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Preface

These are the lecture notes from the conference ‘Index Theory, Coarse Geometry,
and Topology of Manifolds’ which was held in Boulder in August 1995. I have
adhered fairly closely to the original scheme of the lectures, although the notes

natnirally cantain rathor mare detail and in a fow nlacee {eenacially in lactiira 7)
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describe constructions that were finalized only after the lectures were delivered.

It is of the nature of this subject to require a rather diverse background. I
attempted to deal with this in the lectures by including a number of mini-surveys,
and in this book most of lectures 1 and 6 and large parts of lectures 2 and 3 are

devoted to such survevs. T hone that these will be useful.

oted to such surveys. I hope that these will be usef

The work reported on here has developed over a dozen years or so and
during that time I have had the pleasure of learning from a great number of
colleagues. Among them I would mention Alain Connes, Misha Gromov, Steve
Hurder, Jonathan Rosenberg, Stephan Stolz, and Guoliang Yu. More recently 1
have benefited from the advice of Steve Ferry, Erik Pedersen, Andrew Ranicki,
and Shmuel Weinberger, all of whom have (among other things) answered the
numerous questions of a surgery neophyte with exemplary patience. Finally, a
major debt of gratitude is owed to Nigel Higson, with whom I have collaborated
on many of the projects that are summarized in this book.

The conference was made possible by the organizational efforts of Jeffrey Fox,
Guoliang Yu, and Carla Farsi, and by the financial support of the Conference
Board for the Mathematical Sciences and the National Science Foundation. The
manuscript was completed while I was Ulam Visiting Professor at the University
of Colorado, Boulder. I would like to express my thanks to all these people and
organizations for their generous support.

John Roe, October 1995
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CHAPTER 1

Index Theory

The subject of this lecture series mterrelates a number of dlfferent areas of

mathamatice hut in mv mind it he
111uUIIULLleA\/U, L U lll- 11." AilAliA 11U Lo 4w

will start.
Let M be a compact (smooth) manifold. Then we have the de Rham complex

d d d
QM) S oM S - S QM (M),
in which d is the exterior derivative, and because d> = 0 we can form its

cohomology, the de Rham cohomology of M. Notice that the vector spaces
(M) are infinite-dimensional, but we know that the de Rham cohomology
is isomorphic to the ordinary cohomology, and is therefore finite-dimensional.
When formulated in terms of de Rham cohomology this is a result about the
solution spaces of certain partial differential equations, and we might look for a
proof of it in terms of analysis.

Analysis of Dirac operators

Let M be any manifold (compact or not), and let Q%.(M) denote the space of

compactly supported i-forms on M. The first thing we need to do is to complete
the snaces O (M) of cmnn*h di

VLT DPALTD Sup(4VL jJ UL oiieblu

more tractable from the perspective of functional analysis. Let us choose a
Riemannian metric on M. This metric defines a positive measure p on M, and
it also gives rise to a Hermitian inner product on the cotangent bundle of M,
and hence on all its associated exterior powers. We may therefore define an

inner nroduct / \ called the L2 inner nrnr‘hmf on each of the spnaces Ozfl\/f\ by

1222208 palanay 1923 % LotV R Y § Lvd AiiZiT2 LR, A DO VAT SPGLTS Qo4 )

integrating the local inner products (-,-) with respect to the measure pu:

= [ (@@, du(a).

Al
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By completing the spaces (M) in this inner product, we obtain Hilbert spaces
t 2(M) of square integrable forms.

The de Rham complex now becomes a complex of Hilbert spaces and un-

bounded operators. We recall that an unbounded operator T' on a Hilbert space
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H is a linear map from a dense subspace Dom(T) C H, the domain of T, to H.
In the case of the de Rham operator d we let H = }.(M) and it is convenient
to take the domain of d to be the space 2 (M) of smooth forms with compact
support. One says that the unbounded operator 7" is an extension of T (in
symbols, T' C T") if Dom(T") C Dom(7”) and both operators agree on Dom(T).
Here are some important definitions from the theory of unbounded operators:
(i) The adjoint of T is the unbounded operator 7™ defined by (T'z,y) =
(x,T*y) and with domain the largest for which this definition can make
sense, that is, the domain of 7™ is the set of all y for which  — (T'z, y)
is a continuous linear map;
(ii) T is symmetric if T C T*, and it is self-adjoint if T = T*;
(iii) T is essentially self-adjoint if it is symmetric and has exactly one self-
adjoint extension.
In the case of the de Rham complex, the operator d has a ‘formal adjoint’ d*,
which is the restriction of its Hilbert space adjoint (defined above) to Q}(M).
The operator d* is also a differential operator and it may be determined by

2and e b S -. artar fAar Inaba Y R
IILEETaLlIlg Dy palisS. 101 1IiSue 1Ce, l:ut: 1uuuum,
dg af
dac == | 2 —gdzx

on R shows that the formal adjoint of d/dx, on L?(R), is —d/dz. We let
D = d + d* be the symmetric operator obtained by adding d and d*.

D is an example of a generalized Dirac operator. We do not need to know the
details of this definition! ; suffice it to say that generalized Dirac operators are
first order formally self-adjoint differential operators obtained from bundles of
Clifford modules. We will however need some analytic information about such
operators, beginning with

PROPOSITION 1.1: A generalized Dirac operator D on a complete Riemannian
manifold is essentially self-adjoint.

See [25] or [90] for a proof. It is convenient to use the same letter D for the

original operator and for its unique self-adjoint extension, and we will do this.

1But, for the sake of completeness, here is an outline. Let S be a vector bundle over a
Riemannian manifold M. We say that S is a Clifford bundle if it is equipped with a linear map
p: TM — End(S) which obeys the Clifford identity p(u) - p(v) + p(v) - p(u) = —(u, v)1. There
are natural notions of metric and of connection on S compatible with the Clifford action p. If
S is equipped with such a metric and connection, a first order differential operator D on S is

defined as the comnposite

C™(8) = C®(T*M ® S) — C®°(TM ® S) — C™=(S),

where the first arrow is given by the covariant derivative associated to the connection, the
second arrow is given by the Riemannian metric, and the third arrow is given by the Clifford
action. This operator D is the generalized Dirac operator associated to S.

Details may be found in [90] or in any of the other general references on index theory listed
at the end of the chapter. In the case of the de Rham operator, S is the exterior algebra bundle
of T*M, and the Clifford action is the sum of interior and exterior multiplication.
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Now we need a form of the spectral theorem?.

THEOREM 1.2: (FUNCTIONAL CALCULUS) Let T be an (unbounded) self-adjoint
operator on a Hilbert space H. Then given any bounded Borel function f on
R one can define a bounded operator f(T) on H, such that the assignment
f— f(T) is a ring homomorphism, respects the involutions, and f(T) = Tg(T)

if f(t) = tg(t). Moreover, || f(T)|| <sup{|f(¢)] : ¢t € R}.

Recall that an operator C: H — H is called compact if it is a norm limit of
finite rank operators. Such operators enjoy a particularly simple spectral theory;
to any self-adjoint compact operator there is associated a decompos1t10n of H

into an infinite direct sum of finite-dimensiona

tending to zero.
Elliptic regularity theory says that a generalized Dirac operator has compact
resolvent. More precisely

.._.
[¢]
=

PROPOSITION 1.3: Let D be a generalized Dirac operator on a compact manifold
M. Let f € Cy(R), which means that f is a continuous function on R and tends
to zero at infinity. Then f(D) is compact.

This implies that (on a compact manifold M) the operator D has discrete
spectrum tending to infinity — one can see this by considering the spectral
decomposition of the compact self-adjoint operator (1 + D?)~1. If we let Py, be
the orthogonal projection onto the finite-dimensional elgenspace correspondmg

[t
C)
3"

F(D) =Y fF(M)Py, (1.4)

=)
Prop051t10n 1 3 does not remain true for non-compact complete M. Instead,
what happens in that case is that the operator f(D) is locally compact. To define
this notion, notice that differential forms can be multiplied by functions; in fact,
if (,0 is a bounded continuous function on M, then ¢ acts by multiplication as
a bounded operator on the spaces of L? differential forms, and the norm of ®
as an operator is dominated by the supremum of its absolute value. (A Hilbert
space which is equipped with this sort of action of the continuous functions on
M will be briefly referred to as an M-module.) By definition, an operator T is
locally compact if T and Ty are compact whenever ¢ is compactly supported

(or equivalently, by simple estimates, whenever ¢ € Co(M)).

ExAMPLE: Consider the self-adjoint operator D = id/dx on R (which can in
fact be regarded as a generalized Dirac operator). The functions f(D) can in
this case be described using Fourier analysis: f(D) is just the operator which
multiplies the Fourier transform 4(§) of a function u by f(£), in other words, it is

2The spectrum of a linear operator C on a Hilbert space H is the collection of A € C
that C — A1 fails to have a (bounded) inverse; it is a non-empty closed subset of C. The

‘spectral theory’ refers to the attempt to reconstitute C' from its spectrum.

e term
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the operator of convolution by the inverse Fourier transform of f. In particular,
YR \2/9
suppose f(A) = e > /2. Then

f(D)u(z) = \/_;—_w /_w e~V 2u(y) dy,

in other words, f(D) is a smoothing operator with Gaussian kernel. A smoothing
operator with compactly supported kernel is a compact operator, so whenever
f(D) is cut down to a compact domain by multiplication by a compactly
supported ¢, we get a compact operator. That is, f(D) is locally compact.

Let’s confine our attention for the moment, however, to the case that M is a

comnact manifold. Then ellintic regularitv has the following simnle consequence:

PV 2AA11A0A. 4 22022 LI PUVaL 208 UMIQA LYY A0 vall ALVLIUW LIS © A LVLISTH AT LT

the complex ], is the direct sum of two closed subcomplexes invariant under
D, the complex H* = ker D of harmonic forms (on which the differential d is
identically zero), and its orthogonal complement H-; moreover, the restriction
of D to ‘H* is invertible, and this implies that H' is an acyclic complex — it has
trivial cohomology. Thus we get the Hodge theorem H’“n(_l\,/_ﬂ ’Hl(M\ Since
H!(M), as an eigenspace of a generalized Dirac operator on a compact manifold,
must be finite dimensional, this gives us the analytic explanation that we were
seeking for the finite-dimensionality of de Rham cohomology.

Index t

¢ theory
v

The notion of index is abstractly defined in functional analysis for all Fredholm
operators: a Fredholm operator from one Hilbert space to another is a bounded
operator which is invertible modulo the compact operators. Such an operator T
has ker T and ker T* finite-dimensional, and its index is, by definition, Ind(T") =
dimker T" — dimker T*. To relate this definition to the Dirac operators that we
have been considering, let us introduce the notion of a chopping function.

DEFINITION 1.5: A chopping function s a continuous odd function x: R —
[—1,1] such that x(t) — =1 as t — 0.

LEMMA 1.6: Let D be a generalized Dirac operator on a compact manifold M.
Then x(D) is a Fredholm operator, and if x1 and x2 are two different chopping
functions, then the corresponding Fredholm operators x1(D) and x2(D) differ by
a compact operator.

PROOF: Since x?> — 1 and x; — X2 are functions vanishing at infinity, the
corresponding operators are compact by 1.3. [

Since x(D) is self-adjoint, the index of x(D) is zero. However, Dirac operators
on even-dimensional manifolds frequently come equipped with a piece of extra
structure called a grading: this is a self-adjoint involution® & which anticommutes

3 An involution is an operator whose square is 1.



INDEX THEORY 5

with D, or, put differently, it is a decomposition H = Hy & H; of the domain,
with respect to which one has matrix representations

0 D_ 1 0
o=l 5] elo 4]
The archetypal example of such a grading, for the de Rham operator D = d+d*,

Q 'F'l'lT"l’\;Q"\D{q ]'\‘7 "']’\D r‘nr-nmr\nc 1nn 0* _— Oeven ﬂl ()Odd‘ 1“"!’\ Fnrmc nr \¥/2)a) Ann‘rnn
D LULLLICLICU WY vl UluLvlLiipuU AULL G 100 IOTIMS O even UTHLTT

[

and forms of odd degree. If such a grading is given, then x(D) decomposes as

x(D)- ] ,

and x(D); is a 10lm fro can have a non
1ndex, denoted Ind(D,s 51mp1y Ind(D), it is 1ndependent of he choice of x
by the second part of lemma 1.6. In the example of the even/odd grading on
differential forms, this index is simply the Euler characteristic. One therefore
calis D = d + d* equipped with this grading the Fuler characteristic operator.
More important for our purposes, however, will be two other examples: the

o to Hy, which

0 n hich can have a non-zero

[
%’
2
=
Q
=
=]
L9
D
=5
[V}
=S
=}
=
=
=}
3
3

signature operator and the (spinor) Dirac operator. These are graded operators
defined on certain even-dimensional manifolds*. As an operator, the signature
operator is simply the same D = d + d* that we have discussed before, but
the grading is different. To define it, we need to assume that M is oriented;
then the Riemannian metric and orientation on M give an identification of
QF(M) with Q"%(M), n = dim M which can be expressed by a (bounded)
operator *: QF(M) — Q" %(M) such that 2 = %1; * is called the Hodge star
operator. The Hodge star operator anticommutes with D; in particular, * maps
harmonic forms to harmonic form ms, and \wucu we 1ueubuy harmonic forms with
cohomology) it can be thought of as an analytical implementation of Poincaré
duality. It follows that by multiplying * by appropriate powers of /—1 one
can produce a new grading operator € for D; equipped with this grading, D is
called the signature operator. The index of the signature operator is equal to

tha ciamature of M ac defined in diffarantial olacy TR +hat ic zorn if +he
i€ StgnaiuTe O Hvi as QEINeG in Gliereiivias uuyu Ogy |790], uiay 158 Zero i uie

dimension is not congruent to 0 modulo 4, and, if the dimension is congruent to
0 modulo 4, the signature of the symmetric bilinear form defined by Poincaré
duality on the middle-dimensional cohomology. This is a simple consequence of
Hodge theory.

The spinor Dirac o
manifolds equipped with a spin structure It is helpful to thmk of such a
structure as a ‘refined orientation’ of M: in fact, a spin structure is given by
an orientation together with a principal Spin(n)-bundle which double covers
the SO(n)- bundle of orlented orthonormal frames. The group Spin(n) has a

, the spin-representation, and, if n is even,

P, |.oy Y - Py LY oy i ensional ot
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S decomposes as a direct sum Sy & S; of two “half-spin” representations.
Associated to the given Spin(n)-bundle on M these give two vector bundles
So and S; on M. The Dirac operator on sections of S is the composite
of the covariant derivative operator associated to an appropriate connection,
V:C>®(S) —» C®(T*M ® S), and the Clifford multiplication coming from the
spin structure, ¢: C*(T*M ® S) — C*°(S). It is graded by the decomposition
S5=25& 5.

The indices of our model operators have certain stability properties which
will be important for us. The index of the signature operator is invariant
under (oriented) homotopy equivalence, as follows immediately from the Hodge
theorem: it is defined in purely cohomological terms. Although this is easy
tO See, we IIUUU LU IUd,JJ.Ae l;ﬂ.a,t lb J.b Iatﬂ.er bul_pfls.lﬂ.g 11(‘)1—[1 LIIC pUlIlb Ul VICW
of differential equations; a homotopy equivalence might completely destroy the
local differential structure of a manifold. (Later, we will need to take a look at
surgery theory, which investigates the relation between the differentiable and the
homotopy classification of manifolds.)

The index of the Dirac operator is not an invariant of homotopy type. The

‘stability property’ for the index that is relevant here is the vanishing theorem
of Lichnerowicz. This follows from the Weitzenbock formula®

N2 _ x4 1.
U=V V T 3K,

N[

where k denotes the scalar curvature. We note that V*V is a positive® operator,
and it follows that if x is strictly positive then D can have no kernel, so its
index must be zero. In combination with the Atiyah-Singer index theorem this
has proved to be a most powerful tool for investigating which manifolds can
carry positive scalar curvature metrics; for the index of the Dirac operator is the
.;‘\\-genus, a topological invariant (see below), and if this invariant is non-zero,
then the manifold can carry no metric of positive scalar curvature.

Index theory and coarsening

It is time now to take a look at the index theorem, which we just mentioned.
This provides a relationship between the indices of elliptic operators and some
apparently rather different invariants of manifolds, the characteristic numbers
associated to the tangent bundle. In general the index theorem takes the
following form: it provides a local recipe to obtain, from an elliptic operator

D together with grading €, a characteristic class Sp on M. Then it states that
Ind(D, ¢) = (Sp, [M]);

5There are similar formulae for all generalized Dirac operators, including the signature
operator. They differ in the precise nature of the curvature term. It is the fact that the
curvature term is the scalar curvature that makes the Dirac operator so useful.

6 A symmetric operator T on a Hilbert space is positive if (T'z,z) 2 0 for all z in the domain
of T.
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the global invariant Ind(D,¢) is obtained by integrating the local invariant Sp

over M 'T‘ho nrototvne of thic is the Qaunss-Bonnet theorem In the case
over . 441€ ProvoLtype Of UAlS IS L =auSS-i5OInety uneorem. i e

of our two model operators, the signature and Dirac operators, the relevant
characteristic classes Sp are called the £ class and the A class respectively; they
can be expressed in terms of the Pontrjagin classes of TM, as is done in the
table below for a few low dimensions:

Dimension | £ class A class

4 p1/3 —p1/24

8 (Tps — p?)/45 (—4ps + 7p%)/5760

12 (62}13 — J.opzpl 2""%)/945 (—16[")3 + 44p1p2 - 31}7?)/967680

proof of oMo d Boad ponn okl oo oo BN o Tl o
0L allceu neal equaliony pl J} proceeus as

One pProo C

follows. Smce D* and D~ are adjoint to one another, we find that ker Dt =

ker D~ DT, and ker D~ = ker DY D~. Now let ¢ be a function on Rt with
©(0) = 1 and (A) = 0 for all X greater than the least nonzero eigenvalue of D?;

then the operator ¢(D?) defined by the functional calculus is just the orthogonal

+ian tn the kernel kor D — kor N2 Qin
viuilil ULLUU viicT I\UIIIGL I\C]. 47 — N1 o W

i SRR DI SR ST Ay
Ll 1 1aex vieorein (e

Ind(D, ¢) = Tr(ep(D?)) = Tr(p(D~D™)) ~ Tr(p(D* D7) (*)

Now elementary algebra tells us that given two operators A and B, the nonzero
ectru of AB and BA coincide. and we may annlv this with A = D~ and

Guiala 2 UViaaux u\/ (238101 LGy Qpips tnls with A = U [« 8104

= . Using formula 1.4 we see that if we allow ¢ to be any function with
0) = 1, provided only that it is fast-decaying enough for the right hand side
to make sense, then (x) will remain true: the additional contributions from the
non-zero eigenspaces will simply cancel. In particular we get

5 @3

Ind(D, ) = Tr(ee™*P%),

called the heat equation formula because the operator e~tP ? governs the time

evolution of the solution of the (spinor valued!) heat equation du/8t + D?u = 0.
Atiyah, Patodi, and Singer, foliowing up an idea of Gilkey, showed that the right
hand side becomes local in ¢t as t | 0, and that it in fact admits an asymptotic
expansion in which the leading term is the index form Sp. The index theorem
follows.

We may say that the heat equation provides a process of interpolation between
the local invariant Jp (for small values of t) and the global invariant Ind(D, ¢)
(for large values). The interpolation process consists of successively switching
off more and more of the high-energy modes of the operator D? as one passes
from the local invariant &p to the index. Now it is well known to physicists
that high energies correspond to short distances, and we may therefore envisage

vation ~AfF+ha ha ~ <l o g | P

the operation of the heat cquauuu process somewhat as follows — to obtain the
local invariant Sp we probe the structure of the manifold M with the highest
energies at our command, but as t increases the energy used becomes less, and
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correspondingly our view of M becomes blurrier. Finally, when ¢ is very large,
PO "-n“- ~F AT ary hlitnney +hat all 4bhn 1anal sannndner <srachad MA A1
Our view o1 vz ID DU Ulu.ll..)’ Uilat aul i€ 10cal 5UU]JJ.UUJ._)’ lb waonlicu Uub 11U vulL
“coarsened” vision M is indistinguishable from a point, and so all that is left of
D is the sole abstract topological invariant of a single Fredholm operator on a
Hilbert space, namely the index. We have therefore arrived at the slogan, indez
18 coarsening.

PACATI AL TP ¥ Lo VR VD ¥ |

3 )

above, are intimately related to its ‘coarse’ aspect. For example consider the
Lichnerowicz vanishing theorem. If ko > 0 is a lower bound for the scalar
curvature, then D? has no spectrum below r¢/4; this means that the vanishing

begins to take hold only at times ¢ in the heat equation process for which tkg > 1.

We micht ask whether the index is the sole relevant ‘coarse’ invariant: in the

LAUHAAV aon WAL LAITL VAT 2AANTA I8 A0 SULLD ITATVALIY LLGIST  IUVAIAGLLS viil

scalar curvature problem this would amount to asking whether a (spin) manifold
with zero .;l\—genus must admit positive scalar curvature. It turns out that this
is far from the case; for example, a notable result of Schoen-Yau and Gromov-
Lawson is that no torus can admit a metric of positive scalar curvature, even
though, being parallelizable, it has no nonzero characteristic numbers at all.

we hope then that index or ‘coarsening’ theory is going to tell us the whole
story about this problem, we need to ask the following question: Are there more
refined ways of coarsening?

The answer is yes. Such ‘refined coarsenings’ are usually known as higher
indices. Our objective is to construct and interpret higher indices, particularly
for non-compact manifolds M. For such manifolds the definition of the ordinary
index does not make sense (the kernels are not finite-dimensional), and so the

higher indices, if they exist, will be all we’ve got.

REMARK: It will turn out that the grading operator € does not always play such
a crucial role in higher index theory. In fact, there will be two kinds of higher
indices — ‘even’ indices, which depend on a grading ¢ just as the ordinary index
does, and ‘odd’ indices which require no ¢ for their definition. To have a uniform
notation we will therefore suppress mention of ¢ and regard it as incorporated
where necessary into the definition of D; so we will from now on write Ind(D)

where formerly we w

Notes and references: The language of operators on Hilbert spaces, functional
calculus, and spectral theory is treated in most introductory texts on functional
analysis. A classic reference here is [32].

Some books on index theory which take a point of view similar to the one here
are [11], [70] and [90]. For the original discussion of generalized Dirac operators
on complete manifolds, see [48], which also contains much other material relevant
to ‘large scale index theory’. The original paper on the heat equation method
is [6), with later improvements in [41, 42]. Finally, the foundational paper [7]

must be mentioned in any list of references dealing with index theory.



CHAPTER 2

Coarse Geometry

In the previous lecture we used the index theorem to motivate the idea of viewing

a manifold throueh successivelv blurri
gn successlv I

Liauirzs

lenses, and studying what geometry
remained at the end of this ‘coarsening’ process. The first surprise of the theory
is that any geometry remains at all.

Ideas of this sort have been around for quite a while. An early example occurs
in Ahlfors’ theory of covering surfaces 2], where he derives quantitative versions
of the Picard theorem of complex analysis from consideration of ‘average Euler
characteristics’ of open surfaces. In the 1960’s, Mostow’s proof of the rigidity
theorem relied on the fact that ‘coarse’ maps preserve the ideal boundary of
hyperbolic spaces (see [78]). Implicit here is the principle that coarse geometry
is peculiarly appropriate to the study of spaces of negative curvature, a principle
which led to Gromov’s celebrated theory of hyperbolicity for metric spaces, which
we will discuss later. Still more directly related to the material of these lectures
are the ideas of (boundedly) controlled topology, in which one tries to carry
out geometric constructions in a way which is ‘small’ when measured in some
reference space Z; the coarse structure of Z is exactly what is relevant here. Some
references are [26, 36, 112]. Finally, the fact that a finitely generated discrete
group carries a natural coarse structure has meant that ‘coarse’ questions have
been intensively studied by geometric group theorists [46].

The coarse category

Here now are the formal definitions for the version of coarse geometry that we
will be using. Let X and Y be metric snace

Let X and Y be metric spaces. A map

s. A man f: X — Y. not necessarily
. J: X Y necessarily

g 22UV

continuous, will be called a coarse map if

(a) (Uniform expansiveness) For each R > 0 there is S > 0 such that
d(z,2') < R=d(f(2), f(z')) < &

(b) (Metric properness) For each bounded subset B C Y, the inverse image
f~1(B) is bounded in X.
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We will usually work with proper metric spaces — those in which closed
bounded sets are compact (the terminology comes from the fact that the distance
function to a fixed point is then a proper map to R). If X and Y are such spaces
and f is continuous, then metric properness is equivalent to ordinary properness.

Two coarse maps fo, fi: X — Y are coarsely equivalent if there is a constant
K such that

d(fo(x), fi(z)) < K

for all z € X. We say that the spaces X and Y are coarsely equivalent if there
are maps from X to Y and from Y to X whose composites (both ways round)
are coarsely equivalent to the identity maps (on X and on Y) Finally, a coarse
etaarntn ure on Y i11gt mmaoang a
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Here are some examples.

EXAMPLE: Any complete Riemannian manifold is a proper metric space, so
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manifolds will depend functorially on this structure.

ExXAMPLE: Let I be a finitely generated group, and let S be a finite generating
set. Then there is a unique translation-invariant metric on I' such that each
element of S is at distance 1 from the identity and which is maximal among
all metrics having that property; it is called the ‘word length metric’ and

cann ha aunliaitly docoribod by cavin g +that +tha Jdictanaca hotwroan - e
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equal to |77 'z, the length of the shortest word in the alphabet SU S~! that
represents y; ln,. Although the word length metric itself is dependent on the
choice of finite generating set S, an elementary argument shows that the coarse
structure that it induces is not. So the group theory of I" alone equips it w1th a
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on the coarse structure of I' are imposed by the fact that it arises from a group
structure?.

These two examn o thev mav anpear. Even though
inese two examp I getn n they may appear. Lven thoughn

groups are discrete and manifolds are not, thls sort of distinction is exactly the
kind that is blurred by coarsening — for example, it is clear that the natural
inclusion Z — R is a coarse equivalence. More generally we have:

PROPOSITION 2.1: Let M be a compact manifold, with fundamental group I" and
universal cover M Then the map v ’yp, ' — M, induced by any choice o

hacomnint m s A
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and any Riemannian metric lifted from a Riemannian metric on M.
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11t is sometimes necessary to distinguish between I' as a group and I' as a metric (or coarse)
space; we will use the notation |T'| for the metric space underlying the group T.

