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Abstract. This note describes a way to realize a “projective” version of Gosset’s
240-vertex semiregular polytope 421 using the Clifford algebra Cl(8) generated by an
8-dimensional vector space equipped with a non-degenerate quadratic form. The 120
vertices of this projective Gosset figure are also seen to coincide with a particular
basis for the Lie algebra so(16).

1. Introduction

Gosset’s figure 421 is perhaps most concisely described as the boundary of the
convex hull of the 240 roots of the E8 lattice. Correspondingly, the symmetry
group of Gosset’s figure is the Weyl group E8 for the exceptional Lie algebra
e8. Note that the order of this group is

|E8| = 3! · 4! · 5! · 8! = 696729600,

so Gosset’s figure is a highly symmetrical object, considering it exists in only
8 dimensions. It is named after Thorold Gosset because he was apparently
the first to describe it in print, [2, 6]. A sketch of the vertices and most of the
edges of Gosset’s figure appears as the frontispiece to [3]. Despite the naturality
of using coordinates in Euclidean space, there are quite a few different ways
to conceive Gosset’s figure. In particular, this note is intended to serve as
a tutorial on another way to “visualize” Gosset’s 8-dimensional semiregular
polytope, namely, using the 256-dimensional Clifford algebra Cl(8).
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The result in this note first sprouted as a numerological observation. Sup-
pose {e1, e2, ..., e8} is a generating set for Cl(8), satisfying the relations

e2
i = −1, eiej + ejei = 0, (i "= j).

For each k ∈ {0, 1, 2, ..., 8}, let Σk be the set of all products of k distinct
generators, and let Cl(8)k denote their span. Then clearly

|Σk| = dim(Cl(8)k) =
8!

k!(8− k)!
,

and there is a decomposition

Cl(8) =
8⊕

k=0

Cl(8)k.

Let Σ =
⋃8

k=0 Σk and Σ− = {x ∈ Σ : x2 = −1}. Then one can check that

|Σ−| = |Σ1 ∪ Σ2 ∪ Σ5 ∪ Σ6| = 8 + 28 + 56 + 28 = 120.

The first part of the observation is that 120 is half the number of vertices of
Gosset’s figure. Next, each vertex in Gosset’s figure is joined by an edge to 56
other vertices, while given an element x ∈ Σ−, one can check that there are
precisely 56 elements y ∈ Σ− for which yx = −xy. Such a pair is said to “anti-
commute”. Based on these meager data, one might hope for a correspondence,

vertices ↔ elements x ∈ Σ−,
edges ↔ anticommuting pairs x, y ∈ Σ−.

This note aims to show that this is not merely a coincidence. Moreover, it
will be seen that Σ− represents a basis for the Lie algebra so(16), if Cl(8) is
represented by 16× 16 matrices.

Based on the data given so far, one may guess that the Clifford-algebra
model described in this note yields a “projectivized” version of Gosset’s fig-
ure. Note that Gosset’s figure bounds a convex cell in 8 dimensions, so, by
central projection, it yields a cellular decomposition of the sphere S7. This
decomposition is invariant under the antipodal map

ν : v '→ −v,
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mapping each point to its negative. In other words, if c is a cell of any di-
mension appearing in Gosset’s figure, then −c is another cell appearing in the
Gosset figure. One may therefore quotient by this action to obtain P421, a
combinatorial polytope with exactly half the number of cells of 421. One can
also see this by noting that the center of its symmetry group E8 has two ele-
ments, the involutive element of this subgroup corresponding to the antipodal
map. The notation P421 is intended to suggest a cellular decomposition of the
projective space RP 7.

The 240 vertices of Gosset’s figure 421 generate the E8 lattice. This lattice
is famous for several reasons. First, it corresponds to the most complicated
of the 5 exceptional simple complex Lie algebras, [8]. Second, it is the most
accessible non-trivial example of an even unimodular lattice in existence, as
all other such lattices exist in dimensions of the form d = 8n where n ≥ 2, [4].
Third, no other lattice in 8 dimensions has higher density, so this lattice is an
important example in coding theory and the general sphere-packing problem,
[4]. Finally, this lattice has made an appearance in the theory of quasicrystals,
as it appears that many quasicrystalline phenomena may be placed within the
framework of certain natural projections of the lattice down to 2, 3, and 4
dimensions, [5, 9].

