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OUR OBJECTIVE in this paper is to obtain the Euler number as a cobordism invariant by 

making a more stringent definition of cobordism. In fact, we require the existence of a 

nonsingular vector field interior normal on one of a pair of cobording manifolds and exterior 

normal on the other. The new cobordism groups admit natural homorphisms into the usual 

ones having as kernels cyclic groups generated by spheres. In even dimensions, these 

kernels are free cyclic and give the Euler number as an additional invariant. In odd dimen- 

sions, the kernels are zero except in oriented cobordism of dimension 4k + 1, where the 

kernel is cyclic of order 2. In this case, two manifolds are cobordant if and only if they have 

the same Stiefel-Whitney numbers and bound a manifold of even Euler number. In the 

oriented case, the kernel is a direct summand, while in the nonoriented case, the even 

dimensional real projective spaces become of infinite order. Finally, we give some applica- 

tions to the cobordism theory of bundles and to general relativity. 

Throughout the paper, manifold will mean infinitely differentiable compact manifold, 

possibly with boundary. 

01. THE NONORIENTED CASE 

We say that two closed manifolds M, and M2 are cobordant if there exists a manifold 

with boundary N and a vector field F on N such that 

(i) aN= M,uM,; 

(ii) F is interior normal on M, and exterior normal on M,; 

(iii) F is nonsingular. 

This is an equivalence relation, and the cobordism classes of manifolds of dimension n 

form a commutative semigroup under the operation of disjoint union. The class of the 

empty manifold is the zero of this semigroup. We shall denote the semigroup by m{, reserv- 

ing the notation !JJY for the Thorn cobordism group [7]. 
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THEOREM (1). Tn.0 mumfolds are cobordant tf and only tf they hare the same Stiefel- 

Whitney and Euler numbers. Moreocer, Y.K{ is a commutatire group for n > 0. 

Let a surgery of type (p, q) be the replacement of a subset Dp’l x S4 by Sp x D*+‘, 

where Dp is the p-disc, Sp is the p-sphere, and p + q + 1= n. According to a theorem of 

Milnor [4, p. 401 two manifolds which are related by a surgery are cobordant in the Thorn 

sense, hence have the same Stiefel-Whitney numbers [6]. 

LEMMA (1). Zf n = p + q + 1 is even, then surgery of type (p, q) bvith p even increases 

the Euler number by 2, &ile that lvith p odd decreases the Euler number by 2. 

Proof If p is even, then q is odd, and the Euler number of Dpf ’ x Sq is zero while 

that of Sp x Dq+’ is + 2. 

LEMMA (2). If n is odd, then the Euler number of M” is zero. If M” is a boundary, 

then it bounds a connected man&old of Euler number zero. 

Proof The first statement is well known. Let M = dN’, and let the Euler number of N’ 

be even. If n > 1, we make N’ connected by surgeries of type (n, 0) then use surgeries of 

type either (n-l, 1) or (n-2, 2) to make the Euler number zero. If n = 1, the circle bounds 

a cross cap, which has Euler number zero. If the Euler number of N’ is odd, form the dis- 

joint union of N’ with real projective n-space and proceed as before. 

LEMMA (3). If n is even and M” = aN, then the Euler number of N is halfthat of M. 

Proof. Let N’ be the union of two copies of N, sewed together by the identity map on 

the boundary. Then N’ has Euler number zero because of its dimension. On the other 

hand, X(N’) = 2X(N) - X(M). 

Proof of Theorem (1). Suppose M, and M, have the same Stiefel-Whitney and Euler 

numbers. Then there is a manifold N such that aN = M, u M, [7, p.771. Let N’ be a closed 

tubular neighbourhood of M, in N, and let M; be such that dN’ = M; i7 M,. Let X be 

the common Euler number of M, and M,. By Lemmas (2) and (3), we may assume that X 

is also the Euler number of N. Since N’ is diffeomorphic to Mz x [0, l] and (N - int(N’)) 

is diffemorphic to N, each of these spaces has Euler number X. Consequently, each of them 

admits a vector field interior normal on the boundary and having at most one singular 

point, the index of this point being X. If we reverse the sense of the field at each point of 