2As a simple example, it is easy to see that the ‘ends’ of a group are invariants of the coarse
structure. A discrete group can have only 0, 1, 2, or co ends [59], whereas a general coarse
space may have any number of ends. For more on these lines see [15, 12].
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REMARK: We do not really require M to be a manifold here. It is enough
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that it should be a 10Caly Siifipiy COiiil nectea pwwb metric space (t i3, a Space
in which the distance between two points equals the infimum of th lengt

paths joining those points).
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he open cone ON on N is
the quotient space obtained from N xR™ by identifying N x {0} to a point. It can
be made into a proper metric space by choosing an arbitrary Riemannian metric
gn on N and then giving ON the (singular) Riemannian metric ggr +t2gn, where
t is the RT coordinate. One sees easily that the choice of Riemannian metric on
N does not affect the coarse structure.

If N is embedded in M as a totally geodesic submanifold then O N is (isometric
to) a subspace of OM. Now we know that N can always be smoothly embedded
in some high-dimensional S™~!, and by suitably tweaking the metric on S™!
near the normal bundle of N we can make this embedding totally geodesic.

Switching back to the round metric on S™~ 1 only changes things by a coarse

equivalence, and now @S™! is just ordinary Euclidean space R™. Thus ON is
coarsely equivalent to the ‘Euclidean’ cone

{treR™:z2€ NCS™ ! t>0}

and this can be used as a definition of the open cone for spaces N other than
manifolds, so long as they are provided with an
embeddings into spheres.

The open cone contains copies of N on larger and larger scales. Thus,
intuitively, we would imagine that the study of ON on large (but fixed) scales,
as is done in coarse geometry, would be equivalent to the study of IV itseif on
arbitrarily small scales — that is, the study of something like the topology of
N. And this is, more or less, the case, although the R*-direction has introduced
some extra stabilization. To be precise, let us recall that a map f: X — X’
between metric spaces is said to be Lipschitz if there is a constant C such that
d(f(zo), f(z1)) < Cd(zo, 1) for all xo,z1 € X; a bi-Lipschitz homeomorphism
is a Lipschitz map with a Lipschitz inverse. The following proposition and its
proof are due to Weinberger [110].
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PROPOSITION 2.2: Let N and N’ be subspaces of some S™ 1. Suppose that
N x S! and N’ x S' are bi-Lipschitz homeomorphic, by a homeomorphism that
makes the diagram

N x St N’ x St

N7

St

commute up to homotopy. Then ON and ON’ are coarsely equivalent. In
particular, this is so if N and N’ are bi-Lipschitz homeomorphic.
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ProOOF: Take infinite cyclic covers to obtain a periodic bi-Lipschitz homeo-
uu‘)l‘pulmu N xR — N’ xR. Now 1ue'ﬂtu‘y' N x R with ON \uuuub its 'V'el‘bt:)L)
by the map (z,t) — 2'z. Do the same for N’ transfer the given bi-Lipschitz
homeomorphism to the cones, and extend by continuity to the vertex. This gives
us a map h: ON — ON’ which has the following properties

(a) h is Lipschitz when restricted to any compact subset of ON \ {0};

(b) h(2z) = 2h(z) for all x.
and whose inverse has similar properties. But now h is Lipschitz. To see this,
note that we would like to bound the ratio d(h(z), h(z'))/d(z,z’). We may take
|z| > [2'[; if |x| < 2|2’| the desired property follows by scaling by a power of 2

(using (b)) to get into the compact annulus between radii 1 and 4, then using

{a): if lrl ~ ‘)Im” we use the eriide ecti
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d(h(z), h(z")) _ |z]+|2'|
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where C = sup{|h(z)| : |z|] < 2}. Thus ON and ON’ are bi-Lipschitz
LA anmarn l...., Lancs partasinly thavy arae cosree entiivalan M
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The conclusion of the theorem was stated in terms of coarse equivalence, but
the proof produced a bi-Lipschitz homeomorphlsm In fact one can see that these
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produces a sequence of maps whlch (by Ascoli’s theorem) has a subsequence
convergent to a bi-Lipschitz homeomorphism.
For high-dimensional manifolds one can go further: the condition of 2.2 is

both necessary and sufficient for the existence of a coarse equivalence between

the cones: moreover, hv Sullivan’s results [1 nK] ‘bi- T1ncnh1frz hnmnnmnrnhln

<
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can be replaced by ‘homeomorphic’. The proof of this result is due to Block and
Weinberger [16]; in addition to Sullivan’s results it requires the s-cobordism
theorem for topological manifolds [69). Here we simply want to make the
point that the cone construction provides a way of encoding ordinary topology

into coarse geometry; or, r‘nnvprqp]v some nrnh]pmq in coarse geometry may be
solvable by using the cone construction to convert them into ordinary problems
at infinity. The appearance of Lipschitz homeomorphisms is at first a surprise,
but it is unavoidable; one can give examples of homeomorphic metric spaces (not
manifolds!) whose open cones are not coarsely equivalent. In lecture 9 we will
develop a more relaxed notion of coarse equivalence which will to some extent

allow us to circumvent this issue.

ExXAMPLE: Further examples of coarse spaces may be obtained by warping the
cone construction over a foliation or a group action. For example, suppose that
N (above) carries an action of an infinite (finitely generated) discrete group

I'. We define O(N,I') to be the same space as O(NN) but equipped with the
maximal metric d that is dominated by the usu al metric of (’7( N\ and satisfies
| fo

dima,
d(z,vz) < or all v € I'. This is still a proper metric space and its coarse
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geometry encodes some information about the dynamics of the action of I' on N.
We won'’t use these ‘shortcut cones’ in this survey, but they seem to be interesting
spaces for further study, especially insofar as they are related to ‘foliated control’
[34]. See [96] for a few remarks.

We defined coarse geometry as the study of metric spaces up to coarse
equivalence. This is exactly parallel to the approach often taken in first courses
on topology, whereby one defines topology as the study of metric spaces up
to homeomorphism. Just as it subsequently proves useful to study topological
spaces in the abstract, independent of the question as to whether the topology
is generated by a metric, so it will be useful to us later to have an abstract and
metric-independent notion of coarse structure. But we will postpone introducing

this until lecture 10.

Coarse algebraic topology
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to obtain analogues to the tools of algebraic topology, such as homology and
cohomology theories. In doing so, it is helpful to keep in mind a certain analogy
between a ‘coarse type’ (that is, a coarse equivalence class of metric spaces) and

a finitely generated group, and to imagine that we are trying to define some

analaoctie af oronmn (eaYha nlaovy 1\Tr“'n +l1n {oaYh nlaovy r\‘r oroun W
AU ulT UL sivup \wu/xlu&;lu&us] NUVY  uviio \UU/LLULL;ULU&J UL

defined in two ways: algebraically (for instance by writing down a specific chain
complex) or topologically (by introducing the classifying space B). Similarly,
two procedures exist for defining coarse (co)homology. In the memoir [95] I
constructed a cohomology theory on the coarse category by a combinatorial

algebraic recipe. A more fnnn]nmr\a] approach murhf nrnr‘ppd hv first 1'n1'rgr]nmng

(SR LIS,

the notion of a coarsening, which is the coarse analogue of the classifying space.

DEFINITION 2.3: Let X be a metric space.

(i) X s called a metric simplicial complex if it is a simplicial complex
equipped with a path metric which coincides on each simplex with the
standard metric.

(ii) X has bounded geometry if it is coarsely equivalent to a discrete space
which has the property that, for each r > 0, there is a uniform bound on
the number of elements in a ball of radius r.

(iii) X s uniformly contractible if, for every R > 0 there is S > 0 such that,

Lo o e = YV AL o S 1ot T T2\ ; n/__A
JOT eUery & &€ A, Ule 1nciusion D&, 1) — DT D} tb ILU/HJLU"LULUPLC
For example, Euclidean space R™ (triangulated sensibly) is a uniformly con-

tractible bounded geometry metric simplicial complex. We notice that R™ is in
some sense the ‘topologically simplest’ space in its coarse equivalence class. Thus
Z™, or the infinite jail cell window, both have ‘artificial’ local topology which is
not detected by the coarse structure; whereas the coarse structure and the fine
structure of R™ are exactly the same. The following notion formalizes this idea
of mapping coarse theory onto topology.
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DEFINITION 2.4: Let X be a metric space. A coarsening EX of X is a uniformly
contractible bounded geometry metric simplicial compler equipped with a coarse
equivalence X — EX.

o P D~ +h +ha srnicranca 1 ~F D iy
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The F notation for coarsening comes from this example.

ExAMPLE: R” is a coarsening of Z™. More generally, if 7 is any group with a
3 |
|

We did not use all the properties of the classifying space here. We needed
to know only that Br was a contractible space admitting a cocompact m-action
such that the map 7= — E;r, vy — 4p, is a coarse equivalence. Now in [10] a
certain space Er is studied from the perspective of K-homology. It is a universal

nvs:m‘n]n ‘Fn'r nraneTr T— f nag (QYI artinn f\'F a NN Y 1Q ’l’l"‘ ne "‘ ‘F Y ofan ]’\Q r-n‘rnrt:\rl
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by a family of n-invariant open sets each of which is of the form 7 xz W, where
F is a finite subgroup of m and W is a space acted on by F'). It is not hard to
prove

PROPOSITION 2.5: If there is a model for the universal space Em on which 7
acts cocompactly by isometries, then that model is a coarsening of |x|.

Contrary to the impression which may have been given by the above examples,
coarsenings do not always exist. However, when they do, they are unique up

to proper homotopy equivalence. Moreover, any coarse map between coarse
spaces induces a unique proper homotopy class of continuous maps between
coarsenings. Thus coarsening becomes a functor from the coarse category to
the proper homotopy category. For the proofs ong constructs the desired maps
by induction over simplices, using uniform contractibility to extend maps of the
boundary of a simplex to maps of the whole simplex while maintaining overall
metric control.

Let K, be a locally finite generalized homology theory. Then, for a space X

that admits a coarsening, we may define the associated coarse homology of X by
KX*(X) == K*(EX).

The functorial properties of coarsening show that KX, is a functor on the coarse
category. It can therefore be used to provide invariants analogous to those of
classical algebraic topology.

ExAMPLE:  Consider the natural inclusion R® — R™ x [0,00), which is a

S,OoaTgn TMan ‘an aclk whathor thic inclhiiginn admita 1aft invarges in tha nsnaraa
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category. To see that the answer is negative, consider the coarse homology
theory HX, associated to ordinary (locally finite) homology. Since both spaces
are uniformly contractible, HX,,(R") = HY(R") = Z, and HX,,(R" x [0,00)) =
HY (R™ x [0,00)) = 0. Thus, if the supposed left inverse existed, the identity

och the zero groun. an obvious contradiction
n the zero group, radictlor

an obvious contra Lo
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considering an infinite simplicial complex K. To define the usual homology,

we consider chaing that are finite formal linear combinations of simplices of K

T LULASIUTL UaiQuiadds Vadvyu QAT 1224300 aUL 22130n i VUL uiUiLS Diiiipraalls Ui Zh .

To define locally finite homology, we allow infinite, locally finite formal linear
combinations of such simplices. For example, if K = R triangulated in the
obvious way, the 0-dimensional locally finite homology group is trivial (a single
0-simplex is the boundary of an infinite 1-chain consisting of all the simplices
to the right of it), whereas the 1-dimensional locally finite homology group is
non-trivial (a generator is the sum of all the 1-simplices).

Locally finite homology is functorial for proper maps and invariant under
proper homotopies. Naturally, there are notions of locally finite generalized
homology and the like. For our purposes the most important such theory will
be the locally finite homology theory dual to K-theory, and this has a direct
analytical description due to Kasparov (see lecture 5).

REMARK: Coarse homology and cohomology for groups m can be described in
terms of group cohomology. In fact, suppose (for simplicity) that 7 is a group
with a finite classifying space Bm; then, as observed above, Em (the universal
cover of Bm) is a coarsening of |w|. It is well-known, however, that the locally
finite homology of En is simply the homology of Bm with coefficients in the
r-module Zr. Thus HX,(|r|) = HY (Er) = H,(Bm;Zr) = H,(m;Zn). The
dual cohomological result is also true. Thus we have

PROPOSITION 2.6: For any finitely generated group m, HX.(|r|) = H.(7;Zr)
and HX*(|r|) = H*(m; Z~).

So far we have defined coarse homology only for spaces which admit coarsen-
ings. However, the definition can be generalized to all spaces by means of the
following construction, originated by E. Rips. Let 4 be an open cover of a space

Y D N +hat +h 1€l ~AF TT iq +h 1 1 i+Th + £,
A . necall tiat uae nNerve |m) 01 U 18 uie snnpﬁmé‘u COIIip1€X Wiuid Oli€ VErvex ior

each set U € 4, and such that a finite set of vertices span a simplex if and only
if the corresponding open sets have non-empty intersection. Associated to such
a cover are two numbers R(Y), the least number such that any member of 4 is
included in a ball of radius R, and r(i{), the greatest number such that any ball

of radius r is included in a member of Y. Choose a sequence U; of locally finite

covers by relatively compact open sets such that R(L;) < r(41) < oo for all ;
this will be called a coarsening sequence of covers® for X. One can define maps
|4;| — Jhi+1] by choosing, for each open set of the cover 4l;, an open set of the
cover ;1 that contains it. Then one can show that if X has a coarsening,

KX.(X) = lim K. (Jt]).

The right hand side of this equation may therefore be taken as the definition of
coarse homology, and it now applies to all spaces X. The functorial properties
still hold.

3Referred to in [95] as an anti-Cech system for X.
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REMARK: One way to think of coarsening a space is as an ‘identification of
all pahs of pﬁlnbb that are a finite distance aparb . This does not make literal
sense — after all, any two points are a finite distance apart — but the Rips
construction gives one way of understanding it: coarsening is the ‘limit’ of the
complexes |4;|, each of which can be thought of as obtained by ‘smoothing out’

X on some fixed large scale.

What do uniformly contractible spaces look like? Two classes of examples
spring to mind. On the one hand, the open cone ON, where N is a manifold,
or any metric space in which small balls are contractible, is plainly uniformly
contractible. On the other hand, suppose that V is a finite aspherical complex
(that is, such that 7;(V) = 0 for ¢ > 2). Then the universal cover V is uniformly
contractible. The study of examples suggests that uniformly contractible spaces
in general, and universal covers in particular, should share the good coarse
properties of open cones. For example, if V is a compact negatively curved
manifold, the Cartan-Hadamard theorem provides us with the exponential map,
a metrically controllable diffeomorphism of R” = (S~ ') onto V, which can
be used to transfer coarse properties from one to the other. As we will see, the
‘coarse’ statement that the universal cover of V looks like a cone has strong
consequences for the ‘ordinary’ geometry and topology of V itself.

Notes and references: The expositions of coarse geometry that I know of all

appear 111 papceis UUVUbUU bU d:ppllbd:blullb Ul Ol11¢ hlllu or d.llUbllCl. SU, J.Ul U)&CUJJPJ.C,
the basic definitions given here may be found in [16, 36, 44, 95, 112] and (I
have no doubt) in numerous other places. The approach to ‘coarse algebraic
topology’ that is used here is based on [57]. That some form of bounded geometry
constraint is necessary in the definition of a coarsening was shown by the example
of 1211
of [31].

There is an interesting distinction to be made between the coarse category
and what has been called the rough category. The objects of this latter category
are bounded geometry metric spaces, and the morphisms are those coarse maps

that, instead of (b), satisfy the stronger condition

(¢) (Uniform metric properness) For each R > 0 there is S > 0 such that
the inverse image under f of a set of diameter R is a set of diameter at
most S.

The fundamental example of a coarse map that is not a rough map is the
projection ON — R* from an open cone to a ray. The uniformity in the
definition of the rough category allows a large number of new invariants to
exist, based on constructions such as the averaging of a bounded function over
a discrete amenable group. We will not develop rough geometry in detail in
these lectures, but we will occasionally point out significant contrasts between
the coarse and rough categories. The papers [8, 9, 15, 16] and the thesis-[72]
contain further discussion.



CHAPTER 3

C*-Algebras

We will now relate coarse geometry to C*-algebras. The motivation here comes
from Connes’ theory of noncommutative geometry [28], and we will begin by
reviewing this.

Let H be a Hilbert space!, B(H) the collection of all bounded linear operators
H — H. Recall that B(H) is equipped with an involution *, where the adjoint
T* of T € B(H) is determined by

(T"z,y) = (z, Ty).
Moreover, B(H) is equipped with a norm

IT|| = sup{|[Tz| : l=ll <1},
and this norm induces a topology on B(H).

DEFINITION 3.1: A C*-algebra of operators on H is a norm-closed subalgebra A
of B(H) such thatT € A= T* € A.

We may define an (abstract) C*-algebra to be an involutive normed algebra
over C which is isomorphic to a C*-algebra of operators on some Hilbert space; it
is a theorem that this definition is equivalent to the more usual one (as a Banach

aloahra gaticfvine some additinnal conditiong)
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Notable examples of C*-algebras are the algebras Cy(X) of continuous func-
tions, vanishing at infinity, on some locally compact Hausdorff space X. (To see
that these are C*-algebras by our definition, think of them as acting on L?(X, u)
for an appropriate measure p on X.) In fact, these are the only examples of

nnmmnfafnrn n*_a]rra]'\raq moregver the ‘nnnr]nn‘nnnrafa’ ﬂ -homomornhisms
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Co(X) — Cp(Y) are just those induced from continuous and proper maps
Y — X. (These two statements constitute the Gelfand-Naimark theorem, whose
proof will be found in any introductory text on Banach algebras.) Thus the study
of commutative C*-algebras is equivalent to the topology of locally compact

Hausdorff spaces. and it is reasonable to think of the qfndv of o‘pnpral (C*-algebras

LI 3 pAlls, Qllll 1 18 LTAILALIGAT Clal O~ G

as some kind of ‘noncommutative topology’.

LAll Hilbert spaces considered will be separable.

17
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This philosophy leads in particular to Connes’ noncommutative notion of the
quotient of a space by an equivalence relation. Let us illustrate it with a very
simple example [28, page 85]. Consider a space X = {zg,z:} with just two
points. The associated C*-algebra A may be regarded as the algebra of diagonal
2 x 2 matrices acting on the Hilbert space ¢?(X) = C®C. Now suppose we form
the quotient by the equivalence relation that identifies the points xzg and x;. The
classical topological construction corresponds to restricting to the subalgebra
{M : X € C} of A. However, in noncommutative topology one instead ertends A
to a larger algebra containing off-diagonal matrix elements corresponding to the
identifications that have been made. In this case we extend to the full matrix
algebra Mg((C) DA

lb can Ue SI].OWIJ. 111 geneldl blldb, Wllell bllt! Lla.SSlC&l qu()l;le[ll) bparCe lb gUUU
(e.g. compact Hausdorff), then the classical and the noncommutative quotient
constructions are (Morita) equivalent. But when the classical quotient is bad, it
is often more appropriate to consider the noncommutative version — especially

for the purposes of index theory.

EXAMPLE: Let I' be a discrete group acting on a point. The ‘standard quotient’
is just a point, and forgets all the structure of I'. The appropriate notion of

noncommutative quotient in this case is the reduced group C*-algebra C}(T),
defined as follows. Consider the Hilbert space 02(P\ T’ acts on this space by

efin nsider spa: or
unitaries, and so there is an embedding of the group ring CI" as a x-subalgebra
of B(£2(T)). The completion of CT" in the norm of B(¢%(T)) is the algebra C: (T).

The link with coarse geometry comes about through the idea, which we have
already mentioned, that coarsening a space can be thought of as ‘identification of
all pairs of points that are a finite distance apart’. As with the Rips construction,

one should think of this in some limitine sense: one ‘identifies’ on scale R. then

VIAT SV UL Vi Ui VALS a1 OULUT daildividap SULASU, TLiUsLx! il SUQLT Lvy vailii

lets R — oo and takes the limit. The noncommutative quotient construction is
well adapted to this process. Specifically, if X is a discrete coarse space, we want
to consider algebras of matrices parameterized by X x X which are zero outside
some bounded neighbourhood of the diagonal. As in the simple example above,
we have introduced off-diagonal matrix elements corresponding to identifications,
but here we have required that all the identifications be on the same scale.

The general definition makes use of the language of X-modules and locally
compact operators, which we have introduced in lecture 1. Recall that a Hilbert
space H is called an X -module if there is given? a C*-homomorphism Cp(X) —
B(H). We defined an operator T on an X-module H to be locally compact if,
for all ¢ € Cy(X), the operators T'p and ¢T are compact on H.

In the next definition, Supp(y) = {z : p(z) # 0} denotes the support of ;

and, for subsets A and B of X, d(A, B) denotes inf{d(a,b) : a € A,b € B}.

21t follows from the Spectral Theorem that the given representation of the continuous
functions Cp(X) can be canonically extended to a representation of the bounded Borel
functions; this will occasionally be useful.
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DEFINITION 3.2: Let X be a metric space. An operator T' on an X -module H s
'Y
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whenever ¢,9 € Co(X) have d(Supp(p),Supp(y)) > R. (The smallest such
constant is the propagation of T'.)

Finite propagation is the continuous analogue of the condition, used above,
that a matrix parameterized by X x X should vanish outside a bounded neigh-
bourhood of the diagonal. Plainly, the locally compact, finite propagation
operators on H form a *-subalgebra of B(H).

DEFINITION 3.3: For a coarse space X and an

propagation operators.

We will usually suppress mention of H. In fact, we will see that the choice of
H is not very important, provided that we choose it to be non-degenerate and
locally infinite-dimensional. The precise sense of this is given by the following
definition:

CJ

EFINITION 3.4: An X-module H is said to be adequate if Co(X)H = H and
no nonzero element of Cy(X) acts on H as a compact operator.

It is useful to compose this construction with the K-theory functor for C*-
algebras. (See the appendix to this section for a short development of C*-algebra
K-theory.) One can show that the abelian groups K;(C*X) depend only on X,
and not on the choice of adequate X-module H. Moreover, the construction is
functorial:

LEMMA 3.5: Let X,Y be coarse spaces, f: X — 'Y a coarse map. Then f induces
a functorial homomorphism f.: K.(C*X) — K.(C*Y). Coarsely equivalent
maps induce the same homomorphism.

PROOF: Let Hx and Hy be X and Y modules. An isometry V: Hx — Hy
is said to cover f if there is a constant R > 0 such that V¢ = 0: Hx — Hy
whenever ¥ € Cyp(X) and ¢ € Co(Y) with d(Supp(yp), f(Supp(¥)) > R. [If
this relation is true for R = 0 we say V ezactly covers f.] Provided that Hy
is adequate, there is always an isometry covering any coarse map. To see this
notice that any Borel partition of X or Y leads, via the spectral theorem, to a
direct sum decomposition of Hx or Hy. We can partition Y into Borel pieces of
uniform size and with non-empty interior, getting a direct sum decomposition of
Hy into infinite-dimensional summands. Now take the inverse image partition of
X and map each summand of Hx isometrically into the corresponding summand
of Hy. This gives the desired V.

If V covers f, then Ad(V): B(Hx) — B(Hy), defined by T'— VTV*, is a
homomorphism from C*(X) to C*(Y). We define f, to be the map on K-theory
induced by this homomorphism; it can be shown to be independent of the choice
of V. The last statement of the lemma is true because if V' covers f it also covers
any map coarsely equivalent to f. O
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REMARK: Since C*(X) is defined by completion, a general T € C*(X) may
.I.J.Ub t:X&Cuy ua‘v‘e UJJJlJU prt‘)pagauuu ll) J.b SOITIELUI[ES U.bt:lul to le,\”C a;Valld,l)lb' a
notion of ‘approximate propagation’: for e > 0 we define the e-propagation of
T to be the smallest R such that ||@T%| < € whenever |¢| < 1, ||| < 1,
and d(Supp(y),Supp(¢)) > R. Plainly, if T € C*(X), then T has finite &-
propagation for each ¢. If X is ‘large-scale finite-dimensional’ [46, 114], then

+ha canverae haldg ag wall
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The coarse index

Let M be a complete Riemannian manifold, V' any Hermitian vector bundle
over M. Then L?(M;V) is an adequate M-module; we will usually think of
C*(M) as defined using an M-module of this type.

PROPOSITION 3.6: Let M be complete Riemannian, D a (generalized) Dirac
operator on M. Let h € Cy(R). Then the operator h(D) belongs to C*(M).

Proor: That h(D) is locally compact is a version of elliptic regularity; we
nead to cheel: tha finite nronacation eo T r|‘+ on 'T‘his 1

1 conseanence of the fact3
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a consequence of the fact
that the operator e** has propagation [t|. This is called the finite propagation
speed property of the Dirac wave equation — it tells us that a disturbance
governed by the hyperbolic equation du/0t — iDu = 0 travels with unit speed.
Granted this property one can use Fourier analysis to write

h(D) = i / h(t)etPdt,

where h is the Fourier transform of h. Thus, if 4 is compactly supported, h(D) is
£ A anad~ Dsaé e +1 o~ b ] T
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transform are dense in Cy(R), and the functional calculus map h — h(D) is

continuous, so the result follows. [

Now let A = C*(X) C B(H). Let B = M(A) C B(H) be the multiplier
algebra of A, that is the set of all operators S such that ST € A and TS € A
for all T € A. Then B is a C*-algebra containing A as an ideal. Moreover, it

fallaurg fram the came Irind of analvgic ag wag oiven ashove that far anv choannino
follows from the same kind of anaiysis as was giverl anove tiay 1or aity Cnoppiing

function x, the operator x(D) belongs to B, and x(D)? — 1 belongs to A. Thus
the class
[x(D)] € B/A

is a self-adjoint involution (element of square one) in the quotient algebra.

Involutions define elements of K-theory. In fact, an involution F' in an algebra
defines a projection (1 + F')/2, hence an element of K. However, in the ‘even’
case we recall that we are also given some extra data: D in fact acts on a graded
vector bundle S = Sy ® S;, mapping sections of Sy to sections of S;. In this
case L?(Sp) and L?(S;) are both adequate M-modules, so we can find a unitary

3A proof may be found in [25], reproduced in [90], proposition 5.5.
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operator V: L%(Sy) — L?(S;) that covers the identity map M — M, in the

S £y O™ /. 1L S | ~ Y7y 1_ S S N S Ny
sense of lemma 3.5. (The choice of such a V' does not matter.) Then
—JT* .72 2
T =U*x(D): L*(Sp) — L*(Sp) (%)

is an operator in B such that T7* —1 and T*T —1 are in A, so [T is unitary in

B/A and defines an element of K;. We therefore have defined a class [x(D)] €
ICAR/AY with 2 — 1 in tha avan {(oradad) cace and 2 — N in tha ndd caca
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Now recall that the short exact sequence of C*-algebras
0—-A—-B—-B/A-0

determines a 6-term cyclic exact sequence of K-theory groups, which includes a
boundary map 9: K;(B/A) — K;_1(A).

DEFINITION 3.7: The class 9[x(D)] € K.(A) = K.(C*X) is called the coarse
index of the operator D, and is denoted by Ind D.

