An Invariant of Knot Cobordism*

RAYMOND A. ROBERTELLO

Fairleigh Dickinson University

Introduction

In this paper we study a knot cobordism invariant. This is an integer modulo 2 assigned to each knot cobordism class. The definition and proofs of some of the known properties of this invariant are presented in Section 1.

By using the Seifert surface F of a knot k we are able to calculate $\varphi(k)$, the cobordism invariant of k, directly from the integral matrix V associated with a canonical set of curves on F. Using the matrix V again we define a quadratic form mod 2 over the vector space $H_1(F, \mathbf{Z}_2)$. The Arf invariant of this quadratic form turns out to be $\varphi(k)$.

In Section 5 we show that $\varphi(k)$ can be computed directly from the Alexander polynomial $\Delta(t)$ of k. In fact, if $\Delta(t) = c_0 + c_1 t + \cdots + c_0 t^{2n}$, then $\varphi(k) \equiv c_{n-1} + c_{n-3} + \cdots + c_r \mod 2$, r = 0 or 1.

Finally in Section 6 we construct from a Seifert surface F of a knot k an orthonormally framed 2-manifold (M, W) in R^5 and show that $\varphi(k) = \delta(M, W)$, the δ -invariant of Pontryagin given in [6]. This enables us to define a homomorphism $\theta: C_1 \to \pi_5(S^3)$, where C_1 is the knot cobordism group.

I am indebted to Professor M. Kervaire for much help and advice without which this paper could not have been completed.

1. Definition of the Knot Cobordism Invariant

Let $f: S^2 \to M^4$ be a combinatorial embedding of the 2-sphere S^2 into a closed, oriented, simply connected, differentiable 4-manifold M^4 . Let f be differentiable and regular except at one point $x_0 \in S^2$, and suppose there exists a differentiably embedded 4-disk D^4 such that $D^4 \subset M^4$, $f(x_0)$ (the singularity of f) is at the center of D^4 , and $f(S^2) \cap D^4$ is a knot in $S^3 = bD^4$. Now f represents a certain homology class ξ contained in $H_2(M^4, \mathbb{Z})$, where \mathbb{Z} is the set of integers. Let us assume that ξ is dual to $w_2(M^4)$, the 2-nd Stiefel-Whitney class of M^4 . We shall describe the above assumptions on the map f by saying $f: S^2 \to M^4$ is admissible for the knot k.

For any such map $f: S^2 \to M^4$ admissible for k, we define a residue class modulo 2 by

$$\varphi(k) \equiv \frac{\xi \cdot \xi - \sigma(M^4)}{8} \mod 2 ,$$

where $\xi \cdot \xi$ is intersection number and $\sigma(M^4)$ is the signature of the manifold as defined in [4]. It is known that $\xi \cdot \xi \equiv \sigma(M^4) \mod 8$ (see [2]) so that the above residue class is well defined.

We shall show that the number mod 2 depends only on the cobordism class of k (see [3]):

LEMMA 1.1. If k and k' are cobordant knot types, then

$$\varphi(k) \equiv \varphi(k') \mod 2$$

and thus $\varphi(k)$ is independent of the admissible map and manifold used to compute it.

Proof: Let

$$f_1: S^2 \to M_1^4$$
 and $f_2: S^2 \to M_2^4$

be admissible for k and k', respectively. Let D_1^4 and D_2^4 be 4-discs in M_1^4 and M_2^4 , respectively, containing the singularities of f_1 and f_2 at their respective centers. Further, let $M_1^4 \cap D_1^4 = k$ and $M_2^4 \cap D_2^4 = k'$. Take in M_2^4 a 4-disc Δ contained in and concentric to D_2^4 . Between $b\Delta$ and bD_2^4 we can differentiably embed in D_2^4 an oriented 2-manifold N^2 of genus zero such that N^2 meets bD_2^4 and $b\Delta$ orthogonally, $N^2 \cap bD_2^4 = k'$, and $N^2 \cap b\Delta$ has the knot type of k oppositely oriented. We can form the connected sum $\overline{M}_1^4 \not\equiv M_2^4$, using the discs D_1^4 and Δ in such a way that k in D_1^4 is identified with $k \subset b\Delta$. Here \overline{M}_1^4 denotes M_1^4 with the opposite orientation. Using the image of S^2 under f_1 and f_2 , respectively, occurring outside of D_1^4 and D_2^4 and connecting them in $\overline{M}_1^4 \not\equiv M_2^4$ by means of N^2 , one obtains a differentiable embedding $f: S^2 \to \overline{M}_1^4 \not\equiv M_2^4$.

