THE HISTORY OF THE RECOGNITION PROBLEM FOR MANIFOLDS

Dušan Repovš

Institute for Mathematics, Physics and Mechanics, University of Ljubljana, P. O. Box 2964, Jadranska 19, 1001 Ljubljana, Slovenia

e-mail: dusan.repovs@uni-lj.si

The definition of a topological n-manifold M ($n \in \mathbb{N}$) requires, besides separability and metrizability, that every point $x \in M$ must possess a neighborhood $U \subset M$ which is homeomorphic to \mathbb{R}^n . (We shall only consider closed topological manifolds M, i.e. M is connected, compact and $\partial M = \emptyset$.) However, in practice, the verification of the existence (or nonexistence) of such homeomorphism $h: U \to \mathbb{R}^n$ is a problem. So is it possible to find a characterization of topological manifolds which does not mention homeomorphisms, but is reasonably simple to state and not too difficult to verify? This is the so-called Recognition problem for topological manifolds. In this paper we survey the history of this problem. For previous surveys see [13],[26] and[34]-[36].

Topological manifolds of dimensions 1 and 2 have very simple characterizations: S^1 is the only compact, connected metric space containing at least 2 points, which is separated by every pair of its points [28], and S^2 is the only nondegenerate locally connected, connected, compact metric space which is separated by no pair of its points but is separated by each of its simple closed curves [3]. In which class of topological spaces do we want to detect higher-dimensional topological manifolds? The most appropriate seems to be the class of so-called generalized manifolds. The main difference between topological n-manifolds and generalized n-manifolds is that the latter may fail to possesses sufficient general position properties.

Generalized manifolds were first introduced into topology in the 1930's – one of the major motivations was the discovery that they were the proper framework to generalize classical theorems of the *Jordan-Schoenflies* type from dimension 2 to higher dimensions (since the examples like the *Alexan-der horned sphere* [1] makes a direct generalization impossible). Since then they have played an important role in various parts of topology, e.g. theory of transformation groups [4], theory of cell-like decompositions of manifolds

[17], taming theory [12], suspensions of homology spheres [14], compactifications of open topological manifolds [8], manifold factors [15], etc.

Definition 1. A locally compact Hausdorff space X is said to be a generalized n-manifold $(n \in \mathbb{N})$ if X satisfies the following properties: (i) X is an Euclidean neighborhood retract (ENR), i.e. for some integer m, X embeds in \mathbb{R}^m as a retract of an open subset of \mathbb{R}^m (equivalently, X is a locally compact, finite-dimensional separable, metrizable ANR); and (ii) X is a \mathbb{Z} -homology n-manifold, i.e. for every point $x \in X$, $H_*(X, X \setminus \{x\}; \mathbb{Z}) \cong H_*(\mathbb{R}^n, \mathbb{R}^n \setminus \{0\}; \mathbb{Z})$.

Let X be a generalized n-manifold. If $n \leq 2$ then it follows by classical results that X is a topological n-manifold. On the other hand, if $n \geq 3$ then X need not be a genuine n-manifold anymore, in fact, it may fail to possess Euclidean n-dimensional neighborhoods at all points $x \in X$. Such points are called *singularities* of X and they form the *singular set* S(X) of X, i.e. $S(X) = \{x \in X \mid x \text{ does not have any neighborhood in } X \text{ homeomorphic to } \mathbb{R}^n\}$. Its complement, $M(X) = X \setminus S(X)$, is called the *manifold set* of X and, if $S(X) \neq X$, it is clearly an open n-manifold. (For many *totally singular* generalized manifolds X, i.e. S(X) = X, the singularities completely vanish upon multiplication of X by the real line, i.e. $X \times \mathbb{R}$ is a genuine manifold – see [15].)

