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The definition of a topological n-manifold M (n € N) requires, besides
separability and metrizability, that every point £ € M must possess a
neighborhood U C M which is homeomorphic to R™. (We shall only con-
sider closed topological manifolds M, i.e. M is connected, compact and
OM = (.) However, in practice, the verification of the existence (or nonex-
istence) of such homeomorphism h : U — R" is a problem. So is it possible
to find a characterization of topological manifolds which does not mention
homeomorphisms, but is reasonably simple to state and not too difficult to
verify? This is the so-called Recognition problem for topological manifolds.
In this paper we survey the history of this problem. For previous surveys
see [13],{26] and[34]-[36].

Topological manifolds of dimensions 1 and 2 have very simple charac-
terizations: S?! is the only compact, connected metric space containing at
least 2 points, which is separated by every pair of its points [28], and S? is
the only nondegenerate locally connected, connected, compact metric space
which is separated by no pair of its points but is separated by each of its
simple closed curves [3]. In which class of topological spaces do we want
to detect higher-dimensional topological manifolds? The most appropriate
seems to be the class of so-called generalized manifolds. The main differ-
ence between topological n-manifolds and generalized n-manifolds is that
the latter may fail to possesses sufficient general position properties.

Generalized manifolds were first introduced into topology in the 1930’s —
one of the major motivations was the discovery that they were the proper
framework to generalize classical theorems of the Jordan-Schoenflies type
from dimension 2 to higher dimensions (since the examples like the Alezan-
der horned sphere [1] makes a direct generalization impossible). Since then
they have played an important role in various parts of topology, e.g. theory
of transformation groups {4}, theory of cell-like decompositions of manifolds
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[17], taming theory [12], suspensions of homology spheres [14], compactifi-
cations of open topological manifolds [8], manifold factors [15], etc.

Definition 1. A locally compact Hausdorff space X is said to be a gen-
eralized n-manifold (n € N) if X satisfies the following properties: (i) X
is an Euclidean neighborhood retract (ENR), i.e. for some integer m, X
embeds in R™ as a retract of an open subset of R™ (equivalently, X is a
locally compact, finite-dimensional separable, metrizable ANR); and (ii) X
is a Z-homology n-manifold, i.e. for every point z € X, H. (X, X \{z};Z) =
H.(R™,R"\{0};Z).

Let X be a generalized n-manifold. If n < 2 then it follows by classical
results that X is a topological n-manifold. On the other hand, if n >3
then X need not be a genuine n-manifold anymore, in fact, it may fail to
possess Euclidean n-dimensional neighborhoods at all points z € X. Such
points are called singularities of X and they form the singular set S(X) of X,
i.e. S(X) = {z € X | = does not have any neighborhood in X homeomorphic
to R"}. Its complement, M(X) = X'\ S(X), is called the manifold set of X
and, if S(X)#X, it is clearly an open n-manifold. (For many totally singular
generalized manifolds X, i.e. S(X) = X, the singularities completely vanish
upon multiplication of X by the real line, i.e. X x R is a genuine manifold
- see [15].)

A resolution of an n-dimensional ANR X is a proper, cell-like map f :
M — X from a topological n-manifold M onto X. It follows by classical
results that if X admits a resolution, X must be a generalized n-manifold
[24]. Cell-like maps were introduced in [24] and are connected with cellular-
ity [9]. They are defined as those maps f : M — X whose point-preimages
f~Y(x) are cell-like sets, i.e. continua with the (Borsuk) shape of a point
[5]: Sh(f~1(z)) = Sh(pt). Cell-like maps play an important role in topology
and they have been significantly applied in solutions of several very difficult
problems, e.g. the 4-dimensional Poincaré Conjecture. They also play a key
role in the Recognition problem [27] and [34]-[36].