2. A General Fact about Clifford Algebras

Clifford algebras have a lot of structure in general, (see [7]), but here we are
mainly concerned with when two elements of a canonical basis commute or
anticommute. The purpose of this section is thus to describe these conditions.

Start with a set S. Then the power set P(S) is a vector space over the
2-element field F2. Addition on P(S) is given by the symmetric difference
operation

I + J = I − J = (I ∪ J)\(I ∩ J),

for all I, J ⊂ S, and scalar multiplication is given by

1 · I = I and 0 · I = ∅,

for all I ⊂ S.

Define the function
| | : P(S) → F2
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as the cardinality of S mod 2. Thus, |∅| = 0, |{1}| = 1, |{1, 2}| = 0, |{1, 2, 3}| =
1, and so on. Then there is a symmetric bilinear form 〈 , 〉 : P(S)×P(S) → F2

defined according to the prescription

〈I, J〉 = |I| · |J |− |I ∩ J |.

Since char(F2) = 2, this form is also skew-symmetric.

Suppose now that S = {1, 2, 3, ..., r}, a finite set with r elements. Let Cl(r)
denote the Clifford algebra with generators {ei : i ∈ S}. In particular, assume
e2
i is non-zero for all i ∈ S and

ejei = −eiej

for all i, j ∈ S. Define a map e : P(S) → Cl(r) by

e(I) = eI =
∏

i∈I

ei,

where, for definiteness, the indices are written in increasing order. As in the
introduction, a basis for Cl(r) is given by

Σ = {eI : I ⊂ S},

This shall be called the “canonical basis” for Cl(r).

Proposition 2.1 Suppose I, J ⊂ S. Then

eJeI = (−1)〈I,J〉eIeJ .

Remark. If k ∈ F2, then the meaning of (−1)k should be clear: One has
(−1)0 = 1, and (−1)1 = −1, and in fact this yields a homomorphism from the
additive part part of F2 to the group {±1}.

Proof. Use induction on m = |I|, n = |J |, and k = |I∩J |. If either m = 0,
or n = 0, the formula holds because then either eI or eJ is the identity element
of Cl(r). Next, suppose k = 0. Then one transforms the expression eIeJ to
the expression eJeI by interchanging precisely mn distinct pairs of the form
eiej into the form ejei. For each of these mn pairs, one has i "= j, and thus
ejei = −eiej for every pair. Therefore, if k = 0, then eJeI = (−1)mneIeJ . Now
one must handle the induction step. Suppose eJeI = (−1)mn−keIeJ for some
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particular I and J . Choose i such that i ∈ {1, 2, 3, ..., r} but i /∈ I. Form a new
set by uniting I ′ = {i} ∪ I. There are two cases to consider, one where i ∈ J
and the other where i /∈ J . First suppose i ∈ J . Using the induction hypothesis
and the relations among the generators, one has

eJeI′ = eJeieI

= (−1)n−1eieJeI

= (−1)n−1(−1)mn−keieIeJ

= (−1)mn+n−k−1eI′eJ .

Since, however, i ∈ J , one then has |I ′| = m + 1 and |I ′ ∩ J | = k + 1. Thus,

|I ′| · |J |− |I ′ ∩ J | = (m + 1)n− (k + 1) = mn + n− k − 1,

exactly the exponent appearing above. Next suppose i /∈ I. Using the same
reasons as above, one has

eJeI′ = eJeieI

= (−1)neieJei

= (−1)n(−1)mn−keieIeJ

= (−1)mn+n−keI′eJ .

In this case one has i /∈ J , so |I ′| = m + 1 while |I ′ ∩ J | = k. Thus

|I ′| · |J |− |I ′ ∩ J | = (m + 1)n− k = mn + n− k,

which is the exponent appearing above. The arguments for cases obtained by
adjoining new elements to J are identical. This completes the induction.

