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ABSTRACT

In this paper we provide a mathematical reconstruction of what might have been
Gauss’ own derivation of the linking number of 1833, providing also an alternative,
explicit proof of its modern interpretation in terms of degree, signed crossings and inter-
section number. The reconstruction presented here is entirely based on an accurate study
of Gauss’ own work on terrestrial magnetism. A brief discussion of a possibly indepen-
dent derivation made by Maxwell in 1867 completes this reconstruction. Since the linking
number interpretations in terms of degree, signed crossings and intersection index play
such an important role in modern mathematical physics, we offer a direct proof of their
equivalence. Explicit examples of its interpretation in terms of oriented area are also
provided.

Keywords: Linking number; potential; degree; signed crossings; intersection number;
oriented area.
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1. Introduction

The concept of linking number was introduced by Gauss in a brief note on his diary
in 1833 (see Sec. 2 below), but no proof was given, neither of its derivation, nor
of its topological meaning. Its derivation remained indeed a mystery. Nevertheless
this concept was seminal, and proved to be fundamental in the subsequent devel-
opment of knot theory, general topology and modern topological field theory (see,
for example, [23]). In this paper we provide a plausible mathematical proof of what
Gauss himself might have done, bridging this possible derivation with a modern
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proof of the alternative, equivalent definitions of linking number in terms of degree,
crossing signs and intersection number.

Reconstructions of possible derivations made by Gauss have been offered by his-
torians, in particular Epple [8–10], and physicists [15]. These reconstructions rely
on ideas that can certainly be traced back to Gauss, even though direct deriva-
tion of the linking number from Gauss’s own work is left to speculation. Here we
offer a plausible reconstruction entirely based on Gauss’ own work on terrestrial
magnetism; this is done in Sec. 3 by providing a mathematical reconstruction that
relies step by step on specific, published results of Gauss. An alternative derivation
of the linking number, made independently by Maxwell in 1867 (discussed previ-
ously in [10]), is also briefly re-examined in Sec. 4, as a little complement to the
mathematical reconstruction made in Sec. 3.

It is well known that the Gauss linking number formula admits several alterna-
tive interpretations. Rolfsen [21] gives eight of them, proving their equivalence, even
though at times by very concise statements. This is the case, for instance, for the
interpretation of the linking number in terms of degree, where his brief reference to
Spivak’s Calculus on Manifolds (p. 135) seems all too demanding for non-experts.
Since this equivalence is still source of inspiration for modern mathematics (see
[1, 2, 11, 18]), we believe that a proof of the interpretation in terms of degree
deserves a discussion somewhat more accessible to non-specialists. This is done in
Sec. 5. Similar considerations apply to its interpretation in terms of signed crossings
and intersection number, two different ways of computing the linking number, that
have proven to be very useful in many physical contexts (see [3, 4, 19, 20, 26]).
This discussion is also presented in Sec. 5. Finally in Sec. 6 direct inspection of the
linking number by the Gauss map is presented for three different links.

2. Gauss’ Note on the Linking Number

It is well known that Gauss had a great interest in topology — then known as “geom-
etry of position” (geometria situs) — even though he never published anything on
it. From his personal correspondence with Olbers it is known that he became deeply
interested in the subject from the early years of 1800 (see [7, p. 221]): a few notes
on knots are from that period. One of the oldest is dated 1794, bearing the head-
ing A Collection of Knots, and it contains 13 sketches of knots with English names
written beside them. Two other sheets of paper with sketches of knots are one dated
1819, and the other bearing the notation “Riedl, Beiträge zur Theorie des Sehnen-
winkels, Wien, 1827” ([7, p. 222]). Few other remarks referring to the knotting of
closed curves are reproduced in his Werke (VIII, pp. 271–285).

The concept of linking number was introduced by Carl Friedrich Gauss in a brief
note on a page of his personal diary — a kind of logbook of his most important
discoveries ([5, p. 19]) — dated January 22, 1833 (see Fig. 1(a) and the English
translation in Fig. 1(b)). This note remained unknown for 34 years, until it was
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(a)

(b)

Fig. 1. (a) Excerpt from the Nachlass zur Electrodynamik, published in the V volume of Gauss’
Werke (1867). In this note Carl Friedrich Gauss introduces the concept of linking number.
(b) English translation.

discovered and published in the Nachlass zur Elektrodynamik, as part of Gauss’
posthumous Werke [14].

