SOME REMARKS ON THE KIRBY-SIEBENMANN CLASS 1&
R. J. Milgram !
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In this note we study the relations that hold between the Kirby-Siebenmann class
{KS}€ H*(Bstop; Z/2) and the first Pontrajagin class.

The first result is that that the natural map po : Bsrop — Bsg does not detect
i {K S} no matter what coefficients might be used. However, the homology dual of {K S}
i is in the image of the Hurewicz map

rs(Bsrop) — Hi(Bstopr; Z/2).

~L-groups

In fact there is a unique non-zero element (K S) € m4(Bstop) of order 2, and po([KS]) #
: 0 € ms(Bsc). In particular this implies that ws + {K S} is a mod(24) fiber-homotopy
f invariant of SPIN-TOP bundles. However, it is interesting to ask what happens when w-
is non-zero. To understand this we introduce an intermediate classifying space, Brsg for
which we have a factorization

itut, f P
sitit, po=p-f, Bsrop— Brsc— Bsa-
Brsc is univeral for the venishing of transversality obstructions through dimension 5.
Additionally, Brsc is built out of finite groups (Z/ 2-extensions of the symmetric groups
S,) in the same way that Bsg is constructed from the S,. As aresult, explicit construction
of homotopy classes of maps into Brsg is often possible.

: We show that Hs(Brsa; Z/2) = Z/2®Z/48 and that the homology dual of the
rtment, o Kirby-Siebenmann class maps to 24 times the second generator. Thus, this transversality
theory does detect {KS}. But note also the Z/48. Our main question is the extent to
which it gives rise to a fiber homotopy invariant of topological R™-bundles. The general

result is

Theorem I: Let &, 1 be two stable R"-bundles over X, and suppose they are fiber
homotopy equivalent. Then there is a € H?(X; Z/2) and

24a? + Py(€) + 24{K S(6)} = Pi(v) +24{KS(¥)}

in H4(X; Z/48) where Py(¢) is the Z/48 reduction of the first Pontrajagin class.

In other words, there is an element A € H*(Brsg; Z/48) with f*(A) = Py +24{KS},
and (I) gives the effect of different liftings of a map po - ¢ : X — Bsrop — Bsc on A.

H*(Bsrop; Z/2) = Z/2 with generator w, s0 the possible factorizations of po
through Brsc differ in their effect on 4 only by 24w2. In particular this gives
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Corollary: If M* is a compact closed topological manifold with even index, and v is its
stable normal bundle, then w? =0 € H*(M; Z/2) and

vt P (A) = Pi(v) + 24{K5(v)}

is independent of the choice of f factoring po.

This note came about in answer to a question of Frank Quinn. He pointed out that
in [M-M|] the exact structure of Bsrop, and the various surgery maps in dimension 4 were
never worked out. But currently it appears very useful to understand them. Of course, we
do not attempt to work out explicit geometric methods for evaluating the new invariants.
But knowing what they are and how they fit together should make that fairly direct.
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The homotopy types of Bso, Bsg in dimension <7
A Postnikov system for Bgo through dimension 7 is given by
(1) Bso——K(Z/2, 2)——K(Z, 5)

with K-invariant 2{S¢*Sq(s2) +12- Sg*(1,)}. (Note that HS(K(Z/2, 2); Z) = Z/4 with

generator having mod(1) reduction v and

(2) v = Sq:Sql(Lg)+cg'Sq1(12).

Moreover, 84(¢3) = v.)
The stable homotopy of spheres is given in the first 6 dimensions by

Y/ 1=0
Z/2 1 =1, generator g
Z/2  1i=2, generator
seQ0y )
®) . m(57) = Z/24 i =3, generator v
0  i=45
Z/2 i =6, generator ky, = 12

and we will use the same names for the corresponding elements in m,;41(Bsg) f(S°).
One relation that should be kept in mind is 5k, = 12v, since it also holds in 7.(Bsg),
though the relation 72 = «; which holds stably does not hold in 7.(Bsg).

Lemma (4): A Postnikov system for Bsg through 7 is given by
K(Z/2, 2) x K(Z/2, 3) x K(Z/2, T)——K(Z/24, 5)

where the K -invariant is 2{S¢*Sq (t2) + 2 - Sq*(12)} + 4{Sq?*(¢3)}.

