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Introduction

This book, loosely based on a course of lectures delivered at Oxford in 1987, is
intended as an introduction to the circle of ideas surrounding the heat equation proof
of the Atiyah-Singer index theorem. Among the topics discussed are Hodge theory;
the asymptotic expansion for the heat kernel; Weyl’s theorem on the distribution of
the eigenvalues of the Laplacian; the index theorem for Dirac-type operators, using
Getzler’s direct method; Witten’s analytic approach to the Morse inequalities; and
the L%index theorem of Atiyah for Galois coverings. As background one needs an
acquaintance with differential geometry (connections, metrics, curvature, exterior
derivative, de Rham cohomology) and functional analysis (elementary theory of
Banach, Hilbert, and occasionally Frechet spaces; the spectral theorem for compact
self-adjoint operators). Almost all the PDE theory needed is developed in the text.
Occasionally we quote results from representation theory or algebraic topology, but
the reader unfamiliar with these should be able to skip over them without loss of
continuity. Some exercises are provided, which introduce a number of topics not

treated in the text.

In the ten years since the first edition of this book appeared there have been a
number of much more comprehensive treatments of this material, among which I
have found the works by Berline-Getzler-Vergne [12] and Lawson-Michelsohn [47]
especially useful. The book is now organized as a three-course meal: four chapters
of geometry (1-4), and five chapters of analysis (5-9), culminate in four chapters of
topology (10-13) in which the preceding results are brought together to prove first the
Lefschetz formula and then the full index theorem. The final two chapters (14-15)

are a dessert.

Once again I am grateful to everyone who has shared insights, comments, or
suggestions about this book, both before and after the publication of the first edition.
I am grateful also to Ivan Smith and Jon Woolf who undertook the task of producing
a TEX file of the first edition; I trust that enough of their work survives in this second
edition that they feel their efforts to have been worthwhile!

JOHN ROE
OXFORD AND PENN STATE, JULY 1998
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CHAPTER 1

Resumé of Riemannian geometry

In this chapter we give a rapid tour through some of the basic ideas of Riemannian
geometry. For the most part we will omit proofs if they can be found in the beautiful
summary by Milnor [54, Part II].

Connections

Let M be a sinooth manifold, and let ¥ be a vector bundle on M. By C®(V') we
denote the space of smooth sections of V. In particular, TAf will denote the tangent
bundle of A, and C(TAf) will denote the space of smooth sections of TM, also

known as vector fields on M.

DEFINITION 1.1 A connectionon V is a linear map
V: C®(TM)® C®(V)— C=(V)

assigning to a vector field X and a section Y of V' a new vector field VxY such that,
for any smooth function f on M,
(i) VixY = fUxY
(il) Vx(fY) = fVUxY +(X.f)Y, where X.f denotes the Lie derivative of f along
X.

Condition (i) may be expressed more technically by saying that X + VyY isa
homomorphism of modules over C*°(Af). It shows that the value of VxY at a point
p depends only on the value of X at p. This allows us to regard V as a map from
C=(V) to QY(V) := C=(T"M ® V"), the space of V-valued one-forms, and it is often
useful to think of a connection in this way. Condition (ii} is modeled on the product
rule for differentiation. In fact, if V is trivialized (as can always be done locally), then
vector fields are identified with R*-valued functions and an example of a connection
is given by

Vx = Lie derivative along X.
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Thus many connections exist locally. Moreover, the difference of two connections is
local both in X and Y, so is an End(V }-valued one-form; in other words, the space of
connections is an affine space modeled on the vector space Q'(End(V')). Now using
a partition of unity it is easy to see that local connections can be patched together
to give a global connection. So, every vector bundle {over a paracompact manifold)

admits connections.

REMARK 1.2 Suppose that V is trivialized over a coordinate patch of Af, with local

coordinates z!,... ,z". Then from our discussion above, for any connection V,
Vi= 6/ 3.’L‘i + [

where [; is a smooth section of End(V). (We abbreviate V, to V;.) The functions
[; are called the Christoffel symbols and they determine the connection completely.
Notice that they depend both on the local coordinate system for Af and on the chosen

trivialization of V.

REMARK 1.3 An alternative definition of connections starts from the idea of parallel
transport. Let v be a smooth curve in M. The differential equation V,Y = 0is a first
order ordinary differential equation on sections ¥ of V along v, which has a unique
solution for a given initial value; one says that Y is parallel along 7, or that it has
been obtained frem its initial value by parallel transport. The connection determines
the notion of parallel transport, and conversely parallel transport determines the

connection V, as we shall see later,

DEFINITION 1.4 The curvature operator K of a connection V on V is defined as

follows: if X, Y are vector fields and Z is a section of V, then

K(X,Y)Z =VyVyZ ~VyVxZ - VixyiZ.

It would appear from its definition that K is a differential operator. However the
following well-known calculation (proof in [54, Lemma 9.1]) shows that in fact K

does not involve differentiation in any of its variables.

10



LEMMA 1.5 The curvature F(X,Y)Z at a point m € M depends only on the values
of X, Y and Z at the point m, and not on their values at nearby points.

Thus K is induced by a vector-bundle map TM ® TM — End(V), in other words
a tensor field. Observe that K{X,Y) is antisymmetric in X and Y and that we may
therefore regard K as a 2-form on M with values in End(V'). Specifically, in terms of
local coordinates z' we define the curvature 2-form to be the End(V)-valued 2-form

K =Y K(8,0;)dz' Adz’.
i<y

(See 1.19 below for a more general discussion of differential forms and our conventions
regarding the identification of differential forms with antisymmetric tensors.)

Connections on the tangent bundle itself are of particular interest. Such a connec-
tion can be expressed in terms of local coordinates; let z° be such local coordinates,
with corresponding basic vector fields 8;. Then each of the n endomorphisms I'; of

Remark 1.2 can be expressed as n X n matrices. Specifically, write
Vg(aj) = ; I‘f)ag
The connection coefficients or Christoffel symbols I‘fj determine the connection com-

pletely, since if X = £ X'8; and Y = $ Y79; are two vector fields, the axioms (i)

and (ii) in the definition of a connection imply that
VxY =Y X'Yig,
i
where by definition
Yij=8Y +3 T,y
a

Thus, if A is n-dimensional, a connection is given locally by the choice of the n®

functions T';.

REMARK 1.6 In the above discussion the local coordinates enter only through the
framing of the tangent bundle provided by {8;}. While it is mnost usual to work in
terms of coordinate framings, we will also have occasion to use other framings of
the tangent bundle. The discussion above can also be carried out with respect to a
general framing,.

11



DEFINITION 1.7 A connection on TM is said to be symmeltric (or torsion-free) if
for any two vector fields X and Y, with Poisson bracket [.X,Y],
VxY - Vy X =[X,Y].
In terms of the Christoffel symbols, this condition is equivalent to I"g- = 1"}‘; in any

coordinate framing.

Riemannian geometry

Now suppose that M is a Riemannian manifold, that is, M is equipped with a
smoothly varying choice of inner product on the fibers of TAf. We denote these

inner products { , ),

DEeFINITION 1.8 One says that V is compatible with the metricif for any three vector
fields X, Yj, and Y5,
(VxV1,Y2) + (N, VxY2) = X - (1}, Ya).

A more geometrical statement of the same condition is that parallel translation
preserves inner products (think of X as ¥ to see the relation between these two

statements).

THEOREM 1.9 (LEVI-CIVITA) A Riemannian manifold possesses a unique connection
that is symmetric and compatible with the metric.

Proor We work in local coordinates. As usual, the metric is represented by
a symmetric matrix of smooth functions gz = (8;,8:). Now the condition of
compatibility with the metric implies

Bigix = Y _(T%Gak + Ti8aj)
a
and by permuting the suffixes we get

6jgks’ = Z(P}’kg«i + F;,'galc)y akgl'j = Z(ingaj + F:,'gm')«

a a

Combine these and use the assumed symmetry of T to get
Z P%Qak = %(3{9,'& + 3j9ik - Bkgsj).
a
This determines the I''s uniquely, since ¢ is an invertible matrix. 0O

12



From now on, we shall always think of a Riemannian manifold as equipped with

this connection, called the Levi-Civita connection.

REMARK 1.10 If X is a fixed vector field, then Vx defines a linear map from the
space of vector fields to itself. Vector fields are of course tensor fields of type ( (1)),
and in fact Vy extends uniquely to a linear map (preserving type) of the space of all

tensor fields to itself, satisfying the relations

(i) Vx(A @B) =VxA®B +A®VxB;
(i1) Vx is equal to the Lie derivative on functions (tensor fields of type (g));

(iii) Vx commutes with contractions of covariant and contravariant indices.

We will construct such an extension Vx later, using principal bundles. Notice
that (i) — (iii) allow us to work out the covariant derivative in local co-ordinates. For
instance, if A=F,; i A9; ® 9; is a tensor of type ( }, then (i) implies that

VkA = EA‘{,:B; ® 6',
i
where

. OAY . . .
* =T Zd:l"}mA‘” + 3 Ty, A

If B=F,;, Bid; ®dz’ is a tensor of type (:), the axioms imply

Ai

ViB =) B0 ®dr
ij

where .
Bj; = gBk + El‘ Ie.Bi.
These formulas can obviously be generahzed.
Since the metric uniquely determines the Levi-Civita connection, it also uniquely

determines its curvature.

DEFINITION 1.11 The curvature of the Levi-Civita connection on a Riemannian
manifold is called the Riemann curvature operator (or tensor) and is denoted by R.

In components relative to a frame {e,} for the tangent bundle we may write
R(ej,ek)el = Z Rfjke;.
i

13



When ¢; is a coordinate frame corresponding to local coordinates z*, direct com-
putations yield
31"}',,. 8[“
E Y Fr
It is sometimes convenient also to work with the 4-covariant version of the Riemann

R;jk = kar;m - F;'?F;cm‘

curvature tensor defined by
Ruji = (R(ej, ex)er, e:);

classically one would say that we have used the metric to ‘lower the index’ i of the

Riemann tensor, to obtain the covariant version.

PROPOSITION 1.12 The Riemann curvature operator (or tensor) R has the following
symimetries:

(i) R(X,Y)Z + R(Y,X)Z = 0, or in components, Rj;, + Rj,; = 0. (This is just
the statement, true for any connection, that the curvature is a 2-form.)

(ii) R(X,Y)Z+R(Y,Z)X +R(Z,X)Y = 0 (in components Rj; + Ry +R};; = 0).
This is the first Bianchi identity, and it depends only on the fact that the
connection is torsion-free.

(iii) (R(X,Y)Z,W) + (R(X,Y)W, Z) = 0. (in components Ri;ji + Rujr =0.)

(iv) Finally, (R(X,Y)Z,W) = (R(Z,W)X.Y), i.e. Rajx = Rjrir.

For proof see [54, Lemma 9.3].

(1.13) The Riemann curvature tensor is a pretty complicated geometric object,
and it is reasonable to ask for some kind of condensation of the information contained
in it. We could try contracting various indices, but the symmetries of the curvature
mean that there is only one non-trivial contraction. This is the Ricei curvature tensor,
which is the bilinear form on TM defined by

Ric(Y, Z) = tr{X — R(X,Y)Z)

or, in components, Ricsy = ¥; Ri,;. It is clear from (iv) above that this tensor is
symmetric. (Using the metric, any symmetric bilinear form on TM may be expressed
as (Y, 2) — (Y, LZ) for some self-adjoint linear operator Z; the operator obtained

14



Notation | Interpretation

R(X,Y)Z | vector field obtained from X,Y,Z

R(X,Y) | (skew-symmetric) endomorphism of TM

R End(T M )-valued 2-form

€ €; framing for TAf and dual framing for T*M

Rijx (ei, R(ej, ex )er) classical tensor form

R 2-forms; matrix entries of R; Ry = T ;i Rujré; A ée

Ricas Ricci curvature tensor; equals 3; R:,,

K scalar curvature; equals ¥; ; R;j;; if framing orthonormal
RS Riemann endomorphism of a Clifford bundle (see chapter 3)

TaBLE 1.1. Notation for various interpretations of the Riemann curvature

in this way from Ric is called the Ricci curvature operator.) Contracting further, we

define the scalar curvature, denoted x, by
K= g“” Ric,s,

the trace of the Ricci curvature operator. All these interpretations and variants of

the Riemann curvature are summarized in table 1.1.

DEFINITION 1.14 A curve v in a Riemannian manifold Af is a geodesic if V3% = 0,
or in other words if ¥ is parallel along +.

The geodesic equation is a second-order differential equation, so it has a unique
solution (at least for small values of the time parameter) subject to initial values
%(0), 4(0); in other words, there is a unique geodesic segment through a given point
of M in a given direction.

The geodesic equation is isochronous; if t +— ~(t) is a solution, then so is t — ~y(ct)
for any constant ¢. From this fact it follows easily that if m is a point of M, the
exponential map

exp:U—- M (U CThM),
defined where this makes sense by sending a vector v € T,, M to the value 4(1) of the
unique geodesic with ¥(0) = m,¥(0) = v, is in fact defined on an open subset U/ of

T M which is star-shaped about the origin. By the inverse function theorem, exp is

15



a diffeomorphism of a neighbourhood of zero in T,, M to a neighbourhood of m in M.
Choosing an orthonormal basis for T,,, M gives a special co-ordinate system, called a

geodesic co-ordinate system, for a neighbourhood of m.

PROPOSITION 1.15 At the origin of a geodesic co-ordinate system, the Christoffe]
symbols all vanish.

PROOF We must show that V;3; = 0 at the origin. Since V;0; = V;J; by symmetry
of the connection, it is enough to prove that Vx X = 0 at the origin for all vector ficlds
X = ¥ X78;, X being a constant function. But in a geodesic co-ordinate system, the
radial lines through the origin are unit speed geodesics; so X is of constant length and

tangent to the geodesic through the origin in direction X. By the geodesic equation,
Vx.«Y = 0. D

REMARK 1.16 In fact it can be shown that, at the origin in a geodesic coordinate
system, the metric tensor g;; has a Taylor expansion whose Taylor coefficients are
manufactured out of the curvature tensor at the origin and its covariant derivatives.

See exercise 1.32.

A Riemannian manifold has a natural metric space structure. If y: [0.1] - M is

a curve on a Riemannian manifold M, we define its length by

1
len(y) = [ Ir'(t)lat
where the absolute value |[y/(t)] of the tangent vector +'(t) is determined by using the

Riemannian meiric. If p, ¢ are points of M we define their distance by
d(p, q) = inf{len(7) : 7(0) = p, (1) = q}.
We quote without proof the following standard facts:
PROPOSITION 1.17 d is a metric defining the topology of M. Moreover, within the

domain of a geodesic co-ordinate system, the balls in the metric d around the origin

are just the ordinary balls of the same radius in R".
THEOREM 1.18 (HOPF-RINOW) M is a complete metric space if and only if every
geodesic in M can be extended to arbitrary length.
For proofs, one can consult Milnor [54, Chapter 10].
16



Differential forms

(1.19) Differential forms are defined as smooth sections of the exterior bundle of
the coiangent bundle, A"T"M. To do computations, it is convenient to identify a

differential m-form a with an antisymmetric tensor A of type ( g) by writing it

a= Y A;....imdx"A...Adx‘mzL, Y Aieindz AL AdT™

[ R AIEE o R TR oy

Under this convention, the differential form dr A dy on R? is identified with the

(7)

An important example is the curvature 2-form, which is the End(V")-valued 2-form

antisymimnetric tensor

associated to the curvature operator of a connection on V'; we may write it
K= ZF(ag,aj)éI‘ Adzl.
i<G
In particular we have the Riemann curvature 2-form which may be regarded as a
matrix of 2-forms Ry defined by

Ry = Z R;gj;,dxj Adzt.
i<k
If & is an m-form with associated antisymmetric tensor A then define for vectors
Xiyeer 3 Xm
a(X1,..., Xn)=(X1®-- ® X )(A);

we may write this in index notation, for instance for m = 2:
a(X, Y) = ZXinA;j
i
where X* and Y7 are the components of X and Y. These conventions introduce
certain constants into expressions involving differential forms. Other publications —

and in particular the first edition of this book — use different conventions and have

different constants. You have been warned!

17



The exterior product of differential forms may be represented in tensorial form by

means of the generalized Kronecker delta symbol:

I AR 4
& = :
R

This symbol is equal to +1 if the ‘5’ indices are distinct and an even permutation of
the ‘¢ indices, to —1 if the ‘j’ indices are distinct and an odd permutation of the ‘¢’
indices, and to 0 if the ‘7° indices and the ‘i’ indices do not form the same set of n

elements.

Now if o € (P and § € ? correspond to antisymmetric tensors A and B, then

a A B corresponds to the antisymmetric tensor C,

Chrkpyg = p—,l; 2 SR A, B,
hernslpJiee ode
Similarly, the exterior derivative da corresponds to the antisymmetric tensor D,
where
1 Z: fiy iy 3.4{,...5'

= ky kgt ;o
N TP ,f, ax}

Diykyyy =

In this formula we may, if we wish, replace dA;,..;, /827 by the covariant derivative
Aiy..4, 5 for the difference will be a sum of terms like 32, Ai;.i,_,aig4y i, [3i, Which is

symmetric in j and {; and will therefore vanish on antisymmetrization.

DEFINITION 1.20 Let M be an oriented Riemannian n-manifold. Let z%,... ,z" be
oriented local co-ordinates. We define the symbol g = det(g;;). Now we define the
volume form vol € 1" (M) by

vol = /gdz' A ... Adz".

It is easy to check that this expression is in fact independent of local co-ordinates,

so that it defines a global n-form on A.

The metric on TA{ induces a metric on all the associated tensor bundles, and

therefore also on A* T*M, considered as a bundle of antisymmetric tensors. To fix

18



a definite normalization, if a, 3 € ¥ correspond to antisymmetric tensors A and B,

let us set
1 -, .
(@B =5 X ¢ g4 Bi,

MR TYNNRK T9m TP Jk
where g/ = (dr',dz’) is the inverse matrix to g;;. (This definition is arranged so that

{vol,vol) = 1.)

DEFINITION 1.21 Let o be a k-form. Define o to be the unique (n — k)-form such
that for all k-forms 3
(a, B) vol = 3 A *a.

The operation * is linear and has the property that * x a = (—1)***a. Thus
* is almost an involution. One can check this simply after choosing orthonormal

co-ordinates at a point.
DEFINITION 1.22 K o is a k-form, define
da= (=1l dya,

Thus d*a is a (k — 1)-form. Clearly, (d")? = 0. The importance of d" lies in the
fact that it is the formal adjoint of d. Specifically, let @ and B be forms of the same
degree. Define their global inner product by

(@, B) =/ (e, §) vol =f BAsa= / aAxp.
M M M
This makes scuse if at least one of & and 3 is compactly supported. Now

PropPosSITION 1.23 If a,3 are smooth forms of degrees k and k — 1 on the oriented
Riemannian manifold M, and one of them is compactly supported, then

(a,dB) = (d"a, ).
Proor By Stokes’ theorem
0 = /de/\ sa) =/Mdﬁ/\*a + (=1 /Mﬁ/\d(*a)
= (adB) + (_l)k-1+fn-k+1)n+(n_k+n/M 5 A%+ d(xa)
= (a,df) — (da,B). O
DEFINITION 1.24 The Laplacian A is defined to be dd* + d*d = (d + d*)?.

19



EXAMPLE 1.25 Let a = ¥ A;dr’ be a 1-form. Then d"a is a 0-form, i.e. a function,
often called the divergence of a. (The divergence theorem [da.vol = 0 is just a

reformatjon of Stokes’ theorem.) Let us calculate d"a, which is equal to —~ +d + c.

First, it is easy to check that

xa =3 (1Y \/gAigidr' A dT " A dI AL da"
&)
Therefore
d(xa) =) 5%(;1;9”/5)(11“ A...Adz"
i3
and

n:—-zaﬂ( 99 /). (1.26)

This expression can be simplified as follows. Write
. ;i 0A ag" ,,
da-—%:( g’ 307 A'?}}T Aig logf)

From the compatibility of the metric and connection
agij L i .
D i (Flag™ + Tug™) -

To evaluate (8/0z7)log /g, differentiate the determinant g, remembering that gy
is the cofactor of g.; this gives

39 b
ob G
3:3 az
and it follows that
a a
% lOg \/5 = ; Fja'

Putting the pieces together. we get
0A;

da = zg” +3 49”‘
[5) or i iJ.k
(1.27) = ~Y A,
iy

Formulae (1.26) and (1.27) may be applied to a = df to give an explicit formula for
the Laplacian of a function f
af .
T i 24 = —a Fi..
Z ar {vag 07 Z{_‘j g7 fi
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Notice that if g/ = 6, then A is just the usual Laplacian of Euclidean space.