In this note the notion of linking number is merely introduced to count the
number of times a closed (or endless) curve encircles a second closed (or endless)
curve in space. There is no explicit reference neither to a physical system, electrical
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or magnetic, nor to an application. Thus, inclusion of this note in the Nachlass zur
Electrodynamik (supported by Schäfer, one of Gauss scientific biographers, [22])
generated some controversy. The mathematical reconstruction presented in the next
section, however, advocates in favor of Schäfer’s choice.

3. Derivation of the Linking Number Based on Gauss’ Work

Gauss developed an interest in the Earth magnetism and its mysterious origin as
early as 1806, but any publication on the subject was postponed until the 1830s,
when firm observational data were readily available. The first paper on the subject,
entitled Intensitas vis magneticae terrestris ad mensuram absoluta revocata [12],
was read before the Royal Society of Göttingen on 15 December 1832. In this paper
Gauss presents the first systematic use of absolute units to measure magnetic quan-
tities. Stimulated by Faraday’s discovery of induced currents, made in 1831, Gauss
and Weber started to collect electromagnetic measurements from 22 October 1832.
During this work, in 1833, they were led to anticipate the discovery of Kirchhoff’s
laws of branched circuits [17]. Apparently, all the fundamental concepts for a math-
ematical theory of terrestrial magnetism were conceived as early as 1806, and were
readily formulated in 1822 (see [17, p. 306]). Gauss’ theory on terrestrial magnetism
was therefore ready for a test in 1832 (see [7, p. 158]), but work on its publication
was postponed till the winter of 1838, when experimental observations were finally
confirmed. Gauss’ paper on this, entitled Allgemeine Theorie des Erdmagnetismus,
finally appeared in 1839 [13].

In this paper the magnetic potential induced at any point on the Earth’s surface
is worked out in terms of an infinite series of spherical functions. In considering
the magnetic effects produced by some “magnetized fluid”, supposedly present in
the Earth interior, Gauss examines the potential V = V (P ′) induced at an exterior
point P ′ = P ′(x′, y′, z′), placed at a distance r = |P −P ′| from a magnetic source at
P = P (x, y, z). The theory of magnetic potential, derived there from first principles,
is applied then to calculate the value of the magnetic effects at various geographical
locations. By acknowledging Ampère’s result on the interpretation of the magnetic
effects in terms of electric currents (see [13, Secs. 2, 36, 37; pp. 188, 229, 230]),
Gauss states the following theorem (see [13, Sec. 38, p. 230]):

Theorem 3.1 (Gauss, 1839). The potential of a magnetic shell Σ at any point
is equal to the solid angle which it subtends at that point multiplied by its magnetic
strength.

“Magnetic shell” means an infinitely thin magnetized layer given by an ori-
entable surface, whose opposite sides have opposite polarity. Theorem 3.1 is derived
from geometric considerations of certain elementary expressions for the magnetic
potential (Fig. 2). Of central importance here is indeed the result of Ampère,
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(a) (b)

Fig. 2. (a) The potential V = V (P ′) induced by a magnetic shell of unit strength and surface
Σ at an exterior point P ′, placed at a distance r from a source point P , can be calculated by
integrating the elementary contribution d Σ over Σ, via the solid angle subtended by d Σ. (b) The
volume of the elementary solid angle subtended by d Σ can be worked out in terms of the volume
of the pyramid of base d Σ and side r.

mentioned by Gauss. This can be stated (cf., for example, [25]) in terms of the
following theorem.

Theorem 3.2 (Ampère, 1831). A closed galvanic circuit C produces the same
effect as a magnetic shell Σ of any form having the circuit C for its edge.

A “galvanic circuit” is indeed an electrically charged wire carrying electric cur-
rent. By using this theorem, the value of the potential at P ′, induced by a magnetic
surface Σ, bounded by C = ∂Σ, is equivalent to the potential at P ′ induced by an
electric current flowing in the circuit identified by C. According to Ampère’s the-
orem, the magnetic effects are evidently independent of the shape of Σ, so that Σ
(given, for example, by a spherical cap, as in Fig. 3(a)) can be replaced by any other
(topologically equivalent) surface bounded by C: the laminar disk on the right-hand
side of Fig. 3(a), for instance, is an example. Hence, we have (see [25, Corollary 2,
p. 272]) the following corollary.