If f represents the class $\xi \in H_2(\overline{M}_1^4 \# M_2^4, \mathbf{Z})$ and f_i represents the class $H_2(M_i^4, \mathbf{Z})$ for i = 1 and 2, then using the natural isomorphism

$$H_2(\bar{M}_1^4 \# M_2^4) \simeq H_2(\bar{M}_1^4) + H_2(M_2^4)$$
,

we have $\xi = \bar{\xi}_1 + \xi_2$, where $\bar{\xi}_1$ corresponds through the change of orientation to ξ_1 .

Since ξ_i is dual to $w_2(M_i)$, for i=1 and 2, it follows that ξ is dual to

$$w_2(\bar{M}_1^4 \# M_2^4) = w_2(\bar{M}_1^4) + w_2(M_2^4)$$
.

It follows from Theorem 1 in [4] that, since f is differentiable,

$$\frac{\xi \cdot \xi - \sigma(\bar{M}_1^4 \# M_2^4)}{8} \equiv 0 \mod 2.$$

Therefore

$$\frac{\xi_1 \cdot \xi_1 - \sigma(M_1^4)}{8} \equiv \frac{\xi_2 \cdot \xi_2 - \sigma(M_2^4)}{8} \mod 2,$$

and the lemma follows.

Lemma 1.2. $\varphi(k)$ is defined for all knot types k.

Proof: To prove this we need to construct an admissible map for arbitrary k. Let D^4 be a 4-disc with boundary S^3 . We assume k is differentiably embedded in S^3 . Let U be a tubular neighborhood of k in S^3 , then there is a diffeomorphism $\varphi: S^1 \times D^2 \to S^3$ such that $\varphi(S^1 \times D^2) = U$ and $\varphi(S^1 \times o) = k$; o is the center of the standard 2-disc D^2 . Considering $S^1 \times D^2 = (bD^2) \times D^2$, let M_0^4 be the differentiable manifold obtained from the disjoint union $D^4 \cup (D^2 \times D^2)$ by identifying U and $S^1 \times D^2$ by means of φ and then "rounding" the "corners". Let $f: S^2 \to M_0^4$ be the embedding such that

$$f(S^2) = Ck \cup (o \times D^2) \subseteq M_0^4.$$

Now there exists a parallelizable, simply connected 4-manifold V such that bV is diffeomorphic to bM_0^4 . This follows by observing that bM_0^4 embedded in R^{3+k} has an orthonormal k-frame for k sufficiently large. By the subjectivity of the Whitehead J-homomorphism $J:\pi_3(SO(n))\to\pi_{n+3}(S^n)$; and by picking the frame properly on bM_0^4 one obtains a parallelizable 4-manifold with bM_0^4 as boundary. The method of framed spherical modifications (see [5]) gives the simply connected manifold V.

Forming the union of V and M_0^4 and identifying their boundaries, we obtain a simply connected, closed, oriented, 4-manifold M^4 . Furthermore, the map f gives an embedding $f': S^2 \to M^4$. Let $\xi \in H_2(M^4, \mathbb{Z})$ be represented by f'. By picking the map properly one can make $\xi \cdot \xi$ take on the value +1, in which case bM_0^4 will be a homology sphere. We assume φ was so chosen.

Now by Wu's formula, ξ will be dual to $w_2(M^4)$ if and only if $\xi' \cdot x = x \cdot x$ for all classes $x \in H_2(M^4, \mathbb{Z}_2)$. \mathbb{Z}_2 represents the integers modulo 2 and ξ' is obtained from ξ by reducing coefficients modulo 2. Since bM_0^4 is a homology sphere, there is a natural isomorphism

$$H_2(M^4, \mathbf{Z}_2) \simeq H_2(M_0^4, \mathbf{Z}_2) + H_2(V, \mathbf{Z}_2)$$
.

Since V is parallelizable, $y \cdot y = 0$ for y in $H_2(V, \mathbb{Z}_2)$ and hence ξ is dual to $w_2(M^4)$ if and only if $\xi' \cdot x = x \cdot x$ for all classes x in $H_2(M_0^4, \mathbb{Z}_2)$. Since the class ξ represented by f' generates $H_2(M_0^4, \mathbb{Z})$, it follows that ξ is dual to $w_2(M^4)$. Therefore f' is admissible for k, and the lemma follows.

Let $k_1 \# k_2$ denote the sum of two types k_1 and k_2 as defined in [3], then we have

Lemma 1.3.
$$\varphi(k_1 \# k_2) = \varphi(k_1) + \varphi(k_2)$$
.