Exercises

QUESTION 1.28 Prove Cartan's formula for the exterior derivative of a € QP(M),

namely
da(Xo,..- , Xp) = (=1 alXo, ... Kiv.oo , Xp)

+ (=1 a([Xi, K], Xy X Xy Xp)
i<j
where Xg. ..., X, are vector fields, and the ‘hat’ denotes omission of the specified

term.

QUESTION 1.29 Prove the second Bianchi identity (for the Riemann curvature),
which states that

i i i
likim + Rimjpe + Rigm j = 0.

QUESTION 1.30 Let x* be a geodesic coordinate system on a manifold A, and let r

denote the Riemannian distance from the point z to the origin. Prove that
z gij(a')r".r" = Z ¢ i(r)zir) =2,
ij ig

QUESTION 1.31 Let a be a k-form on an n-dimensional oriented Riemannian
manifold A/. represented (in oriented local coordinates) by an antisymmetric tensor
A. Show that

1 12..n fyoed j j
a= 2 i (n— k)lkrén-.-i*.in---j.-.\/5-3—-4" Ao AL Adrr
L5 R O § O P o

(Notice that in this formula we have used the metric to 'raise the indices’ of A.)

QUESTION 1.32 Show that, at the origin of a geodesic co-ordinate system, the metric

has the following Taylor expausion:

9ii(2) = &5 + 1 3 11 Ripe(0) + O(|z*).
pq
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CHAPTER 2

Connections, curvature, and characteristic classes

Principal bundles and their connections

Let G be a Lie group. Recall that a principal bundle E with structural group G
over a smooth manifold M is a locally trivial fiber bundle whose fiber is G itself
considered as a right G-space. Thus, G acts smoothly on E by right multiplication
on each fiber and M = E/G.

EXAMPLE 2.1 Let V be a k-dimensional vector bundle. The principal bundle of
frames for V is the space E whose fiber over a point m € M is the collection of all
frames in the fiber V,,, of V" over m. Clearly, E is a principal bundle with group GL(k).
If V has a metric, one can consider similarly the principal bundle of orthonormal
frames for V', which has structural group O(k) or U{k) according to whether V is
real or complex.

Conversely, let E be a principal bundle with group G and let p: G — GL{F) be a
representation of G on a vector space F. Then G operates on the space E x F by

(e.f)g = (eg. p(g™")f)

and the quotient space E x, F of E x F by this action of G is a vector bundle over
M with fibers isomorphic to F. It is called the vector bundle associated to E by the

representation p.

It is worth making a few comments about functions and differential forms on
principal bundles. Let E be a priucipal bundle with group G. Differentiating the
G-action we find that to each element u of g, the Lie algebra of G, there is associated
a G-invariant vector field X, on E. called the Killing field corresponding to u. The
Killing fields span a subbundle V' E of TE, which is equal to the kernel of the map
Tw: TE — TAl and is called the subbundle of vertical tangent vectors to E; each
fiber of VE is thus canonically identified with g. A differential form a € QP(E) is

called horizontalif o{ X},... , X};) = 0 whenever at least one of the vectors Xj,... , X,
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is vertical. If 8 € QP(M) is a form it is clear that 7°3 € QF(E) is horizontal and
invariant. In fact, »” gives a bijection between the differential forms on Af and the

horizontal, invariant differential forms on E.

We can generalize this discussion of invariant forms to equivariant forms. Let (F, p)
be a representation-space of G as above. The space of functions f: E -+ F has two
commuting left G-actions, one coming from the right G-action on £ and one from
the left G-action on F. A function f is called p-equivariant if it is invariant for the

product of these two actions, in other words if

plg™")f(e) = f(eg) Vee E. g€G.

Similarly we cau define p-equivariant differential forms on E, with values in F.

LeEMMA 2.2 In the above sitvation there is a 1 : 1 correspondence between p-
equivariant functions on E and sections of the associated vector bundle V. = E X, F.
Similarly thereis a1 : 1 correspondence between p-equivariant, horizontal differential

forms on E and V' -valued differential forms on M.

The proof is simply a matter of chasing definitions, and is left to the reader.

What should be the correct notion of connection on a principal bundle? To answer
this question, consider the special case where E is the frame bundle of a vector bundle
V. A connection on V is defined by the parallel translation that it induces, and this
parallel translation can be thought of as a G-equivariant way of lifting paths from Af

to E. Differentiating, one gets a way of lifting tangent vectors from Af to E.

To put this precisely, let #: £ — M be the canonical projection and let VE =
ker(T,) < TE be the sub-bundle of vertical tangent vectors. Then there is an exact.

sequence of vector bundles over E,

0 VE—>TE —% x*TM — 0. (2.3)

DEFINITION 2.4 We define a connection on E to be a G-equivariant choice of splitting

for the exact sequence 2.3.
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In other words, a connection is a G-equivariant choice of complementary subbundle
HE < TE, the bundle of horizontal tangent vectors of the connection, such that
TE = VE & HE. Our discussion above shows that a connection on a vector
bundle V dectermines a connection on its frame bundle. Similarly, a connection on
a Hermitian or Euclidean vector bundle that is compatible with the metric (in the
sense that parallel translation preserves inner products) determines a connection on

its orthogonal frame bundle.

There are a number of ways to reformulate the definition of a connection. One can
also think of the splitting of the exact sequence as given by the induced projection
TE — VE. The fibers of VE are naturally identified with the Lie algebra g of G,
so that this projection can be thought of as a g-valued 1-form w on E. A g-valued

1-form w on E is a connection 1-form if

(i) it is equivariant: w(£.9) = Ad(g~")w(€);
(ii} it represents a projection: for u € g. we must have w(\X,) = u, where X,

denotes the Killing vector field on E induced by u.

Finally, associated to the direct sum decomposition TE = VE @ HE there is a
projection P, of the space of differential forms on E onto the subspace of horizontal
forms. The projection P, the connection 1-form w, and the horizontal subbundle

HE all determine one another, and we will use whichever is convenient.

(2.5) Let E be a principal bundle over Af with structural group G, and suppose
that E is equipped with a connection. It is easy then to see that given a path
7 :[0,1} — M and a point e € E,,, there is a unique path % : [0,1] — E starting at
e such that 7 0§ = v aad that 7'(¢) is horizontal; call 5 the horizontal lift of 7.

Now let p: G — GL(F) be a representation of G on a vector space F, and let
W = E x¢ F be the associated vector bundle. Given a vector uy € W,,, represented
as wy = (e, f), define the parallel translate of wo along v to be the vector w; € W,
given by w; = (3(1), f), where ¥ is (as above) the horizontal lifting of v starting at
e. Using the equivariance, it is easy to check that the vector t; does not depend on

the choice of the representation of wyg as (e, f).
We can use this parallel translation to define a connection in the vector bundle W.
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To do this, let X be a tangent vector at a point m € M, and let v be a section of
W. Choose a curve v so that 7(0) = m, ¥/(0) = X and let 4,: W, — W () be the

isomorphism induced by parallel translation. Define

d
Vxw = a{"'“’ﬂﬂ}L:o' (2.6)

ProrosiTioN 2.7 With notation as above:

(i) Formula (2.6} is independent of the choice of the curve < and defines a
connection on W,

(ii) If we identify sections of W with p-equivariant functions E — F, as in lemma
2.2, then Vx corresponds to the directional derivative along X, the horizontal
lift of X ;

(iii) Equivalently, the operator V: Q%(V) — Q}(V') corresponds to the map f
P, df fromn p-equivariant functions on E to horizontal, p-equivariant E-valued

1-forms.

ProoF It is enough to prove (ii}, since the other parts are immmediate conscquences:
and for this, notice that if f: E — F is the equivariant function corresponding to w,

so that w = (e, f(e)), then by definition of parallel translation

Biwyny = 0:(3(0). 2(3(1)) = (e, x(3(1))).

where 4 denotes the horizontal lift of v starting at e. Therefore

L0yl = (edr(7(0)) = (e X.x(e).

as required. [

EXAMPLE 2.8 Let V be a vector bundle with fibers isomorphic to F: we have secn
that a connection on V gives rise to one on the principal GL{ F)-bundle of frames for
V. Now let

p:GUF) - GLF®..QF®F ®..®F")
be a tensor product representation: then the bundle associated to p is th tensor
product V@ ... VRV ®...9 V", and the induced connection is the tensor

product connection of (1.10).
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The operation F,d (taking the horizontal part of the exterior derivative of a form
on E) is called the exterior covariant derivative on E. Notice that (iii) above shows

that it corresponds to the covariant derivative V on sections of an associated bundle.

PROPOSITION 2.9 Let a be a p-equivariant horizontal p-form on E. Then its exterior

covariant derivative Pda is given by the formula
FP,da=da+ pwAha.

To explain the notation here, p.: g — gl(F) = End(F) is the Lie algebra
homomorphism induced by p, so that p,w is an End{ F')-valued one-form on E. The
wedge product

QNE;End(F)) @ W(E; F) —» QPYYE; F)
is obtained by tensoring the exterior product on ordinary (scalar-valued) forms with
the natural pairing End(F)® F — F.

PRrOOF We will employ Cartan’s formula for the exterior derivative (1.28) to check
that both sides are equal on a (p+ 1)-tuple of vector fields Xj.... , X,, where we may
assume by linearity and locality that {for some r) the first r of the X; are Killing
fields and the remaining p + 1 — r are horizontal and G-invariant. We distinguish
three cases.

If r = 0, so that Xy,..., X, are all horizontal, then equality results from the
definition of P,, and the vanishing of .’ on horizontal vector fields.

If r 2 2 so that X and X, are Killing fields, then every term in Cartan’s formula
has at least one vertical vector field as argument; so da(Xy,... ,X,) = 0 and both
sides are zero.

H r = 150 that Xy is a Killing field and Xj, ... , X}, are horizontal and G-invariant,

then Cartan’s formula gives
da(Xy,..., X,) = Xo-a(Xy,...,Xp)
since all other terms vanish. But the p-equivariance of a gives
Xo-a(Xy, ..., Xp) + p.(w(Xo))a(Xy,... , X)) =0
and this proves the result in this case also. 0O
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Now let w be the g-valued 1-form of a connection on the principal bundle E.

DEFINITION 2.10 We define the curvature Q of w to be the g-valued 2-form
UX,,Xp) = du(Xl, Xo) + [u(Xl),w(Xg)]

where [., ] refers to the Lie bracket in g.

REMARK 2.11 Suppose that g is a Lie algebra of matrices (that is, a subalgebra of

pl(n)). Matrix-valued differential forms can be made into an (associative) algebra,

with a product which is obtained by combining the exterior product on forms with

the usual multiplication of matrices. The formula above may then be written =
dw + w A w.

The curvature represents the square of the exterior covariant derivative.

PRrorOSITION 2.12 For any horizontal, p-equivariant p-form o on E. one has
PdP dao = p,Q Aa.
In particular, Q! itself is a horizontal and Ad-equivariant form on E.
PRrRoOOF By 2.9, on horizontal and equivariant forms,
Pda =da+pwAa.
Applying 2.9 again gives
P,dP da = p.wAda+d(pw Aa)+pwApwAa=(pfdw)+ pw Ap.w)Aa.

The result follows from the definition of curvature, [

REMARK 2.13 Notice that p.(Q corresponds to a 2-form on M with values in End(V'),
where V = E x, F is the vector bundle associated to the representation p. It is easy
to check that this 2-form is just the curvature 2-form K as defined in chapter 1 of the

linear connection V on V associated to w in 2.6. Indeed, one has from the definitions

and Cartan’s formula for the exterior derivative
pSUX,Y)v = (VxVy - VyVx — Vixy)v
and this is exactly the definition of the curvature 2-form.
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EXaMPLE 2.14 Let £ be the principal bundle of frames of a m-dimensional vector
bundle V. A framing of V is a section s of E; such framings exist locally. Using s we
may pull back forms on E to forms on M, so that a connection on F is defined by the
End(V)-valued 1-form s*w and its cun'e;ture by the End(V)-valued 2-form s*Q. It
follows from 2.9 that, if we use the framing s to trivialize V locally {so that sections
of V are represented by R™-valued functions}, then relative to this trivialization we

can write the connection as

V=d+s"w.
Suppose now that we also choose local coordinates z°; then we may write
s'w s E T ,'d.ti
i

where the I'; are End(V)-valued functions. In fact, these functions are simply the
Christoffel symbols of Chapter 1.

DEFINITION 2.15 The framing s of V is called synchronous near p (relative to the

given local coordinates) if 5 is parallel along radial lines emanating from the origin p.

Clearly such framings can be obtained by choosing any framing over p itself and
then extending by parallel transport along radial lines. If W has a metric with which
the connection is compatible, then such a framing may be chosen to be orthonormal.

By definition, we have
PROPOSITION 2.16 At the origin of a synchronous framing the Christoffel symbols
all vanish.

In fact we have a Taylor expansion, analogous to 1.32; sce exercise 2.33.

Characteristic classes

The theory of characteristic classes comes from the simple question: How can
we tell two vector bundles apart? For instance, how do we know that the tangent
bundle to the 2-sphere is non-trivial? (An elementary proof uses the residue theorem.)
Characteristic classes give a systematic approach.
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DEFINITION 2.17 A characteristic class ¢ is a natural transformation which to each
vector bundle V over a manifold M associates an element ¢{V') of the cohomology
group H*(M), with the property that if V; 2 V; then ¢(V}) = ¢(V2).

The word “natural” can be given a precise sense by means of category theory. Of
course, in the above definition the bundles may be real or complex, the cohomology

may be taken with various coeflicients, and so on.

There are many approaches to the theory of characteristic classes. In this chapter,
we will develop the so-called Chern-Weil method. We will consider characteristic
classes with complez coefficients of complez vector bundles. We will represent H*(Af)
as de Rham cohomology, that is closed forms (the kernel of d) modulo exact forms
(the image of d).

The idea of the Chern-Weil method is the following. Suppose thar our bundle V' is
equipped with a connection. In some sense, the curvature of this connection measures
the local deviation of V from flatness. Now if V" is flat, and the base manifold Af is
simply-connected, then V' is trivial. This suggests that there may be a link between
curvature and characteristic classes, which measure the global deviation of V" from

triviality. Such a link is provided by the theory of invariant polynomials.

DEFINITION 2.18 Let gl,(C) denote the Lie algebra of m x i matrices over C.
An invariant pelynomial on gl,,(C) is a polynomial function P : gl,,(C) — C such
that for all XY € gln(C), P(XY) = P(YX). An invariant formal power series
is a formal power series over gl,(C) each of whose homogeneous components is an

invariant polynomial.

For example, the determinant and the trace are invariant polynomials.

LeMMA 2.19 The ring of invariant polynomials on g{,{C) is a polynomial ring
generated by the polynomials ci(X) = (=2xi)~* tr(A* X), where A* X denotes the
transformation induced by X on AF C™.

PROOF Let P be any invariant polynomial. If we first of all look at the restriction
of P to diagonal matrices, we see that P must be a polynomial function of the

diagonal entries. Since these diagonal entries can be interchanged by conjugation, PP
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must in fact be a symmetric polynomial function. Now since P is invariant under
conjugation, it must be a symmetric polynomial function of the eigenvalues for all
matrices with distinct eigenvalues; since by elementary linear algebra such matrices
are conjugate to diagonal matrices. But the set of such matrices is dense in gl,,(C),
so a continuity argument shows that P is just a symmetric polynomial function in
the cigenvalues. Now it is easy to see that tr(A¥ X') is the k-th elementary symmetric
function in the eigenvalues of X. The main theorem on symmetric polynomials (Lang,
[46, Chapter IV]) states that the ring of symmetric polynomials is itself a polynomial
ring generated by the elementary symmetric functions, and this now completes the

proof. [

Now let V be a complex vector bundle over A, with connection V and curvature
K, which is a 2-form on M with values in End{V). Choosing a local framing for V,
we may identify K with a matrix of ordinary 2-forms. If P is an invariant polynomial,
we may apply P to this matrix to get an even-dimensional differential form P(K).
Because of the invariant nature of P, the form P(K) is independent of the choice of
local framing, and is therefore globally defined.

In terms of the principal GL,,{C)-bundle E associated to 1/, this construction may
be phrased as follows. Let {1 be the curvature form of the induced connection on
E; Q is a horizontal, equivariant 2-form on E with values in g{,,,(C), so P(Q?) is a
horizontal invariant form on E. Such a form is the lift to F of a form on M, and this
form on A is P(K).

Whichever approach is adopted, notice that since 2-forms are nilpotent elements
in the exterior algebra, all formal power series with 2-form-valued variables in fact
converge. Thus, the construction makes good sense if P is merely an invariant formal

power series.

PROPOSITION 2.20 For any invariant polynomial (or formal power series) P, the
differential form P(K) is closed, and its de Rham cohomology class is independent

of the choice of connectionV on V.

PROOF For the purposes of this proof let us describe an invariant formal power
series P as respectable if the conclusion of the proposition holds for P. Clearly the sum
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and product of respectable formal power series are respectable. Thus, it is enough to

prove that the generators defined in (2.19) are respectable. Equivalently, since

det(1 + gK) = ¥ ¢* tr(A" K).
it is enough to prove that det(1+gK) , considered as a formal power series depending
on the parameter g, is respectable.

If P is a respectable formal power series with constant term a, and ¢ is a function
holomorphic about a, then g o P is also a respectable formal power series. Hence,
det(1 + gK) is respectable if and only if logdet(1 + ¢K) is respectable. We will now
prove directly that log det(1 + gR’) is respectable.

For this purpose we will work in the associated principal bundle E of frames for
V, with matrix-valued connection 1-form w and corresponding curvature 2-form ).
We will use the formula (2.10)

0 =dw+? (*+)
where the product in the ring of matrix-valued forms is obtained by tensoring exterior
product and matrix multiplication. Now suppose that w depends on a parameter #;
then Q also depends on t, and if we use a dot to denote differentiation with respect
to t, then

Q= do + wi + ww.

Consider

%logdet(1+q9) = qtr{(1+¢9)7'Q)

S (=1)'gH* e {Q4dw + wir + ww)}.
=0

We need the second Bianchi identity

dQ = Quw — w2

which follows from (**) on taking the exterior derivative and then substituting back
for dw.
We have

tr{ ' (ww + ow)}

tr{Q'wo — wQ'G} (by the symmetry of trace)
tr{(d2")o} (by the Bianchi identity).
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Therefore
tr{Q(dir + wr + ow)} = dtr{Q'w),

(—;l—t-logdet(l +¢02) =d) (-1)¢"* tr{Q'w}
=0

is an exact form; in fact it is the exterior derivative of a horizontal and invariant
form on E. Therefore, the projection to the base manifold (d/dt)logdet(l + ¢K) is
also exact. Now the result follows; for since any connection can be deformed locally
to flatness, we see that logdet(l + gR") is locally exact, that is closed; and since any
two connections can be linked by a (differentiable) path, the cohomology class of
logdet(l + ¢K) is independent of the choice of connection. [

It follows from the proposition that any invariant formal power series P defines a
characteristic class for complex vector bundles, by the recipe “pick any connection

and apply P to the curvature”.

DEFINITION 2.21 The generators ¢ defined in 2.19 correspond to characteristic
classes called Chern classes.

From 2.19, any characteristic class defined by an invariant polynomial is therefore

a polynomial in the Chern classes.

(2.22) Suppose now that V is a real vector bundle, and let V¢ denote its com-
plexification, Vo = V @r C. The odd Chern classes of V¢ are then equal to zero {in
complex cohomology). To see this, notice that we can give V a metric and compatible

connection. The curvature F of such a connection is skew (o(m)-valued), so

(A F) = (1) tr(A" F).

The non-vanishing Chern classes of V¢ are called the Pontrjagin classes of V and are
denoted

Pe(V) = (—1)Fea(Ve).
If V' is an oriented even-dimensional real vector bundle it also has an extra character-

istic class called the Fuler class, corresponding to the Pfaffian invariant polynomial

on o{m). This will be discussed in the exercises.
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Genera

Holomorphic functions can be used to build important combinations of character-
istic classes. In fact, let f(z) be any function holomorphic near z = 0. We can use f

to construct an invariant formal power series II f by putting
I1,(X) = det(f(5= X))

the associated characteristic class is called the Chem f-genus. Notice that the Chern
f-genus has the properties

(i) for a complex line bundle L, II;(L) = f(ci(L));

(ii) for any complex vector bundles V; and V,, ITf(V} @ V2) = T, (V) )IT;(V2).
(To see (ii) one uses a direct sum connection.) In fact, it can be seen that these
two properties determine the characteristic class IT; uniquely: this follows from the
splitting principle!, which says that given any complex vector bundle V over Af. there
exist a space X and a map g: X — M such that g*V splits as a direct sum of line
bundles, and such that g*: H*(M) — H*(X) is injective. The splitting principle
allows one to conclude that a characteristic class is determined by its values on direct

sums of line bundles.

