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ABSTRACT. The surgery theory of Browder, Lashof, and Shaneson reduces the
study of high-dimensional smooth knots X" — S"*2 with n; = Z to homotopy
theory. We apply Williams’s Poincaré embedding theorem to a highly connected
Seifert surface. Then such knots are determined by their complements if the
Z-cover of the complement is [(# +2)/3]-connected; we improve Farber’s work
by one dimension.

0. INTRODUCTION

A high-dimensional knot will mean a smooth, oriented, codimension two
embedding X" — S"*2 of an exotic sphere, with n > 5. See the survey of
Kervaire and Weber [KW] for more details. For our purposes, two knots X7 —

S"+2 are said to be equivalent if there is diffeomorphism ¢: $™+2 5 $"+2 such
that ¢(X7) = X% . A knot X" — S"*2 has a complement X = Sn+2 —3¥n x D2,
and is determined by its complement if it is equivalent to any other knot with
diffeomorphic complement. The orientation of X" and the trivialization of the

normal bundle neighborhood give a preferred diffeomorphism f: X" x S! =
0X . We will call the composite

a: 8" x STy 51 h 9x L X (w:S" S 3" the degree one map)

the attaching map of the knot. Let 7: 8" x S = §" x S' be the homotopy
equivalence (actually a diffeomorphism) given by the generator of
T (SO(n+1))=2/2.

A knot X" — S"*2 s called r-simple [Ke2, Fal] if the Z-cover X of the
complement is r-connected. Levine [Lel], Kearton [Kel], and Kojima [Ko]
showed that [(n — 1)/2]-simple knots were determined by their complements,
using ambient surgery on the Seifert surface. Using Wall’s thickening theory
[Wa3], Farber [Fa2] proved this for ([#/3]+1)-simple knots. We extend Farber’s
result by one dimension.

Received by the editors May 17, 1991.

1991 Mathematics Subject Classification. Primary 57Q45, 5STN65, 55P40, 57R65.

Key words and phrases. Knots with m; = Z , Poincaré embeddings, unstable normal invariant.

The author thanks Paul Burchard for developing the IATEX commutative diagram package
diagram.sty.

1993 American Mathematical Society
0002-9939/93 $1.00 + $.25 per page

285



286 WILLIAM RICHTER

Theorem A. For n+3 < 3q and n > 5, (q—1)-simple smooth knots " — S"+?
are determined by their complements.

Theorem B. Let " — S"t2 be a knot with complement X and attaching map
a: 8" x S — X . There exists a homotopy equivalence {: X = X so that the
diagram

S"x S —— X

(1) | |t

S"xS! 2 X
commutes up to homotopy, if the knot is (q —1)-simple, n+3 <3q,and n>5.

We prove Theorem B via Williams’s Theorem 1.7; in our range the Poincaré
embedding M x I — S™*2 of a Seifert surface is determined by its “unstable
normal invariant” p € 7,.2(X(M/OM)). We construct another Poincaré em-
bedding M x I — S"+? suggested by a-7 (Lemama 1.4), with the same unstable
normal invariant p (Theorem 1.6). Theorem 1.7 implies the two Poincaré em-
beddings are “concordant”. We use this concordance to construct the homotopy
automorphism (.

That Theorem B implies Theorem A is well known for PL knots, by the work
of Browder [Brl], and Lashof and Shaneson [LS], which we extend to smooth
knots in §2.

Our proof requires Levine’s result [Le3], that there exists highly connected
Seifert surfaces. Together with Barratt [BR], circa ‘82, we have a purely ho-
motopy proof which uses Z-equivariant Hopf invariants and Ranicki’s [Ra]
equivariant S-duality.

We conjecture that high-dimensional knots with 7; & Z are determined by
their complements. If m; 2 Z, there exist counterexamples due to Cappell
and Shaneson, Gordon, and Suciu [CS, Go, Su]. Theorem 1.6, which is true
outside our range n + 3 < 3¢, and the appendix provide some evidence for the
conjecture.

We have a homotopy theoretic proof [Ri] of Theorem 1.7, completing
Williams’s program [Wi2], proving the result using Browder-Quinn Poincaré
surgery [Br4, Qul].

Given a subspace 4 C X and amap f: A — Y, we will write the identi-
fication space X U, Y as h_n} (X & 4 ER Y), the colimit or pushout of the

diagram.