Proof: Let $f_i: S^2 \to M_i$ be admissible for k_i for i = 1, 2. Let D_1^4 and D_2^4 be the special 4-discs containing the singularities of f_1 and f_2 , respectively, and such

that $k_i \subset bD_i$, i=1,2. We form the connected sum $M_1^4 \# M_2^4$ in such a way that $D_1^4 \cup D_2^4$ becomes a 4-disc D^4 in $M_1^4 \# M_2^4$, $f_1(S^2) \# f_2(S^2)$ is embedded in $M_1^4 \# M_2^4$ and $f_1(S^2) \# f_2(S^2)$ intersects bD^4 orthogonally and in the knot type $k_1 \# k_2$. We obtain an embedded 2-sphere by embedding the cone over $k_1 \# k_2$ in D^4 with vertex at the center of D^4 and taking the union of it with the part of $f_1(S^2) \# f_2(S^2)$ outside D^4 . This gives an embedding $f: S^2 \to M^4$ which has one singularity at the vertex of the cone over $k_1 \# k_2$. If f represents $\xi \in H_2(M_1^4 \# M_2^4, \mathbb{Z})$ and f_i represents $\xi_i \in H_2(M_i, \mathbb{Z})$, it follows easily that f is admissible for $k_1 \# k_2$ and $\xi = \xi_1 + \xi_2$. Since $\sigma(M_1^4 \# M_2^4) = \sigma(M_1^4) + \sigma(M_2^4)$, the lemma follows.

LEMMA 1.4. If k is the trivial knot, then $\varphi(k) = 0$.

Proof: Compute $\varphi(k)$ from the trivial embedding $f: S^2 \to S^4$.

From the three lemmas and the definition of the group of knot cobordism classes we have

Theorem 1. The knot cobordism invariant φ defines a homomorphism

$$\varphi:C_1\to \mathbf{Z}_2$$
,

where C_1 is the group of knot cobordism classes.

LEMMA 1.5. Let 3_1 denote the right-hand trefoil knot (see knot table in [7]), then $\varphi(3_1) = 1$.

Proof: Let PC(2) be the complex projective plane and γ the generator of $H_2(PC(2), \mathbb{Z})$, then in the proof of Theorem 2 in [2] it is shown that $3 \cdot \gamma$ is represented by an embedding $f: S^2 \to PC(2)$. This embedding is admissible for 3_1 . Thus

$$\varphi(3_1) \equiv \frac{9-1}{8} \mod 2.$$

Lemma 1.6. If k^* is the reflected inverse of k (see [3], page 142), then $\varphi(k) = \varphi(k^*)$.

Proof: The cobordism class of k^* is the inverse of the cobordism class of k (see [3], page 142). The lemma then follows from Theorem 1.

2. Proper Links

Let $L=k_1\cup k_2\cup\cdots\cup k_n$ be a link in S^3 , where k_i are the component knots and are oriented. We say that L is a *proper link* if the sum of the linking numbers between k_i and the rest of the component knots is an even integer for each choice of $i=1,\cdots,n$.

Let D_1^4 and D_2^4 be two concentric 4-discs in R^4 , where $D_1^4 \subset D_2^4$. Consider a knot $k \subset bD_1^4$ and a link $L \subset bD_2^4$. Suppose there exists an oriented 2-manifold N^2 of genus zero differentiably and regularly embedded between bD_1^4 and bD_2^4 such that $N^2 \cap bD_1^4 = k$ and $L = N^2 \cap bD_2^4$. Assume also that N^2 meets bD_1^4

and bD_2^4 orthogonally. In this case we shall say that k is related to the link L. We then have

Theorem 2. If k and k' are two knots related to the same link L, and if further L is a proper link, then $\varphi(k) = \varphi(k')$.

Proof: Let $L=k_1\cup k_2\cup\cdots\cup k_n$ be differentiably embedded in the boundary S^3 of the standard 4-disc D^4 . For $i=1,\cdots,n$, let U_i be a tubular neighborhood of $k_i\subset S^3$ such that $U_i\cap U_j=\varnothing$ for $i\neq j$. There exist diffeomorphisms

$$\varphi_i: S^1 \times D^2 \to S^3$$

such that $\varphi_i(S^1\times D^2)=U_i$ and $\varphi_i(S^1\times o)=k_i$, where $i=1,\cdots,n$ and o is the center of the standard 2-disc D^2 . Let H_i , $i=1,\cdots,n$, be n copies of $D^2\times D^2$. We embed $S^1\times D^2$ in H_i by considering $S^1\times D^2=(bD^2)\times D^2$. We form the simply connected differentiable manifold M_0^4 by taking the disjoint union $D^4\cup H_1\cup\cdots\cup H_n$ and identifying U_i in D^4 with $S^1\times D^2$ in H_i by means of the map φ_i , this being done for each $i=1,\cdots,n$.

Again there exists a simply connected, parallelizable 4-manifold V with bV diffeomorphic to bM_0^4 . Taking the union of V and M_0^4 and identifying boundaries, we obtain a simply connected, closed, oriented 4-manifold M^4 .