If the eigenvalues of the matrix 72X are denoted (z;). then

(X) =[] f(s))
is a symmetric formal power series in the z;, which can therefore be expressed in terms
of the elementary symmetric functions of the r;. But these elementary symmetric
functions are just the Chern classes. Thus in the literature the genus I1;(1") is often
written as II;(V') = [I f(z;), where 1,,... .z, are ‘formal variables’ subject to the
relations &) + -« + T;m =€, T1T2 + -+ + Tm_1Tm-2 = ¢2, and so on. In terms of
the splitting principle, the formal variables z; can be considered to represent the first

Chern classes of the line bundles into which g*V’ splits.
EXAMPLE 2.23 The total Chern class

c(V)y=14a(V)+c(V)+---

"We will not formally require the splitting principle, which belongs to a different approach to

characteristic class theory, and so we do not give the proof.
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is the genus associated with f(z) = 1 + 2. The multiplicative law ¢(V}; & V3) =
c(V})e(V2) is the so-called Whitney sum formula for the Chern classes.

EXAMPLE 2.24 The genus associated with f(z) = (1 + z)~! can be worked out by
expanding the product [J(1 + ;)" as

-zt =)l =ztzd— o)) =lmcrt(F =)+

If V; @ V; is trivial, this expresses the Chern classes of V5 in terms of those of V.

(2.25) The Chern character ch is the characteristic class associated to the formal
power series X' +— tr exp(z‘—:‘.X ). In terms of the formal variables r; introduced above
we have

ch(V) =3 €.
The Chern character is not a genus in the sense described above, because of the
appearance of a sum rather than the product; but it does have the analogous property
ch(V, & V3) = ch(V}) + ch(V,). Moreover, the identity e*1e® = e®** implies that
ch(V; ® Vo) = ch(V}) ch(Va). Thus, ch is a kind of “ring homomorphism”. Direct
calculation of the first few terms yields

ch(V) = (dimV) +¢; + 1(c} — 2¢5) +---

(2.26) There is an analogous theory of genera for real vector bundles. Let g be
holomorphic near 0, with g(0) = 1. Let f be the branch of

1
20 (9(2%)?

which has f(0) = 1. Notice that f is an even function of z and therefore the associated
genus involves only the even Chern classes. By definition, the Pontrijagin g-genus of
a real vector bundle V is the Chern f-genus of its complexification. The appearance

of the various squares and square roots is explained by the following lemma.

LEMMA 2.27 Let g be as above. Then for a real vector bundle V, the Pontrjagin
g-genus is equal to

ITs(vs)
J
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where the Pontrjagin classes of V' are the elementary symmetric functions in the

formal variables y;.

PROOF Regard this as an identity between invariant polynomials over o(n). Any

matrix in o(n) is similar to one in block diagonal form, where the blocks are 2 x 2

A
X= 0
-x 0

with eigenvalues £1A. Since both sides of the desired identity are multiplicative for

and are of the form

direct sums, it is enough to prove it for this block X. Now

. . ) S . A?
cl(-‘) =0, X)= (—2?)2(1)\)(—14\) = -—-m,

Thus y = p;(X) = A2/47%. On the other hand, X is similar over C to
—ih 0
0 ixj

(X) = (G (o) = (fO/20))° = g02/45%) = (y)

as required. [J

and so

As in the complex case, one can also interpret this lemma in terms of an appropriate
splitting principle; one can take a suitable pull-back of V to split as a direct sum of

real 2-plane bundles, and the y; are then the first Pontrjagin classes of the summands.

ExaMPLE 2.28 Two important examples are the ﬁ—genus A(V). which is the
Pontrjagin genus associated o the holomorphic function
o 2
sinh \/z/2
and Hirzebruch's L-genus £(V), which is the Pontrjagin genus associated with the

holomorphic function
s VE
tanh /z

As we will see, these combinations of characteristic classes arise naturally in the proof

of the Index Theorem.
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Notes

A comprehensive reference for the geometry of principal bundles and associated
connections is Kobayashi and Nomizu [44]. Volume II of this book also contains an
account of Chern-Weil theory. Milnor and Stasheff [55] give a thorough discussion
of characteristic classes. One should consult this book to learn about the relation
between the Chern-Weil method and other approaches to characteristic class theory
which show in particular that the Chern and Pontrjagin classes belong to the cohomo-

logy with integer coefficients, a fact which has important topological implications.

Exercises

QuUESTION 2.28 Let w, {2 be the connection and curvature forms of a connection
on a principal bundle. Prove that if X and Y are horizontal vector fields, then
W([X,Y]) = =X, Y).

QuESTION 2.30 Let E be a principal bundle equipped with a connection. One says
that E is flat if the curvature is zero. Prove E is flat if and only if the horizontal

sub-bundle of TE is integrable {that is, tangent to a foliation).

QUESTION 2.31 Let G be a Lie group and H a closed subgroup; consider G as the
total space of a principal H-bundle with base the coset space G/H. Suppose that
there is a direct sum decomposition g = §) @ m, where m is an H-invariant subspace
of the Lie algebra g.

Prove that the h-component of the canonical g-valued one-form on G (the Maurer-
Cartan 1-form) determines a left G-invariant connection on the bundle. Show that
for X, Y € m the curvature of this connection is given by Q(X,Y) = —[X, Y],, where

the subscript denotes the h-component in the direct sum decomposition.

QUESTION 2.32 This exercise considers the relation between connections on a vector
bundle V and its dual V.

(i) Suppose that a connection on V has curvature A, and End(V')-valued 2-form.

Prove from the definitions that the End(V")-valued curvature 2-form of V*, for
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the associated connection. is — K*, where K™ denotes the dual endomorphism
to K.

(ii) Give an alternative proof of this by considering V* as the bundle associ-
ated to the frame bundle of V by the contragredient representation g ~+
(¢7')': GL(n) — GL(n).

(iii) Now suppose that V is provided with a Euclidean metric and that the con-
nection is compatible with this metric. Show that the curvature operators of

V and V" agree under the identification of V with V" provided by the metric.

QUESTION 2.33 Prove that at the origin of a synchronous framing for a vector

bundle V there is a Taylor expansion for the Christoffel symbols
Fj = —-;' Z K(ég,é;c)x" -+ O('l‘lz)
ik

where K is the curvature operator of the connection on V.

QUESTION 2.34 Let M denote complex projective n-space CP". Let V' be the
canonical complex line bundle over M.
(i) Assume {or prove if you wish) that H*(CP") is a truncated polynomial ring
on a = ¢;(V') as generator. (See [55]).
(ii) Let T denote the tangent bundle to M, considered as a complex vector bundle.
Prove that T@C =V @... @V, the direct sum of (n + 1) copies of the dual
of V. Deduce that the the total Chern class ¢(T') = (1 — a)"*!.
(iii) Now let Tg denote the tangent bundle considered as a real bundle. Show that
T ®C = T®T. Deduce that the total Pontrjagin class p(Tg) = (1 + a?)**1.

QUESTION 2.35 A (vector) superbundle is a vector bundle E provided with a direct
sum decomposition E = E, @ E_; its super Chern characteris by definition ch{ Ep) —
ch(E;). The endomorphisms of E form a superalgebra (see 4.1 for the relevant

b
definitions here). If T = ( ¢ d ) is an endomorphism of E we define tr (T} =
c

tr(a) — tr(d).
(i) Prove that tr, is a supertrace, that is, it vanishes on supercommutators.
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(ii) Quillen [60] defined a superconnection on E to be an odd parity first order
differential operator A on the superalgebra Q*(E) of E-valued differential

forms, which satisfies the graded version of Liebniz’ rule, namely
AlaA8) =da A8+ (=1} a A Af

for o € Q*(M) and 8 € Q*(E). Show that the operator A? is local, and hence
is given by multiplication by an even differential form K, € Q*(F). Show
that, for any superconnection A, the differential form tr,(exp(—K,/2n1)) is

closed and represents the super Chern character of E.

QUESTION 2.36 Let V' be a real 2m-dimensional oriented inner product space and
let K be an element of o(V) (i.e. a skew-adjoint endomorphism of V). Define an
element @ of A2V by a = Ticj(Kei e5)ei Ae;, where (e;) is an oriented orthonormal
basis of V. Note that the exterior power o™ lies in the 1-dimensional space AZ"V;
define the Pfaffian Pf(K} by

a™ =miPi{K)ey A... Aeam .

(i) Show that Pf{ K') does not depend on the choice of basis made in its definition.

(i1) Show that for any A € gl(V'), P{A'KA) = det(A)Pf(K’), and deduce that Pf
is an invariant polynomial on o(2m).

(iii) Prove that Pf(A’)? = det(K).

(iv) If K is the curvature of an oriented real vector bundle W with metric and
compatible connection, verify that Pf(—A/27) defines a characteristic class,
called the Euler class e(1W).

(v) Show that if W is the oriented real 2-plane bundle underlying a complex line
bundle L, then e(W') = ¢;(L).

(vi) Give an extended interpretation of the formal variables y; introduced in 2.27,

so that e(V) = IT \/7;.

QUESTION 2.37 Let E be a complex vector bundle of fiber dimension k, and let
L = A* E e the ‘determinant line bundle’ of E (whose fiber at any point is the top
exterior power of the corresponding fiber of E). Prove that ¢,(E£) = ¢;(L).
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CHAPTER 3

Clifford algebras and Dirac operators

Operators such as the Laplacian A introduced in the first chapter will be our chief
objects of study in this book. A is a second-order operator, and it is an important
and from some points of view surprising fact that A is the square of the first-order
operator D = d + d*. The mechanism lying behind this is the theory of Clifford
algebras, which will be developed in this chapter.

Clifford bundles and Dirac operators

DEFINITION 3.1 Let V' be a vector space equipped with a symmetric bilinear form,
denoted ( , ). A Clifford algebra for V is by definition a unital algebra A which is
cquipped with a map ¢: V — A such that ((v)? = —(r,v)1, and which is universal
among algebras equipped with such maps; that is, if ¢': I — A’ is another map
from V to an algebra and satisfies '(v)> = —(v, v)1, then there is a unique algebra

homomorphismu A — A’ fitting into a commutative diagram

V-4

N
A
For example, if the bilinear form is identically zero, then the exterior algebra A*V is
a Clifford algebra.

PROPOSITION 3.2 For any V, a Clifford algebra exists and is unique up to isomorph-
ism.

Proor The uniqueness follows by abstract nonscnse from the universal property.
To construct a Clifford algebra, choose a basis ey,... ,e, for V, and take A to be
spanned by the 2" possible products (e )", ... ,¢(e,)*, each k being either 0 or 1,
with multiplication determined by the rule

e(v)p(ve) + e(vm)p(ny) = =2(wy,v) O
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The unique (up to isomorphism) Clifford algebra for V will be denoted CI(V').
Notice that if dimV = n, then dim Cl(V) = 2". The natural map ¢: V — Cl(V)
is injective; as a result, one usually identifies v € V with its image ¢(v) € CI(V),

considering V as a subspace of its own Clifford algebra.

We will now work out a simple special case of the factorization of the Laplacian.
Let V be a real inner product space, with orthonormal basis ey, . .. ,e,, and let CI(V")
be its Clifford algebra. Let S be a vector space which is also a left module over CI(V/),
and let C*=(V;S) denote the smooth S-valued functions on V. Each basis element
e; corresponds to a differential operator 8; on C=(V;S). Define the Dirac operator
D on C*(V;S) by

Ds = Z e,~(3,~s)

Let us calculate
.Dzs = Ze,-(?j(e.-a,-s) = Ze,-e;(?ja.-s = - Za?s N
ij g i
thus D? is equal to the Euclidean Laplacian.

REMARK 3.3 We left it unstated above whether S should be thought of as a real or

a complex vector space. It will be most convenient for us always to consider complex

modules; thus by a Clifford module for a real inner product space V we will mean a

left module over the complex algebra CI(V') @g C, or equivalently a complex vector
2

space S equipped with an R-linear map ¢: V — Endc¢(S) such that ¢(v)? = —(v,v)1
forallve V.

The flat-space construction above can be generalized to a Riemannian manifold. If
M is such a manifold then T'M is a bundle whose fibers are inner product spaces, so it
makes sense to form the bundle of Clifford algebras CI(T'M). Now let S be a bundle
of Clifford modules; i.e. the fiber S,, at m € M is a left module over CI(T,,AM)® C.
The sections of S are to play the role of the S-valued functions in the preceding
example. To differentiate such sections, we need a connection on S. We make some

compatibility assumptions, summarized in the next definition:
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DEFINITION 3.4 Let S be a bundle of Clifford modules over a Riemannian manifold
M. S is a Clifford bundle if it is equipped with a Hermitian metric and compatible
connection such that
(i) The Clifford action of each vector v € T,,M on S,, is skew-adjoint, that is,
(v-s1,89) +(s1,v-52) =0
(ii) The connection on S is compatible with the Levi-Civita counection on M,
in the sense that Vx(Y's) = (VxY)s + Y Vs for all vector fields X,Y and
sections s € C*(S).

The Clifford bundles that we consider will often be Z/2-graded (or ‘superbundles’
in the langnage of question 2.35). This means that S is provided with a direct sum
decomposition § = S5, ® S_. In this case we will require that the connection and
metric respect the decomposition, and that the Clifford action of a tangent vector v

is odd, meaning that it maps S, to S_ and S.. to 5,.

DeFmNITION 3.5 The Dirac operator D of a Clifford bundle S is the first order
differential operator on C*(S) defined by the following composition:

C®(S) = C¥(T*M® §) —» C=(TM ® §) — C=(5)

where the first arrow is given by the connection, the second by the metric (identifying
TM and T"M), and the third by the Clifford action.

Notice that, in the graded case, the Dirac operator is odd; it maps sections of 5,
to sections of S_ and vice versa. In terms of a local orthonormal basis e; of sections
of TM, one can write

Ds=3 eV;s. (3.6)

We will develop some general properties of these operators first, and then look at

examples. It is helpful to introduce the following terminology

DEFINITION 3.7 Let S be a Clifford bundle and let K € Q%(End(S)) be a 2-form with

values in End(S). Let e; be a local orthonormal frame for TAf. The endomorphism

K= Z c(e;)C(ej)K(e:’v e;)

i<j

of S is called the Clifford contraction of K; it does not depend on the choice of frame.
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To calculate D?, choose the local orthonormal frame e; to be synchronous at some
point m € M. Then, at m, V;e; = 0. and the Lie bracket of e; and e; also vanishes

at m. Therefore, at m,

o
D*s

Z ejVj(e;V,-s)
ij
Zeje;VjV,-s
i

- z V?S + Z eje.-(VjV; - V,-Vj)s .

j<i

The two terms in the formula are of different kinds. The first term is the the
result of applying a second-order operator analogous to the Laplacian to s; we will
write it as V*Vs — the notation will be explained shortly. In the second term,
V;V: - V;V; = K(ej,e;) is just the curvature of the connection on S, and is an
endomorphism of S. The second term therefore is equal to the Clifford contraction K
of the curvature, applied to s. We have thus proved the very important Weitzenbock
formula
D%s = V*Us +Ks . (3.8)
Why the notation V*V? The point is that V can be thought of as a differential
operator from C®(S) to C®(T*M ® §). These bundles are equipped with metrics,
so that their spaces of sections have natural inner products. With respect to these
inner products, V has a formal adjoint V*; then V*V is an operator from C*=(S) to
itself, which I claim is precisely the one appearing in the Weitzenbock formula. To

check this we have to work out an expression for V*.

LEMMA 3.9 The operator V*: C®°(T"M ® S) — C>(S) is given in terms of local

coordinates by the formula

2

V.(dIJ ® Sj) = - zgjk(vjsk - Fi~kSg) .
k
Therefore, in a synchronous orthonormal frame (e;),
V.(z e ® S,') = - z V,‘S.'

at the origin.
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PRrooOF Expressious for the formal adjoint of a differential operator are obtained
by integration by parts. In our context this takes the following form: wanting to

prove that

(5. V70) = (Vs,0)

where s € C®(S), ¢ = dz’ @ 5; € C®°(T"M ® S), we look at the difference of the
local inner products, (s, V*¢) — (Vs,¢), which is a smooth function on M, and try

to prove that it is a divergence. Now
(5, V°0) = (Vs,0) = 3 (—*(5, Vjse) + ¢*Tis(5,8:) — ¢*(V;5, 5¢))
k

. 0 i
= zk: (—g"’a—r}.—(s, k) + gjkr\jk(ss 8&)) =dw
by (1.27), where w is the l-form with components (s, s;), given in coordinate-free

notation by w(X) = (X ®s,¢). O

This result justifies the notation V*V in the Weitzenbock formula. In particular,
notice that V*V is a positive operator: (V*Vs,s) = ||Vs|]? > 0. Now the Clifford-
contracted curvature operator K is a self-adjoint endomorphism of the bundle S, so

that it makes sense to ask whether it is positive:

THEOREM 3.10 (BOCHNER) If the least eigenvalue of K at each point of a compact

M is strictly positive, then there are no non-zero solutions of the equation D%s = 0.

PROOF By a compactness argument, there is a constant ¢ > 0 such that (Ks,s) >
c||s]|. But by the Weitzenbock formula (3.8), if D?s = 0 then

(Ks,s) = (D?,s) - ||Vs|?<0 O
A basic fact about the Dirac operator is its formal self-adjointness:

PROPOSITION 3.11 Let s, and sy be smooth sections of S, one of which is compactly
supported. Then

(DS], 32) = (SI’DSQ)
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PROOF As in (3.9), we must check that the local expression
(Ds1,82) = (1, Ds2)
is a divergence. We compute in a synchronous framing e;:
(Dsy, s2) = (81,Ds9) = Z(eivisl, 89) — (51,€:Visa)
= Z:(V.-e;sl, s2) — (€is1, Visg) = Z Vi(eis1,s9) = d'w
where w is the 1-form w(X) = —(Xsy,s2). O

REMARK 3.12 This result could also have been derived from (3.9) (see the exercises).
However we gave this derivation because we will later need to make use of the specific

nature of the 1-form w.

Clifford bundles and curvature

In this section we will take a more careful look at the way the compatibility that we
have required between the Levi-Civita connection and the connection on a Clifford
bundle restricts the form of the curvature tensor for that bundle, and therefore
restricts the possibilities for the term K in the Weitzenbock formula. Suppose that
S is a Clifford bundle, and let a local orthonormal framing e; of the tangent bundle
be given. Let I be the curvature operator of S. and let R be the corresponding
(Riemannian) curvature operator of TM. Let ¢: TM — End(S) denote the Clifford

action.

LEMMA 3.13 As endomorphisms of S, we have
[K(X.Y),e(Z)] = c(R(X,Y)Z)
for any tangent vector fields X', and Y, and Z.

PROOF The identity is a pointwise one, so chioose a synchronous framing e; at a
point p € M and assume that X = e;, Y = ¢;, and Z = ¢, near p. Now from the
definition of a compatible connection one easily computes that

V;Vj(ek . S) = (V,'ijk) -s+eg- V;Vjs
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at the point p — the cross-terms vanish because the framing is synchronous. But
(again because the framing is synchronous) the curvature of TA or of S at p is given
by ViV; — V,V; with respect to the appropriate connection; so the result follows

immediately. 0O

This result can be interpreted as saying that Clifford multiplication by Ruv is the
‘obstruction’ to the curvature K being an endomorphism of S in the category of
CI(TAf) ® Cmodules. We can remove this obstruction by a suitable ‘correction
term’. In the computation of the correction term, we need to recall that if v = ¢, is

a basis vector. then
R(ei,e;)v = Riijer
1
where on the right hand side we have expressed the 4-covariant Riemann curvature

tensor with respect to the orthonormal frame given by the ¢'s.

DEFINITION 3.14 For a Clifford bundle § as above, define the Riemann endomor-
phism RS of S to be the End(S)-valued 2-form

RS(X.Y) =1} }; clex)e(e)(R(X, Y ex. &1).
1

It is easy to see that R is independent of the choice of orthonormal basis. It is an
End(S)-valued two-form, canonically obtained from the Clifford module structure of

S. Now, however, we have
LeMMA 3.15 As endomorphisms of S, we have

[RS(X. Y),o(Z)] = o(R(X,Y)2Z)
for any tangent vectors X, Y, and 2.

PROOF We may assume without loss of generality that Z = e,, X = ¢;, and

Y = ¢;. Now we have
R5(eq,e5)clea) — c(ea)RS(ei,€5) = 1 3" Rugsje(lewer, ed)).
Y]

The commutator [ere;, e,] vanishes if k = [ or if k. 1, and a are all distinct. So the
only terms that survive are those where @ = k # l or a = ! # k. By the antisymmetry
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of the curvature tensor on k,! these two cases make equal contributions, so we get
1Y Ruijc(lerer, e0]) = 3 Ruaije(2er) = c(R(es, €5)eq)
kd 1
as required. 0O

From 3.13 and 3.15 we get

PrROPOSITION 3.16 The curvature 2-form K of a Clifford bundle S can a;ways he
written

K=R5+F®
where RS is the Riemann endomorphism defined in 3.14 and F® commutes with the
action of the Clifford algebra.