(a)

(b)

Fig. 3. (a) By Ampère’s theorem the potential induced by a magnetized shell Σ bounded by C at
an exterior point P ′ is equivalent to that induced at the same point by an electric current flowing
in the circuit identified by C. (b) The potential of a point P ′, infinitely close to the magnetized
shell Σ, and that of its antipodal P ′′, placed on the opposite side of Σ, differ by 4π.
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Corollary 3.3 (Thomson, 1850). The potential of a magnetic shell at any point
is independent of the form of the shell itself, and depends solely on the bounding
line or edge.

Thinking of the Earth surface as a magnetized sphere threaded by a south–
north oriented magnetization, Gauss gives the following example (see [25, Sec. 38,
p. 231]): consider two magnetic shells (representing the Earth hemispheres) Σ1 and
Σ2, having common boundary (that is the equator) and unit magnetic strength.
The value of the potential at an external point P ′ depends on the position of
this point with respect to the two shells. By considerations on the solid angle and
the respective orientation of Σ1, whose normal vector is positively oriented toward
the exterior, and Σ2, negatively oriented toward the exterior, Gauss states that the
potential due to Σ1, at any point in the region interior to the two shells, exceeds the
potential due to Σ2 by 4π (the solid angle of the unit sphere). When P ′ moves from
a position very near to the positive side of the shell to its antipodal P ′′, infinitely
close to the start point on the negative side of the shell, through a path around
the edge [see Figs. 3(b) and 4(a)], the solid angle thus measured must continuously
increase by 4π. We know that indeed the potential is a multi-valued function of
the position. Following Gauss, Lord Kelvin (then W. Thomson) states this result
as follows (see [25, Corollary 3, p. 272]):

Corollary 3.4 (Thomson, 1850). Of two points infinitely near one another on
the two sides of a magnetic shell, but not infinitely near its edge, the potential at
that one which is on the north polar side exceeds the potential at the other by the
constant 4π.

Gauss’ note on the linking number can now be proven in full. Let C = ∂Σ and C′

a smooth, simple, closed curve in R
3, encircling C m times. Let P = P (x, y, z) ∈ C,

P ′ = P ′(x′, y′, z′) ∈ C′, and V = V (P ′) be the potential induced by Σ at P ′. We
have the following proposition.

Proposition 3.5 (Gauss, 1832).

(i)
∫∫

l(x′ − x)(dydz′ − dzdy′) + (y′ − y)(dzdx′ − dxdz′)+ (z′− z)(dxdy′ − dydx′)
[(x′ − x)2 + (y′ − y)2 + (z′ − z)2]3/2

= V ; (3.1)

(ii) V = 4mπ, (3.2)

where m = m(C, C′) is the linking number of C and C′;

(iii) m(C, C′) = m(C′, C). (3.3)

Proof. The potential induced by Σ at the point P ′ is given by Gauss’ Theorem 3.1.
The volume of the elementary solid angle dω at P ′ (see Fig. 2(a)) can be worked
out in terms of the volume of the pyramid of solid angle dω and side r. The base
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of the pyramid has elementary area dΣ. We now use Ampère’s theorem: since the
induction due to Σ is equivalent to that due to the electric current flowing in C (see
Fig. 3), the elementary solid angle can be evaluated in terms of direction cosines
(see the discussion by Maxwell [16, Secs. 419–420 and Eqs. (1) and (6)], partly
reproduced in Sec. 4 below) by

1
3
r3dω =

1
3
r3Πdsdσ, (3.4)

where

r = [(x′ − x)2 + (y′ − y)2 + (z′ − z)2]1/2 (3.5)

is the distance between P ′ and P , and Π is given by

Π =
1
r3

det




x′ − x y′ − y z′ − z

dx

ds

dy

ds

dz

ds

dx′

dσ

dy′

dσ

dz′

dσ


 . (3.6)

The potential is thus given by

V =
∫

Ω

dω =
∫

C

∫
C′

Πdsdσ

=
∫

C

∫
C′

(x′−x)(dydz′−dzdy′) + (y′−y)(dzdx′−dxdz′) + (z′−z)(dxdy′−dydx′)
[(x′−x)2 + (y′−y)2 + (z′−z)2]3/2

.