EXAMPLE: Let us work all this out in the case of a compact manifold M. Here
A = R, the algebra of compact operators, B = 9B, the algebra of all bounded
operators, and so B/A = B/R is the so-called Calkin algebra. It is known that
Ko(R) = Z, K;1(R) = 0, so only the even case is significant. Moreover, the
construction of 9: K;(B/K) — Ko(R) can be made very explicit in this case: if
u € B/R is unitary, choose U € B projecting to u. U need not be unitary, but,
since UU* — 1 and U*U — 1 are compact, U is a Fredholm operator. One finds
that OJu] € Ko(R) = Z is just the Fredholm index of U.

Here, since M is compact, any unitary at all from L?(Sy) to L?(S;) covers
the identity map. Thus we find that our coarse index is simply the Fredholm
index of x(D) considered as a map L2(S;) — L?(S1), in other words, it is the
ordinary index of D.

Just like the ordinary index, our coarse index has some homotopy invariance
and vanishing properties. For now, we will state only the vanishing theorem.

PROPOSITION 3.8: Let M and D be as above. Suppose that Ind(D) # 0. Then
(a) In the even case, 0 must belong to the spectrum of D;
(b) In the odd case, the spectrum of D must be the whole of R.

PRrOOF: Consider the even case, and use the notation above. If zero did not
belong to Spectrum(D), then one could choose a chopping function x such that
x(A) = £1 for all A € Spectrum(D). The operator T defined in (x) above is then
a unitary in B, hence the index lies in the image of the composite homomorphism

K;(B) - Ki(B/A) — Ky(A).

But this composite is zero, because the six-term K-theory sequence is exact.
A similar argument works in the odd case, but now we find that the spectrum
cannot have any gaps at all; this is because one need no longer require that
chopping functions be odd functions, because there is no grading that they have
to preserve. [
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COROLLARY 3.9: Let M be a complete spin manifold. If M has a metric of
UIbb_[OTmby pOSbbbUC scalar curvature (/thb isk=2C> U/, then the coarse index O‘f
the spinor Dirac operator vanishes.

PrOOF: The Lichnerowicz-Weitzenbock formula shows that the spectrum of

D has a gap over the interval (—C/4,C/4). 0O

The situation as regards the homotopy invariance of the coarse signature is
rather less satisfactory. We will discuss in lecture 7 what the ‘best possible’
result in this regard might be, and what has so far been proved. Unfortunately,
these are not the same.

Relative index theory

One frequently encounters the following situation: an operator is given on a
complete manifold M, and it is known to be invertible on the complement of
some subset Z of M. Or two operators are given, together with an isomorphism
between their restrictions to the Complemem of Z. In such a situation one
would like to be able to define an index ‘supported on Z’, which maps to the
usual index under a forgetful map. To do this one needs to consider certain

ideals in the C*-algebra of a coarse space.

DEFINITION 3.10: Let X be a metric space, Z C X, and let T be a finite
propagation operator on some X -module. One says that T is supported near Z if
there is a constant R > 0 such that T = ©T = 0 wheneve :rd(%lnp(m\ 7\ > R\

L LOiLe ALY - o LLS $CILC R

One easily checks that the (locally compact) operators supported near Z form
an ideal in the algebra of all (locally compact) finite propagation operators.
Taking the closure we obtain an ideal in C*(X'), which we will call C%(Z).

ExAMPLE: If Z is a point (or any compact subset) then C%(Z) is the ideal &
of compact operators.

The following proposition is stated for the spinor Dirac operator, since it
is most useful in this case; but it has analogues for other generalized Dirac

onerators.

Upliavui

PROPOSITION 3.11: Let M be a complete Riemannian spin manifold, and
suppose that the scalar curvature of M is uniformly positive outside some subset
Z C M. Then there is defined a ‘relative index’

Indz D € K.(C%(2))

of the Dirac operator, which maps to the absolute index (defined in the previous
section) under the natural forgetful map.

The proof is a matter of choosing appropriate chopping functions and verifying
that certain operators satisfy certain support conditions, and can once again be
based on the finite propagation speed method. Notice that if Z is compact, we
are saying that D is actually a Fredholm operator, with an index in Z; this is a
result of Gromov and Lawson [48].
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REMARK: It is easy to verify [95, Chapter 5] that if M is non-compact then the

natniral hamamarnhig I (&) IC (O* AL iq 7arn D.- aom tha digoniggion ahava
natura: NOMOMOrpiisSiil N4 \AR) — N\U 44 ) 1S Zer0. £1om uie discussion above

it follows that the hypothesis of the vanishing theorem 3.9 can be weakened
to uniformly positive scalar curvature outside a compact set. Similar refined
vanishing theorems can be obtained in other circumstances if one can calculate
the K-theory of the relevant ideals C%(Z), as is done in some circumstances in

lecture 9, However, we will not need these results
eciu eser
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Consider now the situation where two operators ‘agree off Z’. More precisely,
suppose given a metric space X and a subset Z C X. Suppose given also

complete Riemannian manifolds M;, subsets Z; C M;, coarse maps f;: M; — X
such that f(Z;) C Z, and generahzed Dirac operators D; on M; (all these for
i = 1,2), such that the operators D; on M;\Z; and D, on M>\ Z; are isomorphic.

Then one can define a relative index

Ind, (D1, Ds) € K.(Cx(Z))

f (Mmd D \Y— £, (Mmd D) e K. ((O*Y)
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One way to do this is the following [94]. Form the algebra A obtained from

C(X) —C*(X)/C%(2)

S0 that A consists of those pairs of operators in C*(X) which ‘agree far from
. Then one can show by finite propagation speed arguments as above that the
pair (fi.(Ind Dy), fo.(Ind D2)) gives an element of K,(A). But there is a split

short exact sequence
0-C%(Z2) - A—-C*(X)—0
and this gives a direct sum decomposition
K.(A) = K.(Cx(Z)) ® K.(C*(X))
on the level of K-theory.
THEOREM 3.12: (RELATIVE INDEX THEOREM) The relative index defined above

depends only on the geometry of Z, and Z, and the operators Dy and Do on them.

We have given an informal statement, since a formal one requires a somewhat
indigestible notation. One needs to contemplate two sets of relative-index data
as auuve, u)gebum with 1bun‘101‘phlsn‘1b over the Z’s between the relevant parts of
one set and the relevant parts of the other. The conclusion is that the relative

indices are the same.
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Appendix: K-theory for C*-algebras

Our object in this section is to review briefly the definitions and constructions
of C*-algebra K-theory. For fuller details consult [14] or [109].

Let A be a unital C*-algebra. We let P,.(A) denote the set of self-adjoint
projections (e = e = e*) in the matrix algebra M, (A4). We let P(A) denote the
inductive limit lim P,.(A) (under the obvious inclusion-by-zero maps). Consider
moP(A); the operation of direct sum gives it the structure of an abelian semi-
group. (The various choices that are implicit in the formation of direct sums
wash out when we pass to homotopy classes.)

DEFINITION 3.13: Ko(A) ¢s the Grothendieck group of the semigroup moP(A).

We let U,.(A) denote the set of unitaries (uu* = u*u = 1) in the matrix algebra
M, (A). Let U(A) be the direct limit (under the obvious inclusion-by-one maps).
It is a topological group.

b o P R T I | A r” f A\ . 'y 7/ AN rd s LTTL AN
DEFINITION 3.14: K,(A) s the group moU(A) of components of U(A).
Wa mala o fauwr vamanka (Naonly, L 2 —N1 cavariant finetar of 1inital
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C*-algebras and C*-homomorphisms. If X is a compact space, then K;(C(X))
is equal to the topological K-group K —*(X). This is clear for i = 1, and for i = 0
it follows from the identification of vector bundles over X with finite projective
modules over C(X). The C*-algebra Ky group is the same as the Ky-group

as dafinad in aloeahrair K_thanrv [7E] (tha reason hoineo that anfhciontly cloge
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projections in a C*-algebra are automatlcally conjugate), but the C*-algebra K,
group differs (already for A = C) from the algebraic K; group. We will not make
use of algebraic K-theory and will therefore not introduce any special notation
here.

unitary can be dropped w1thout changlng the K —groups obtamed In fact the
space of all projections in a C*-algebra is homotopy equivalent to the space of
self-adjoint projections, and the group of all invertibles is homotopy equivalent
to the group of unitaries.

One also wants to consider the K-theory of non-unital C*-algebras (our
algebra C*(X), for instance, is always non-unital). For this purpose one performs
an algebraic analogue of the 1-point compactification which is used to define
K-theory of locally compact spaces. Let J be a nonunital C*-algebra, and
let Jt =J@dC ={j+Al:j € J, A € C} with the obvious involution and
multiplication law.

LEMMA 3.15: J* can be made into a C*-algebra in which J is a closed ideal.

Now by analogy with the theory of locally compact spaces we define K;(J) =

[ nnd T 7+ L~ (M N o~ +1 A £ ala LaAd
1\(71 \111\'1 } — 1\1\\\/)} une Can siow Wl.lJ]..lUU.b uuubuwy blldal; i1 J d,ut:d.uy naa a
unit (which we had somehow failed to notice) then this definition does coincide

with the preceding one.
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K-theory for C*-algebras has three characteristic properties. The first of
these is homotopy invariance: Let A and B be C*-algebras. A homotopy of
C*-homomorphisms from A to B is, by definition, a C*-homomorphism from A
to C[0,1] ® B (the latter algebra can be described without recourse to tensor
products simply as the continuous B-valued functions on [0,1]). Evaluation at
0 and at 1 of such a homotopy gives two C*-homomorphisms from A to B, and
the homotopy invariance property states that these two homomorphisms induce
the same map on K-theory.

For the second property, the stability property, we need an important C*-
algebra, the algebra 8 = R(H) of compact operators on a Hilbert space H. We
recall that R(H) is the norm closure of the algebra of finite rank operators.

Thiie @ iq tha inductive limit (in tha gsonca of ' *_aloahrag) of tha matriv aloahrag
110uUs A 18 tiie Inaucuive iimisv \ux LIIE SCIISE U1 U -algelas) U1 ulic IIiailiX algeiias

M, (C). More generally, for any C*-algebra A, A ® £ is the inductive limit of
the matrix algebras M, (A). Since matrices are already involved in the definition
of K-theory, it is not surprising that K;(A) = K;(A ® K). This is the stability
property.

The third characteristic prop

need to know about quotients of C*-algebras. The following lemma is simple,
but not completely trivial.

rty of C (*_aloehra K-theorv is eracinece Wae
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LEMMA 9.10. LEL A € a4 v -atgevia, J a closed two-staea waeat. L1iemn
and the quotient A/J is a C*-algebra also.

This makes it possible to talk about short exact sequences of C*-algebras. Let

0—J— A— A/J — 0 be such a short exact sequence. The exactness property
says that there is a natural 6-term exact sequence of K-theory groups

K,(J)——K1(A) — K, (A/J)

1 |

Ko(A)J) ~— Ko(A) ~—— Ko(J)

The cyclic nature of the exact sequence is a version of the Bott periodicity theorem
for C*-algebra K-theory. It leads to the notational convention that, for any
n € Z, K,(A) denotes Ky(A) if n is even and K;(A) if n is odd.

REMARK: By applying this result to a suitable ‘suspension sequence’ one can
prove the Bott periodicity theorem in a more familiar guise: the homotopy groups
of the space U(A) are periodic with period 2, and mU(A4) = K;41(A), i > 0.

A simple consequence of the exact sequence above is the ‘Mayer-Vietoris’
exact sequence for ideals in a C*-algebra, which we will also use.

PROPOSITION 3.17: Let I and J be (closed two-sided) ideals in a C*-algebra A,
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and suppose that I + J = A. Then there is a cyclic exact sequence

Ki(INJ)—Ki(I) ® K1(J) — Ki(4)

have made use of comnler C*-

A of LUV

REMARK Thrnno‘bgl . £

his monograph w
algebras and their K-theory. There is also a theory of real C*-algebras and
an associated 8-periodic real K-theory. There seems to be little difficulty in
generalizing all our results to a real context, and this should be done in order to
get the sharpest possible forms of the theorems relating analysis to surgery and
to positive scalar curvature. But for simplicity we will not go into the details of
this.

Notes and references: As already mentioned, [109] and [14] contain introduc-
tions to the subject of C*-algebra K-theory. The book [28] is filled with profound
applications of operator algebras to geometry. Versions? of the definition of
C*(X) and of the coarse index first appear in [91], motivated by the problem of
generalizing Connes’ index theorem for measured foliations [27]. The present,
hopefully final, form of the definitions comes from [58]. There is a version w1th
coefficients’ in [53].

Relative index theory has been developed from a number of points of view,
starting with the paper [48]. See [17, 21, 61]. These articles consider the
situation in which the relative index is an ordinary Fredholm index (in our
notation, Z is compact). The generalization given here is based on [94].

There is a close analogy between the C*-algebra C*(X) and the bounded
category over X, €(X; A), defined for any ring A to have objects free based
A-modules equipped with a locally finite reference map from the basis to X, and
morphisms A-module morphisms that satisfy a ‘finite propagation condition’ in
X. See [83, 88] for this construction and some of its applications. An attempt

to make a direct connection between the two notions is in [82].

a4 N N . i1 4 . N 1 N ~ . _
*In our present understanding, this paper defines the ‘rough index’ rather than the ‘coarse
index’; but this distinction was not apparent at the time.



CHAPTER 4

An example of a higher index theorem

So far we have spoken rather abstractly about the ‘higher index’ Ind(D) €
K.(C*M), for an operator on a non-compact complete Riemannian manifold M,
but we have not given any examples of such ‘higher indices’. In fact, nothing that
we have said rules out the rather depressing possibility that K, (C*M) might be
zero for all non-compact spaces M — a possibility which even seems plausible
when we discover that the K-theory of the C*-algebra of all locally compact
operators on M actually is zero! Fortunately, however, the finite propagation
condition saves the day. In this lecture we will give the first example of a non-
trivial higher index theorem in coarse geometry — the so-called ‘partitioned
manifold’ index theorem.

Odd operators

The index theorem that we will consider is one for elliptic operators on
complete odd-dimensional manifolds. Here we review briefly the odd-dimensional
counterparts of our standard examples, the Dirac and signature operators.

For the spinor Dirac operator, there is no great difference from the even-
dimensional case. In fact, if M is an odd-dimensional complete Riemannian spin
manifold, then the spinor bundle S over M and its Dirac operator D are still
defined as before. It is now no longer the case that the spinor bundle decomposes
as a direct sum S = Sy @ S1; consequently, the Dirac operator is an ungraded
self-adjoint operator. As we have seen, this means that it will have a coarse
index in K, (C*M).

There is however a difference in the definition of the signature operator.
Recall that on an even-dimensional manifold the signature operator was D =
d + d* graded by a certain anticommuting involution ¢ constructed from the
Hodge star operator. In the odd-dimensional case the analogous involution ¢ in
fact commutes with D, so decomposes it into a direct sum of two self-adjoint
operators. We want to take just one of these summands as the ‘odd-dimensional
signature operator’. To be definite, we say that the odd signature operator is
the Dirac operator associated to the Clifford algebra of T'M restricted to the

+1-eigenspace of the action of the volume form. In terms of differential forms,

27
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this says that D = *d % dx restricted to even-dimensional forms only.
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Dirac operators of this type. Specifically, let M be a manifold with boundary
OM. Let S be a Clifford bundle over M; if M is even-dimensional we assume
that S is graded by a grading operator ¢. Clifford multiplication by i = /-1
times the inward-pointing unit normal to M defines another involution v on

the restriction S’.g“ From these data we can construct a new Clifford bundle

0S on OM ,as follows.

(i) If M is even-dimensional, then S,/ is equipped with two anticommuting
involutions € and v. Thus —iev is an involution and we take 4S to be
its +1-eigenspace. Since v and € both anticommute with the Clifford
action of TOM, one sees that this is a Clifford bundie over M

(ii) If M is odd-dimensional, then Sy is a Clifford bundle graded by the
involution v. We take this as the definition of S in this case.

We will say that the (generalized) Dirac operator for S is the boundary of the
(generalized) Dirac operator for S (this statement has a precise interpretation in
terms of the boundary map for K-homology). Now we have the following table
giving the boundaries of each of our standard operators in both the even and

odd dimensional cases:

Operator Boundary operator

on M M even l M odd
Spinor Dirac | Spinor Dirac Spinor Dirac
Signature Signature @ Signature | Signature

The slogan ‘the boundary of Dirac is Dirac’ always holds good, but ‘the
boundary of signature is signature’ is true only up to some power of 2. Eventually,
this will require us to tensor by Z[%] when we compare surgery theory to analytic
invariants.

Partitions of a noncompact manifold

To formulate a higher index theorem we need a procedure for constructing
maps K,(C*M) — R. One natural hope might be that the algebra C* M should
admit a trace, that is a positive linear functional 7 such that 7(ab) = 7(ba) for

all appropriate a and b. Such a trace is known to induce a map 7, from Kj to
TD T “'hﬂ f‘f\“+ﬂv+ ‘F \‘lfl""\ NDI\mQ*"‘Y +h|ﬂ ;ADO
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‘closed at infinity’ manifolds [91, 92]. However, in coarse geometry, this fails
because of the following lemma:

lomaontad for cortain
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LEMMA 4.1: There are no non-trivial traces on C*M, for M non-compact.

=ea . L0070 WIT Y 4 4 Fol Wl H V2, JUT 2

One proves this by showing that any such trace would give rise to a non-trivial
shift-invariant positive linear map from the vector space of all integer valued
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FIGURE 1. Partitioned manifold

functions on N to R. But it is easy to see that no such map exists. We therefore
seek a more sophisticated technique for constructing maps from K,C*M.

DEFINITION 4.2: Let M be a manifold. A partition of M is a decomposition
of M as the union M_ U M, of two submanifolds with boundary, such that
M_NM, =0M_ = 0M, = N, where N is a compact codimension one
submanifold of M.

wlorvgy U

In other words, M is cut apart into two halves along the codimension one
submanifold N (see figure 1).

Suppose that M is a complete Riemannian manifold with a partition N as
above. We will construct a homomorphism ¢n: Ki1(C*M) — Z. Let H be the

AP A — PRV RIS —~—

AL om0 Vol ZYRIAAN S ALl o D 1ad TT Vg il e cdaalind LTI 4~ AL .
Ivi-1110Uule Il wiLCi ©o \lV.l) 15 ucineu, alll Iev [1.4 DE LIIC 1e5LICLI0LL U1 11 WV iy,
that is, H, is the range of the orthogonal projection operator P on H defined
by multiplying by the characteristic function of M, .

LEMMA 4.3: For any ope:

is compact.

ProoF: Without loss of generality we may assume that 7" has finite propaga-
tion R. Then, outside a 2R-neighbourhood of N, the commutator [T, P] is zero
(because in that region 7" cannot see the difference between P and a multiple of

atme and 4 te Tanalle
tOr, ana 1iv is 10caily

2Vn 3 A3 XX acinn [T D) 20 6 mmvnarndler crrovem et ard e e
L€ 1A€Itivy ). nence i, 7| 1S a Commpaculy sSuppoOrvea oper

compact because T is; so it is compact. []

Now let A be the subalgebra of B(H) obtained by adjoining a unit to C*(M);
then, by definition, K,(C*(M)) = K,(A). For a € M, (A), define T, to be the
operator on (H,)™ obtained by first multiplying by a and then compressing to
(H4+)™ by the orthogonal projection P & --- & P. Now P commutes modulo

rnmnarnte with A and thic imnling that T . — T . madala comnanta Tn
\JUIIIPO’\J\ID ywiull “, il uvliio llllyllco viiav 1L giqg’ — 4L qga’ [} a1ivuuiv \/UJJJ.IJO;\JUD. 11

particular, if w is a unitary in M, (A), then T, is a Fredholm operator, with
parametrix T,,«. Our map ¢n: K;(C*(M)) — Z is then defined by
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N

FI1GURE 2. Reduction to the product case: the manifold M.

THEOREM 4.4: Let M be a partitioned manifold of odd dimension, and let
on: K1(C*M) — Z be the homomorphism defined by the partition. Then for a

o o d TV o g TY o AT
yCIl/CI UI<EW LJTTUcC upcruuu 7 orn ivl,

¢~ (Ind D) = Ind Dy,
where Dy is the boundary operator 3D on N thought of as the boundary of M .

REMARK: Since 8D is an elliptic operator on a compact manifold, its index
can be calculated by the ordinary Atiyah-Singer index theorem and expressed
in terms of the Pontrjagin classes of N. For example, in the case of the spinor
Dirac operator the index is just the jl\—genus of N.

Here is an outline of the proof, as simplified by Higson. One begins by checking
the theorem in the case of a product manifold M = R x N. In this case one can
analyse the Dirac operator on M by the method of separation of variables: it
is a ‘product’ of a Dirac operator Dy on N with the Dirac operator id/dx of
R. By explicit calculation, one can then check that ¢y (Ind D) = Ind Dy. The
remainder of the proof consists of a reduction to this case. We will need the
notion of bordism between partitions of M: two partitions M = M_ UM, =
M! U M/ are bordant if the symmetric difference M_ A M’ = M\ A M, is
compact. Now we have

LEMMA 4.5: Bordant partitions define the same map K1(C*M) — Z.

Indeed, let u € K,(C*M) and let T, T, be the Toeplitz operators corre-
sponding to u and the two partitions. By definition, T,, and T, differ by an
operator which is locally compact (because u is) and compactly supported (by
definition of bordism), hence is compact. The index of a Fredholm operator is
invariant under compact perturbations, so this proves the result.

The other key lemma for the reduction follows from the finite propagation
speed arguments that we have used before.

LEMMA 4.6: ¢n(Ind D) depends only on the geometry of M in an (arbitrarily
small) neighbourhood of N.

Granted these two lemmas, the reduction to the product case may be made as
follows. Let M = M_UM_ be the given partition, with partitioning submanifold
N. We can make N bordant to another partitioning submanifold N’ contained
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in M_, say, and by bordlsm invariance ¢x (Ind D) = ¢/ (Ind D) Now, since the
index is localized near N’ which is uiSjOluu from 1V1+, W€ 1may \wwuuul, «,uanging
the index) replace M, by a copy of N x Rt equipped with a product metric
outside of some neighbourhood of N x {0}. Let M denote the modified manifold
so obtained (see figure 2). The manifold M is still partitioned by N’, but now

N’ is bordant to a copy N” = N x {r} of N sitting inside a part of M that

nnnnnnn tric to a productN x Rt. Thus. without chanecine the index. we

is isometric to a productN x R*. Thus, without changing the index, we may
replace N’ by N”. Finally, since N” has a neighbourhood that is isometric to a
product, the locality property of the index shows that we may (without changing
the index) replace the whole of M by the product N x R. This completes the
reduction.

ExAMPLE: In the original proof of the Atiyah-Singer index theorem [80], one
key step was the proof that the analytical index is cobordism invariant: that is,
if N and N’ are compact manifolds which are equipped with generalized Dirac
operators Dy and Dy, and there is an (appropriately oriented) cobordism W
between N and N’, then Ind Dy = Ind Dy-. A simple approach to this result,
which avoids the technicalities of elliptic boundary value problems, can be given
using the higher index theorem. Let M be the non-compact manifold constructed
by attaching cylinders N x R~ and N’ x R* to the ends of the cobordism W.
Then both N and N’ define partitions of M, and these partitions are bordant —
they differ by the compact set W. Thus, if D denotes the Dirac operator on M,
¢n(Ind D) = ¢n/(Ind D). But by the calculations above, ¢x(Ind D) = Ind Dy
and PN/ (Ind D) = Ind DNI .
This implication was observed by Higson [51].

EXAMPLE: Suppose that M is a spin manifold. The Lichnerowicz vanishing
theorem (3.9) tells us that if M has uniformly positive scalar curvature, then
IndD =0 € K;(C*(M)). Combining this with the higher index theorem, we
find that if N is such that Ind Dy = A(N) # 0, then M cannot admit any
complete metric of uniformly positive scalar curvature. In particular this holds
for N x R. This result is due to Gromov and Lawson® [48].

Here is an an example which does not explicitly involve non-compact manifolds
in its statement. Suppose that V is a compact spin manifold of dimension
congruent to 1 modulo 4, and suppose given a homomorphism « from m,V to Z.
Then we note

(i) Because the circle S! is the classifying space BZ, the homomorphism «
is induced by a map f: V — o], unique up to homotopy;

(ii) Via the Hurewicz theorem, « gives a homomorphism H,(X;Z) — Z, and
hence a cohomology class in H!(X;Z); this class is just the pull-back

f*(s) of the standard generator s € H'(S';Z).

In fact they prove the stronger result that M has

curvature — uniformity is not required.
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The number (A(V) — f*(s),[V]) is called the higher A-genus corresponding
to a. Now we have

PROPOSITION 4.7: If the higher ./ll\-genus corresponding to some o is non-zero,
then V' cannot have any metric of positive scalar curvature.

PROOF: Notice that s is the cohomology class Poincaré dual to the homology
ss represented by a point p in S'. Using transversality theory, choose f in
its homotopy class to be transverse at p, so that f~1(p) is a codimension one
submanifold N of V with trivial normal bundle. The higher .Z—genus of V is then
just the ordinary .;l\-genus of N. Let V be the Z-covering of V corresponding to
a. Then V is partitioned with N as partitioning submanifold. Since the .;l'\—genus
of N is non-zero, the higher index theorem shows that V cannot have any metric
of uniformly positive scalar curvature. But a metric of positive scalar curvature
on V would lift to such a metricon V. O

EXAMPLE: In the preceding example we may replace the Dirac operator by the
signature operator, and correspondingly replace the ./zl\—genus by the L-genus.
Then we obtain the definition of the higher signature of the compact manifoild V'
corresponding to a homomorphism a: V — Z. Arguing as before and combining
the higher index theorem with the homotopy invariance of the analytic signature?
we obtain

PROPOSITION 4.8: The higher signature of a compact manifold V, corresponding
to some given homomorphism mV — 7Z, is invariant under oriented homotopy
equivalence.

This result was known to Novikov in the early sixties, and it eventually led
to the conjecture that all the higher signatures (arising from the classifying
space Bmy(V) rather than BZ) must be homotopy invariants. Moreover, one
can deduce from it that the class Ly (V) € H*(V;Q) is invariant under homeo-
morphisms of the (4k + 1)-dimensional manifold V'; this line of thought led to
the proof of the topological invariance of the rational Pontrjagin classes [79]. We

will look at an analytic approach to these results in lecture 7.

The K-theory of C*(|R|).

A partitioned manifold is in reality nothing more than a manifold admitting

arcn ntral’ mman ~o AL , R tha heo aacilyv canstriicted fro
a Coarse \Juuw.ux Miap C! ivi — IR tnie map Can D€ caslly Comsiruciea iroin

the distance function to the partitioning submanifold. The partition of M is
then pulled back, in the obvious sense, from the canonical partition of R. We
therefore see that the groups K, (C*(|R|)) are® the universal receptacles for the
higher indices of operators on partitioned manifolds, and it is of some interest to

2See [63], or our discussion in lecture 7.