The following is the first of the two key problems — the Resolution prob-
lem: Does every generalized manifold have a resolution? Given the resolu-
tion f : M — X, one considers the associated cell-like, upper semicontinu-
ous decomposition Gy = {f~!(z)|z € X} of M, consisting of the preimages
of the map f, and tries to establish some general position properties of X
which would allow the controlled, simultaneous shrinking of the elements of
the decomposition Gy to arbitrary small sizes. If such a manipulation can
be carried out then the classical Bing Shrinking theorem [25] tells us that
f is a near-homeomorphism, i.e. f can be approximated arbitrarily closely
by homeomorphisms h : M — X. The best result so far in dimensions > 5
is the following Resolution theorem (see the survey [35]):
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Theorem 2. (F. S. Quinn [31}-{33]) Let X be a connected generalized n-
manifold, n > 5. Then there is an integral invariant I(X) € Ho(X;Z) of X
such that: (1) I(X) =1 (mod 8); (i) For every open subsetU C X, I(X) =
I(U); (iii) For every generalized m-manifold Y, m > 5, (X xY) = I(X)x
I(Y); and (iv) I(X) =1 if and only if X admits a resolution. .

Quinn’s local surgery obstruction I(X) can be nontrivial (see [22] and
[29] where the part missing from [10] is provided):

Theorem 3. (J. L. Bryant, S. C. Ferry, W. Mio and S. Weinberger {10]) For
every integers n > 6 and m > 1, and for every simply connected, closed n-
manifold M, there ezists a generalized n-manifold X such that: (i) I(X) =

m (hence X does not admit a resolution and is totally singular); and (i) X
is homotopy equivalent to M.

Theorem 4. (J. L. Bryant, S. C. Ferry, W. Mio and S. Weinberger [10])
For every integer n > 6, there exists a generalized n-manifold X such that:
(i) X does not admit a resolution; and (i) X is not homotopy equivalent to
any topological manifold.

Essentially nothing is known in dimension 4, except for the fact that a
generalized 4-manifold X has a resolution if and only if X xR has one. This
follows from the following result:

Theorem 5. (F. S. Quinn [30]) Let X be a generalized n-manifold (n > 4).
Then the following statements are equivalent: (i) X has a resolution; (ii)
For some k € N, X x R* has a resolution; and (i) X x R? is a topological
(n + 2)-manifold.

In dimension 3, the Resolution problem is entangled with the Poincaré
conjecture, e.g. if there exist fake 3-cells it’s easy to construct a nonresolv-
able generalized 3-manifold X, homotopy equivalent to S3, with just one
singularity (see [11] and [34]). The following is the current status (although
there has been some progress announced — see [20] and [40]):

Theorem 6. (T. L. Thickstun [39]) If the Poincaré conjecture is true then
every generalized 8-manifold X with dim S(X) = 0 admits a (conservative)
resolution.

The Resolution problem remains open (modulo the Poincaré conjecture)
for generalized 3-manifolds X with dim S(X) > 1: Suppose that there exist
no fake cubes. Does there ezist a nonresolvable generalized 3-manifold X ?
Note that in order to resolve a generalized 3-manifold X it suffices to find
an almost Zs-acyclic resolution of X:

Theorem 7. (D. Repovs and R. C. Lacher [38]) Let f : M — X be a
closed, monotone map from a 3-manifold M onto a locally simply connected
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Zy-homology 3-manifold X. Suppose that there is a 0-dimensional (possibly
dense) set Z C X such that for every point z € X \ Z, H(f}(x); Z2) = 0.
Then the set C = {x € X|f~(z) 'is not cell-like} is locally finite in X.
Moreover, X is a resolvable generalized 8-manifold.

" The second key problem is the General position problem: Which general
position property for a finite-dimensional ANR X, where X is the image of
a cell-like map f : M — X on an n-manifold M, implies that f is a near-
homeomorphism? Higher dimensional (> 5) topological manifolds possess
the following general position property:

Definition 8. A metric space X is said to have the disjoint disks property
(DDP) if for every pair of maps f,g : B2 — X of the closed 2-cell B into X
and every € > 0 there erist maps f',g' : B2 — X such that d(f, f') < e,
d(g,9') <€ and f/(B)Ng'(B?) = 0.

This property is also characteristic for manifolds in this dimension range:

Theorem 9. (R. D. Edwards [21]) Let M be a topological n-manifold,
n>5, and let f : M — X be a surjective cell-like map of M onto a finite-
dimensional ANR X. Then X is a topological n-manifold if and only if X
has the DDP.