Following [12], we call the Clifford module endomorphisin F¥ of S the twisting
curvature of the Clifford bundle.

Corresponding to this more refined analysis of the curvature of S, we can obtain a
more refined version of the Weitzenbock formula 3.8. First we will need the following

useful calculation:
> Rujc(eiejer) = =2 Ricia ¢(ea) (3.17)
idik a

where Ric denotes the Ricci tensor.

To verify 3.17, note that if 7,7 and k are distinct indices, then e;ejex = ere;e; =
ejere;, and on the other hand, Rin; + Riiji + Rijri = 0 by the first Bianchi identity:
thus all the terms in the sum on the left hand side with 7, 7 and k distinct will cancel.
The terms with ¢ = j vanish because of the antisymmetry of Ri; on ¢ and j, so we
are left with the terms with i = k # 7 and the terins with i # £ = j. These are
equal, each giving

Z: Ruije(ej) = = Y Ricyg c(ea);
ij a

the result follows.

PROPOSITION 3.18 Let S be a Clifford bundle with associated Dirac operator D.
Then
D’=V"'V+F +ix

48



where F° = Y..;c(e:)c(e;)F5(ei,e;) is the Clifford contraction of the twisting

curvature, and « is the scalar curvature of the Riemannian metric.

ProOF Comparing this statement with the earlier version of the Weitzenbock
formula, and using 3.16, we see that we need only prove that
Y clec(e;)R¥(eire5) = §x.
i<j
Using the definition of R, the left hand side is equal to
% Z le,-,-c(eie_,-e;,e,-).
igkd
By 3.17 this equals
—1 %" Ricia c(e@r);
ald

and since the Ricci tensor is symmetric, all terms cancel here except those with a = I,

which sum to }« as required. 0O

The appearance of the scalar curvature in this context was first noted by Lich-

nerowicz [48].

Examples of Clifford bundles

EXAMPLE 3.19 THE EXTERIOR BUNDLE Let Af be a Riemannian manifold; we use
the metric to identify the bundles TM and T~ M. Let S denote the bundle A" T" M Q®
C. As a vector bundle this is naturally isomorphic to CI(TAM) ® C; the isomorphism
simply converts a basis element e; A...Ae; {e},..., e orthonormal) for the exterior
algebra into the basis element e;... e, for the Clifford algebra. (Warning: This is
not an isomorphism of algebras!) Using this isomorphism, the natural structure of
CHTAL) ® C as a left module over itself can be transferred to A*T"M ® C, making
this into a bundle of Clifford modules.

The Clifford action can be expressed concretely if we make use of the interior

product operation in the exterior algebra; for a covector ¢, define for a k-form w

edw = (=1)" "+ 4 (0 A xw) .
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LEMMA 3.20 The Clifford action of a covector e on w € A" T*M is given by
delw=eAwtew.
PrRoOOF Compute in an orthonormal basis. O

LEMMA 3.21 A"T*M ® C, equipped with its natural metric and connection, is a
Clifford bundle.

PROOF We need to check the two properties listed in Definition (3.4). Recall that
the metric on A" T*M can be defined in terms of the x-operation by (w;,w;)vol =
wy A *wo.

Let w; be a k-form, wy a (kK — 1)-form. Then

(_ 1 )nk+n+l

(wa,e Jwy)vol = wy A xx (e A*wy)

_ (_1)nk+n+l+n(n—k+l)+(n—k+1)w2 AeA rw

= ~(eAwp,wy)val .

This proves the skew-adjointness of the Clifford action. This calculation shows
in fact that the interior multiplication is (up to a sign) the adjoint of exterior
multiplication. The Levi-Civita connection is compatible with exterior multiplication
and it is compatible with the metric, so it must also be compatible with interior

multiplication, and this proves (3.4} ii). O

REMARK 3.22 As well as its left Clifford module structure, A~T°M ® C also has
a right module structure, coming from the right multiplication action of the Clifford
algebra on itself; and these two structures commute, so that A"TM is a Clifford
bimodule. This bimodule structure will be important when we come to discuss the

Witten complex of a manifold (9.14) and its applications to Morse theory.

(3.23) What is the Dirac operatcr of the Clifford bundle A* T*M ® C? Write

Dw = ) c(e)Viw

Ze;AV;w+Ze.~JV;w

dw + d'w
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So D is the operator d + d" that we mentioned earlier, and D? = dd" + d"d is the
Laplacian. We call D = d + d* the de Rham operator.

EXAMPLE 3.24 Let V be any complex vector bundle equipped with a Hermitian
metric and compatible connection. If S is a Clifford bundle then so is S®c V. Its

Dirac operator is often referred to as “the Dirac operator of § with coefficients in
V.

ExAMPLE 3.25 COMPLEX MANIFOLDS The de Rham operator was constructed out
of the regular representation of the algebra Cl(V) ® C; that is, we made the algebra
act on itself by left multiplication. To obtain other interesting examples of Clifford
bundles we need some more representations of the Clifford algebra. A fundamental
example (called the spin representation, for reasons to be explained in the next
chapter) arises when V is an even-dimensional (real) inner product space equipped
with a complez structure — an operator J: V — V with J? = —1. One can choose

J compatible with the metric: (Jx, Jy) = (z,y). Then there is a decomposition
VeC = P Q

where P and @ are the =1 eigenspaces of J ® 1. They are a maximal transverse
pair of isotropic subspaces — isotropic means that for p;,p2 € P,¢1,¢2 € Q one has
(P1,p2) =0 =1(q1,¢2). The inner product on V' ® C places P and Q in duality.

Now we can make the exterior algebra A* P into a module over C{V) ® C as
follows. fr e A"Pandp-+qe VQC, withp e P, q € Q define

(p+q)z = V2ApAz+qaz).

This extends to an action of the Clifford algebra since it satisfies the relations p? =
¢ =0, pg+gp = —2(p,q). So A® P becomes a representation of C{(V) ® V.
Notice that if dimV = 2m, then this representation has dimension 2™; the regular

representation, by contrast, has dimension 22™.

DEeFINITION 3.26 The representation of CI{V) ® C defined in this way is called the

spin representation.
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Now let M be a 2m-dimensional Riemannian manifold. The bundle C(TM)® C
has its fiber at cach point isomorphic to the Clifford algebra; but there may or may
not exist a bundle S on M with fiber dimension 2™ such that, for each 7 € Af, the
action of CI(T;M) ® C on S, is given by the spin representation. However, it is
clear from the construction above that this will be the case when A is a Hermitian
compler manifold. In this case each tangent space T, M actually carries the structure
of a complex vector space, and we can therefore define the operator J, on T, Af
simply as (complex) scalar multiplication by /—1. Applying our construction of the
spin-representation to cach fiber, we obtain a bundle S of Clifford modules. In fact,
by construction $ = A" TcM = A° TE;M , and via the usual constructions of complex
geometry [36, Chapter 1], S acquires a Hermitian metric and connection which make
it into a Clifford bundle in the sense of definition 3.4.

By construction, C*(S) = @,N%(M), in the usual (p, ¢)-decomposition of forms
over the complex manifold M. Now the (0, ¢)-forms on a complex manifold form a

cochain complex under the operator 8, called the Dolbeault complex:
Q%o 2 ooty & aoz(an) — .

By analogy with the de Rham complex, onc can ask about the relation of the Dirac
operator D of S and the ‘Dolbeault operator’ (3 + 3 ). We state the result without

proof.

PROPOSITION 3.27 If M is a Kihler manifold, then D = /2(8 + & ). This identity
does not hold for a general complex manifold, but the diffcrence between the two

sides is always an operator of ‘zero order’, that is an endomorphism of S.

The extra complication is caused by the fact that there do not always exist
“complex geodesic co-ordinates” on a complex manifold. The compatibility condition
that allows such co-ordinates to exist is precisely the Kahler condition. Sce {36, page
107].

Notes

The factorization of a second order “Laplacian” operator into first order operators

by means of the “Pauli spin matrices” (which are generators of a Clifford algebra) is
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due to Dirac. Ziman ([74]) gives an account of the relevance of this factorization to

quantum mechanics.

The concepts of a Clifford bundle and its associated Dirac operator are developed
by Gromov and Lawson in [38]. A more detailed account, with many instructive
examples, can be found in [47]. The discussion of the curvature of a Clifford bundle
follows [12].

Exercises

QUESTION 3.28 Show that Cl(R!) ~ C,CI(R?) ~ H, Ci(R?) ~ H @ H, where H
denotes the quaternions and R" is equipped with its usuai positive definite form.

QUESTION 3.29 Let
Jo= Z.l? E.E
be an element of the Clifford algebra of R>™ ® C, where E runs over the standard

basis of the Clifford algebra. Show that the trace of r as an endomorphism of the

spin-representation is 2™x;. {See Lemmma 11.5.)
QUESTION 3.30 Prove Proposition 3.27. (See Gilkey [34], Section I11.6.)

QUESTION 3.31 Compute the adjoint of the Clifford multiplication operator
c: C®(TM ® §) — C=(8).

Use this and the formula for V* of 3.9 to give another proof of the self-adjointness

of the Dirac operator.

QUESTION 3.32 A filtered algebra A is an algebra which is written as the increasing
union of subspaces Ag, Ay, ..., such that A; - A; C A for all i,j. The associated
graded algebra G(A) is the direct sum @3, 4:/Ai-;.
(i) Show that G(A) inherits a well-defined multiplication fiom A.
{ii) Suppose that A is finite dimensional and equipped with an inner product.
Show that there is a linear map o: A — G(A) such that, if a € 4; & A,
then o(a) coincides with the image of ¢ in A;/A;_;.
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(iii) Prove that ¢ is an isomorphism of vector spaces.

(iv) Let A be the Clifford algebra of a finite-dimensional vector space VV equipped
with a quadratic form. Show that A is a filtered algebra, if we define A; to be
the span of the products of i or fewer vectors of V. Show also that G{A) is
naturally isomorphic to the exterior algebra A* V.

This gives a more canonical approach to the vector space isomorphism between the

Clifford and exterior algebras.

QUESTION 3.33 What is the ‘Dirac operator’ associated to A" T°AM ® C as a right
Clifford module?
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CHAPTER 4

The Spin groups

In this chapter we will study some important subgroups of the group of invertible
elements in a Clifford algebra, and their representations. This material is needed to
understand the geometrical significance of operators of Dirac type. However, it is not
needed immediately in the development of the book, so the reader who is in a hurry

to get on to some analysis can skip this chapter for now and come back to it later.

The Clifford algebra as a superalgebra

DerINITION 4.1 An algebra A4 {over R or C) is called a superalgebra (or Z /2-graded

algebra) if it is an internal direct sum of linear subspaces 4¢ and A,, with
Ag.Ag C Ag, A1.A C Ay, Ap. A C A ALAg C Ay

The subspaces 4y and A, are called the even and odd parts of the superalgebra A.
The subset Ay U A, is called the set of homogeneous elements of 4, and if z € A4; is

liomogeneous, ¢ is the degree of z, written deg(.\'): conventionally, deg(0) = 0.

Equivalently, a superalgebra is an algebra A equipped with an automorphism ¢,

the grading automorphism, such that £ = 1; the automorphism is defined by
E({Ig -+ (21) = Qg ~— 4y

if ag € Ag, a1 € A;.

PropPOSITION 4.2 The Clifford algebra of an orthogonal vector space V is a

superalgebra, in which the elements of V' are odd.

PROOF Choose any basis for V', say (e;), and define the even (resp. odd) part of
the Clifford algebra to be the linear span of the basis elements ¢;, ...e;,. where & is
even (resp. odd). The multiplication law for the Clifford algebra ensures that this

gives a superalgebra structure independent of the choice of basis. O
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If A is a superalgebra, then linear operators on A can be defined on homogeneous
elements only, and extended by linearity to the whole of A. Thus we define the
super-commulator

[.!?, y]a =zy - (-1)“5(")"‘-‘8(?)3/1.

on homogeneous elements; and the super-center

3(A)=lzeA:[z,y],=0 Vye A}

LEMMA 4.3 IfV is a real inner product space, then 3,(CY{1")) is the scalar field R,
and 3,(Cl(V) ® C) is the scalar field C.

PROOF Let ¢; ... e, be an orthonormal basis for V. Let z € 3,{CI(V)) and write
r=a+eb

where @ and b can be expanded in terms of basis elements that do not involve
any e;'s. We may assume without loss of generality that r is homogeneous. so
deg(z) = deg(a) = deg(b) + 1. Now

re; = ae + e be;
= (—=1)%5) e a — €?b)

= (=1)%&E)eia +b)

but ¢z = eja — b.
Since [z,e1], = 0, we deduce that b = 0. Thus x does not involve e;. Similarly, it

does not involve any other basis element, so it is a scalar. [J

(4.4) Let an orientation for V' be chosen. The volume element in CI(V') is the
product wy = ey --- e, where {ey,... e} is a positively oriented orthonormal basis
for V; one easily checks that the definition is independent of the choice of basis.

Moreover, calculation shows that
w? = (=1 D2 wo={(-1}"ww VoeV.

Thus, if £ = 2m is even, the grading automorphism is an inner automorphism,
. moreover, w™! = (=1)"w. If k = 2m + 1 is odd then w is central

in C{V) and w? = (—1)™*!. In fact, it is easy to check that the center of CH{1")

56

£(z) = waw”



consists just of the scalars if V' is even-dimensional, and is spanned by 1 and w if V

is odd-dimensional. We leave this to the reader.

Groups of invertibles in the Clifford algebra

From now on, let Cl(k) denote the Clifford algebra of R* with its usual positive
definite form. In this section we will investigate certain subgroups of the group of
invertible elements of Cl(k). Notice that, for v € R¥. v-v = —||v]|? in the Clifford

algebra; so any nonzero v is an invertible in CI(k).

DEFINITION 4.5
(i} The group Pin(k) is the multiplicative subgroup of Cl(k} generated by the
unit vectors v & R".
(ii) The group Spin(k) is the even part of Pin(k), i.e. Spin(k) = Pin(k) N Cl(k)y.
Let © € R* be a unit vector. It is invertible in the Clifford algebra with inverse
v~} = —p. For r € V consider

1

—vzv™t = vz =1 — 2(T, )V

on expressing z in components parallel and perpendicular to the unit vector v. Notice
that the right hand side of this equation can be described geometrically: it is the
reflection of x in the hyperplane perpendicular to r. Since the unit vectors v generated
the Pin group, we have proved that the twisted adjoint representation p: Pin(k) —
Aut(Cl(k)) defined by
py)r = yre(y™)

maps the subspace R of CI(k) to itself by an orthogonal transformation (a product of
reflections) and so gives a homomorphism p: Pin(k) — O(k). Elements of Spin(k) are

products of an even number of vectors in R¥, so the restriction of p maps Spin(k) —
SO(k).
PROPOSITION 4.6 There is an exact sequence
0 — Z/2 — Spin(k) & SO(k) — 0
where Z /2 = {+1} C Spin(k).
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PROOF It is well-known that every element of SO(k) is a product of an even number
of reflections, and in view of the calculation above this shows that p is surjective.
An element y of the kernel of p must supercommute with every v € R¥; since such v
generate the Clifford algebra, y must belong to 3,(CI(k)), and it must therefore be a
scalar by 4.3. We need to show that the only scalars in Spin(k) are {£1}.

For this purpose introduce the transposition antiautomorphism of Cl(k); if z =
vy - - U € Cl(k) is a product of basis vectors, we define ! = v, --- vy. It is a simple
exercise using the universal property of the Clifford algebra to show that z — 1’ is a
well-defined antiautomorphism of Cl(k). But for a generator v of Pin(k) we clearly

1

have v~! = v'; it follows that z~! = z! for every z € Pin(k). In particular if r is a

1

scalar, 27! = r! = r, so r has square one. [

The exact sequence above displays Spin(k) as a double covering group of SO(k);
in particular, this shows that Spin(k) is a compact Lie group.

PROPOSITION 4.7 For k > 2, the group Spin(k) is connected; for k > 3 it is simplv

connected, and the exact sequence above displays Spin(k) as the universal cover of
SO(k).

PRrROOF Consider a part of the exact homotopy sequence of the fibration
0 — Z/2 > Spin(k) — SO(k) — 0.
The exact homotopy sequence gives
mZ[2 — m Spin(k) — 1, SO(k) — moZ /2 — 7y Spin(k) — 7 SO(k)

where we know m,Z /2 and noSO(k) are trivial, 7oZ /2 is Z /2, and 7,SO(k) is Z /2
if K > 3. It is enough to show that the map 7¢Z/2 — =y Spin(k) is trivial. This
amounts to showing that the points +1 and —1 are connected in Spin(k), which they

are by the path
t — cost + ejezsint

provided that k > 2. 0O
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Since p : Spin(k) — SO(k) is a covering map, there is a natural identification of the
Lie algebra of Spin(k) with that of SO(k), which is the Lie algebra of antisymmetric
k x k matrices. On the other hand, since Spin(k) is a2 submanifold of the vector space
CI(k), its Lie algebra can be identified with a vector subspace of Cl(k). What is the

relationship between these identifications?

LEMMA 4.8 The Lie algebra of Spin(k) may be identified with the vector subspace
of Cl(k) spanned by the products eie;,i # j. The ideatification associates an

antisymmetric matrix a;; with the element 1 T, ; a;;e;e; of CI(k).

PROOF Since (e;e;)? = ~1,

exp(te;e;) = cost + e;e;sint € Spin(k).

Thus all the e;e; belong to the Lie algebra; and they span it, since it has dimension
Lk(k —1).

Now

plx)v = zvz~! (for z € Spin(k)) = Ad(x)v;
so if u belongs to the Lie algebra, p.(u)v = ad(u)v = [u,v]. If u = e,e, (say), we
compute
a.d(u)el = 26y, ad(u)ez = —2¢, ad(u)e; =0 (t ?’-‘ 1,2).
So ad(u) is represented by the matrix
ai; = 2(6.’151'2 - 6,'25j1)§

thus, 3 a;;e;e; = 2(e1e — e2¢;) = 4u. The result follows. 0O

Representation theory of the Clifford algebra

We now want to study the representations of the Spin group and of the Clifford
algebra. We will do this by looking at the representation theory of a finite multi-
plicative subgroup. Let €;,... ,e; be the standard orthonormal basis of R* and let
Ei C Pin(k) be the group of order 2¥+! consisting of all the elements

wefiey el
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where each of iy,1,,... ,1; is either 0 or 1. In particular, E; contains (—1) € CI(k);

denote this by v when it is considered as an element of Ej.

PROPOSITION 4.9 There is a 1-1 correspondence between

(i) Representations of the Clifford algebra Cl(k);
(ii) Representations of Pin(k) on which v acts as —1;

(iii) Representations of E; on which v acts as —1.

The proof is obvious. In the remainder of this section we will take ‘representation’
to mean ‘complex representation’, although the proposition is clearly valid over the
real field as well.

By the proposition, one can use the complex representation theory of the finite
group Ej to study that of Cl(k) ® C. We will assume that the reader is familiar with
the representation theory of finite groups, and in particular with the properties of
group characters; a possible reference for this subject is [46].

Since v is a central involution in the finite group E}, it must act as +1 or —1 on
each irreducible representation of E. Those irreducible representations on which v
acts as +1 are representations of the abelian group E./(v) of order 2*, so there are
2% of them. How many more representations does Ej have? Here a distinction makes

itself apparent according to whether & is even or odd.

LEMMA 4.10

(a) Ifk is even, the center of Ey is {1,v}.
(b) If k is odd, the center of Ey is {1,v,w,vw}, where w is the volume element
(4.4) in the Clifford algebra.

PROOF Let ¢ = el ---¢i*. If i, = 1,i, = 0 then one can check by hand that
e.e,9 = vge.e,. So the only possible central elements are 1,v,w = ¢; - - - ¢, and vw.

If k is odd, we have seen that w is central; if k is even
ew = vwe,

so w is noncentral. The result follows. 0O
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Now we count conjugacy classes in E;. The conjugacy class of ¢ € E; must be
cither {g} (if g is central) or {g,vg} (otherwise); this is an easy consequence of the

fact that E/(v) is abelian. The number of conjugacy classes is therefore

K+l _ K+l _
%n = 2% 41 (k even), 2—2—4

We have seen that E; has 2 irreducible representations on which v acts as +1. Since

+4 = 2¢ 42 (k odd).

the number of conjugacy classes is equal to the number of irreducible representations,
it follows that if & is even E; has just one more irreducible representation, on
which v must act as —1; and that if k is odd E, has two inequivalent irreducible

representations oa which v acts as ~1.