BT, iicem thia nedbadion T [ IR T Tt I, [ JO U SN S P
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with the group C*-algebra.
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compute exactly what these groups are. Notice that, since some higher indices

ara nantrivial tha ovratim KL (O vmniab he nanozara
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PROPOSITION 4.9: The K -theory of C*(|R|) is given as follows:

_ ! 0 ifi=0
R . | Z ifi=1
PROOF: There are several ways to prove this proposition, and it will follow
from our more general calculations in lecture 8. However a direct proof can also
be given using the Pimsner-Voiculescu exact sequence for the K-theory of the
crossed product of a C*-algebra A with an action of Z. Recall that if « is the
generator of the Z-action on A, then the crossed product A x,Z is generated by A
together with a unitary U such that conjugation by U induces the automorphism
a on A. The notion is relevant here because of the following observation: let A
be the C*-algebra ¢°°(Z; K) of bounded, compact-operator-valued functions on
Z. Then A admits an obvious Z-action by translation and we have

C*(IR|) = A x Z.

To prove this one simply observes that both sides of the equation can be
considered as given by doubly-infinite matrices of compact operators and the
multiplication laws are the same.

Now Pimsner and Voiculescu [84] gave an exact sequence for the K-theory of

a nvnccad e A d.
a Cluddeu plougudctu.

|

where the maps K;(A) — K;(A) are given by 1—a,. In our situation, K;(A4) = 0,
and Ky(A) is the abelian group ZZ of all two-way infinite sequences of integers,
with a, acting by translation, so that 1 — o, maps the sequence a, to the
sequence a, — G,+1. It is easy to see that 1 — a, is surjective on ZZ%, with kernel

7. congisting of congtant funectiong: and thig gives the comnutation M
of constant unctions; ang this gives tne co
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REMARK: One can show that a generator of K;(C*(|R|)) is given by the
coarse index of the Dirac operator id/dx. Now this operator is invariant under
translation by R, so the whole of the definition of the index can be carried
out inside the subalgebra of translation-invariant elements in C*(|R|). But
it is easy to see that this subalgebra is simply the group C*-algebra C}(R)
(compare 5.14), which by Fourier analysis is isomorphic to Cp (I@), the algebra of
continuous functions vanishing at infinity on the dual group. The K-theory of
the translation-invariant subalgebra can therefore be calculated, and we find

PROPOSITION 4.10: The inclusion of the translation-invariant subalgebra C(R)
in C*(|R]|) induces an isomorphism on K -theory.
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It seems an interesting question whether a direct proof of this result (perhaps
o anmie averasing nrarediivre) cam ha farznd T+ armmanng +1ha ~Ah an are
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could lead to a new proof of the Bott periodicity theorem.

REMARK: The analogue of proposition 4.10 is false for most groups (Z provides

a simple pYamn]p\ but it is Pnnpmvah]v true for all contracti bw ie groups; this

would follow from the Baum-Connes conjecture [10].

REMARK: An intriguing contrast between coarse and rough geometry can be seen
when one tries to duplicate the calculation of 4.9 for the C*-algebra associated
to the rough geometry of R (which is the C*-closure of the algebra of ‘uniform
smoothing operators’ on R defined in [91]). The algebra can still be written
as a crossed product but the algebra A is smaller; the effect of the bounded
geometry hypotheses is that Ky(A) is now the subgroup of ZZ consisting of
bounded sequences. Clearly, not every bounded sequence b, can be written as
an, —ap41 for some bounded sequence a,,, so that 1 —qa, is now far from surjective,
and so Ky of the uniform algebra is quite large; in fact it is the elements of this
K, group that are detected by the renormalized index theory of [91].

The methods used to calculate K, (C*(X)) for X = |R| generalize to the case

= |R"|, and one finds that K;(C*(JR™|) is 0 if ¢ # n modulo 2, and is Z
(generated by the coarse index of the Dirac operator) if i = n modulo 2. Now
suppose that c: M — R" is a coarse map from a complete Riemannian manifold
M to R™. Then we have a homomorphism

vt Kn(C*(M)) = Z

which is analogous to ¢y in the case n = 1. Corresponding to the partitioned
manifolds index theorem we have the R™-bounded index theorem: If ¢ is made
transverse at 0 € Rn, so that ¢~ \U} is a compaCu submanifold 1VT, and if D is a
Dirac operator on M, then c.(Ind D) = Ind Dy, where the operator Dy on N
is constructed from D by a procedure analogous to that used in the n = 1 case.
In particular, if D is Dirac, then Dy is Dirac; if D is signature, then Dy is some

power of 2 times signature.

Notes and references: The partitioned manifold index theorem appears in
[93], and the simplified proof we have given comes from [51]. Analogous
theorems have been stated by many other authors, see for example [4], [21, 20],
[71], [86]. The computation of the K-theory of C*(|R|) using the Pimsner-
Voiculescu sequence has been part of the folklore of the subject for a long
time; it was written down in [113]. The R™-bounded index theorem is in [95];
but the same geometry, differently connected to analysis, is the basis of the

‘hyperspherical’ ideas of [48].



CHAPTER 5

Assembly

In this lecture we will make a connection between the groups K, (C*X)), which
are analytically defined coarse invariants of X, and some homology groups of
X which belong to more classical algebraic topology. To be specific, these
are the locally finite K-homology groups of X. Motivated by considerations
of index theory, Atiyah [5] suggested that it might be possible to define these
homology groups in terms of functional analysis, and such a definition was found
by Kasparov [64, 65| (see also [19]). We begin by reviewing this definition.

Kasparov’s K-homology

Let X be a (locally compact Hausdorff) space. Recall that a Hilbert space H is
said to be an X-module if it is equipped with an action of the C*-algebra Cy(X)
of continuous functions on X that vanish at infinity. Moreover, an operator T’

on H is called locally compact if T f and fT are compact for all f € CG(—X)

DEFINITION 5.1: Let X be a space. An even (or odd) Fredholm module for X
consists of the following data: an X -module H and an operator U (or P) on Hx

locally compact operators, for all f € Co(X);
(i) In the odd case, P — P*, P — P?, and the commutator [P, f] are locally
compact operators, for all f € Co(X).

There are various natural equivalence relations (homotopy, unitary equiva-
lence and so on) on such Fredholm modules, and there is also a natural notion
of direct sum. Kasparov showed that under direct sum the equivalence classes
form an abelian group: this group is denoted Ky(X) in the even case and K;(X)
in the odd case.

REMARK: We can easily see that Kasparov’s groups K,(X) will be covari-
antly functorial for proper maps. For a proper map ¥ — X induces a C*-
homomorphism Cy(X) — Cy(Y), and hence makes every Y-module into an
X-module.

35
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In Kasparov’s definition, the X-module H can be arbitrary!. However, it is

possi sible to realize the whole of R'-hnmn]no’v ]'\v operators on a single X-module

ATGAILT VAT WALLT LR AL mA2VAVAVE PriGuAs Vil & HAv L TaiAUNL

provided that it is adequate in the sense of 3.4. This follows from

THEOREM 5.2: (VOICULESCU [107]; BROWN, DOUGLAS AND FILLMORE [19])
Let H be an adequate X -module, and let H' be any 'nn'nripnpfnprnfpz X -module.

Then the X -modules H and H® H' are ‘essentially equivalent’, in the sense that
there is a unitary U: H — H ® H' which commutes modulo compact operators

with the Cy(X)-actions on these two modules.

Thus, by embeddlng H "asa dlrect summand in H @H "and hen conJugatlng
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We now assume that for each space X a single adequate X-module Hx has
been fixed once and for all.

DEFINITION 5.3: An operator T € B(Hx) is called pseudolocal if [T, f] is
compact for all f € Co(X).

The pseudolocal operators on Hx form a C*-algebra, which we denote ¥°(X).
The locally compact operators form an ideal in ¥°(X); we denote this by
U-H(X).

REMARK: The ¥ notation arises from the following example, which was the

ane rangidarad hy A+ivah Q..mmm that YV ia o manifald and +hat IO — T2/ Y
UIlIT LULID1uTLI U U_)’ nuLyGu ]_J DT uvllau /2 10 Lucwuu\uu. alilu uu.am 4L X — L/ \.{l }.

Elliptic differential operators on X (such as the generalized Dirac operators we
considered in the first lecture) are then invertible modulo ‘small’ (smoothing)
error terms, but their formal inverses (parametrices) cannot be differential oper-

ators. The enlarged class of pseudodifferential operators is defined so as to contain
all diffarantial Aanaratnare tnocathar with tha naramatricoe nf allintie diffarantial

all differential operators together with the parametrices of elliptic differential
operators. It is a simple consequence of standard facts about pseudodifferential
operators [106] that a pseudodifferential operator of order zero on X belongs
to our algebra ¥°(X), and a pseudodifferential operator of order less than zero
belongs to ¥~(X). An elliptic pseudodifferential operator of order zero on X

{meaning one that is invertible modulo onerators of order less than zero) therefore

\A2aTTuaxiid S ViiT tnay 1s 1nvertible modaulio VPTLRuLS UL VIRATL 0SS VAIQAL L0100 vaalitiitT

gives an invertible in ¥°(X)/¥~1(X), that is, an even Fredholm module.

Kasparov gave the following characterization of pseudolocality, which is often

easier to check:
1A 5.4: An ope s '
for all f,g € Co(X) having disjoint supports.

n fact, in the even-dimensional case Kasparov even allows U to be a map from one
X-module to another! There is a simple ‘infinite repetition’ trick which allows one to turn
Fredholm modules of this kind into ones where U acts on a single module.

SRR AR D D R i =

2This means that Co(X)H = H.
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The ‘only if’ is obvious here; the ‘if’ requires a partition of unity adapted to
the decomposition of X into level sets of f.

Notice that, by definition, an even (or odd) Fredholm module gives rise
to a unitary (or projection) in the quotient algebra ¥°(X)/¥~1(X). In fact
Kasparov’s definition of K-homology is equivalent to

DEFINITION 5.5: We define the K-homology groups K;(X) of X by
Ki(X) = Ki1 (P°(X)/97H(X)).
To explain the terminology ‘K-homology’, recall that K-theory is a gener-

alized uuhuuluu)gy theors Yy \buau lb, it satisfies the ullcuumg-ol.eenI‘Ou axioms
except for the dimension axiom). It is known abstractly that to every generalized
cohomology theory there is associated a dual generalized homology theory (see
[1] for discussion). Now one can prove that the functors X — K;(X), ¢ =0,1,
form a periodic generalized homology theory and that this is in fact ‘the’ dual

thonry +ta ardinarv K _thanre Wo nnto avnlicitly that thig Ic- a lorallay fmat
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generalized homology theory: it admits cycles with infinite support?.

Since we will need it later, let us sketch the proof that K-homology satisfies
the excision axiom. We need to show that if A and B are closed subsets of X,
with AU B = X, then there is a cyclic Mayer-Vietoris exact sequence

Kl(AﬂB) —>K1(A) ﬁKl(B) ————v\Kl(X)
A

One can check that the map ¥°(Y) — W°(X) provided by functoriality has
image in the ideal ¥% (Y). In fact we have the following ‘excision’ lemma:

LEMMA 5.6: Suppose that X is compact. Then the map ¥o(Y) — ¥S.(Y)

induces an 180 morphism in K- fhpn'r'u Whether or not X is compact the corre-

Leo LWLl FECLILE UL A Lo, ol LU

sponding map ¥O(Y)/¥~1(Y) - U4 (Y)/¥~YX) always induces an isomorph-
ism in K-theory.

PrOOF: (SKETCH) We will sketch the construction of an inverse map on

K-theory, assuming for notational simplicity that X and Y are compact. Let

a. £V s LYY ha a nagitive inear evtengion onerato +hao linaar ran
S. U\L j] — u\_/x} D€ a POSIuive 1iileal €XieIiSioNn Operato that m, a 1inear map

(not a homomorphism) which sends positive functions to pos1t1ve functions and
such that s(f) is an extension of f for all f € C(Y). According to a theorem

3For example, let X be any discrete space. Let Ho be some infinite-dimensional Hilbert
space and let Up: Hyp — Hp be a Fredholm operator of index one, unitary modulo compacts
— for example the so-called ‘unilateral shift’. Then H = Hy ® £2X (with the obvious Co(X)-
action), U = Up ® 1 give an even Fredholm module whose support is the whole of X.
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of Stinespring [103], the induced positive linear map s: C(Y) — B(Hx) can be
dilated to a representation ®: C(Y) — B(Hx ® H). This representation of ¥ is
adequate, hence it is essentially equivalent to Hy . Moreover, if we make ¥% (V')
act on Hx @ H by the direct sum of its given action on Hx and the zero action
on Hy, then ¥$ (Y) commutes modulo compacts with the action of C(Y) via ®.
Thus we have obtained a map ¥%(Y) — ¥°(Y), and it can be shown that this

T7 al Tl | mM

is the inverse Kdlr Elle level of K -tneory ) O1 the map preVlOUbly considered. LJ

Now in our Mayer-Vietoris situation, one can check that ¥4 (A4) N ¥%(B) =
U9 (AN B) and ¥% (A)+ 9% (B) = ¥9(X). Taking the quotient of everything by
T .—1

¥~1(X), we may apply the Mayer-Vietoris sequence of 3.17 to get the required
Mayer-Vietoris sequence for K-homology.

The assembly map

A fundamental justification for the analytic definition of K-homology is that
an elliptic operator gives rise to a K-homology class. This is as it should be,
since an elliptic operator can be paired with a vector bundie — an element of
K-theory — to give an integer: one takes coefficients in the vector bundle and
forms the index of the resulting operator. In our language the construction can
be expressed as follows. Let D be a generalized Dirac operator on a complete
n-manifold M, and let x be a chopping function (1.5). Then one can show that
x(D) € ¥°(M); use Kasparov’s lemma (5.4) together with finite propagation
speed arguments. Moreover, x(D)? — 1 € ¥~1(M). Thus P = (1 + x(D))/2
defines an (odd) Fredholm module (in the even-dimensional case we get an even
Fredholm module by taking into account the grading of D). Thus we obtain a
K-homology class which we denote by [D] € K,(M).

TL =211 ) JERSY: SR IR 1Y PRSP [P L g 10)) £

It will be useful to know* that the K uuuluwgy of euclidean space in is S‘I“"ply
a copy of Z in the dimension congruent to n mod 2, and is generated by the Dirac
operator. (This is a special case of K-theory Poincaré duality.) In particular we
have Ko(R) = 0 and K;(R) = Z generated by the Dirac operator id/dx. Now
recall that this is the same answer that we obtained in the last lecture for the

I _+honru oratina nf tha ¥ _alonhra (MR acanciatad +a tha rnnran atriiotiira
Fa N l}llCUl‘y slUuPD VL w1 v -al15culal v \In\l/ GAOOULIAUTU LU ULITU LUQLOU Oviuvuvulv.

Is there some connection between K-homology and the K-theory of the coarse
C*-algebra? The answer involves the construction of the assembly map relating
these groups.

It is convenient to introduce a ‘ﬁnite propagation’ version of ¥°(X), corre-
nndIna‘ to C* fY\ which is a ‘finite propagation’ version of U~ 1/ ¥

$9 9% wilcn 1S a nnie LYy VIV version of v \<> ]

DEFINITION 5.7: We define D*(X) to be the C*-algebra of operators on Hx
generated by all the finite propagation operators in ¥°(X).

4 . PR . . LI - s . a 4
*Beware that the inclusion of a point in Euclidean space is not a proper homotopy
equivalence. It therefore need not, and in fact does not, induce an isomorphism of K-homology.
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See 3.2 for the definition of a finite propagation operator. Just as K, (C*(X))
is functorial under coarse maps (3.5), one can show that K, (D*(X)) is functorial®

under coarse maps which are also continuous.

LEMMA 5.8: With the notation above

(a) C*(X) __m—lfv\m N*{Y)
\a) v \A) — \Ajiirs Ay,

(b) ¥O(X) = ¥~} (X) + D*(X).

PROOF: The first one is obvious modulo analysis; C*(X) just is generated by
things that are locally compact (in ¥~1(X)) and finite propagation (in D*(X)).
For the second we need to write any pseudolocal operator as the sum of a locally
compact and a finite propagation operator. Let T be pseudolocal and choose a
real ¢ > 0. Take a partition of unity ¢? on X subordinate to a locally finite
cover of X by open sets of diameter < €. Consider the series
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ges in H. The convergence is ¢
the sum is just a finite one — so that all that needs to be checked is that then
partial sums of the series defining S are bounded in the operator norm.

Clearly, S has propagation at most €, since it is a sum of operators of
propagation at most €. On the other hand,

S-T= Z[Sosz](Pz

is a locally finite sum of compact operators. Hence it is locally compact. [

COROLLARY 5.9: We have D*(X)/C*(X) = ¥%(X)/¥~Y(X). Consequently,
Ki(D*(X)/C*(X)) = Ki—1(X).

REMARK: It follows from the proof above that an element of ¥°(X)/¥~1(X)
can be represented, not merely by an operator of finite propagation, but in fact
by an operator of arbitrarily small finite propagation. This will be useful later.

5We are cheating slightly here. Recall (see the proof of 3.5) that we needed to use operators
on adequate modules in order to define the functoriality of K.(C*(X)), in order to have

enough ‘room’ to make certain embeddings of Hilbert spaces. It turns out that to define the
fnn(‘tnﬂa]lfv of K, (D*(Y\\ one needs even more ‘room’ [57 Lemma 7. 7] for lncfanr‘n the

tensor product of an adequate X-module with an aux1hary 1nﬁn1te dlmenswnal Hilbert space

2111 partainly ha raomy oananch  In what follauwres wo wrill alararyre agciimae tha 11r maodulag o
Wi Cerialiliy o€ roomy enougn. il winat 1IcCu0OWSsS WC Wil airways assume that our modules a

adequate in this more adequate sense.
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0—-C*(X)— D*(X) - D*(X)/C*"(X)—0
gives a cyclic exact sequence of groups

Ko(X) —2> Ko (C*X) — Ko(D* X)

. |

T «\ 1PN Pal R ia T /e
K, )~— K1(C"X) ~— Ki(X)

DEFINITION 5.10: The indicated maps A are called assembly maps.

REMARK: Notice that in this discussion the space X has played two rather
different roles: its local topological structure has been what is relevant for the
discussion of pseudolocality, and its large scale metric structure has been relevant
for the definition of finite propagation. It is frequently useful to separate these
two structures out®, so let us assume more generally that X is now a (locally
compact second countable Hausdorff) space equipped with a reference map
c: X — Z to a proper metric space Z; we require that ¢ be proper, in the
sense that the inverse image of a bounded (or compact) set should be relatively
compact, but we do not require that ¢ should be continuous. In this situation
we can still define the algebras C*(X) and D*(X), where ‘finite propagation’ is
defined using the metric in Z via the map ¢. (In the language of general coarse
structures, see lecture 10, what we are doing here is pulling back the coarse
structure via ¢ from Z to X.) Moreover, corollary 5.9 continues to hold, and
so we still have the exact sequence (x). Note, however, that the algebra C*(X),
when X is equipped with this pulled-back coarse structure, is just the same as
C*(Z); so the assembly map in the context of a space X ‘bounded over Z’ should
be thought of as a map
A: K (X)) — K. (C*(2)).

Reverting to our consideration of a complete Riemannian manifold M, of
dimension n, suppose that D is a generalized Dirac operator on M. Then we
have seen that from D we can define

(a) the coarse index of D, Ind D, belonging to K,(C*M);
(b) the K-homology class of D, [D], belonging to K, (M).
These are related by the assembly map.

PROPOSITION 5.11: With the notation above, A(|D]) = Ind D.

6Thanks to Shmuel Weinberger for insisting on this in numerous conversations.
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PRrROOF: Consider the commutative diagram of C*-algebras

0 — C*(M) — M(C*(M)) — M(C*(M))/C* (M) —0

O(M) /v~ (M)

which arises from embedding D*(X ) in the multiplier algebra MM(C*(X)). We
have defined [D] € K (M) = K,—1(%°(M)/¥~1(M)) to be the K-theory class

of X(D), where X 1S a bhoppxng fuu\,tluu, and A{D] is the result of applymg,

the boundary map in K-theory associated to the second row of the diagram
above. But by our definition in lecture 3, Ind D is obtained by taking [x(D)] €
K.(M(C*(M))/C*(M) and applying the boundary map in K-theory associated
to the first row. By naturality of the 6-term exact sequence in K-theory we get

the same answer. N

VLI SQaiaT aad vy (-

One should think of this result as showing that the definition of the coarse
index, originally given only for the geometric operators of Dirac type, can be
extended to all the ‘generalized elliptic operators’ defined by Fredholm modules
over X.

Equivariant assembly

Suppose that X is equipped with a proper, cocompact action of some group
T /MLn mroca ~F cenndact et amact 44 ccc w211 Lo dlo a0 £ o /N1
1. \1115 Cadst Ul BIreatest LIILCIESL LU US Wil DE Lllau Ul a \adluld LUVUIlIlg UJ. sSome
compact manifold V', associated to a homomorphism 7; V' — T'; here the action is
free, but the more general case of proper actions can be accommodated without
difficulty.) We would like to generalize the previous constructions to take into

account the action of T'.

DEFINITION 5.12: Let H be an X-module. We say that it is a covariant X -

se eniianned 41 s mptenm A nf T ansna s . ~

e Y PN 4+ 4L Ada nan
TMOoaGULE bj Lb (2> cqu,l,ppcu LUlell/ a (lebbuly (lzbbl;UlL IU UJ 1 P LUIILPU:LLU(;C LUM/IL bll/C acLione

of I' on X in the sense that for allv e H, f € Co(X), and y €T,
(for)-v=p()fo(1)*

For example, if X is equipped with a measure, the space of L? sections of a

| & IO T _wvrartar hasnndla A~ Vo cnvariant ¥V _am~daala (15 aan am

- [COPAP: I DN
11T1L 1111(/1(111 1 -VeCiOr ouiaile o1 A lb a Covariant A -modadule. ulven ally 'lllUU.LllC

H one can form a covariant X-module
5= @i
~el

where H" is H with the Cy(X)-action shifted by v, and I acts on $) by permuting
the summands in the obvious way. If we form the algebra C*(X) using a covariant
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X-module, then Ad p() will map C*(X) to itself for all ¥ € T', and so we will
get an action of I' on C*(X). Similarly we get an action of I" on D*(X).

Since X is a proper, cocompact I'-space it can be covered by finitely many
open sets U, each of which is I'-homeomorphic to I' x p W, where W is acted on
by the finite group F'. Notice that a covariant X-module restricts to a module

over each of the spaces U.

DEFINITION 5.13: We say that a covariant X -module is I'-adequate if X can be
covered by finitely many open sets as above, such that on each U I'xp W, H

is equivalent to the covariant U-module ¢*(T') ® Hj,,, where Hy;, is an adequate
W -module, T' acts by translation on ”2("’) and Co(U) acts via the proper maop
I'xW-—-U.

Such modules can always be found. We will assume in what follows that the
algebras C*(X) and D*(X) have been formed using a I'-adequate X-module.

If A is a C*-algebra acted on by a group I', the elements fixed under I' form
a subalgebra A”'. We want to identify this subalgebra in the cases of C*(X) and
D*(X)/C*(X).

LEMMA 5.14: In the above situation, C*(X)V' = C*(I') ® &. In particular,
K;(C*(X)F) = Ki(C;T).

g~ I—In nAaNnArT
Lo iuviL ILULLCLIILJ_

ProOOF: Decompose X into fini
ty interior, each of which lies inside a coordlnate patch’ for the I'- adequate X-
module on which C*(X) is defined. Relative to this decomposition the elements
T of C*(X) can be written as m x m matrices T;;, whose entries are I' x T’

matrices of compact operators. If T is translation invariant, so is each matrix

entry T;;; but a translation-invariant I' x I' matrix

thing as an element of C*(I'") ® 8. Thus
C*X)V'2M,(CCDRR) 2CIT)R A
as required. [

LEMMA 5.15: In the above situation, suppose additionally that the action is free,
and let V.= X/T be a finite complex. Then

Ki(D*(X)"/C*(X)") = Ki-a (V).

PROOF: Let m: X — V be the covering map. Note that there is § > 0 such
hat far any Subset LT c U/ Af dAiamotor loce tha FY 45——1/7'7\ — T v LT MThic

tnat ior any € V of diameter less than o0, 7" (U) =1 X U. 'lhis
gives a natural 1 : 1 correspondence between operators of propagation less that
6/2 on V and T'-equivariant operators of propagation less than §/2 on X (lift
using a partition of unity). However, as we remarked above, equivalence classes

in the algebras D*/C* can be represented by operators with arbitrarily small
propagation. Thus in fact, D*(X\F /ﬂ*(Y\F o \IIOH/\ /\TI 1(‘/\ and the result

PLUPQSOUIVLIL. X 1IUD 1 1 Quialae v2il

follows. O
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REMARK: The corresponding statement in the case of proper actions is that

K/n*/Y\F 1C*( Y\F\ = KT (X). the I'-equivariant X-homologv of (see
1\1/ \ll. \IL J.L,L_l \11 }, viiv 1 U\iuquLluLLlJ 4 LLULLLU&U&J Vi L) \D\AU
[10]).

0—C*X)" - D*X)" - D*(X)'/C*(X)F -0
we obtain, as before, a cyclic exact sequence of groups

Ko(V) —4A—> Ko(C:T) — Ko(D* (X)F)

|

(X)F ~— K/ (C; F)(——Kl(V)

usually take X to be the universal covering of 1% here, the construction works
just the same if X is any Galois covering space with group I'.

NerINITTIO E 1R anprnnoo +ha

¥
P iy 11‘111\}1 U.dLU. rvov uluwu 1x vo

D*(X)T will be denoted S*(V) and called the structure algebra of V. The cyclic
exact sequence will be called the analytic surgery exact sequence.

There are a number of standard conjectures about the behavior of the assem-
bly map for good spaces V. In fact, for compact aspherical V, it is conjectured
[10] that K,(S*V) = 0, that is, assembly is an isomorphism. The geometric
consequences of this conjecture often use only the injectivity of the assembly
map, which we state as

CONJECTURE 5.17: (ANALYTIC NOVIKOV CONJECTURE) Suppose that I' is a
group such that BT is represented by a finite complex. Then the assembly map

K.(BT) = K,(C'T)

18 injective.

Less optimistically, one could attempt to prove that the assembly map is
injective after tensoring with Q. Similar conjectures can be stated for the Baum-
Connes assembly map KT (ET") — K,(C!T), in the case that I acts cocompactly
on the universal space ET" for proper actions.

