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1. Introduction

A geometric topologist often has difficulties when trying to determine
whether a space he has constructed in the course of his investigations, is a
topological manifold. Therefore there has been for a long time a need for a
practical list of topological properties which would be reasonably easy to
check and would characterize topological manifolds among topological
spaces. ([3], [13], [37], [39], [47], [55], [62], [75], (78], [79], [100], [101],
[102], [123], [124])

This recognition problem has long been solved for manifolds of
dimensions 1 and 2. For example, S' is the only compact, connected metric
space containing at least 2 points, which is separated by every pair of its
points [94], and S? is the only nondegenerate locally connected, connected,
compact metric space which is separated by no pair of its points but is
separated by each of its simple closed curves [7].

Until the late seventies nothing as elegant was even suspected to exist
in higher dimensions. In 1977, first J. W. Cannon and then R. D. Edwards
solved the celebrated double suspension problem — they proved that the
double suspension of every homology 3-sphere is S5 ([38], [54]).

Central to both proofs was a new device for detecting general position,
called the disjoint disks property (DDP) — a higher dimensional analogue of
a concept introduced in the late fifties by R. H. Bing [13] for the study of
upper semicontinuous decompositions of R>: it requires that pairs of disks
can be pushed aparat by arbitrarily small moves [38]. Having discovered the
power of this relatively simple condition, J. W. Cannon conjectured that the
DDP could distinguish topological manifolds from other generalized mani-
folds in dimensions greater than 4 [37], and hence a simple geometric
characterization of higher dimensional manifolds would follow. His intuition
was quickly proven to be correct — first, R. D. Edwards exhibited the full

* This paper is in final form and no version of it will be submitted for publication
elsewhere.
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power of the DDP by proving that ANR cell-like quotients of n-manifolds
(n = 5) with the DDP are n-manifolds [54]. Only a year later F. S. Quinn
announced that every generalized n-manifold (n = 5) is a cell-like image of an
n-manifold. Although there still has to appear a complete proof of this claim,
Quinn has by now verified it for a large class of generalized manifolds
([981, [99D.

The subject of this paper is to give a survey of recent work on the
recognition problem in dimension three. We shall give only a brief summary
of the developments in higher dimensions because there already exist expo-
sitions on that subject ([37], [39], [55], [78]).

This paper is based on the lectures I delivered in 1984 at the Université
de Paris-Sud and at the Stefan Banach International Mathematical Centre.
I wish to acknowledge J. Cerf and H. Torunczyk for their kind invitations.
The first draft was written during my visit at the Mathematical Research
Centre in Coventry in the summer of 1984. The revisions were made the
following summer at the Mathematical Sciences Research Institute in
Berkeley. 1 wish to acknowledge the financial support from the British
Council and the National Academy of Sciences U.S.A. I also wish to thank
F. D. Ancel, J. L. Bryant, R. J. Daverman, T. L. Thickstun, J. J. Walsh, and
the referee for their comments and suggestions.

2. Preliminaries

Let F be a covariant (resp. contravariant) functor defined on some
topological category % and let T: F(X)— F(Y) (resp. F(Y)— F(X)) be a
morphism, where X — Y are any two objects of %. Then it will always be
assumed that T = F(incl.) unless otherwise specified.

We shall be working in the category of locally compact Hausdorff
spaces and continuous mappings throughout this paper. Manifolds will be
assumed to have no boundary unless specified. Homology (resp. homotopy)
equivalences will be denoted by ~ (resp.=~). Isomorphisms (resp. TOP
homeomorphisms) will be denoted by = (resp. x). The singular (resp. Cech)
(co)homology over a principal ideal domain (PID) R will be denoted by
H(_; R) (resp. H(_: R)). Whenever R = Z we shall not write the coefficients.
The euclidean n-space (resp. the closed n-ball, the standard n-sphere, the n-
cube = [0,1]") will be denoted by R" (resp. B", S", I"). A homotopy (resp. R-
homology) n-cell is a compact n-manifold with boundary M such that M ~ B"
(resp. M ~ B" over R). The definition of a homotopy (R-homology) n-sphere is
analogous.

A compact subset K of an n-manifold M is cellular in M if K is the
intersection of a properly nested decreasing sequence of n-cells in M, K

= () Bf (i.e. for every i, B!, , —int BY). A space X is cell-like if there exist
i=1
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a manifold N and an embedding f: X — N such that f(X) is cellular in N.
A map defined on a space (resp. an ANR, a manifold) X is monotone (resp.
cell-like, cellular) if its point-inverses are continua (resp. cell-like sets, cellular
sets) in X. A closed map is proper if its point-ihverses are compact. A map
f: X = Y is one-to-one over Z — Y if for every zeZ, f '(z) is a point.

A compactum K in a manifold is point-like if M—K =~ M —{pt}.
A space X is k-Ic(R) (resp. Ic*(R), Ic®(R)) at xe X (ke Z,, R a PID) if for
every neighborhood U < X of x there is a neighborhood V < U of x such
that Hy(V; R)— H,(U; R) is trivial (resp. H;(V; R)— H;(U; R) is trivial for
every 0 <j <k, H;(V; R)— H;(U; R) is trivial for all j = 0). A compactum K
in an ANR X has the k-uv(R) (resp. uv*(R), uv®(R)) property (keZ,, R a
PID) if for each neighborhood U < X of K there is a neighborhood V < U
of K such that H,(V; R)— H,(U; R) is trivial (resp. H;(V; R)— H;(U; R) is
trivial for every 0 <j <k, H;(V; R)— H;(U; R) is trivial for all j > 0). The
uv properties are related to the Cech cohomology: if a compactum K has
the properties j-uv(R) (j=k—1, k) then H*(K; R) =0 and conversely, if
H/(K; R) =0 (j =k, k+1) then K has the property k-uv(R) [77]. If instead
of homology R-modules one uses homotopy groups one gets the corres-
ponding definitions of the k-LC, LC*, LC® and k-UV, UV*, UV® properties
[77]. A map defined on an ANR is uv*(R) (resp. UV¥) (ke Z,, R a PID) if its
point-inverses have the uv*(R) (resp. UV*) property.

A subset Z < X is locally simply coconnected (1 — LCC) if for every xe X
and every neighborhood U = X of x there is a neighborhood V < U of x
such that n,(V—2) - n,(U—Z) is trivial. A metric space X is uniformly
locally simply connected (1-ULC) if for every & > 0 there exists a 6 > 0 such
that each loop in X of diameter less than é bounds a disk in X of diameter
less than e.

Let G be a decomposition of a space X into compact and connnected
subsets and let n: X — X/G be the corresponding quotient map, H; the
collection of all nondegenerate (i.e. # pt) elements of G, and Ng their union.
A set U c X is G-saturated if U =n"'n(U). A decomposition G is upper
semicontinuous if for each ge G and for each open neighborhood U = X of g
there exists a G-saturated open neighborhood V < U of g. Equivalently, = is
a closed map. A decomposition G of a separable metric space X is k-
dimensional (resp. closed k-dimensional), k = —1,0, 1, ..., if dim=n(Ng) =k
(resp. dimn(;\f_g) = k). A decomposition G of a metric space X is weakly
shrinkable if for each ¢ > 0 and each neighborhood U = X of N there is a
homeomorphism h: X — X such that h|X—U =1d and for each gegG,
diam h(g) <e. A decomposition G of a space X is shrinkable if for every G-
saturated open cover % of N; and every open cover ¥~ of X there is a
homeomorphism h: X — X such that:

(i) h| X —¥* =id where &* =) {Ue¥};

(i) for each xe X there exists Ue % such that {x, h(x)} = U;



80 D. REPOVS

(i) for each ge G there exists Ve ¥ such that h(g) = V.

Let f: X — Y be a map. The nondegeneracy set of f is defined by N(f)
= {xeX|f "' f(x) # x} and its image S(f) = f(N(f)) is called the singular
set of f. Let f* M — X be a proper, cell-like map from a manifold onto an
ENR. Then the associated decomposition G(f) = {f"'(x)| xe X} of M is
upper semicontinuous and cell-like. Moreover, Hg,, = f~'(S(f)) and Ng,
= N(f). For more on decompositions see [47].

A countable collection of pairwise disjoint compacta {C;} in a metric
space X is a null-sequence if for every £ > 0 all but finitely many among the
C/’s have diameter less than & A compactum K < R™ has embedding
dimension < n, demK < n, if for every closed subpolyhedron L = R™ with
dimL < m—n—1, there exists an arbitrarily small ambient isotopy of R™,
with support arbitrarily close to K n L which moves L off K. This concept is
due to M. A. Stan’ko [112] — for an exposition see [53].