(3.7)

where the double integral is extended to C and C′. Statement (i) is thus proven.
Since C′ encircles C m times (m integer; see Fig. 4(b)), at each turn around C

the potential V = V (p′) increases by 4π (cf. Corollary 3.4; see also [16, Sec. 421]);
hence, after m times, we have V = m4π; thus Eq. (3.2) of (ii) is proven. Since
m is an algebraic number, it does not depend on the shape of the two curves in
space: it is therefore an invariant of the topology of the embedded curves. By direct

(a) (b)

Fig. 4. (a) The potential V (P ′) jumps by 4π as P ′ passes through the surface Σ. (b) If the point
P ′ passes through Σ m times, then V (P ′) increases by m4π.
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inspection of the integrand of (3.7) we can see that m(C, C′) = m(C′, C). Thus (iii)
is proven, together with Proposition 3.5.

4. Maxwell’s Rediscovery of the Linking Number

Maxwell developed an interest in knots as early as November 1867, prompted by
Thomson’s theory of vortex atoms and Tait’s engagement in classification work.
Indeed, several concepts introduced and discussed by Tait in his first paper on
knots (1877, [24]) were actually suggested by Maxwell, as their private correspon-
dence demonstrate. Maxwell’s primary interests lay then squarely in foundational
aspects of electricity and magnetism, an interest that kept him well acquainted
with Gauss’ work on terrestrial magnetism and his solid angle interpretation of the
magnetic potential. As we shall see from the material presented below, it seems
almost certain that he could be unaware of Gauss’ note by December, 1867. In any
case, the introductory material presented in Chapter III, Vol. II of his Treatise [16]
is entirely devoted to Gauss’ work on magnetic potential. After introducing Gauss’
theorem for magnetic shells (see [16, Sec. 409]), Maxwell proceeds to apply the solid
angle interpretation to calculate the potential. Starting from the very definition of
solid angle ([16, Secs. 417]), Maxwell puts forward three alternative methods ([16,
Secs. 417–420]) to compute this quantity, by relying on geometric and physical
arguments.

The physical reasoning of [16, Sec. 419], for instance, is quite illuminating: by
interpreting the potential at a point P as the work done by a unit magnetic pole
at P against the force exerted by a magnetic shell, while it moves from an infinite
distance to the point P , he notes that the potential (i.e. the solid angle) must be
the result of a double line integration: one performed along the boundary curve C

of the shell (by making use of Theorem 3.2), and the other one performed along
the path followed by the pole at P , as it approaches C. If we denote by s and σ the
respective arc-lengths of these two paths, the elementary contribution dω to this
solid angle can thus be expressed as

dω = Π ds dσ, (4.1)

where Π remains to be determined.
Now, consider a small displacement dσ of P towards C (see Fig. 5). As the pole

approaches C from infinity, the circuit C will be seen (from P ) to move apparently
to C′ of the same distance dσ, in the opposite direction. The elementary arc ds of
C will thus be seen to span an elementary surface of area ds dσ. The volume of the
pyramid with base this surface, vertex in P and solid angle dω is indeed given by
Eq. (3.4), where, with reference to Fig. 5, r = PQ denotes the distance between
the point P = P (ξ, η, ζ) and a point Q = Q(x, y, z) on C. This volume may equally
be expressed in terms of the direction cosines of ds, dσ and r with respect to the
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Fig. 5. Maxwell’s interpretation of the solid angle in terms of apparent displacement of the
boundary curve C.

triad (x, y, z), so that

dω =
ds dσ

r2

∣∣∣∣∣∣
L M N

l m n

λ µ ν

∣∣∣∣∣∣ =
ds dσ

r2

∣∣∣∣∣∣∣∣∣∣∣∣∣

dx

ds

dy

ds

dz

ds

dξ

dσ

dη

dσ

dζ

dσ

ξ − x

r

η − y

r

ζ − z

r

∣∣∣∣∣∣∣∣∣∣∣∣∣

=
ds dσ

r2

[(
1 −

(
dr

ds

)2
)(

1 −
(

dr

dσ

)2
)

−
(

r
d2r

dsdσ

)2
]1/2

. (4.2)

Note that the determinant on the r.h.s. of the equation above can be reduced to
that of Eq. (3.6). These expressions are essentially those given by Eqs. (5) and (6)
of [16, Sec. 420].

