
THE SPECTRAL FLOW AND THE MASLOV INDEX

JOEL ROBBIN AND DIETMAR SALAMON

1. Introduction

Atiyah, Patodi and Singer [3] studied operators of the form

when A(i) is a first-order elliptic operator on a closed odd-dimensional manifold and
the limits

A± = lim A±(t)
t-»±oo

exist and have no zero eigenvalue. A typical example for A(t) is the div-grad-curl
operator on a 3-manifold twisted by a connection which depends on t. Atiyah et al.
proved that the Fredholm index of such an operator DA is equal to minus the' spectral
flow' of the family {A(t)}teR. This spectral flow represents the net change in the
number of negative eigenvalues of A(t) as / runs from — oo to oo. This 'Fredholm
index = spectral flow' theorem holds for rather general families {A(t)}teR of self-
adjoint operators on Hilbert spaces. This is a folk theorem that has been used many
times in the literature, but no adequate exposition has yet appeared. We give such an
exposition here, as well as several applications. More precisely, we shall prove the
following theorem.

THEOREM A. Assume that for each t, A(t) is an unbounded, self-adjoint operator on
a Hilbert space H with time-independent domain W = dom(A(t)). Assume, moreover,
that W is a Hilbert space in its own right with a compact dense injection Wc+H and
that the norm of W is equivalent to the graph norm of A{t)for every t. Assume further
that the map U-* ££?(W,H)\ th+A(t) is continuously differentiable with respect to the
weak operator topology. Assume finally that A(t) converges in the norm topology to
invertible operators A±eS£{W,H) as t tends to ±oo. Then the operator

DA: ^li2(IR,//)nL2(IR, W) >L\U,H)

is Fredholm and its index is given by the spectral flow of the operator family A(t).

The assumptions of Theorem A imply that the spectrum of A(t) is discrete and
consists of only eigenvalues. Hence the 'spectral flow' is well-defined and we shall give
the precise definition in Section 4. We shall also prove that Theorem A remains valid
if A{i) is perturbed by a family of compact linear operators C(t): W-+ H which is
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continuous in t with respect to the norm topology and converges to zero as t tends
to ±00. The operators C{t) in this perturbation are not required to be self-adjoint
when regarded as unbounded operators on H.

A drawback of Theorem A is the assumption that the domain of A{i) be
independent of t. This assumption will in general exclude the case of differential
operators on manifolds with boundary. Theorem A will remain valid for a suitable
class of operator families with time-dependent domains, but the precise conditions on
how the domain is required to vary with time will be a topic for future research.

The ' Fredholm index = spectral flow' theorem is used in a generalization of
Morse theory known as 'Floer homology'. Both Morse theory and Floer's theory are
used to prove the existence of critical points of a nonlinear functional/via topological
arguments. In either case the operators A± appear as the Hessian of/at critical points
x1, and the operators A{t) represent the covariant Hessian of/along a gradient flow
line x{t), that is, a solution of

* = V/j»,

which connects x~ = lim^.^ x(t) with x+ = limt_+00 x(t). Here both the gradient VJ{x)
and the Hessian A = V2f{x) are taken with respect to a suitable metric on the
underlying (finite or infinite dimensional) manifold. The operator DA arises from
linearizing the gradient flow equation.

In the case of Morse theory, the function/is bounded below and each operator
A{t) has only finitely many negative eigenvalues and hence has a well-defined index,
namely the dimension of the negative eigenspace. In this case the spectral flow can be
expressed as the index difference, so the ' Fredholm index = spectral flow' formula is

index DA = v~(A+) - v~(/r), (•)

where v~ denotes the number of negative eigenvalues counted with multiplicity. In the
finite dimensional case it turns out that the operator DA is onto (for each connecting
orbit) if and only if the unstable manifold of x~ intersects the stable manifold of x+

transversally (compare [24]). So in this case the space Ji(x~, x+) = Wu{x~) n Ws(x+)
of connecting orbits is a finite dimensional manifold whose dimension is the difference
of the Morse indices. On the one hand, this follows from finite dimensional
transversality arguments. On the other hand, this can be proved by using an infinite
dimensional implicit function theorem in a suitable path space where DA appears as
the linearized operator and its kernel as the tangent space to the manifold of
connecting orbits. Full details of this second approach can be found in [26].

In Floer's theory (see [10] and [11], for example) the operators y4± can have both
infinite index and infinite coindex, so the right-hand side of equation (*) is undefined.
The spectral flow can still be defined as the number of eigenvalues of A{t), which cross
zero as / runs from — oo to +oo. The counting is done so that each negative
eigenvalue which becomes positive contributes +1, and each positive eigenvalue
which becomes negative contributes — 1. We make this precise in Section 4.

In Floer's theory the initial value problem for the gradient flow equation is not
well-posed and hence there are no stable or unstable manifolds. However, one can
still prove that the operator DA is onto for suitable ' generic perturbations' of the
function/. It then follows from an infinite dimensional implicit function theorem that
the space of connecting orbits is a manifold. Its dimension is the Fredholm index of
DA and hence, by Theorem A, agrees with the spectral flow of the one-parameter
family of the Hessians A{t). Even in cases where the index and coindex of A± are both
infinite, this spectral flow can still be viewed as an index difference, and this leads to
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Floer's 'relative Morse index'. Floer then proceeds to analyse the properties of these
manifolds of connecting orbits to construct a chain complex generated by the critical
points of/and graded by the relative Morse index. The boundary operator is defined
by counting the connecting orbits (with appropriate signs) when the index difference
is 1. The homology groups of this chain complex are called 'Floer homology'. Details
of this construction can be found in [10], [11], [24], [25], and, for the finite dimensional
analogue, in [26].

For example, Floer homology can be used to study closed orbits of Hamiltonian
systems. These closed orbits are critical points of the symplectic action. Like Morse
theory, Floer's theory constructs a gradient flow for this action and studies orbits
connecting critical points. A connecting orbit joining two critical points in this infinite
dimensional gradient flow is a cylinder joining two closed orbits in a finite
dimensional symplectic manifold. The cylinder satisfies a certain nonlinear partial
differential equation. Linearization along such a connecting orbit gives an operator
DA. In this case the spectral flow along the connecting orbit is the difference of the
Maslov indices of the two critical points at the ends; see [24] and [25], for example.
This linearization is an example of the Cauchy-Riemann operators studied in
Section 7.

The fact that the spectral flow is sometimes the difference of two Maslov indices
is not surprising, since the spectral flow can be thought of as an infinite dimensional
analogue of the Maslov index for Lagrangian paths. The graph of a path of
symmetric matrices A: [ — T, T] -> Rnxn is a path of Lagrangian subspaces in R2n. Its
endpoints are transverse to Unx0 if and only if the matrices A± = A(±T) are
nonsingular. In this case the Maslov index /u is the intersection number of the path
Gr (A) with the Maslov cycle I of those Lagrangian subspaces which intersect the
horizontal Un x 0 in a nonzero subspace. The Maslov index can be expressed in the
form

and agrees with the spectral flow of the matrix family A{t).
Our main application is an index theorem for the Cauchy-Riemann operator

on the infinite cylinder [0,1] x U with general nonlocal boundary conditions

(C(0,0,CO,0)eA(0,
where S(s, t) = S(s, t)T e R2nx2n is symmetric and A(/) is a Lagrangian path in
(U2n x U2n, (—co0) x co0). We prove that dSA is a Fredholm operator between suitable
Sobolev spaces, and express the Fredholm index in terms of the relative Maslov index
for a pair of Lagrangian paths.

THEOREM B. index dSA = -

Here ^( f ) = *F(1, t) is a path of symplectic matrices determined by S via Jo ds *F =
ST with ¥(0,0 = H- Tm's generalizes a theorem of Floer [8] for S = 0 and local
boundary conditions A = Ao © Ax and a theorem in [25] for periodic boundary
conditions. Both theorems play an important role in Floer homology for Lagrangian
intersections [9] and for symplectic fixed points [11].
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In Section 2 we discuss the finite dimensional case as a warm-up. In Section 3 we
prove that DA is a Fredholm operator. In Section 4 we characterize the spectral flow
axiomatically, and prove that the Fredholm index satisfies these axioms. In Section
5 we review the properties of the Maslov index. In Section 6 we use the spectral flow
and the Maslov index to give a proof of the Morse index theorem. A special case of
this is Sturm oscillation. Finally, in Section 7 we discuss the aforementioned
Cauchy-Riemann operators.