One must consider the two cases separately from now on, and we will concentrate
on the even case, where ¥ = 2m. (The odd case is considered in the exercises.)
Our argument shows that CI{(k) ® C has just one irreducible representation, which is
denoted A and called the spin representation. Its dimension can be calculated if we
recall that the sum of the squares of the dimensions of the representations of E; is

equal to the order of Ey, so
2F 4+ (dimA)? = 2!,

Therefore, dim A = 2™,

Since 4 is its only irreducible representation, Cl(k)®C is isomorphic to the matrix
algebra End(A). As a check on this, note that

dim(End(A)) = (2™)? = 2¥ = dim(Cl(k) ® C).

In 3.26 we gave a concrete construction of a representation of Cl{k)® C, of dimension
2™. By dimension counting, this must in fact be (isomorphic to) the spin represen-

tation.

REMARK 4.11 As a complex representation of the finite group Ey, A is provided with
a Hermitian metric with respect to which E; acts by unitary transformations. Since
each generator e; has square —1 and is unitary on 4\, it must in fact be skew-adjoint
on A. So the action of the Clifford algebra verifies the first part of definition 3.4.
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(4.12) Any finite-dimensional complex representation W of Cl(k) must be a direct
sum of copies of A, or to put it another way W = A®V for some auxiliary ‘coefficient’
vector space V. Notice that V can be recovered from W as Homey) (A, W).

Moreover, we have

Endc(W) = Cl(k) ® Endc(V) = Cl(k) ® Endcimac(W).

DEFINITION 4.13 Let F be a Clifford module endomorphism of a representation IV =
A @V of Cl(k). Its relative trace tr"/4(F) is defined to be the trace of the C-linear
endomorphism of V' corresponding to F under the identification Endcyrec(W) =
End¢(V).

(4.14) Notice that A is also an irreducible representation of Pin(k). Representation
theory allows two possibilities for the restriction of A to the index two normal
subgroup Spin(k); either the restriction is irreducible, or it splits as the direct sum of
two inequivalent irreducible representations of the same dimension. To see that the
latter case actually occurs, recall that the volume element w € Cl(k) has w? = (—1)™,
and that wz = ¢(z)w for all z € Cl(k). Let A, and A_ be the %1 eigenspaces of
i™w acting on A; then Cl(k) ® C acts on A = A, ® A_ in such a way that even
elements of the Clifford algebra preserve this direct sum decoinposition. and odd
elements reverse it. In particular, A* and A~ are themselves representations of
Spin(k); they are called the positive and negative half-spin representations, and they

are irreducible.

REMARK 4.15 Ws can reformulate this by saying that the super vector space
A = A, & A_ becomes a graded representation of CI(k).

Spin structures on manifolds

Now let M be an oriented Riemannian manifold, of dimension n, and let E be the
principal SO(n)-bundle of oriented orthonormal frames for the tangent bundle. We
will assume n is even, but an analogous discussion can be made for odd n, once the

theory of the spin representation has been worked out.
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DEFINITION 4.16 A spin-structure on M is a principal Spin(n)-bundle E over M
which is a double covering of E such that the restriction to each fiber of the double
covering £ — E is the double covering p: Spin(n) — SO(n). If M admits a spin

structure, it is called a spin manifold.
We don’t want to go too deeply into questions about the existence and uniqueness
of spin structures here. However, we should at least prove that spin structures are

not uncommon:

PrROPOSITION 4.17 If M is 2-connected, then it admits a unique spin structuore.

ProoF The double coverings of the connected space E are classified by the
homomorphisms of the fundamental group 7, E to Z/2; and those double coverings
that restrict on a fiber to the standard double covering of SO(n) are those classified
by homomorphisms 7 E — Z/2 such that the composite 1,50(n) —» mE — Z/2is

an isomorphism. But if M is 2-connected, the exact homotopy sequence gives
0= mM - mSO(n) — mE — mAM=0

s0 1S0(n) — m E is an isomorphism, and M has a unique spin structure. [

DEFINITION 4.18 If M is a spin manifold, then its spin bundle A is the vector bundle

associated to the principal spin bundle by means of the spin representation.

DEFINITION 4.19 The spin connection on the principal Spin(n) bundle E over a
spin manifold A is defined to be the lifting to E of the principal SO(n) connection
on E induced by the Levi-Civita connection on TAl. The spin connectionon A is
the connection on A associated (via the spin representation) to the spin connection
on E.

Since the spin representation is unitary, the bundle A has a natural hermitian
metric. Moreover, the spin connection is compatible with this metric. Thus we

conclude
PROPOSITION 4.20 The spin bundle A (equipped with its Hermitian metric and
spin connection) over a spin manifold M is a Clifford bundle (3.4).

The fundamental nature of the spin representation is revealed by
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ProrosSITION 4.21 The twisting curvature (3.16) of the spin bundle associated to a

spin structure is zero.

PROOF Let {e;} be alocal orthonormal frame for TM. Recall that the connection
and curvature forms for TM have their values in the Lie algebra so(n) of antisymmet-
ric matrices. In particular, the curvature is an so{n)-valued two-form, whose matrix
entries are {Re;, €} where R denotes the Riemann curvature operator. By leinma
4.8, the corresponding spin(n)-valued two-form (which gives the curvature of the spin

connection) is

1D (Rex,eee
¥

and this acts on the spin representation by
1Y (Rex, en)clex)e(er)
kJd

which is exactly the End(A)-valued 2-form R® of definition 3.14. The result now

follows from the definition of twisting curvature {(3.16). 0O

REMARK 4.22 Suppose now that S is any Clifford bundle over a spin manifold Af.
Then there is a vector bundle V = Homg{A, §5), equipped with hermitian metric and
connection, such that § & A ® V as Clifford bundles. The curvature of the natural

connection on a tensor product of this type is (in an obvious notation)
K*®1+1@K"Y.

Proposition 4.21 identifies the first term as the Riemann endomorphism (3.14) of §

and the second as the twisting curvature (3.16).

Spin bundles and characteristic classes

Let M be a spin manifold, of even dimension 2m, and let A the associated spin

bundle. We will need to know the Chern character of the complex vector bundle A.

PROPOSITION 4.23 The Chern character ch(A) of the spin bundle is equal to
2"S(TM), where & denotes the Pontrjagin genus associated to the holomorphic
function g(z) = cosh(}/z).
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We will denote the Pontrjagin genus associated to this particular holomorphic
function by V — &(V).

PROOF In general, an even-dimensional oriented Euclidean (real) vector bundle V
is called a spin vector bundle if there is given a double covering of its associated SO
principal bundle of oriented orthonormal frames satisfying the conditions of (4.16).
{Thus, the tangent bundle to a spin manifold is a spin bundle.) Given such a spin

vector bundle we can form its spin bundle A(V') as above and we want to show that
ch(A(V)) = 24 dimV g(1) (4.24)

We regard this as a pointwise identity between certain polynomial functions of the
curvature of V. To prove it, we may therefore assume that the curvature is block
diagonal, so that V is a direct sum of 2-dimensional bundles. Moreover, if V = Vi@V,
(with V}, V, even-dimensional) then A(V) = A(V}) ® A(V,), so both sides of (4.24)
are multiplicative on direct sums; thus it suffices to consider 2-dimensional V. Such
a V can also be regarded as a 1-dimensional complex vector bundle, then denoted V..
On the other hand, A(V) is a 2-dimensional complex vector bundle, decomposed by
the grading operator into the direct sum of two 1-dimensional complex components
A*(V) and A=(V). I claim that

At @cAt =2V, A" @®@cA- =V,
as vector bundles, or equivalently as representations of Spin(2). This must be checked

explicitly.
The Clifford algebra CI(R?) ® C is isomorphic to M,(C) and it is spanned by the

four matrices

(1o . i 0 0 i 0 -1
- s - ,e= ,ee= .
01 T o = 2 lio 2701 0

It is not hard to verify directly from the definition that. in this representation, Spin(2)

is the rotation group consisting of matrices
cos@ -—siné
sin cosé@
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and that the action of an element of Spin(2) on an element of R? represented by the

(;2)

rotates it through 26, as we should expect.

matrix

On the other hand, the grading operator is te;eg, which equals

so the eigenspaces At and A~ are given by

oo{(5) e we{(2) e

The action of an element of Spin(2) on A+ is given by

cos§ —sind z _ (cos® + isinf)z )
sinf cosé ~ir | —i(cosf + isinf)z ’
that is rotation through . So A* @ A* = V_, and similarly A~ @ A~ V',
Now let z denote the first Chern class ¢;(A*). Then

ch(A) = ch(A*) +ch(A~™) =€ + e = 2cosh z.
On the other hand,
(V)= —c(VOC) = —(V. & V) = —ar(Vo)er (V') = 42”.
The result now follows from the definition of the Pontrjagin genus G. 0O

(4.25) Now let S be a general Clifford bundle on M. By definition, the relative

Chern character of S is the cohomology class represented by the differential form

ch(S/A) = tr5/%(exp(—F5 [27i))
S5/8 is the relative trace of 4.13. Notice that,
if S = A®YV, then ch(S/A) is just the ordinary Chern character of V.. (The fact

that such a decomposition is always possible locally shows that ch(S/A) is indeed a
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closed form, and so does represent a cohomology class.) From the above results we

have

ch(S) = 2™"S(TM)ch(S/A).
The complex Spin group

DEFINITION 4.26 The group Spin‘(k) is the subgroup of Cl(k) ® C generated by
Spin(k) together with the circle §? of unit complex numbers.

Notice that S! belongs to the center of Cl(k) ® C; thus we have an epimorphism
Spin(k) x S! — Spin°(k). The kernel of this epimorphism consists of pairs (A~!, A},
where A € 5! N Spin(k). But we have already remarked that the only scalars in
Spin{k) are £1, so we get the isomorphism

Spin°(k) = Spin(k) X (1} S*
where the notation refers to the quotient of the product Spin(k) x S! by {(A~%,)) :
A e {£1}}.
If k£ is even, it is clear that the spin representation (and also the half-spin repre-

sentations) are representations of the group Spin® as well as of Spin; since they are

in fact representations of the complexified Clifford algebra.

PROPOSITION 4.27 There is a short exact sequence
0 — Z/2 - Spin“(k) —» SO(k) x S' = 1
where the Z /2 subgroup is generated by [(-1,1)] = [(1,-1)}.
The map Spin°(k) — SO(k)x S! is(x,A) — (p(z), A%), where p: Spin(k) — SO(k)
is the double covering. Notice that the composite
S! - Spin°(k) — S*
is the double covering map, not the identity.

Let M be an oriented Riemannian manifold. Let E denote the oriented orthonor-
mal frame bundle of M, as before, and let L be a principal S!-bundle on M (the
obvious representation of S! on C allows us to regard L as a complex hermitian line

bundle, whence the notation).
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DEFINITION 4.28 A Spin°-structure on M is a principal Spin°(n)-bundle E over M
which is a double covering of E x L such that the restriction to each fiber of the
double covering E — E is the double covering p : Spin‘(n) — SO(n) x S!. The
bundle L is called the fundamental line bundle associated to the Spin®-structure.

Using the spin representation, as before, we can associate a spin bundle S to any
Spin®-structure. It has a hermitian metric; to equip it with a compatible connection
we must choose a connection on L, and then lift the product SO(n) x S! connection

on E x L to a Spin°(n) connection on E. The analogue of proposition 4.21 is

PROPOSITION 4.29 The twisting curvature of the spin bundle associated to a Spin®
structure is 3F, where F is the curvature operator of the chosen connection on the
fundamental line bundle L.

The proof is left to the reader.

REMARK 4.30 Let M be a Riemannian manifold and suppose that there exists a
Clifford bundle S over M whose fiber at each point is a copy of the spin representation.
Then it can be shown (see exercise 4.36) that M admits a Spin® structure for which
S is the associated spin bundle. In particular, the fundamental line bundle L can
be recovered from S; it is simply the bundle Homg,¢c(S, S) of module-isomorphisms

between the representation S and its complex conjugate.

Notes

Fundamental references on Clifford modules are the paper [4] and the book [47],
both of which give a much more systematic development than we have done. The
approach taken here, by way of the finite groups E}, comes from unpublished lecture
notes of the late J.F. Adams.

Exercises

QUESTION 4.31 Using the fibration SO(n—1) — SO(n) — $"~!, verify the assertion
in the text that 1, SO(n) ¥ Z /2 for n > 3.
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QUESTION 4.32 Show that the even part of Cl(k) is isomorphic to Cl(k — 1). In
particular, identify the even part of Cl(3) ® C with a matrix algebra My(C). Using
this identification, construct an isomorphism Spin(3) = SU(2).

QUESTION 4.33 The graded tensor product of two super vector spaces U = U, @ U_
and V = V, @& V_ is their ordinary tensor product as vector spaces, with grading
defined by

UV)y=U, @V +U_QV., (UBV).=U,@V_-+U_-®V,.

Prove the graded analogue of 4.12, namely that the most general graded representa-
tion of Cl(k) for k even is of the form A®V for some graded vector space V.

QUESTION 4.34 Suppose that we consider the spin bundle A of an even-dimensional
spin manifold as a super vector bundle by way of the decomposition A = At & A~
(Notice that this grading depends on the orientation of M.) Prove that the super
Chern character ch,(A) is equal to e(TM), where e(T M) denotes the Euler class of
question 2.36.

QUESTION 4.35 Work out (using the method in the text) the complex representation

theory of the Clifford algebra of an odd-dimensional Euclidean space.

QUESTION 4.36 Let o: Spin°(2k) — U(2*) be the homomorphism arising from the

spin representation.

(i) Show that there is a pull-back diagram
Spin‘(2k) —— U(2¥)

| I

SO(2k) —£—~ PU(2¥)

where PU(2%) = U(2%)/U(1) is the projective unitary group, 7 is the obvious
quotient map, and ¢ is the projectivization of the spin representation,

(ii) Suppose that M is a 2k-dimensional manifold which admits a Clifford bundle
S whose fiber at each point is a copy of the spin representation, so that
Cl(TM)®C = End(S). Let E be the orthonormal frame bundle of A, and
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E’ be the complex orthonormal frame bundle of S. Show that 7. E = ¢.E’ as
principal PU(2¥)-bundles. Deduce that there is a principal Spin°(2k) bundle
E" over M which covers E. Thus M is a Spin® manifold. See Plymen [59].

QUESTION 4.37 In this question we will consider the general classification of spin
structures; some information from homotopy theory will be required. Let M be
a compact oriented Riemannian manifold, and let E be its principal SO(n) frame
bundle (n even).

(2) By considering the Serre spectral sequence of the fibration SO(n) — E — M,

derive the exact sequence
0— H'(M;Zy) 5 HY(E:Zy) & HY(SO(n); Z2) 5 HY(M;Zy) .

(b) Show that the set of spin structures on M may be identified with the comple-
ment of Ker(i") in H(E;Z,).
(¢) The image under & of the generator of H!(SO(n); Z,) is a characteristic class
of M, called the second Stiefel-Whitney class wo(M). Show that M admits
a spin structure iff wo(Af) = 0, and that if this is so, the number of distinct
spin structures is equal to the number of elements in H(M;Z,).
¢ It can be shown [55, page 171] that the Stiefel-Whitney classes of a complex
manifold are the mod 2 reductions of its Chern classes. Use this fact to show

that CP” has no spin structure.
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CHAPTER 5

Analytic properties of Dirac operators

A harmonic function u (for instance on R?) is a solution of the Laplace equation
d%u + Fu
or? T Ay? T

One of the basic properties of harmonic functions is that they are smoother than

0.

you think; though u need only be twice differentiable for the equation above to make
sense, one knows from complex variable theory that u is locally the real part of a
holomorphic function, and hence is infinitely differentiable.

It turns out that the more general Dirac operators we have been considering have
analogous properties. To obtain these properties we need a quantitative measure of
the degree of differentiability of a function on a compact manifold. Such a measure

is provided by the Sobolev spaces which we will now study.

Sobolev Spaces

These are defined by Fourier series. Initially, therefore, we work on the torus

T" = R"/27Z" .

DerFINITION 5.1 Let f: T® — C be an integrable function. The Fourier series for
f is the formal series

Z a, eiy.:

veZr
where

a, = fv) = ﬁ[l" flz)e™#*dr .

When f is a trigonometric polynomial it is equal to its own Fourier series. Many
delicate results describe conditions under which the Fourier series converges to f, but
for our purposes some of the simplest will suffice, which all follow from the fact that
the functions e,:  — (27)""/2¢"* form an orthonormal basis of the Hilbert space
L¥T").
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PARSEVAL'S THEOREM 5.2 For f € L¥(T"),

Jo P = @y Sl

INVERSION THEOREM FOR L? 5.3 For f € L?(T"), the Fourier series of f converges

in the L*-norm to f.

INVERSION THEOREM FOR C® 5.4 For f € C(T"), the Fourier series of f
converges in the Fréchet C* topology to f. The Fourier coefficients f(v) are rapidly
decreasing: for any k there is a constant Cy such that |f(v)] < Ce(1 + |v])* .

(The Fréchet topology of C°(T") is the topology of uniform convergence of all
derivatives.)

The Fourier transform converts differentiation into multiplication. Thus, state-
ments about the differentiability of a function f on T™ may be translated into

statements about the rate of growth of its Fourier coefficients.

DEFINITION 5.5 Let k be a positive integer. The Sobolev k-inner product on C*(T")
is defined by the formula

(s Foe = @) T2 A R(w)(1 + W) .

(This makes sense since f1 and f, are rapidly decreasing.)

The Sobolev k-norm is the norm induced by this inner product. The &k 'th Sobolev
space, denoted W*, is the completion of C=(T") in the k-norm.

By Parseval’s theorem, W is isometrically isomorphic to L?. The space W* can
be thought of as the space of functions whose first k derivatives belong to L?; making
this statement precise, however, requires some distribution theory.

There are three basic facts about Sobolev spaces, given in the next three proposi-

tions.

PROPOSITION 5.6 The space C*(T") of k times continuously differentiable functions

is a subspace of W¥(T"), and the inclusion map is continuous.
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ProoOF If f € C*(T"), then one can differentiate the Fourier series formally to

obtain . I\E

fn=(z) i
where f; = (8/8x7)Ff. (To prove this integrate by parts k times in the formula for
f.) Each f; is continuous, hence square integrable, so f,- belongs to I2 by Parseval’s
theorem. Therefore

v f)(1+ )"
belongs to ¢, which means exactly that f € W*. The asserted continuity is easy to
check, either directly or by means of the closed graph theorem. £J

SOBOLEV EMBEDDING THEOREM: 5.7 For any integer p > n/2, the space W7 is

continuously included in C*.

PROOF Let f € W*+?; then
S @PA+ P A+ Py <o
By Cauchy-Schwartz, then,

2
(Z Lf@I + ) 2) S (@A + P + PP + )7

and this is finite since p > n/2. Therefore, ¥, [v|*|f(v)| < 00,0 that the Fourier
series for the first k derivatives of f converges absolutely and uniformly. O

RELLICH’S THEOREM: 5.8 If k; < k; then the inclusion operator W* — Wh js a

compact linear operator.

PROOF Let B be the unit ball of W*2. Given ¢ > 0, one can choose a subspace Z
of W2 of finite codimension with the property that for allf € BN Z, || f|ls, < &: just
take Z to be the space {f : f(v) = 0 for || < N}, for a suitably large N. The unit
ball of Wk /Z is precompact, so can be covered by finitely many balls of radius .
Hence B can be covered by finitely many balls of radius 2¢ in the W5 norm. Since

€ is arbitrary, B is precompact in that norm. [

Now we will define Sobolev spaces on manifolds other than T". To do this we need
to give a different definition of the Sobolev norms.
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PrOPOSITION 5.9 The Sobolev k-norm on C*(T") is equivalent to the norm given
by 5
I o

foi<e 07
where the norms on the right are L? norms.

ProoF This is a straightforward application of the argument used in proving
proposition (5.6). O

COROLLARY 5.10 Multiplication by a €' function acts as a bounded operator on
each Sobolev space. Linear differential operators of order | act boundedly from W*
to Wk,

Proor Obvious. 0O

COROLLARY 5.11 Let f € L*T"), with support supp(f) in a compact subset K.
Let U be an open subset of T" containing K, and let ¢ be a diffeomorphism of U
into T™. Then f o ¢ belongs to W* if and only if f does.