A crumpled cube is the complementary domain of an open n-cell in S".
A fake cube is a homotopy 3-cell which is not homeomorphic to B>. The
classical Poincaré conjecture asserts that there are no fake cubes [63].
A space X is said to have the Kneser finiteness (KF) if no compact subset of
X contains more than finitely many pairwise disjoint fake cubes. Kneser
finiteness theorem [70] says that every 3-manifold has the KF. A homotopy
handlebody is a regular neighborhood of a wedge of finitely many circles in
some 3-manifold.

Let X be a locally compact space and present it as the union

X = |J K; of a properly nested increasing sequence of compact subsets

i=1
K; = X. An end of X is a sequence e = {U;} of properly nested decreasing
sequence of components of X —K;. The Freudenthal compactification X of X
is X U {e} with {U;} as the basis of topology at the end e ([59], [60], [107]).
For example, if X is a generalized n-manifold with 0-dimensional singular set
S(X) (see Chapter 3 for definitions) then X is the Freudenthal compactifi-
cation of the open n-manifold X —S(X).

A space X is l-acyclic at oo if for every compact set K < X there exists
a compact set K’ > K such that H,(X—-K")— H,(X —K) is trivial.

3. Generalized manifolds: Preliminaries

Generalized manifolds were introduced around 1930. For some history of
this class of spaces see the surveys [37], [78], [79], [100], [124].

Different definitions of a generalized manifold were used at different
times in the past. We shall adopt the following modern definition [35]:
A space X is a generalized n-manifold (ne N) if:
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(1) X is a euclidean neighborhood retract (ENR), i.e. for some integer m,
X embedds in R™ as a retract of an open subset of R™; and
(i) X is a homology n-manifold, 1.e. for every xe X,

H (X, X~ {22 2 H (R R —0):2).

Note that condition (i) 1s equivalent to: X is a locally compact, finite
dimensional separable metrizable ANR [20].

One of the most important features of generalized manifolds is that
although they are defined by a set of local properties of topological
manifolds, they nevertheless satisfy most of the basic global properties of
manifolds, e.g. the Poincaré duality (in its most general form), the invariance
of domain, standard separation properties, and they admit linking and
intersection theory ([6], [17], [19], [21], [22]).

So let X be a generalized n-manifold. If n < 2 then it has long been
known that then X is actually a genuine n-manifold. In all higher dimensions
X may fail to be locally euclidean at some points (or perhaps at all) — we
call such exceptions singularities of X and they together form the singular set
of X, S(X)= IxeX| x does not have a neighborhood in X homeomorphic to
an open subset of R"|. Its complement, M(X)= X—5(X) is called the
manifold set of X. Note that S(X) is always closed and if S(X) # X then
M (X) is an open n-manifold.

4. Generalized manifolds: Examples

One reason why many topologists are interested in generalized manifolds is
that they arise in a multitude of situations. In this chapter we present the
main groups of examples.

We begin with cell-like, upper semicontinuous decompositions of
manifolds: every proper, cell-like surjection from a (generalized) n-manifold
onto a finite dimensional metric space yields a generalized n-manifold [77].
In fact, theory of decompositions of euclidean spaces, developed by the
school of R. H. Bing, has provided several rather bizarre examples of
generalized manifolds, thus revealing some of their unknown pathologies. Let
us mention only three examples — for more, the interested reader can
consult the rich bibliographies in ([13], [47]).

In 1957, R. H. Bing exhibited his dogbone space [10] — a quotient of
R® by a Cantor set worth of tame arcs. Although each individual arc is as
nice as possible, the quotient R?/G becomes a manifold only after the
stabilization by R: R’/G xR ~ R* [12].

Shrinking a wild arc in R® to a point one gets a generalized 3-manifold
with exactly one singularity. Already in 1957, K. W. Kwun showed how to
place only a countable collection of wild arcs in R® so densely that the

6 Banach Center Publications
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corresponding quotient R3/G is totally singular, ie. S(R’/G)= R’/G,
although again R?*/G xR ~ R* [74].

One need not restrict to dimension 3 to generate bad examples.
Probably the most striking examples of ghastly generalized n-manifolds
(n = 3) are those constructed by R. J. Daverman and J. J. Walsh [48]:

(i) X is a quotient of S" by a cell-like, upper semicontinuous
decomposition G such that each ge G is nondegenerate, noncellular, 1-
dimensional, and contains a wild Cantor set;

(i) X xR~ S"xR;

(i) Every mapping f: B?> — X such that f|3B? is an embeddmg, has
nonempty interior;

(iv) X does not admit a cell-like map onto any topological n-mani-
fold; and

(v) X contains no ANR’s of dimension > 1.

The three decomposition spaces above also represent another class of
examples of generalized manifolds — manifold factors. Using the Kiinneth
formula it is not too difficult to show that given locally compact n;-
dimensional Hausdorff spaces X; (i =1, 2), their product X, xX, is a
generahzed (n,+n,)-manifold if and only if each X; is a generalized
n;-manifold [18]. We shall study the relationship between these two classes
of examples in later chapters where we shall discuss methods of desingulari-
zation, 1.e. when a generalized n-manifold X is either resolved (f: M — X with
M a topological n-manifold and f a proper cell-like map) or stabilized (X x R*
becomes a topological (n+ k)-manifold for some k > 0). We also intend to
explore the questions of existence and uniqueness of the two methods and
the relationship between them.

The third class of examples comes from the rtransformation groups
theory. P. E. Conner and E. E. Floyd discovered in 1959 that the Smith
manifolds [110] are nothing but (classical) generalized manifolds [44]: the
fixed point set of a toral group action (resp. a Z, action with p any prime)
on a manifold i1s a generalized manifold.

As we have already observed above, manifold factors do not always
retain their locally euclidean character whereas generalized manifold factors
do keep all of their defining properties. This fact is crucial for making
generalized manifolds an indispensable tool in the theory of slices of actions
of compact groups on manifolds: let G be a compact Lie group acting on a
generalized n-manifold X. Then the orbit G(x) of any xe X is a base of a
fiber bundle S, x G and its fibers, the slices S, are generalized manifolds

(usually of dimension < n) and the orbit space X/G looks close to x like the
quotient of S, by the isotropy group G, at x ([18], [100]). Therefore one
may use induction in the analysis of the action of G on X, since G, is a
proper, closed subgroup of G.
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Another way of going beyond the class of topological manifolds and still
staying in the class of generalized manifolds is to suspend homology spheres:
the k-fold suspension of a generalized n-manifold with the singular homology
of S" is always a generalized (n+ k)-manifold.

Our list of examples is still slightly incomplete. One could, for example,
add those generalized manifolds which arise as the ENR’s which admit maps
onto closed manifolds with arbitrarily small point-inverses [83] or the
Freudenthal compactifications of certain open manifolds ([23], [25], [27],
[122]).

One of the most important questions in the theory of generalized

manifolds today is to what extent do all these classes of examples overlap.
Some answers will be discussed in the forthcoming chapters.

5. Generalized n-manifolds (n > 4): Resolutions

A resolution of an n-dimensional ANR X is a pair (M, f) consisting of a
topological n-manifold M and a proper, cell-like map f M — X.
Consequently, if X has a resolution then X is a generalized n-manifold [77].
A resolution (M, f) of X is called conservative if f is one-to-one over M (X).

A proof of the existence of resolutions for higher dimensional
generalized manifolds would be one of the key steps in the proof of the
Cannon conjecture (the other one being R. D. Edwards’ Shrinking theorem
— see Theorem (6.1)). In 1978 F. Quinn announced such a proof [98].
However, in 1984 it was discovered by S. Cappell and S. Weinberger that
Quinn’s argument [98] contains a mistake — see [99]. The present status of
the affairs is described below:

5.1. Tueorem. (F. S. Quinn ([98], [99])). Let X be a generalized n-
manifold.

(a) If n>=4, then X admits a conservative resolution if X xR resolves.

(b) If n=5 and if a certain integer obstruction o(X) vanishes, then X
admits a conservative resolution.

Moreover, if (M, f;) are any two conservative resolutions of X, n>4, and
U c X is a neighborhood of S(X), then there is a homeomorphism h: M,
— M, such that f,(x) = f5h(x), for every x¢U.