2. The finite dimensional case

Linearization along a connecting orbit of a gradient flow of a Morse function
leads to a differential operator

(DA£)(t) = t(t) — A(t)£{t). (1)

The index of this operator is the difference of the Morse indices of the critical points
at the two ends. In this example the matrices A(t) may be chosen to be symmetric. In
this section we shall prove a more general fact. The hypothesis that the vector field
is a gradient field is dropped. We linearize along an orbit connecting two hyperbolic
critical points. As a result, the matrices A(t) will no longer be symmetric but the limit
matrices

A± = lim A(t)
(-•±00

exist and are hyperbolic (no eigenvalues on the imaginary axis). For any matrix
BeUnxn we define

l: lim eBtv = 0},

l: lim emv = 0}.
(-•-oo

Then ES(B) is the direct sum of the generalized eigenspaces corresponding to
eigenvalues with negative real parts, and similarly for EU(B) with positive real parts.
Hence the matrix B is hyperbolic if and only if

Un = ES(B) 0 EU{B).

THEOREM 2.1. Assume that A: U -+ Rnxn is continuous and that the limit matrices
A± exist and are hyperbolic. Then formula (1) defines a Fredholm operator

with index
index DA = dim EU(A~) - dim EU(A+).

Proof. That the operator is Fredholm follows from the inequality

+ ||Z) £11 2 ) (2)

for a sufficiently large interval I =[—T,T]. This estimate is proved in three steps.
First, since <* = DA£ + A£, the estimate is obvious for / = M:

+WD^h^)- (3)
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Secondly, if A(i) = Ao is a constant hyperbolic matrix, then the associated operator
DA satisfies

To see this, decompose Un as a direct sum where each of the summands has all its
eigenvalues in one of the two halfplanes. Hence it suffices to treat the special case
where all the eigenvalues of Ao have negative real part. For neL2(U, Un) the unique
solution of £-A0£, = n with £eL2(M, Un) is given by

where <!>(/) = ^ ° ( for t ^ 0 and C)(f) = 0 for / < 0. By Young's inequality,

Since £ = A0£ + rj, we also have

IlilL- < Mo£IL«+ ML- < (Mol

Note, in fact, that the operator DA is bijective since any function in its kernel is
an exponential and can lie in L2 only if it vanishes identically. This proves (4).
Alternatively, (4) can be proved with Fourier transforms as in Lemma 3.9 below.

Finally, the estimate is proved by a patching argument. It follows from (4) that
there exist constants T> 0 and c> 0 such that for every £e PF12(1R, Rn),

£(0 = O f o r | ^ r - l => K\\w^m^c\\DAZ\\L>m. (5)

Now choose a smooth cutoff function /?: U -> [0,1] such that fi(t) = 0 for \t\ ^ T and
= 1 for |/| ^ T-1. Using the estimate (3) for 0£ and (5) for (1 -0)£, we obtain

This proves (2). Since the restriction operator ^12(IR,IRn)-^L2([-r,r],IRn) is
compact, it follows from Lemma 3.7 below that DA has a finite dimensional kernel and
a closed range.

We examine the kernel of DA. It consists of those solutions of the differential
equation £ = At; which converge to zero as / tends to + oo and — oo. Consider the
fundamental solution 0>(t, s) e Unxn defined by

and note that <&(t, s) <P(s, r) = <P(t, r). Define the stable and unstable subspaces
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Both subspaces define invariant vector bundles over IR. This means that
Es(t) = <b(t,s)E'(s) and E\t) = <&(t,s)Eu(s). Moreover, limt̂ +00E*{t) = E\A+) and
limt oô ĈO = EU(A~). Hence

dim Es(t) = n - dim EU(A+), dim Eu(t) = dim EU{A~).

Now let £(/) be any solution of the differential equation £ = At,. Then £,(i) =
Q>(t, s) £(s) for all / and s. Moreover, \£(t)\ converges to 0 exponentially for t -*• + oo
whenever £(i)eE°(t), and |ĉ (OI converges to oo exponentially for /-+ + 00 whenever
£(t)$E'(t). Similarly for t->-oo. Hence

£ £ ker DA o £{t) = 0>(f, s) £(s) and f (/) £ £'(r) n £"(0-

We examine the cokernel of DA. Assume that rjeL2(U, Un) is orthogonal to the
range of DA. Then

= 0

for every f e ^ 1 2 ( R , Rn). If £(/) = 0 for |/| ^ 71, then this implies

and hence

The fundamental solution of this equation is <b(t, s) = <fr(s, t)T, and it is easy to
see that the associated stable and unstable bundles are given by E\t) = £8(/)1 and
Eu(t) = Eu(ty. Hence

rj 1 range D^ o rj(t) = 0(5,0T vC?) and 7(01 £•(/) + Eu(t).

In particular, the cokernel of DA is finite dimensional. Moreover,

index DA = dim (Es n £") - dim (Es + Eu)x

= dim (Es n £") + dim (Es + Eu)-n

= dim EU(A~)-dim EU(A+).

This proves the theorem.

REMARK 2.2. Assume that the matrices A± are symmetric. Then the index
formula of Theorem 2.1 can be expressed in terms of the signature as

= \ sign A~—\ sign A+.

3. Fredholm theory

Assume that W and H are separable real Hilbert spaces with

WaH=H* c W*.

Here the inclusion Wz+ H is compact with a dense range. Throughout, we identify H
with its dual space. We shall not use the inner product on W, only the norm. Hence
we distinguish W iiom. its dual space W*. The notation (rj,^) will denote the inner
product in H when £,rjeH and the pairing of W with W* when t,eWand ^£ W*.



THE SPECTRAL FLOW AND THE MASLOV INDEX 7

Fix a family of bounded linear operators

A{t): W >H

indexed by teU. Given a differentiable curve d;: R -> IV, define DA£: U ->H by

& (6)

for /e R. In the intended application, W = W12 and i / = L2, and /4(f) is a first-order
linear elliptic differential operator whose coefficients depend smoothly on t. We
impose the following conditions.

(A-l) The map A: R -> if (W, H) is BC1. This means that it is continuously
differentiable in the weak operator topology and there exists a constant c0 > 0
such that

for every / eR and every £eW.
(A-2) The operators A(t) are uniformly self-adjoint. This means that for each /

the operator A(t), when considered as an unbounded operator on H with
domv4(/) = W, is self-adjoint, and that there is a constant cl such that

+KWl) (7)

for every / e IR and every £ e W.
(A-3) There are invertible operators A ± e if (W, H) such that

lim
t-»±oo

REMARK 3.3. Condition (A-l) implies that the map t\-*A(i) is continuous in the
norm topology but t\->A(i) is only weakly continuous. We shall use the fact that

R, IV) implies A^EL\R,H).

REMARK 3.4. Let A be a self-adjoint operator on H with dense domain W =
domA. Then Wis a Hilbert space in its own right with respect to the graph norm of A,
and the estimate (7) holds trivially. The inclusion W<L+ His compact if and only if the
resolvent operator (A1 — Ay1: H-> H is compact for every k$o{A). In this case the
spectrum of A is discrete and consists of real eigenvalues of finite multiplicity.

REMARK 3.5. Let A be a closed symmetric operator on H with dense domain W =
domy4. When A is regarded as a bounded operator from W to H, its adjoint is a
bounded operator from H to W*. Since A is symmetric, the restriction of this adjoint
to Jf agrees with A. Thus the adjoint is an extension of A which we still denote by
A. With this notation we have

The condition that A be self-adjoint now means that A£eH implies £e W.

REMARK 3.6. A symmetric operator A.W^H which satisfies (7) is necessarily
closed but need not be self-adjoint.



8 JOEL ROBBIN AND DIETMAR SALAMON

We define Hilbert spaces J? and if by

3ft = L2(U,H),

if = L\U, W) n JF1>2(1R,//'),
with norms

Iieil5r =

The inclusion iV c» #? is a bounded linear injection with a dense range, since
C*(R, W) is dense in both spaces. The uniform bound on A{t) from condition (A-1)
means that £ K-» DA £ defines a bounded linear operator

Our first aim is to Show that it is Fredholm. The proof relies on the following.