Considering the union of the cone over $k_i \subset S^3$ with vertex at the center of D^4 and $o \times D^2 \subset H_i$ for each $i=1,\cdots,n$, we get combinatorial embeddings

$$(2.1) f_i: S^2 \to M^4$$

such that each f_i is regular except for one singularity due to the vertex of the cones at the center of D^4 . Let f_i represent the homology class ξ_i in $H_2(M^4, \mathbf{Z})$, and let $\xi = \xi_1 + \cdots + \xi_n$. Now for $i \neq j$

where $L(k_i\,,\,k_j)=$ linking number in S^3 . By choosing the maps φ_i properly, the self-intersection numbers $\xi_i\cdot\xi_i\,,\,i=1,\cdots,n$, can be made to take on independently any integer values. It follows that the maps φ_i can be chosen to make the matrix of intersection numbers $\|\xi_i\cdot\xi_j\|$ a unimodular matrix. This in turn implies, by using Poincaré duality, that the manifold bM_0^4 will be a homology 3-sphere.

Assuming that the φ_i are so chosen, we have then a direct sum decomposition

(2.3)
$$H_2(M^4) \simeq H_2(M_0^4) + H_2(V) ,$$

the coefficients being ${f Z}$ or ${f Z}_2$.

We claim now that the class ξ is dual to $w_2(M^4)$. To show this let ξ_i' and ξ' be the classes in $H_2(M^4, \mathbb{Z}_2)$ corresponding to ξ_i and ξ , respectively, for $i = 1, \dots, n$. ξ will be dual to $w_2(M^4)$ if

$$\xi' \cdot x = x \cdot x$$

 $H_2(M_0^4, \mathbf{Z}_2)$, and that V is parallelizable, (2.4) will lohow in

for $i = 1, \dots, n$. But by (2.2),

$$\xi' \cdot \xi_i' \equiv \xi_i' \cdot \xi_i' + L(k_i, L - k_i) \mod 2 ,$$

for $i = 1, \dots, n$. And since L is a proper link,

$$L(k_i, L - k_i) \equiv 0 \mod 2,$$

for $i = 1, \dots, n$. Hence ξ is dual to $w_2(M^4)$.

The theorem follows if we can construct two maps $f: S^2 \to M^4$ and $f': S^2 \to M^4$ which are admissible for k and k', respectively, and both represent the class ξ . This is done as follows:

Let D_1^4 be a 4-disc contained in and concentric to D_2^4 . Since k is related to L, there is a surface N^2 with properties listed at the beginning of this paragraph.

Let A be the union of all the $o \times D_2 \subset H_i$, $i = 1, \dots, n$, and Ck the cone over $k \subset bD_1^4$ with vertex at the center of D_1^4 , then $Ck \cup N^2 \cup A$ gives a combinatorially embedded 2-sphere in M^4 . This yields the map $f: S^2 \to M^4$ which clearly represents ξ and is admissible for k. Similarly we get the map $f': S^2 \to M^4$.

3. Calculation of $\varphi(k)$ from Seifert Surfaces

In this section we follow closely the notation of [3] on Seifert surfaces.

Let F be a Seifert surface of genus h of a knot k in R^3 , and let a_1, \dots, a_{2h} be a canonical set of closed, oriented curves on F. This defines a projection of \overline{F} on a plane in R^3 as in [3], page 151, where F is considered as a 2-disc with "bands" B_1, \dots, B_{2h} attached. The band B_i has the curve a_i running along it for i = $1, \dots, 2h$. We say the band B_i has a given over-crossing (under-crossing) with B_i if, in the projection of F, a_i goes over (under) a_i .

Suppose F and F' are Seifert surfaces of k and k', respectively. Let F' be obtained from F by taking the standard projection of F and replacing a given over-crossing of B_i with B_j by an under-crossing of B_i with B_j . See for example Figure 1.

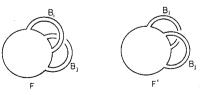


Figure 1

LEMMA 3.1. If F and F' are related as above, then

$$\varphi(k) = \varphi(k') .$$

Proof: The proof consists of finding a proper link L to which k and k' are both related. To this end attach to the band B_i of F a 2-disc e on each side of the over-crossing of B_i with B_j as in Figure 2. The boundary of the resulting

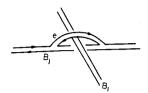


Figure 2

surface is an oriented link L of multiplicity 2. L is clearly a proper link. It follows also from the discussion in [3], page 134, that k and k' are both related to L. The lemma now follows by Theorem 2.

To a Seifert surface F of genus 2h and a canonical set of curves a_i of F there is associated a $2h \times 2h$ integral matrix $V = (v_{ij})$ as defined in [3], page 152.