Quinn’s theorem implies all previously known results in dimension n > 4
([29], [30], [31], [35], [40], [58], (78], [117], [118]). In particular, if X is a
generalized n-manifold, n > 4, and X is not totally singular, ie. S(X) # X,
then by [99] X always has a (conservative) resolution.

To outline the proof of Theorem (5.1) we need the following recult
which is a consequence of Edwards™ shrinking theorem [54], Quinn’s end
theorems ([96], [97]), and R. J. Daverman’s observation [45] that all
generalized manifolds adopt the DDP after having been crossed by R%. Note
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that this result also shows that the two, in the past most useful methods of
desingularizing a generalized n-manifold (n > 4), resolving and stabilizing, are
~equivalent.

5.2. THEOREM. Let X be a generalized n-manifold, n = 4. Then the
following statements are equivalent:

(1) X has a resolution;

(i) X xR* has a resolution, for some ke N; and

(i) X xR? is a manifold.

Proof. (i) = (ii). If f* M — X is a resolution of X then fxid: M x R
— X xR* is a resolution of X x R*.

(i) = (iii). Suppose that k > 2 and let / M — X x R* be a resolution of
X x R*. Consider the canonical projection e: M — X x R*"!. The map e has
two ends [96]. Since e is cell-like, both ends are 1-LC and tame [77]. By
[96] ([97] if n = 4), there is a manifold with boundary M’ > M and a proper
map e: M’ — X xR*"! such that int M’ = M and ¢'|M = e. It follows that
¢'|éM is a resolution of X xR¥"'. By 5.1, X xR? has a resolution. Since
X x R? also has the DDP [45] the assertion follows by [54].

(i) = (i) Similar argument as in the preceding paragraph.

Proof of Theorem (5.1). First observe that the case n =4 follows from
the other case (n=5): if X* is a generalized 4-manifold and X* xR* is
resolvable for some k =1 then by Theorem (5.2) X* admits a resolution.
Next, note that it suffices to show that for some ke N, X x R* is locally
resolvable. For then by (5.2), X xR" is locally euclidean for all n = k+ 2,
hence a manifold, so by (5.2), X must admit a resolution. We may also
assume that n4+k =0 mod 4.

Choose now an arbitrary point xe X x R* and find a neighborhood
U « X x R* such that for every ie N there exist:

: , 1 . :

(1) a (n+k)-manifold M, and a proper iﬂ:-homotopy equivalence f;:
M, — U: and

sy : _ 1

(i1) a homeomorphism g;: M; —» M;,, such that d(f, fi+,9) <§;.
One then verifies that for a fixed j, the maps fg,-,9i-2-..9;: M;—-U
converge to some proper cell-like map f: M; — U.

The surgery obstructions to the existence of {(M;, f;)};>, are e-versions of
the ordinary ones. They are all reduced to a single integer obstruction ¢
defined by transversality on a manifold degree one normal map with the
same form as f: M — U. In order to get (ii) one must arrange for the M/s
to be normally bordant and use surgery to make the normal bordism an

(¢, h)-cobordism. Finally, one must apply Quinn’s thin h-cobordism theorem
[96] to obtain the homeomorphisms g;.

S—
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So we have a resolution. In order to trim it into a conservative
resolution we invoke the cell-like approximation theorems of F. Quinn [97],
if n =4 and L. C. Siebenmann [108], if n = 5. The uniqueness then follows
easily by the thin h-cobordism theorem — [97], if n =4 and [96], if n = 5.

6. Generalized n-manifolds (n = 5): The DDP

Topological n-manifolds (n = 5) have the following simple general position
property: any two (singular) 2-disks can be pushed apart by arbitrarily small
moves. It turns out that this property, called the disjoint disks property
(DDP) is also characteristic for higher dimensional manifolds (Theorem (6.2)).
In this chapter we shall give a brief account of the results which culminated
in the following definite higher dimensional shrinking theorem:

6.1. Tueorem (R. D. Edwards [54]). Let G be a cell-like, upper
semicontinuous decomposition of an n-manifold M (n = 5) such that dim M/G
< 3. Then G is shrinkable if and only if M/G has the DDP.

A metric space X has the DDP if for every pair of maps f, g: B* - X
and every &>0 there exist maps f',g': B®— X such that d(f, [
<e>d(g,g) and f'(B*) g (B* =@ [38]. In an arbitrary generalized n-
manifold (n = 5) the DDP can fail badly [48] (see also Chapter 7). But if it is
valid it detects topological manifolds:

6.2. Tueorem (F. S. Quinn [98], [99]). A space X is a topological
n-manifold (n = 5) if and only if X is a generalized n-manifold, has the DDP,
and o (X) vanishes.

Proof. Follows by Theorems (5.1) and (6.1).

6.3. CororLLary (J. W. Cannon [38]). The double suspension of every
homology n-sphere is homeomorphic to S"*2.

Proof. Let H be a homology n-sphere. If n < 2 the assertion is clear
since then H ~ S". Assume therefore n > 3. Then X?H is a generalized (n
+ 2)-manifold, hence it suffices by Theorem (6.2) to verify that X2 H has the
DDP. Clearly, X*H is a manifold at all points except possibly at the
suspension circle C. Now, given any two maps f, g: B> — X% H, they can be
deformed near C to the union of finitely many cones, each of which intersects
C in <1 point, so we can separate f(B*) and g(B?) at C by pushing these
cones along C as to make them disjoint. So if then f(B?) ng(B?%) # @, all the
intersections occur away from C and we can apply standard general position
arguments [68].

The concept of a disjoint disks property was introduced into topology
by R. H. Bing. He used a version of it to prove that his dogbone space was
not a manifold ([10], [13]). This and most of the subsequent applications of
disjoint disks properties were aimed at distinguishing certain pathological
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(usually decomposition) spaces from true manifolds, ie. they were used
mostly for diagnosing nonshrinkable decompositions (see e.g. [15]). R. J.
Daverman and W. T. Eaton began to use general position properties to
prove that certain decomposition spaces were indeed manifolds ([46], [49],
[50], [51]) (see [42] for an exposition of Eaton’s Mismatch theorem and its
extension to higher dimensions, showing a connection between decomposi-
tion theory and taming problems). In its present form the DDP first
appeared in J. W. Cannon’s proof of (6.3) — the double suspension problem
[38]. Therein, he used the DDP as a hypothesis sufficient to single out
manifolds inside a class of certain generalized manifolds. (Note that Cannon’s
original proof [38] does not use (6.1) or (6.2) since it preceded both [54] and
[98]. Instead, Cannon proved a weaker form of (6.1) and used his earlier
resolution theorem [36] which was sufficient for this case.) Completely
independently of Cannon, H. Torunczyk discovered a higher dimensional
analogue of the DDP, the disjoint cells property, and has proved that it
detects Hilbert cube manifolds among ANR’s (cf. [55, § 10]).

For a discussion of the disjoint disks properties in dimension 3 see
Chapter 9.

We now turn to a brief discussion of Edwards’ theorem. This result is
one of the most impressive in modern geometric topology, both in its
simplicity and its elegance of the argument. It is a sweeping generalization of
many earlier related results, e.g. ([38], [108], [116]). The proof is a prime
example of the Bing school of topology. Its basic ingredients are classical
shrinking techniques of R. H. Bing, radial engulfing and some fundamental
taming results of R. H. Bing and J. M. Kister [16] and J. L. Bryant and
C. L. Seebeck [33].

The original manuscript [54] was never completed for publication.
Instead, Edwards prepared an outline of the proof in his survey article [55].
Complete versions can be found in [82] and (with more details) in [47]. The
following is, by [84], an equivalent formulation of (6.1):

6.1.* TueoreM (R. D. Edwards [54]). A proper, cell-like map f: M — X
from an n-manifold M (n>=5) onto an ANR X can be approximated by
homeomorphisms if and only if X has the DDP.

6.4. CororLLary (L. C. Siebenmann [108]). A proper, cell-like map
between topological n-manifolds (n=35) can be approximated by
homeomorphisms.

This corollary is also known in lower dimensions: n = 2 ([106], [120])
(for S? already [93]), n =3 (f cellular) ([2], [108]) and for n =4 [97].
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7. Generalized 3-manifolds: Preliminaries

Dimension 3 is in many respects peculiar: (i) this is the lowest dimension in
which singularities occur (recall that generalized 1- and 2-manifolds are
always locally euclidean [124]), and (ii) this is the only dimension in which
we still don’t know if there can exist any exotic homotopy spheres, i.e. # S*
(L57], [109]).