In what follows we are going to deduce some cases of these conjectures about
the equivariant assembly map from analogous results about the assembly map in
coarse geometry. Here we give an example which may indicate the significance
of the conjecture.
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ExAMPLE: Suppose that M is a compact spin manifold, and that there s given
ArnarnAarnh L.V s TV Mhnn e ot M
U

I o
a LlUlllUlllUllJlllDlll (879 Ill.LV.l —% 1. 1I1€I W& Cali COiis

involving the assembly maps, looking like this

K., (M)—*K (C* )

[ |

K.(BT) —2~ K, (C*T)

The A in the top row is the assembly map corresponding to the I'-covering of M.
By Lichnerowicz vanishing, if M admits positive scalar curvature, then A[D] = 0,

where D is the homology class of the Dirac operator. Chasing the diagram, we
find that if the Novikov coniecture holds for F then o, ”_)] vanishes (nr is torsion

422284 VALY 12 vaiC L 240V LLLLTLLRLT LIS VL 2 vailii Uk Fe3 38w 8 Luiv] 45 vULSa11,

at least) in K, (BT"). Viathe Atlyah-Smger 1ndex theorem this translates into the
statement that the higher A-genera, that is the numbers (A(M) — o*(z), [M]),
z € H*(BT'; Q), must all vanish. Thus in the presence of the Novikov conjecture
all the higher .;\'\—genera are obstructions to positive scalar curvature. We proved
this statement in the case I' = Z in lecture 4, using the partitioned mani old

1115 oSLaLCIIICIIL 111 L1l Las CLLIC &, USills bUC Lib atliliviad

index theorem.

Notes and references: Primary references for K-homology are {19, 64].
The approach via ‘duality’ which we have used here was initiated by Paschke
[81] and perfected in [50, 52]. Another reference for this material should be
[54], eventually.

The construction of the assembly map comes from [57] (see also [115]).
The discussion of the equivariant case is folklore. (For the algebraic analogue,
compare [22].)

For more detail on the assembly map in relation to positive scalar curvature,

see (97, 99, 104].
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In the last lecture we defined a certain exact sequence of C*-algebra K-theory
SraTT M SN A allad +ha o MTh A PR P S A
SLUU.PD WiilCili W€ Cauea l/lJ.C U.'lbubyl/bb Oulyl:ly C«bubb DCqUICILLC 1€ JuDl:l.llbd:l:lUll 1UL
this terminology is an analogy between that exact sequence and the fundamental
result about the topology of high-dimensional manifolds, the surgery ezact
sequence of Browder, Novikov, Sullivan, and Wall. In this lecture we will give

a brief overview of various versions of surgery theory and the surgery exact

'1] ma the {fnr\n]nrﬂno]\ surgery exac
1 IX wy tne \vOpGi0giCas; SUrgery <xXad

functorially to our ‘analytic surgery’ exact sequence. We start the discussion
with the classical surgery theory of compact smooth manifolds.

Manifold structures

Let V be a connected space, say a finite CW-complex. A manifold structure
on V is a homotopy equivalence M — V', where M is a manifold!. The central

project of surgery theory is to classify the manifold structures on V, up to some
natural equivalence.

The most obvious (and interesting) definition of equivalence is to declare that
two structures M — V and M’ — V are equivaient if there is a homotopy
commuting diagram

M—"

NS

|4

: o ALt 2 ET F PR, ISR RN is more convenien _
ith A a difieomor p1 m~. However for technical reasomns it is more convenient to

work with a shghtly weaker definition. One says that the two structures above
are h-cobordant if there is a cobordism W between them, equipped with a map

1One obtains different notions of manifold structure according to what sort of manifold
is allowed here: smooth, piecewise-linear, topological, ... . Surgery theory works in all these
categories. We will think of smooth manifold structures, unless otherwise stated. All manifolds
considered in this section will be compact.

21f we are working with other kinds of manifold structure we should substitute ‘piecewise-
linear homeomorphism’ or just ‘homeomorphism’ here as appropriate.

45
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homotopy
equival-
ences

FIGURE 3. h-cobordism of manifold structures.

W — V x [0, 1] which is itself a homotopy equivalence and restricts to the given
maps on the boundary pieces (see figure 3). Let S(V') be the set of h-cobordism
classes of manifold structures on V; S(V) is called the (smooth) structure set of
V. The project of surgery theory is to compute S(V).

REMARK:  The s-cobordism theorem of Barden, Mazur, and Stallings [68]
ave that (in hioch dimencinne) tha diffaranca hatwoon the twn definitinone of

Q
Sy S UGy (1il lligdl WHHITIISIVILS § 0110 UWLHTITIHILT UTUWUTLL LIT bWU - UL VUGS Uil

equivalence that we have contemplated above is measured by an algebraic K-
theory invariant (Whitehead torsion) which is known to be zero in many cases
(for example, if the fundamental group of V is free abelian). There are a number
of other variations of the definition of structure and of equivalence; they are

known as ‘decorations’ and the effect of a nhangp of decoration can be quantified

EsUSLUALS S LCCVIGLVIVILS Qlll VAT CTLCULV V1 & LCUGLIET VL QBLRLISLVIVIAL L&l T MQlLilllc p= )

as above, in terms of algebraic K-theory. Our definition of the structure set
corresponds to the decoration ‘h’.

ExXAMPLE: Let V = S2 Vv S? (two spheres identified at one point). Then

S(V) = 0, since the homology of V' does not obey Poincaré duality.

EXAMPLE: Let V = S™, the n-sphere. If n = 3, the Poincaré conjecture is that
S(V) has one element. The generalized Poincaré conjecture proved by Smale in
the early sixties says that for n > 5, the PL manifold structure set of S has only
one element; however, Milnor’s work on exotic spheres showed that the smooth

structure set of a snhere (the structure set as we have defined it) can have many

LRLLLC 30 L 4 op2A02 0 (vl 8Ll C 0L Alave Qelllleid L call 114ave 11llall

elements.
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As suggested by the first example above, there is an obvious necessary
condition that V must satisfy in order for there to be aiy poss uuity that it
should have manifold structures at all. Namely, its (co)homology must obey the
Poincaré duality theorem. This means that there must be a fundamental class?
[V] in H,(V;Z) such that the cap product with this class induces isomorphisms

H"™(V;Z) - H,_.(V;Z) for every r. In fact, this must even be true with I'-

tvﬁo{-nr‘ cnofRcionte whora T — .1/ 3 s the fiindamaoantal oronn T‘F 1/ antichioe thic

VIOUULU VUUILLIVITLIIUOD,y VY LILLI U L niv 10 v L\z Luxxuouxu.«xx a1 sxuuy L4 POLUIOLLITO L1110

condition it is said to be a Poincaré space of formal dimension n. Compact
manifolds are Poincaré spaces by this definition, but so are many other spaces
homotopically similar to manifolds: for example, if (X,0X) and (Y,9Y) are
manifolds with boundary, and f: 0X — JY is an orientation-reversing homotopy

eguivalence., we mayv o']nn X to Y via the manning Pv]lnr‘]nr of f and fhnrnbv

Tqus ATLIVUT,y WU 1LY Ll Sa Vilv ViU LUGppiily 211222 Qiala viall1iT

obtain a Poincaré space. Examples exist in which the resulting space cannot be
given the structure of a manifold.
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an oriented manifold, so that it already has one canonical manifold structure and
one wants to classify all the other possible structures on it. A structure on V'
may therefore be thought of as an orientation-preserving homotopy equivalence
from an oriented manifold to V.

The fundamental result of surgery theory is an ‘exact sequence’
LoD =S(V)—=N(V) —A> L, (T)

for a Poincaré space V (of high dimension). Here the structure set S(V') has
already been defined; we will define the other terms and the maps that appear.

Normal invariants. N (V) is the collection of homotopy classes of normal
invariants for V. Recall that if M is a smooth submanifold of Euclidean space,

a small tubular neighbourhood of M has the structure of a vector-bundle over

Af Tar o Pn Y/ a +uihnila hhairhand a himndlad ~vnar 17 in
ivi . LUlL a 1L Ulllbal.C DPGLC 1 4 ) a buuu.xau. 11U15uuuu1uuuu ID a uuu.\,uc uUvcCTl 1 4 111

a weak sense (up to homotopy its boundary is a fibration over V with fiber a
sphere); N(V) is the collection of honest vector bundle structures that can be
put on a tubular neighbourhood of V' compatibly with this homotopy bundle
structure. In terms of classifying spaces, the homotopy-theoretic normal bundle

of V is classified hv a map from V to a certain snace denoted Rf’ the process

LGNS 1120 D LTS

of passing from a vector bundle to its underlying spherical ﬁbratlon defines a

30Qur definition is in fact that of a Poincaré space with trivial orientation character: one
can also define Poincaré spaces with other orientation characters (these characters correspond
to the first Stiefel-Whitney class of a manifold, which is trivial if the manifold is orientable)

anllolc I1s OoIlcniablic).

For simplicity we will ignore this issue.

4This is called the Snivak normal bundle. Its structure de
14118 1S Caned tNe oprvak nermar dungee. 1ts syructure ¢e

of V.
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forgetful map BO — BG,; and a normal invariant is a lifting

BO

V——>BG

as shown by the dotted arrow.

We are assuming that V' is already a manifold, so one standard lifting is given
already. Homotopy theory then shows that A (V) can be identified with the set
of homotopy classes of maps from V to G/O, the homotopy fibre of BO — BG.

REMARK: One can similarly define the notion of normal invariant for a Poincaré
pair (V,0V) (analogous to a manifold with boundary) but we will not go into
the details here.

DEFINITION 6.1: A normal map M — V, where M is an oriented manifold, is
a degree one map f: M — V fitting into a homotopy commutative diagram

A transversality argument shows that every normal invariant comes from some
normal map, and that two normal maps give the same normal invariant if and
only if they are normally cobordant — meaning that their ‘difference’ is the
boundary of a normal map to V % |_U _I.J Thus we can cscuu N \V} as made up
of cobordism classes of maps from manifolds to V, equipped with some ‘extra
bundle data’. These extra bundle data are vital to the definition of surgery
theory, but they will not enter into the map that we propose to construct from
surgery to analysis®, and so we will not treat them in detail. Notice however that

a hamntany antiivalansaa A s 1/ iq nartas al A h_rnhnardia
al IIUIIIUUUPJ C\iulva‘.cl‘.\zo 4VL 1 4 10 LTl Ual].ll‘y OI ].‘.Ull].lall. 1110‘1.}, CULL\,I. alll v \/UUUL\,U.DJ.J.L

is a normal cobordism, so there is defined a forgetful map S(V) — N(V). This
is the map appearing in the surgery exact sequence.

One should perhaps explain the word ‘surgery’ at this point. Given a normal
map f: M — V, one attempts to construct a normal cobordism of f to a

hn otonvy nnnnm]nnr-o }'\‘7 r-nmr\nQ'l'ncr a QnT‘1DQ l'\‘F ]nmnnfarv nn]’\nrrheme nn"ed

WVLLU UV Y CY Ui VQRiTaiuT AL A ) LTS Us ATALAT vy ViaiSiianSy Ll

surgeries, each of which should kill some designated element of the relative
homotopy groups m.(f). (The simplest example of this procedure might arise
if M had two connected components M, and M,. Then one could form the
connected sum M;#M>, which one can show is normally cobordant to the

inal M.) The main result of surgery theory, due to Wall, is that there is

nontig awray fro nrima 9 +ha adratis gionatiira
CCause, away il oI Priifie &, uiic quauxaul\.« Dlsuabuxc

c signatures of the domain and target.
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an obstruction to this procedure lying in a group L,(T'), I' = mV, and that
f can be surgered to a homotopy equivalence if and only if this obstruction
vanishes.

The surgery obstruction groups. The groups L,(T) are defined alge-
hrainall: in n adratio £a tha ity 7T Tl Az
uxalbaxly, 111 UCLLIID Ul Llua.ulcwu., 1U111.lD UVUI llllU llllJUsLOl 5LUU.P 11115 4l . 1L'UL VUL

purposes, however, it is more convenient to work with an alternative geometric
definition as cobordism groups [108, Chapter 9).

DEFINITION 6.2: A cycle for L,(T') is a normal map of pairs f: (M,0M) —
(X,0X), where M is an oriented manifold and X is an (oriented) Poincaré
space of formal dimension n, together wzth a map X — BT'. It is also required

that £ ochanld rootrant 4
uiGu 114 ereCy v

On these cycles we wish to impose an equivalence relation defined by cobord-
ism. Unfortunately, since the cycles are manifolds with boundary, the cobordisms
must inevitably be manifolds with corners. Specifically, we need to contemplate
manifold triads in the sense of Wall. Such an object is a manifold W equipped
with two ‘boundaries’ ;W and 0, W of codimension 1, which themselves meet
transversely on a ‘corner’ 012W of codimension two (A helpful example to
consider is the closed unit square W = {(z,y) : 0 < z,y < 1} in the plane,
with 0; W the union of the vertical boundary segments, 0> W the union of the
horizontal boundary segments, and 012W the set of four corners.) There is an
analogous notion of Poincaré triad.

DEFINITION 6.3: (See figure 4.) A cycle f: (M,0M) — (X,0X) for L,(T') is
null-cobordant if we can find a manifold triad W, a Poincaré triad Y, a map of

triads g: W - Y, and a map Y — BT, such that
(i) (O1W,012W) = (M,0M), (0,Y,012Y) = (Y,0Y), and the restriction of

g to O1W is equal to f;
(ii) The restriction of g to 02W is a homotopy equivalence;
(iii) The map Y — BT extends the given map X — BT

We may now construct L,(I") as a group of equivalence classes of cycles in
the usual kind of way: addition of cycles is defined by disjoint union, the inverse
of a cycle is the same cycle with the reversed orientation, and two cycles are

Y
homotopy equivalence > ( \
/ i

N )~
/S

X=, 1Y

BGa:

FIGURE 4. A null-cobordism for L, (T').
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equivalent if their difference® is null-cobordant. It is not hard to verify that this

procedure defines an abelian group, depending only on T

Clearly there is a forgetful map A: N(V) — L,(T), which sends a normal
map M — V to itself together with the classifying map V' — BT, considered
as a cycle for L,(T"). This map (the assembly map) is the one appearing in the
surgery sequence. We say that the assembly map sends a normal map f to its
surgery obsiruction.

THEOREM 6.4: (FUNDAMENTAL SURGERY THEOREM) A normal map f can be
surgered to a homotopy equivalence if and only if its surgery obstruction vanishes.

This is what we mean by saying that the surgery sequence is exact at N'(V).
In common with all the main results of surgery theory, the theorem is valid only
in high dimensions (dim V' > 5) where there is enough room to carry out certain
geometrical constructions.

We sketch the proof. If f: M — V is a structure on V then it defines an
element of L, (I"). I claim that this element is actually null-cobordant. For we can
consider W = M x I as a manifold triad, with W = M x {0}, %W = M x {1},
and 0;2W = (). Because f is a structure (i.e. a homotopy equivalence), the map
fx1: M xI — V x I satisfies the conditions for a null-cobordism of f. This
proves that the maps S(V) — N (V) — L,(T) in the surgery sequence compose
to zero.

The other direction of the proof depends on two key theorems. The first is
that one obtains an equivalent definition of the L-group if one requires that the
cycles have X connected and X — BT inducing an isomorphism on fundamental
groups, and that the bordisms satisfy analogous conditions. Thus, suppose that
we have a normal map f: M — V whose surgery obstruction vanishes. Then
there is a null-cobordism g: W — Y of the normal map, with M = o)W and
V = 0,Y, such that the induced map on fundamental groups 7y — mY is an
isomorphism. The idea of the proof is now to do surgery on the whole cobordism
W so as to produce a normal cobordism (of triads!) between it and a homotopy
equlvaw'ﬁce chuuulug to U1 we then 1 get am 1ormal cobordism between the g‘l'v'eu
structure and a homotopy equivalence (see figure 5). The so-called (7-7)-theorem
of Wall says that, if restriction to the boundary induces an isomorphism on
fundamental groups (and if the dimension is sufficiently high) this surgery can
always be carried out: there is no obstruction. This, then, completes the proof.

To discuss the remainder of the surgery exact sequence we must explain the
dotted arrow from L, (T) to S(V). It is unknown whether the smooth structure
set S(V) carries a group structure’ and the dotted arrow denotes that the group
L,+1(T') acts on the set S(V); exactness at this point means that the orbits of
the group action are exactly the inverse images of elements of A/(V) under the

QIV\ N A/‘/V\ The dotted arrow is provided by the next result

u.xay U\ 1T UUULLOU Qli:UYVYY 1O PLU‘V’}\LCLI. UJ val

5That is, one plus the inverse of the other.
"This is true for the topological manifold structure set.
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FiGURE 5. Illustrating the proof of the fundamental surgery theorem

PROPOSITION 6.5: (REALIZATION THEOREM) Let V be a Poincaré space of
formal dimension n and having fundamental group T, and let f: M — V be a
manifold structure on V. Then any element o € L,11(T") has a representative
which is @ map h: W — V x [0,1], where W is a cobordism, _-W = M and
hio_w = f, and hj5, w gives another manifold structure on V.

The action of o on S(V) is then defined to send the structure M = 0_W —
V to the structure 9. W — V. These two structures are manifestly normal
cobordant. Conversely, suppose that two structures on V' are normal cobordant.
The normal cobordism itself can then be considered as a normal map of pairs,
with surgery obstruction in L,11(T"). Thus by the action of a suitable element of
this group we can make the surgery obstruction zero. When we have done this,
we can apply surgery to the cobordism itself, making it into an h-cobordism.
This proves the exactness of the surgery sequence at S(V).

Novikov’s conjecture

The surgery exact sequence takes a particularly concrete form if T is the trivial
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Moreover, if f: M — V is a normal map in dimension 4k, then the surgery
obstruction of f is just % times the difference of the signatures of M and of V.
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In particular, if Sign(M) = Sign(V'), then the given normal map can be surgered
a bt ey Anasizralanman
The homotopy groups of BG are finite. Therefore, “modulo finite groups”
G/O0 is equivalent to the classifying space BO, and via the Chern character for
real K-theory one obtains a map

[V,G/0]®Q — H*(V;Q).

Under this isomorphism the class of a normal map M — V passes essentially to
the total L£-class of M, and the assembly map is given by the Hirzebruch formula
which expresses the signature of M in terms of the Pontrjagin classes (note that,
rationally, the £-class determines all the Pontrjagin classes and vice versa). The

exactness of the surgery sequence can therefore be expressed as follows:

< DLl Leuclitc Lall 1CICIUIC DT CADIeasCcd as 10110

PROPOSITION 6.6: [62] The rational Pontrjagin classes of a simply connected
closed 4k-dimensional manifold can be varied arbitrarily® by a homotopy equiv-
alence, subject only to the single relation provided by the Hirzebruch signature
theorem.

A compact manifold M is said to be rigid if any homotopy equivalence M’ —
M is homotopic to a diffeomorphism, in other words, if S(M) has just one
element. The notion of rigidity is of obvious importance in differential topology.
For high-dimensional manifolds, rigidity is equivalent to the assembly map being
an isomorphism.

The discussion above indicates that simply-connected manifolds with plenty
of cohomology will tend not to be rigid. This, however, should not be a surprise.
Since the assembly map relates the cohomology of V' to something depending
only on the fundamental group, the cohomology of a rigid manifold should have
some close relation to the fundamental group. The natural hypothesis would be
that V be an Eilenberg-Maclane space of type K (T, 1), i.e., that V' is aspherical.
CONJECTURE 6.7: (BOREL CONJECTURE) A (high-dimensional) closed aspher-
ical manifold must be rigid.

The Borel conjecture is that the assembly map is an isomorphism. The
Nowikov conjecture is a somewhat weaker assertion:

CONJECTURE 6.8: (NOVIKOV CONJECTURE) The assembly map for any K(T', 1)-
space s rationally injective.

Here we have made use of the result that for any space V', not necessarily
a manifold or even a Poincaré space, there is a ‘homological assembly map’
H,.(V;Q) » L,(mV)®Q, such that if V is a manifold then this assembly map
and the one we previously defined agree under the isomorphism H*(V;Q) —
H,(V;Q) provided by Poincaré duality.

Suppose now that M is an oriented manifold, with fundamental group I'.
Let a: M — BT be the map classifying the universal cover of M, and let = €

8Within the relevant cohomology group, of course!
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(L(M) — o (z), [M])

Novikov’s conjecture implies (and can in fact be shown to be equivalent to)
the statement that all the higher signatures of M are homotopy invariant. To

see this consider the commutative diagram?
S(M) — H,(M;Q) 2~ (T ® Q
I
H,(BT;Q) -2t~ L, (r) ®Q

A structure on M corresponds to its (Poincaré) dual L-class [M] ~ L(M) €
IT /AL, M Ner avontrace +hn treams ~F +hic ~laca v T /T o M e Lmc ~d s
ﬂ*lel,V}. DYy ©€XadCulIEdd, ULLIC 1llagC UL ULDS Lladd 111 Lix \1} W 15 1IULLOWWPY
invariant. Assuming Novikov’s conjecture, that Ar is injective, we find that the
pushforward o, ([M] ~ L(M)) € H,.(BT;Q) is homotopy invariant. But it is
easy to see that this statement is equivalent to the homotopy invariance of all
the higher signatures.

fArad anal afinad
11110 aual_y l:xbauy, G&D LCIIILUU
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indices of the signature operator. This opens up the possibility of an analytic
approach to the Novikov conjecture, which we will pursue in the next lecture.

Bounded surgery

We now discuss a more modern variant of surgery theory, which is directly

connected with coarse geometry. This is bounded surgery fhpn/m:f‘flm

Let Z be a metric space, the reference space. A space bounded over Z means
a topological space equipped with a control map ¢: M — V, which must be
proper in the sense that the inverse image of a bounded set has compact closure.
We do not require that ¢ should be continuous. A map of such spaces'® means a
(continuous) map f: V — V' in the ordinary sense which has the property that
the diagram

|%4 |4
\\c C,/
\7/

boundedly commutes; in other words, there is a constant R > 0 such that
d(c(z),c(f(z))) < R for all z € V. It is clear that the category of spaces
over Z depends only on the coarse type of Z, and that if Z is bounded then the

IMare we are usine some resilés
AATLIT VWU alv uouls DULILIC 1 TOoUulLu

10For emphasis, we refer to this
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category of spaces over Z is just the category of compact spaces and continuous
maps.
One can give ‘bounded’ versions of many of the notions of topology. In partic-

ular there are notions of ‘bounded homotopy’, ‘bounded homotopy equivalence’,
1%
and thus ‘bounded structure set’ Sy ( L ) : a bounded structure for V is a bounded

\NZ/
homotopy equivalence M — V|, where M is a manifold bounded over Z, and two
such structures are equivalent if they are related by a bounded diffeomorphism.

REMARK: There are a number of reasons to study bounded structures, many of
which stem from the applicability of infinite processes with some kind of control
proof of Kirby’s annulus theorem [69] by the methods of bounded topology, see
[36, 35]). We will not go into this in these lectures, although the attempt to
prove the topological invariance of the rational Pontrjagin classes by means of
coarse index theory (see 7.14 and the remarks following) does belong to the same

oirele of ideas

L1l UlT Ul 14yTao.
Naow lot 17 ha a manifald haninded aver 2 (Mare cenerallyy I/ anaild ha aner
INUW ITU Vv DT a lialliioia pouliaca Ovel 4. (WVIUIT gelicially, v COulua UC aily

bounded Poincaré space, but we will not consider this situation.) Ferry and
Pedersen produced a surgery theory to calculate the bounded structure set. A
special case of their results is the following

THEOREM 6.9: Suppose, in the above situation, that V 1is uniformly simply
connected''. Then there are obstruction groups L, z(e), depending only on the
coarse geometry of Z, which fit into a surgery exact sequence

——Lap1,2(0) - >, (| ) —=N(V) = [V,G/O] — Luz(¢)

tiro in th
vivye iL Vi

=

homotopy classes of maps V — G/O, exactly as in the compact case; it does not
involve the bounded structure of V. On the other hand the obstruction group
depends only on the coarse geometry of Z. Compare the remark on page 40.

Positive scalar curvature

We have tried to keep in mind throughout a certain analogy between problems
related to homotopy equivalences of oriented manifolds (which have to do with
the signature operator) and problems related to positive scalar curvature metrics
on spin manifolds (which have to do with the spinor Dirac operator). Early in the
study of metrics of positive scalar curvature it was observed by Gromov-Lawson
[47] and by Schoen-Yau [101] that the method of surgery was also relevant to
the study of positive scalar curvature; specifically, that surgeries of codimension
> 3 could always be made in such a way as to preserve the property of having
positive scalar curvature. Via some results of Wall [108, section 1A] identifying

HDefinition by analogy with ‘uniformly contractible’ — see 2.3.
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2- connected and spin bordism, this showed that the existence or otherwise of a

motr f‘ nn l’\‘ﬂ'l’\ r]n’nonalnnn] CY\I“ ma Y\i f\]f‘ n/’ (']OY\DY\{']C
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only on the class in the spin bordism group Q5P (BI"), T' = m M, defined by
M.

This observation has recently been extended to a full-blown surgery-like theory
by Hajduk [49] and Stolz [104]. In translating between classical surgery theory
and the ¢ anomrv fhpm-v of pos itive scalar curvature spin manifolds the fn"nwnm‘

dictionary of analogies may be useful.

Classical surgery Positive scalar surgery

Manifold Manifold

Manifold structure Positive scalar curvature metric

Normal invariant Spin structure

Normal map of pairs Spin manifold with positive
scalar curvature on boundary

Wall group L, (T') Stolz group R, (I")

Signature operator Dirac operator

Homotopy invariance of signature | Lichnerowicz vanishing theorem

h-cobordism Concordance of metrics

Whitehead torsion 777

i
$
ra

REMARK: In giviug the definitions one needs to consider Riemannian metrics
on manifolds with boundary. We will say that such a metric is conditioned if it
is a product metric on some collar neighbourhood of the boundary. Metrics on
manifolds with boundary will usually be assumed to be conditioned.

First we define the ‘structure set’ computed by the theory.

DEFINITION 6.10: Let V be a compact spin manifold. Two metrics gy and ¢,
of positive scalar curvature are concordant if there is a (conditioned) metric of
positive scalar curvature on V x [0, 1] which restricts to the given metrics on the
boundary.

T alh 74

Let PSC(V') denote the set of concordance classes of positive scalar curvature
metrics on the closed!? V. One wishes to give an effective description of this set.

To do this we define the groups R, (I"). These are bordism groups analogous to
L,(T). An object of R,(I") is an n-dimensional spin manifold V' with boundary
dV, equipped with a map V' — BI' and a metric of positive scalar curvature on
dV'; a bordism is such an object ‘with corners’.

Notice that for any closed manifold V with fundamental group I', there
is a natural map QP"*(V) — R,(I'). Now a spin structure on V defines

(tautologically) an element [V] of Q5P**(V') and we have

12There is also a version of the theory that works relative to a given positive scalar curvature

metric on V. For simplicity, we do not consider this.
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THEOREM 6.11: (BORDISM THEOREM) T n manifold V carries a positive
tric if and only if the spvinor fundamental class (8 V4 RS
auu,ur Cur Uubulﬁ me I/L J arla o1l by J e SPLTLOT JUunaaineiitat ciuss I_VJ maps Lo

zero in R, (T).

