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An Invariant of Knot Cobordism*

RAYMOND A. ROBERTELLO
Fairleigh Dickinson University

Introduction

In this paper we study a knot cobordism invariant. This is an integer modulo 2
assigned to each knot cobordism class. The definition and proofs of some of the
known properties of this invariant are presented in Section 1.

By using the Seifert surface F of a knot & we are able to calculate k), the
cobordism invariant of k, directly from the integral matrix V associated with a
canonical set of curves on F. Using the matrix V again we define a quadratic form
mod 2 over the vector space H,(F, Z,). The Arf invariant of this quadratic form
turns out to be (k).

In Section 5 we show that @(k) can be computed directly from the Alexander
polynomial A(f) of k. In fact, if A(t) =¢cp +6f + -+ + cot?”, then @(k) =
¢p1+Cps+ - +¢mod2 r=0o0rl

Finally in Section 6 we construct from a Seifert surface F of a knot £ an
orthonormally framed 2-manifold (M, W) in RS and show that ¢(k) = oM, W),
the d-invariant of Pontryagin given in [6]. This enables us to define a homo-
morphism 6:C; — 7,(8%), where C; is the knot cobordism group.

I am indebted to Professor M. Kervaire for much help and advice without
which this paper could not have been completed.

1. Definition of the Knot Cobordism Invariant

Let f:52 — M?* be a combinatorial embedding of the 2-sphere $? into a closed,
oriented, simply connected, differentiable 4-manifold M*. Let f be differentiable
and regular except at one point %, € $2, and suppose there exists a differentiably
embedded 4-disk D* such that D* < M3, f(x,) (the singularity of f) is at the
center of D, and f($%) N D*is a knot in §% = bD*. Now f represents a certain
homology class & contained in H,(M?*, Z), where Z is the set of integers. Let us
assume that & is dual to w,(M4%), the 2-nd Stiefel-Whitney class of M*. We shall
describe the above assumptions on the map f by saying f:8% — M* is admissible
for the knot £.




544 RAYMOND A. ROBERTELLO AN INVARIANT OF KNOT COBORDISM 545

For any such map f:8% — M* admissible for k, we define a residue class Therefore

modulo 2 by £ 6 —a(M}) _ &y &y — o(M)

3 = 3 mod 2 ,

and the lemma follows.
LemMa 1.2. (k) is defined for all knot types k.

Proof: To prove this we need to construct an admissible map for arbitrary £.
Let D be a 4-disc with boundary 3. We assume £ is differentiably embedded in
$3. Let U be a tubular neighborhood of & in $3, then there is a diffeomorphism
@:81 x D% — 8% such that g(§! x D?) = U and ¢(§' X 0) = k; o is the center
of the standard 2-disc D2 Considering $* X D? = (bD?) x D2, let M{ be the
differentiable manifold obtained from the disjoint union D* U (D? x D?) by
identifying U and $' X D? by means of ¢ and then “rounding” the “corners”.
Let f: 52 — M} be the embedding such that

F(S?) = Ck U (0 x D¥) < Mj.

Now there exists a parallelizable, simply connected 4-manifold V' such that bV
is diffeomorphic to M2 . This follows by observing that 6Mj embedded in R**
has an orthonormal k-frame for k£ sufficiently large. By the subjectivity of the
Whitehead J-homomorphism J:74(SO(n)) — 7, 5(S"); and by picking the
frame properly on bM} one obtains a parallelizable 4-manifold with 6Mg as
boundary. The method of framed spherical modifications (see [5]) gives the
simply connected manifold V.

Forming the union of ¥ and M and identifying their boundaries, we obtain
a simply connected, closed, oriented, 4-manifold A% Furthermore, the map
fgives an embedding f':S2 — M*% Let & € Hy(M?, Z) be represented by f". By
picking the map properly one can make £ - £ take on the value +1, in which case
bM? will be a homology sphere. We assume ¢ was so chosen.

Now by Wu’s formula, & will be dual to w,(M?) if and only if & - x = x - x for
all classes x € H,(M?, Z,). Z, represents the integers modulo 2 and &’ is obtained
from & by reducing coefficients modulo 2. Since 6 is a homology sphere, there
is a natural isomorphism

Hy(M?*, Zy) =~ H,(Mj, Z,) + Hy(V, Z,) .