THEOREM 3. Let F be a Seifert surface of genus 2h with canonical set of curves ai and with boundary knot k. Let $V = (v_{ij})$ be the associated integral matrix, then

$$\varphi(k) \equiv \sum_{i=1}^{h} v_{2i-1,2i-1} v_{2i,2i} \mod 2.$$

Proof: By successively changing over-crossing bands to under-crossing bands as described before Lemma 3.1, we obtain a Seifert surface F' and a canonical set of curves a_i' such that if $V' = (v_{ij}')$ is the associated integral matrix, then

$$v_{ii}^{'} = \begin{cases} 1 & \text{for } v_{ii} \text{ odd,} \\ 0 & \text{for } v_{ii} \text{ even,} \end{cases}$$

for $i = 1, \dots, 2h$,

$$v'_{2j-1,2j} = 1$$

for $j=1,\ldots,h$, and $v_{ij}'=0$ in all other cases. Furthermore, we may assume that if k' is the boundary of F', then $k' = k_1 \# k_2 \# \cdots \# k_h$, where k_i is a trivial knot if $v'_{2i-1,2i-1} \cdot v'_{2i,2i} = 0$, and k_i is a trefoil knot if $v'_{2i-1,2i-1} \cdot v'_{2i,2i} = 1$, for $i = 1, \dots, h$. Therefore by Lemma 1.5 and Theorem 1,

$$\varphi(k') \equiv \sum_{i=1}^{h} v'_{2i-1,2i-1} \cdot v'_{2i,2i} \mod 2 ,$$

and hence by (3.1),

$$\varphi(k') \equiv \sum_{i=1}^{h} v_{2i-1,2i-1} \cdot v_{2i,2i} \mod 2$$
.

But by Lemma 3.1, $\varphi(k) = \varphi(k')$ and hence the theorem follows.

4. A Quadratic Form Modulo 2 of a Seifert Surface

Let F be a Seifert surface of genus h of the knot k in S^3 and let a_1, \dots, a_{2h} be a canonical set of curves on F. Let $V = (v_{ij})$ be the integral matrix associated with a_i and F.

We define a quadratic form mod 2 over the vector space $H_1(F, \mathbf{Z}_2)$ as follows: Let $x \in H_1(F, \mathbf{Z}_2)$, then $x = \sum x_i a_i$, where $x_i \in \mathbf{Z}_2$ and a_i is considered as a homology class mod 2. Define

(4.1)
$$Q(x) \equiv \sum_{i=1}^{2h} \sum_{j=1}^{2h} x_i v_{ij} x_j \mod 2.$$

THEOREM 4. Q is a quadratic form modulo 2, that is

(4.2)
$$Q(x + y) = Q(x) + Q(y) + x \cdot y$$

for all x, y in $H_1(F, \mathbf{Z}_2)$, where $x \cdot y$ means intersection number.

Proof: Let $x = \sum x_i a_i$ and $y = \sum y_i a_i$, then by (4.1),

$$(4.3) Q(x + y) \equiv Q(x) + Q(y) + \sum_{i,j} x_i (v_{ij} + v_{ji}) y_i \mod 2.$$

But for $i = 1, \dots, 2h$ and $j = 1, \dots, 2h$,

$$(4.4) v_{ii} + v_{ji} \equiv a_i \cdot a_j \mod 2$$

(see [3], page 152). Substituting (4.4) into (4.3) gives (4.2).

There is a connection between the quadratic form Q of F and $\varphi(k)$, where k is the boundary knot of F, which is given as follows:

Theorem 5. Let Q be the quadratic form associated with the Seifert surface F and canonical basis a_i , then

$$\alpha(Q) = \varphi(k) ,$$

where $\alpha(Q)$ is the Arf invariant of Q (see [1]), and k is the boundary of F.

Proof: From (4.1) and the definition of $\alpha(Q)$ it follows that

$$\alpha(Q) \equiv \sum v_{2i-1,2i-1}v_{2i,2i} \mod 2$$
.

The theorem then follows from Theorem 3.

5. Computation of $\varphi(k)$ from the Alexander Polynomial

Let $\Delta(t)$ denote the Alexander polynomial of the knot k. We assume that $\Delta(t)$ is normalized, that is $\Delta(t)$ has only positive powers of t. Then $\Delta(t)$ is in $\mathbf{Z}[t]$

and is determined up to a multiple $\pm t^n$, where n is a positive integer. Considering $(2, (1+t)^4)$ as an ideal in $\mathbb{Z}[t]$ we have

Theorem 6. If $\Delta(t)$ is the normalized Alexander polynomial of the knot k, then

(a)
$$\varphi(k)=0$$
 if and only if $\Delta(t)\equiv t^n \mod (2,\, (1\,+t)^4)$, and

(b) $\varphi(k) = 1$ if and only if $\Delta(t) \equiv t^n(1+t+t^2) \mod (2, (1+t)^4)$, where n is some non-negative integer.