1. POINCARE EMBEDDINGS AND THE PROOF OF THEOREM B

In Theorem B we can eliminate the condition that { be a homotopy equiv-
alence.

Lemma 1.1. Any self-map { of the knot complement X making diagram (1)
commute up to homotopy is a homotopy equivalence.
Proof. Diagram (1) implies that { is a self-map of the Poincaré pair (X, 0X),

and (. [X] = [X] € Hy2 (X, 0X) = 2+1(0X) . Furthermore, { induces the
identity on 7;(X) = Z. By naturality of Z-equivariant Poincaré duality [Le2,
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Waz2], the composite

H(X,0X50) 5 1P (X, 0% 0) ™0 H.(X) & HU(X)
is the cap product isomorphism [X] N -, where A = Z[Z]. Hence (. is sur-
jective. ~Since thg group ring A is Noetherian and X is a finite complex,
(s« H(X) — H.(X) must be an isomorphism; hence, { is a homotopy equiv-
alence by the Whitehead theorem. O

For a smooth knot X" — S”"*2 with complement (X, 8.X)"*2, Alexander
duality and relative transversality give a map /#: X — S! which is transverse
to the point 1 € S!, with inverse image h~!(1) = (M, M), and OM =
Xn. Mm™! is called a Seifert surface for the knot. By the relative tubular
neighborhood theorem, there is a codimension zero embedding M x I C X
extending the embedding X" x ] C 90X =X"x S! =X" x IUX" x I, where |
is the interval [—1,1]. Let A =90(M x I).

Let W = X — M x I be the Seifert surface complement. The knot comple-
ment X is then obtained by gluing together M x [—1, 1] and W along their
common boundary M x{—1, 1}. By writing X as the union of the Seifert sur-
face and 11§ complement, we obtain the decg\mposition S"t2 = MxTU WU}:/"\ X
D?. Let W be the manifold with corners W =WuUX"xD? sothat A=0W.
There is a deformation retraction & : W — W which maps X" x D? onto X" xI.
Let f: 4A— W be the/\composite of the inclusion 4 = (M xI)=0W C W
and the retraction ¢: W — W. Note that f is a cofibration, since & restricts
to a homeomorphism &: W — W .

Williams [Wil] studies codimension zero Poincaré embeddings [Brl, Br2,
Br3, Wal] of an m-dimensional oriented finite Poincaré pair (Y, dY) in
the sphere S™, which consist of a complement Z along with an attaching
map f:0Y — Z, such that the pushout Y Uy Z is homotopy equivalent to
S™ . Williams [Wil] defines two Poincaré embeddings with attaching maps
f1:0Y — Z; and f,: Y — Z, to be concordant if there exists a homotopy
equivalence ¢: Z; — Z, sothat L ~&.f:0Y — Z,.

For the above Seifert surface embedding, (M, 9 M) is an (n+1)-dimensional
oriented Poincaré pair, with an oriented homeomorphism w : S"— M , given
by the orientation of the knot. (M x I, A) is an (n + 2)-dimensional Poincaré
pair, with 4 = M x {1} US™ x I, and the attaching map f: 4 — W gives a
Poincaré embedding (M xI, A) — S"*2, by the homotopy equivalence S"*2 =

MxIuw 1% MxIU;W. Let w: S" — M be the composite of & and
the inclusion 1: M — M. Let vy: M — W be the restriction of f to
Mx+l1CA. Let 1.: M — A be the inclusions M x {1} C 4. For any map

g: A — W we denote by gi the restrictions g,: M x {£1} C 4 S, W and
g :S"xICA EA w.

Definition 1.2. Define d: 8" x I = 8" x I by §(x, t) = (¢™+D . x, 1), using
the standard action of S! = SO(2) c SO(n + 1) on S". We define the dif-
feomorphism 7 of §” x ! = lim (§” x I < §" x {+1} = S" x I) to be the
identity on the left S” x I and J on the right S” x I. We define the self-map
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y of 4= hm(M x {£1} 2 gn x {+1} 4 S" x I) to be the identity on
M x {£1} and 6 on S" x 1.