It is worth noting here that the set {ei : i ∈ S} generates a finite group
given by the union

Q(r) = Σ ∪ (−Σ).

The notation Q(r) is intended to reflect the fact that this is a generalization of
the 8-element group of quaternions. Also note that Q(r) is a non-split extension
of the two-element group by the additive part of the vector space P(S).

3. Gosset’s 8-Dimensional Figure and Cl(8)

An easy way to identify Gosset’s figure is to recognize it as a particular G-set
for the Coxeter group G = E8. For reference, the Coxeter diagram is given.
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!
! ! ! ! ! ! !α1 α2 α3 α4 α5 α6 α7

α8

Figure 1. Coxeter Diagram for E8.

Recall that the diagram contains information on how E8 is presented by
generators and relations: Each node corresponds to an involutive generator,
each edge corresponds to a pair generating the 6-element nonabelian group,
and each non-edge corresponds to a commuting pair of generators. If one can
find an action by a suitable set of operations obeying these relations, then one
has identified an action of E8. We shall employ this principle in order to dis-
cover the projectivized Gosset’s figure inside Cl(8).

With that, first notice that each J ⊂ S induces a map rJ of P(S) according
to the prescription

rJ(I) = I − 〈I, J〉 J.

Proposition 3.1 (a) Each rJ is an involutive F2-linear map of P(S). (b) If
〈I, J〉 = 0, then (rIrJ)2 = Id. (c) If 〈I, J〉 = 1, then (rIrJ)3 = Id.

Proof. Straightforward computation.

Throughout the rest of this note, assume that S = {1, 2, 3, 4, 5, 6, 7, 8}. Then
P(S) carries an action by E8, which will be described here. Denote

α1 = {1, 2}, α2 = {2, 3},
α3 = {3, 4}, α4 = {4, 5},
α5 = {5, 6}, α6 = {6, 7},
α7 = {7, 8}, α8 = {1, 2, 3, 4, 5},

and for each k ∈ {1, 2, ..., 8}, let rk be the corresponding involution of P(S).
One quickly notices that 〈αi,αj〉 = 1 if and only if αi and αj are joined by
an edge in the Coxeter diagram given. The corresponding involutions rk of
P(S) clearly generate a group acting on P(S). However, using the preceding
proposition and the fact that these involutions obey the relations of the gen-
erators of E8, it is clear that these involutions yield an action of E8 on P(S).
Given that E8 acts on P(S), one must now determine the orbits. To facilitate
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this, for each k ∈ {0, 1, 2, ..., 8}, let P(S)k denote the set of subsets of S with
cardinality k. Then we have the following:

Proposition 3.2 The action of E8 on P(S) has three orbits, specifically

O1 = P(S)0,

O120 = P(S)1 ∪ P(S)2 ∪ P(S)5 ∪ P(S)6,

and
O135 = P(S)3 ∪ P(S)4 ∪ P(S)7 ∪ P(S)8.

Proof. First, it is clear that O1 is an orbit. Next, notice that the involu-
tions {r1, r2, ..., r7} generate the full symmetric group S8, and that each P(S)k

is an orbit under the action of this subgroup. The involution r8 corresponding
to α8 = {1, 2, 3, 4, 5}, however, is the only generator which can transform a
set of cardinality k to a set which does not have cardinality k. After some
calculations, one observes that O120 and O135 are each closed with respect to
the action of r8.

There is another approach to proving the preceding proposition, provided
one knows some facts about the subgroups of E8. In particular, E8 has maxi-
mal subgroups with indicies 120 and 135, and aside from the index-2 subgroup
of “even” elements, no larger maximal subgroups, [10]. Thus, given that the
action of E8 on P(S) has non-trivial orbits with more than two elements, one
is led to the conclusion that the only other orbits besides O1 must be O120 and
O135.

Recall the map e which maps a set I ⊂ S to the canonical basis element
e(I) = eI ∈ Σ. Since E8 acts on P(S), the bijection e induces a corresponding
action on Σ.