N’, the index of the singularity changes to -X. (If n + 1 is even, this is true only because 

X = 0.) Hence if we use the unreversed field on N - N’ and the reversed field on N’, we 

get a vector field on N interior normal on M,, exterior normal on MZ, and having the sum 

of the indices of the singular points equal to zero. It follows that there exists such a field 

which is nonsingular. Hence M, and M2 are cobordant. The converse is proved by re- 

versing the argument. Finally, we show the existence of inverses. Indeed, the inverse of M 

is a manifold which has the same Stiefel-Whitney numbers, but whose Euler number is the 

negative of the Euler number of M. By Lemma (l), such a manifold can be constructed by 

surgery, for positive even n. This completes the proof of the theorem. 

There is a natural homomorphism of the group ‘9-R: onto U”, defined by choosing 
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representatives and mapping each into its class in 911”. Let K” be its kernel, so we have 

PROPOSITION (1). Let xj for _j # 2k - 1 be an indeterminate, and ler Z[x,, x4, x5, . ..I 

be the polynomial algebra ocer the integers generated by these indeterminates. Then 

YJ$, = ~“r” 9J1: is isomorphic to the quotient of this polynomial algebra by elements of the form 

\ ‘YZm - *. 2-‘2j”zk ) j+ k = m. 

Also K” is zero for n odd and free cyclic for n ecen. The generator y2,,, of K2” is the class of 

the sphere SZm, and i(yz,) = 2.x2,,,. 

Proof. We know [7, p.791 that 911” is isomorphic to the polynomial algebra over Z, 

with these generators. The classes xZm+i correspond to manifolds of Euler number zero 

while the classes x2,,, correspond to the even dimensional real projective spaces, which have 

Euler number 1. The proposition follows immediately from these facts. 

52. THE ORIENTED CASE 

For this case we modify the definition of cobordism by requiring that M,, M,, and N 

be oriented, while the orientation induced on M, by Nagrees with that of M,, and the orient- 

ation induced on M2 is opposite to the given orientation of M2. (We shall write M; instead 

of -M2 for M2 with orientation reversed, because M\ in fact is not the negative of M2 in 

our theory.) Again we get a commutative semigroup 0;. 

THEOREM (2). Two manifolds M, and M, of dimension n # 4k + 1 are cobordant if and 

only if they hatie the same Stiefel- Whitney, Pontryagin and Euler numbers. If n = 4k f 1 and 

M, and M, hat-e the same Stiefel- Whitney and Pontryagin numbers, let N be the manifold 

bounded by M, and &I; in the (usual) oriented sense. Then M, and M2 are cobordant if and 

only IJ- the Euler number of N is eoen. Cl: is a commutative group for n > 0. 

LEMMA (4). If M has dimension 4k + 1 and M = aN, then the parity of the Euler number 

of N depends only upon M. Moreocer, we may always choose N with Euler number 0 or 1. 

In dimension 4k - 1, we may choose N with Euler number zero. 

Proof. Let M = aN, = aN, and let V be the manifold formed by identifying N, and 

Ni along the boundary. Then the Euler number of V is the sum of the Euler number of N1 

and N,, and is even because V is a closed oriented 4k + 2 manifold. This shows that the 

parity of the Euler number of N depends only upon M. We may change it to zero or one by 

surgery. Since complex projective 2k space has Euler number 2k + 1 and is orientable, we 

may use the technique of Lemma (2) to show that a 4k - 1 manifold which bounds also 

bounds a manifold of Euler number zero. 

Proof of Theorem (2). In the usual oriented cobordism, the invariants are the Stiefel- 

Whitney and Pontryagin numbers [8, p. 3061, Using this fact and Lemmas (I), (3) and (4), 

we can given a proof of Theorem (2) analogous to that for Theorem (1). 
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As before, we have a homomorphism of !& onto R”, and a group L” defined by the 

sequence 

PROPOSITION (2). LJk-’ is zero, L4kf1 IS cyclic of order 2 and L2’ is free cyclic. In each 

case, the generator is the class of the sphere, and n: is the direct sum of L” and !T. 