Lemma 1.3. (1) The selfmap t of S" x S is homotopic to the composite
7: SN x ST -oaction, gn o g1y gnl IV, gn o g1y gn VI, gn e ST

(2) The self-map y of A is homotopic to the composite

A eadtion gy gnt 1V Ve Av St VO, gy a2

idvi, e A.
Proof. By the Barratt-Puppe sequence of the CW-complex S" x S§1 = S" vV
S! U ent! | the self-map 7’ is characterized up to homotopy by the property
that: 7/ induces the identity in homology, and the Hopf construction of the
composite S” x ST 5 §7 x S T4 S$” is the generator 7 € 1,4 2(S") = Z/2.
But 7 clearly satisfies both of these properties; hence (1). Now consider the rel
boundary coaction map

" x J <eaction | gn o v Sntl

of 8" x I. We can define the coaction map of 4 = M x I US"” x I onto its
top cell by glueing the identity map on the left half M x I to the above rel
boundary coaction map. Furthermore, the self-map J of S” x I is the identity
on S" x {£1} U N x I for some point N. Therefore, J is homotopic, rel
boundary, to the composite

S x [ -oaction, gn oy gn+l JVE, gn o py g 2V, gn s g
for some map g € m,,1(S"). By part (1), we see that g = n € m,41(S"). By
glueing in this rel boundary homotopy, the second assertion follows. O
Lemma 14. Let f: A — W be the attaching map of a Poincaré embedding

(M x I, A) — S"*2. Then the composite A % 4L wois also the attaching
map of a Poincaré embedding (M x I, A) — S"*2. Furthermore, (f -y)+ =
fi:Mx{xl}>W and (f-y)-=f--0:8"xI—-W.

Consider a Poincaré embedding (M, A) — S™ of an oriented, finite m-
dimensional Poincaré pair (M, A), with complement W and attaching map
fiA—-W. Let v:S" S MU + W be the homotopy equivalence for which
the composite p: S™ % M U + W — M/A is orientation preserving. Williams
[Wil] calls p € 7,,(M/A) the unstable normal invariant. Williams [Wi2] shows

that Browder’s cofibration [Br3] S™ L5 M /A 9 swois split by the degree

one map M/A pinch S™ , that the composite
(2) M4 & x4 2O sy sm

is a homotopy equivalence. From this we deduce

Lemma 1.5. Let p, p' € nn(M/A) be the unstable normal invariants of the
Poincaré embeddings (M, A) — S™ with attaching maps f: A — W and
fl:A— W' Then:

(1) p=p' ifand only if the composite S™ LN M/A 0 Swis nullhomo-
topic.
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(2) If W' = W and the suspensions of the attaching maps f, f': A — W
are homotopic, then the unstable normal invariants are equal, p = p' €
Tm(M/A).

Now consider our Seifert surface Poincaré embedding (M x I, A) —
S"+2 | with attaching map f: A — W, and unstable normal invariant p €
Tas2(M x I)/A) .

Theorem 1.6. The Poincaré embeddings (M x I, A) — S™? with attaching
maps f-y, f: A— W have equal unstable normal invariant.

Proof. This follows from the codimension one framed embedding of the Seifert
surface, which implies the vanishing of Xw € 7, ;(XM). That is, the cofibra-
tion sequence

sntl =35 X s B s(M/Sm) B z28n = g2

splits; we have a homotopy equivalence TM Vv S"*2 zve X(M/S"). Hence

i1: XM — X(M/S™) has a left homotopy inverse, which implies that S"+! 0
XM is nullhomotopic. By Lemma 1.3(2), Xy ~ id: 4 — XA. Hence, the
maps Xf, X(f-y): X4 — W are homotopic. The result follows from Lemma
1.5. O

We recall the uniqueness part of Williams’s [Wil] Poincaré embedding the-
orem.

Theorem 1.7. Let (M, A) be an oriented, finite, m-dimensional Poincaré pair,
with n1(A) = (M) =0 and m > 6. Suppose M is n-dimensional as a CW-
complex, andlet g =m—n—1. If m < 3q, then any two Poincaré embeddings
of (M, A) in S™ whose unstable normal invariants are equal are concordant.