These calculations can be dated precisely, since they are communicated in a
letter to Tait of December 4, 1867 (see Fig. 6). This letter is quite remarkable: not
only Maxwell derives here the linking number, but he quickly proceeds to point
out its shortcomings, by considering two cases (given by the first two diagrams
shown) of zero linking number for two essential links. These considerations will be
reproduced by Tait in his first paper on knots [24].

A careful reading of this (and other) correspondence indicates that Maxwell
must have derived this result independently, presumably giving Gauss due credit
only afterwards, on the occasion of the publication of the Treatise. Further con-
firmation of this can be found in a postcard to Tait, dated January 24, 1877 (see
Fig. 7), where explicit reference to Gauss’ original note is made.
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Fig. 6. Third sheet of a letter by J. C. Maxwell to P. G. Tait, dated December 4, 1867. Calculation
of the linking number “[. . .] n being the algebraical number of turns that one curve embraces the
other in the same direction.” The first two diagrams show examples of essential links with n = 0.
The third diagram shows a trefoil knot, described by the parametric equation given at the bottom
of the page. Cambridge University Library, papers of James Clerk Maxwell, Ms. Add. 7655, Box
1(Ib), 7 (unpublished). Courtesy of the Syndics of Cambridge University Library.

5. Interpretation of the Linking Number in Terms of Degree,
Signed Crossings and Intersection Number

In this section we concentrate on the interpretation of the linking number in terms
of degree, signed crossings and intersection number, by providing a more direct,
explicit and, to some extent, elementary proof of their equivalence.

It is useful to recall some basic definitions. Let γ1, γ2 be two smooth, dis-
joint, closed, oriented curves in S3, and r1(t1), r2(t2) their parametrizations, with
{t1, t2} ∈ [0, 2π]. To each pair (Q1, Q2) ∈ γ1 × γ2 there corresponds a point (t1, t2)
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Fig. 7. Extract from a postcard to P.G. Tait dated January 24, 1877. After a few comments
on Listing’s work, Maxwell communicates the Gauss linking number formula, quoting Gauss’
annotation (see Figure 1). The term V − 4mπ should be read V = 4mπ. Cambridge University
Library, papers of James Clerk Maxwell, Ms. Add. 7655, Box 1(Ib), 86: # 497 (unpublished).
Courtesy of the Syndics of Cambridge University Library.

on the torus T. The Gauss map ψ : T → S2 associates to each point (t1, t2) the
unit vector

n(t1, t2) =
r1(t1) − r2(t2)
|r1(t1) − r2(t2)| . (5.1)

Now, let M and N be two compact, unbounded, oriented manifolds of same dimen-
sions, and f : M → N a continuous function. We have the following definition.

Definition 5.1. The degree of f is defined by

deg(f) :=
∑
x∈Y

sign
[
det
(

∂f
∂x

)
x

]
, (5.2)

where Y denotes the set of regular points for which det(∂f/∂x) �= 0.

The original formula of Gauss gives the following definition.

Definition 5.2. The linking number Lk(1) = Lk(1)(γ1, γ2) of γ1 and γ2 is
defined by

Lk(1)(γ1, γ2) :=
1
4π

∫ 2π

0

∫ 2π

0

(r2 − r1, r′1, r
′
2)

|r2 − r1|3 dt1dt2. (5.3)

Here primes denote derivatives with respect to the argument. Gauss’ original
notation is recovered by taking r1 = r1(s) = (x(s), y(s), z(s)) for P and r2 =
r2(σ) = (ξ(σ), η(σ), ζ(σ)) for P ′; hence (cf. Eq. (3.6)) r = |r2(σ) − r1(s)| and

(r2 − r1, r′1, r
′
2)

|r2 − r1|3 = Π. (5.4)
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An alternative definition can be given in terms of degree.

Definition 5.3. The linking number Lk(2) = Lk(2)(γ1, γ2) of γ1 and γ2 is
defined by

Lk(2)(γ1, γ2) := deg(ψ). (5.5)

Consider now the indented, oriented diagram Dν(L) of the (tame) link L =
γ1�γ2, obtained by projecting L along ν onto the plane, allowing under- and over-
crossings. Let Dν(L) be a good projection of L, that is one for which the standard
projection has nodal points of multiplicity at most two. We assign to each apparent
crossing k of γ1 � γ2 the number ε(k) = ±1 according to standard convention. We
have the following definition.