This can be regarded as an analogue of the fundamental surgery theorem: it
states that the sequence

PSC(V) = Q"™ (V) — Ru(T)

is ‘exact’ at the middle term. In contrast to classical surgery theory, note that
there is only one possible ‘normal invariant’ for a spin manifold V, namely
its spinor fundamental class. The analogy with the surgery exact sequence
would therefore lead us to expect that the group R,4+1(T') should act freely
PR |

s o DQIY(TT
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THEOREM 6.12: (CLASSIFICATION THEOREM) Let V be a spin manifold with
fundamental group I'. Then there is a free and transitive action of Rn,+1(T') on
PSC(V).

Both the Bordism and Classification theorems need the dimension restriction
(n > 5) usual in surgery theory.

As we remarked, the groups L, (I") have an algebraic description in terms of
the group ring ZI', and this is the basis for their computation. Unfortunately
l»lll'} groups [Ln kl) ua‘v‘e dal/ prese'ﬂb no bU.(,Il algemdlc UCBLI lpl/l.UIl ThlS 1‘ﬂakes
computation difficult: according to [104], there is no example of a group I' (even
the trivial group) for which R, (I"} is known up to isomorphism.

Notes and references: Classical references for surgery theory are [18] (in

tho c1mn]17-nnnnnnfnr‘ r\oc‘n\ and [1nﬂ1 A rgnlr] lh"'?’{'\(‘]'l'll"’"lf\h from a modern
ULL\J ulll‘ A\VAV S S FSAWL WAV WV 8 w\/l urLiNa y ULAULL LA VAL U diAavNaAavi L

perspective is contained in the ﬁrst part of [112]. An introductory treatise [73]
is in preparation.

Information about the Novikov conjecture can be found in the books cited
above. Relevant additional references are [22, 29, 33, 66] and the surveys
(37, 89, 100, 111].

For bounded surgery see [36], or [87] for an algebraic perspective. Bounded
surgery as we have described it is one formalization of the idea of ‘controlled’
geometric topology. I am not sufficiently knowledgeable to elucidate the history
of this idea, but the influential paper [85] should perhaps be mentioned.

The surgery theory of positive scalar curvature manifolds is being actively
developed at the time of writing. An exposition is in [104], and see also [39, 49].



CHAPTER 7

Mapping surgery to analysis

In this lecture we will try to define natural transformations from the various
surgery theories mentioned last time to appropriate versions of the analytic
surgery exact sequence of lecture 5. Recall that we showed that C* X is an ideal
in an algebra D*X of pseudolocal, finite propagation operators. A principle
which guides the construction of the maps from surgery to analysis is that an
element of K,(D*X) is a ‘reason’ for the truth of a vanishing or invariance
theorem!. This is most transparent for positive scalar curvature, so we will start
with a consideration of this case.

it is iraportant that all our constructions should take into account the action
of the fundamental group. We will therefore adopt the following convention: A
discrete group I' is fixed. All spaces X that are considered will be equipped
with a homomorphism 7 X — I'. The notation Cf(X) will refer to the I'-fixed
subalgebra of C*(X), where X is the I'-covering of X corresponding to the given
homomorphism. We will adopt a similar notation for D*(X), and for the ideals
C%(Z) and ¥% (Y') defined in lectures 3 and 5 respectively. Notice that if V is
compact and I' = m; V, then C{(V) has the same K-theory as C;T, and D} (V)
is what we called in lecture 5 the ‘structure algebra’ S*V'.

Let V be a compact spin manifold of dimension n, and let I' = m V. The
spinor fundamental class [V] € K,(V) is just the homology class of the Dirac
operator on V (for some choice of Riemannian metric); using lemma 5.15, we
may write this in terms of the Dirac operator D on V as the class [x(D)] €
K, 1(Dp(V)/CE(V)), for some choice of chopping function x.

Now suppose that V admits a metric g of positive scalar curvature. Then
the induced metric on V has uniformly positive scalar curvature, and so there is
€ > 0 such that the interval [—¢, €] C R does not meet the spectrum of D. As in
3.8, we may therefore choose a chopping function x which is equal to 1 on the

IRanicki defined the structure set algebraically, as a cobordism group of chain complexes

which are locally Poincaré and globally contractible; see [87]. This is an algebraic version of
the same idea.

57
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positive part of the spectrum of D and equal to —1 on the negative part; let us

oall nl!n}'l o omant channi fianontinn far 7)) Bar gruieh a channing fiinoti

call such a x an ezact chopping function for D. For such a chopping function,
x(D) is an exact involution, and it therefore defines a class in K, +1(Df(V)). It
is clear that this class does not depend on the choice of exact chopping function
X, since any two such chopping functions can be joined by a linear homotopy.

DEFINITION 7.1: The class thus defined will be called the structure invari-
ant of the positive scalar curvature metric g, and will be denoted by p(g) €

Kn41(5*(V)).
From the definitions, the image of p(g) under the natural map K, +1(S*V) —

K,(V) is just the spinor fundamental class [V]. By the exactness of the
analytic surgery sequence it follows that A[V], the index of the Dirac operator
in K,(C;T), is zero. Thus we have shown that the invariant p(g) for a positive
scalar curvature metric g provides a quantitative ‘reason’ for the truth of the
Lichnerowicz vanishing theorem.

Plainly the structure invarian
the space of positive scalar curvature metrics, since a continuous path of such
metrics will produce a continuous path of elements of S*(V'). In fact, more is
true: the structure invariant depends only on the concordance class of g. To
prove this we will first give a different interpretation of the structure invariant,

o folla in the race of
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subset E C X such that Ngr(E) N Ng(X \ E) is compact for all R. We say that
E is a cone-like end with boundary N if there it is coarsely equivalent to open
cone ON.

The notation Ngr(Y) = {z € X : d(z,Y) < R} stands for the metric R-
neighbourhood of Y. We’re really only interested in the open cone near infinity,
but the requirement of coarse equivalence takes care of that automatically.

Suppose now that X is a space with a cone-like end E with boundary N.
Then we can compactify the end E by gluing on a copy of N at infinity, thus
obtaining a new space X, which is X U N with the topology defined by saying
that a sequence x; € E tends to a point p of N if and only if the corresponding
sequence z) in ON tends to p in the natural compactification of ON by N.
Even though z}, is defined only up to coarse equivalence, one can readily verify
that this is a well-defined topology. Notice now that an X-module H is also an
X n-module, since Cp(X n) may be identified with a certain algebra of bounded
CO IlLlIluUU.b IuIl(,Ll()Ilb on A

The next result is a special case of something that will be proved more

generally in 10.4.

T monang A
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pseudolocal operator on Xy .

7 2. In +h
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PROOF: We may as well assume that X is an open cone ON. Let T be
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a pseudolocal, finite propagation operator on X; such operators are dense in
D*(X) Dy‘ naspaIO'v'b lemma \u &}, we need to prove that if @ and (;1 are
continuous functions on Xy with disjoint supports, then ¢©T is compact.

Let R be the propagation of T'. The functions ¢ and 1 are bounded functions
on X, and the condition that their supports should be disjoint in the compacti-
fication implies that, in X, their supports are more than R apart outside some

comnact 1hant Qinpa T naanndalaral Y nertiirhatinn in and 2 by
Compact suosCy. Olnce i LD Ppseuaoidfar o1 A, per turbation UJ. @ ana v oy

compactly supported functions changes ¢T% only by a compact operator; but
by such a change we can make their supports more than R apart, and then T
becomes zero. This proves the result. [

ADDENDUM: Suppose, in the above situation, that the inclusion map N — Xy
induces an isomorphism on 7. (Notice that this is the hypothesis of Wall’s
(m-m)-theorem.) Then the fundamental groups of X and Xy agree, so that the
['-cover of X induced by a homomorphism m X — T" extends to a I'-cover of X .
The construction can be carried out on these covers, and therefore we obtain a
map from D} (X) to the I'-invariant pseudolocal operators on Xn.

COROLLARY 7.4: Suppose that X has a cone-like end E with boundary N, and
let C%(E) be the ideal in C*(X) consisting of operators supported near E (see
3.10). Then there is a natural map

K.(Cx(E)) — K.(D"(N)).
In the (mw-7) situation, we also get a map

K.(Cr x(E)) = K.«(Dr(N)).
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Now we will give an alternative definition of the p-invariant. Suppose that
V has a positive scalar curvature metric g. Form the ‘trumpet space’ TrV:
topologically this is the product V' x R, with the product metric near —oco and a
cone-like metric near +oo (see figure 6). This space has a cone-like end E with

hmmdarv V. Mm'pnvpr since Tr V has positive scalar curvature away from F,

the index of the Dirac operator on TrV in fact belongs to the K-theory of the
ideal Ct 1,y (E), by 3.11.

PROPOSITION 7.5: In the above situation, the invariant p(g) is the image of
Ind Drvv € Kyt1(CF 1y v (E)) under the map of corollary 7.4.

The proof is a variant on the slogan that ‘the boundary of Dirac is Dirac’.

Suppose now that V admits two positive scalar curvature metrics, go and g;.
Then Gromov and Lawson defined a relative invariant i(go, 1) € Kn+1C;(T') as
follows. Consider a metric g on X = V X R defined to be the product metric of
(V, go) x (—00,0] and the product metric of (V, g;) x [1,00) interpolated by any

AV i il ininhidal widiatatdadiad

conditioned metric on Y = V x [0,1]. This open mamfold has positive scalar
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110 Quil 111\UuT A 111 .lln+l\\/r,X\.l /}, @il
since [0, 1] is a compact set, Cf x(Y) can be identified with C;I". Plainly the
value of the invariant is unaffected by the choice of interpolating metric, since

any two such metrics are homotopic by a homotopy supported near [0, 1].

tar h
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PROPOSITION 7.6: In the above situation, we have

p(g0) = v(i(go, 91)) + p(91),

where v: K,(C;T') — K,.(S*(V)) is the map appearing in the analytic surgery
exact sequence.

COROLLARY 7.7: If go and g, are concordant, then p(go) = p{g1)-

For it follows directly from the Lichnerowicz vanishing theorem that i(go, g1) =
0 in this case.

PROOF: (OF THE PROPOSITION): We use the relative index theorem?.
Consider the following four manifolds:
(3N AL 5a T/ widh +hn ymatrieo 4 an +ho 1afk Land as
\l} 4vi] 1D 11V WIULLL ULLIT 11ICUIIV Y] VUll LT IT1V-liallu
(ii) M3 is V x R with the product metric coming from the metric g; on V/;
(iii) M3 is Tr V with the metric go on the left-hand cylinder;
(iv) My is V x R with the metric described above whose Dirac index is
i(90, 91)-

Al f
we find that

-
—

"‘f\‘l‘“
T

Ind D; — Ind Dy = Ind D3 — Ind Dy

where D; denotes the Dirac operator on manifold M;. But Ind D, = 0 by
Lichnerowicz, so we get

p(g1) — 0 = p(go) — v(i(go, 91))

2Compare [21].



POINCARE COMPLEXES 61

giving the result. [

Thus the p-invariant defines a map PSC(V) — K,;1(S*V). Moreover,
the Gromov-Lawson invariant i gives a map from the Stolz group R,+1(T’) to
K, +1(C;T) and the previous proposition should show that the following diagram

LUllllllubUb

Rpy1(T) - o PSC(V)

Poincaré complexes

If M is a complete Riemannian manifold, then we have seen how to define a
coarse signature for M: it is the index of the signature operator in the group
K,(C*M). Classically, however, the signature of a compact X can be defined
whenever X is a Poincaré space, and in this section we will sketch an analogous
construction of a ‘coarse signature’ for appropriate non-compact Poincaré spaces.
The details will appear in [55].

Let X be a bounded geometry metric simplicial complex. Choose a reference
point in each simplex of X — for example, its barycentre. Then the spaces
C? (X) of €2 simplicial r-chains of X become X-modules (where we make a
function on X act on a simplex via its value at the reference point), and the ¢2

simplicial chain complex

2 d RS d

C5

T u

Cc¥(X)

(X) 2N

becomes a complex of X-modules and finite propagation bounded operators. For
simplicity of notation we will denote this complex simply by C.(X). Similarly
the dual complex of ¢? cochains, C*(X), is a complex of X-modules and finite
propagation operators. In both cases the asserted boundedness of the operators

is a consequence of bounded geometry.

REMARK: Notice that these X-modules are not ‘adequate’ in the sense of
3.4. In fact, they are locally finite-dimensional. Nevertheless, by Voiculescu’s
theorem they can be embedded in adequate X-modules, and this is enough for
the purposes of index theory.

DEFINITION 7.8: An (n-dimensional) Hilbert-Poincaré structure on X is a self-
adjoint chain equivalence T: C*(X) — Cp—«(X). If X is equipped with such a
structure we will refer to it as a Hilbert-Poincaré space.

To be precise, we require that T" should be a chain equivalence in the category
of complexes of X-modules and bounded finite propagation operators?, and that

3In fact it is sufficient to require that T be a finite propagation operator and induce
isomorphisms on ‘unreduced’ £2 (co)homology; ‘unreduced’ means that we take the kernel
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it should be equal to its adjoint when we identify C*(X) with Cx(X) via the £2
inner product.

EXAMPLE: A compact Poincaré space is a Hilbert-Poincaré space, and so is any
covering space of such a space. A complete Riemannian manifold of bounded

geometry can be triangulated so as to become a Hilbert-Poincaré space.

All the Hilbert-Poincaré spaces that we consider will be of the above two
types, or will be obtained by gluing examples of these types together in various
ways.

REMARK: (NONEXAMPLE) Suppose that X is a locally finite complex which is a

Poincaré dualitv space in the usual sense that there is a fundamental class [X] c

QLALAIT LLallyy 211 VA0 WAL SCIWST VAiaL LALIC o & AR SIUCALEL Lads |4

HY(X) which induces an isomorphism HZ?(X) — H,_,(X) by cap-product.
Then it does not immediately follow that X has a Hilbert-Poincaré structure. In
fact, while cap-product with the locally finite fundamental class defines a duality
map on compactly supported cohomology in this case, there is no a priori reason
to believe that this duality will satisfy the necessary norm estimates to pass to a
bounded operator on the £2 cochain complex. The simplest sufficient condition
that can be given is that X should be both a bounded geometry complex in the
sense of 2.3 and a bounded Poincaré space in the sense of [36]; this combination
of conditions is rather restrictive. This point will be important when we come
to discuss bounded surgery theory.

The next lemma is a consequence of the fact that 7 is an equivalence.

LEMMA 7.9: Let X be a Hilbert-Poincaré space. Then the operators d+d* +T
are snvertible (as maps from &C*(X) to &C*(X)).

ADDENDUM: The inverses of these operators belong to C*(X). (For the opera-
tors themselves are operators of finite propagation, and C*-algebras are closed

under the functional calculus.)

Now we can define the signature of a Hilbert-Poincaré space; for simplicity we

et el = et ey adiaind Y

will do this only when the formal dimension is odd. Then the operators d+d* +7T
preserve the even-odd grading of C*(X). Consider the invertible operator

=(d+d* +T)(d+d —T)": C™(X) - C™(X).

This is an invertible operator on a locally finite-dimensional X-module, so it

AL a Alaco ..\ L7 (% VY YAn ~all thic Alaac J-Ln { Il ond Daden amond Qa e ndaienn
UCILLLICS a Claodd 111 1) ] \U \A }) vvE Cail UIiiS C1asSs tne \.llblIUC’ =1 Ul;lbLu:l C} Dbylbu:bu:
Sign X of X. There is an analogous definition in the even-dimensional case.

REMARK: The operator G need not be unitary. This will be significant later

of d modulo the image of d, rather than modulo the closure of the image of d.
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The signatur of a Hilbert-Poincaré space has two key properties. First, in
the case of a cor ‘1p te Riemannian manifold the Hilbert-Poincaré Slg‘nahuw is
equal to the coarse index of the signature operator. Second, the signature is
cobordism invariant in a suitable sense. Here we use the language of bounded
topology*. Suppose that X is equipped with a coarse map to a reference space
Z. One can define a notion of Hilbert-Poincaré pair, or Hilbert-Poincaré space

with haiinmdary: qrimnoge thaot Y ig+tha haimnmdaryv oaf crieh o anare V' owhish ig alan
witd OOUnaary: suppose tiai A i8S ui€ oGunaary O1 sudi a spafe r , wililil IS ais0

equipped with a coarse map to Z in such a way that the diagram
X——Y
N K
Z

boundedly commutes. Then the conclusion is that the (image of) the Hilbert-
Poincaré signature Sign X vanishes in K,(C*(Z))®Z[3]. Notice the need to
invert 2: this is because the (K-homology) boundary of the even-dimensional
signature operator is twice the odd-dimensional signature operator.

REMARK:  Notice that this implies that the C;(mV)®Z[1] index of the
signature operator on a compact manifold V' is an invariant of oriented homotopy
type®. Indeed, if two compact manifolds V; and V, are homotopy equivalent,
then they are certainly m;-equivariantly Poincaré cobordant. Passing to the
universal cover and keeping track of the equivariance, we find that the equivariant
signatures of the universal covers 171 and 172 agree. But these just are the
equivariant indices of the signature operators. In the next section we will refine
the argument, obtaining a quantitative reason for this invariance property, just
as in the previous section the p-invariant gave a quantitative reason for the
Lichnerowicz vanishing theorem.

A manifold structure invariant

Suppose that V is a closed manifold with fundamental group I'. Let M; and
1V12 be manifolds equippeu with maps _[1, J2 to V. In this section we propose
to associate to any homotopy equivalence h: M; — Mj such that foh = f; a

structure invariant o (h) € Kn41(D}V)®Z[3] which has the following properties:

(i) (Vanishing) If h is a diffeomorphism, o(h) = 0;
(ii) (Additivity) Suppose that h': M — M3 is another homotopy equiva-
lence, with f3: M3 — V such that fsh’ = f,. Then one has o(h'h) =

o(h') +o(h).

(iii) (Signature) The image of o(h) under the natural map K,1+1(DfV) —
K, (V) is, up to a possible factor of 2, the difference of the signature
classes, fox[Dar,] — fi«[Dar,]-

ra lactiire
lCV lUuD 1wueuvulLc.
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I~ Mapping cylinder

FIGURE 7. The space whose signature defines the structure invariant

Here is the definition, which is analogous to the second definition (7.5) of
the positive scalar curvature structure invariant p. Let Cj denote the mapping
cylinder of h. Form a Hilbert-Poincaré space W by gluing open conical ends
on the two boundary components of Cj, diffeomorphic to M; X [1,00) and
M, x [1,00) respectively; see the figure. By construction, W comes with a
continuous coarse map f = f1 Uy f2 to the ‘bicone’ BV, which is just V x R with

a metric which is conical on both ends.

REMARK: Note that it is significant here that we have a homotopy equivalence
between manifolds: we could not carry out this construction for a homotopy

a nat in gonaral a Hilhart_Paincard anaco

10 LJ.UU, 11k 5011\41.0.:1,  1i11nvvl vt viuivalr o DPQ\JD
N D7 w2rn hasin 4hn fAllacdan s cannitianera ~F mana
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Kn1(CH(BV)) = Kny1(DR(BV)) = Kn 1 (DE(V % [0,1])) — K1 (DE(V)).

The first map is the one appearing in the analytic surgery exact sequence,
induced by the inclusion Cf(BV) — Df(BV). The second map comes from
corollary 7.4. The third map is induced by the projection V' x [0,1] — V.

DEFINITION 7.10: The class o(h) € K, 1(Dy(V)) is the image, under the com-
posite map above, of f.(Sign W), where Sign W € K,,11(C*W) is the signature
of the Hilbert-Poincaré space W .

Notice that the vanishing property of o(f) is apparent from this definition.
For, if h is a diffeomorphism, then Cj and hence W are manifolds, and thus
the signature Sign W belongs to the image of the assembly map. Hence (since f
is continuous), f.(Sign W) belongs to the image of the assembly map for BW,
hence it maps to zero in K,41(Df(BV)) by exactness.

To check the additivity property, let W and W’ be obtained from the mapping
cylinders of h and h’ by coning the ends as described above, and let W be
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similarly obtained from the mapping cylinder of h’h. Now consider the following

nyr,

spaces with their obvious control maps to BV:
A=WUuw', B=W"UBM, (disjoint unions).

Notice that Ch/p = Cp Uy, Cp. Thus, the space B is obtained from A by cutting
off one end and gluing it back on ‘the other way round’. We may therefore use the

ralative indev thearem (a vercion of which annliee +0 thoae gionatiiroac) +a aror
AviQuuirvy l IUUA vilivwuilivviliil \u YULO0O1IULL UL Vviliuil (J/PPLJ.DD UU Uil OoT DL&J.J.G:UU.LCD} vu aLsuC

exactly as in the proof of 7.6 that the signature of A, in Kn1(CEBV)®Z[3),
equals the signature of B. However, the signature of A maps to o(h) + a(h'),
whereas the signature of B maps to a(h’h) + 0(1as,). Since o(1a,) = 0 by the
vanishing property, we have proved the result.

Finallv. the signature pronertv is once again e inein
fmally, the signature property 1s once again a consequence of the princCip

that ‘the boundary of Dirac is Dirac’ — or rather, in this case, that ‘the boundary

of signature is signature, up to a factor of 2’. For details, the reader is referred

to [55].

Now we will use the construction of the o-invariant to map the surgery exact
e to the analytic surgery exact sequence. Specifically, we will constru

LIl o1 Lall SCuClle. vWwiil Lilavi

, 3, and « which fit into a commutative diagram

Lua(D)- s N |
v ’ v v

K 1(CT)®Z3] = Kn1(Df (V) ®Z[3] = Kn(V)®Z[3] - Kn(C;T)®Z]3]

)

where n = dim V, the top row is the ordinary surgery exact sequence, and the
bottom row is the analytic surgery exact sequence.

To define «, suppose that f: M — V is a structure on V. Then it has a struc-
ture invariant rr( f\ and we let n/”fn = 2= i.(""'l)/err( f\ K._, 1(Q*V\6?)7[1]

AAvVallally ailfs L e VALl DY

The power® of 2 corrects for the fact that the boundary of the signature operator
is not exactly equal to the signature operator. It is easy to see, using the
vanishing and additivity properties of o, that this map is h-cobordism invariant
in the appropriate sense and therefore that « is well-defined on the structure set.

The map (3 sends a normal map f: M — V to the ‘difference of signature
operators’ 2~ "/21(f,[Dp] = [Dv]) € Kn(V). The map v sends a normal map
of pairs (M,0M) — (X,0X), defining an element of L, (T"), to 2-1%/2) Sign Z ¢
K,(C:T)®Z[1], where Z is the Poincaré space obtained by gluing M to X by
means of the homotopy equivalence of their boundaries. Using the cobordism
invariance of the signature one sees that 3 and « are well-defined.

PROPOSITION 7.11: The diagram of surgery exact sequences, above, commutes.

PROOF: (SKETCH) The right-hand square commutes because the Hilbert-
Poincaré signature of a manifold is the index of the signature operator. The
middle square commutes because of the signature property of the o-invariant. To

6The notation || refers to the greatest integer less than or equal to z.
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show that the left-hand square commutes, recall that the top arrow is defined by
Wall realization (Proposition 6.5): one constructs a cobordism from the standard
structure on V to a new structure, which realizes a given surgery obstruction.
Using the relative index theorem together with the additivity and invariance
properties of the invariant o, one can prove that this square commutes along the
lines of the proof of Proposition 7.6. [

The following fact can be proved using the homotopy-theoretic description of
N (V). (Compare our discussion of G/O modulo finite groups on page 52.)

LEMMA 7.12: The map B becomes an isomorphism after tensoring with Q.

As a corollary of this fact and the surgery theory of simply-connected mani-
folds one can easily give explicit examples of structures f (fake complex projec-
tive spaces) for which o(f) # 0.

Another corollary is the following

PROPOSITION 7.13: The analytic Novikov conjecture 5.17 implies the topological
Novikov conjecture 6.8.

Assuming that V = BT one can prove this simply by chasing the diagram
relating the analytic and geometric surgery exact sequences. Even without this,
however, we can prove that the analytic Novikov conjecture implies the homotopy
invariance of the hlgher signatures: argue as in the example at the end of lecture

E ranlasin NATATNIINAT Y ichine thanram hv tha hamantane
v,y 1L pIGVLLL Ull\/ ul\zlll.l(/ \JVV l\aLl vau.uoxxu.l.s viiuviviil IJJ VLIV JVILLIVUVU D

the K, (C}

Bounded structures

Let us now see how far the above ideas can be applied to bounded surgery
theory. We would like, in favorable situations, to be able to produce maps «,
B, and <, analogous to those above, and relating the bounded surgery exact
sequence of theorem 6.9 to its analytic counterpart discussed on page 40. As
above, the mapping ought to be obtainable if we can understand in a sufficiently
canonical way a homotopy invariance property of the bounded analytic signature.
What we would wish to be true is the following ‘coarse’ analogue of the Kaminker-
Miller theorem:

CONJECTURE 7.14: If smooth manifolds M and M' over Z are homotopy equiva-
lent by a boundedly controlied orientation-preserving homotopy equivalence, then
their coarse analytic signatures agree:

Sign(M) = Sign(M’) € K. (C*(2)).

REMARK: There is another, related, reason for interest in this conjecture. By

a standard reduction (done by Novikov in the sixties) the conjecture for Z =
R™. tocether with the R"_hounded index theorem (page 34). implies Novikov’s

4™y VU/RTULITL 11 yiaT 4N PUBLIUTU 11UTA LUTULTLIL (PORY ),y ML 2460

theorem that the rational Pontrjagin classes of a smooth manifold are invariant
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under homeomorphisms. Indeed, Novikov’s reduction shows that the topological
invariance of the Pontrjagin classes follows from the statement that if W =
M x R™, where M is a compact manifold, and ¢c: W — R"™ is the obvious
projection map, then, if W is endowed with an arbitrary smooth structure, and
¢ is made transverse (for this smooth structure) at the point 0 € R™, then the
signature of ¢c~1(0) is equal to the signature of M. Now the R™-bounded index
theorem tells us that the signature of ¢! (0) made transverse is just the bounded
analytic signature of W (up to a multiple of 2). To apply the conjecture, we need
only to note that since W and M x R™ are homeomorphic (with infinitely good
control — the diagram of control maps commutes on the nose) they are certainly
homotopy equivalent with bounded control; just smooth off the homeomorphism

in a hanndadly contr
il a oounGlGLy CONuI

Unfortunately there is a basic difficulty in the way of proving the conjecture
along the lines of the proof of the equivariant case, and it is this. We can

certainlv form the mnnnlng thnr‘]nr of a bounded hnmnfnny nnnnm]pnpp and

Uuiiad Y

it is a bounded Poincaré cobordism. But it may not be a Hllbert—Pomcare
space, nevertheless: the operators arising in the duality, though bounded in the
geometrical sense of propagation, may not be bounded in the analytical sense of
operators on Hilbert space. It is a delicate question whether the homotopy
equivalence can be ‘smoothed’ sufficiently to obtain analytical boundedness

without thereby destroying its geometrical boundedness.