LEMMA 3.7 (Abstract Closed Range Lemma). Suppose that X, Y and Z are
Banach spaces, that D: X-> Y is a bounded linear operator, and that K: X'-> Z is a
compact linear operator. Assume that

\\x\\x^c(\\Dx\\Y+\\Kx\\z)

for XGX. Then D has a closed range and a finite dimensional kernel.

For each T > 0 define Hilbert spaces HT{T) and tf (T) by

if{T) = L\[- T, T), W) n Wl\[-T, T], H),

with norms as above.

LEMMA 3.8. For every T > 0 the inclusion iV{T) c+ J4?(T) is a compact operator.

Proof. Choose an orthonormal basis for H and denote by nn: H -> Rn the
orthogonal projection determined by the first n elements. Since n*nneJ£(H)
converges strongly to the identity of H and the inclusion W^H is compact, the
operator

<nn\w:W >H

converges to the inclusion Wc+H in the norm topology. The induced operator
W(T) -> tf{T) :£\-^7i*nnZ can be decomposed as

HT{T) > Wl'\[-T, T],Un) >C([-T, T], Un) >tf{T).

Here the first operator is induced by nn, the second is compact by the Arzela-Ascoli
theorem, and the last is induced by n*. Now

Hence the inclusion iV(T) c+ Jf (T) is a uniform limit of compact operators and is
therefore compact.
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LEMMA 3.9. There exist constants c > 0 and T > 0 such that

for every

Proof. The proof is analogous to the proof of (2). The first step is to prove the
estimate with T= oo. For every £eC™(U, W),

HA. £11* = Il£ll2r+ M{| | i . -2 P il
J - 0 0

The second step is to prove the estimate with A replaced by a constant bijective
operator A(t) = Ao. The associated operator DA satisfies

\\Z\\r < d l^ / IU- (8)

In terms of the Fourier transform, the equation DA £, = n can be rewritten as

ico£(ico) — Ao i(ico) = fj(ico).

Since the operator AQ is symmetric, we have

M IKHJr ^ KkoZ-A0z,t>\ ^ \\tot-A0Z\\« Kh
and hence

\co\K\\H^\\icoZ-A0t\\H.

With c = MO1IIJ2>(H,W)5
 w e obtain

Hence it follows from the Fourier-Plancherel theorem that for every

\\ico£(ico)-A0aico)\\2
Hdco

J -co

This proves (8).
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The final step uses a patching argument and is analogous to the patching argument
in the proof of (2).

Assume that A: W ̂  H is self-adjoint and consider £,neH such that

for every 0e W. Then £e W(see Remark 3.5). In other words, every 'weak solution'
£eH of At; = rj with neH is a 'strong solution'. The following theorem says that a
similar result holds for the operator DA. Since DA is not self-adjoint, we must use the
formal adjoint operator of DA to define the notion of a weak solution. The formula

for (j),£,eiV shows that —D_A is the formal adjoint operator of DA.

THEOREM 3.10 (Elliptic regularity). Assume that ^,rjeJ^ satisfy

for every 0eC^(R, W). Then £eTT and DA£ = n.

Proof. We first prove (in four steps) that the theorem holds under the
assumption that £ and n are supported in an interval / such that A{i): W->H is
bijective with

for tel.

Step 1. £eW^\U,W*) and

(9)

where A{t)e&{H, W*) as in Remark 3.5.

For 0eC*(R, W),

, w*

Since the derivatives of test functions 0 are dense in L2(U, W) this implies Step 1.
Now choose a smooth cutoff function p: U -»• IR such that p{t) = 0 for |/| ^ 1,

p(t) ^ 0 and jp = 1. For S > 0 define />//) = d^pid'H).

Step 2. For S > 0 sufficiently small, we have £s = ps * £e iV.

Multiply equation (9) by A'1 to obtain £ = A~xi — A~xn, and convolve with ps:

where ( = AA~X^ — r\e#C. We have used p * (uv) = p * {uv)—p * (uv).
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Step 3. There exists a constant c > 0 such that

for every sufficiently small 3.

Use Step 2 and the identity £d = ps * £ to obtain

O-Aps*(A X0
{A~lQ) — Aps * {A~lQ.

The second term on the right is bounded in Jf, uniformly in S. For the other term we
have

+<5 1

J_oo 0 \ 0 )

8 ^ v /

U(s)\\Hds.

Here c is a uniform bound for the derivative of A'1 on /. By Young's inequality,

This proves Step 3.

Step 4. E,eif and DA£,—n.

It follows from Step 2 and Lemma 3.9 that H^ll^ < c for some constant c
independent of 8. Choose a sequence 8V-+Q such that ^ converges weakly in if. Let
^Qeif denote the weak limit. Then <t,d converges weakly to £0 in «3f. On the other
hand, £s = ps * £, converges strongly to £ in #F and hence £ = £0 e if. Now it follows

This proves the theorem under the assumption that ^ and rj are supported in an
interval on which A is bijective. Cover the real axis by finitely many open intervals Ii

such that X^-A{i): W^H is bijective with

for telr Now choose a partition of unity f}} subordinate to the cover. Then the
function ^ = fy t, is a weak solution of

where

By the special case, ^ e W and hence £ = £^ ^ e "W".

REMARK 3.11. The previous theorem requires only the estimate of Lemma 3.9
with / = IR. Hence it continues to hold if the limits A± do not exist. Moreover, local
regularity does not require bounds on the function A: IR -> J£.ym(W, H). However, we
cannot dispense with the assumption that A(t) be self-adjoint.
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THEOREM 3.12. The operator DA is Fredholm.

Proof. By Lemmas 3.9 and 3.8, the operator DA has a finite dimensional kernel
and a closed range. By Theorem 3.10, the cokernel of DA is the kernel of the operator
D_A: iV -> 2?. Hence the cokernel of DA is finite dimensional.

THEOREM 3.13. Assume that A:U^^(W,H) is of class Ck~l with dkA/dtk

weakly continuous and djA/dt} uniformly bounded for O^j^k. Jf^eW and

then
£e H^-2(IR, W) n Wk+1'\U,H).

Proof. The proof is by induction on k. Assume k = 1. Then £,x = t, is a ' weak
solution' of DA£1 = nl with nl = A^ + ?jeL2(U,H). To see this, note that

'2(R, W*)
with

By Theorem 3.10, this implies that ^ G T T and hence £e Wl-\U, W) n W2-\U,H).
Suppose by induction that the statement has been proved for k ^ 1. Let

rje Wk+h2(U,H) and £,eH^ with DA£ = n. By what we just proved, teiV and

Hence it follows from the induction hypothesis that

£eWk'\U, W)(] Wk+h2(U,H).

This proves the theorem.

PROPOSITION 3.14. Suppose that A{t) is bijective for all t, and

MM" 1 II*><//,w> M(OII#(w.w) M C O ^ I I ^ W . H ) < 2. (10)

Then DA is bijective.

Proof Let £ekerDA. Then it follows from Theorem 3.13 that

Hence

(11)

The right-hand side is continuous, and hence the function t\->
this function is convex. Since it is integrable on U, it must vanish. Hence DA is
injective. The same argument with A replaced by — A shows that DA is onto.

COROLLARY 3.15. If A(t) is bijective for all t, then DA has Fredholm index 0.
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Proof. The operator family A(et) satisfies the hypotheses of Proposition 3.14 for
small e.

EXAMPLE 3.16. If we drop the hypothesis that each A(t) is self-adjoint,
then DA need not be Fredholm. For example, let H= »rl-2(S'1)xL2(51), W =
W^iS1) x W1'^1), and let Ao: W^ H be defined by

A0(u,v) = (v,u").

This operator Ao: W^ H has a compact resolvent and is the infinitesimal generator
of a strongly continuous one-parameter group U(i) e ̂ C(H) of unitary operators on
H. Define

where b(t) = 1 for / ^ — 1 and b{t) = — 1 for / ^ 1. Then the Cauchy problem

is well-posed, and all solutions converge to zero exponentially as t tends to ±oo.
Hence the kernel of DA is infinite dimensional. Hence the operator DA is not
Fredholm.