Definition 5.4. The linking number Lk(3) = Lk(3)(γ1, γ2) of γ1 and γ2 is
defined by

Lk(3)(γ1, γ2) :=
1
2

∑
k∈γ1�γ2

ε(k). (5.6)

Finally, let us choose a Seifert surface M of γ1, such that M ∩ γ2 is made of
a finite number of transversal intersections. According to their relative sign, the
algebraic sum of these is given by I(M, γ2). We have the following definition.

Definition 5.5. The linking number Lk(4) = Lk(4)(γ1, γ2) of γ1 and γ2 is
defined by

Lk(4)(γ1, γ2) := I(M, γ2). (5.7)

In all these cases, we have Lk(i)(γ1, γ2) = Lk(i)(γ2, γ1) (i = 1, . . . , 4).

5.1. Equivalence of definitions

Proposition 5.6. The following holds true:

Lk(1) = Lk(2) = Lk(3) = Lk(4). (5.8)

Proof. (i) Lk(2) = Lk(1). Consider the set of preimages

Y = {T1 = (t11 , t12), . . . ,Tn = (tn1 , tn2)}
of any regular point of ψ on S2. By Eq. (5.2) any point of Y contributes ±1 to the
value of deg(ψ), depending on the orientation of the surface ψ(T). At any point
ψ(Ti) (i = 1, . . . , n) this orientation is given by ν(Ti) = ( ∂n

∂t1
× ∂n

∂t2
)Ti normal

to the surface at Ti, thus contributing +1 or −1 depending on the orientation of
ν(Ti) (outwards or inwards) with respect to the sphere. The sign is given by

n(Ti) · ν(Ti) =
(
n,

∂n
∂t1

,
∂n
∂t2

)
Ti

; (5.9)
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hence

deg(ψ) =
∑

Ti∈Y

sgn
(
n,

∂n
∂t1

,
∂n
∂t2

)
Ti

. (5.10)

Since the latter does not depend on any particular regular value y of ψ, and by
Sard’s theorem the critical values of ψ form a null set, we have

deg(ψ) =
1
4π

∫
S2

∑
Ti∈Y

sgn
(
n,

∂n
∂t1

,
∂n
∂t2

)
Ti

d2y, (5.11)

where the right-hand side is an average over S2. If y /∈ ψ(T), then the set ψ−1(y)
is empty; thus, the integration domain can be reduced to ψ(T). By exploiting the
continuity of ψ we can sub-divide ψ(T) into m regions Rk, each having nk number
of preimages (constant). Since each Rk is the image of the nk regions Sk,i (i =
1, . . . , nk), the orientation of each Rk,i = ψ(Sk,i) is constant for any i = 1, . . . , nk.
Moreover, since T =

⋃m
k=1(

⋃nk

i=1 Sk,i), then Eq. (5.11) can be written as

deg(ψ) =
1
4π

m∑
k=1

nk∑
i=1

∫
Rk

sgn
(
n,

∂n
∂t1

,
∂n
∂t2

)
ψ−1(y)∩Sk,i

d2y. (5.12)

We now make a change of variable by taking τ = ψ−1(y), so that

deg(ψ) =
1
4π

m∑
k=1

nk∑
i=1

∫
Sk,i

sgn
(
n,

∂n
∂t1

,
∂n
∂t2

)
τ

∣∣∣∣ ∂n
∂t1

× ∂n
∂t2

∣∣∣∣
τ

d2τ . (5.13)

Thus

deg(ψ) =
1
4π

∫
T

(
n,

∂n
∂t1

,
∂n
∂t2

)
τ

d2τ . (5.14)

By some tedious, but straightforward algebra we can see that(
n,

∂n
∂t1

,
∂n
∂t2

)
=

(r2 − r1, r′1, r
′
2)

|r2 − r1|3 . (5.15)

Equation (5.15) is thus proven and Eq. (5.14) becomes

deg(ψ) =
1
4π

∫ 2π

0

∫ 2π

0

(r2 − r1, r′1, r′2)
|r2 − r1|3 dt1dt2. (5.16)

Definitions 5.2 and 5.3 are thus equivalent.