REMARK: This apparent trade-off between boundedness in two noncompact
directions is somewhat reminiscent of the Heisenberg uncertainty principle and,
more generally, of microlocal analysis. (Compare the remarks in [112, page 15]
and also the introduction to [93].) There are some other indications which point

in this direction, but, as yet, no systematic theory.

p3 8 »J T Yy 2200 S SUTiAsG

In order to circumvent this difficulty, the authors of [82] consider a different
surgery theory, in which only those maps are allowed that induce bounded
operators in both senses. For this surgery theory the analogue of the Kaminker-
Miller theorem can be proved. Then, by computation, they show that in certain
cases (precisely, whenever X = (ON is an open cone on a polyhedron) the
obstruction group for the ‘bounded operator’ version of bounded surgery is the
same as the obstruction group for ordinary bounded surgery. Since R™ is a cone,
the conjecture is in particular true for R™. However, [82] cannot be said to
yield a new proof of the topological invariance of the Pontrjagin classes, since
the computations that must be done to compare the ‘bounded operator’ and
ordinary L-groups are strong enough by themselves to prove the required result,

without bringing in questions of analysis.

7This idea that ‘a homeomorphism is an infinitely controlled homotopy equivalence’ is a
basic one of controlled topology; it achieves a precise form in the a-approximation theorem of

Chapman and Ferry [24].
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Notes and references: The results of this lecture are mostly new, and

details should appear in [55]. There are, however, other more algebraic ap-

proaches to the issue: maps from L-theory to C*-algebra K-theory were first
described in [40], using the algebraic definition of L-theory: the key idea is to
apply the spectral theorem to separate the ‘positive’ and ‘negative’ parts of a
quadratlc form, as in Sylvester’s theorem classifying quadratic forms over R by

atures. For a survey of this material see [100}
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CHAPTER 8

[
[

m-Connes conjecture

Let X be a metric (or coarse) space. In lecture 5 we have defined an ‘assembly

M .')Y\,
Iiia

X) — K. (C*
) W

\
7 LXx <%
from the K-homology of X to the K-theory of the C*-algebra associated to
the coarse structure of X. This corresponds to the assembly map in bounded
r1mrany oléh~ Qaxxr +ha and AFf+ha 1a Tandrivnna thara avra AT A ldina
Uls Ly, au;uuugu, as W& Saw a'l.l lJJ.lU €11a o1 bllU Laou chuulc LLICLT alT UllLICULUITDO
making a direct connection between these two topics.
When is the assembly map an isomorphism? The answer cannot be ‘always’
because the right-hand side is coarsely invariant whereas the left-hand side is

not. However, recall our discussion of the Borel and Novikov conjectures: we

chonld exnect as eom}\]v to }\o an iscomornhiem onlvy ‘Fnr snaces w rl—nnco tonoloov
[SERAVAVEANS \/AP\I\JU l‘lk)u\zl.lj O Quii XOJVALAVUL k_lLJJ.U‘.JJ. i AL y e} ¥ AL\ UUYU 6J

is closely related to thelr coarse geometry. Here the analogue of asphericity is
untform contractibility, defined in 2.3.

= n

The coarse assembly map

Recall that in lecture 2 we discussed the notion of ‘coarsening’, which gives

moloov theory’ T.otf
L .

the heet annroximation to a homolaov theorv hy a tonar TS Let
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K X, denote the coarse homology theory corresponding

r,.(b
o
x
)
=
=5
=)
a

man A -VY/Y\ y K
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commaute.

PROOF: When X admits a coarsening (recall that this is a uniformly con-
tractible bounded geometry metric simplicial complex EX equipped with a

69
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coarse equivalence X — EX), this follows from the commutative diagram

K. (X) ——2— K.(C*(X))

3

LY (Y — L (YY) NN 7 VoL Y8 nk "N

N A\ ) =df Dy \ LA ) Nyl (LZA )
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hand one is an isomorphlsm because ¢ is a coarse equivalence. If X does not
admit a coarsening, one can define KX, in terms of the nerves of a coarsening
sequence of covers i;, and the assembly map A., becomes the direct limit of the
assembly maps for the |4f;|. O

CONJECTURE 8.2: (COARSE BAUM-CONNES CONJECTURE) For any bounded
geometry space X, the coarse assembly map Ao: KX, (X) — K.(C*(X)) is an
tsomorphism.

COROLLARY 8.3: (OF THE CONJECTURE) Foi
ed geometry metric simplicial compler X, the
K,.(C*X) is an isomorphism.

In particular, suppose that V is a finite complex which is an Eilenberg-Mac
Lane space of type K(I';1). Then the universal cover V = ET is a uniformly
contractible bounded geometry complex, and so the conjecture implies that
A: K. (V) - K.(C*(V)) = K.(C*|T'|) is an isomorphism.

REMARK: It may seem that the assembly map should be an isomorphism for
all uniformly contractible spaces, irrespective of bounded geometry conditions.
However, a remarkable example due to Dranishnikov, Ferry, and Weinberger [31]
shows that this cannot be the case. The example is based on a construction of

Nraniahnilkay 120] o hich vielda all_lilkka man 7 C’7 which faile +0 induece an
LTanisnnikov |ou| willCil yieias a Ceu-iike map 4 — wiiilil 1aliS U0 QUi an

isomorphism on K-homology. A suitable warped coning of this construction
produces a space X, uniformly contractible, and homeomorphic to R2, but
which has the coarse type of a cone on a Dranishnikov space; which implies

that coarsening does not induce an isomorphism K,(X) — KX. (X ) The
constriction can he arranced <o that K (Y\ - KX.(X) is not ini

construction can be QLLIQL/FTU BV VAU LX x\<2 ) TAL Mx\ L2y S

the assembly map K, (X) — K.(C*X) cannot be injective either.

REMARK: The construction of [31] leaves open the possibility that A, may be
an isomorphism for all spaces. However, Guoliang Yu! has recently produced an
example of a space X of unbounded geometry for which A, fails to be injective.
Yu’s space may be described as the disjoint union of an infinite sequence of
spheres, with slowly increasing radii, more rapidly increasing spacing between
each sphere and the next, and very rapidly increasing dimensions. This space is
a complete spin manifold with uniformly positive scalar curvature, so the coarse
index of the (spinor) Dirac operator is zero. However, one can compute the

1Personal communication.
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group K X, (X) as a direct limit, and it turns out that the Dirac operator gives
a nonzero element of this group. Thus, assembly fails to be mjectwe in this case.

The interest of the coarse Baum-Connes conjecture is twofold. First, it is
a purely coarse geometric statement. This means that, in seeking to prove it,
there is no group structure which need be respected in seeking to simplify the
problem. Second, the conjecture has consequences about open manifolds and
also, via the universal covering, about compact ones. For instance we recall
the standard conjecture [48] that no compact aspherical manifold can carry a
metric of positive scalar curvature. It is well-known that this would follow from
the analytic Novikov conjecture; however, it is also an immediate consequence
of the coarse Baum-Connes conjecture. For consider the Dirac operator on
the universal cover of such a manifold V, which is a uniformly contractible
space?. Poincaré duality for K-homology tells us that the homology class of
the Dirac operator represents the K-homology fundamental class for this open
manifold; in particular, it certainly is not the zero class. Thus, if the conjecture
holds, the index of the Dirac operator in K, (C*(V)) cannot be zero, and so, by
Lichnerowicz, V' cannot have positive scalar curvature.

The principle of descent

from the coarse Baum-Connes conjecture is no coincidence. In this section we
will discuss the process of ‘descent’, whereby the coarse Baum-Connes conjecture
actually implies the analytic Novikov conjecture in certain cases. Specifically,
we will prove

THEOREM 8.4: Let I' be a group which is classified by a finite complex. Suppose

that the coarse Baoum-(lomnnec pnlnépnhurp 1¢ true for +
arse Jor U

underling metric snace
inay the co ae ?
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IT'| of T'. Then the (analytic) Novikov conjecture is true for I', that is, the
equivariant assembly map

Ar: K.(BD) — K.(
\*~*) *\

IR
Ar: K )

*
~rs

The proof will follow from a series of lemmas. Imagine that we have fixed a
particular model for BI' which is a finite complex, and a corresponding model
for ET as a contractible finite free I'-CW-complex.

DEFINITION 8.5: Let G be any space on which I' acts. The homotopy fixed set
GMT of the action is defined to be

G"' = Maps(ET, G),
the space of equivariant maps from ET to G.

2In any metric lifted from V.
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If g € G is fixed under the action of I', then the constant map ET — G with

wvaliio -+ 3g coiiivaria nt T thig wravy we oot o frar tha Aardinare Avad naint o

value g is equivariant. In this way we get a map from the ordinary fixed point set
G' to the homotopy fixed point set G"'. Notice that if G is a C*-algebra then
so is GM’T' (with the supremum norm) and the natural map G'' — G becomes
a C*-homomorphism.

0on m ]DV Y ‘XYD maxr oNnnQl
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K.((D*X)") —= K.((D*X/C*X)")
" ()
K. ((D* X)) — K.((D*X/C*X)"T)

By considering the homological properties of range and domain as functors on
free I'-CW-complexes, we will prove that the right-hand vertical map (denoted
h) is always an isomorphism. On the other hand, the properties of homotopy
fixed sets will show that if " satisfies the coarse Baum-Connes conjecture, then

Llle U()EL()IL[ IGIL-IldIIU gluup lb Z€ero I()I A = rvi. It Wlll I()U.()W E[ld,l; IOI A = DL
the map v in the analytic surgery exact sequence

— K, 11(8*(BT')) —%—— K.(B) —4——K.(C;T) ——
K1 (D* X)) — Kup1 (D" X/C* X)) — K.((C* X))
is zero, and therefore that the assembly map itself is injective.

LEMMA 8.6: The functor X — K,((D*X/C*X)"!') is excisive’ on the category
of finite free I'-CW -complezes, and the map h in the diagram (ﬂ s a natural

transformation of excisive functors.

PROOF: One can follow exactly the outline of the proof of the Mayer-Vietoris
sequence for K-homology (5.6), replacing all C*-algebras and ideals by their
‘homotopy fixed’ versions. [

REMARK: There is a more highfalutin explanation for this result. Excisiveness
can be expressed in terms of the functor F that sends a space X to the
stable unitary group of the corresponding C*-algebra by the statement that F

transforms cofibrations into fibrations. Now one can show that if P — () — Ris

a fibration sequence in which the maps are equivariant, then the corresponding
sequence of homotopy fixed sets P"''" — Q"' — R" is also a fibration sequence.
The result then follows from the unequivariant excision properties of K-homology
on X.

LEMMA 8.7: If X consists of a single free I'-simplex, then h is an isomorphism.

3This means that it has a Mayer-Vietoris sequence.
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| T,

PROOF: Suppose that X = I' x A™. Then (because of the localization
property of D*/C*, that any element of this algebra has a representative with
prescribed small propagation) the algebra D*(X)/C*(X) is equal to the algebra
Maps(T', D*(A™)/C*(A™)), and similarly its stable unitary group is equal to
Maps(T',U), where U is the stable unitary group of D*(A™)/C*(A™). Recall
that the K-theory groups of a C*-algebra are simply the homotopy groups of its
stable unitary group. But U = Maps(I',U)" and Maps(T, U)"T are homotopy
equivalent, as the following argument shows:

Maps(I',U)"™ = Mapsp(ET, Maps(T',U))
= Mapsp(T,Maps(ET,U))
= Maps(ET,U)
~ U

This proves the result for the case of a single simplex. [I

is an isomorphism

PROOF: This follows from the previous two lemmas by a standard induction
on the number of simplices, using the five lemma. [

To complete the argument we need to know that the bottom left-hand group
in () is zero, when X = ET. Our assumption that the coarse Baum-Connes
(,UIIJCLLUIC lb true IUI |1 | says tllat U A Ild.b Z€ETO I\ bIlCUIy, dll(l Luerewle LIldl:
the stable unitary group of D*X is (weakly) contractible. The result we want
will therefore follow by applying to the stable unitary group the following general

result on homotopy fixed sets.

LEMMA 8.9: Suppose that I" acts on U and that U is weakly contractible (in the
sense that there is a point 1 € U fixed under I' such that the inclusion 1 — U 1is
a weak homotopy equivalence). Then U™ is weakly contractible.

PROOF: Let us begin by proving that U"! is path connected. Let f: ET' — U
be a point of U". We define a path connecting f to the constant map 1
by induction over the free I'-simplices of ET, in increasing order of dimension.
The induction step is therefore that I' x A is a free simplex and there is given
an equivariant map I' x A x [0,1] connecting f = fo with 1 = f; on the
boundary of I' x A. Considering a single component A of the I'-simplex, we can
(uneguivariantly) extend the given data A X In 11| 1 OA % rn 11 — T to

ULty Ul VuLl(h.lAulJ} AT LI ULA Slvuil aata 0 a J.J.J.Chp

fi: Ax[0,1] — U, because U is weakly contractlble. There is now one and only
one way of extending this new f; equivariantly over I' x A, and by uniqueness
this matches up with the given f; on the boundary. This completes the induction
step.

Now to nprove that [7AT n fact weaklv contractible. we annlv the n o

Now to prove that U™ is in fact weakly contractible, we apply the p g

argument to V = Maps(S™,U ) Since U is w eakly contractlble, so is V, hence
Tn

VhT is path connected. But mo(V?) =
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I would now like to connect this presentation of the descent argument with
that using Poincaré duality and the indices of elliptic families, as in [60]. We
begin by remarking that the above argument can be made to work if the
coarse assembly map is not an isomorphism; it need only be ‘canonically’ split
injective. The index theory approach begins from the observation that higher
index theorems can often be used to show this split injectivity.

Suppose for simplicity that V is a compact aspherical spin manifold with
fundamental group I'' By K-theory Poincaré duality, the K-homology of the
contractible manifold V is a copy of Z generated by the homology class of
the Dirac operator. To split the coarse assembly map therefore requires only
the computation of a single higher index. In particular if V admits a con-
tracting, degree-one map onto Euclidean space (“hyper-Euclidean”), then the
R"™-bounded index theorem provides such a splitting, by showing that the index
in K,(C*|R™|) = Z of the Dirac operator is equal to one. Moreover, this copy of
Z can be detected by pairing K, (C*V) with a Fredholm module coming from a
suitable ‘asymptotically flat vector bundle’ over V (see [113)).

Consider a ‘families’ version of this problem. Suppose therefore that there
is given a bundle E over some compact manifold M, whose fibres are copies of
V and whose structural group is I. Associated to this bundle is a bundle of
C* algebras with fibre C*V, and a family of Dirac operators on the fibres has an

ndav in tha I _thanrv nf tho ]n-n]-\vn M Af cortinna nf +hia o nf n*_n]n-n]nvna
lllucA 1.[1 l/l.l.C L) TULITUL J Ul lhllU 0415\7 L QU 4A U DC\/UIUIID Ul UU.LD Uullulc vL v algw

Notice that any operator on V gives such a family, since it lifts to a I'-equivariant
operator on V; so we get an index map K, (V) — K.(2). Moreover, a family of
asymptotically flat vector bundles gives a families index map

K. (%) — K*(M)

generalizing the previous case where M is a point.

In particular we may consider the example M = V where E is the balanced
product V xr V. In this case the relevant higher index theorem states that the
composite K,(V) — K,(%) — K*(V), obtained from a hyper-Euclidean struc-
ture on V is simply K-theory Poincaré duality and is therefore an isomorphism.
However, one can easily see that in this case 2 is nothing other than the algebra
C*(V)" already alluded to. We therefore have a commutative diagram

- v

K.(V) —— K.((D*V /C*V)T) K*(V)

| 1
v v I

K. (C;T) —— K, ((C*V)"T) ———=K..(%)

showing that Ar is split.

Notes and references: After foreshadowings in [95, 58], the coarse Baum-
Connes conjecture was stated in detail in [54, 115]. The descent argument is
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widely known, see the discussions from various points of view in [22, 38, 60];
lnr‘]ppr] it is nrobablv implicit in all approaches to the Novikov coniecture for

22T TRa,y v A5 AUV AAAPRIVIY AL Qid Qp A UGUIITS v wil d 11y Cctur pavsy

torsmnfree groups which depend on unequivariant geometric properties of the
universal cover [33, 64, 66, 77|. The presentation here owes much to [22] and
to conversations with Higson. The interpretation in terms of ‘coarse index theory
for families’ I learned from Weinberger, some time around 1990.

The ‘descent’ argument presented here can be extended in a number of ways.
For example, one can consider the universal space for proper actions ET (see
page 14) in place of ET itself. If there is a model for ET' on which T' acts
cocompactly and which satisfies the coarse Baum-Connes conjecture, then there
is a descent argument which gives the injectivity of the Baum-Connes assembly
map KI'(ET) — K,(C:T). See [23].

Another variation involves the introduction of ‘coeflicients’ into the coarse
Baum-Connes conjecture [53|. Let A be a separable C*-algebra. Then one can
define [14, 65] the notion of a Hilbert A-module: informally, this is ‘a Hilbert
space whose scalars are elements of A’. By replacing Hilbert spaces with Hilbert
A-modules throughout the development, one obtains versions of C*(X), D*(X)
‘with coefficients in A’ and an assembly map ‘with coefficients’. The techniques
of the next chapter for proving the coarse Baum-Connes conjecture all are general

enough, in fact, to prove the conjecture with arbitrary coefficients.

T

This is relevant to descent because of the following observation. Suppose that
I'y is a group with a finite classifying space for which the coarse Baum-Connes
conjecture is true (with arbitrary coefficients). Descent then tells us that the
Novikov conjecture is true for I'y. However, suppose that I' is an (arbitrary)
subgroup of I'y and consider the coarse Baum-Connes conjecture with coefficients
in A = ¢o(T'o/T), the algebra of functions vanishing at infinity on the coset space
I'y/T. Then one can show that the restriction to I'p-fixed sets of the coarse
assembly map with coefficients in A is simply the ordinary assembly map for the
group I'. Applying the descent argument we obtain the Novikov conjecture for
I". In short, if these methods prove the Novikov conjecture for some group, they

nrATra
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CHAPTER 9

In this lecture we will prove the coarse Baum-Connes conjecture for a number
of interesting spaces. By the results of the previous lecture this will imply the
Novikov conjecture for a wide range of groups. The key point is to develop

computational techniques analogous to the usual ones of algebraic topology.

A coarse Mayer-Vietoris sequence

We begin with excision (equivalently, with Mayer-Vietoris sequences) Sup-

Y 3 aran Qanard greittan ag o hanarna WWa sxrnit 141 Ny

pose X is a coarse space written as a union X; UX3 of subspaces. We would hope

that under favorable circumstances there should be a Mayer-Vietoris sequence

KI(C*()fl N X,)) = K1 (C*(X1)) @ K1 (C*(X2)) ———’\Kl(C'*(X))
1)

Ko(C™ (X)) =—— Ko(C*(X1)) ® Ko(C*(X3)) =— Ko(C* (X1 N X3))

It is clear that such a Mayer-Vietoris sequence cannot hold good in general,
because it is often possible to replace X; and X3 by coarsely equivalent subspaces
X1 and X in such a way that X; N X is not coarsely equivalent to X{ N X}; for
a concrete example of this, consider X to be the disjoint union of two parallel
lines X; and X5 in the plane, with the induced metric. This is simply the coarse
analogue of the existence of non-excisive decompositions in ordinary algebraic
topology!. What we need is a condition of ‘coarse excisiveness’, and the correct
condition turns out to be the following one:
DEFINITION 9.1: {58] A decomposition X = X1 U X2 is coarsely excisive if for
every R there is an S such that Nr(X1) N Ngr(X2) C Ng(X1 N Xs).

Here Np(Y) = {z € X : d(z,Y) < R} denotes the metric R-neighbourhood
of Y.

THEOREM 9.2: [58] The Mayer-Vietoris sequence (1) is exact for coarsely
ezcisive decompositions.

LFor example, there is no Mayer-Vietoris sequence for the decomposition of 52 into the
union of the closed northern hemisphere and the open southern hemisphere.

77
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PROOF: Given Y C X, we let C%(Y) be the ideal of C*X that is obtained
as the norm closure of the set of all finite propagation operators T that are
supported in some neighbourhood Ng(Y') (see definition 3.10). This ideal can
also be described as the C*-ideal generated by the image of C*Y — C*X,
the inclusion-by-zero homomorphism which is obtained by regarding Hx as a
Y-module, making a function on Y act on Hx via its extension by zero to a
Borel function on X.

We notice that for each n € N we may regard C*(N,(Y')) as a subalgebra of
C*X, in the same way as above. By construction, C%(Y') is an inductive limit

7% (Y) = lim C* (N (Y))

of these C*-algebras. All these algebras have the same K-theory, since all the
spaces N, (Y) are coarsely equivalent to Y; so, since K-theory commutes with
inductive limits, we obtain

K.(Cx(Y)) = lim K, (C*(Nn(Y))) = K.(C*Y).

Now we observe that C*X = C%(X1)+C%(X2) (a partition of unity argument),
and that C%(X; N X3) = C%(X1) N C%(X2) (modulo analytical details, this is
an immediate consequence of the coarse excisiveness, which tells us that if an
operator is supported near X; and near X, then it is supported near X; N X3).
The desired result therefore follows from 3.17, the Mayer-Vietoris sequence for
ideals in a C*-algebra. [

The decomposition R = R~ URT is coarsely excisive. We have computed the
K-theory of C*(R) (lecture 4), and the C*({0}) is just the algebra of compact
operators so its K-theory is also known. Since R~ and R* are isometric, the
groups K;(C*(R™)) & K;(C*(R")) cannot be non-trivial cyclic, and using the
Mayer-Vietoris sequence we see that they must therefore be zero. The underlying
geometric reason for this is brought out by the following notion.

DEFINITION 9.3: We will say that a space X is flasque if it admits a self-map
§: X — X such that
(i) s is coarsely equivalent to the identity map;
(ii) The powers of s eventually leave any compact set, that is, for each
compact K C X there is ng such that for all n > ng, s"(X)NK = 0;
(iii) s is an isometry? of X into itself.
Clearly R is flasque (consider the right shift) as is RT x Y for any space Y.
We have

PROPOSITION 9.4: If X is flasque, then K,(C*X) = 0.

2This condition is not coarsely invariant — the correct invariant condition is that the powers
of s should be uniformly coarse (‘equi-coarse’?) — but it is sufficient for our examples.
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J. AAAAAA € represen

PROOF: Let e € (C*X )+ be a pI‘OJGCthH representlng a K -theory class. We
will show how ¢ : ass
is similar.

Note that we may assume® that the X-module H on which C*X is defined
admits an isometry V which exactly covers s. Let H' = @0 H, and on H’
consider the projection

f=ed VeV (V)eV:a

I claim that f € C*(X, H'); assume without loss of generality that e has finite
propagation and is locally compact. Manifestly, then, f has finite propagation.
To show that it is locally compact let ¢ be a compactly supported function on

X . Note that because the powers of s eventu A]v leave any compact set, all but

finitely many terms in
fo=epdV*eVpd---
are zero. So fy is a finite sum of locally compact operators, hence it is compact.
Let i: C*(X,H) — C*(X, H’) be the top left corner inclusion. Plainly we

have [f] = [ixe] + [V*fV] in K.(C*(X,H’)). But [V*fV] = [f] because V

covers the map s which, by assumption, is coarsely equivalent to the identity.
So [i.€e] = 0. However, i, is an isomorphism (since both H and H’ are adequate
X-modules), so [e] =0 in K,(C*(X, H)), as required. [

REMARK: This kind of argument is sometimes referred to as an ‘Eilenberg
swindle’.

These results can be used to compute K,(C*X) when X = QY is an open
cone on a polyhedron Y, giving an analytic counterpart to [83]. We need to note

LEMMA 9.5: The functor Y — K.(C*(OY)) is a reduced generalized homology

atonnra of fimat nlmhor]mn\

he category of finite polyhedra).

PROOF: If f: Y — Y’ is a simplicial map, then it is Lipschitz, so Of: OY —
QY is a coarse map, giving the functoriality. Functoriality for general continuous
maps will follow via the simplicial approximation theorem once we have proved
homotopy invariance. Excision follows from our Mayer-Vietoris results because
the cone on aiy ucu‘)mpGSluUu of Y into closed subsets is Coarsely excisive. The
theory is reduced since Rt = O(point) is flasque. As for homotopy invariance,
in the presence of excision this is equivalent to the statement that the homology
groups of a closed cone ¢Y =Y x [0,1]/Y x {0} are zero; and this follows from
the geometric observation that O(cY') is coarsely equivalent to O(Y) x RT, and

N fa (T, thi n—1
hence is flasque. (To see this, embed Y in S" ", thought of as the equatorial

sphere in S™, and model cY as embedded in S™ by coning from the north pole.
With this model one actually has
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as subsets of R**!. ) [J

Note that the above argument in fact shows that the homology theory satisfies
the strong ezcision axiom (excision for arbitrary closed pairs).

Now it is clear that Y — K,(QOY), the K-homology of the open cone, is
also a reduced generalized homology theory; by the usual long exact sequence
of K-homology it is just the reduced K-homology of Y with dimension shifted
by one. And the assembly map is a natural transformation of such generalized
homology theories. To verify that the assembly map is an isomorphism for open
cones in general, it therefore suffices to verify this in the case of the coeflicient
groups, that is in the case X = point = O(0); in this case both groups are Z in
dimension zero, zero in dimension one, and the assembly map is an isomorphism.
Thus by a Mayer-Vietoris argument we obtain

PROPOSITION 9.6: The coarse Baum-Connes conjecture is true for open cones
on polyhedra.

As a special case, the coarse Baum-Connes conjecture is true for Euclidean
space. This should be regarded as a coarse analytic counterpart to Shaneson’s
computation of the Wall L-groups of a free abelian group [102].

Coarse homotopy

In order to extend the range of spaces for which we can calculate, it is necessary
to introduce an appropriate notion of ‘coarse homotopy’. One might try to say
that two maps X — Y are coarsely homotopic if they arise by evaluation at 0 and
1 from a coarse map [0,1] x X — Y. But this notion is too restrictive; because
of the constant ‘diameter’ of X x [0,1] two maps will be coarsely homotopic
in this sense if and only if they are coarsely equivalent. What one wants is a

. 1
coarse map from X X [0,1] to Y where X X [0,1] is given a metric which ‘opens

out’ as one goes to infinity in X. There are a number of slightly different ways
of formalizing this notion. In [56] we used a metric on the product for which
each copy X x {t} of X was isometrically embedded. However for the proofs it
seems to be simpler to follow Yu [115] in making use of the notion of ‘Lipschitz

homotopy’ due to Gromov [46]. Here is the definition that we will use.