A resolution of an n-dimensional ANR X is a proper, cell-like map $f: M \to X$ from a topological n-manifold M onto X. It follows by classical results that if X admits a resolution, X must be a generalized n-manifold [24]. Cell-like maps were introduced in [24] and are connected with cellularity [9]. They are defined as those maps $f: M \to X$ whose point-preimages $f^{-1}(x)$ are cell-like sets, i.e. continua with the (Borsuk) shape of a point [5]: $Sh(f^{-1}(x)) = Sh(pt)$. Cell-like maps play an important role in topology and they have been significantly applied in solutions of several very difficult problems, e.g. the 4-dimensional Poincaré Conjecture. They also play a key role in the Recognition problem [27] and [34]-[36].

The following is the first of the two key problems – the Resolution problem: Does every generalized manifold have a resolution? Given the resolution $f: M \to X$, one considers the associated cell-like, upper semicontinuous decomposition $G_f = \{f^{-1}(x)|x \in X\}$ of M, consisting of the preimages of the map f, and tries to establish some general position properties of X which would allow the controlled, simultaneous shrinking of the elements of the decomposition G_f to arbitrary small sizes. If such a manipulation can be carried out then the classical Bing Shrinking theorem [25] tells us that f is a near-homeomorphism, i.e. f can be approximated arbitrarily closely by homeomorphisms $h: M \to X$. The best result so far in dimensions ≥ 5 is the following Resolution theorem (see the survey [35]):

Theorem 2. (F. S. Quinn [31]–[33]) Let X be a connected generalized n-manifold, $n \geq 5$. Then there is an integral invariant $I(X) \in H_0(X; \mathbb{Z})$ of X such that: (i) $I(X) \equiv 1 \pmod{8}$; (ii) For every open subset $U \subset X$, I(X) = I(U); (iii) For every generalized m-manifold Y, $m \geq 5$, $I(X \times Y) = I(X) \times I(Y)$; and (iv) I(X) = 1 if and only if X admits a resolution.

Quinn's local surgery obstruction I(X) can be *nontrivial* (see [22] and [29] where the part missing from [10] is provided):

Theorem 3. (J. L. Bryant, S. C. Ferry, W. Mio and S. Weinberger [10]) For every integers $n \geq 6$ and $m \geq 1$, and for every simply connected, closed n-manifold M, there exists a generalized n-manifold X such that: (i) I(X) = m (hence X does not admit a resolution and is totally singular); and (ii) X is homotopy equivalent to M.

Theorem 4. (J. L. Bryant, S. C. Ferry, W. Mio and S. Weinberger [10]) For every integer $n \geq 6$, there exists a generalized n-manifold X such that: (i) X does not admit a resolution; and (ii) X is not homotopy equivalent to any topological manifold.

Essentially nothing is known in dimension 4, except for the fact that a generalized 4-manifold X has a resolution if and only if $X \times \mathbb{R}$ has one. This follows from the following result:

Theorem 5. (F. S. Quinn [30]) Let X be a generalized n-manifold $(n \ge 4)$. Then the following statements are equivalent: (i) X has a resolution; (ii) For some $k \in \mathbb{N}$, $X \times \mathbb{R}^k$ has a resolution; and (iii) $X \times \mathbb{R}^2$ is a topological (n+2)-manifold.

In dimension 3, the Resolution problem is entangled with the Poincaré conjecture, e.g. if there exist *fake* 3-cells it's easy to construct a *nonresolv-able* generalized 3-manifold X, homotopy equivalent to S^3 , with just one singularity (see [11] and [34]). The following is the current status (although there has been some progress announced – see [20] and [40]):

Theorem 6. (T. L. Thickstun [39]) If the Poincaré conjecture is true then every generalized 3-manifold X with dim S(X) = 0 admits a (conservative) resolution.