PROOF It is enough if we can estimate the L2 norms of derivatives of f o ¢ in
terms of the norms of derivatives of f. By the chain rule, the derivatives up to order
k of f o ¢ can be written as linear combinations of products of derivatives up to
order k of f and derivatives up to order k of ¢. To compute the L? norms of those
derivatives one must change variables in the integral, introducing the Jacobian of ¢
also. However, all the quantities that depend on ¢ are bounded by compactness, so
the result follows. [

Now we can define Sobolev spaces on manifolds. Let M be a compact smooth
manifold. Let (U;) be a cover of M by coordinate patches, and (1,!']2-) a smooth
partition of unity subordinate to U;. Let ¢; be a diffeomorphism of U; into T™.

DEFINITION 5.12 We define the Sobolev k-inner product on C®(AM) by
(frahe = 24N o5  (d5g) 0 05 i
J

The Sobolev k-inner products on the right hand side refer to T™. Of course, the

norm associated to this inner product depends on the various choices made in its
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definition. However, (5.10) and (5.11) show that if we make different choices, we
replace the norm by an equivalent one. So the k-norm is canonically defined up to
equivalence. We define the Sobolev space W*(M) to be the completion of C®(M) in
the k-norm; it is a topological vector space provided with a class of inner products
which define equivalent norms, with respect to any of which it is complete (sometimes
called a ‘Hilbertian space’).

If V is a vector bundle over M, one can define similarly the Sobolev space W*(V)
of W* sections of V, by making an arbitrary choice of trivialization of V over each
of the coordinate patches U;.

Notice that propositions 5.6, 5.7, and 5.8 still apply to the Sobolev spaces of an
arbitrary manifold. It is easy to reduce the more general versions of these propositions

to their special cases on the torus.

Analysis of the Dirac operator

‘We now return to the Dirac operator D on a Clifford bundle § over the manifold
M. A critical part in the analysis is played by the Weitzenbock formula 3.8, which

we recall states that

D?*=9V"V+K
where K is a certain curvature operator. In fact, the precise form of the operator K is
of little importance here, and all the analysis will work for any first order operator D
on sections of a bundle S (with hermitian metric and compatible connection) which
satisfies

D*=V'V+B (5.13)

where B is a first order operator on S. Such an operator is called a generalized Dirac
operator; an important example is the operator D+ A, where D is a Dirac operator in
the old sense and A is any endomorphism of S. The Dolbeault operator vZ(3 + 8°)

on a non-Kiahler complex manifold, for example, is of this form.

Since D is a first order operator, (5.10) gives the estimate

IDsllo < Clislh



for some constant C. The main analytical property of generalized Dirac operators is

a sort of ‘approximate converse’ to this:

GARDING’S INEQUALITY: 5.14 Let D be a generalized Dirac operatcr on a compact
manifold. There is a constant C such that, for any s € C*(S),

lIsll: < C(lislle + 1 Dsllo) -

PrOOF By means of a partition of unity, one can reduce to the case where s is
supported in a coordinate patch. Now we use the formula 5.13. Taking the L? inner

product with s, one gets
IDsli3 = NVsli§ + (Bs,s)o
so, using Cauchy-Schwarz and the fact that B is first order,
19sli§ < Cillsllollsll: + 1Dsli) (5.15)

for some constant C). Now let us write ¥V in local coordinates as V;s = 8s/89z°+ s,
where s is thought of as a vector-valued function and the Christoffel symbols I'; are

endomorphisms of S. Then

Ivslly = %{f.e"’ %,MHz/ ”Re(a > T s)+/9 (Tis,T;s }
> Cillsll} - Cillslollsllx

and so (using 5.15)

IDsli3 > Calls} = Cslisllollsll:
for some constants C,,C3,Cq,Cs. Now use the fact that given any ¢ > 0 there
is a K > 0 such that ab < ea® + Kb? for all a,b > 0 to wiite Cslls|lolls]1 <
$Callsli} + Cellsli3, and so to deduce

IDsllE > 3Callsl} — Cellsl -
Rearranging this and changing notation slightly, one gets the result. O

There is a generalization of Garding’s inequality which relates the Sobolev k-norm
of Ds to the Sobolev (k + 1)-norm of s.
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PROPOSITION 5.16 (ELLIPTIC ESTIMATE) For any k > 0 there is a constant Cy such
that, for any s € C*(95),

lsllesr < Celllslle + 11 Dsll) -

PROOF The case k = 0 is just Garding’s inequality. To obtain the more general
result, we use induction on k. By a partition of unity, we may assume that s is

supported in a coordinate patch. Let 8; denote the operator 8/9x".
From (5.9),

lIslless < A1 37 10:sl
i
for some constant A;. Now by induction
19:51le < Crr(18islle-1 + | DOislle-1) -
But &; is a first order operator, so
18:slle-1 < Azllsls -
Also [D, ;] is a first order operator, so

I1D3isllk—1 € 19:Dslle-1 + 1D, Bilslli-r
< A\ Dslle + Aslis]lx -

Therefore
lislle+s < nALCes (A2l Dsle + (A2 + Ag)lislle)

which yields the result. O

To analyze D, we will think of it as an unbounded operator on the Hilbert space
H = L*S). Recall that an unbounded operator on a Hilbert space H is simply a
linear map from a dense subspace of H {called the domain of the operator) to H.
Such operators need not be continuous; but a basic idea in the theory of unbounded
operators is that the closedness of the graph of the operator in H @ H acts as a partial

substitute for continuity.
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DEFINITION 5.17 Let A be an unbounded operator. The gruph G4 of A is the
subspace

Ga={(z,Az) : z € dom(A)}
of HO H.

LEMMA 5.18 The closure G of the graph G of the Dirac operator is also a graph.

PRrRoOOF This is in fact a general property of differential operators, and is based on
the existence of a so-called ‘formal adjoint’ operator D! such that

(Dsy,89) = (31, D'sy) (5.19)

for all smooth sections s, s3 of S. For the classical Dirac operators of Chapter 3, we
have proved in 3.11 that D! = D. Suppose now that G is not a graph. Then there is
a point (0,y) in G with y # 0. That is, there is a sequence (z;) of smooth secticns

of § with z; — 0 and Dz; — y in L%(S). But then, for any smooth s,
(DIj,S) —t (y, 8), (xj, Dfs> -0

as j — oo. However (Dz;,s) = (z;, D!s), so (y,s) = 0 for all smooth s, andsoy = 0.
c

Since G is a graph, it too defines an unbounded operator, denoted D. The domain
of D is the collection of all z € L?(S) such that there is a sequence (r;) of smooth
sections of S for which z; — z in L?(S) and Dz; converges in L?(S). By Garding’s
inequality (5.14), this domain is precisely the Sobolev space W!(S).

Suppose that z and y are smooth sections of S, and that Dz = y. Then by 5.19,
for all smooth sections s,

(z.D's) = (y,s) .
This equation makes sense for arbitrary z,y € L?(S); if it holds one says that the
equation Dz = y is satisfied in the weak sense. Such a concept can be defined for more
general partial differential equations, and for most of them the concept of solvability
in the weak sense is a proper generalization of honest solvability; but for the Dirac
operator it will turn out that this concept is the same as that of ordinary solvability.

To prove this we need some additional concepts.
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DEFINITION 5.20 A bounded operator A on L*(S) is called a smoothing operator if
there is a smooth kernel k(p,q) on M x M, with values k(p, q) € Hom(S,, S;), such
that

As(p) = /M k(p, 9)s(q)- vol(q) .

Formally, k is a smooth section of S B 5* := #n}S @ 735", where 7; and 7y are the
canonical projections of M x M to M. By differentiation under the integral sign, one

sees that the range of a smoothing operator consists of smooth sections.

DEFINITION 5.21 A Friedrichs’ mollifierfor S is a family F,, € € (0, 1) of self-adjoint
smoothing operators on L?(S) such that

(i) (F.) is a bounded family of operators on L2(S).
(ii) ([B, F.]) extends to a bounded family of operators on L?(S), for any first order
differential operator B on S.
(iii) F. — 1 in the weak topology of operators on L?(S). (This means that for all
2,y € I¥(S), (Fer,y) — (z.y) as & — 0.)

Friedrichs’ mollifiers exist (see exercise 5.34). Let us grant that for now, and go on
to prove our result on weak solutions of Dz = y.
PROPOSITION 5.22 Suppose that x,y € L*(S), and that Dr = y weakly. Then
z € WY(8) = dom(D), and Dz = y.
PROOF Let F, be a Friedrichs’ mollifier, and let z, = F.z. Then z, is smooth, and
we may write for s € C®(S)
(Dz.,s) = (z,D's)
= (z,F.D's)
= (z,D'F.s) + (z,[F., DY]s)
So there is a constant C such that
[{Dz.,s)| < Clls]|
uniformly in . Since C*(S) is dense in L%(S), this imnplies that ||Dz.|| < C.
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Now by Garding’s inequality (5.14), {z.} forms a bounded subset of the Sobolev
space W!. Therefore, there is a sequence of values &£; — 0 such that I, tends to
a limit weakly in W!, by the weak compactness of the unit ball of the Hilbertian
space W'. By Rellich’s theorem (5.8), ., tends to its limit in the norm topology of
W9 = [2. By property iii) of Friedrichs’ mollifiers, this limit must be z; so r € W1,

as asserted, [

REMARK 5.23 For the benefit of readers familiar with unbounded operator theory,
we summarize what we have shown in that language. For simplicity restrict attention
to the classical case where D! = D, which means that the operator D is symmetric,
in the sense of unbounded operator theory. Proposition 5.22 above shows that the
domain of the closure of D is equal to the domain of the (Hilbert space) adjoint
of D (they are both equal to W'), and thus that D is self-adjoint in the sense of
unbounded operator theory. We now go on to develop a spectral decomposition
theory for D; Lemma 5.25 and the subsequent calculation are classical results of
unbounded operator theory, due to von Neumann, which we have specialized to the

case at hand.

PROPOSITION 5.24 The kernel of D (i.e., the set of s € W' such that Ds = 0)

consists of smoouth seclions.

PROOF Let s belong to the kernel of D; we will prove inductively that s € W* for
all k, and the result will follow by the Sobolev embedding theorem. Suppose then
that it is already known that s € W*~! and let F, be a Friedrichs’ mollifier. It is
easy to check (from the properties of Friedrichs’ mollifiers and the definition of the
Sobolev spaces) that F, and [D, F,] form bounded families of operators on W¥-1!,
Now by the elliptic estimate

| Feslle € CelllFeslli-r + | DFesllx—1) = Ci(ll Feslle-r + I[D, Felslle-1)

since Ds = 0. Thus ||F.s||x is bounded, and since F.s converges in L? to s, and a
suitable subsequence converges weakly in W¥, we deduce that s € W* as required.
a]
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Recall that G denotes the graph of D, and H = L[*(S). From now on we will

assume that D = Dt; all true Dirac operators satisfy this condition.

LEMMA 5.25 Let J: H® H — H @ H denote the map (z,y) — (y, —x). Then there

is an orthogonal direct sum decomposition
HoH=GoJG.

PROOF Suppose that (x,y) € G*. This means that for all s € C®(S),
{(z,9),(s,Ds)) =0
ie.
{(z,s)+(y,Ds)=0,

that is, Dy + z = 0 weakly. But then by (5.22), y € W!, so (y,—z) € G, so
(z,¥)€JG. O

(5.26) Now define an operator Q as follows: for any r € L*(S) = H, let (Qz, DQz)
be the orthogonal projection of (z,0) onto G in H @ H. Clearly Qr € W!, and
since ||z|®> = ||Qz||? + | DQ:||?, Garding’s inequality shows that @ is bounded as an
operator L2 — W!. Hence, by Rellich’s theorem (5.8), Q is compact when considered
as a bounded operator on L2(S). Clearly it is also self-adjoint, positive, and injective,

and has norm < 1.

Now we have the following basic result, which decomposes the operator D into

manageable (i.e. finite dimensional) pieces.

THEOREM 5.27 There is a direct sum decomposition of H into a sum of countably
many orthogonal subspaces Hy. Each H, is a finite dimensional space of smooth
sections, and is an eigenspace for D with eigenvalue A\. The eigenvalues X form a

discrete subset of R.

ProOOF Consider the compact self-adjoint operator @ defined above. The spectral
theorem for such operators (proved in most first courses on functional analysis; see
[29] for a comprehensive treatment) says that H can be decomposed into an orthog-

onal direct sum of finite dimensional eigenspaces for Q, with discrete eigenvalues
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tending to zero. Since Q is positive and injective, the eigenvalues are in fact strictly
positive.

Now let = € W! be an eigenvector for @, with eigenvalue p > 0. Then by 5.25
there is y € W! such that

(*510) = (QI'»-ﬁQI) + (—ﬁ&f, y) = p(I,FI) + {—"—D.yi y)

and thus (p — 1)z = Dy and y = —pDz. Putting A2 = (1 — p)/p and z = —(1/p)\)y,

we have
Dr = Az, Dz=z

so T + z and z — z are eigenvectors of D with eigenvalues X and —\ respectively.
We conclude that Thus H can be written as a direct sum (necessarily orthogonal) of
eigenspaces for D, each eigenspace being a finite dimensional subspace of W1(5).
To show that the eigenvectors are smooth, notice that an eigenvector for D (with
eigenvalue X} is a member of the kernel of the generalized Dirac operator D — X. So

5.24 completes the preof. O

REMARK 5.28 Returning to where this chapter began, observe that if D is the
operator i(d/dz) on the circle S!, the decomposition provided by this theorem is jnst

the Fourier series decomposition of L2(S').

The functional calculus

Let o(D) denote the spectrum (set of eigenvalues) of D. Any section s € L%(S)

has a ‘Fourier expansion’ as an orthogonal direct sum

T

Aes(D)

where s, is the component of s belonging to the A-eigenspace of D. It is elementary
that |{ss]} < Jis|| for all A.

PROPOSITION 5.29 A section s € L?(S) is smooth if and only if ||s,\|| = O(|\|~*) for
each k. (In this case we say that the terms of the expansion are rapidly decreasing.)

82



ProOF Since sy is an eigenvector for D with eigenvalue A, the elliptic estimate
gives the bound [|ss]le < CiA¥||s|| for the Sobolev k-norm. The condition of rapid

decay therefore implies that the expansion converges in each Sobolev space. 0O

If f is a bounded function on ¢{D), we can define a bounded operator f(D) on
L*(S) by setting f(D)s = ¥ f(A)sy where s = T s, as above; in other words, f(D)
is the ‘diagonal’ operator which acts as multiplication by f(A) on the A-eigenspace

of D. The following proposition is apparent from the discussion above.

PROPOSITION 5.30 The map f — f(D) is a unital homomorphism from the ring
of the bounded functions on o(D)) to B(H). The norm of the operator f(D) is less
than or equal to the supremum of |f|. If D commutes with an operator A, so does
every f(D). Moreover, every f(D) maps C=(S) to C*(S). If f(x) = zg(x), with f
and g bounded functions, then f(D) = Dg(D) as bounded operators.

The argument shows that if f itself is rapidly decreasing, that is | f(A)] = O{|A\|%)
for each k, then f(D) maps L*(S) to C*(S). In fact f(D) is actually a smoothing
operator in this case, that is, given by a smooth kernel. To see this notice that
for A € o(D) the orthogonal projection operator P, onto the A-eigenspace of D is
smoothing; indeed, any orthogonal projection whose range is a finite-dimensional
space of smooth functions is a smoothing operator. Moreover it is not hard to see
(exercise 5.35) that for each k there is an ¢(k) such that the Sobolev k-norm (on
M x M) of the smoothing kernel of P, is bounded by CipA%%). Thus, if f is rapidly

decreasing, the series
(D) =3 f(\P
)

converges in the topology of smoothing kernels on M x M. To summarize, we have

proved

PROPOSITION 5.31 If f is rapidly decreasing, the associated operator f(D) is a
smoothing operator. The map from f to the smoothing kernel of f(D) is continuous,
from the space R(R) of rapidly decreasing functions on R (equipped with its natural
Frechet topology), to the space of smoothing kernels on M x M.
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REMARK 5.32 It is plain from this discussion that there is an N (depending only
on the dimension of M) such that, if f(A) = O(A~¥), then f(D) has a continuous

kernel. This will be of some importance later.

Notes

There are many expositions of the theory of linear elliptic operators, a part of
which has been presented in this chapter. Our approach owes most to Griffiths and
Harris [36]. Instead of making Hilbert space theory central, one can prove the main
results by constructing a parametriz for D; an operator @ such that DQ — | and
QD — 1 are smoothing. This line is followed in [12] and in de Rham’s book [24],

where parametrices are constructed very explicitly.

One can also construct parametrices by making use of the general theory of pseudo-
differential operators, as in [34] and [47]. We have not emphasized pseudo-differential
operators in this text, since our main concern is with Dirac operators, which are in
some sense more “rigid”. However, pseudo-differential operators are invaluable when
one needs to discuss deformations of elliptic operators: see for example Atiyah and
Singer [9].

We have only defined the Sobolev spaces of positive integer order. Sobolev spaces
of negative and fractional order can be defined, as well as Sobolev spaces based on

LP rather than L? norms; these are of importance in non-linear problems.

For more on unbounded operators, consult Dunford and Schwartz [29].

Exercises

QUESTION 5.33 Investigate whether elements of the Sobolev space W™/2(T") must
be continuous (this is the ‘critical case’ of the Sobolev embedding theorem). Hint:
consider the function (r,6) = log(1 — logr) on the unit ball in R2.

QUESTION 5.34 Show that Friedrichs' mollifiers exist, by following the outline below,

(i) Choose a function ¢ on R" which is positive, smooth, compactly supported,
radially symmetric and has [ ¢ = 1; and let ¢ () = ¢~"¢(z/z). Define F, on
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L*(R") by the convolution integral

Fes(z) = g s(2) = = [ o= Y)sty)do.

Prove that the operators F; are uniformly bounded on L2

(ii) Prove that if s is continuous and compactly supported, then F,s — s uniformly
as g — 0.
(iii) Deduce that if s € L?, then F,s — s in L2 as ¢ — 0.
(iv) Let B = a(z)d/8z!. By integration by parts, show that
[B, F l]s(z) =
= [oEDtia)sto)dy + o [(a(a) = o)t == L)s(y) dy

and deduce that the operator norm of B, F;] is uniformly bounded.

(v} Using the construction above in coordinate patches, and a partition of unity,

construct Friedrichs’ mollifiers on a compact manifold.

QUESTION 5.35 Let K be a smoothing operator on L%(S). Prove that the L? norm
of the smoothing kernel of K is bounded by a multiple of the operator norm of K
as an operator from L?(S) to C°S). Hence prove that, if A is the projection P
onto the A-eigenspace of D, the W* norm of its kernel is bounded by Ci )¢, for some
£>k+n/2

QUESTION 5.36 Let D be a Dirac operator. Prove that the operators F, =
exp(—&D?), defined by the functional calculus, form a family of Friedrichs’ mollifiers.

QUESTION 5.37 Prove the Fredholm alternative theorem for a Dirac operator D:
given a complex number A, either the equation Du + Au = 0 has a non-zero solution
or for all v there is a unique solution u to the equation Du + Au = v. (Take u and v
to be C* sections of S.)
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CHAPTER 6

Hodge theory

We have seen that several of the classical Dirac operators are related to complexes
(in the sense of homological algebra), such as the de Rham complex. Our analysis of

Dirac operators allows us to say something about the cohomology of these complexes.

DEFINITION 6.1 Let Af be an n-dimensional compact oriented Riemannian manifold,
and let 5p,51,....5: be a sequence of vector bundles over M, equipped with
Hermitian metrics and compatible connections. Suppose given differential operators
d;: C=(S;) = C*(S;41) in such a way that d;,,d; = 0, i.e. that

C®(Sp) & C®(51) % C®(83) ~» -+ — C=(Sk)

is a complex. It will be called a Dirac complezif S = @ S; is a Clifford bundle whose
Dirac operator D equals d + d".

By (3.23), the de Rham complex of M is an example of a Dirac complex. De
Rham’s theorem says that the cohomology of this complex is isomorphic to the
usual cohomology (with coefficients C) of the manifold M, as computed in algebraic
topology. We will not prove de Rham’s theorem here; a proof can be found in [24]
or [15].

By (3.27) the Dolbeault complex of a Kahler manifold is also a Dirac complex.
The Dolbeault complex of any complex manifold is a ‘generalized Dirac complex’;
the operator 8 + 0 is a self-adjoint generalized Dirac operator in the sense of the
last chapter.