In contrast to the previous example, 'lower-order perturbations' of A always
produce Fredholm operators. The perturbation is a multiplication operator induced
by C(t): W-+H.We assume that the function C: U -*• S?{W, H) is continuous in the
norm topology such that C(i): W -*• H is a compact operator for every t and

lim

REMARK 3.17. If B: U -> S£{H, H) is strongly continuous and converges to 0 in
the norm topology as t tends to ± oo, then the operator family C(t) = B(t) \w satisfies
the above requirements.

LEMMA 3.18. The operator

IV >Jf:O—>C£
is compact.

Proof. First assume that C is compactly supported in an interval /. Choose
projection operators nn: H -*• Un as in Lemma 3.8. Then the operator

Cn(t) = n*nnnC(t):W >H

converges in the norm topology to the operator C(t)eS£{W, H), and the convergence
is uniform in / since C: U^>£f(W,H) is continuous in the norm topology. The
multiplication operator induced by Cn can be decomposed as

nr > W1' 2 ( / , IRn) • L\I, Un) • JV.

Here the first operator is induced by nn o C, the second is compact, and the last is
induced by n*. Since the operator Cn\"W' -> #e converges to C: iV -*• Jf in the norm
topology, it follows that the operator C is compact. In the general case, use a cutoff
function to approximate C in the norm topology by operators with compact support.
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COROLLARY 3.19. The operator DA+C: iV -> 2? defined by

is Fredholm. It has the same index as DA:

index DA+C = index DA.

REMARK 3.20. Assume that the curve A: U -> <£{ W, H) is continuous in the
norm topology and satisfies (A-2) and (A-3). We were not able to prove under these
assumptions that DA is Fredholm.

4. The spectral flow

We continue the notation of the previous section. For A: U^>J?(W,H) and
teM, we define the crossing operator by

T(A,t) = PA(t)P\keTA,

where P.H-+H denotes the orthogonal projection onto the kernel of A. A crossing
for A is a number t e IR for which A(t) is not injective. The set of crossings is compact.
A crossing / is called regular if the crossing operator T(A, t) is nonsingular. It is called
simple if it is regular and in addition dimkeryl = 1. If t0 is a simple crossing, then
there is a unique real-valued C1 function X = X(t) defined near t0 such that X(t) is an
eigenvalue of A(i) and X(tQ) = 0. This function is called the crossing eigenvalue. For
a simple crossing, the crossing operator T(A, t0) is given by multiplication with X(t0),
and hence X(t0) # 0.

THEOREM 4.21. Assume that A satisfies (A-l), (A-2), (A-3) and has only regular
crossings. Let DA be defined by (6). Then the set of crossings is finite, and

index DA = - £ sign T(A,t), (12)
t

where the sum is over all crossings t and sign denotes the signature {the number of
positive eigenvalues minus the number of negative eigenvalues). Hence for a curve having
only simple crossings,

index DA = - £ sign X(t), (13)

where X denotes the crossing eigenvalue at t.

Note that the direct sum of two curves having only regular crossings again has
only regular crossings. The analogous result fails for simple crossings. Indeed, A 0 A
has no simple crossings. We shall see in this section that the property of having only
simple crossings is generic, so that (13) suffices. On the other hand, the following
theorem shows how to use formula (12) without perturbing A.

THEOREM 4.22. The curve A — d\ has only regular crossings for almost every
SeU.

To prove these results, we characterize the Fredholm index axiomatically and
show that the right-hand sides of the formulae (12) and (13) satisfy these axioms. It
is convenient to introduce some notation.
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Denote the Banach space of bounded symmetric operators from W to H by

%ym(W,H) = {Ae<?(W,H): A* \w = A],

and let Sf( W, H) c J?sym(W, H) be the open subset consisting of those operators with
nonempty resolvent set, that is, the operator

X\-A\ W >H

is bijective for some real number X. This means that the operator A, when regarded
as an unbounded operator on H with dense domain W = dom^l, is self-adjoint with
compact resolvent (see Remark 3.4).

Denote by $8 = 08(U, W,H) the Banach space of all continuous ('continuous'
means continuous in the norm topology unless otherwise mentioned) maps A:M-+
&sym(W,H) which have limits

A± = lim A(t)
t-»±oo

in the norm topology. Denote by J11 = $\U, W,H) a & the Banach space of those
A e <% which are continuously differentiable in the norm topology and satisfy

teR

Define an open subset

, W, H) c &(U, W, H)

consisting of those AeSftioi which the limit operators A1: W-+H are bijective and
A(t)eSf(W,H) for each teU. The set

is open in 0&l. The set s& consists of all maps A: M-+Hf(W,H) which are continuous
in the norm topology and satisfy (A-2) and (A-3). The set s£x consists of all maps
A: U -> £P(W,H) which satisfy (A-l), (A-2), (A-3) and in addition are continuously
differentiable in the norm topology. Theorem 3.12 implies that DA is a Fredholm
operator for every Aestf1.

Given A^s^iU, Wt,H^, i= 1,2, the direct sum

Ax®A2s jrf(U, Wx 0 W2, Hx 0 H2)

is defined pointwise. Given A,A;,Ares0{R, W,H), we say that A is the catenation of
Ae and Ar if

JAM for^O

Ur(0 for f̂  0

and A({i) = A(0) = Ar( — t) for / > 0. In this case we write

A = Af*Ar.

Note that the operation (A,,Ar)\-+Af%Ar is only partially defined.

THEOREM 4.23. There exist unique maps fi: s#(U, W,H)-*Z, one for every
compact dense injection of Hilbert spaces Wc+ H, satisfying the following axioms.

(Homotopy) // is constant on the connected components of jtf(M, W,H).
(Constant) If A is constant, then n(A) = 0.
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(Direct sum) p.(A1 0 A2) =
(Catenation) If A = A( # Ar, then JJ.(A) = /i(A,)+/i(Ar).
(Normalization) For W = H = U and A(t) = arctan(0, we have n(A) = 1.
The number /u(A) is called the spectral flow of A.

REMARK 4.24. Choose A e s/(R, W, H). Then there exists a constant e > 0 such
that if A^A^^iU, W,H) satisfy

ten

then the path At = (1 -T)A0 + TA1 lies in sf\U, W,H) for 0 ̂  x ̂  1. Moreover, if
A0,A1es#1(M, W,H) are homotopic by a continuous homotopy in sf(M, W,H), then
they are homotopic by a C^-homotopy in srfl{U, W, H). Hence any homotopy
invariant on s^\U, W, H) extends uniquely to a homotopy invariant on stf(U, W, H).

We may write the set Sf = Sf(W,H) as an infinite disjoint union

where Sfk = Sfk(W,H) denotes the set of operators LeSf{W,H) with A>dimensional
kernel. The set £fk is a submanifold of £f of codimension k(k + l)/2. The tangent space
to ¥k at a point LeSfk is given by

where P: H-*H denotes the orthogonal projection onto the kernel of L. In other
words, a curve A e s$ is tangent to <Ŝ  at r = 0 if and only if A(Q)eSfk and the crossing
operator T(A,0) — 0. Since &[ has codimension 1, a curve has only simple crossings
if and only it is transverse to ¥k for every k. (Recall that «9£ has codimension greater
than 1 for k $s 2, and hence a curve is transverse to Sfk if and only if it does not
intersect «9£.)

Proof of Theorem 4.23. For A e J^\U, W, H) the number fi{A) can be defined as
the intersection number of the curve A with the cycle 5^ (appropriately oriented) as
in [18]. This requires showing that the set of curves transverse to all ^ is open and
dense in sf1 and that the set of homotopies which are transverse to all Sfk is dense.
The assertion about curves can be proved using the transversality theory in [1]. In the
notation of [1] one uses the representation of maps p: stf -> C\X, Y) with
s/ = sf1(R,W,H), X=U, Y=Sf(W,H), W=£fk{W,H) and p the inclusion.
Homotopies are handled similarly, but a preliminary smoothing argument is required.
By Remark 4.24, the definition of JU(A) as the intersection number with &[ extends
toAesf(M,W,H).