(ii) Lk(2) = Lk(3). We have T0 = (t10 , t20) ∈ ψ−1(v) if and only if

r1(t10) − r2(t20)
|r1(t10) − r2(t20)|

= v, (5.17)



October 18, 2011 9:17 WSPC/S0218-2165 134-JKTR
S0218216511009261

1338 R. L. Ricca & B. Nipoti

i.e. if and only if πv(r1(t10)) = πv(r2(t20)), i.e. if and only if πv(T0) is a crossing in
Dν(L), where γ1 goes over γ2. Let Pk(γi) be the unit vector tangent to πv(γi) at k.
Without loss of generality, we assume πv(r′i(ti0 )) �= 0. By standard sign convention,
we have

ε(k) = −(v,Pk(γ1),Pk(γ2)). (5.18)

Now let N denote a vector normal to Π; then, we have

sgn(N, r′1, r
′
2)T0 = sgn(N, πv(r′1), πv(r′2))T0 . (5.19)

Moreover

(πv(r′1) × πv(r′2))T0

|πv(r′1) × πv(r′2)|T0

= (Pk(γ1) × Pk(γ2))T0 . (5.20)

Hence, by Eq. (5.18) and by using Eqs. (5.17) and (5.20), we have

ε(k) = sgn(r2 − r1, πv(r′1), πv(r′2))T0 ; (5.21)

since r2(t20) − r1(t10) is orthogonal to Π, by (5.19) we have

ε(k) = sgn(r2 − r1, r′1, r
′
2)T0 . (5.22)

By assuming that v ∈ S2 is a regular value of ψ, by Eqs. (5.2) and (5.15), we have

deg(ψ) =
∑

Ti∈ψ−1(y)

sgn
(
n,

∂n
∂t1

,
∂n
∂t2

)
Ti

=
∑
k∈K

ε(k), (5.23)

where K is the number of over-crossings (γ1 over γ2). By considering the total
number of crossings (over and under) we have that indeed Lk(2) = Lk(3). Hence,
Definitions 5.3 and 5.4 are equivalent.

(iii) Lk(2) = Lk(4). We recall that the degree of a (continuous) function restricted to
the boundary of the manifold where it is defined is zero. Let us construct a continu-
ous function ψ̃ from a manifold N to S2 such that γ1×γ2 is a component of ∂N and
ψ̃|γ1×γ2 = ψ. Let ψ̃(x, y) = (y − x)/|y − x| and N = (M × γ2)\

⋃
m∈M∩γ2

B(m, ε),
where Bε(m) is a ball of small radius ε, centered on m: ψ̃ is well-defined. One
component of ∂N is γ1 × γ2; the union of the other components of ∂N is given by⋃

m∈M∩γ2
S2

ε (m), the orientation of each sphere being opposite to that inherited
from M . Now, from deg(ψ̃|∂N ) = 0, we have

deg(ψ̃|γ1×γ2) + deg(ψ̃|S
m∈M∩γ2

S2
ε (m)) = 0. (5.24)

Hence,

Lk(2)(γ1, γ2) = deg(ψ) = −deg(ψ̃|S
m∈M∩γ2

S2
ε (m)). (5.25)
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Moreover, we have

deg(ψ̃|S
m∈M∩γ2

S2
ε (m)) = −I(M, γ2), (5.26)

and therefore Lk(2) = Lk(4). This completes the demonstration of Proposition 5.6.

6. Gauss’ Integral in Terms of Oriented Area

As we saw from the discussion in Sec. 3, Gauss’ integral can be interpreted in terms
of oriented area contributions. Its evaluation by the Gauss map is indeed useful. We
provide three elementary examples of direct inspection of ψ(T) through the oriented
area A. Let us sub-divide T into regions Tj , in which ∂n

∂t1
× ∂n

∂t2
has constant sign.