Since V is parallelizable, y - y = 0 for y in Hy(V, Z,) and hence & is dual to wy (M%)
if and only if & - x = x - x for all classes x in Hy(Mj, Z,). Since the class &
represented by f” generates Hy(Mj , Z), it follows that £ is dual to wy(A*). There-
fore ' is admissible for &, and the lemma follows.

Let k, # k, denote the sum of two types £, and &, as defined in [3], then we
have

Lemma 1.3, @k, # k) = @(ky) + p(ks)

Proof: Let f,:52 — M, be admissible for k; for ¢ = 1, 2. Let D? and Dj be
the special 4-discs containing the singularities of f; and /5, respectively, and such

EE'E—G(M")

(k) 3 mod 2,

where £ - £ is intersection number and ¢(M?) is the signature of the manifold as
defined in [4]. Itis known that & - & = o(M*) mod 8 (see [2]) so that the above
residue class is well defined.

We shall show that the number mod 2 depends only on the cobordism class of
k (see [3]):

Lemma 1.1, Ifk and k' are cobordant knot iypes, then
p(k) = @(k') mod 2,
and thus @(k) is independent of the admissible map and manifold used to compute it.

Proof: Let
S1082 > M} and  fp:S2— M}

be admissible for k and k', respectively. Let D and D} be 4-discs in M7 and Mj,
respectively, containing the singularities of f; and f; at their respective centers.
Further, let M* N D! = k and M} N D} = k’. Take in Mj a 4-disc A contained
in and concentric to Di Between bA and 6D; we can differentiably embed in
D! an oriented 2-manifold N2 of genus zero such that N? meets 6D} and bA
orthogonally, N2 N 4D} = k', and N2 N bA has the knot type of £ oppositely
oriented. We can form the connected sum A% # M}, using the discs D} and A
in such a way that k in D? is identified with £ < bA. Here M} denotes Mj with
the opposite orientation. Using the image of $? under f; and f;, respectively,
occurring outside of D} and Dj and connecting them in At # My by means of N?,
one obtains a differentiable embedding f:8% — M} # Mj .

If f represents the class &€ Hy(M; # Mj, Z) and f; represents the class
H,(M*, Z) for i = 1 and 2, then using the natural isomorphism

Hy( M # Mj) =~ Hy(M}) + Hy(M) ,
we have & = &, + &,, where &, corresponds through the change of orientation
° Eéi;lce &, is dual to wy(AM,), for i = 1 and 2, it follows that £ is dual to

wo( M # MY = wo(M}) + wy(M3) .
1t follows from Theorem 1 in [4] that, since fis differentiable,

£-& — oMy # M)

5 =0 mod?2.




and bDj orthogonally. In this case we shall say that £ is related to the link L. We

that k; < bD;, i = 1,2. We form the connected sum M? # M? in such a way
then have

that Dy U D} becomes a 4-disc D4 in M3 # Mi > J1(8%) # £,(S?) is embedded in
M} # M} and f£,(5?) # f,(S?) intersects bD* orthogonally and in the knot type
ky # ky. We obtain an embedded 2-sphere by embedding the cone over k, # k,
in D* with vertex at the center of D* and taking the union of it with the part of
J1(8%) # f5(5?) outside D*. This gives an embedding f:5% — M* which has one
singularity at the vertex of the cone over £, # ko . If frepresents & € Hy(M? #
Mj;, Z) and f represents &, € H,(M,; , Z), it follows easily that f is admissible for
ky # kg and & = & 4 &,. Since o(M! # M}) = o(M3) + o(M}), the lemma
follows.

Lemma 1.4, Ifk is the trivial knot, then plk) = 0.

Proof: Compute ¢(k) from the trivial embedding f:.52 — §4,
From the three lemmas and the definition of the group of knot cobordism
classes we have

THEOREM 2. Ifk and k' are two knots related to the same link L, and if further L is
a proper link, then (k) = @(k').

Proof: Let L=k u ky U- - Uk, be differentiably embedded in the
boundary % of the standard 4-disc D¢ Fori=1,---n let U, be a tubular
neighborhood of £, < $3 such that U N U; = & fori # . There exist diffeomor-
phisms

@8t X D> g3

such that ¢,(§1 X D?) = U;and ¢,(S' X 0) =k, , where i = I, -+ -, nand ¢ is the
center of the standard 2-disc D2. Let H,i=1,---,n ben copies of D? x D2,
We embed $? x D2 in H; by considering §! x D? = (6D?) x D2 We form the
simply connected differentiable manifold Mj by taking the disjoint union
DYUH U---UH, and identifying U, in D* with $§! x D2 in H; by means
of the map ¢, , this being done for each 7 = L, n

Again there exists a simply connected, parallelizable 4-manifold V with 4V
diffeomorphic to 6M¢ . Taking the union of  and Mj and identifying boundaries,
we obtain a simply connected, closed, oriented 4-manifold A74.

