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OUR OBJECTIVE in this paper is to obtain the Euler number as a cobordism invariant by
making a more stringent definition of cobordism. In fact, we require the existence of a
nonsingular vector field interior normal on one of a pair of cobording manifolds and exterior
normal on the other. The new cobordism groups admit natural homorphisms into the usual
ones having as kernels cyclic groups generated by spheres. In even dimensions, these
kernels are free cyclic and give the Euler number as an additional invariant. In odd dimen-
sions, the kernels are zero except in oriented cobordism of dimension 4k + 1, where the
kernel is cyclic of order 2. In this case, two manifolds are cobordant if and only if they have
the same Stiefel-Whitney numbers and bound a manifold of even Euler number. In the
oriented case, the kernel is a direct summand, while in the nonoriented case, the even
dimensional real projective spaces become of infinite order. Finally, we give some applica-
tions to the cobordism theory of bundles and to general relativity.

Throughout the paper, manifold will mean infinitely differentiable compact manifold,
possibly with boundary.

§1. THE NONORIENTED CASE

We say that two closed manifolds M, and M, are cobordant if there exists a manifold
with boundary N and a vector field F on N such that

(1) ON=M,uM,;
(it) F is interior normal on M, and exterior normal on M,;
(iii) F is nonsingular.
This is an equivalence relation, and the cobordism classes of manifolds of dimension n
form a commutative semigroup under the operation of disjoint union. The class of the

empty manifold is the zero of this semigroup. We shall denote the semigroup by I, reserv-
ing the notation IMM" for the Thom cobordism group [7].
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THEOREM (1). Two manifolds are cobordant if and only if they have the same Stiefel-
Whitney and Euler numbers. Moreover, D§ is a commutative group for n > 0.

Let a surgery of type (p, g) be the replacement of a subset D?*! x S by S? x D*!,
where D? is the p-disc, S” is the p-sphere, and p + ¢ + 1=n. According to a theorem of
Milnor [4, p. 40] two manifolds which are related by a surgery are cobordant in the Thom
sense, hence have the same Stiefel-Whitney numbers [6].

Lemma (1). If n=p +q +'1 is even, then surgery of type (p, q) with p even increases
the Euler number by 2, while that with p odd decreases the Euler number by 2.

Proof. If p is even, then g is odd, and the Euler number of DP*! x S$%is zero while
that of S7 x DI*!is + 2.

LEMMA (2). If n is odd, then the Euler number of M" is zero. If M" is a boundary,
then it bounds a connected manifold of Euler number zero.

Proof. The first statement is well known. Let M = 0N’, and let the Euler number of N’
be even. If n> 1, we make N’ connected by surgeries of type (n, 0) then use surgeries of
type either (n-1, 1) or (n-2, 2) to make the Euler number zero. If n = 1, the circle bounds
a cross cap, which has Euler number zero. If the Euler number of N’ is odd, form the dis-
joint union of N’ with real projective n-space and proceed as before.

LeMMA (3). If n is even and M" = 0N, then the Euler number of N is half that of M.

Proof. Let N’ be the union of two copies of N, sewed together by the identity map on
the boundary. Then N’ has Euler number zero because of its dimension. On the other
hand, X(N") = 2X(N) — X(M).

Proof of Theorem (1). Suppose M, and M, have the same Stiefel-Whitney and Euler
numbers. Then there is a manifold N such that 6N = M, U M, [7, p.77). Let N’ be a closed
tubular neighbourhood of M, in N, and let M; be such that N’ = M; ~nM,. Let X be
the common Euler number of M, and M,. By Lemmas (2) and (3), we may assume that X
is also the Euler number of N. Since N’ is diffeomorphic to M, x {0, 1]and (N — int(N’))
is diffemorphic to N, each of these spaces has Euler number X. Consequently, each of them
admits a vector field interior normal on the boundary and having at most one singular
point, the index of this point being X. If we reverse the sense of the field at each point of
N’, the index of the singularity changes to —X. (If n + 1is even, this is true only because
X =0.) Hence if we use the unreversed field on N — N’ and the reversed field on N’, we
get a vector field on N interior normal on M|, exterior normal on M,, and having the sum
of the indices of the singular points equal to zero. It follows that there exists such a field
which is nonsingular. Hence M, and M, are cobordant. The converse is proved by re-
versing the argument. Finally, we show the existence of inverses. Indeed, the inverse of M
is a manifold which has the same Stiefel-Whitney numbers, but whose Euler number is the
negative of the Euler number of M. By Lemma (1), such a manifold can be constructed by
surgery, for positive even n. This completes the proof of the theorem.