If the curve A estfl(U, W, H) is transverse to each Sfk, then the intersection number
of A with 9\ is given by the explicit formula

where the right-hand side is as in (13). The transversality argument shows that this
intersection number satisfies the homotopy axiom. The other axioms are obvious. The
proof that the axioms characterize the spectral flow requires the following.
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THEOREM 4.25. For every A e s#(U, W, H), there exists an integer m and a path of
matrices Bestf(M, Um, Um) such that A® B is homotopic to a constant path.

Proof. We prove the theorem in three steps.

Step 1. If A{t) is bijective for every t, then the theorem holds with m = 0.

Homotop A to a constant A(0) using the formula Ax{i) = ^4(tan(Tarctan?))-

Step 2. If As^(U, W,H) has m simple crossings, then there exists a curve
besrfl{U, U, U) such that A@b is homotopic to a curve with m—\ simple crossings.

Assume that A has a simple crossing at / = f0 and let X{t) e o(A(t)) be the crossing
eigenvalue for / near tQ. For e > 0 sufficiently small, choose a C^-curve of eigenvectors
C: 0 0 - e , to + e) ^ i /such that A(t)£(t) = A(t)C(t) and \\C(t)\\H = 1. Define n(t): H^U
by

Moreover, choose a smooth cutoff function /?: IR -> [0,1] such that fi(t) = 1 for
\t — to\ ^ e/2 and fi(t) = 0 for \t — to\ ^ e. Finally, choose a C^function b: U -> IR such
that

b(t) = -X(t) for |/ —/0| ^ e/2,

6(0 7̂  0 for t # /0, and Z?(0 is constant for |/| ^ e. Consider the curve Aesf\M, W® IR,
i / 0 I R ) defined by

A{t) 8p(t)n(t

Then AQ = A 0 b, and for 8 > 0 the curve ^ has no crossing at t = /0.

3. The general case.

By transversality, homotop A to a curve in ^ ( IR , W, H) with only simple
crossings. Now use Step 2 inductively to construct a curve Bes/\U, Um, Um) such
that A © 5 is homotopic to a curve without crossings. Finally, use Step 1.

Proof of Theorem 4.23 continued. Denote by pi(A) the spectral flow as defined by
intersection numbers. Let fi: jrf(U, W,H)^>Z be any putative spectral flow which
satisfies the axioms of Theorem 4.23. We prove that fi = fi. To see this, note that a
curve of matrices Bejtf(M, Um, Um) is homotopic to a curve of diagonal matrices.
Hence it follows from the homotopy, direct sum and normalization axioms that

fi(B) = n{B) = \ sign B+- \ sign Br.

Now let Ae s/(U, W,H) be any curve, and choose Bejrf(U, Um, Um) as in Theorem
4.25. Then it follows from the homotopy and constant axioms that fi(A 01?) = 0.
Hence fi(A) = —fi(B) = —fi{B) = fi{A). This proves the theorem.

We have not used the catenation axiom to prove uniqueness of the spectral flow.
Hence the catenation axiom follows from the other axioms. Here is a direct proof of
this observation.
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PROPOSITION 4.26. The catenation axiom follows from the homotopy, direct sum
and constant axioms.

Proof. Let A,,Ared(U, W,H) such that A/jt) = AT(-t) for t^ -1. Call this
constant operator L. We construct a homotopy Azes/(U, W® W,H® H) such that

This homotopy is given by AT{f) = Ae(f) © Ar{t) for t ^ 0, and

(t) 0 \ ^/TTTN

for t ^ 0. Here /?(^) is the Hilbert space isomorphism of H 0 H defined by

(cosd -si

Note, in particular, that R(6) commutes with L © L. Thus we have proved that
Ao = A{ © Ar and y4x = A{ # y4r © L are homotopic. Hence

The first equality follows from the direct sum axiom, the second from the homotopy
axiom, and the last from the constant axiom.

LEMMA 4.27. Assume that A:U-^^(W,H) satisfies (A-1),(A-2),(A-3), and has
only regular crossings. Then the number of crossings is finite, and the spectral flow of
A is given by

t

where the right-hand side is as in (12).

To prove this result, we require Kato's selection theorem for the eigenvalues of
a one-parameter family of self-adjoint operators.

THEOREM 4.28 (Kato Selection Theorem). For Aes/\M, Un, Un) there exists a
Cx-curve of diagonal matrices

such that A(t) ~ A(t) for every t. Here the sign ~ denotes similarity. Moreover,

for all t and X.

This is a reformulation of Theorem II.5.4 and Theorem II.6.8 in [14]. The
existence of a continuous family A(7) which is pointwise similar to A(t) is easy to
prove. Simply use the ordering of the real line to select the diagonal entries. In
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general, one cannot choose the similarity continuously. There might not exist a
continuous family of bijective matrices Q(t) with A(t) = Q(t) A(t) Q{tyx. To find a
differentiable function A(/) is much harder.

The functions X}(t) are the eigenvalues of A(t) counted with multiplicity. The
theorem also asserts that the derivatives X}{t) for those j with X}(t) = X are the
eigenvalues of the crossing operator T{A — X,i), again counted with multiplicity.

COROLLARY 4.29. Assume that A:U^^(W,H) satisfies (A-l) and (A-2).
Let toeR and c > 0 such that ±c^a(A(t0)). Then there exists a constant e > 0 and a
^-function A(t) of diagonal matrices defined for to — e<t<to + e such that

r(A-X,t)~Y(A-X,t)

for to — e< t < to + e and —c<X<c. (This implies that the diagonal entries ofA(t) are
the eigenvalues of A(t) between —c and c, counted with multiplicity.)

Proof. We prove this by reducing it to the finite dimensional situation. First
choose £ > 0 such that ±c^a(A(t)) for t0 — e < t < to + e. Let E(i) denote the sum
of the eigenspace of ,4(0 corresponding to eigenvalues between — c and c. Choose
^-functions fy: (t0 —e, to + e) -+H such that the vectors ^(t),..., £N(t) form an
orthonormal basis of E(i) for every /. Define n(t): H->UN by the formula

By the finite dimensional case, the theorem holds for the symmetric matrix

B{t) = n{t)A{t)n{t)*.

Differentiating the definition of B gives

B = nAn* + nAn* + nAn*,
and hence

QBQ = nPAPn*,
where P and Q denote the spectral projections for A and B corresponding to the same
eigenvalue X.

Proof of Lemma 4.27. A curve A:M-*&(W,H) which satisfies (A-l), (A-2) and
(A-3) has only regular crossings if and only if it is transverse to

in the sense that its derivative A(t) at a crossing t does not lie in the tangent cone at

y{W,H): 0ea(PLP\kerL)}.

Choose toeU with A(to)eyv Then 0 is an eigenvalue of A(t0) with finite multiplicity
m. Choose c> 0 such that there is no other eigenvalue of A(t0) in the interval — c ^
X ^ c. Now choose e > 0 such that ±c$o(A(t)) for t0—e ^ t ^ to + e. By Corollary
4.29, there exist m continuously differentiable curves

representing the eigenvalues of A(t) in ( — c,c). Since tQ is a regular crossing of A, it
follows that Xjito) # 0 for every j . This proves that the crossings are isolated.
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Shrinking e if necessary, we may assume that X}{t) # 0 for 0 < \t — to\ ^ e. This
proves that . . . . , x .• , .

sign Xj(t0 + e) = - sign Xs(t0 - e) = sign Xt(t0).
Hence

sign(r(i4,/0)) = *{j: 0 < Xfa + s) < 3}-#{j: 0 < X}(t0-e) < 3}.

The right-hand side is unchanged by small perturbation, and agrees with the spectral
flow across the interval [/0—e, /0 + e] for a nearby curve in stf with simple crossings.
This proves that the intersection number of A with Px at t0 is the signature of the
crossing operator.

Proof of Theorem 4.22. By Corollary 4.29, cover the set {(t,X): Xea{A(t))} by
countably many graphs of smooth curves t\-*kj{t) each defined on an interval [a},b][.
By Sard's theorem, the complement of the set of common regular values has measure
zero. By Corollary 4.29, Se U is a common regular value of the functions X} if and only
if A — 6\ has only regular crossings.