Proof: Let F be a Seifert surface for the knot k, and $V = (v_{ij})$ the matrix of crossing numbers associated with any canonical basis for F. It is known that

$$\Delta(t) = \pm t^n \det A(t) ,$$

where

$$(5.2) A(t) = I + (1 - t)V,$$

and

$$I = \begin{bmatrix} 0 & -1 & & & \\ 1 & 0 & & & \\ & & \cdot & 0 & \\ & & & \cdot & 0 \\ & & & 0 & -1 \\ & & & 1 & 0 \end{bmatrix} \right\} 2h,$$

 $\Delta(t)$ being the normalized Alexander polynomial of k (see [3], page 154).

We pick now a canonical basis a_i for F such that, if V is the resulting matrix of crossing numbers, then

$$(5.3) v_{2i-1,2i} \equiv 1 \mod 2 , v_{2i,2i-1} \equiv 0 \mod 2$$

for $i=1,\cdots$, h. This can be done since in any event $v_{2i-1,2i}-v_{2i,2i-1}=1$ for $i=1,\cdots$, h. Let $A(t)=(a_{ij}(t))$, then from (5.2)

(5.4)
$$a_{2i,2i-1}(t) \equiv 1 \mod 2$$
,

$$(5.5) a_{2i-1,2i}(t) \equiv t \mod 2$$

for $i = 1, \dots, h$, and

(5.6)
$$a_{ij}(t) \equiv (1+t)v_{ij} \mod 2$$

in all other cases.

we want now to evaluate det A(t), calculating modulo 2. To this end let S_{2h} be the group of permutations of $1, \dots, 2h$. For $\alpha = 0, \dots, h$ and $\beta = 0, \dots, h$ let $S_{\alpha,\beta}$ be the subset of S_{2h} consisting of permutations ϕ such that

(a) $\phi(2i) = 2i - 1$ has exactly α solutions for $i = 1, \dots, h$,

and

(b)
$$\phi(2i-1)=2i$$
 has exactly β solutions for $i=1,\cdots,h$.

From the definition of $S_{\alpha,\beta}$ it follows that $S_{h,h-1}$ and $S_{h-1,h}$ are empty. Also if $\phi \in S_{\alpha,\beta}$, then $\phi^{-1} \in S_{\beta,\alpha}$ for $\alpha = 0, \dots, h$ and $\beta = 0, \dots, h$. Now calculating modulo 2,

(5.7)
$$\det A(t) \equiv \sum_{\alpha,\beta=0}^{h} \sum_{\phi \in S_{\alpha},\beta} a_{1,\phi(1)} \cdot \cdot \cdot a_{2h,\phi(2h)} \mod 2,$$

where a_{ij} means $a_{ij}(t)$. We define a matrix $B = (b_{ij})$ by

$$(5.8) b_{2i,2i-1} = 1, b_{2i-1,2i} = 1, i = 1, \cdots, h$$

and by

$$(5.9) b_{ij} = v_{ij} = v_{ji} = b_{ji}$$

in all other cases. Let

(5.10)
$$\epsilon_{\alpha,\beta} \equiv \sum_{\phi \in S_{\alpha,\beta}} b_{1,\phi(1)} \cdots b_{2h,\phi(2h)} \mod 2$$

for $\alpha = 0, \dots, h$ and $\beta = 0, \dots, h$, then it follows from (5.4) through (5.10) that

(5.11)
$$\det A(t) \equiv \sum_{\alpha,\beta=0}^{h} \epsilon_{\alpha,\beta} (1+t)^{2h-\alpha-\beta} \cdot t^{\beta} \mod 2.$$

Since $\phi \in S_{\alpha,\beta}$ implies $\phi^{-1} \in S_{\beta,\alpha}$, and since B is a symmetric matrix, it follows that

(5.12)
$$\epsilon_{\alpha,\beta} \equiv \epsilon_{\beta,\alpha} \mod 2.$$

Let ϕ_{ij} be the permutation

. (5.13)

$$(1,2)(3,4)\cdots(2i-1,2i)\cdots(2j-1,2j)\cdots(2h-1,2h)(2i,2i-1,2j,2j-1)$$

where $i = 1, \dots, h, j = 1, \dots, h, i < j$, and means the given cycle is missing. Let

$$\phi_{ii} = (1, 2)(3, 4) \cdot \cdot \cdot (2i - 1, 2i) \cdot \cdot \cdot (2h - 1, 2h), i = 1, \dots, h,$$

then $S_{h-1,h-1}$ consists of the permutations ϕ_{ij} , ϕ_{ij}^{-1} , and ϕ_{11} , \cdots , ϕ_{hh} , where $i=1,\cdots,h, j=1,\cdots,h$ and i< j. By the symmetry of B, it follows that

$$(5.14) \sum_{i \le j} b_{1,\phi_{ij}(1)} \cdots b_{2h,\phi_{ij}(2h)} \equiv \sum_{i \le j} b_{1,\phi_{ij}^{-1}(1)} \cdots b_{2h,\phi_{ij}^{-1}(2h)} \mod 2 ;$$