There is a natural homomorphism of the group 9§ onto V", defined by choosing
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representatives and mapping each into its class in W". Let K" be its kernel, so we have

i i
0- K'> MG - MP" -0,
PROPOSITION (1). Let x; for j + 2“ — 1 be an indeterminate, and let Z[x,, x,, x;, ...]

be the polynomial algebra over the integers generated by these indeterminates. Then
M, = 3 ° M is isomorphic to the quotient of this polynomial algebra by elements of the form

2x2m+1
X5 — 2X3Xop, k= m,

Also K" is zero for n odd and free cyclic for n even. The generator y,,, of K*™ is the class of
the sphere S*™, and i(y,,,) = 2X -

Proof. We know [7, p.79] that 9" is isomorphic to the polynomial algebra over Z,
with these generators. The classes x,,., correspond to manifolds of Euler number zero
while the classes x,,, correspond to the even dimensional real projective spaces, which have
Euler number 1. The proposition follows immediately from these facts.

§2. THE ORIENTED CASE

For this case we modify the definition of cobordism by requiring that AM,, M,, and N
be oriented, while the orientation induced on M, by N agrees with that of M, and the orient-
ation induced on M, is opposite to the given orientation of M,. (We shall write M} instead
of —M, for M, with orientation reversed, because M} in fact is not the negative of M, in
our theory.) Again we get a commutative semigroup Qf.

THEOREM (2). Two manifolds M, and M, of dimension n # 4k + 1 are cobordant if and
only if they have the same Stiefel-Whitney, Pontryagin and Euler numbers. If n = 4k + 1 and
M, and M, have the same Stiefel-Whitney and Pontryagin numbers, let N be the manifold
bounded by M and M), in the (usual) oriented sense. Then M, and M, are cobordant if and
only if the Euler number of N is even. Qf is a commutative group for n > 0.

Lemma (4). If M has dimension 4k + 1 and M = 0N, then the parity of the Euler number
of N depends only upon M. Moreover, we may always choose N with Euler number O or 1.
In dimension 4k — 1, we may choose N with Euler number zero.

Proof. Let M = 0N, = 0N, and let V be the manifold formed by identifying N, and
N5 along the boundary. Then the Euler number of ¥ is the sum of the Euler number of N,
and N,, and is even because V is a closed oriented 4k + 2 manifold. This shows that the
parity of the Euler number of N depends only upon M. We may change it to zero or one by
surgery. Since complex projective 2k space has Euler number 2k + 1 and is orientable, we
may use the technique of Lemma (2) to show that a 4k — 1 manifold which bounds also
bounds a manifold of Euler number zero.

Proof of Theorem (2). In the usual oriented cobordism, the invariants are the Stiefel—
Whitney and Pontryagin numbers [8, p. 306], Using this fact and Lemmas (1), (3) and (4),
we can given a proof of Theorem (2) analogous to that for Theorem (1).
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As before, we have a homomorphism of Qf onto ", and a group L' defined by the
sequerce

i j
* 0 [ Q5> Q" — 0.

PROPOSITION (2). L*~!is zero, L**! is cyclic of order 2 and L** is free cyclic. In each
case, the generator is the class of the sphere, and Qf is the direct sum of L and Q.