Theorem 3.3 (a) The action of E8 on Σ preserves commutative and anticom-
mutative pairs. (b) The action of E8 on Σ has three orbits, specifically Σ1 =
e(O1), Σ120 = e(O120), and Σ135 = e(O135). (c) Σ120 = Σ− = {eI : e2

I = −1}.

Proof. Part (a) follows from the proposition in the preceding section, giv-
ing the conditions under which a pair x, y ∈ Σ commutes or anticommutes.
Part (b) is immediate from the preceding proposition. Part (c) is a straight-
forward computation.
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If it is not clear by now, this is how the projectivized Gosset figure P421

lies inside of Cl(8): The vertices correspond to elements of Σ− and the edges
correspond to anticommuting pairs of elements of Σ−. According to the pre-
ceding theorem, this configuration of vertices and edges carries an action by
E8, and therefore corresponds to the projective Gosset figure.

Next we have an interesting fact about the orbit Σ−:

Proposition 3.4 If Cl(8) is represented by 16× 16 matrices, then Σ− is rep-
resented by a basis for so(16).

Proof. One may construct the representation explicitly. First recall that
Cl(8) is isomorphic to the 4-fold tensor product of the algebra Cl(2), and that
Cl(2) is isomorphic to the algebra of 2× 2 matrices, [7]. Denote

I =
[

1 0
0 1

]
, H =

[
1 0
0 −1

]
, D =

[
0 1
1 0

]
,

and J = HD. Then {I,H, D, J} represents a basis for Cl(2), and the 4-fold
tensor products of these matrices represents a basis for Cl(8). The represen-
tation is determined uniquely by the values on the generators of Cl(8). With
that, make the assignments

e1 '→ I ⊗ I ⊗H ⊗ J, e2 '→ I ⊗H ⊗ J ⊗ I,
e3 '→ I ⊗ I ⊗D ⊗ J, e4 '→ I ⊗ J ⊗ I ⊗H,
e5 '→ I ⊗ J ⊗ I ⊗D, e6 '→ I ⊗D ⊗ J ⊗ I,
e7 '→ H ⊗ J ⊗ J ⊗ J, e8 '→ D ⊗ J ⊗ J ⊗ J.

One quickly checks that these matrices satisfy the same relations as the genera-
tors. Moreover, for each element of Σ−, one can check that its image under this
mapping is an orthogonal matrix. Finally, so(16) has dimension 120, coinciding
with the cardinality of Σ−.

4. Conclusion

It has been demonstrated that the projectivized Gosset figure P421 lies imbed-
ded inside the Clifford algebra Cl(8) and the Lie algebra so(16). Moreover,
there is a basis for so(16) for which anti-commuting pairs of basis elements
correspond to the edges of P421.
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It is appropriate at this point to mention that Clifford algebras may contain
other exceptional configurations as well. For example, consider the semiregular
polytope 221, whose 27 vertices correspond to the lines on the general cubic
surface, [1]. This polytope is imbedded in the Clifford algebra Cl(6) as follows.
Suppose {a1, a2, ..., a6} is a generating set for Cl(6) which satisfies

a2
i = 1, ajai + aiaj = 0, (i "= j).

As before, set Σk to be the set of products of k distinct generators. Then
z = a1a2a3a4a5a6 is the only basis element for Σ6. For each k ∈ {1, 2, 3, 4, 5, 6},
let

bk = akz,

and for each i, j ∈ {1, 2, 3, 4, 5, 6} with i < j, let

cij = aiajz.

Evidently {ak} is a basis for Σ1, {bk} is a basis for Σ5, and {cij} is a basis
for Σ4. Moreover, all of these basis elements square to unity in Cl(6). One can
check that the array

a1 a2 a3 a4 a5 a6

b1 b2 b3 b4 b5 b6

is an example of Schläfli’s double-six. This means that the two rows and six
columns each constitute a mutually anti-commuting set, while every other pair
in the array commutes. The other double-sixes appearing in 221 either have the
form

a1 a2 a3 c56 c46 c45

c23 c13 c12 b4 b5 b6

or
a1 b1 c23 c24 c25 c26

a2 b2 c13 c14 c15 c16
.

Again, notice that two entries in these arrays commute if and only if they are
not in the same row and not in the same column.
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