A consequence of (i) is that generalized 3-manifolds cannot have “cone”
singularities which are quite common in higher dimensions. (This fact was
first observed by K. W. Kwun and F. Raymond [76] and recorded again in
[32]. See also [62].) Take for example, the suspension XH" of any nonsimply
connected homology n-sphere H" (such exist for all n = 3). Clearly, ZH" is a
generalized (n+ 1)-manifold with the suspension points as the only two
singularities. As a corollary of (i), if a generalized 3-manifold X admits a PL
structure then X has no singularities.

A consequence of (ii) is that, assuming the existence of fake 3-spheres
one can construct strange examples of generalized 3-manifolds which in
many respects still behave like 3-manifolds and yet they may be totally
singular. The simplest example is (7.1) below, more sophisticated ones are
(7.2){7.4) further on.

Let X be a generalized 3-manifold with O-dimensional singular set and
let pe X. Then p has arbitrarily small compact neighborhoods N = X such
that:

() X—intN is a compact 3-manifold with boundary;

(i) int N is orientable; and

(iii) (X —int N) =« M (X).

(For a proof see [27].) We say that X has genus <n at p (neN) if p has
arbitrarily small such neighborhoods N with &(X—intN) a (closed
orientable) surface of genus < n. We say that X has genus n at p if X has
genus < n at p and doesn’t have genus < n—1 at p. If X doesn’t have genus
< n at p for any n we say that X has genus oo ar p. We shall denote the
genus of X at p by g(X, p) [79]. '

7.1. ExampLE (R. L. Wilder [124]). Suppose fake cubes exist and consider
in % a null-sequence of pairwise disjoint 3-cells {B;} converging to a point
peS>. Replace each B; by a fake cube F; and choose a metric in W3
=($*— U int B)) u(|J F;) so that the F;s also converge to p. Then W3 is a

i=1 i=1
compact generalized 3-manifold with the following properties:
(M) S(W) = {pj;
(if) W does not have a resolution;
(iii)) W~ S*; and
(iv) g(W, p) = 0.
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Proof. (i) Follows by the Kneser finiteness theorem [70], (ii) by Theorem
(7.8), while (iv) is clear. To see that (iii) holds, consider the map f: W — §°
which shrinks out all the F;s. Clearly f is cell-like hence a homotopy
equivalence [77].

Generalized 3-manifolds which are obtained via an operation (or a
sequence of countably many of such) as described above and whose singular
set is O-dimensional, shall be called Wilder manifolds (in [115] they are
termed “near manifolds™). Note that if the Poincaré conjecture is true then
every Wilder manifold is a genuine 3-manifold.

7.2. ExampLE (W. Jakobsche and D. Repovs [67]). Suppose the Poincaré
conjecture is false. Then there exists a compact homogeneous ANR X with
the following properties:

(i) X is a generalized 3-manifold and S(X) = X;

(1) X does not admit a resolution;

(iti)) X has the Dehn’s lemma property;

(iv) X has the map separation property:

(V) X x8' =8 x5§.

(For the definitions of properties in (iii) and (iv) see Chapters 9 and 10.) The
construction is a modification of W. Jakobsche’s earlier example of a
homogeneous 3-dimensional ANR which fails to be a manifold [66]: X is
obtained as the inverse limit X = ]ign \ X, f), where X, =X, | #
#H? # ... # H? H® = homotopy 3-sphere, X, = S° and f,: X, — X,., are
spine maps. For details see [67].

7.3. ExampLE (M. G. Brin [25]). Suppose the Poincaré conjecture is false.
Then there exists a compact generalized 3-manifold X with the following
properties:

() S(X) ="tp] and g(X; p)=1:

(i) M(X) is an irreducible 3-manifold (i.e., every 2-sphere in M(X)
bounds a 3-cell in M(X)): and

(111) X does not admit a resolution.

Brin's example arises as the endpoint compactification of an open 3-
manifold N which he constructs as follows: in a fake 3-sphere P he considers
a certain link (J,, J,). where the simple closed curve J, lies in no 3-cell in P.
The fundamental building block of N is the complement Q (in P) of an open
“tubular neighborhood of this link in P. Let {Q;} be an infinite collection of
copies of Q. Denote by. A; and B, the two boundary tori of Q;. Brin now
glues, in a certain pattern, first, a solid torus T to Q, using A4,, and then for
every i > 1, he matches up Q; with Q;, |i—jl =1, glueing B;,_, onto 4; and

then B, onto A4,, ,. Finally, N = T u((J Q,) and X = N. For details see [25].
i=1

(Note that this construction can easily be modified as to get as the singular
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set of X any (necessarily wild) Cantor set (rather than just one point p))

74. Exavpie (M. G. Brin and D. R. McMillan, Jr. [27]). Suppose the
Poincaré conjecture is false. Then there exists a compact generalized 3-
manifold X such that:

(1) S(X) = ip} and g(X, p) = ©;

(i) M(X) is the union of an increasing, properly nested sequence of
handlebodies; and

(111) X doesn’t admit a resolution.

The construction is based on a homotopy 3-sphere H # S with a Heegaard
splitting H = AU B into 2 handlebodies. Earlier, McMillan had found a
homeomorphism h: H — H, isotopic to the identity, such that h(4) < int A and

this inclusion is null homotopic [92]. Consequently, C = (\ h*(A) is a cell-

i=1
like set [89], the open 3-manifold complement U = H—C is acyclic [89],
and its endpoint compactification U is a resolvable generalized 3-manifold,
U = H/C. The desired example X is then obtained as the endpoint
compactification of p~'(H—(Cu TulJ)), where p: V- H~—(intT) is an
infinite cyclic cover, T < H—C an appropriately chosen solid torus, and
JcH—-CuTis an arc from C to 0T For details see [27]. (It is an open
problem whether there is such an example with g(X, p) < n, for some fixed
integer n,, i.e. whether- the family of handlebodies can be modified as to have
genus < Hy.)

We continue our discussion with some geometric properties of
generalized 3-manifolds. We begin by a taming theorem of J. L. Bryant and
R. C. Lacher [32] which is the 3-dimensional analogue of the 1-LCC
shrinking theorem from [40] for higher dimensions (n>5). As already
Lacher has pointed out in [79], Theorem (7.5) has limited application in the
recognition process since many potential singular sets may be wildly
embedded. (Recall that this occurs also in higher dimensions — the only
points which Cannon had to check in [38] to prove that the double
suspension X2 H* of a homology 3-sphere H* is the S-sphere, were those at
the suspension circle C, a wildly embedded simple closed curve in X* H?)

7.5. Tueorem (J. L. Bryant and R. C. Lacher [32]). Let X be a compact
generalized 3-manifold, satisfying the Kneser finiteness, and suppose that
S(X) is a 1-LCC subset of X. If dimS(X) <0 then X is a 3-manifold.

The special case Z = {pt| was proved already in the early 1960's by
C. H. Edwards, Jr. [52] and, independently, by C. T. C. Wall [121]. Using
the connection between tameness and genera of points in X (see (7.7) below)
we can restate (7.5) as follows:

7.5% Tueorem (J. L. Bryant and R. C. Lacher [32]). Let X be a
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generalized 3-manifold with dim S(X) < 0. If X satisfies the Kneser finiteness
and if g(X, x) =0 at all xe X, then X has no singularities.

7.6. CoroLLARY. Let X be a generalized 3-manifold with dimS(X) = 0. If
g(X,p) =0 at all pe X then X is a Wilder manifold.

Proof of Theorem (7.5)*. By hypothesis there is a closed, 0-dimensional
set Z < X such that S(X) = Z and Z i1s 1-LCC in X. We may assume that Z
1s compact. First construct arbitrarily small compact neighborhoods N; < X
of Z with orientable interiors and such that for every i, N;,, <intN; and
X —int N; is a compact 3-manifold, with boundary a collection of 2-spheres,
PL embedded in X —Z. We may also assume that the only homology 3-cells
in X—Z are the real 3-cells (use the Kneser finiteness theorem and the

Grudko theorem [63]) and that for every component of N;, X —int N‘: has

connected boundary (drill to join the components of d(X —int N;)). Then
every component of N;—intN;,, is a punctured 3-cell. It is therefore
possible to replace N, by a 3-cell so that the new space is a 3-manifold,
homeomorphic to X. This proves (7.5)*.

To complete the argument for (7.5) it remains to prove the following
proposition whose proof may be found, e.g. in [102].