Considering the union of the cone over k; < S% with vertex at the center of D*
and 0 X D2 < H, foreachi =1, .. > 1, we get combinatorial embeddings

2.1 S,18% > A

THEOREM 1. The knot cobordism invariant @ defines a homomorphism
(p:CI - Za H
where G is the group of knot cobordism classes.

Lemma 1.5, Let 3, denote the right-hand trefoil knot (see knot table in [7]), then
@(3,) = L.

Proof: Let PC(2) be the complex projective plane and y the generator of
H,(PC(2), Z), then in the proof of Theorem 2 in [2] it is shown that 3 -y is
represented by an embedding f:52 — PC(2). This embedding is admissible for
3;. Thus

such that each f; is regular except for one singularity due to the vertex of the cones
at the center of D4 Let £, represent the homology class &; in Hy(M3, Z), and let

9 — 1 5=§1+'-‘+§n.Nowfori;éj

o(3,) = 5 mod 2 .
2.2) E &=Lk, k),
Lemma 1.6, If k* is the reflected inverse of k (see [3], page 142), then @(k) =
P(k*).
Proof: The cobordism class of k* is the inverse of the cobordism class of k
(see [3], page 142). The lemma then follows from Theorem 1.

where L(k, , k;) = linking number in 3, By choosing the maps @; properly, the
self-intersection numbers £ i=1,0, n, can be made to take on independ-
ently any integer values. It follows that the maps @, can be chosen to make the
matrix of intersection numbers & &1 a unimodular matrix. This in turn

implies, by using Poincaré duality, that the manifold bM; will be a homology 3-

2. Proper Links sphere.

Assuming that the %; are so chosen, we have then a direct sum decomposition
(2.3) Hy(M*) ~ H,(M}) + Hy(V),
the coefficients being Z or z,.

We claim now that the class & is dual to w,(M*). To show this let &

and £’ be the classes in H,(M4, Z,) corresponding to &, and &, respectively, for
t=1,-- n &wil be dual to wy (M) if

2.4) §rx=x-x

LetL =k Uk, U -+ Uk, bealinkin $%, where £, are the component knots
and are oriented. We say that L is a proper link if the sum of the linking numbers
between £; and the rest of the component knots is an even integer for each choice
ofi=1,---,n

‘ Let D} and D} be two concentric 4-discs in R, where D} = Di. Consider a
knot £ < 4D} and a link L < 6D; . Suppose there exists an oriented 2-manifold
N? of genus zero differentiably and regularly embedded between 4D# and 125
such that N2 N D! =k and L = N2 N 6Dy . Assume also that N2 meets 6D}




H,(M3 , Z,), and that V 1s parallelizaple, (4.4) Wit wunow
LemMa 3.1, If F and F' are related as above, then

p(k) = (k) .

Proof: The proof consists of finding a proper link L to which £ and &’ are
both related. To this end attach to the band B of F a 2-disc ¢ on each side
of the over-crossing of B; with B; as in Figure 2. The boundary of the resulting

(2.5) Eg=E68

fori=1,+-+,n Butby (2.2),
(2.6) gg =& &+ Lk, L—k) mod2,
fori=1,,n Andsince L isa proper link,

Lk;,L —k) =0 mod 2,

fori=1,--+,n Henceis dual to w,(M?*).

The theorem follows if we can construct two maps f:82 —> M*andf 82— M
which are admissible for & and k', respectively, and both represent the class &
This is done as follows:

Let D} be a 4-disc contained in and concentric to Di. Sincekis related to L,
there is a surface N2 with properties listed at the beginning of this paragraph.

Let 4 be the union of all theo x Dy, < H;, 1= l,+--, n, and Ck the cone |
over k < bD} with vertex at the center of D}, then Ck U N?> U A gives a com:
binatorially embedded 9-sphere in M*. This yields the map f: S2 — M* which
clearly represents & and is admissible for £. Similarly we get the map f': 52 — M*

Figure 2

surface is an oriented link L of multiplicity 2. L is clearly a proper link. It follows
also from the discussion in [3], page 134, that & and &’ are both related to L. The
lemma now follows by Theorem 2.