Proof. If a manifold bounds in the usual sense, then the top Stiefel-Whitney class is 

zero, so the Euler number is even. Hence, in even dimensions a bounding manifold of 

Euler number 2 may be taken as generating L”. This generator is of infinite order because 

the disjoint union of k such manifolds has Euler number 2k, which is not zero. In dimen- 

sion 4k + 2, the Euler number is always even. Hence, we may define a homomorphism 

4 : !2: + L” by mapping each manifold onto the sphere with the same Euler number. Since 

4i is the identity, R, 3kf2 is a direct sum. In dimension 41i, the Euler number and the index 

are congruent modulo 2, since each is congruent to the middle betti number. Hence, we 

define the map 4 by mapping each manifold onto the sphere whose Euler number is equal 

to the difference of the Euler number and index of the given manifold. Since the sphere has 

index 0, q5i is the identity, and the conclusion follows. In dimension 4k + 1, the kernel 

is generated by a manifold which bounds a manifold of odd Euler number. Since the sphere 

bounds the disc, which has Euler number 1, the sphere will do. In the terminology of Wall 

[81, let 9, = %(x2,, . . . A',,,). Then the classes go generate the torsion part of R multi- 

plicatively. Let M, E g,. Then R, ‘k+l is generated additively by the classes of S4kf’ and 

products of A4,. We show that 2h4, bounds a manifold of even Euler number, so the 

class of M, is of order two. Let Q(mi, ni) be in the class Xzol. Then M, is embedded in 

IIiQ(mi, ni) and cutting along M, gives an oriented manifold bounded by two copies of 

h4, and having Euler number equal to that of lliQ(mi, ni). However Q(m,, ni) has even 

Euler number, since its top Stiefel-Whitney class is zero. Hence the class of M, is of 

order 2. Since flz”” is generated by elements of order 2, every element is of order 2. 

Thus the sequence (*) splits. This concludes the proof of Proposition (2). 

COROLLARY. In general, a two-sheeted covering of M is not corbordant to 2M. 

Proof. We have just shown that 2P(m, n), where P(m, n) is the Dold manifold, bounds 

a manifold of even Euler number. On the other hand, it admits a twofold covering by 

S” x P.(C) which bounds a manifold of odd Euler number when n is even. This result 

may also be obtained by examining the construction given by Dold [3] for the manifold 

bounded by 2P(m, n) and S” x P,,(C). 

We owe the following remarks to Floyd and Conner, particularly the former. If we 

consider the bordism group [I, 21 !&(BSQ(n)), we see that the classifying maps of the 

tangent bundles of two manifolds determine the same element of this group if and only if 

the manifolds have the same Euler, Pontryagin and Stiefel-Whitney numbers. From 

another point of view, they determine the same element if and only if they are cobordant in 

such a way that their tangent bundles can be extended to an oriented n-plane bundle on the 

big manifold. On the other hand, our cobordism makes the additional condition that the 
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oriented ?I-plane bundle on the big manifold be a subbundle of its tangent bundle. 

Proposition 2, combined with these remarks, then yields the following result. 

PROPOSITION (3). In dimensions not of the form 4k + 1, the fangenr bundles of tlro 

oriented n-manifolds are cobordant as oriented bundles if and only if the-v are cobordant in 

uch a \c’ay that their tangent bundles can be e.xztended to an oriented n-plane subbundle of 

the tangent bundle of the big manifold. In dimension 4k + 1, this is false for the tangent 

bundle of the sphere. 

One further application may be noted. In relativity theory, one has no theory of statics. 

However, one may suppose that at time zero, the solutions of the Einstein equations are 

instantaneously static. Then the initial surface has zero scalar curvature. Recently, Misner 

[5] has shown that such surfaces exist with highly complicated topology. Suppose such 

surfaces are given at t = 0 and at t = 1. Then the Lorentz metric gives rise to a vector field 

interior normal at t = 0 and exterior normal at t = 1, where interior and exterior are with 

reference to the segment of space-time cut off by these surfaces. One may ask whether there 

is any relation between the topology of these surfaces. Since Qi is zero, our results imply 

that no relation exists. 
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