(5.15)
$$\epsilon_{h-1,h-1} \equiv \sum_{i=1}^{h} v_{2i,2i} \cdot v_{2i-1,2i-1} \mod 2.$$

It is clear that $\epsilon_{h,h} \equiv 1 \mod 2$ and $\epsilon_{h-1,h} = \epsilon_{h,h-1} \equiv 0$; thus by (5.7), (5.11), and (5.12),

$$\det A(t) \equiv t^h + \epsilon_{h-1,h-1} (1+t)^2 t^{h-1} + \epsilon_{h,h-2} (1+t)^2 (1+t^2) t^{h-2} + (1+t)^4 P(t) \mod 2 ,$$

where P(t) is some polynomial in t. Hence by Theorem 3 and (5.15),

(5.17)
$$\det A(t) \equiv t^h + \varphi(k) \cdot (1+t)^2 t^{h-1} \mod (2, (1+t)^4).$$

Thus if $\varphi(k) = 0$, we have det $A(t) \equiv t^h \mod (2, (1+t)^4)$, and if $\varphi(k) = 1$, then det $A(t) \equiv t^{h-1}(1+t+t^2) \mod (2, (1+t)^4)$. Since it is impossible that

$$t^a \equiv t^b(1 + t + t^2) \mod (2, (1 + t)^4)$$

for any choice of non-negative integers a and b, it follows from (5.1) that $\Delta(t)$ must be congruent to either t^a or $t^b(1+t+t^2)$ mod (2, $(1+t)^4$) but not both. This proves the theorem.

THEOREM 7. Let $\Delta(t) = c_0 + c_1 t + \cdots + c_n t^n + \cdots + c_0 t^{2^n}$ be the Alexander polynomial of the knot k, then

$$\varphi(k) \equiv c_{n-1} + c_{n-3} + \cdots + c_r \mod 2,$$

where r = 0 for n odd, r = 1 for n even.

Proof: The proof consists in calculating modulo the ideal $(2, (1+t)^4)$ using the fact that $t^4 \equiv 1 \mod (2, (1+t)^4)$. Since $\Delta(1) = 1$, it follows that $c_n \equiv 1 \mod 2$ and thus

(5.18)
$$\Delta(t) \equiv t^n + \sum_{i=0}^{n-1} c_i (t^i + t^{2n-i}) \mod (2, (1+t)^4).$$

But

$$(5.19) t^i + t^{2n-i} \equiv 0 \mod (2, (1+t)^4)$$

for n even and i even, or for n odd and i odd. On the other hand,

$$(5.20) t^i + t^{2n-i} \equiv t + t^3 \mod (2, (1+t)^4),$$

for n even and $i = 1, 3, \dots, n - 1$. Also

$$(5.21) t^i + t^{2n-i} \equiv 1 + t^2 \mod (2, (1+t)^4),$$

for n odd and $i = 2, 4, \dots, n - 1$. Thus by (5.18) through (5.21),

(5.22)
$$\Delta(t) \equiv \begin{cases} t^n + c(t+t^3) & \text{for } n \text{ even,} \\ t^n + c'(1+t^2) & \text{for } n \text{ odd,} \end{cases}$$

modulo the ideal $(2, (1+t)^4)$, where $c = c_{n-1} + c_{n-3} + \cdots + c_1$ and $c' = c_{n-1} + c_{n-3} + \cdots + c_0$. It follows easily from (5.22) and Theorem 6 that $\varphi(k)$ is equal to c or c' reduced modulo 2.