To a Seifert surface F of genus 24 and a canonical set of curves g; of F there is
associated a 2k X 2% integral matrix V = (v;;) as defined in [3], page 152.

TuroreM 3. Let F be a Seifert surface of genus 2h with canonical set of curves a;
3. Calculation of (k) from S eifert Surfaces and with boundary knot k. Let V = (v;) be the associated integral matrix, then

In this section we follow closely the notation of [3] on Seifert surfaces.

Let F be a Seifert surface of genus hofaknotkin R3, and leta;, "5 dy be
a canonical set of closed, oriented curves on F. This defines a projection of F or
a plane in R® as in [3], page 151, where F is considered as a 2-disc with “bands’
B, , -+, By, attached. The band B, has the curve a; running along it for i =
1, -+,2h Wesay the band B, has a given over-crossing (under-crossing) with
B, if, in the projection of F, a; goes over (under) a; . &

Suppose F and F’ are Seifert surfaces of k and ', respectively. Let F’ be

h
(p(k) = z v2i—1,2i—1v2i’2i mod 2 .
i=1

Proof: By successively changing over-crossing bands to under-crossing bands
as described before Lemma 3.1, we obtain a Seifert surface F’ and a canonical
) . . . . .
set of curves a; such that if V' = (v};) is the associated integral matrix, then

1 for o,
(3.1) o = or #; odd,

obtained from F by taking the standard projection of F and replacing a given . 0 for v; even,
over-crossing of B, with B; by an under-crossing of B; with B; . See for example fori=1,---,2h,
Figure 1. (3.2) Upjo1,05 = |
& B forj=1,...,h and v;; = 0 in all other cases. Furthermore, we may assume
% that if & is the boundary of F’, then k' =k, # ky # -+ # ky» where k; is a
E trivial knot if v, ;45 1" 030, = 0, and k; is 2 trefoil knot if vh; ;03 * Ugses = b
B, B, fori =1,+--, h. Therefore by Lemma 1.5 and Theorem 1, ’ ’
F F' 1
Figure 1 Pk') = 2 Vi 1o Vasn mod 2,
i=1



anu nence vy (d.1}),

n
@) = 2 Upi—1,2i-1 V24,24 mod 2.

i=1

But by Lemma 3.1, ¢(k) = @(£') and hence the theorem follows. .

4. A Quadratic Form Modulo 2 of a Seifert Surface

Let F be a Seifert surface of genus % of the knot k in $% and let a; , - - -, ay, be
a canonical set of curves on F. Let ¥ = (1,;) be the integral matrix associated with

a; and F.
We define a quadratic form mod 2 over the vector space H,(F, Z,) as follows:
Let x € Hy(F, Z,), then x = X x,a, , where x; €Z, and g, is considered as a

homology class mod 2. Define
2h 2h

(4.1) Q(x) =Y > xp,x; mod2.
i=1 j=1
TuroreM 4.  Q is a quadratic form modulo 2, that is
(4.2) Qx +) = Q) + QD) +x-»
for all x, y in Hy(F, Z,), where x - y means intersection number.
Proof: Letx = X x,a;, and y = X 3,4, , then by (4.1),

(4.3) Qlx +) = Q(x + Q0 + le(vw + v;;)y; mod2.

Butfori=1,---,2kandj=1,--, 24,
(4.4) v; + v; =a;+a; mod2

(see [3], page 152). Substituting (4.4) into (4.3) gives (4.2).
There is a connection between the quadratic form @ of F and ¢(k), where k
is the boundary knot of F, which is given as follows:

THurOREM 5. Let Q be the quadratic form associated with the Seifert surface F and
canonical basis a; , then

«(Q) = k) ,
where «(Q) is the Arf invariant of Q (see [11), and k is the boundary of F.
Proof: From (4.1) and the definition of «(Q) it follows that
a(Q) = D vas_1,9-1V22 mod 2.

The theorem then follows from Theorem 3.

5. Computation of ¢(k) from the Alexander Polynomial

Let A(¢) denote the Alexander polynomial of the knot k. We assume that
A() is normalized, that is A(¢) has only positive powers of ¢. Then A(t) is in Z[f]

ana 1s aetermined up to a muitiple 4-¢“, where 7 Is a positive integer. Considering
(2, (1 4+ t)*) as an ideal in Z[¢] we have

THEOREM 6. If A(¢) is the normalized Alexander polynomial of the knot k, then
(a) p(k) =0 ifandonlyif A(t) =" mod (2, (1 + 0)%),
and
(b) @(k) =1 ifandonlyif A(t) =t"(1 +t 413 mod (2, (1 +8)4),
where n is some non-negative integer.