7.7. ProposiTiON. Let X be a generalized 3-manifold with dim S(X) < 0.

Then S(X) is 1-LCC in X if and only if, for every xe X, g(X, x) =0.
" We could roughly classify the singularities of generalized 3-manifolds X

as follows [79]: Suppose S(X) = {p}. Then p can be, for example:

(i) tame, eg. S3/C, C = the Whitehead continuum [122], or

(ii) wild, eg. S3/A, A = the Fox-Artin wild arc [56], or

(1) Wilder type, e.g. our Example (7.1). .

Like manifolds, generalized 3-manifolds also satisfy certain algebraic
finiteness properties:

7.8. Tueorem (J. L. Bryant and R. C. Lacher [32]). Let X be a compact
generalized 3-manifold (resp. with a resolution). Then there is an integer ke N
such that among any k+ 1 pairwise disjoint Z,-homology 3-cells in X at least
one is contractible (resp. a 3-cell).

Proof. An excercise using van Kampen and Grusko’s theorems [63].

8. Generalized 3-manifolds: Resolutions

In higher dimensions the existence of a resolution immediately implies the
existence of a conservative one (see Chapter 6). In dimension 3 few more
arguments are needed:
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8.1. Tueorem (J. L. Bryant and R. C. Lacher [32]). Every resolvable
generalized 3-manifold admits a conservative resolution.

Proof. Take any resolution f* M — X. Then the set C < M (X) of those
points over which f fails to be cellular is locally finite in M (X) [88], hence
we may assume ([2], [108]) that f is one-to-one over X —(Cu S(X)), so
eventual fake cubes in X —C lift to M. By the Kneser finiteness theorem [70]
we conclude that C is locally finite in X. Shrinking out the collection
{f " '(c)] ceC| we get a proper, cell-like map qg: M — M’ onto a 3-manifold
M’ and an induced proper, cell-like map f: M'— X which is one-to-one
over M(X) and such that f = f'q.

We now turn to the existence of resolutions. The first resolution theorem
in dimension 3 was obtained by J. L. Bryant and R. C. Lacher [32] in 1978.
We state here the improved version [105] (in [32] M was assumed to be
orientable). The advantage of this result over other resolution theorems
which we shall discuss later on, is that it contains no bound on dimension of
the singular set. Note that the set Z in (8.2) can possibly be even dense in X.

8.2. Tueorem (D. Repovs and R. C. Lacher [105]). Let f: M — X be a
closed, monotone mapping from a 3-manifold onto a locally simply connected
Z,-homology 3-manifold. Suppose that there is a O-dimensional set Z < X such
that H'(f ' (x); Z,) = 0 for all xe X —Z. Then the set C = {xe X| f~'(x) is
not cell-like} is locally finite in X. Moreover, X is a resolvable generalized 3-
manifold.

An elementary example when C is nonempty can be obtained by
considering any spine map [77]. An easy modification of the construction of
the Whitehead continuum [122] shows that on the other hand, the set D
= {xeX| f~'(x) is not cellular in M} may be uncountable even when C
happens to be empty.

The hypothesis that X be locally simply connected cannot be omitted
from (8.2): consider the decomposition G of R® into points and a Cantor set
worth of dyadic solenoids (to get G take the standard construction of a
single dyadic solenoid in R® and “double” the defining sequence of solid tori
at every stage — compare [101]). Consider now f: M — X where M = R>,
X = R*/G and f = the decomposition map. Since H' (f ' (x); Z,) = 0 for all
xe X, X is a Z,-homology 3-manifold [77]. However, f is not even strongly
acyclic over S(f) hence C is uncountable. For a “ghastlier” example see [48]:
there, a strongly acyclic map (over Z) from S onto a finite dimensional Z-
homology 3-manifold is constructed such that C = X.

Neither can the hypothesis dimZ =0 be weakened in (8.2): consider
Bing’s figure eights decomposition of 3. Then C is uncountable, in fact, C
= Z ~(0,1).

As a corollary, we obtain a partial converse in dimension 3 to the well-
known fact that a cell-like, upper semicontinuous decomposition G of an n-
manifold always yields a generalized n-manifold (if » = 4 one must assume, in
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addition, that M/G is finite dimensional). A special case of this question was
studied in the late 1960’s namely, whether monotone, 0-dimensional, upper
semicontinuous decompositions of S® which yield S* must have point-like
elements. Partial results were obtained by several people — see e.g. ([1], [5],
[81], [85], [91]). Note that the restriction on the dimension of G in (8.3)
comes in naturally due to Bing’s example in the preceding paragraph.

8.3. CoroLLAry. Let G be a monotone, O0-dimensional, upper
semicontinuous decomposition of a compact 3-manifold M such thar M/G is a
generalized 3-manifold. Then G is almost cell-like, i.e. the set C ={geG| g is
not cell-like} is finite.

The proof of Theorem (8.2) combines algebra with geometry. It relies on
some fundamental theorems from the 3-manifolds topology. The first
necessary technical result we need to develop is (8.4) below. In [72] T. E.
Knoblauch proved that in a closed, orientable 3-manifold there can be but a
finite number of pairwise disjoint compact sets that do not have a
neighborhood embeddable in R*. It is easy to manufacture examples to show
that this does not always hold for nonorientable 3-manifolds. In the next
result we give an additional (minimal?) condition which is sufficient to
generalize Knoblauch’s finiteness theorem to the nonorientable case.

8.4. THeoreM (D. Repovs and R. C. Lacher [105]). For every closed,
nonorientable 3-manifold M there exists an integer k such thar if
X1, ..., Xos1 € M are pairwise disjoint compact sets and each X; has a
neighborhood U, = M such that H,(U;,— X;; Z,)— H,(M; Z,) is trivial then
at least one X; has a neighborhood in M which embeds in R>.

8.5. CoroLLARY. Let G be a cell-like decomposition of a closed 3-manifold
M. Then all but finitely many elements ge G are intersections of properly
nested decreasing sequences of cubes-with-handles in M.

Proof of (8.5). Follows by [72] if M is orientable (resp. by (8.4) if it is
not) and by [89].

Proof of (8.4). We may assume that the U;’s are pairwise disjoint. A

straightforward computation shows that for every n =1, im(Hl(U U)

i=1
- H,(M)) = @ im(H,(U;)— H,(M)); hence at least n—rank H, (M) among
i=1

the U;s are orientable [80] and thus they lift to the orientable 3-manifold
double cover M of M as two homeomorphic copies. The conclusion now
follows by [72] applied in M. For details see [105].

Although Theorem (8.4) is clearly invalid over Z, (p any odd prime), e.g.
take M = P?xS' and X, = P?>x !t} where P? = the projective plane, it is
true over the integers: by the Universal coefficients theorem, the following
diagram commutes:
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0—>H (U -X;2)®Z~L>H (U -x ;Z,)—Tor (H,(U-X;Z),Z,)—=0

l;‘,@ i l;; l

0 —H,(M;Z) ® Z,—T > H (M, Z,) ——= Tor (H_(M; Z), Z,) —0
thus if j, =0 then j, =0.

The next step in the proof of (8.2) is the following neighborhood
theorem (below) — it describes neighborhoods of peripherally acyclic
continua in 3-manifolds (for a study of peripheral acyclicity see [103]).
Certain parts of (8.6) were proved earlier by D. R. McMillan, Jr. [91], A. H.
Wright [125], and J. L. Bryant and R. C. Lacher [32]. The proof of (8.6)
relies heavily on the Haken finiteness theorem [61] and J. W. Milnor’s prime
decomposition theorem for 3-manifolds [63]. Since it is quite elaborate we
refer the interested reader to [101].

8.6. THeoreM (D. Repovs and R. C. Lacher [105]). Let K be a compact
connected subset of the interior of a 3-manifold M. Suppose that K doesn't
separate its connected neighborhoods and that for every neighborhood U — M
of K there exists a neighborhood V < U of K such that H,(V—-K; Z,)

— H,(U; Z,) is trivial. Then K = (| N; where each N; < int M is a compact
i=1
3-manifold with boundary, satisfying the following properties: for every i,

(1) Niyy < IntN;;

(i) N; is obtained from a compact 3-manifold Q; with a 2-sphere
boundary, by adding to 0Q; a finite number of orientable (solid) 1-handles;

(iii) Hy(ON;4+,; Z,) — H{(N;: Z,) is trivial; and

(iv) there is a homeomorphism h;: N; — N; such that h;|éN; =id and
hi (QF) = Q;4,, where QF c intQ; is formed by pushing Q; into intQ, along a
collar of 0Q;.