Proof of Theorem B. Let X" — S"*? be a (q — 1)-simple knot, n + 3 < 3¢,
with knot complement X"*2, and attaching map a: S" x S! — X . Let M"+!
be a Seifert surface with resulting Poincaré embedding (M x I, A) — S"*2,
with attaching map f: 4 — W . By a theorem of Levine [Le3] we can assume
that M"+! is (¢ —1)-connected. By Poincaré duality of the pair (M, d M)"*+!,
M is then (n + 1 — g)-dimensional. Theorems 1.6 and 1.7 imply the Poincaré
embeddings with attaching maps f-y, f: 4 — W are concordant. Let &: W 5
W be a concordance, so & f ~ f-y: A — W. Since the geometric map f
is a cofibration, we may assume that ¢- f = f.y: 4 — W . By Lemma 1.4
we have £-f, = f, and &. f. = f_ -6. The knot complement X is the

pushout X = lim (M x I & Mx{-1,1} 5 W), so we can define a self-map

{: X — X to be the identity on M x I and & on W . But the attaching map
a: S" x S! — X and the composite a-7: S" x S! — X are the induced maps
of colimits of the following strictly commutative diagrams:

MxT —— Mx {1} —L—

waid wxidT f_T

S"x T —— S"x {£]} — S"x I
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MxI —— Mx{l}) - w

Tcoxid wxidT f,'éT

St x ] —— S"x {1} —— S"x T

Using Definition 1.2, we have {-a =a-7: §" x S! — X, and thus diagram (1)
commutes. By Lemma 1.1 {: X — X is a homotopy equivalence. O

2. PROOF OF THEOREM A; SMOOTH KNOTS AND SURGERY

Lashof and Shaneson [LS, Theorem 2.1] show that any self-homotopy equiv-
alence of a knot complement pair (X, 9X)"*2 is homotopic to a diffeomor-
phism, if n > 5 and 7n;(X) = Z. This follows from the Sullivan-Wall surgery
exact sequence [Wa2, §10]

0= L,,3(Z[Z] % 2[Z]) —» #°(X,) — [X, G/O] = 0.

Let ¢: X, =X, bea diffeomorphism between the knot complements of two
smooth (g —1)-simple knots X7 — S"*2 with n+3<3q, n>5,fori=1, 2.
The homotopy equivalence {: X; = X; of Theorem B is thus homotopic to a
diffeomorphism 6: X; = X, . Following Browder [Brl, Corollary 2], we have
an exact sequence

(3) TI"lgI™? L Dif(ExS') Z &S"xSHY2Z/20Z/26Z/2,

involving the pseudoisotopy and homotopy automorphism groups. The first
two Z/2 summands are given by the degree —1 maps of S” and S!, and
the third summand is given by the self-map 7, which is detected by the Hopf
construction (cf. Lemma 1.3). We have to modify Browder’s argument slightly,
since .# will not be surjective if the exotic sphere X7 does not possess an
orientation-preserving diffeomorphism (cf. [KM]).

Let B;i: Z7 x S! = 9X; be the preferred diffeomorphisms, for i =1, 2.
The restriction of ¢ to the boundary gives a diffeomorphism d¢: X7 x S! 3
22 x S'. If the Hopf construction of the composite 7, - d¢: 7 x ST — X2 is
N € Mny2(S™') = Z/2, then replace the diffeomorphism ¢ by the composite
¢+ 6. By Browder’s application of the Browder-Levine fibering theorem [Brl,
Lemma 2], we can assume that 9¢ restricts to a diffeomorphism ¢q: Z} 35 2.
Let ¢ = +1 be the degree of 9¢ onthe S! factor. Consider the diffeomorphism
w = (¢ x €)~! - 9¢ € DIff(Z" x S'), which induces the identity in homology.
Since its Hopf construction is zero, y ~id, so % (y) = id, and (3) shows that
0¢ = (po x €) + v is pseudoisotopic to the composite

31 xS G 3 st Xz gt B s gt
where d € I'"*! is a diffeomorphism of X7, and e € I'""*? is obtained from
the identity map of X7 x S by “connecting sum” with a diffeomorphism of an
(n+1)-disk. We claim that 0¢ extends to a diffeomorphism of 9¢: = x D? 2
28 x D?. Certainly (¢o-d) x ¢ extends. But e must be pseudoisotopic to the
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identity, otherwise we could glue in the tubular neighborhoods to get a diffeo-
morphism between the standard sphere S”*2 and the exotic sphere represented

by e € I'"*2 . By gluing together ¢ with the extension d¢, we have an equiva-
lence of the two knots.