Proof of Theorem 4.21. We prove that minus the Fredholm index satisfies the
axioms of Theorem 4.23:

sf\M, W, H) > Z: A i > - index DA.

The homotopy and direct sum axioms are obvious. The constant axiom follows from
Corollary 3.15, the normalization axiom from Theorem 2.1, and the catenation axiom
from Proposition 4.26. Hence

index DA = — fi(A)

for ^eja/1(lR, W,H). To prove this formula in general, approximate a curve which
satisfies (A-l), (A-2) and (A-3) (but is only continuously differentiable in the weak
operator topology) by a curve in J/X(IR, W,H). Finally, use Lemma 4.27.

We include here some observations about catenation. Assume A(, Ares& such that
A({t) = Ar( — t) for t ̂  0. Form the shifted catenation

A = Af\TxAr

by A{t) = A £t + T) for / ^ 0 and A{t) = Ar(t-T) for t ̂  0.

PROPOSITION 4.30. If the operators DA and DA are onto {respectively injective),
then the operator DA is onto (respectively injective) for x sufficiently large.

Proof. We consider the injective case; the onto case follows by duality. By

assumption, there exist constants c{ > 0 and cr > 0 such that

\\Z\\r*kct\\DAtS\\,t I K I I ^ C J D ^ H J , ,

for every t.t'W. Choose a nondecreasing cutoff function ^:U-*U such that
Pit) = 1 for / ̂  r , Pit) = 0 for f < - T and pit) ^ \/T. Then for x > T,
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This estimate shows that DA is injective for T sufficiently large. Note that in the
estimate

the constant c is independent of r > T.

The operator A = Ae%xAr is constant and bijective on the time interval —x^t
< T. The proof of Proposition 3.14 shows that every £ in the kernel of DA satisfies an
estimate

on this interval. Hence for large T, £(0) must be small. This shows that elements of the
kernel of DA are roughly of the form £ = £,#T£r, where £,€kerDA and £rekerDA .
Conversely, the catenation of two such elements £, and £r can be approximated by an
element in the kernel of DA. The argument uses Proposition 4.30. This provides an
alternative proof for the catenation axiom.

5. The Maslov index

Let (E, co) be a symplectic vector space and denote by if = 5£{E, co) the manifold
of Lagrangian subspaces of E. The Maslov index as defined in [21] assigns to every
pair of Lagrangian paths A, A': [a, b] -> S£(E, co) a half integer /i(A, A'). In this section
we enumerate the properties of the Maslov index that will be needed in the sequel.

Any two symplectic vector spaces of the same dimension are symplectomorphic.
The Maslov index satisfies the naturality property

^OFA, ^FA') = //(A, A') (14)

for a symplectomorphism *P: (E, co) -> (£", co'). Hence we shall give our definitions for
the standard symplectic vector space

E=U2n, co = co0 = tdxjAdyj.

The only other example which we need is

£ = K 2 n x r , co = (-co0)xco0.

In the latter case the graph of a symplectomorphism of (U2n, co0) is an element of 5£.
The Maslov index has the following properties.

(Naturality) Equation (14) holds when *F is time-dependent.
(Homotopy) The Maslov index is invariant under fixed endpoint homotopies.
(Zero) If A(/) n A'(0 is of constant dimension, then //(A, A') = 0.
(Direct sum) If E = Ex © E2, then

1 © A2, A ; © A;) = ji(Alf A;)+//(A2, A;) .

(Catenation) For a < c < b,

, A') = /i(A|[OiC], A'|[aiC])+/i(A|[CiW, A'|[c b]).
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(Localization) If (£,©) = (U2n,co0), A'(0 = Rn x 0 and A(0 = Gr (A(t)) for a
path A: [a, b] ->• Unxn of symmetric matrices, then the Maslov index of A is given by
the spectral flow

fi(A, A') = \ sign A(b)-± sign A(a). 05)

REMARK 5.31. These axioms characterize the Maslov index (see [21]). By the
localization property, the spectral flow of a path of finite dimensional symmetric
matrices is a special case of the Maslov index. However, we define the spectral flow
only in the case where the matrices A(a) and A(b) are invertible, whereas the Maslov
index is defined for any path. The reason for the former is that the operator DA is not
Fredholm unless A± are invertible. The reason for the latter is that it is often
necessary to consider Lagrangian pairs with A(a) = A'(tf).

For t€[a,b] and A'(0 = V constant, the crossing form F(A, V,t) is a quadratic
form on A(/) n V defined as follows. Let Wbe a fixed Lagrangian complement of A(t).
For veA(t) n V and s — t small, define w{s)e Why v + w(s)eA(s). The form

co(v, w(s))
i

is independent of the choice of W. In general, the crossing form F(A, A', /) is defined
on A(/) f| A'(t) and is given by

F(A, A', /) = F(A, A'(0, 0 - F(A', A(/), 0-

A crossing is a time te[a,b] such that A(t) n A'(r) # {0}. A crossing is called regular
if F(A, A', t) is nondegenerate. It is called simple if in addition A(/) n A'(/) is one-
dimensional. For a pair with only regular crossings, the Maslov index is defined by

//(A, A') = ! sign F(A, A', a)+ £ sign F(A, A', t) + \sign F(A, A', b).
a<t <b

Since regular crossings are isolated, this is a finite sum.

REMARK 5.32. If V = 0 x 0T and Z(t) = (X(t), Y(t)) is a frame for A(t), then

F(A, V, t)(v) = - < Y(t) u, X(t)u), X{t) u = 0,

where v = (0, Y{t)u).

REMARK 5.33. Consider the symplectic vector space E =U2nx U2n with co =
( — co0) x co0. For a path of a symplectomorphisms ¥ : [a, b] -* Sp {In) we have

, A') = /i(Gr m , A x A').

When ¥ ( 0 = H, this means

MA, A') = MA, Ax A')

where A c U2n x U2n denotes the diagonal.

REMARK 5.34. Let V = 0 x IRn denote the vertical. The Maslov index of a
symplectic path *¥: [a, b] -> Sp (2«) is defined by

, v) = KGrC¥), Vx V).
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If Via) = 11 and V(b) VO V= 0, then fiQ¥) + n/2eZ. The condition ¥(» Kn F = 0
holds if and only if ¥(7) admits a generating function as in [23]. I f f is written in block
matrix form

( 3
then this is equivalent to det B(t) # 0. By Remark 5.32, the crossing form F^F, t) is
given by

for^elR" with B(t)y = 0.

REMARK 5.35. The Conley-Zehnder index of a symplectic path is defined by

This index was introduced in [5] for paths *F: [a, b] -* Sp (2ri) such that ¥(<?) = 11 and
D —*¥(&) is invertible. For such paths, the Conley-Zehnder index is an integer.

6. The Morse index

6.1 Sturm oscillation. Consider the operator family A(t): W-> H defined by

d2

A(t) = -—2-q(s,t)

with
H = L2([0,1]), W = W**([0,1]) n Wl

0\[0,1]).
Here s is the coordinate on [0,1]. Assume that q is C1 on the closed strip [0,1] x U and
independent of / for \t\ ^ T. Let 0 = <p(s, t) be the solution of the initial value problem

^ = o, 0(0,0 = 0, ^(o,o = i.

Define q±{s) = q(s, ± T) and ^(s) = 00, ± T), and assume that

0±(1)#O.

This means that 0 is not in the spectrum of A±.

PROPOSITION 6.36. The spectral flow of A{i) is given by

where v(0±) denotes the number of zeros of the function 0±(5) in the interval 0 <
s < 1.