Proof of Theorem (8.2). We present an argument whose first part is
different from the original one in [105]. Let 4 = {xe X| H'(f ' (x)) # 0}.
By Assertion 1 on p. 315 of [32], A4 is locally finite in X. Since by [90] and
[80], every f~!'(x), xe X—A, has an orientable neighborhood in M, it
follows by Assertion 3 on p. 316 in [32] that C— A is locally finite in X — A.
It thus remains to show that no limit point of C— A can belong to A. Let
ac A and suppose that for some sequence |x,} = X—A, limx,=a. By
Assertion 2 on p. 316 in [32], every f~'(x) is strongly Z,-acyclic hence by
[89] the intersection of a nested sequence of Z,-homology 3-cells with
handles. Thus for each n>1 there exists an orientable neighborhood
U,=M of f7!(x,) and a Z,-homology 3-cell with handles H, = U, such
that f~'(x,) < int H,. We may also assume that if i # j then U;nU; = Q. It
is a well-known corollary of the Grusko-Neumann theorem [63] that in a
compact 3-manifold there is but a finite number of pairwise disjoint
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Z,-homology 3-cells which fail to be real 3-cells. Therefore, by [91] all but
finitely many among |/~ '(x,)} are 1—UYV hence cell-like [77]. Thus x,¢C
for all but a finite number of indices n. Consequently, the set C— A4 (hence
also the set C) is locally finite in X. (For a proof independent of Assertions
1-3 from [32] see [105].)

It now remains to find a resolution for X. We construct it by improving
f over the points of C. We may assume that C = {c}. It is not difficult to
check that K = f~!(c) satisfies all the hypotheses of Theorem (8.6). Hence K

can be expressed as K = () N; where the N/;'s are as described in (8.6). Let
i=1
M’ = M/Q% and let hi: N; > N; be a homeomorphism such that h;|dN; = id
and hi(Q;,,) = QF ,. Define a homeomorphism h¥: M — M by letting h¥
= hih; on N, and the identity elsewhere. Let go: M — M’ be the quotient
map. Define inductively g; =g;—,(h¥)"': M —> M’, i > 1. Finally, let K’
= (" g;(N;,,). It can be shown that K’ is cell-like. The proof is then
i=0

completed by defining a map g: M—K — M’ by letting g = g; on M —int N;,
izl.and f" M= X by f"=fg ' on M'—K' and ['(K') =c.

It is not difficult to verify that f’ is cell-like. For details see [105].

After [32] the search for a different resolution theorem narrowed down
to the class % of generalized 3-manifolds with O-dimensional singular set. The
first one to prove a resolution theorem for such spaces was M. G. Brin: in
his thesis [23] he showed that, modulo the Poincaré conjecture, every X e%
such that S(X) = |p} admits a resolution, provided g(X, p) < 1. (Note that if
g(X, p) =0 then X is immediately a 3-manifold by Theorem (7.5)*%.) He soon
generalized this result to those Xe% for which g(X, x) <1 at all singular
points [25]. The philosophy of the attack on the resolution problem in [23]
and [25] was predetermined by an important earlier observation of D. R.
McMillan, Jr. — see [25] (and also [27]) that resolving an X e % is nothing
else than embedding the open 3-manifold M(X) into some compact
3-manifold. This follows from a slightly more general statement (8.7) below.
We remark that there exist many examples of open n-manifolds (n = 3) which
embed in no compact n-manifold ([69], [87], [114]).

8.7. Tueorem (M. G. Brin and D. R. McMillan, Jr. [27]). Let X be a
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compact generalized 3-manifold with dimS(X)=0. Then the following
statements are equivalent:

(1) X admits a resolution;

(i) M(X) embeds in some compact 3-manifold;

(iii) S(X) has a neighborhood U = X such that U n M (X) embeds in R?:

(iv) S(X) has a neighborhood U = X such that U n M (X) embeds in some
compact 3-manifold. '

Proof. (i) = (i1) Follows by Theorem (8.1). :

(ii) = (iti) Suppose that M (X) embeds in the compact 3-manifold N. We
may' assume that ¢N = Q. There exists an open neighborhood U < X of
S(X) such that U is orientable [27]. The assertion now follows by applying
[71] in the orientable 3-manifold double covering of N.

(111) = (iv) Clear.

(iv) = (1) Let N be the compact 3-manifold in which U n M (X) embeds
via some h: U~ M(X)— N. We may assume that U is compact and that N
is closed. Let f* N — U be the map (induced by h™') whose only nonde-
generate point-inverses are the components of N—h(U n M (X)). The asser-
tion now follows by Theorem (8.2).

The idea of the proof in [23] and [25] was therefore to present the

manifold set M(X) of an Xe% as a union M(X) = |J K; of an increasing,
i=1

properly nested sequence of compact 3-manifelds with boundary K; and then
use the hypothesis (g (X, p) =1 in [23] and g(X, x) = 1 for all xe X in [25])
to embed M (X) in some compact 3-manifold and then invoke Theorem (8.7).

Together with D. R. McMillan, Jr., Brin improved his resolution
theorem — they demonstrated in [27] that, modulo the Poincaré conjecture,
every X € % whose singular set S(X) has arbitrarily small neighborhoods with
torsion free fundamental group, admits a resolution. The “torsion free”
hypothesis which replaced the condition on the genera of singularities in [25]
was inherited from Brin’s version of the Loop theorem for the class % [26].
The proof in [27] is again (like in [23] and [25]) an embedding procedure
for M(X). Since the argument is pretty technical, we refer the interested
reader to [27].

Few years later, T. L. Thickstun identified the suspected red herring
nature of the “no =,-torsion” in [27]:

8.8. Tueorem (T. L. Thickstun [115]). Let X be a generalized 3-manifold
with dim S (X) = 0. Then there is a Wilder manifold Y and a proper, cell-like
map - Y — X.

8.9. CoroLLARY. Ler % be the class of all compact generalized 3-manifolds
X with dimS(X) =0 and let o, = % be the subclass of all X €% such that
S(X) = {pt} and X ~S>. Then the following conjectures are equivalent:
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(1) The Poincaré conjecture.

(i1) Every Xe% admits a resolution.

(i11) Every Xe%, admits a resolution.

Proof of (8.9). (1) = (i1). Follows by Theorem (8.8).

(i1) = (). Clear.

(iii) = (i). Example (7.1).

The key device needed for (8.8) is a version of the Loop theorem for the
class % without the “no m,-hypothesis™ (as in [26]). A similar result was
proved (using entirely different methods) by A. J. Casson and C. Mc
A. Gordon [43].

8.10. Tueorem (T. L. Thickstun [115]). Let M be an orientable 3-
manifold with compact boundary, F < éM a surface and G a normal subgroup
of m, (F). Suppose that M is 1-acyclic at o and that f: (B*>—C, ¢B?) — (M, F)
is a proper Dehn map, where C < int B? is of dimension <0, and such that
[f18B*] & G. Then there exists a proper embedding g: (B*— D, 0B?)
— (M, F), where D <intB? is of dimension <0, such that [g|éB*] ¢ G.
Furthermore, if N € M is a neighborhood of S(f) then we can choose g, so
that g(B>—D) < f(B*-~C)uUN.

The proof of (8.10) is different from the proof of the classical Loop
theorem [63]. Recall that a classical proof would use Papakyriakopulos’
finite tower of maps:

f (B cv, M,

/o

2
!,,_\[B 1< vn—1 CM".‘

H ’/Dz

4
£,18Y)c v,cM,

f 2
82_______,,_f0[8 }CVOCM

where ¥, is a regular neighborhood of f,(B*) in M, and p,: M, — V,_, a
connected double covering such that p, f, = f,_,. The complexity of the map
fo 1s reduced at each level until f, can be turned into an embedding. Using
Dehn cuts this embedding is then transferred from the top to the bottom,
one level at a time [63].

M. G. Brin used in [26] another technique: instead of constructing a
tower of maps as above he considered a single (the largest) cover M to which
f: B?> — M still lifted. By the cut-and-paste he would then get an embedding
in M, disjoint from its translates, so it would project to M without
singularities. In order for these operations to be possible, the covering
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translations had to be torsion free. This is how the condition “no m,-torsion”
came into [27]. (Compare [95] and [86].)