3. APPENDIX

Farber [Fa2] shows that PL (g — 1)-simple knots with n + 3 < 3¢ are classi-
fied up to isotopy by a stable homotopy Seifert pairing, which amounts to the
homotopy class v, € [M, W], which lies in a stable group by the Freudenthal
suspension theorem. Using our S-duality map A: $"+3 — ZW AZM [Ri] we
have a bijection [M, W] 3 5 4((EW)2) in Farber’s range. We note that
Farber uses a dual S-duality map M A W — S"+! . We show that Farber’s sta-
ble homotopy invariant is essentially the second Hopf invariant A,(p) of our
unstable normal invariant.

Theorem 3.1. The second Hopfinvariant A,(p) of the unstable normal invariant
p:S"2 — X(M/OM) is the S-dual of the map vy: M — W :

22(p) = [Z1 - (Zv_ — Zv,) " TA(d A v, ) - ZA € 7,5 (S(M/0M))),
using the isomorphisms

. [Z1+(Zv- —Zv,) " 1@
[M, W] 200 ms o (@w)@) B2 L e (S(M/0 M),

Consider the general case of a Poincaré embedding (M, A) — S™, with
complement W and attaching map f: 4 — W as in [Ri]. The boundary map
0: MJA — XA is defined to be the homotopy class making the diagram

inch
Mu,CA 222 54

| ) CA=A4x[0,1]/4%0,
pinch ~ 5 ZA:CA/A:A/\([O,I]/{Oyl})
M/A

commute up to homotopy. Let py = 9-p: S™ — XA be the composite. Extend-
ing the splitting (2), from Williams’s work [Wi2] we have a homotopy equiva-
lence

M=x-Zf+y-pinch+z-Z:TASIWVS"VIM,

where x, y,and z are the inclusions of the three factors, and pinch: X4 — S™
is the unique degree one homotopy class. The two maps I1, y: £4 — W VS™V
XM are equalized up to homotopy by the collapse map MU 1 A%[0, 1]Ju/W —
YA: the first and third maps x - Xf and z-X: can be nullhomotoped when
restricted to M Uyx; A x [0, 11U, W since the ends M and W are “free” (as
in the proof of the equivalence of Whitehead products and Samelson products
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[Wh]). Thus the diagram

M/A 4 s —— . SWVST"VEIM

Po
pinch = ~ 1

MU CA <22 MU Ax[0, 1u, W —220 o 5y
is homotopy commutative. Now apply Boardman and Steer’s Cartan formula
and composition formula [BS] to the equation I1-pg ~ y: $™ - TWVS™VIM .
We obtain ITATI-4(pg) + A2(IT) - Zpg = 0 and A,(IT) = xXf — zZi, which
implies

AT A3(po) = —(XTf — zZ1) - Zpg € Tyt (EW V S™ V EM)E]),

Proof of Theorem 3.1. Now consider a Seifert surface (M x1, A) — S"*%, with
complement W and attachingmap f: A — W . Let h: A — M/dM be defined
by collapsing the subspace M x 1UA8M x I . Then we see that 4 is a homotopy
retraction of 9: Z(M/OM) — ZA. Thus p ~X%h-py: S™ — X(M,I0M), and
Arp = (Zh)H - Aypg .

Let us factor Zh: 24 — Z(M/0M) through the homotopy equivalence II,
byamap aVBVy: IWVS"2VIM — X(M/OM). The homotopy commutative
diagram

IMVIMYVS™?
\ (xZvi+2z)V(xZv_+z)Vy
Zi,VZi_Vp ~
*VEIVp >4 — " IWV S22y IM
[
aVvVpvy

S(M/oM)

yields a = X1+ (Zv_ — Zv, )" € W, Z(M/OM)], y = —Z1- (Zv_ —Zvy)~ L.
v, €[EM, Z(M/OM)],and B = p. Recall that IT121.2,(py) = —(xZf — zZ1)-
%.po , which is the negative of the suspension of the S-duality map A: $"*? —
W AM. Thus,

Sh=[Z1-(Zv- —-Zvy) 'vpv =21 (Zv. —Zv,)" ! Zu,]- 10,
(Eh) . 25(po) = [Z1 - (Zv- — Zv,) " '1P(id A vy) - ZA,
and we are done. O
Remark. This provides further evidence for our conjecture: the two Seifert

surface Poincaré embeddings that we consider are equivalent under a stronger
equivalence relation than Farber’s relation of isotopy.
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