Proof. First note that all eigenvalues of A{i) have multiplicity 1. By Theorem
4.22 we may assume that all crossings are simple. We investigate the behaviour of the
quotient (j>/ds(j) along the boundary 5 = 1 . Differentiating the identity

f
Jo

with respect to t and integrating by parts, we obtain

s = dt<f>(\,t)ds<f>(\,t)-<f>(\,t)dtds<f>(\,t).
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At a crossing t, the left-hand side is the crossing operator (up to a scalar multiple):

(8tq)fds
o

l
2</>2ds

Here X{t) is the crossing eigenvalue. Hence

dtds<p(\,ty

Since J I - ^ J , 0 solves a second-order equation, 0 and <9S0 cannot vanish
simultaneously. Hence the loop of lines U(<f>(s, t), ds <f>(s, t)) c U2 around the boundary
of [-T,T]x[0,1] is contractible. Set t = ±T and let s run from 0 to 1: the
intersections of the line R(0(.s, ± T),ds<p(s, ± T)) with the vertical R(0,1) count the
zeros of (f>±,

/,+x v- • d <p(s,±T) ^
v(0±)= X s ign- y = £ 1.

aso<PS^1)
, ±D-0 aso

s
<P\Si>^1) <j>(s,±T)~0

The intersections of the line R(0(1,0,3,0(1,0) with the vertical R(0,1) count the
crossings of A(t),

fi(A)= £ signi(0
0(1,0=0

d 0(1,0
dt ds 0(1,0

</ <f>{s,-T) _ rf 0(5, r )
$(s,-T) ^ ^ . 0 dsds</>(s,T)

COROLLARY 6.37 (Sturm Oscillation Theorem). 77ie n//i eigenfunction of the
problem

has n — 1 interior zeros.

<7S

Proof. Consider the spectral flow for the operator family

d2

~ds2= -—2-q-b{t),

where b: U -> R is a smooth function such that b(t) = b < Xx for / ^ — 1 and An-1

6+< An for ^ 1.

This proof also shows that if the operator A: W->H defined by Au =
— d2u/ds2 — qu is invertible, then its Morse index (the number of negative
eigenvalues) is the number of zeros of the fundamental solution <p{s) in the interval
0 < s < 1. This is a special case of the Morse index theorem proved below.
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6.2 The Morse index theorem. In suitable coordinates, the Jacobi equation in
differential geometry has the form

Au—%-<&)»-0. (17)

Here se[0,1], «(.s)elRn and Q(s) is a symmetric matrix representing the curvature.
This generalizes the previous example from 1 dimension to n. We call soe(0,1] a
conjugate point of A if and only if there is a nontrivial solution u of equation (17)
satisfying «(0) = u(s0) = 0. The dimension of the vector space of all solutions u of (17)
satisfying M(0) = u(s0) = 0 is called the multiplicity of the conjugate point. Denote by
v(A) the number of conjugate points of A in the interval 0 < s < 1 counted with
multiplicity. Let <X>(s) e Unxn be the fundamental solution of (17) defined by

for 0 ̂  s ̂  1. Then

A(s) = range |

is a Lagrangian plane for every s.

PROPOSITION 6.38. Assume det*F(l)^0. Then the number v(A) of conjugate
points is related to the Maslov index of A by

where V=0xUn.

Proof. Suppose that s0 is a crossing of multiplicity mQ. By Remark 5.32, the
crossing form is given by

Y(A V s )(v) = (O(.y)u Q)(s )u y v = (0 O(.s)u ) O(5 )u =0 .

Since &(sQ) is injective on the kernel of O(s0), the crossing form is negative definite and
of rank m0. This shows that all crossings are regular. Moreover, s0 = 0 is a crossing
with crossing index m0 = n. The proposition is proved by summing over the crossings:

= — | dim ker O(0) - £ dim ker <D(.s)
det«(8)-o

Let H and W be as before but tensored with Un,

H = L\[0,1], Un), W= W2\[0,1], Rn) fl W\'\[Q, 1], Un),

and replace the operator of (17) by a one-parameter family

—£-fl(M).
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Assume that Q is C1 on the closed strip [0,1] x U and independent of / for \t\^T.
Assume that 1 is not a conjugate point for either of the operators A ±. This says that
these operators are invertible.

PROPOSITION 6.39. The spectral flow ofA(t) is given by

Proof. Let <i> = <b(s, t) e IRnxn be the fundamental solution defined by

52O dO
°— + Q<t> = 0, 0(0,0 = 0, gj(0,0 = 1.

Then the operator A{t) is injective if and only if det<I>(l, /) =£ 0. The kernel of A(t)
consists of all functions of the form

u(s) = Q>(s,t)u0,

Think of the crossing operator F(A, t) as a quadratic form on the kernel of A(t):

Y{A, t)(u) = - f <II(J),dtQ(s, t)u(s))ds.
Jo

The next lemma shows that this agrees with the crossing form of the Lagrangian path
t\->A(l,/) with the vertical K = 0 x R " evaluated at wo, where

Hence

The second equality follows from the fact that the loop of Lagrangian subspaces
A(s, t) around the boundary of the square [0,1] x [— T, T] is contractible. The last
equality follows from Proposition 6.38.

LEMMA 6.40. Let V = 0 x Un. Then

for u(s) = O(5,0 «o and v = (0,5,0(l, 0 "0) w ^ *(1.0 «o = 0-

Proof. Differentiate the identity

Jo

with respect to t and integrate by parts, to obtain
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Now multiply on the left and right with u0, where <I)(1, t)u0 = 0. The result is

(u{s),dtQ{s,t)u{s))ds = <ds<J>(l,0«o,dtO(l,0«0>-

The left-hand side is -T{A,t){u) and the right-hand side is -T(A(1 , •), V,t)(v).

COROLLARY 6.41 (Morse Index Theorem). Assume that the operator A:W-*H
defined by (17) is invertible. Then its Morse index {the number of negative eigenvalues)
is the number v{A) of conjugate points.

Proof Consider the spectral flow for the operator family

d2

ds2

where b: U -> 1R is a smooth function such that b{i) = b~ < Xx for / ^ — 1 and
b{t) = 0 for t^ 1.

7. Cauchy-Riemann operators

Denote by
A) - 1

0 ~ vi o
the standard complex structure on lR2n = C". Consider the perturbed Cauchy-
Riemann operator

where C,: [0,1] x U -»• U2n satisfies the nonlocal boundary condition

(C(0,/),C(l,0)eA(0. (19)

Here A(/) c U2n x U2n is a path of Lagrangian subspaces and S(s,t)sU2nx2n is a
family of matrices. We impose the following conditions.

(CR-1) The function A: U -»• ^(R2nx U2n,(-co0) xco0) is of class O. Moreover,
there exist Lagrangian subspaces A1 and a constant T > 0 with A(0 = A+ for
/ ^ T and A(0 = A" for / < - T.

(CR-2) The function 5: [0, l]x R-+ u2nx2n is continuous. Moreover, there exist
symmetric matrix-valued functions 5r±: [0,1] -> R2nx2n such that

lim sup I I ^ O - ^ * ^ ) ! ! =0 .

(CR-3) Let V*: [0,1] -> Sp(2«) be defined by

0, ^±(0) = !

Then the graph of ^/±(1) is transverse to A*.

The operator 3SiA has the form DA = d/dt — A(t), but in contrast to Section 3 the
domain of the operator A{t): W{t) -»• H depends on t, so Theorem 3.12 does not apply
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directly. We overcome this difficulty below by changing coordinates. Condition
(CR-1) asserts that the domain of the operator A(t) is independent of / for \t\ ^ T.
The Lagrangian boundary condition and the symmetry of S± imply that the limit
operators A± are self-adjoint. Condition (CR-3) asserts that these operators are
invertible. Abbreviate

L2 = L2([0,1] x U, U2n),

W\2 = {{e W12([0,1] x U, U2n): (C(0,0,(0,0)eA(f)}.

In the case A(0 = A of constant boundary conditions, these are the spaces #? = L2

= W\2 of Section 3.

THEOREM 7.42. The operator ~ds A: W\2 -*• L2 is Fredholm. Its index is given by

indexaSiA = ^(Gr(^-), A-)-MGr(^+), A+)-//(A, A). (20)

Proof. We prove the theorem in five steps.

Step 1: Let *¥(s, t) e Sp (2/t) be defined by

^ ^ = 0, ¥(0,0 = 1- (21)

Then
, •)),A) = MA,A)+MGr(¥+),A+)-//(Gr(¥-),A"). (22)

By condition (CR-2) we have

= lim V(s,t).