Proof: Let F be a Seifert surface for the knot &, and V' = (,;) the matrix of
crossing numbers associated with any canonical basis for F. It is known that

(5.1 A(t) = £imdet A(Y) ,
where
(5.2) Aty =TI+ (1 =)V,
and
2h
p _ \
1 0
0
I= 0 2k,
—1
1 0

A(f) being the normalized Alexander polynomial of £ (see [3], page 154).
We pick now a canonical basis ¢; for F such that, if V' is the resulting matrix
of crossing numbers, then

(5.3) Ugii1,9; =1 mod 2, Ugi9;—1 =0 mod?2

fori =1,---, h This can be done since in any event vy, ;,; — 5,9, 3 = | for
i=1,--,h Let A(t) = (a;,(t)), then from (5.2)

(5.4) @y; ;. 1(t) =1 mod 2,
(5.5) @9; 1,9:,(t) =1t mod2
fori=1,---, k&, and

(5.6) ay(t) = (1 4+ t)u,; mod 2

in all other cases.
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S, be the group of permutationsof 1, - - -, 2h. Forao =0, -+, hand 8 =0,---, 4
let S, ; be the subset of S,, consisting of permutations ¢ such that

h

(5.15) €h—11—1 = ;%i,m‘ Vg1 TOd 2.

(a) $(2i) = 2i — 1 has exactly a solutions for i =1, - -, h, Itis clear that e, , = 1 mod 2and ¢, ;, = €,y = 0; thus by (5.7), (5.11), and

(5.12),

and

J— h—1 —
(b) $(2i — 1) = 2i has exactly § solutions for i =1, -+, k. det A(f) =" + ey (1 + 07 + eu(l + 010 + 2)?

(5.16)
4+ (1 4+ £)%P() mod?2,

From the definition of §, it follows that Syn-g and S,_, , are empty. Also if
¢6S¢_ﬁ,thenqS"leSﬂ,aforoc=0,---,handﬂ =0, A
Now calculating modulo 2,

where P(t) is some polynomial in ¢. Hence by Theorem 3 and (5.15),
(5.17) det A(t) = " + @(k) - (1 + )%™ mod (2, (1 +1)%).

1
(5.7) det Aty = 3 D ay50)° " " Gangem mod 2, Thus if (k) = 0, we have det A(¢) = * mod (2, (1 + £)%), and if p(k) = 1,
a,f=0 ¢€Sq, B

then det A(¢) = #1(1 + ¢ + &) mod (2, (1 + t)4). Since it is impossible that
e =1 +¢t+ ) mod (2 (1419

for any choice of non-negative integers ¢ and b, it follows from (5.1) that A(i)
must be congruent to either % or £*(1 4 ¢ 4 ¢*) mod (2, (1 + #)*) but not both.
This proves the theorem.

where a;; means a;(¢). We define a matrix B = (b,;) by
(5.8) byigii =1, boae =1, i=1,-
and by

(5.9) by = vy = v;; = by
TureoreM 7. Let A(f) = co + et + + -+ + ¢ 2™ + - -+ + cot*" be the Alexander
polynomial of the knot k, then

k) =¢py +ps+-° +¢ mod2,

in all other cases. Let
(5.10) € = 2 bisnyt bargpen mod?2
¢€S8a, B
for @ =0,++, hand B =0,---, £, then it follows from (5.4) through (5.10)
that
n
(5.11) det A(t) = 3 e, ,(1 +6)**# ¥ mod2.

a,f=0

where v = 0 for n odd, r = 1 for n even.

Proof: The proof consists in calculating modulo the ideal (2, (I +89
using the fact that ¢4 = 1 mod (2, (1 4+ ¢)%). Since A(l) =1, it follows that
¢, = 1 mod 2 and thus

Since ¢ € 5, ; implies ¢~ € S, , , and since B is a symmetric matrix, it follows that (5.18) AW = + nz—lci(ti + 27— mod (2, (1 +8)9%).
(5.12) €8 T €4 mod 2 . But =
Let ¢,; be th tati ) .
et ¢,; be the permutation (5.19) i+ 2= =0 mod (2, (1l +1)%)

. (5.13)

A~ P . for n even and i even, or for n odd and i odd. On the other hand,
(1,2)(3,4) -~ (20 = 1,2¢) - -~ 2/ — 1,2f) -+ (2h — 1,2R)(20,2i — 1,2},2] — 1);