1110V L AVRLUV =) 13040 A5

DEFINITION 9.7: Let X andY be coarse spaces. A Lipschitz homotopy from X
toY is a coarse map H: X x Rt — Y x R*, which is of the form H(z,t) =
(he(z),t), and which has the property that for each compact subset K C X there
is txr € RT such that hy(z) is constant int fort > tx and z € K.

A Lipschitz homotopy is thus a homotopy that runs at a constant speed, but
possibly for longer and longer times as one goes further and further out in X.
In particular the limit h(oco,z) is a well-defined function of z. If fo(z) = h(0,x)
and f.(z) = h(oco,z) are coarse maps* then we will say that they are Lipschitz

4Ngte that it does not follow from th
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coarse map, as easy examples show; this i
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homotopic. More generally, we will call them Lipschitz homotopic if they can
be linked by a chain of Lipschitz homotopies as defined above — it being far
from apparent that Lipschitz homotopies can be concatenated so as to define an
equivalence relation.

THEOREM 9.8: Lipschitz homotopic coarse maps X — Y induce the same
homomorphism K,(C*X) — K,(C*Y).

PROOF: Let

N

={(z,1) : 0 < t <tyy((ap}
Hi

e homotopy, so that is constant in z outside Z \bcc figure

b e of th

8. Let Xy and X be the two boundary pieces of Z; Xy is isometric with X,
and X, has a natural coarse map to X (the projection); H gives coarse maps
Xo — Y and X, — Y, which by hypothesis factor through the coarse maps fo
and fo from X to Y. As usual in proofs of homotopy invariance, it is sufficient

+ +that +1L 1 7 A Y 7 A 3
vO prove uiav uiac inclusions 110 — 4 anG Agg — 4 induce isomorphmms on the

K-theory of the appropriate C*-algebras.
Notice that Z can be considered as a subspace of X x R. Let W_ and W, be
the parts of X x R to the left and right of Z, that is,

W_ = {(x’t) AN 0}7 W+ = {(mat) 2 tNl({z})}

Consider the Mayer-Vietoris sequences associated to the following two coarsely
excisive decompositions of X x R:

(a) X xR=W_U(ZUW,);

(b) X xR=(W_UZ)U(ZUW,).
Inclusion gives a natural transformation between the Mayer-Vietoris sequences.
But the subspaces W_, W_U Z, and Z U W, are all flasque (by translation to
the left or the right as appropriate), and so the associated K-theory groups are
all zero. Hence, by the five lemma, inclusion induces an isomorphism on the
K-theory groups associated to the intersections in the two decompositions, that
is, an isomorphism K, (C*(Xy)) — K.(C*(Z)). The argument for X, is similar.
O

P L oL oL o
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REMARK: There is an analogue of this result for D*X; namely, that contin-

nnonely Tinerhite ha mr\fnn: continiinne cnarqas mang X sy 'V oindusa tha gaman
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homomorphism K,.(D*X) — K,(D*Y). To prove this, we may repeat the
argument above, noting that we now require to show that Xg — Z and X, — Z
induce isomorphisms on the K-theory of the algebras D*. We know that
these maps induce isomorphisms on the K-theory of C*, and they also induce

1cnmnrnhmme on K- hnmn]nmr because thev are nroner homotony eguivalences
;;;;;;;;;;;;;;; S on K -nomoeiog ecause they are proper homotopy equivaliences.

Comparing the analytic surgery exact sequences for Xy (or X)) and Z, and
using the five lemma, we get the required isomorphism.

Consider an open cone QY on some Y C S ! Let r- RT — RT be a

OLISIUICL L el ~ LY

Lipschitz function that tends to infinity. Then one can define a coarse map
sq: QY — QY called the radial shrinking associated to r, by

sr(z,t) = (z,7(t)).

X7, 1o 11 . P
110 1ug buupu—: resuiv

We have the
LEMMA 9.9: Any radial shrinking is Lipschitz homotopic to the identity map.
PROOF: We use a linear homotopy at constant speed. [J

A first application of this is to a direct proof of the topological invariance of
K,.(C*OY) as a functor of Y, for any metrizable space Y. Let f: Y — Y’ be a

continiiniie man AQ Xro hQ‘Yﬂ Gf?‘ﬂ@ﬁﬂf‘ {’)‘F hﬂﬂf‘ nnt ]’\ﬂ a ocOaArco TmAane hnnro‘rnr
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it is always possible to choose a radial shrinking s, such that s, o Of is a coarse
map. (The required shrinking function r is related to the modulus of continuity
of f, that is the function which tells you how 6 depends on ¢ in the definition of

continuity.) By the Lipschitz homotopy invariance result above, we know that
(e o (’)f\ : K, (f”*((’)V\\ — K, (ﬂ*((QV'\\ does not depend on the choice of r,

TS AU proaata AL AT LAIVART

so this gives us a functorlal fe: K (C’* (OY)) — K.(C*(0Y")), which will be an
isomorphism if f is a homeomorphism. Thus we see that Y — K,(C*(OY)) is
a homology theory on the category of compact metrizable spaces.

REMARK: This argument in fact shows that the ‘Lipschitz homotopy type’ of
QY depends only on the homotopy type of Y. One might ask whether there
is any equivalence relation on coarse spaces that, when applied to open cones
QY , corresponds exactly to homeomorphism on Y. I suspect that the answer is
negative. Compare 2.2, and the paper [16] cited there.

As a second application, let us prove the coarse Baum-Connes conjecture for
any complete simply connected Riemannian manifold X of non-positive sectional
curvature. We need to observe that the conjecture is invariant under Lipschitz
homotopy equivalence: if X is Lipschitz homotopy equivalent to a space for which
the conjecture is true, then the conjecture is true for X. Indeed, K,.(C*X) is
invariant under Lipschitz homotopy equivalence by our results above, and it is not

hard to see that K X, (X) is invariant as well. In our case, by classical differential
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geometry the exponential map at a point x € X gives a distance-increasing

<

exp: R" - X

whose inverse log: X — R" is therefore a coarse map. The exponential map itself

ig not coaree hiit one can ind a radial echrinkine o eiich that avn oS8 iq coarse.
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The composites log o(exp os,.) and (exp os,.) o log are Lipschitz homotopic to the
identity (by ‘linear’ homotopies in each case). Thus X is Lipschitz homotopy
equivalent to R™ for which the coarse Baum-Connes conjecture is known, and
therefore the coarse Baum-Connes conjecture is true for X. By descent theory

(lnnfnrn R\ this means that the nna]vhr Novikov coniecture is true for all groups
njecture 1s roups

Wthh are fundamental groups of compact, non-positively curved manifolds — a
result due to Mischenko.

Scaleable spaces

o,

DEFINITION 9.10: A coarse space X 18 scaleable if there
th

mn'ne:Y_\Y.
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which satisfies d(s(m),s( ’) 2d(z,2') for all z, ' € X.

PROPOSITION 9.11: If X is a scaleable space then the ordinary assembly map

A: K, (X) — K,(C*X) is an isomorphism.

PROOF: We prove this by showing directly that D*X has zero K-theory, by
means of another Eilenberg swindle. Specifically, let H be the Hilbert space
on which D*X is defined and let V: H — H be an operator which exactly
covers the rescaling map s. Because of the assumption that s is continuously
Lipschitz homotopic to 1, Ad(V) induces the identity on K,(D*X). To apply

the same argument as in the proof of proposition 9.4, I need only show that if
e € D*(X; H), then the operator

f=ed VeV (V) eV?a--.

. h*/‘V’, I/ Vi IT! 2 aan 22 A2l oo L 2 ~L I7T Mlkia
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follows from Kasparov’s lemma (5.4). We may assume that e has finite propa-
gation, say r; then (V*)"eV™ has propagation 2~ "r. Therefore, if v, 9 € Cy(X)
have disjoint supports, the operator o(V*)"eV " is zero for all sufficiently large
n. Thus ¢ f'gb is a finite sum of compact operators, hence it is compact. So f is

nantidAlanas is plainly nitn nrAanagatian g a a1 Ml
A1 1 e 4. 3 1 1y ~F Gt 43 Th; +h 1+
pseuaoiocal, anda iv 1S piaifity OI 1iiiit€ propagatv R § U U.

COROLLARY 9.12: Let Y be any finite-dimensional compact metrizable space.
Then the coarse Baum-Connes conjecture is true for O(Y).

PrROOF: We know that the assembly map A is an isomorphism for O(Y).
One can also show that the coarsening map c: K.(OY) — KX.,(OY) is an
isomorphism in this case; notice that this is not a trivial assertion, since if Y is a
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‘bad’ metric space, the Cantor set for example, then OY need not be uniformly

contrantibhla Qinan A cr— A it fallacra +hat A ig an ieomornhic M
contractible. Since Axp O C = A, IU IOLOWS T11a i Ao 1D all mu1uu1p1umu LJ

The point, of course, is that Y may be a ‘bad’ metric space. This is important
for the next section, in which we study hyperbolic metric spaces by relating them
to the cones on their Gromov boundaries.

REMARK: An alternative approach to 9.11 for nice scaleable spaces can be
given by making use of a recent theorem of Guoliang Yu [114]. This theorem,
translated into our language, should imply that for each bounded geometry
metric simplicial complex X there is a constant ex > 0 such that, if a self-

adinint nrojoactian or a unitarv in 7N* Y hac oo _nranacatinn® loce +ha +than
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it represents the zero class in K,(D*X). Now if X is scaleable, then any class in
K, (D*X) has a representative which satisfies these propagation conditions, and
we conclude that K, (D*X) = 0.

Yu’s result is an analytic counterpart to the a-approximation theorem [24].

However. the analogv is not vet nerfect. The following coniecture still lacks an
, the analogy 1s not ye ure still lacks an

2 2UVY v v < s A

analytic proof:

CONJECTURE 9.13: Let V be a compact manifold, with fundamental group
I'. Then there is a constant ey such that, if f: M — V is an €y homotopy
equivalence, then the structure invariant o(f) € K.(Df(V)) vanishes.

This would give us the topological invariance of the rational Pontrjagin classes.

The reason that the coniecture does not follow directlv from Yu’s theorem is that

4 AT LTSV VAIGY viiT LU0V URIT RKUCS L300 00V LT uL )y 210l (2 8LwiV) iz L3 UiiGu

the structure invariant of a small homotopy equivalence is certainly represented
by an invertible of small propagation, but this invertible may be rather far from
being unitary.

Coarse Baum-Connes for hyperbolic spaces

Gromov’s notion of hyperbolicity provides a coarse interpretation of negative
sectional curvature. To give the definition let M be a geodesic metric space. By
this I mean a metric space in which the distance between two points is equal to
the infimum of the lengths of paths between them, and there is always a path
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d,utauuug this infimum. A ycuu,eS'ZC' jllSt means a p.
between any two of its pomts.

Let T be a geodesic triangle (with vertices A, B, C and sides BC, CA, AB)
in such a space. We define the fatness of T, ¢(T), as follows:

©(T) = inf{d(a, b) + d(b,c) + d(c,a) : a € BC,b € CA,c € AB}.

Plainly the fatness of any triangle in R is zero, whereas triangles in R, n > 2,
can be arbitrarily fat. Less apparent is the following fact.

PROPOSITION 9.14: No triangle in hyperbolic space H™ (of constant curvature
—1) can be fatter than 6.

5See page 20.
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PROOF: We may restrict attention to H2. The fatness of any triangle is at
most 6 times the radius of the inscribed circle. Now the area of any hyperbolic
triangle is at most 7, so the area of the inscribed circle is also at most 7; hence,
since the area of a circle of radius r in H? is greater than the Euclidean area
72, the radius of the circle is at most one. [

REMARK: The constant 6 is obviously not best possible. This does not matter.

Gromov proved that the existence (although not of course the actual value)
of an upper bound for the fatness of triangles is a coarsely invariant property of
geodesic spaces. This makes the following definition sensible.

DEFINITION 9.15: A coarse space is hyperbolic if it is coarsely equivalent to a
geodesic metric space in which there is an upper bound for the fatness of geodesic
triangles.

Examples of hyperbolic metric spaces include complete simply connected
Riemannian manifolds with sectional curvatures bounded above by a negative
constant, free groups, and more generally suitable ‘small cancellation’ groups®.
It can be shown that hyperbolic groups are common, in the sense that a group
‘chosen at random’ is likely to be hyperbolic.

Let M be a hyperbolic metric space, and consider the geodesic rays from a
fixed point O € M. An elementary argument shows that there is a constant
C such that two such rays either remain within distance C for all time or else
diverge exponentially.

DEFINITION 9.16: The Gromov boundary of M is the collection of equivalence
classes of geodesic rays, two such rays being equivalent if they remain within
distance C'.

For example, the Gromov boundary of a complete, simply-connected Rie-
mannian nianifold with sectional curvature bounded from above by a negative
constant is a sphere; the Gromov boundary of a free group is a Cantor set. In
general the Gromov boundary is a finite-dimensional compact metric space. The
metric is defined by saying that two geodesic rays are close in the metric if it
takes a long time before they diverge significantly (say by more than 3C). For
details see [43].

The definition of the Gromov boundary of M makes it clear that there is a
(coarsely defined) ‘exponential map’ O9M — M, which sends the pair ([v],t) to
v(t). By composing with a suitable radial contraction one can again make this
into a coarse map. Moreover, an inverse ‘logarithm’ map can also be defined
from M to OOM; one sends z € M to (d(z,0O),[v]), where 7 is a geodesic ray
passing near’ x. Of course the choice of such a geodesic ray is not unique, but,

8A group T is a smaii canceliation group if it has a presentation in terms of generators and
relators in which any common subwords between relators are comparatively short [43].

7This assumes that the exponential map is coarsely surjective; if this is not the case, an
additional argument is required. See [57].
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by definition of the metric in OM, the class [7] is defined in OM up to an error
which becomes small as d(x,O) becomes large; this can be arranged so that
we get a coarsely well-defined map onto the cone. These rescaled exponential
and logarithm maps are then Lipschitz homotopy inverses, so M is Lipschitz
homotopy equivalent to the cone OOM, for which we know that the coarse
Baum-Connes conjecture holds. It follows that the conjecture holds for M. We
state this formally.

PROPOSITION 9.17: Let M be a hyperbolic metric space. Then the coarse Baum-
+ Connes conjecture holds for M.

Applying the descent theorem 8.4, we now know that the analytic Novikov
conjecture holds for hyperbolic groups that are classified by a finite complex.
This was first proved (modulo torsion) by Connes and Moscovici [29], using
cyclic cohomology. Their methods appear to depend on rather different aspects
of the theory of hyperbolic groups, and it is an interesting question what is the

relation between the two approaches.

Notes and references: The Mayer-Vietoris theorem is in [58]. Most of the rest
of this lecture is based on [57], where further details can be found. Lipschitz
homotopy invariance of K,(C*X) was proved by Yu in [115]; the analogous
nnnnnnnnnnnnnnnn
from [53], and is based on unpublished earlier work of Ferry and Pedersen.

The theory of hyperbolic groups and metric spaces is expounded in [45, 44,
43).



CHAPTER 10

Coarse structures and boundaries

Especially in our discussion of the coarse Baum-Connes conjecture for hyperbolic
spaces at the end of the last lecture, it became apparent that the conjecture is
closely related to the existence of suitable ‘ideal boundaries’ of a space X. In
this lecture we will approach matters directly from this perspective, which gives
an alternative proof of very similar results.

Abstract coarse structures

Recall that in lecture 2 we mentioned that the coarse structure defined by
a metric should be considered as a special case of a notion of ‘abstract coarse
structure’ on a topological space. We will now formalize this.

DEFINITION 10.1: Let X be a locally compact topological space. A coarse
structure on X consists of a collection € of subsets of X x X, called entourages,
which have the following properties:
(i) The collection of entourages is closed under the operations of reflection
in the diagonal, subset, union, and composition of relations'.
(ii) Any compact subset of X x X is an entourage;
(iii) Entourages are proper relations: that is, if E is an entourage and K C X
is compact, so is Eo K = {x : 32, (z,2') € E,z’ € K};
(iv) The union of all the entourages is X x X.
If the diagonal is an entourage the coarse structure is called unital.

Wao will anlvy K©
v [0
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we will therefore usually drop the prefix. Two significant examples of coarse
structures are the following:

(a) Suppose that X has a proper metric. Then we may define a coarse
structure by declaring that the entourages are those sets £ contained in
some metric neighbourhood Ng(A) of the dlagonal in X x X. This is

Fl.
D
-
53
)
ey
3

the bounded coarse structure associate

u;;u v 1oy UCtu?

1The composition of E; and Ez is the set {(z,z") : 3%/, (z,2') € F1,(2',z") € E2}.
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(b) Suppose that there is given a compactification of X, meaning an em-

bpr‘]rhncr of X as a dense open subset of some compact space (7 with

boundary 8X = C \ X. Then we may define a coarse structure by
declaring that the entourages are those subsets £ C X x X such that,
when they are considered as subsets of C' x C, their closures ‘intersect
infinity only in the diagonal’, that is,

r€CyedX {(x,y), v, 2)})NE£D=zx=1y.

This is called the continuously controlled coarse structure associated to
the given compactification.

Every ‘coarse’ notion that we have used can be defined purely on the basis of
this abstract notion of coarse structure. For example, a coarse map f between
coarse spaces is just a proper map f such that f x f maps entourages to
entourages. A coarse space is uniformly contractible if for every entourage F
there is another entourage F’ O F having the property that if V C X with
V x V C E, then the inclusion map V — E’ o V is nullhomotopic. An operator
T on an X-module has finite propagation if there is some entourage E such that
@Tvy = 0 whenever Suppp X Suppy N E = @. The algebras C*X and D*X
can be defined just as before, and the critical lemma 5.9 remains true. Thus
the assembly map can be defined, and we can state the coarse Baum-Connes
conjecture in the form: for every uniformly contractible bounded geometry coarse
space, the assembly map is an isomorphism.

ExXAMPLE: In lecture 5 we defined algebras C* and D*, and an assembly map,
for a space X equipped with a proper ‘reference map’ X — Z to a metric space
Z. These can now be recognized as the aigebras C*(X) and D*(X), where
X is equipped with the coarse structure pulled back from the bounded coarse
structure on Z.

EXAMPLE: Suppose that a group I'" acts by homeomorphisms on the locally
compact space X. There is a natural I'-invariant coarse structure on X, whose
entourages are just all subsets of sets

| 7K x 7K,
~yer

where K is compact in X. This structure is unital if the action of I" is cocompact
(as is the case with all the actions we have considered so far). This structure
Wlll Ue Laﬂﬁd LIIU coarse bbl ULLUIIC’ leuuceu Uy ULC l -ucuun, lb COInClueS _V_Vlhll l;lJ.C
bounded coarse structure coming from a proper I'-invariant metric, and is in an

obvious sense the finest structure for which the action of I is equi-coarse.

DEFINITION 10.2: Let X be a coarse space, an

md lot (' he
& Cov U U
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v w C(I\Ilbllac
X. Then C will be called a coarse compactification of X, and 0X =C \ X will
be called a coarse corona of X, if the identity map from X equipped with its given
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coarse structure to X equipped with the continuously controlled coarse structure

n'ra ') uﬂ f'r'nfrn ﬂ 'l&‘ n roNnree Mman
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There is a dual formulation of this notion in terms of functions on X. Let
X be a coarse space and let E be an entourage for X; then, for any continuous
function f: X — C, we may define the E-gradient of f by

Vi f(z) =sup{|f(z) - f(¥)|: (z,y) € E}.
Then we have

PRrOPOSITION 10.3: C is a coarse compactification of X if and only if, for every
function f on X that extends continuously to C, Vg f € Co(X) for all entourages
E.

The proof is straightforward. This proposition makes it clear that there is a
universal coarse compactification of any coarse space X, namely the maximal
ideal space of the commutative C*-algebra of all bounded functions f on X such
that Vg f € Co(X) for all entourages E. This universal compactification is called
the Ffmenn ('n'm'nn('hﬁ('nf')n'n and its hmmdarv vX is the Hmenfn corona. It is a

compact Hausdorff space, but it is not metrizable except in trivial cases.

The assembly map for continuous control

Let us now discuss under what conditions we can prove that assembly is
an isomorphism for continuously controlied coarse structures. We can in fact
identify the whole analytic surgery exact sequence, in this case, with a more

familiar object:

MrarmnAanmar 1N A T o4 V Lo n cncmon omans opsiemmo A 4
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trolled coarse structure coming from a metrizable compactification C as above.
Then the analytic surgery exact sequence for X is naturally identified with the
reduced K -homology exact sequence of the pair (C,0X), as in the diagram.

ir1(D"X) —— Ki(X) —— K(C"X) —
!| Hexcision H
— K;(C) —— Ki(C,0X) — K;_,1(8X) —>

ProOF: The second identification, as indicated, is just excision for K-
nommogy We will show how to make the first identification K;y1(D*X) =
K;(C); the third one is similar to the first.

Notice that because X is a dense open subset of C, the adequate X-module
H on which the algebras C*(X) and D*(X) act may also be considered as
an adequate C-module, and so may be used to define the K-homology of C.
By definition this is K;(C) = K;11(¥°(C)/¥~1(C)); here, however, since C is
compact, U~1(C) is just the algebra of compact operators, so K;.1(¥°(C))
differs from K;(C) only by a possible Z; in fact it is easy to check that

~
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2Jrl(\il"((/)) is exactly the reduced K-homology group K;(C). The proof will
therefore be completed if we can identify the C*-algebra D*(X) with ¥9(C).
Notice that these are, in fact, C*-algebras of operators on the same Hilbert
space.

For starters let T € D*(X), so T is pseudolocal on X and of finite propagation,
say supported within an entourage E. We want to prove? that 7" is pseudolocal
on C. By Kasparov’s lemma (5.4) it is enough for us to prove that if ¢ and ¥
are continuous functions on C having disjoint supports, then T is compact.
Now notice that since ¢ and ¥ have disjoint supports, and the closure of E at

infinity is the diagonal, the set

Supp ¢ x Suppy N E

is in fact a compact subset of X x X C C x C. Therefore we may write
¥ = o + 1, where po € Co(X), Supp ¢o C Supp ¢, and

Supp ¢1 x Suppy N E = 0.

By the finite propagation condition on 7', ¢Tv% = ¢oT, and since T is
pseudolocal on X this is equal modulo compacts to Ty = 0.

Conversely suppose that T € ¥°(C). We want to approximate T by finite
propagation operators. It is not hard to see that the condition of finite propa-

1 lcnn{- tn the fallawine rogniremoant: oiven anv
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gation on an operator S is eq
compact K C 0X and any open U C C with K C U, there exists an open
VCC,KCV CU, such that S and S* don’t propagate from outside U to
inside V. (This is the condition of continuous control as used in [3, 22].) Given
€ > 0 I will show how to perturb T" by at most ¢ so that it satisfies this condition

for some fixed K and Tf the nroof ie then comnleted hv an induction over a

r some fixed K and the proof is then completed an induction a
suitable countable basis (usmg metrizability), replacing € by 27 "¢, and passing
to the limit.

So, now, consider U and K as given, and fix an open set W such that K C
W CW CU. Then xc\uTxw is a compact operator, because 7" is pseudolocal
on C. Take a sequence V,, of open sets contained in W and with V,, = K.
Then the characteristic functions of V,,, considered as operators on H, tend to
zero in the strong topology; therefore, the operators xc\vTxv, = xc\vTxwxv,
tend to zero in norm. Let V' = V,, where n is chosen so that ||[xc\vTxv| < €.
The operator xyTxv +Txx\v then does not propagate from outside U to inside
V, and differs from T by at most £ in norm. [

COROLLARY 10.5: If X has a continuously controlled coarse structure arising
from a contractible compactification C, then the assembly map for X is an
isomorphism.

2This is a generalization of lemma 7.3.
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How is this related to the coarse Baum-Connes conjecture? In this situation

the coniecture would imnplv that the assemblv map is an isomorvhism for a
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space X which is uniformly contractible (in the continuously controlled sense)
and satisfies, perhaps, an appropriate ‘bounded geometry’ hypothesis.

LEMMA 10.6: Let X be an absolute neighbourhood retract® (ANR)equipped with
a compactification C. Suppose that
(i) X is uniformly contractible for the continuously controlled coarse struc-
ture;
(ii) C is a finite-dimensional metric space.
Then C' is a contractible ANR.

COROLLARY 10.7: The coarse Baum-Connes conjecture holds for a space X of
the kind described in the Lemma.

Probably, the coarse Baum-Connes conjecture holds for any reasonable space
with a continuously controlled structure coming from a finite-dimensional com-
pactification, but I did not check this in detail.

Proor: (OF THE LEMMA)? Clearly X is contractible. But by [13, Proposi-
tion 2.1], which applies to our situation because of uniform contractibility, the
compactification C is an ANR and 0X = C\ X is a Z-set in C. Thus X — C
is a homotopy equivalence, and the result follows. [J

Let us now apply the descent theory of chapter 8. Suppose therefore that X
is a contractible space equipped with a compactification C, and suppose that a
discrete group I'" acts cocompactly on X (so that X/I" = BT is compact) and that
the action extends continuously to C'. The algebras C*X, D*X and so on are

then eqguinned with a M action. The ln:nr lemmas 5.14 and 5.15 remain true in this
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situation, provided that C is a coarse compactification of the coarse structure
on X induced by the I'-action; this condition is often expressed by saying that
‘compact sets become small at infinity under translation’. The descent theory
goes through without change. We therefore obtain the following result, which

nara]]n]q the main theorem of [22]:

it S

that the corresponding universal space ET' admits a contractible metrizable com-
pactification to which the I'-action extends and for which compact sets become
small at infinity. Then the analytic Novikov conjecture is true for I

REMARK: Recall that any coarse space has a universal compactification, the
Higson compactification. If the total space of the Higson compactification of
a uniformly contractible space were itself contractible, this would imply the
Novikov conjecture; and in [95] I was rash enough to conjecture that this
might be the case. However, Keesling [67] showed that this conjecture was
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overoptimistic, by proving that the one-dimensional Cech cohomology of the
Higson corona of R is an uncountably generated group.

It is still possible that the Higson compactification can be put to use in the
study of the Novikov conjecture. In all known examples of spaces X = ET
the inclusion of X into its Higson compactification X induces the zero map
H*(X;Q) — H*(X;Q) (using Cech cohomology). This at least implies the
rational injectivity of the coarse assembly map. However, at present it seems that
one needs more refined compactifications taking into account extra geometric

structure before this approach to Novikov can be made to work.

Notes and references: Most of the material in this lecture comes from
{53]. The notion of an ‘abstract coarse structure’ is bult:‘ly known to
in controlled topology (compare [3]), though I do not know of anywher
something like definition 10.1 is written down.

The relationship between the K-theory of C*(X) and the K-homology of a
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