By condition (CR-3) the path JI->¥($, ± T) has the same Maslov index as x¥± for T
sufficiently large. Hence Step 1 follows by considering the loops of Lagrangian
subspaces A(s, t) = A(t) and A'(^, 0 = Gr (^(s, t)) around the boundary of the
rectangle [0,1] x [— T, T]. In view of Step 1, it suffices to prove that

indexd, A = - / i ( G r m i , •)), A). (23)

Step 2: The theorem holds when A(t) = K© V, S(s, t) = S(s, t)T is symmetric and
continuously differentiable, and the path t\-^y¥{\,t) has only simple crossings.

By Theorem 3.12 the operator is Fredholm, and by Theorem 4.21 the Fredholm
index is given by the spectral flow for the self-adjoint operator family

onH= L2([0,1], U2n) with dense domain

W= Wl'2([0,\],Un)x lVl'\[Q,\],Mn).

We examine the crossing operator F(A, t) at a crossing t. The operator A{t) is injective
if and only if ¥(\,t)Vn V = 0, where *¥(s, t) e Sp {In) is defined as in Step 1. The
kernel of A{t) consists of all functions of the form

C(s) = x¥(s,t)v, v = (0,y), B(\,t)y = 0.
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Here B(\,t) is the right upper block in the block decomposition (16) of *F(1, t). Think
of the crossing operator T(A, i) as a quadratic form on the kernel of A:

Jo
T(A, 0 ( 0 = " <C(*), dt S(s, t) ((s)> ds.

Jo

We shall prove in the lemma below that this form agrees with F(IF(1, •), t). Hence the
operator family A(t) has only regular crossings, and

index3SiKeK = -n{A) = -/JQ¥(\, •)) = -**(GrCF(l,')), V® V).

The last equality follows from Remark 5.34. Now use Step 1.

LEMMA 7.43. We have

for C(s) = V(s, i)v with v = (Q,y)e V and B{\,t)y = 0.

Proof. Differentiate the identity

SV = JodsV

with respect to t, multiply on the left by ^ T and integrate by parts, to obtain

f1 ¥T(dt S) Vds = P 4/TJr
0 ds dt Vds - \ \ T Sdt Vds

Jo Jo Jo

Now multiply on the left and right by v = (0,y) with B(l, t)y = 0, to obtain

= -<?¥{\,t)v,J,dt*¥{\,t)vy
= -<D(l,t)y,dtB(l,t)y>

Here Z)(l, t) denotes the lower right block in the decomposition (16) of ¥(1, t). The
last equality follows from Remark 5.34. This proves the lemma.

Step 3: The theorem holds when A(t) = V® V.

Choose any smooth cutoff function/?: U -> [0,1] such that fi(t) = 0 for / ^ - Tand
= 1 for t ^ T, and replace S by

Then the right-hand side of (20) is unchanged. Moreover, the multiplication operator
induced by S—S' satisfies the assumptions of Lemma 3.18. Hence, by Corollary 3.19,
the operator ~dStV9v is Fredholm and has the same index as ~ds-tVQV. Now choose a
small perturbation to obtain a symmetric C^function S" such that the associated
symplectic path /H^*F"(1 ,0 has only simple crossings. Finally, use Step 2.

Step 4: The theorem holds in the case of local boundary conditions

= AO(O0A1(/),
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Identify IR2n = Cn, and choose a unitary transformation 0>(s,t)e\J(n) =
O(2«) n GL(n, C) of class C1 such that Q>(s, t) is independent of / for \t\^T. Then

where

5" = o-^-O'Vo^
Ot OS

and A' = Ao © A[ with

Ai(/) = 0(0, f)-1

Since O"1 = <I>T, the matrix S'(s, t) is symmetric for \t\^T. The corresponding
symplectic matrices ^'(s, t) e Sp (2«) defined by (21) with 5 replaced by S" are given
by

Now denote O(/) = O(0,/)©0(1, /)eSp((R2n x R2n,(-G)0) x©J. Then

GrCF'O.O) = OCO^GrWl.O), A'(0 = OCO"1 A(0,
and, by the naturality axiom for the Maslov index,

//(GrOF(l, -)),A) = //(Gr(^'(l, )),A')-

Now choose <& such that A'(/) — VxV, and use Step 3.

Step 5: 77ie general case.

Define the operator F: L2([0,1] x R, IR2n) -»• L2([0,1] x R, R2n x (R2n) which sends
C to the pair «̂ "C = 'Z = (̂ /o» 7i)> where

rjo(s, t) = C((l - s ) / 2 , f/2), 17^, 0 = C((l +s)/2, t/2).

If Ce WA
 2, then t] satisfies the local boundary conditions

Moreover, the operator 2Tods A o^" - 1 is given by

where S0(s,t) = S((\-s)/2,t/2)/2 and 5 ^ , 0 = ^ ( ( l + ^ A ^ ) ^ This is a
Cauchy-Riemann operator with respect to the complex structure J=(—JQ)®J0

which is compatible with co = (—co0) © coQ. The corresponding fundamental solution
¥(j, 0 = ¥ 0 ( J , 0 © T ^ J , 0 is given by

¥0(s, 0 =

^ (5 ,0 =

Hence ^(1,0 A = Gr(T(l, f/2)), and it follows that

By Step 4, the operator ^ods^aST~l is Fredholm, and its index is given by

^ , •) Ao,Kx).
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Hence ds A is a Fredholm operator, and

By Step 1, this proves the theorem.

REMARK 7.44 (Periodic boundary conditions). Assume A(t) = A for all t. Then
condition (5) above means that

In this case, the Fredholm index is related to the Conley-Zehnder index by

This result was proved in [25]. With these boundary conditions, the operator ds plays
a central role in Floer homology for symplectomorphisms. The mod 2 index is the
relative fixed point index eQ¥) = signdet(l -^+(l))signdet(H -

As a result, the Euler characteristic of Floer homology for a symplectomorphism is
the Lefschetz number [11, 6].

REMARK 7.45 (Local boundary conditions). Assume S = 0 and A(t) = Ao(/) 0
A1(/)5 where A0(f), At(f) 6 S£(U2n, co0). Then condition (5) above means that

Ao(±r)nA1(±r) = o.
By Remark 5.33, the Fredholm index is given by

This was proved by Floer [8] using results by Viterbo [28]. With these boundary
conditions, the operator dA plays a central role in Floer homology for Lagrangian
intersections. The mod 2 index is the relative intersection number e(A0,A1). Choose
orientations of Ao and A15 and define e(A0, AJ = +1 according to whether or not the
induced orientations on R2n = Ao(± T) © Ax(± T) agree. Then

As a result, the Euler characteristic of Floer homology for a pair of Lagrangian
submanifolds is the intersection number [9].

REMARK 7.46 (Dirichlet boundary conditions). Assume that S = ST is symmetric
and A(0 = F 0 V where V = 0 x Un is the vertical. Then condition (5) above means
that ¥±(1) V(] V = 0. By Remark 5.34, the Fredholm index is given by

In this case, the results of Section 3 apply and the operator A = A(t) is given by

A( = J0(-S(

for C = (£,/7) with boundary condition £(0) = £(1) = 0. This operator appears as the
second variation of the symplectic action on phase space. The signature of A is
undefined since the index and the coindex are both infinite. In [23] we interpret the
Maslov index as the signature of A via finite dimensional approximation:

signal* =
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Hence the index theorem can be written in the form

index dSA = | sign A~ —\ sign A+.

This is consistent with the finite dimensional formula in Remark 2.2.

REMARK 7.47 (Totally real boundary conditions). The operator 5S_A continues
to be Fredholm when A(/) is totally real only with respect to the complex structure
( — Jo) ®Jo o n ^2 n x ^2n- To see this in the case of local boundary conditions A =
Ao 0 A15 choose a family of symplectic forms co(s, t) on IR2n which are compatible
with Jo and satisfy

A0(0 e 2>{R2n, co{0,0), Ax(0 e i f (K2n, co{l, t)).

Now choose a unitary frame

d>(5,0: (U2n, Jo, co0) • {U2n, Jo, co(s, 0 ) ,

and consider the operator ds A in the new coordinates £' = O"1^. Then the operator
has the above form with Lagrangian boundary conditions. Its index is independent
of the choice of O since the space of all symplectic forms on U2n which are compatible
with Jo is contractible. The general case can be reduced to that of local boundary
conditions, as in Step 5 of the proof of Theorem 7.42.
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