6. The δ-Invariant of Pontryagin

In this section we follow closely the notation of [6], §15. Consider the Seifert surface $F \subset R^3 \times o \subset R^3 \times R^2$, where o is the origin of R^2 . F, being oriented, has a natural orthonormal 1-frame of vectors in $R^3 \times o$. The suspension of this frame gives an orthonormal 3-frame U on F in R^5 . Let k be the boundary knot. There exists a differentiably embedded 2-disc $\Delta \subset R^5$ such that $b\Delta = k$ and Δ meets $R^3 \times o$ tangentially along k. Let $M^2 = F \cup \Delta$, then M^2 is a closed 2-manifold embedded in R^5 of genus equal to that of F. The frame U on F can be extended to an orthonormal 3-frame W on M^2 in R^5 since the obstruction to extending U is $w_2(M^2) = 0$. If we apply the Thom-Pontryagin construction to (M^2, W) , we obtain a homotopy class $\theta(F) \in \pi_5(S^3)$. We shall prove that θ defines a homomorphism $\theta: C_1 \to \pi_5(S^3)$ given by $\theta(\alpha) = \theta(F)$, where F is a Seifert surface of any knot k in the cobordism class α . To this end we have

LEMMA 6.1. $\delta(M^2, W) = \varphi(k)$, where (M^2, W) is obtained from a Seifert surface F as above, and $\delta(M^2, W)$ is the Pontryagin invariant defined in [6], §15.

Proof: The computation of $\delta(M^2,W)$ requires a canonical basis for $H_1(M^2,\mathbf{Z}_2)$. Clearly a canonical set of curves a_i , $i=1,\cdots,2h$, on F gives then a canonical basis a_i for $H_1(M^2,\mathbf{Z}_2)$. Let $V=(v_{ij})$ be the matrix of crossing numbers corresponding to the curves a_i . It follows from the definition of $\delta(a_i)$ and v_{ii} that

$$\delta(a_i) \equiv v_{ii} \mod 2$$

for $i = 1, \dots, 2h$. But

$$\delta(M^2, W) \equiv \sum_{j=1}^h \delta(a_{2j-1}) \cdot \delta(a_{2j}) \mod 2 ,$$

and thus by Theorem 3

$$\delta(M^2, W) = \varphi(k) .$$

Let $\psi: \pi_5(S^3) \to \mathbb{Z}_2$ be the isomorphism obtained from the Thom-Pontryagin construction and $\delta(M^2, W)$ (see [6]), then

Theorem 8. The map $\theta: C_1 \to \pi_5(S^3)$ is a homomorphism and

$$C_1 \xrightarrow{\theta} \pi_5(S^3)$$

$$\varphi \swarrow_{\psi}$$

$$\mathbf{Z}_2$$

is commutative.

Proof: We must show that θ is well defined. Let k_1 and k_2 be cobordant knots, and (M_1, W_1) and (M_2, W_2) be framed 2-manifolds constructed from

any Seifert surfaces of k_1 and k_2 , respectively. By Lemma 6.1, $\delta(M_1, W_1) = \delta(M_2, W_2)$ since $\varphi(k_1) = \varphi(k_2)$; therefore (M_1, W_1) and (M_2, W_2) are homologous (see [6], Theorem 24). It follows that the resulting homotopy class in $\pi_5(S^3)$ is the same for k_1 and k_2 independent of the choices of the Seifert surfaces.

To see that θ is a homomorphism let k_1 and k_2 have Seifert surfaces F_1 and F_2 , respectively. We then have a Seifert surface for $k_1 \# k_2$ by attaching F_1 to F_2 in the obvious manner. Let (M_i, W_i) be constructed from F_i , i = 1, 2, and (M, W) from F, where we may take M_1 and M_2 as disjoint in R^5 . Clearly (M, W) is homologous to $(M_1 \cup M_2, V)$, where the frame V is obtained from W_1 and W_2 . It follows from this that θ is a homomorphism.

The commutativity of the diagram follows from the definition of ψ and Lemma 6.1.

Bibliography

- [1] Arf, C., Untersuchungen über quadratische Formen in Körpern der Charakteristik 2, I, J. Reine Angew. Math., Vol. 183, 1941, pp. 148-167.
- [2] van der Blij, F., An invariant of quadratic forms mod 8, Nederl. Akad. Wetensch. Proc. Ser. A., Vol. 62, 1959, pp. 291-293.
- [3] Fox, R. H., A quick trip through knot theory, Topology of 3-Manifolds, Prentice-Hall, Inc., Englewood, N.J., 1962, pp. 120-167.
- [4] Kervaire, M. A., and Milnor, J., On 2-spheres in 4-manifolds, Proc. Nat. Acad. Sci. U.S.A., Vol. 47, 1961, pp. 1651-1657.
- [5] Kervaire, M. A., and Milnor, J., Groups of homotopy spheres, I, Ann. of Math., Vol. 77, 1963, pp. 504-537.
- [6] Pontryagin, L., Smooth manifolds and their applications in homotopy theory, Trudy Mat. Inst. Steklov, No. 45, 1955, 139 pp. Amer. Math. Soc. Trans., Ser. 2, Vol. 11, pp. 1-114.
- [7] Reidmeister, K., Knotentheorie, Vol. 2, Springer Berlin, 1932; Chelsea Publishing Co. New York, 1948.

Received July, 1964.