Thickstun introduced a new idea — he still uses the tower construction
but he does not remove all singularities by the time he reaches the top. After
performing Dehn cuts at the top level he gets an embedding there and then
he sends it to the bottom without stopping at any intermediate level. He does
not get an embedding in this way but rather a map, less singular than the
original. :

He then repeats this procedure iransfinitely many times to eventually
produce an embedding into M. All these operations are perfomed on some
monotone sequence of large compact pieces filling up B2 —C. So Thickstun is
really desingularizing an entire sequence of compact planar maps and then
piecing them together in a clever way (essentially using methods of [28]) to
get the desired noncompact planar surface in M.

Proof of Theorem (8.8). Let N = X be a compact neighborhood of S(X)
such that N* = X—N is a compact 3-manifold with orientable boundary.
Consider an essential loop y on éN* such that y bounds a singular disk in N.
(Such y’s exist because X is an ENR; hence, in particular, 1-LC [65].) Using
Theorem (8.10), get a proper, embedded planar surface y*: (B*—D, 0B?)
—(N—5(X), dN*) where D < int B is of dimension < 0. Extending y* over
D we get a (singular) Dehn disk f: B*— N such that S(f) < S(X).

The idea is now to thicken (blow up) this disk in order to get a larger
generalized 3-manifold Y; in which f shall induce a compression on N away
from (i.e. missing) the singular set. So consider a regular neighborhood W of
f(B*-D) in the 3-manifold N—S(X). Cutting W out of N and glueing on
(N —W) the “product” f(B*x(—1, 1)) in the obvious way yields a new
generalized 3-manifold Y, and a proper, cell-like map g,: Y; — X which
shrinks out the fibers of f(D x(—1, 1)). Note that in Y;, N can be com-
pressed along the embedded disk f(B? x {0}), missing the singular set of Y,.

This procedure reduces the genus of dN* and thus we eventually end up
with 2-spheres. Hence g(Y,, y) = 0 for all ye Y,, for some n > 1. By Corollary
(7.6), Y, is a Wilder manifold. Since the composition f, ... f;: Y,— Y is cell
like [77], the assertion of (8.8) follows. (This proof was also effected by R. J.
Daverman in the Spring of 1981 (unpublished).)

9, Generalized 3-manifolds: The DDP

Due to the lack of general position, Cannon’s -DDP which was so
successfully exploited in higher dimensions (as we described in Chapter 6)
does not apply in dimensions below 5 (not even R* satisfies it). There is

7 — Banach Center Publications
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presently no appropriate version of the DDP for dimension 4 which would
yield the analogue of Edwards’ shrinking theorem (6.1) and, consequently, a
recognition theorem for 4-manifolds. Following M. H. Freedman’s
fundamental paper on 4-manifolds [57] there has recently been a
breakthrough of activity in this area. Perhaps we may thus soon expect some
results concerning manifold characterization in this dimension, too.

In Chapter 8 we have discussed present status of the resolution problem
in dimension 3. We have seen that all work has been done mainly on the
class % of all generalized 3-manifolds with at most O-dimensional singular
set. In this chapter we shall prove that for this class there exists an
appropriate version of the DDP, called the map separation property (MSP)
which, modulo the Poincaré conjecture, yields the 3-dimensional analogue of
Edwards’ Theorem (6.1):

9.1. THeorEM. (D. Repovs and R. C. Lacher [104]), Let 4 be the class of
all compact generalized 3-manifolds X with dimS(X) <0, and let 6, < ¢ be
the subclass of all X € % such that S(X) < {pt} and X ~ S3. Then the following
conjectures are equivalent:

(i) The Poincaré conjecture.
(1) Every Xe% with the MSP is a 3-manifold.
(iti) Every X e, with the MSP is homeomorphic to S>.

We begin with some history on this subject. Various DDP’s have been
used in the past 30 years — notably by R. H. Bing and his school of
decompositions of R>. It all began with the celebrated dogbone space D>
=R?*/G [10] — here G is a closed, O-dimensional cellular, upper
semicontinuous decomposition. Although each nondegenerate element of G is
a tame arc, they are tangled in such a clever way that collectively they
destroy the manifold-likeness of the quotient D*. As Bing has pointed out in
[13], one of the crucial facts about D? is that it fails to possess a “general
position™ property of R* (and all 3-manifolds, as we shall see later on) that
embedded disks which intersect at their interior points only, can be
separated.

Most other versions of the DDP were defined for the decomposition G
itself (rather than for the quotient R*/G), e.g. the DDP’s of M. Starbird [113].
Since we are working with generalized 3-manifolds X, we do not a priori
have any (preferred) decomposition of some 3-manifold, f: M — X, playing
the role of a resolution for X. In fact, we do not even know in general, if X
has any resolution to begin with (see Chapter 8). Therefore, for the purpose
of the recognition problem we want a DDP which is a property of the range
M/G, rather than of the decomposition G and assures that M/G be a
3-manifold.

Having been inspired by [13], H. W. Lambert and R. B. Sher

i —
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introduced in 1966 a version of the DDP which they named the map
separation property: a space X is said to have the MSP if given any
collection of maps f,, ..., fy: B> — X such that for every i, N(f) néB* =Q
and if i #j then f{ﬁBl)ﬁfJ(BZ} = (@, and given a neighborhood U < X of

U f;(B?) there exist maps F,, ..., F,: B> — U such that for every i, F,|0B*

= fl@B2 and if i # j then F;(B*) n F;(B* = @ [81]. They used the MSP to
detect shrinkability of point-like, closed O-dimensional, upper semicontinuous
decompositions of S*. Some 15 years later we generalized their main result
to cell-like (closed O-dimensional) decompositions of arbitrary 3-manifolds:

9.2. Tueorem (D. Repovs and R. C. Lacher [104]). Let G be a cell-like,
closed O-dimensional, upper semicontinuous decomposition of a 3-manifold M.
Then M/G is a 3-manifold if and only if M/G has the MSP.

It is not obvious at all that even R® should have the MSP because the
singular disks f;(B?) can be, in general, wildly embedded (in R?). Hence our
first task is to verify the forward implication in (9.2). We shall need the

following topological version of D. W. Henderson’s refinement of the Dehn
lemma [64]:

9.3. THeoreM (D. Repovs and R. C. Lacher [104]). Let f: B2 — M be a
continuous mapping of the standard 2-cell into a 3-manifold (possibly with

boundary) and let U c M be a neighborhood of S(f). Suppose that
N(f) = int B%. Then there is an embedding F: B* -+ M such that:

(i) F(B)-U = f(B)—U; and

(i) F|6B* = f|6B%.

Proof. Note first, that by attaching a collar to the boundary of M we
may assume that f(B?) lies in int M. Put N(f) msnde pairwise disjoint PL

disks with holes C;, ..., Cac f ' (U). Let C= U C;. Assume that on

i=1

some neighborhood of dC, fis a locally PL embedding. Consider the surface
H = f(B*—intC) and use [9] to make it PL. Apply [126] to make the
surface L'= f(C) PL. Then H u L is a PL singular disk with singularities far
away from the boundary so we can invoke [64] to replace it by an
embedded (PL) disk T < M. Finally, substitute the portions of T which stick
out of U by the corresponding pieces of H.

In general, the simple closed curves of f(¢C) are going to be wildly
embedded in M so additional care must be taken to improve f near 0C. This
is achieved by using several “concentric” families of pairwise disjoint PL
disks with holes rather than just one (C above). Details are technical and we
refer the interested reader to [104].

9.4. Tueorem (D. Repovs and R. C. Lacher [104]). Let f,, ..., fi: B?
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— M be continuous mappings of the standard 2-cell into a 3-manifold (possibly
with boundary) such that for every i, N(f)néB?>=Q® and :f i#j then

i=

fi(6B*)  f;(B?) = Q. Then for every neighborhood U = M of U f:(B?) there

exist embeddings F,, ..., F,: B> — U such that for every i,

(i) F;lint B? is locally PL;

(i) F;|0B* = f;|0B*; and

(iii) if i # j then F,(B*)nF;(B% = Q.

9.5. CoroLLARY. Every 3-manifold (possibly with boundary) has the MSP.

Proof of Theorem (9.4). As before, assume that for every i, f;(B?) c int M.
The proof is by induction on k. The assertion for k = 1 follows by Theorem
(9.3) and [9]. The inductive step is a combination of [9], general position
arguments and some cut-and-paste. For details see [104].

The next result is a generalization of Corollary (9.5). Note that by

Theorem (7.5)*, the only generalized 3-manifolds in (9.6) not included in (9.5)
are the Wilder manifolds.

