, let 9(F,0,) be their linking number mod 2, Regard -

e(Fy= >, ¢(F,0)0,

v €8 ,(F)

as a (2n - ¢)—dimensional mod 2 chain on M, Hudson checks that this gives a well
defined homology class ‘

a(F)EHyy_q(M;Z/2).
which is independent of the triangulations chosen and depends only on the homotopy
class of F, Clearly, a(F) vanishes if F is an embedding and hence-if ‘I is homo-
topic to an embedding, In our case we will have g=2n and so a(F) can be regarded
as an integer mod 2,

Let f, §®™—>P" be the double covering map onto real projective space; f is'an

immersion denoted by
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F(g,%q, 000, 5) = [0y oo 10, ],
Consider the map F:S™—>P" x R™ given by
F(xg, 20, 00,%0) = ([xg i teee 1], (5,8, 000, 20))
This map F has a single double point, namely
F(1,0,+4,00 =F(=1,0,,0).
We can assume that the spaces are triangulated suitably and we need to calculate the
linking number of the images of the boundaries of the neighbourhoods of these two
points, This calculation can be done using differential topology, Let g = (Xy, %5, 000,
Xp), then near (1,0,s,0), F is approximated by
Fxy,2) = (2,2)
using . coordinates on P™ near [1:0:+:0] to be (%1 /%0, %3/ %, 000, %0 /%) . Near (~1,
0,e,00, F is approximated by ’
Fxg,2) =(-2,2).
The images of these maps are both n~dimensional vector subspaces of R2" and are
linearly independent, Hence their unit spheres have linking number equal to one in
§2"=1_ This shows that the linking number we wish to calculate is also one, Since
there is only one double point, Hudson’s result gives that F is not homotopic, to an

embedding

§6 Some Examples and Problems

In terms of embedding and immersion questions, the manifolds that have been
most studied are those (projective spaces, Dold manifold, etc,) whose characteristic
classes are relatively easy to ecalculate, At the other 'extreme are the parallelizable
manifolds such as Lie  groups, The following general method can be used to find
low codimension embeddings of same compact Lie groups. Suppose H and K are two
subgroups of G such that H()K ={1} then the product of the quotient maps gives
an embedding

G——>G/HxG/K, ’

One can often find good embeddings of suitable quotients G/H and G/K thus givi-
ng one of G, A good start can be obtained by considering a maximal torus T in G,
The adjoint action of G on its Lie algebra & “has prinéipal orbit G/T, and so G/T
embeds in @ with trivial normal bundle, One can then make good use of the second
part.of the following

Proposition Let H and K be the subgroups of the compact Lie group G with H
K ={1}. Suppose G/H embeds in R¥ and G/K embeds in R¥, then G embeds in
 R¥*MIf the embedding of G/K has trivial normal bundle then G embeds in RN+~
where d is the codimension of G/K in R¥,

Corollary Let G be a compact Lie group, T a maximal torus and H a subgroup of
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G not meeting T', If G/H embeds in RY then G embeds in R¥+¢-! were d=dimG
and [ =rankG = dim7",
Proof G embeds in G/H xG/T and G/T embeds in 5 with trivial normal bundle,
so one has G/T'x R*—R*, Hence :

G/HxG/T>R¥xG/T=R¥ ' xG/TxR*CRV-' xR,

This is essentially the method used in [17] and (using G/(S*x +S?)) in [21]
to give good embedding results, It has also been used in [207] for homogeneous
spaces, It ean also be used to give the results of [17] for Spin(n) although a
slightly different argument was given there, This simplification was suggested to me
by a remark made by Derek Hacon, Let T denote the involution on Spin(n) whose
quotient is' SO(n), The Lemma of [17, page 156] constructs an equivariant map f,
(Spin(n) , Ty —>(St, ~I) where L=k*-k+1 (n=2k) and =k*+k+1 (n=2k+1),
The product map f X :Spin(n) -—5>8t % SO(n) is an embedding and SO(n) embeds
in R¥ where' N =2k? (n=2k) and =2k?+2kk+1 (n=2k+1). Hence Spin(n) embeds
inR¥*L:where N+ L=3k?~k+1 (n=2k) and 3k%2+3k+2 (n=2k+1) i, e, codi-
mension %%+ 1 and- (J¢ + 1)% + 1 respectively,

An important question is to find methods that might indicate to what extent
these embeddings are best possible i, e, to find methods for proving good non-em-
bedding results for parallelizable manifolds, A good test problem might be,

Show that there is nq,f.ixgdl s_ug}} .thgthQ(_‘n) elm‘lb)e‘ds in codimension [ for
every nn, Even to try to show that, for la;rge n, 80(n) (or Spin(n)) does not
embed in codimension three seems to be a challenging problem,

The peneral problem of the embedding question for finite coverings also does
not seem to be very tractable  For example, if ff—>M is a covering, what in-
variants will' estimate a reasonable I so - that if MCR*** then M CR"***'9 One
might at least hope that for odd. coverings this question might have a reasonably neat
answer , The method outlined above for Spin(n) would of course work well for cov-
erings that can be trivialised over a small number of sets,

An interesting example is Q?, the quotient of &% by the unit quaternions whose
double cover is a Lens space L3 with fundamental group cyclic of order 4, Q% em-
beds in R* but L® does not,

‘There are still many open questions concerning the embedding of simplicial com-
plexes in Euclidean space, From Kuratowski’s theorem on planar graphs one knows
that if the Betti number of a graph I' is less than 4 then I' is planar; A higher
dimensional analogue of this result is still missing, although it has béen proved (18]
that if §,(K")<{1 then K" embeds in R?*" A seemingly reasonable conjecture
would ‘be that if b, (K*)<2"*1 then: K" embeds in R2™  If K" denotes the iterated
join of (n+1) copies of 3 points then »,K*=2"*! and it is known, by the Flores—
van Kampen theorem (7121121, that K" does not embed in R2", Recent results
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by K, Sarkaria [® 191 suggest that further progress in this direction might soon be made.
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