The oriented area of each Tj is given by

±
∫∫ ∣∣∣∣ ∂n

∂t1
× ∂n

∂t2

∣∣∣∣ dt1dt2,

where the sign depends on the orientation of the surface. A is given by summing up
(algebraically) the contributions from the positive and negative regions Tj . Since
(n, ∂n

∂t1
, ∂n

∂t2
) = ±| ∂n

∂t1
× ∂n

∂t2
| has the sign of the oriented surface ψ(T), the oriented

area is given by

A =
∫ 2π

0

∫ 2π

0

(
n,

∂n
∂t1

,
∂n
∂t2

)
dt1dt2. (6.1)

Thus, by dividing by the area of the unit sphere S2, we have deg(ψ) = A/4π. Since
ψ(T) is a continuous mapping of a closed surface and ψ(T) ⊆ S2, then the oriented
area of ψ(T) will be a multiple integer of 4π and deg(ψ) an integer. Since positive
and negative contributions cancel out, the degree is simply given by counting the
number of times ψ(T) covers S2 essentially (see also, for example, [6]).

6.1. Un-link, Hopf link and link 42
1

The linking number can be estimated by direct inspection of the oriented area of
ψ(T). To illustrate this, let us consider the following three examples.

First, let us consider the Gauss map associated with the trivial link 02
1 (the “un-

link”) (see Fig. 8). Any point on the unit sphere (Fig. 8(b)) has same degree, that is
deg(ψ) = 0. Different grid levels identify regions that contribute differently to the
oriented area. The lighter region is not covered by ψ(T). The intermediate region is
doubly covered by ψ(T), with opposite orientations and contributions to the degree
(hence deg(ψ) = 0). The darker region is covered four times: two inherited from the
double covering of the intermediate region and two, of opposite orientations, of its
own. Thus, the overall contribution to the oriented area is zero, thus Lk(02

1) = 0.
A second example is provided by the Hopf link 22

1 (see Fig. 9). Any point on
the sphere (Fig. 9(b)) has deg(ψ) = ±1. Two distinct regions can be identified: the
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(a) (b)

Fig. 8. (a) The un-link 02
1 with Lk(02

1) = 0 viewed (top) in space and (bottom) in its minimal
diagram representation. (b) ψ(T) resulting from the Gauss map of the un-link 02

1.

(a) (b)

Fig. 9. (a) The Hopf link 22
1 with Lk(22

1) = ±1 viewed (top) in space and (bottom) in its minimal
diagram representation. (b) ψ(T) resulting from the Gauss map of the Hopf link 22

1.

light region is covered once, depending on the surface orientation. The dark region
is covered twice, by two opposite orientations; one covering is inherited from the
light region. The oriented area is thus given by ±4π, hence Lk(22

1) = ±1.
Finally we consider the link 42

1 of Fig. 10. From Fig. 10(b) we see that deg(ψ) =
±2, with two distinct regions: the light region is covered twice, with deg(ψ) = ±2,
whereas the dark region is covered four times. The oriented area is thus given by
±8π, hence Lk(42

1) = ±2.
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(a) (b)

Fig. 10. (a) The link 42
1 with Lk(42

1) = ±2 viewed (top) in space and (bottom) in its minimal
diagram representation. (b) ψ(T) resulting from the Gauss map of the link 42

1.

7. Conclusion

A mathematical reconstruction of a possible derivation made by Gauss of the link-
ing number has been presented, together with explicit proofs of modern, equivalent
interpretations of the linking number in terms of degree, signed crossings and inter-
section number. The mathematical reconstruction offered here is based entirely on
first principles of potential theory due to Gauss. This proves two important points:
(i) that its derivation is entirely consistent with the contemporary work of Gauss on
magnetic potential, and that indeed it can be worked out by using explicit results of
Gauss on terrestrial magnetism; (ii) that the concept of linking number is intimately
related to the foundations of potential theory and modern mathematical physics,
and that indeed contributes to the topological foundations of physical theory. Fur-
ther support to this comes from the subsequent derivation made by Maxwell, which,
as demonstrated by the documents provided here, is most probably authentically
independent.

Since the interpretations of the linking number in terms of degree, signed cross-
ings and intersection number find numerous applications in modern mathemati-
cal physics, the proofs of their equivalence presented here bridge an existing gap
between the original definition and the alternative meanings present in the liter-
ature, which prove sometimes hard to reconcile for non-experts. Moreover, direct
estimate of the linking integral by the Gauss map of oriented areas is applied to
three examples, the un-link, the Hopf link and the 42

1 link, to show how Gauss’
original concepts and ideas in potential theory are still so fruitful in modern
science.
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