The Resolution problem remains open (modulo the Poincaré conjecture) for generalized 3-manifolds X with dim $S(X) \ge 1$: Suppose that there exist no fake cubes. Does there exist a nonresolvable generalized 3-manifold X? Note that in order to resolve a generalized 3-manifold X it suffices to find an almost \mathbb{Z}_2 -acyclic resolution of X:

Theorem 7. (D. Repovš and R. C. Lacher [38]) Let $f: M \to X$ be a closed, monotone map from a 3-manifold M onto a locally simply connected

 \mathbb{Z}_2 -homology 3-manifold X. Suppose that there is a 0-dimensional (possibly dense) set $Z \subset X$ such that for every point $x \in X \setminus Z$, $\check{H}^1(f^{-1}(x); \mathbb{Z}_2) = 0$. Then the set $C = \{x \in X | f^{-1}(x) \text{ is not cell-like}\}$ is locally finite in X. Moreover, X is a resolvable generalized 3-manifold.

The second key problem is the General position problem: Which general position property for a finite-dimensional ANR X, where X is the image of a cell-like map $f: M \to X$ on an n-manifold M, implies that f is a near-homeomorphism? Higher dimensional (≥ 5) topological manifolds possess the following general position property:

Definition 8. A metric space X is said to have the disjoint disks property (DDP) if for every pair of maps $f, g: B^2 \to X$ of the closed 2-cell B^2 into X and every $\varepsilon > 0$ there exist maps $f', g': B^2 \to X$ such that $d(f, f') < \varepsilon$, $d(g, g') < \varepsilon$ and $f'(B^2) \cap g'(B^2) = \emptyset$.

This property is also *characteristic* for manifolds in this dimension range:

Theorem 9. (R. D. Edwards [21]) Let M be a topological n-manifold, $n \geq 5$, and let $f: M \to X$ be a surjective cell-like map of M onto a finite-dimensional ANR X. Then X is a topological n-manifold if and only if X has the DDP.

As a corollary we immediately get the solution of the Recognition problem for dimensions ≥ 5 : For every $n \geq 5$, the class of topological n-manifolds \mathcal{M}_n is equal to the class of generalized n-manifolds \mathcal{G}_n with the DDP and vanishing Quinn's local surgery obstruction I(X).

Let X be any generalized n-manifold, $n \ge 6$, which doesn't admit a resolution. Then by Quinn's Theorem, the product $X \times T^2$ is also a generalized (n+2)-manifold without a resolution. However, by [16], $X \times T^2$ has the DDP, so [10] implies that there exist generalized m-manifolds, $m \ge 8$, which are not topological m-manifolds although they do possess the DDP.

In dimension 3 the appropriate versions of DDP for 3-manifolds was introduced in [18] and [19]: Recall that a subset $Z \subset X$ of space X is locally simply co-connected (1-LCC) if every $x \in X$ and every neighborhood $U \subset X$ of x, there is a neighborhood $V \subset U$ of x such that the inclusion-induced homomorphism $\Pi_1(V \setminus Z) \to \Pi_1(U \setminus Z)$ is trivial.

Definition 10. A metric space X is said to have the Spherical simplicial approximation property (SSAP) if for every map $f: S^2 \to X$ and every $\varepsilon > 0$, there exist a map $f': S^2 \to X$ and a finite topological 2-complex $K_{f'} \subset X$ such that (i) For every $t \in S^2$, $d(f(t), f'(t)) < \varepsilon$; (ii) $f'(S^2) \subset K_{f'}$; and (iii) $X \setminus K_{f'}$ is 1-FLG (free local fundamental group) in X.

We define that $X \setminus K_{f'}$ is 1-FLG in X if for every $y \in K_{f'}$ and for every sufficiently small neighborhood $U \subset X$ of y, there exists another

neighborhood $V \subset U$ of y, such that for every connected open neighborhood $W \subset V$ of y, for each nonempty component $W' \subset W$ of $W \setminus K_{f'}$, the inclusion-induced image of $\Pi_1(W') \to \Pi_1(U')$ is a free group on m-1 generators, where $U' \subset U$ is the component of $U \setminus K_{f'}$ containing W' and m is the number of components of $\operatorname{st}(y) \setminus y$ that meet $\operatorname{Cl}(W')$. Note that for any finite, connected 2-complex K, having no local separating points and lying in a generalized 3-manifold X, the following are equivalent: (i) $X \setminus K$ is 1-FLG in X; (ii) K is 1-LCC in X; and (iii) Each 2-simplex of K is 1-LCC in X (cf. [19]). It is easy to see that every topological (≥ 3)-manifold has SSAP. The main result from [19] which solves the General position problem for 3-manifolds is:

Theorem 11. (R. J. Daverman and D. Repovš [19]) A resolvable generalized 3-manifold is a topological 3-manifold if and only if it possesses the SSAP.