(5.20) t 42t =¢t4+# mod(2,(1 +08?,

wherei=1,--+,hj=1,"--,h i <j,and _~._means the given cycle is miss-

) fornevenandi=1,3,---,n— 1. Also
ing. Let

{5.21) f4+2—i=14+£2 mod (2, (1 +5%,
for nodd and i = 2, 4, - -, n — 1. Thus by (5.18) through (5.21),
t7 4ot 4+ 13) for n even,

¢ii=(1,2)(3,4)---(2i—l,2i)---(2h—1,2h), t=1,"-,h;

then S, ,,_, consists of the permutations bii» bt and iy, e v o, by, , where

i=1,-++,hj=1,--+,kand i <j. By the symmetry of B, it follows that

5.14 b e b =35 A d9 - (5.22) A(r) =

(5.14) g Lpis(1) 2h.$;5(2h) =§_ L) 2h,p;Hen)  TROQ 25 "+ (1 4 3) for n odd,
<] <17



any Seifert surfaces of &, and £, respectively. By Lemma 6.1, 6(M, ,W,) =
8(M, , W,) since g(k,) = @(ky); therefore (M ,W)) and (M, ,WW,) are homolo-
gous (see [6], Theorem 24). It follows that the resulting homotopy class in 7;(S83) is
the same for k, and k, independent of the choices of the Seifert surfaces.

To see that  is a homomorphism let k; and k, have Seifert surfaces ) and F ,
respectively. We then have a Seifert surface for k; # k, by attaching F; to F, in
the obvious manner. Let (M, , W,) be constructed from F; , i = 1, 2, and (M, W)
from F, where we may take M; and M, as disjoint in R5, Clearly (M,WW) is
homologous to (M; U M, , V), where the frame V is obtained from W, and W, .
It follows from this that 6 is a homomorphism.

The commutativity of the diagram follows from the definition of v and

modulo the ideal (2, (1 +£)%), where c=¢, + ¢ 3+ "+ and ¢ =
Cpoy + €pg + 4. It follows easily from (5.22) and Theorem 6 that ¢(k)
is equal to ¢ or ¢’ reduced modulo 2.

6. The §-Invariant of Pontryagin

In this section we follow closely the notation of [6], §15. Consider the Seifert
surface F < R3 X o © R3 x R?, where o is the origin of R2 F, being oriented,
has a natural orthonormal 1-frame of vectors in R®* X o. The suspension of this
frame gives an orthonormal 3-frame U on F in R°. Let k be the boundary knot,
There exists a differentiably embedded 2-disc A < R® such that A = k and A
meets R3 X o tangentially along k. Let M2 =F U A, then M?is a closed 2-
manifold embedded in R® of genus equal to that of . The frame U on F can be
extended to an orthonormal 3-frame W on M? in R® since the obstruction to
extending U is w,(M?) = 0. If we apply the Thom-Pontryagin construction to
(M2, W), we obtain a homotopy class 6(F) € 7;(5%). We shall prove that § defines
a homomorphism 6:C; — m;($%) given by 6(x) = 6(F), where F is a Seifert
surface of any knot & in the cobordism class «. To this end we have

LemMa 6.1, 8(M2, W) = @(k), where (M2, W) is obtained from a Seifert surface
F as above, and S(M?, W) is the Pontryagin invariant defined in [6], §15.

Lemma 6.1.
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Proof: The computation of &(Af%,WW) requires a canonical basis for
H,(M?,Z,). Clearly a canonical set of curvesa; ,i =1, -, 2h, on F gives then a
canonical basis a, for H,(M?, Z,). Let V = (v;;) be the matrix of crossing numbers
corresponding to the curves a; . It follows from the definition of 6(a;) and 2, that

é(a;) = v;; mod 2

fori =1,---, 2k But
3
oML W) = Z 0(ag;q) - 0(ay;) mod2,
=1

J
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and thus by Theorem 3
S(M2, W) = g(k) .

Let p:75(S3) — Z, be the isomorphism obtained from the Thom-Pontryagin
construction and ¢(M?2, W) (see [6]), then 4

TurorReM 8.  The map 0:C, — m5(S3%) is a homomorphism and

Gy > 5(S8?)

5/

Proof: We must show that 6 is well defined. Let %, and %, be cobordant
knots, and (M, ,W,) and (M,,W,) be framed 2-manifolds constructed from

is commutative.