To define the cohomology of a Dirac complex we make no use of the metric. The
idea which leads to Hodge Theory is the following one: can we use the metric to
choose a canonical representative of each cohomology class? Such a cohomology class
is an affine subspace of C*(S), a vector space on which the metric gives a natural
L? inner product; so it is reasonable to look for the element of smallest norm in a

cohomology class. If C C C*(S;) is a cohomology class, then it is an affine subspace
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whose associated vector subspace is dC*(S;_;). Therefore, arguing non-rigorously,
we expect a norm-minimizing element a to be perpendicular to dC*(S;_,); which
translates to say that d*a = 0. Since also do = 0, it must be that Da = 0, or
equivalently that D%a = 0. In this case one says that « is harmonic. So we are led
to conjecture that each cohomology class has a harmonic representative,

The problem with this argument (as was already pointed out by Weierstrass in
the nineteenth century) is that it assumes, but does not prove, the existence of the

desired norm-minimizing element. However, the desired conclusion is in fact true:

THEOREM 6.2 (HODGE THEOREM) Each cohomology class for a Dirac complex
contains a unique harmonic representative. Indeed, the j'th cohomology H’(S;d) of
such a complex is isomorphic as a vector space to the space of harmonic sections of
Sj.

PROOF Let H7 denote the space of harmonic sections of 5;. Then the H’s form a
subcomplex of the Dirac complex with trivial differential:

a 0

Hi-! H HIH
R
C=(5j-1) —= C=(8;) — C=(S1) —
We shall prove that the inclusion map ¢ is a chain equivalence. Define an inverse

map P: C*=(S;) — H? to be the restriction to C*(S;) of the orthogonal projection
L?*(S;) = Hi. Then P =1, and tP = 1 — f(D), where

1 (A#£0)
0 (A=0)

and f{D) is defined by the functional calculus (5.30). Let
A2 A#0
o) = { (A #0)

f3) ={

0 (A=0)
Then g is bounded on the spectrum ¢(D) of D, so that the Green's operator G = g(D)
is defined; and D*G = f(D) = 1 —(P. But D?G = (dd* + d*d)G = dH + Hd, where
H = d*G; for G commutes with d since D? commutes with d. So
1-«P=dH + Hd.
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We deduce that H is a chain homotopy between ¢ P and 1, so ¢ is a chain equivalence.
a

We can get some immediate consequences from this.

COROLLARY 6.3 The cohomology of a Dirac complex (over a compact manifold!) is
finite-dimensional.

COROLLARY 6.4 (POINCARE DUALITY) Let M be a compact connected oriented

n-manifold. Then the cap product
H*(M;C) ® H* *¥(M;C) — H"(M;C) =C
is a non-degenerate pairing, and so places H*(M;C) and H"*(M;C) in duality.

ProOOF We use de Rham cohomology; then the cap product on cohomology is
induced by the exterior product of differential forms. We must check that if C € H*
satisfies CNC’' = 0 for all C' € H™*, then C = 0. To do this, choose any Riemannian
metric, and represent C by a harmonic form a. Then *a is also a harmonic form,
representing a cohomology class C': so CN (' is represented by the form a A xa. The

isomorphism of H*(A;C) with C is given by integration; but
/a/\*a:O = fel?=0 = a=0.
This gives the result. O

The last two corollaries (when applied to the De Rham complex) gave examples
of purely topological results proved by analytical methods. Of course there are more
geometric means of approaching the same results, by means of Morse Theory for ex-
ample; but there are examples (6.12) on Kahler manifolds of topological consequences

of Hodge theory that seem to be inaccessible by purely topological means.

(6.5) To make full use of Poincaré duality one needs to supplement the analytical
understanding of duality in terms of differential forms with a geometrical under-
standing in terms of homology classes. The simplest examples of homology classes

are those defined by closed submanifolds of a manifold. Let M be a compact oriented
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n-manifold and let C be a closed oriented k-dimensional submanifold. Then C defines

a linear functional on cohomology by
. k .
[Cl: [e] € H' (M) — /;a,

it is a simple application of Stokes’ theorem to see that f- a depends cnly on the
cohomology class of @. We can extend [C] to a functional pc on Q%,(M) by using
the orthogonal projection P: Qf; — H* (which preserves the cohomology class) and
defining
wla) = /; Pa.

Notice that the integral of an L? function, or form, over a lower-dimensional sub-
manifold is not well-defined in general; but the smoothing property of P means that
¢(a) is well defined for each L? form a, and moreover that ¢ is a continuous linear
functional on L?. By Riesz’ representation theorem for the dual of a Hilbert space,

there is a unique § € Q'iz such that ¢(a) = (a, ) for all o; and, since P? = P = P*,
(@, B) = (Pa, B) = (e, PP)

so PS8 = (3, that is, # is harmonic. The dual %3 represents a coliomology class which

has the property that

/(;cv:/;ua/\*ﬂ; (6.6)
this cohomology class [Pc| = [*3] € H" ¥(M) is called the Poincaré dual of C.

Although we have used the Riemannian structure to define it, the dual cohomology
class is independent of the choice of metric, since it is characterized by the metric-

independent equation 6.6.

If C and C' are two closed oriented submanifolds of complementary dimensions

(that is, their dimensions sum to n) and in general position, then from 6.6, we have

REEETN

where the — sign appears only if both dimensions are odd. It can be shown that
this number is the geometric intersection number of the submanifolds C and C”:
that is, it is the total count of the (necessarily isolated) intersection points of C and
C’, taken with a sign according to the orientations. (The usual proof of this fact

proceeds by relating Poincaré duality to the Thom isomorphism theorem: see [15].
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In exercise 6.13 we outline an argument which depends only on the analytical tools
we have so far developed.) Because of this geometric interpretation, the bilinear form
(&, 8) — fa A B on the de Rham cohomology is often called the intersection form.

(6.7) Bochner introduced the idea of combining the representation of cohomology
by harmonic forms with the Weitzenbock formula (3.8, 3.10) to obtain results on the
topological consequences of positive curvature. To carry out his method, one needs
to know precisely what is the K term in the Weitzenbock formula. We will work out

one example.

LEMMA 6.8 Let D = d+d~ be the de Rham operator. Then the restriction to 1-forms
of the Clifford-contracted curvature operator K appearing in the Weitzenbock formula
associated to D is equal to the Ricci curvature operator.

PROOF Let ¢; be an orthonormal frame for TA{. Then by definition
K =32 cle)c(e;)K(eire;).
W

Here K should in fact denote the curvature operator for the cotangent bundle T*Af;
but, if we use the metric to identify TM and T"M, then the compatibility of the
connection and metric allows us to identify K with the Riemann curvature operator
(see exercise 2.32). Thus
Kex = 3 3 eieje( Riei, €;)ex,€1) = Y Ricka€q
td a

by 3.17. The result follows. 0O

THEOREM 6.9 (BOCHNER) Let M be a compact oriented manifold whose first Betti
number is nonzero. Then M does not have any metric of positive Ricci curvature.

PRrROOF Combine (3.10), (6.2) and (6.8). O

Notes

Hodge theory was introduced by Hodge [41], inspired by the representation of
the cohomology of a Riemann surface in terms of holomorphic and anti-holomorphic
differentials. Bochner’s original paper is Bochuer [13]. The method is an extremely

important one, particularly in complex geometry; see Griffiths and Harris [36].
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Exercises

QUESTION 6.10 Let G be a compact connected Lie group. The Killing form of G
is the bilinear form B on the Lie algebra g defied by

B(uy, u2) = Tr(ad(u;) ad(u2)) ,

where ad denotes the adjoint representation g — gl(g). G is called semi-simple if B

is negative definite.

(i) Prove that if G is semi-simple, then the form —B on g extends uniquely to a
bi-invariant Riemannian metric on G.

(ii) Prove that if V is the Riemannian connection and u is an element of g
(considered as a left invariant vector field on G) then V,u = 0. Deduce
that V,v = }{u,] for u,v € g.

(iii) Prove that the Riemann curvature is given by
1
R(u,v)w = —Z[[u, v], w]

for u,v,w € g.
(iv) Prove that G has positive Ricci curvature, and deduce that the first Betti
number of G is zero. (It may be helpful to know that one-parameter subgroups

of a Lie group are geodesics of any bi-invariant metric.)

QUESTION 6.11 Improve Bochner’s theorem by showing that the first cohomology
vanishes if the Ricei curvature is everywhere non-negative, and positive at just one

point. Must H!{M) vanish if M has zero Ricci curvature everywhere?

QUuUESTION 6.12 This question gives a simple topological obstruction to the existence
of a Kihler metric.

(i) Let R be a compact Riemann surface, equipped with a Riemannian metric
that is compatible with its conformal structure. Show that every harmonic
1-form on R is the sum of a holomorplic and an anti-holomorphic 1-form.

(ii) More generally, let M be a compact Kihler manifold. There are then three

“Laplacians” that can be defined on the space of differential forms on A{f:
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Ap=(d+d*)? Ap=(8+0") and Az=(F+ )%, Prove that Az=Dp =
30p (see [36, page 115)).

(iii) Deduce that the conjugate of a harmonic form of type (p, ) is a harmonic form
of type (g, p), and hence that the odd Betti numbers of a Kdhler manifold are

even.

QUESTION 6.13 Let C be a closed oriented k-dimensional submanifold of M as in
(6.5). Let g be a rapidly decreasing function on R*, with ¢g(0) = 1, and define a
k-form §, on M by
(0, 85) = [ g(A)
(i) Prove that 3, is a smooth k-form.

(ii) Prove that x(, is closed, and that its cohomology class does not depend on
the choice of g. Deduce that for all g, #83, represents the Poincaré dual of C.

(iii) Prove that given any neighbourhood U of C in M, one can choose g in such
a way that *f, is supported within U. (You will probably need to use the
results on finite propagation speed from the next chapter.)

(iv) Let U be a tubular neighbourhood of C, diffeomorphic to the total space of
the normal bundle of C in Af. Prove that the integral of 3, over any fiber of
the normal bundle is 1 (if orientations are chosen consistently). [Use a local
product metric.]

(v) Deduce that if C and C' are submanifolds of complementary dimension
meeting transversally, then the integral f Pc A Ppr is equal to their geometric

intersection number.
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CHAPTER 7

The heat and wave equations

In this chapter we will study two important partial differential equations involving the
Dirac operator. So, throughout the chapter, M will denote a compact Riemannian
manifold, equipped with a Dirac operator D acting on sections of a Clifford bundle
S. (The reader is invited to check that all the results remain valid for the larger
class of generalized Dirac operators of the form D + A, where A is a self-adjoint

endomorphism of S.)

Existence and uniqueness theorems

DEFINITION 7.1 The heat equation for D is the partial differential equation

ds

a7t D¥*s=0 (7.2)

The wave equation for D is the partial differential equation

%tf- —iDs=0 (7.3)

In both cases, s is a smooth section of S depending smoothly on the “time”

parameter ¢; we shall often write s as f +» s, where s, is a smooth section of S.

PROPOSITION 7.4 Both the heat and wave equations have unique smooth solutions
s, corresponding to given smooth initial data so. The solutions exist for allt 2 0 in
the case of the heat equation, and for allt € R in the case of the wave equation. They
satisfy L? norm estimates of the form ||s:|| < ||so|| in the case of the heat equation,

[Is:ll = llsoll in the case of the wave equation.

PROOF We Jo it for the heat equation. First of all, assume that there is a smooth
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solution s;. Then
7] 0
37"5:"2 = (08
= —(Dzsly st) - (5(, D25t)
= -2||Ds/|* <O0.
This gives the e priori estimate
lsell” < lsoll> (2> 0)
and proves uniqueness. Now for existence, put
si=e D5, (7.5)

where the operator e~*P’ is defined by functional calculus (5.30); then s, € C=(S).

122

Moreover, since the function A — e7'*" can be differentiated arbitrarily often with

respect to t > O, uniformly in A, we may differentiate (7.5) to find that s, depends
smoothly on t and 8s,/8t = —D?s,. So s, is a solution.

The proof for the wave equation is similar. Notice that the uniqueness proof applies

to any solution which is C? in space and C! in time. O

From the functional calculus, the solution operator e='2 to the heat equation is a
smoothing operator. Thus there is a time-dependent section &, of the bundle S ® S*
over M x M, called the heat kernel, such that

e P s(p) = /M ki(p. q)s(q) vol(q)

for all smooth sections s and all £ > 0.

PROPOSITION 7.6 The heat kernel k,(p, q) has the following propertics.
(i) We have
7]
[5; + D?,] k(p,q) =0
where D, denotes the Dirac operator D applied in the p-variable. That is, for

each fixed g, the section p— ki(p,q) of S ® S satisfies the heat equation.

(ii) For each smooth section s,

/M k(p,q)s(q) vol(g) — s(p)
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uniformly in p ast — 0.

Moreover, the heat kernel is the unique time-dependent section of S & S* which is

C?inp and ¢, C' in t, and has the properties (i) and (ii) above.

PROOF It is plain from our discussion above that the heat kernel has properties
(i) and (ii).

Conversely, suppose that k, has these properties, and let K, be the family of
smoothing operators with kernels k,. Then, for any section s, the time-dependent
section K s satisfies the heat equation for ¢ > 0; and therefore, by uniqueness for c?

solutions of the heat equation,

- el o 2
Kis=e =D K o
~(t-6)D? _, e-—tD2 in L?

2
D%s for all s, so

for all ¢ > 0. But, as ¢ — 0, K,s — s uniformly, and e
operator norm; so e~OP* K s — ¢=tD*s It follows that K;s = e~

K, is the heat kernel. 0O

REMARK 7.7 Property (ii) of the heat kernel may be expressed by saying that k,

‘tends to a d-function’ as t —+ 0.

Our proof of the Index Theorem will be based on the study of certain approxima-

tions to the heat kernel.

DEFINITION 7.8 Let m be a positive integer. An approzimate heat kernel of order m
is a time-dependent section k(p, g) of S®S* which is C' int, C?in p and ¢, and which
tends to a é-function in the sense of property (ii) above, and which approximately

satisfies the heat equation in the sense that
a 2 ’ m
3 T Dp| kelp.g) = t"rdp,q)

where r(p, q) is a C™ section of S & §* and depends continuously on ¢ for ¢ > 0.

We aim to prove that approximate heat kernels are asymptotic, in an appropriate
sense, to the true heat kernel. Our main tool is the following result, known as

Duhamel’s principle.
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PROPOSITION 7.9 Let s, be a continuously varying C? section of S. Then there is
a unique smooth section 3, of S, differentiable in t and with 5, = 0, satisfying the

inhomogeneous heat equation

[% + DQ] 5; = 8.

In fact, §, is given by the integral formula:

! 9
5" 3-"/0 6“(‘“‘ )D’s" dt!.

Proor Uniqueness follows from uniqueness in the ordinary heat equation (7.4). As
for existence, differentiate the formula, getting
95,

ot

t g
s+ L (“D2€-(‘-‘ )D?Sg') at’
= & - Dgf.bg! O

COROLLARY 7.10 For each k > 0 there are estimates in Sobolev norms for the

solution of the inhomogeneous heat equation 7.9 of the form

[I5elle < tCesup{flsellc :0 < ¢ <t}

Proor This follows from the integral formula once we know that the operators

e~'D? are uniformly bounded on every Sobolev space. This fact is a consequence,
by an argument which is surely familiar by now, of the elliptic estimate (5.16), the
uniform boundedness of e~*2 on L? (5.30), and the fact that D* commutes with

-1D2
e~tD? O

PrOPOSITION 7.11 Let k, denote the true heat kernel on M. For every m there

exists an m' > m such that, if k| is an approximate heat kernel of order m’, then

k(p.q) — k'(p.q) = t™ei(p,q)

where ¢; is a C™ section of S ® S™ depending continuously on t > 0.
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PROOF We take m’ > m + §dim M. By definition, the approximate heat kernel
k; tends to a é-function and satisfies (8/3t + D3)ki(p,q) = t™rm(p.q), where ry, is
a C™ error term. Let s,(p, q) denote the unique solution (dependent on g) to the

inhomogeneous heat equation

-+ Dsilp,0) = ~™ri(p,)

with sg = 0. Then the uniqueness of the heat kernel shows that

k:(?v Q) + 3((?! Q) = kt(pv Q)‘

But by (7.10), |[s¢]lme < Ct™*! for some constant C. The Sobolev embedding

theorem now completes the proof. 0O

The asymptotic expansion for the heat kernel

Now we will show how to build an approximate heat kernel from local data. Recall
from the elementary theory of PDE that the heat kernel on Euclidean space is the

function
2
(2.9:8) = 7= t)m exp{—|z — y|*/4t}.
This suggests consideration of the function
-1 2
h(p.9) = e el = d(p.9) /4t}.
on a Riemannian manifold M as a first approximation to the heat kernel there.

Let us fix the point g, and take a geodesic local coordinate system z‘ with q as
origin. Let r2 = (z%)? = ¥ ¢z'2/, so that r is the geodesic distance from ¢ and &
is the function (4mt)~"/2e~""/4,

LEMMA 7.12 We have the following expressions for the derivatives of the function h:

h J
() Vh = —gr o
ah rh 8g
(b) ¥ +Ah = 4gt i where g = det(g;;) is the determinant of the metric.

PROOF It is clear that dh = (—h/2t)rdr. The gradient Vh is the vector field that
corresponds to dh under the isomorphism provided by the metric between the tangent
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and cotangent spaces; but this isomorphism takes dr to 3/8r because the coordinate
system is geodesic. This proves (a).
As for (b}, we recall the general formula

VI(fV) =[OV = (V£ V)

for a function f and vector field V. Now Ak = V*Vh, and we have already computed

Vh in (a). Thus we get
h_.( 8 r Oh
Ah = —‘Q—EV (T‘E) + EEE
The second term equals —r2h/4t2. To compute the first we niay use the formula 1.26

to write

Thus "
n r dg
Ah = (-@-F'é?'f'%;-a—;) h.
On the other hand, it is easy to work out that 8h/0t = (—n/2t + r*/4t?)h, and

combining this with our calculation of Ak we get the result. (0

We will also need some calculations about the commutator of the Dirac operator

with multiplication by a smooth function.

LeMMA 7.13 Let D be the Dirac operator on sections of a Clifford bundle S, let s

be a section of S, and let f be a smooth function. Then
(a) D(fs)— fDs = ¢(V f)s, where ¢ denotes Clifford multiplication.
(b) D2(fs) _ fD28 = (Af)s bt QVVIS.

Proor Choose a synchronous orthonormal frame e;. Then we have
D(fs) = Ze;V.v{fs) = fze.»V;s + de(e;)e; 5= fDs+c(Vf)s.
This proves (a). For (b), a similar computation gives
DXfs)=f Z,j eie;ViVss + 3 (ViV; fleiess + 3 ere; [VifVis + 9,1 V.s].
1 ] Y]

The first term is equal to fD?s, the second to (Af)s, and in the third the terms with
i # j cancel to leave simply -2 V;fV;s = —-2Vgss. O
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Our intention now is to use the function h, as a starting-point for the construction

of an asymptotic expansion for the heat kernel.

DEFINITION 7.14 Let f be a function on R* with values in a Banach space E. A

formal series -
@)~ a(t),
k=0

where the a; are functions Rt — E, is called an asympiotic expansion for f near
t = 0 if for each positive integer n there exists an ¢, such that, for all £ > €, there is

a constant Cg, such that

¢
J£&) = 3 )] < Cealtl®
k=0
for sufficiently small £.

To put this more straightforwardly, for any n, almost all the partial sums of the
series must approximate f to within an error which is of order t*. An asymptotic
expansion need not converge: an instructive example is furnished by the Maclaurin
series

k=0
for a (" function. This is always a valid asymptotic expansion; but it is convergent

only if f is analytic near zero.

We will obtair the following asymptotic expansion for the heat kernel.

THEOREM 7.15 Let M be a compact Riemannian manifold equipped with a Clifford
bundle § and Dirac operator D. Let k, denote the heat kernel of M. Then

(i) There is an asymptotic expansion for kq, of the form

kd(p,q) ~ he(p, 9)(Oo(p,q) + t01(p.q) + t202(p,q) + - -+ ),

where the ©; are smooth sections of S & S*.

(ii) The expansion is valid in the Banach space C*(S® S*) for all' integersr > 0.
It may be differentiated formally to obtain asymptotic expansions for the
derivatives (both with respect to x and t) of the heat kernel.

!The constants implicit in the notion ‘asymptotic expansion’ may depend on r, of course.
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(iii} The values ©;(p, p) of the sections ©; along the diagonal can be computed by
algebraic expressions involving the metrics and connection coeflicients, and
their derivatives, of which the first is ©¢(p, p) = 1. the identity endomorphism
of S.