The *Dehn's lemma property* and the *Map separation property* are another kind of general position properties of 3-manifolds which were used earlier to shrink certain cell-like decompositions [37]:

Theorem 12. (W. Jakobsche and D. Repovš [23]) Suppose that there exist fake cubes. Then there exists a compact homogeneous ANR X with the following properties: (i) X is a generalized 3-manifold and S(X) = X; (ii) X does not admit a resolution; (iii)X has the Dehn's lemma property; (iv) X has the Map separation property; (v) $X \times S^1$ is homeomorphic to $S^3 \times S^1$.

The following interesting question arises (see also [6] and [7]): Does the example from [23] also possess any of the following position properties: (i) LMSP(*); or (ii) (W)SAP; or (iii) SSAP? In dimension 4 very little is known (see [2] and [19] for partial results) both Resolution problem as well as General position problem are still open, while in dimensions ≥ 5 there also remain some questions, e.g. Does there exist a nonresolvable generalized 5-manifold?

Finally, the following is a related, very difficult problem from cohomological dimension theory, equivalent to the celebrated Cell-like mapping problem in dimension 4 (for more see the survey [26]): Suppose that $f: M \to X$ is a cell-like map of a topological 4-manifold M onto a space X. Is dim $X < \infty$ (equivalently, dim X=4)? Note that by theorem of W. J. R. Mitchell, D. Repovš and E. V. Ščepin [27], dim $X < \infty$ if and only if X has a certain kind of general position property, called the disjoint Pontryagin triples property.

REFERENCES

1. J. W. Alexander: An example of a simply connected surface bounding a region which is not simply connected, Proc. Nat. Acad. Sci. U.S.A, 10 (1924) 8-10.