Proof. If a manifold bounds in the usual sense, then the top Stiefel-Whitney class is
zero, so the Euler number is even. Hence, in even dimensions a bounding manifold of
Euler number 2 may be taken as generating L”. This generator is of infinite order because
the disjoint union of k£ such manifolds has Euler number 2k, which is not zero. In dimen-
sion 4k + 2, the Euler number is always even. Hence, we may define a homomorphism
¢ : Qf —» L' by mapping each manifold onto the sphere with the same Euler number. Since
@i is the identity, Q3**? is a direct sum. In dimension 4%, the Euler number and the index
are congruent modulo 2, since each is congruent to the middle betti number. Hence, we
define the map ¢ by mapping each manifold onto the sphere whose Euler number is equal
to the difference of the Euler number and index of the given manifold. Since the sphere has
index 0, ¢/ is the identity, and the conclusion follows. In dimension 4k - 1, the kernel
is generated by a manifold which bounds a manifold of odd Euler number. Since the sphere
bounds the disc, which has Euler number 1, the sphere will do. In the terminology of Wall
(8], let g, = 03(X3,, ... X3,). Then the classes g, generate the torsion part of Q multi-
plicatively. Let M, e g,. Then Qj**!is generated additively by the classes of S***! and
products of M,. We show that 2M_ bounds a manifold of even Euler number, so the
class of M, is of order two. Let Q(m;, n;) be in the class X,,. Then M, is embedded in
I1,0(m;, n,) and cutting along M, gives an oriented manifold bounded by two copies of
M, and having Euler number equal to that of IT,Q(m,, n). However Q(m;, n;,) has even
Euler number, since its top Stiefel-Whitney class is zero. Hence the class of M, is of
order 2. Since Q3¢*! is generated by elements of order 2, every element is of order 2.
Thus the sequence (*) splits. This concludes the proof of Proposition (2).

COROLLARY. In general, a two-sheeted covering of M is not corbordant to 2M.

Proof. We have just shown that 2P(m, n), where P(m, n) is the Dold manifold, bounds
a manifold of even Euler number. On the other hand, it admits a twofold covering by
S™ x P(C) which bounds a manifold of odd Euler number when #n is even. This result
may also be obtained by examining the construction given by Dold [3] for the manifold
bounded by 2P(m, n) and S™ x P,(C).

We owe the following remarks to Floyd and Conner, particularly the former. If we
consider the bordism group [1, 2] Q,(BSO(n)), we see that the classifying maps of the
tangent bundles of two manifolds determine the same element of this group if and only if
the manifolds have the same Euler, Pontryagin and Stiefel-Whitney numbers. From
another point of view, they determine the same element if and only if they are cobordant in
such a way that their tangent bundles can be extended to an oriented n-plane bundle on the
big manifold. On the other hand, our cobordism makes the additional condition that the
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oriented n-plane bundle on the big manifold be a subbundle of its tangent bundle.
Proposition 2, combined with these remarks, then yields the following result.

ProposITION (3). In dimensions not of the form 4k + 1, the tangent bundles of two
oriented n-manifolds are cobordant as oriented bundles if and only if they are cobordant in
uch a way that their tangent bundles can be extended to an oriented n-plane subbundle of
the tangent bundle of the big manifold. In dimension 4k + 1, this is false for the tangent
bundle of the sphere.

One further application may be noted. In relativity theory, one has no theory of statics.
However, one may suppose that at time zero, the solutions of the Einstein equations are
instantaneously static. Then the initial surface has zero scalar curvature. Recently, Misner
[5] has shown that such surfaces exist with highly complicated topology. Suppose such
surfaces are given at # =0 and at r = 1. Then the Lorentz metric gives rise to a vector field
interior normal at ¢ = 0 and exterior normal at ¢ = 1, where interior and exterior are with
reference to the segment of space-time cut off by these surfaces. One may ask whether there
is any relation between the topology of these surfaces. Since Q3 is zero, our results imply
that no relation exists.
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