As a corollary we immediately get the solution of the Recognition problem
for dimensions > 5: For every n > 5, the class of topological n-manifolds
M., is equal to the class of generalized n-manifolds G,, with the DDP and
vanishing Quinn’s local surgery obstruction I(X).

Let X be any generalized n-manifold, n > 6, which doesn’t admit a reso-
lution. Then by Quinn’s Theorem, the product X x T2 is also a generalized
(n + 2)-manifold without a resolution. However, by [16], X x T? has the
DDP, so [10] implies that there exist generalized m-manifolds, m > 8, which
are not topological m-manifolds although they do possess the DDP.

In dimension 3 the appropriate versions of DDP for 3-manifolds was in-
troduced in [18] and [19]: Recall that a subset Z C X of space X is locally
simply co-connected (1- LCC) if every x € X and every neighborhood U C X
of z, there is a neighborhood V' C U of z such that the inclusion-induced
homomorphism II) (V' \ Z) — II;(U \ Z) is trivial.

Definition 10. A metric space X is said to have the Spherical simplicial
approximation property (SSAP) if for every map f : S — X and every
€ > 0, there exist a map f' : S — X and a finite topological 2-complex
Ky C X such that (i) For everyt € S2, d(f(t), f'(t)) < &; (%) f'(S?) C Kp:;
and (iii) X \ Ky is 1-FLG (free local fundamental group) in X.

We define that X \ Ky is 1-FLG in X if for every y € Ky and for
every sufficiently small neighborhood U C X of y, there exists another
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neighborhood V' C U of y, such that for every connected open neighborhood
W C V of y, for each nonempty component W' C W of W \ Ky, the
inclusion-induced image of II;(W’) — II;(U’) is a free group on m —1
generators, where U’ C U is the component of U \ Ky containing W’ and
m is the number of components of st(y) \ y that meet Cl(W’ ). Note that for
any finite, connected 2-complex K, having no local separating points and
lying in a generalized 3-manifold X, the following are equivalent: (i) X \ K
is 1-FLG in Xj; (ii) K is 1-LCC in X; and (iii) Each 2-simplex of K is 1-LCC
in X (cf. [19]) It is easy to see that every topological (> 3)-manifold has
SSAP. The main result from [19] which solves the General position problem
for 3-manifolds is:

Theorem 11. (R. J. Daverman and D. Repovs [19]) A resolvable generalized
3-manifold is a topological 3-manifold if and only if it possesses the SSAP.

The Dehn’s.lemma property and the Map separation property are another
kind of general position properties of 3-manifolds which were used earlier
to shrink certain cell-like decompositions [37]:

Theorem 12. (W. Jakobsche and D. Repovs [23]) Suppose that there exist
fake cubes. Then there exists a compact homogeneous ANR X with the
following properties: (i) X is a generalized 3-manifold and S(X) = X; (ii)
X does not admit a resolution; (iit)X has the Dehn’s lemma property; (iv)
X has the Map separation property; (v)X x S' is homeomorphic to S3 x S*.

The following interesting question arises (see also [6] and [7]): Does the
ezample from [23] also possess any of the following position properties: (i)
LMSP(*); or (ii) (W)SAP; or (iii) SSAP? In dimension 4 very little is
known (see [2] and [19] for partial results) both Resolution problem as well
as General position problem are still open, while in dimensions > 5 there
also remain some questions, e.g. Does there exist a nonresolvable generalized
5-manifold?

Finally, the following is a related, very difficult problem from cohomologi-
cal dimension theory, equivalent to the celebrated Cell-like mapping problem
in dimension 4 (for more see the survey [26]): Suppose that f : M — X is a
cell-like map of a topological 4-manifold M onto a space X. Is dim X < oo
(equivalently, dim X=4)? Note that by theorem of W. J. R. Mitchell, D. Re-
povs and E. V. Séepin [27], dim X < oo if and only if X has a certain kind
of general position property, called the disjoint Pontryagin triples property.
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