- 2. M. Bestvina, R. J. Daverman, G. A. Venema and J. J. Walsh: A 4-dimensional 1-LCC shrinking theorem, Topol. Appl. 110 (2001) 3-20.
- 3. R. H. Bing: The Kline sphere characterization problem Bull. Amer. Math. Soc. 52 (1946) 644-653.
- 4. A. Borel, Ed.: Seminar on Transformation Groups, Ann. of Math. Studies 46 (Princeton Univ. Press, Princeton 1960).
- 5. K. Borsuk: Theory of Shape, Monogr. Mat. 59 (PWN, Warsaw 1975).
- 6. M. V. Brahm: The Repovš Conjecture, Doctoral dissertation, Univ. of Texas, Austin(1989).
- 7. M. V. Brahm: Approximating maps of 2-manifolds with zero-dimensional nondegeneracy sets, Topol. Appl. 45 (1992) 25-38.
- M. G. Brin: Improving 3-manifold compactifications of open 3-manifolds, Houston J. Math. 4 (1978) 149–163.
- M. Brown: A proof of the generalized Schoenflies theorem, Bull. Amer. Math. Soc. 66 (1960) 74-76.
- J. L. Bryant, S. C. Ferry, W. Mio and S. Weinberger: Topology of homology manifolds, Ann. of Math. (2) 143(1996) 435-467.
- 11. J. L. Bryant and R. C. Lacher: Resolving zero-dimensional singularities in generalized manifolds, Math. Proc. Camb. Phil. Soc. 83 (1978) 403-413.
- 12. J. W. Cannon: Taming codimension one generalized submanifolds of Sⁿ, Topology 16 (1977) 323-334.
- J. W. Cannon: The recognition problem: What is a topological manifold?, Bull. Amer. Math. Soc. 84 (1978) 832-866.
- J. W. Cannon: Shrinking cell-like decompositions of manifolds: Codimension three, Ann. of Math. (2) 110 (1979) 83-112.
- 15. R. J. Daverman: Products of cell-like decompositions, Topol. Appl. 11 (1980) 121-139.
- R. J. Daverman: Detecting the disjoint disks property, Pacif. J. Math. 93 (1981) 277– 208
- 17. R. J. Daverman: Decompositions of Manifolds (Academic Press, Orlando, FL. 1986).
- 18. R. J. Daverman and D. Repovš: A new 3-dimensional shrinking theorem, Trans. Amer. Math. Soc. 315 (1989) 219-230.
- R. J. Daverman and D. Repovš: General position properties that characterize 3manifolds, Canad. J. Math. 44 (2) (1992) 234-251.
- 20. R. J. Daverman and T. L. Thickstun: A general position characterization of 3-manifolds, preprint (2003).
- 21. R. D. Edwards: Approximating certain cell-like maps by homeomorphisms, manuscript (1977).
- 22. S. C. Ferry: Epsilon-delta surgery over Z, preprint (2003).
- 23. W. Jakobsche and D. Repovš: An exotic factor of $S^3 \times \mathbb{R}$, Math. Proc. Camb. Phil. Soc. 107 (1990) 329–344.
- R. C. Lacher: Cell-like mappings and their generalizations, Bull. Amer. Math. Soc. 83 (1977) 495–552.
- A. Marin and Y. M. Visetti: A general proof of Bing's shrinkability criterion, Proc. Amer. Math. Soc. 53 (1975) 501-507.
- W.J.R. Mitchell and D. Repovš: Topology of cell-like mappings, Proc. Conf. Diff. Geom. and Topol., Cala Gonone 1988, Suppl.Rend.Fac.Sci.Nat.Univ. Cagliari 58 (1988) 265–300.
- 27. W. J. R. Mitchell, D. Repovš, E. V. Ščepin: On 1-cycles and the finite dimensionality of homology 4-manifolds, Topology 31 (1992) 605-623.

- 28. R. L. Moore: Foundations of Point Set Theory, Amer. Math. Soc. Colloq. Publ. 13 (Providence, RI 1962).
- 29. E. K. Pedersen, F. S. Quinn and A. Ranicki: Controlled surgery with trivial local fundamental group, preprint (2001).
- 30. F. S. Quinn: Ends of maps I, Ann. of Math. (2) 110 (1979) 275-331.
- 31. F. S. Quinn: Resolutions of homology manifolds, and the topological characterization of manifolds, Invent. Math. 72 (1983) 267-284.
- 32. F. S. Quinn: Erratum, Invent. Math. 85 (1986) 653.
- F. S. Quinn: An obstruction to the resolution of homology manifolds, Michigan Math. J. 34 (1987) 285-291.
- D. Repovš: The recognition problem for topological manifolds, Geometric and Algebraic Topology, J. Krasinkiewicz, S. Spiez and H. Toruńczyk, Eds. (PWN, Warsaw, 1986), 77–108.
- D. Repovš: Detection of higher dimensional topological manifolds among topological spaces, Giornate di topologia e geometria delle varietà, Bologna 1992, Rend. Sem. Geom. Univ. Bologna, 113-143.
- D. Repovš: The recognition problem for topological manifolds, Kodai J. Math. 17 (1994) 538-548.
- D. Repovš, R. C. Lacher: A disjoint disks property for 3-manifolds, Topol. Appl. 16 (1983) 161-170.
- 38. D. Repovš, R. C. Lacher: Resolving acyclic images of nonorientable three-manifolds, Proc. Amer. Math. Soc. 90 (1984) 157-161.
- 39. T. L. Thickstun: An extension of the loop theorem and resolution of generalized 3-manifolds with 0-dimensional singular set, Invent. Math. 78 (1984) 161-222.
- 40. T. L. Thickstun: A further extension of the Loop theorem and resolutions of generalized 3-manifolds with 1-demensional singular set, preprint 1999.