Proof: With Z/24-coefficients the K-invariant for Bse maps back to the image of the cor-
risponding K-invariant for Bso. Hence, the class in (2) must appear in the K-invariant.
Also, the kernel of the map H3(K(Z/2, 2,3); Z2/24) — H*(K(Z/2, 3); Z/24) is gen-
erated by 45¢°(:3). It follows that 459%(u3) is the only term which can be added to the
K-invariant. But, in fact, this term must be involved in the K-invariant because there is
the homotopy relation which we have already noted nx; = 12v, since 7 is detected by Sq¢2.

In order to understand the integral homology of Bsg, B sTop, and the intermediate
space Brsg which we will introduce shortly, we need a method for obtaining Bochstein
information from K-invariants. The following result will suffice.

Lemma (5): Let K(Z/2', j) x K(Z/2, j +1)—K(Z/2*, j + 1) be given with
£o= 2Y8(45) + 277 (441),
then the fiber E of the map x is K(Z/2+s—w=1 Z/2v).

Proof: The homotopy exact sequence of the fibration in dimensions 5, j + 1 is

Ko 8 ,
(6) 0——-+7rj+1(E)———»Z/2-——>Z/2’——»7r,~(E)—->Z/2]——>O
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But the term 2°7 1,4, in K.T(L,'.?.l) implies that . is injective in (6). Thus E is a K(r, j)
and 7 is given as an extension in the sequence

0—>Z/2’—1—->7rj(E)——->Z/2i—-——+0.
The type of this extension is determined by the term 2¥(8(¢;)) in &*(¢j+1). From this (5)
follows.

(4) and (5) imply that there is a mod(8) Bochstein
Bs(3) = {Sq*(e3)} in H™(Bsag; Z/2).

Additionally, the Hurewicz image of v is {w}} + 2{L§"} since this is already true in Bso,
where it is well known. As a consequence H4(Bsg; Z) = Z/2® Z/24 with generators

{wik {wg"} respectively, and 12v is in the kernel of the Hurewicz map.

The structure of Bsrop through dimension 7
From the fiberings

G/O —_— Bso — Bsg

(7) ! ! l
G/TOP —— Bsrop — Bsc

and the well known result of Kirby-Siebenmann that 74(G/TOP) = m4(G/O0) = Z, but
that the map between them is multiplication by 2, we get the diagram of extensions in 7,

0 — Z — zZ — Z/24 — 0

® -:{ {

0 — YA —  mw4(Bsrop) — Z/24 — 0

The only way this diagram can commute is if 74(Bsrop) = Z/2® Z vfrith the element
of order 2 mapping to 12 - v, and the generator of the Z-summand mapping to v.

{2/2 =2

Lemma (9): mi(Bstop) = { Z®Z/2 i=4 Moreover, a Postnikov system for

0 4 <1< 8.
Bsrop through this range is given by
(10) K(Z/2, 2) x K(Z/2, 4)—K(Z, 5)
with K-invariant 2{Sq*Sq*(t2) + ¢3 - S¢*(t2)}-
(This is clear.)

In particular, the class {KS*} € Hy(Bsrop; Z) whic}? is iq the Hurewicz. image of
the element of order 2, must go to zero in H4(Bsg; Z), since, in hc?mot?py, it goes to
12v. This shows that {KS*} has no homology (or cohomology) relations implied by the
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map into Bsg. However, in homotopy, the fact that it maps to 12v should have some
consequeences.

The space Brsc

The failure to detect the Kirby-Siebenmann class in H.(B3sg; Z) is the influence of
the first exotic class ¢3. In fact, the term 45¢%(:3) in the 5-dimensional K -invariant (4)
is exactly the difficulty. (For example, if we kill w> but leave ¢3 in H*(Bsg; Z/2) the
resulting space has only Z/4-torsion in Hy( ; Z).) Hence it is natural to consider the
classifying space Brsc obtained from Bsg by killing the exotic class 3. For definiteness,
recall that ¢3 is detected with O-indeterminacy in the Thom-complex MSG by applying
the twisted secondary operation associated to the relation (wa + S¢*)wa + Sq¢*) to the
Thom class, and using the Thom isomorphism to bring the class back to Bsg. For details
see [R].