9.6. TuHeoreM (D. Repov§ and R. C. Lacher [104]). Ler X be a
generalized 3-manifold with dim S(X) <0 and suppose that for every xe X,
g(X, x) =0. Then X has the MSP.

Proof. Assume that FrU nS(X) = @ and also that each f;(¢B?) misses
S(X). Cover S(X)nU by pairwise disjoint compact neighborhoods
Nl‘, ..., N, € U such that each Fr N; is a PL embedded 2-sphere in M (X)

— U j}(éBz} The idea is now to somehow “cut” the f;(B?)’s off at the

ji=1
=m

boundary of _U N; thus transferring the problem to the 3-manifold M(X)

* b
where Corollary (9.5) would apply. Details are technical mainly because the
singular disks f;(B?) may be wildly embedded and so the intersections with

j=m
(J FrN; may be quite messy. We refer to [104] for a complete proof
i=1
and also for the argument in the general case.

Proof of Theorem (9.2). The forward implication follows by Corollary
(9.5). The argument for the other implication can be split into a sequence of
assertions.

AsserTION 1. If every ge G has a neighborhood in M embeddable in R?
then G is shrinkable (hence M/G =~ M).

Proof. By [119] it suffices to show that G i1s weakly shrinkable (see
Chapter 2 for the definition). Choose an ¢ > 0 and a neighborhood U = M

of Ni;. By [89] there are pairwise disjoint cubes with handles F,, ..., F, c U

such that NG e U intF,. Let W,,..., W, < U be pairwise disjoint open
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neighborhoods of F,, ..., F,, respectively. We may restrict our attention to
F, = W only. Let C; = N; nF,. As far as F, is concerned it suffices to find
a homeomorphism h;: M — M which will shrink C, and will stay the
identity off W,. We shall get such an h, as the composition of two
homeomorphisms f,, t,: M — M which we now proceed to describe.

The first one, f,: M — M shrinks F, towards its 1-dimensional spine so
that f; (F,) can be split up into adjacent 3-cell “chambers” of size less than
¢/2. Pull this chamber partition up into F,. It is clear that if ge G lies in at
most two adjacent chambers, it will get shrunk under f, to a size less than .
So it remains to make each ge G hit at most one of the walls separating the
chambers.

Observe that the separating walls go down to M/G as singular disks
whose nondegeneracy set stays far away from éB?, and if they intersect in
M/G they do so at their interior points. We can therefore use the MSP to
separate them. Lift the new disks to M using [77] and apply the Dehn
lemma to get the new walls. Pick now any homeomorphism r,: M - M
which maps the new walls on the corresponding old ones and rests off F,.
Finally, let h, = f,t,.

The only reason why this argument doesn’t work in the general case is
that an arbitrary cell-like, closed O-dimensional, upper semicontinuous
decomposition of M is definable by homotopy (hence possibly fake) cubes
with handles [89]. Consequently, some of the partitioning chambers may be
fake 3-cells so no homeomorphism such as our r, above can be produced.
However, as our finiteness Theorem (8.6) suggests, there cannot be too many
bad nondegenerate elements in G after all: if Go={geG| g has no
neighborhood in M embeddable in R*} then n(G,) must be locally finite in
M/G, where n: M — M/G is the decomposition map.

ASSERTION 2. For every ge G and every neighborhood U = M of g there is
a homotopy 3-cell H < U such that g — int H.

Proof. By [89] there is a homotopy cube with handles H = U such that
g < int H. We may also assume that on some neighborhood of ¢H in M,
n: M — M/G is an embedding (recall that G is closed 0-dimensional). The
idea of the proof is to cut the handles of H along pairwise disjoint
compressing disks (in H) which miss g. We detect such disks by passing to
M/G and using the MSP. The point is that if D, and D, are disjoint
compressing disks in H then n(D,) and n(D,) satisfy the requirements for the
MSP in M/G. Thus n(D,) and n(D,) can be made disjoint and we can lift
them back into M, using [77] and the Dehn lemma. Clearly, at least one of
the new disks (in H) will now miss g and so we can compress H, avoiding g.

Consider now the quotient M, = M/G, and let my: M — M, be the
corresponding decomposition map. Since the elements of G, are cell-like, M,
is a generalized 3-manifold. Next, S(M,) < n,(G,), where S(M,) denotes the
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singular set ‘of M,. Finally, by Theorem (7.8), M, satisfies the Kneser
finiteness since it has a resolution.

AsserTION 3. For every pe My, g(My, p) =0.

Proof. The assertion is clear for pe My—my(Gy). So suppose that
pemny(Gy). Given a neighborhood U < M, of p, we may assume that
U nmo(Go) = |p} (since m(Gy) is locally finite in M/G). By Assertion 2 there
is a homotopy 3-cell H = ng ' (U) such that ng'(p) cintH and 6H <« M
—J lgeGy). Therefore ny(H) is the desired neighborhood of p in M,.

By Assertion 3 and Theorem (7.5)*, M, is a 3-manifold since
dimS(My) < dimny(Gy) <0. Let G, =(G—Gy)umny(Gy) be the induced
decomposition of M,. Then G, is upper semicontinuous, closed O0-
dimensional and cellular, by Assertion 2. Clearly, My/G, =(M/G,)/G,
= M/G, so M,/G, has the MSP and therefore G, is shrinkable, by Assertion
1. This completes the proof of Theorem (9.2). For details see [104].

Proof of Theorem (9.1). The implication (i) = (ii) follows by Theorems
(8.8) and (9.2) while (ii) = (i) is obvious. To see that (iii) = (i) suppose (i) is
false and consider Example (7.1). Apply (9.6) to conclude that (ii1) can’t be
true, either.

10. Epilogue

We now fairly well understand the class of generalized 3-manifolds X with
dim S(X) <0 but we know almost nothing about the other generalized
manifolds in this dimension. The following open problems are among the
most important for the recognition of 3-manifolds:

10.1. ProBLEM. Let X be a generalized 3-manifold with dim S(X) > 1.
Modulo the Poincaré conjecture, does there exist a 3-manifold M and a
monotone, closed map f: M — X such that H'(f ' (x); Z,) =0 for every
xeX—Z, where Z c X is some (dense) subset of dimension < 07?

Should (10.1) prove to be too hard one could try resolving only the
generalized 3-manifolds with the MSP:

10.2. ProBLEM. Let X be a generalized 3-manifold satisfying the Kneser
finiteness. Suppose that S(X) = Z for some graph Z < X and that X has the
MSP. Does then X have a resolution? Is X a 3-manifold?

There is another general position property in dimension 3, called Dehn’s
lemma property (DLP) [81]: a space X is said to have the DLP if for every

map f: B> — X such that N(f)ndB* =@ and for every neighborhood
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Uc X of S(f) there exists an embedding F: B?>— f(B* u U such that
F(éB*) = f(0B?). It follows by Theorem (9.3) that every 3-manifold (possibly
with boundary) has the DLP. As it was demonstrated in [104] all results
from Chapter 9 involving the MSP (either as a hypothesis or as a
conclusion) remain valid if the MSP is substituted by the DLP. What
remains open is the following question:

10.3. ProBLEM. Let X be a generalized 3-manifold. If X has the MSP does
it then also have the DLP, and vice versa?

Another question is a possible relationship between M. Starbird’s DDP’s
[113] and the MSP (note that they are equivalent if G is cell-like, closed
0-dimensional, and every geG possesses a neighborhood embeddable in
R® — see Theorem (3.1) of [113] and our Theorem (9.2)):

10.4. ProBLEM. Let G be a cell-like, upper semicontinuous decomposition of
a 3-manifold M and suppose that G has one of Starbird’s DDP’s. Does M/G
then have the MSP (and vice versa)?

Finally, we have already remarked that at present there is no known
analogue of the DDP in dimension 4. Therefore the following problem is the
central issue in this dimension:

10.5. ProBLEM. Find a DDP for 4-manifolds. Such a property should
satisfy the following “minimal” criteria:

(i) every 4-manifold should possess this DDP

(i) it should be a “homotopical’or a “map approximating”™ property;

(iii) it should be relatively easy to verify in practice;

(iv) given a cell-like, upper semicontinuous decomposition G of a 4-
manifold M such that the quotient space M/G has this DDP, G should turn out
to be shrinkable (or, equivalently, the decomposition map q: M — M/G should
be approximable by homeomorphisms).
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