We have the fibration sequence

(11). K(Z/2, 2)_*BTSG—:_’BSG—‘L“_"K(Z/2, 3)

with K-invariant ¢3. This is the universal space for fiber homotopy transversality to
hold in the Thom space, at least through dimension 5 (Compare [B-M)). Indeed, a fiber
homotopy sphere bundle { — X and reduction to Brsg is equivalent to the condition
13(€) =0 € H*(X; Z/2), together with a specific choice of 2-dimensional cochain ¢ so

bc = f#(ts)

where f : X — Bsg classifies . This situation is very close, but certainly not the
same as the situation studied in [F-K]. Also, there is a factorization of the canonical map
Bstop—Bsg as

Bsrop——Brsg— Bsq.

Precisely, there are exactly two such factorizations differing by a map
Bsrop — K(Z/2, 2).

Now, we look at the 6-skeleton of Brsg. This is the 6-skeleton of the 2-stage Postnikov
system

K(Z/2, 2) x K(Z/3, 4)——K(Z/8, 5)
with K-invariant 2{S¢*Sq(:2)+t2-Sq¢*(¢2)}. From (5) the resulting space has 4* integral
homology group given as
Hy(Brsg; Z) = Z/26®Z/48

with generators (w4)*, (w3)* respectively. Here, w, can be identified with ta. Note that
this implies that the Kirby-Siebenmann class maps non-trivially to 24((w3)*).

The proof of theorem (I)

f
Lemma (12): Let X — Brsg be given and suppose f' is the composite

(a.f) n
X ——K(Z/2, 2) x Brsg —— Brsg
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where u is the principal bundle map K(Z/2, 2) x Brs¢ — Brsg, then
friwd} = f{wi} +2a’ € HA(X; 2/48).
Proof: H*(K(Z, 2) x Brsg; Z/16) = (Z/2)* ® Z/4 & Z/16 with generators
8(12 ® wa), 8(1 @ wy) of order 2, (4.2 ® 1) of order 4, and (1 ® w?) of order 16.
We will show that p*(w3) = 8(:3® 1)+ 1®wj. We first note, by naturality and the

primitivity of w} in H*(Bso; Z) that 8(va ® wa) is not in this image. Next, we look at
the cohomology Serre spectral sequence of the fibering

K(Z/2, 2)——Brsc +Bsag

with Z/16-coefficients. ES * = H*(K(Z/2,2; Z/16) = Z/4, with generator 4.3. Also,
E4° = H*%(Bsg; Z/16) = Z/2® Z/8 with generators 8wy, 2(w3), and

E$° = H%(Bsg; Z/16) = (Z/2)* +Z/8.

Here, only the Z/8 is of interest. It has generator Sq*(t3), so ds(4:f) = 45¢°(s3), and
at B/, i+j =4, only E°* = Z/2, E*" = Z/8 @ Z/2 are non-zero. Thus there is a
non-trivial extension for H*(Brsg; Z/16)

0—Z/8 (generator 2w?)—Z/16—Z/2 (generator 8:3)—0.

But this forces the result.

Theorem (1) is direct from (12). The corollary follows, also, since the assumption of
even index implies that wo(M*)? =0 (mod 2). Hence, either lifting gives the same map
in cohomology with Z/48-coefficients.

Concluding remarks

From Quillen’s work we know that Bsg®Z, can be identified with B(B*(SO(F3))) in
dimensions < 6, and as B(B¥(S4)) in all dimensions. Here, S is the infinite symmetric

group. Similarly we can describe Brsg as B(B*(SO(F3))) in this same range. Moreover,

Brsc can be given as B(B¥(Sw)) in all dimensions. Here, these new groups are described
by central extensions

Z/2—SO(F3)— SO(F3)—0
Z /2800 —Seo—0

where, for S, the extension is the {unique) non-trivial one for which the transposition
(1, 2) continues to have order 2. This might be very useful in understanding Casson’s
recent results on the Rochlin invariant.

It seems direct to use the description above of Brsg by finite models to calculate the
order of the classes which carry the remaining Pontrajagin classes. I hope to return to
this later.

Also, there is a second factorizing space for the map Bsrop — Bsg, namely the
space where we kill all the exotic classes o(ezi_y2i—1). The precise structure of these
classes is not entirely known, but there is considerable information in [R]. Se it should
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be possible to understand the higher torsion in the cohomology and homology of this

intermediate classifying space. Moreover, it is likely that it is the universal space for the
vanishing of transversality obstructions.
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