PrOOF Because of proposition 7.11, it suffices to show that one can determine
smooth sections ©; of $® S in such a way that for each m the partial sum
J
h(p.q))_t'©u(p.q)
i-0
is an approximate heat kernel of order m for all sufficiently large J. Moreover, it
suffices to construct the ©;(p, q) for p near to g, since h/(p, g) is of order #* outside
any neighbourhood of the diagonal in M x M. We may therefore use local coordinates,
so fix a geodesic local coordinate system with origin ¢, and let z'.... 2" be local
coordinates for the point p. Let h be the local coordinate representation of the smooth
function h,(-, g) defined above.
By 7.12 and 7.13, we have for any section s of § (or of S ® S7)
1{o 2 Js M rdg 1
== hs) = — =28 4 =V \,5/9,5. .
h[a’t+p](s) 6t+Ds+4gt6rs+t a/arS {7.16)
Now write s ~ ug + tuy + t2u + ... where the u; are independent of ¢, and attempt
to solve the equation (8/8t— L)(hs) = 0 by equating to zero the coefficients of powers
of ¢ in 7.16 above. We obtain the following system of equations for j = 0.1,2,...:

.. T 0 .
Viajart; + (J + Eb-;) u; = —Dzuj_,. (7.17)

The equations 7.17 are just ordinary differential equations along each ray emanating
from the origin, and we may solve them recursively. To do this we introduce an
integrating factor g'/* and rewrite the equations as
Vaser (Hg*u;) = { ’ i=1,1/4 12 (J. =9
—ri7 g i D%y (2 1)
For j = 0, this shows that u; is uniquely determined by its initial value u;(0), which
we fix as 1, the identity endomorphism of 5,. For j > 1 the equation determines u;

in terms of u;.;, up to the addition of a constant multiple of a term which is of order
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r~4 near r = 0. The requirement of smoothness at the origin forces this constant of
integration to vanish, so we conclude that all the u; are uniquely deiermined by the
single initial condition ue(0) = 1.

Now define ©;(p, q) to be the S &® 5”-valued function which is represented in local
coordinates near ¢ by the function u;(x) constructed in the previous paragraph. Since

Oolp, p) = 1, elementary estimates show that for any J the partial sum

J
Kl (p,q) = h(p.9) 3 t°0;(p.q)
i=0

tends to a §-function as ¢ — 0. Moreover the construction of the u; shows that

o
[5 + Dg] k] (p.q) = t' he(p. 9)€] (p, )

for some smooth error term ¢} (p,¢). But for J > m + n/2, the function t'h(p, q)
tends to zero in the C™ topology as t — 0. Thus, for sufficiently large J, k/(p, q) is
an approximate heat kernel of order m. As we already observed, this together with
7.11 establishes that

h!(p: Q) z tjej(p! Q)

b

is an asymptotic expansion for the heat kernel, as required.

Finally, we must justify our assertion that the ©;(p, p) can be computed by algebra-
ic expressions involving the metric and connection coefficients and their derivatives.
In terms of our local expressions, ©;(p, p) corresponds to u;{0); and notice that the
coefficients in the differential equation 7.17 are themselves functions of the metric
and connection coefficients of the sort described. Expand both sides of 7.17 in Taylor
series about the origin, and compare coefficients. The assertion follows by induction

onj. [

EXAMPLE 7.18 In principle, it is possible to calculate all the coefficients ©; in the
asymptotic expansion just by following through the proof. But in practice the details
soon become cxhausting. The computation of the second term is not too laborious,

however; we will compute the coefficient ©, along the diagonal.
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From the calculations above, ug = g~!/4. We substitute this back into 7.17 to find
u). We only want the value of u; at the origin, and from 7.17 this is given by

w(0) = ~D%u(0) = = (o) (477~ K _at the origin

where K is the Clifford-contracted curvature term which appears in the Weitzenbock
formula. Now from the Taylor expansion of the metric in geodesic coordinates (1.32),
g =14 3T 2% + O(|2]*), s0 g7/4 = 1 — 5 ¥ 2729 Ripei + O(|z[*). Therefore
3 (g 1
Z:(as:t) )=- Z s ftippi = §K
where x denotes the scalar curvature (1.13).

We state our result formally as a proposition:

PROPOSITION 7.19 The asymptotic expansion for the heat kernel of D? begins with
the terms

eﬁ(pvp) I

&i(p,p) = ix(p) - Kip),

it

where x(p) denotes the scalar curvature at the point p and K(p) is the Clifford-

contracted curvature operator appearing in the Weitzenbock formula.

Finite propagation speed for the wave equation

A consequence of the asymptotic expansion is that ast — 0 the heat kernel becomes
more and more localized near the diagonal in M x M. In this section we’ll discuss
another method, using the wave equation, of obtaining such localization results. The
method is particularly useful in the study of non-compact manifolds, as we will sce
later. It is based on a fundamental fact about the wave equation: disturbances
governed by it (“photons”™) travel at a finite speed. In fact, with the normalizations

we have selected, this speed is 1.

PROPOSITION 7.20 For any s € C(S), the support of €*Ps lies within a distance
|t] of the support of s.
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ProOF This will be done by means of an “energy estimate”, as it is called. The
energy estimate is the following

CrLAaIM: Let m € M, and let B(m;r) denote the ball of radius r around m. Choose
R sufficiently small that B(m; R) is contained in the domain of a geodesic co-ordinate

system around m. Let s, be a solution to the wave equation. Then the integral

Lo s
B(m:R~1)

is a decreasing function of £.

Before proving ihis claim, we check that it implies the stated result. To prove
the result in general it is enough to prove it for ¢ small and positive, because of
the group property e*1Pei?D = ¢i4+12)D and the duality (e"*P)* = e~*P. Choose R
small enough that for any m € M, the ball B(m; R) lies in the domain of a geodesic

co-ordinate system around m. Then for all m at a distance R or more from supp(s),

[ Is? = o.
B{m:R)

/ leile|2 =0
B{m;R-t)

by the claim, and hence in particular €*Ps(m) = 0. This proves the result.

Therefore, for 0 < t < R,

To check the claim, differentiate the expression /B , )|s,|2 with respect to ¢,
m; Rt

obtaining

L(M;R_t)[('Dstg 5¢) + (50, SDse)] - j;

where S denotes the sphere and do is the element of surface area on §. Now recall
from the proof of (3.11) that

)(5;,3¢)d0' (7.21)

(m;R~t

(iDS;, Sg) + (s,,iDs,) =id'w

where w is the 1-form w(X) = —(Xs,, s;). Therefore, by the divergence theorem, the
first term of (7.21) is equal to

—q /S(ma_‘)(N.s,, s)do

where N is the unit normal to S. By Cauchy-Schwarz,

N.sy, s)do| € / 2
’/S(m;R-t)( S1r31) al = Js(mir=1) |s:|* do,
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since Clifford multiplication by the unit vector NV acts as an isometry. The claim
follows. O

We will need some properties of the Fourier transform on Schwartz space. Recall
that the Schwartz space S(R) is the space of C* functions on R which are rapidly

decreasing and all of whose derivatives are also rapidly decreasing.

If f € S(R) its Fourier transform f is defined by

f) = [ fa)e™ da.

The Fourier inversion formula

f(2) = 5= [ fN)eri=* ax

shows that the Fourier transformation gives a linear homeomorphism of S(R) to
S(R). The theory of the Fourier transformation may be found e.g. in Rudin [64].
Now let f € S(R) and consider the operator f(D) defined by the functional calculus
5.30. We may write
_ 1 [\ o0
f(D) = 5 / F(A)ePP d. (7.22)

The vector-valued integral should be thought of in the ‘weak sense’ that

(f(D)z,) = 5= [ FONPPz,5) dx

for all z,y € L*(S). To prove this it is enough (by the spectral theorem) to consider
the case when 1, y are eigenvectors of D; but there it reduces to the Fourier inversion

formula.

Now combine the formula 7.22 with the unit propagation speed of the wave

equation. We obtain

PROPOSITION 7.23 Suppose that f € S(R) and that the Fourier transform f is
supported in [—c,c|. Then (f(D)z,y) = 0 whenever x and y are sections of S whose
supports satisfy d(supp(z),supp(y)) > ¢. Consequently, the smoothing kernel of
f(D) is supported within a c-neighbourhood of the diagonal in M x M.

We can easily derive a localization property, which includes that for the heat kernel

as a special case.
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PROPOSITION 7.24 Let f € S(R). As u — 0, the smoothing kernel of the operator
f(uD) tends to zero on the complement of any neighbourhood of the diagonal in
MxM.

PROOF Given a neighbourhood of the diagonal, choose § > 0 such that all points
within distance 28 of the diagonal lie within the given neighbourhood. Then pick a
C™ “bump function” ¢ on R such that

1 (Al <8

wA) = { 0 (|A] > 26)

and let fi, f2 be the Schwartz-class functions whose Fourier transforms are

AHO) = /) fwp),  f(N) = 1/u)f (A u)(1 = $(A).

Then fi(z) + fa(z) = f(uz). The operators fi(D) and fz(D) are smoothing, and by
proposition 7.23, the kernel of fi(D) is supported within 26 of the diagonal. Outside
the given neighbourhood of the diagonal, therefore, the kernel of f(uD) is equal to
the kernel of fo(D). But ast — 0, f — 0 in the Schwartz space S(R), so by Fourier
theory fo — 0 in S(R), and so the smoothing kernel of fo(D) tends to zero in the
C™ topology. O

Notes

The heat and wave equations are, of course, standard topics in Mathematical
Physics. Our “wave equation” is in a sense the square root of the usual one; Dirac

operators were introduced in order that such a square root could be extracted.

The main result of this chapter — the asymptotic expansion of the heat kernel —
has a long history. It was first proved (for the scalar Laplacian) by Minakshisundaram
and Pleijel [56], and generalized to the Laplacian on differential forms and other
operators by McKean and Singer [51], Gilkey [33] and Patodi [58]. We have followed
more or less the argument of Patodi’s paper. A direct proof can also be given using

the calculus of pseudo-differential operators; see [34].

Our proof of the finite propagation speed for the wave equation is modeled on that

of Chernoff [19]. The observation that finite propagation speed together with the
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Fourier transform can be used to obtain kernel estimates is due to Cheeger, Gromov
and Taylor [18].

Exercises

QUESTION 7.25 Use the Poisson summation formula to show that the heat kernel on

a flat torus agrees with that on Euclidean space up to an exponentially small error.

QUESTION 7.26 A function f on R is said to belong to the class SO(R) if it is smooth

and satisfies estimates of the form
|f¥ ()] < Ce(L + )7+

Prove that if f belongs to this class and D is a Dirac operator, then f(D) has the
following pseudo-local property: for any s belonging to L%(S), the section f(D)s is
smooth on the complement of the support of s. (Use the Fourier representation and
(7.20)). In fact f(D) is an example of a pseudo-differential operator; see Taylor [71,
Chapter XII].
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CHAPTER 8

Traces and eigenvalue asymptotics

Eigenvalue growth

Let Af be a compact oriented n-dimensional manifold. We have seen in chapter
5 that the Laplacian operator A on L?(M) has discrete spectrum, with eigenvalues
0 <€ A € A € A7 € -+ tending to infinity. In this chapter we want to refine this
result by asking how many eigenvalues of A lie below a fixed value of A; in other

words, we want to study the counting function
M(A) = max{j: A; € A}.

The results we obtain will also be valid (with trivial modifications) for the square D?
of any generalized Dirac operator.

A crude estimate for the counting function can be obtained from the Sobolev
embedding theorem. Specifically, let s;,... ,s;, j = N(A), be orthornormalized eigen-
functions belonging to eigenvalues < A. Let s = ¥ 0;3; be any linear combination of
81,...,8;. Using the elliptic estimates and the Sobolev embedding theorem we find
that there is a constant C (depending only on the geometry) such that forallz € M

ls(@)] < €1+ M2 (Efauf?)

where k is the least integer strictly greater than n/2. Fix x € M, take a; = 5(z),

and rearrange to obtain the identity
3 lsi(@)? < C*(1 + M.
Integrate over M to obtain j = M(A) < CH1 + A)* vol(M).
A more precise estimate of () can be obtained from the heat equation asymp-
totics or the previous chapter. The link between dimensions (of eigenspaces) and
functional analysis is provided by the notion of frace for appropriate compact opera-

tors on a Hilbert space. Simply put, the trace of an operator is the sum of the diagonal

entries of an infinite matrix representing it; and, as in ordinary linear algebra, the
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trace of a projection is the dimension of its range. We begin with the general theory

of traces.

Trace-class operators

Let H and I’ be (separable, infinite dimensional} Hilbert spaces, and choose
orthonormal bases (e;) and (€}) in H and H'. A bounded linear operator A: H — H’

can be represented by an “infinite matrix” with coefficients?
C.'j(A) = (Ae,—,e}).
ProprosiTION 8.1 The quantity

1A4ls = 3 les (AN € [0, 0]
i
is independent of the choice of orthonormal bases in H and H'.

ProoOF By Parseval’s theoremn
Alhs = X lei (A = 3 [l 4el®
i3 t

which is certainly independent of the choice of basis in H'. But since ¢;;(A) = 7;;,(A"),
lAll%s = [[A"l4s which is independent of the choice of basis in H by the same

argument. [J

DEFINITION 8.2 An operator A such that [|Al]lgs < oo is called a Hilbert-Schmidt
operator, and || 4| g is called its Hilbert-Schmidt norm.

ProposiTION 8.3

(i} The Hilbert-Schmidt norm is induced by an inner product
(A, Byys = Y_&ij(A)cii(B) .
iy
(ii) Relative to this inner product, the space of Hilbert-Schmidt operators is a
Hilbert space.
(iii) The Hilbert-Schmidt norm dominates the operator norm.

1Of course, not cvery such infinite matrix represents a hounded operator; but this does not matter

here,
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(iv) Hilbert-Schmidt operators are compact.
(v) The sum of two Hilbert-Schmidt operators, and the product (in either order)
of a Hilbert-Schmidt and a bounded operator are Hilbert-Schmidt.

The proofs are all easy. Our interest in the Hilbert-Schmidt operators is as a crutch

to get us to trace-class operators, which we now define.

DEFINITION 8.4 A bounded operator T on a Hilbert space H is said to be of
trace-class if there are Hilbert-Schmidt operators 4 and B on H with T = AB. Its
trace Tr(T) is defined to be the Hilbert-Schmidt inner product {(4*, B)ys.

A priori, the trace depends on the choice of A and B. However
Te(T) = 3_T(A%)eij(B) = 3_ cji(A)eij(B) = 3_ ¢;5(T) (85)
X iy i
in fact depends only on 7.

REMARK 8.6 We have now defined several classes of operators:
(trace-class) C (Hilbert-Schmidt) C (compact) C (bounded) .
This sequence of inclusions should be thought of as the “non-commutative analogue”
of the sequence of inclusions
N'clPcecle

of sequence spaces, see Simon [68].

PROPOSITION 8.7 Let T be self-adjoint and of trace class. Then Tr(T) is the sum of
the eigenvalues of T

PROOF Choose an orthonormal basis of eigenvectors (which exists by the spectral

theorem for compact self-adjoint operators) and apply (8.3). O

The conclusion still holds if T is not self-adjoint, a result known as Lidskii’s

theorem. This is very much harder to prove.
The most important fact about the trace is its commutator property:
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PROPOSITION 8.8 Let T and B be bounded operators on a Hilbert space H, and
suppose that either T is of trace-class, or both T and B are Hilbert-Schmidt. Then
TB and BT are trace-class, and TY(T'B) = Tr(BT).

ProOF That TB and BT are trace-class follows from (8.4) and (8.3) v). Now

choose an orthonormal basis (e;} for H, and write
T(TB) = Y (TBe;e)
= 3 (Bei, T e:)

Y _%;j(B)e:;(T) (by Parseval’s tueorem).

i

This sum is absolutely convergent, and it is symmetrical in B and T, so the result
follows. O

Examples of Hilbert-Schmidt and trace-class operators come from integral opera-

tors on manifolds.

PROPOSITION 8.9 Let M be a compact manifold equipped with a smooth volume
form vol (e.g. an oriented Riemannian manifold) and let A be a bounded operator
on L*(M) defined by

Au(my) = [ K{(my, ma)u(ma) vol(mz)
M
where k is continuous on M x M. Then A is a Hilbert-Schmidt operator, and
lAls = [f Iktm, ma)? vol(my) vol(mo) .

PROOF Choose an orthonormal basis (e;) for L?(M), and recall from the proof of
(8.1) that

IAls = 3 14el?
J

Z‘/I/‘k(ml,mg)ej(mg)vol(mg)l2 vol{m;)

il

/Z'/k(ml,mg)ej(mg) val(mz)l2 vol(m;) .
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But by Parseval’s theorem
2
S| [ Ky, mae;(ma) vol(ma)|” = [ [k(ms, ma)[? vol(ms)
j
80
HAls = [f lk(my, mo)f? vol(ms) vol(ma) < oo

as asserted. O

THEOREM 8.10 Now let M and A be as in (8.9), but assume that k is smooth on

M x M, so that A is a smoothing operator. Then A is of trace-class, and
Tr(A) = / k(m, m) vol(m) .

PRrROOF Suppose first of all that A = BC, where B and C are Hilbert-Schmidt

operators represented by continuous kernels kg and k¢, as in (8.9). Then

k(my, mg) = / kg(my, mo)kc(ma, m3) vol(my) .

The trace of A is the Hilbert-Schmidt inner product of B* and C. However, (8.9)
determines the Hilbert-Schmidt norm, and therefore by polarization the Hilbert-

Schmidt inner product also, on the space of operators with continuous kernels. Thus,

// kg(mi, ma)kc(ma, my) vol(m;) vol(ms)
/k(m,m) vol(m) .

Tr(A)

So all we need to check is that any smoothing operator A can be written in the
form BC. However, by remark 5.32, the operator (1 + A)~™¥ for sufficiently large
N is a Hilbert-Schmidt operator with continuous kernel. Thus we may write any
smoothing operator A in the form BC, where B = (1 + A)~¥ has continuous kernel
and C = (1 + A)*¥ A is a smoothing operator. O

REMARK 8.11 In (8.9) and (8.10) we dealt for simplicity only with operators
on functions on M, which have scalar valued kernels. We will want to use the
corresponding results which apply to operators on sections of a vector bundle S,
where the kernels have values in S ® §*. Then k(m,m) € S, ® S;;, = Hom(Sm, Si),

and the statement corresponding to (8.10) is
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THEOREM 8.12 Let A be a smoothing operator on L*(S), with kernel k. Then A is

of trace-class, and
Tr(A) = /tr k(m,m) vol(m)
where tr: S, ® S;, — C denotes the canonical trace on endomorphisms of the finite

dimensional vector space Sp,.

To prove this, use local trivializations and partitions of unity to reduce to (8.10).

Weyl’s asymptotic formula

Recall the sitnation considered in the introduction to this chapter: M is a compact
oriented Ricmannian manifold, and the spectrum of the Laplace operator A on M is

a discrete set of positive real numbers,
AL <A<,

tending to infinity. One can vaguely think of these numbers as the “resonant
frequencies” of M under some kind of “oscillation”. It is then natural to ask to what
extent the geometry of M can be recovered from this set of “resonant frequencies”,

a question put memorably in the title of Kac’s paper [42].

Most approaches to this question rely on the following idea. The operator e~*4
is smoothing, hence of trace-class (8.10), and its trace is given by integration of its

kernel over the diagonal. So, from the asymptotic expansion (7.15),

Tr(e™*4) (ao +tay +---)

1
(ant)r?

where
i = ¢ l .
a /M O;(m) vol(m)
On the other hand, by (8.7),

'I\r(e—tA) = Ze-u,».
i

Therefore
(4”)../22:6-:1\,- ~ap+tay+--- (8-13)
i
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and we see that the spectrum of A determines the quantities n, ag, a;, ... which
encode geometric information about the manifold Af. The more coefficients we can

calculate, the more we will know about spectral geometry.

We know that ap = vol(M) and a, = } [y, K(m) vol(m) by 7.19. Thus we can state:

PROPOSITION 8.14 The spectrum of the Laplacian on M determines the dimension,
the volume and the total scalar curvature of M. In case dim(M) = 2, it determines

the topology of M.

ProOF The first statement follows from the expansion (8.13). As for the second,
in dimension 2, the total curvature determines the topology, because of the Gauss-

Bonnet theorem and the classification of 2-manifolds. O

REMARK 8.15 In more general contexts it may not be the case that the curvature
determines the geometry, or indeed even the topology. For the resolution of Kac's

question in the original context of planar domains see [35].

The formula (8.13) can also be used in the other direction; knowing (some of) the
O's, we try to discover information about the spectrum. We will prove a famous
theorem of Weyl in this direction.

THEOREM 8.16 Let 91()) denote the number of eigenvalues less than A. Then as

A — o,
1

N~ G + 1

vol(M)A"/2,

REMARK 8.17 This theorem may be reformulated as an asymptotic estimate for the
7'th eigenvalue:

gt (ol "
s~ ir (g n)

PrOOF We can think of the sum ¥ e~** as giving us an “exponentially weighted
average count” of the number of eigenvalues of A. To reconstruct N from such

averages is the task of Tauberian theory. In fact, from 8.13 we have

ta ze—b\, — A (*)
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ast — 0, where a == n/2 and A = (47)"*/2vol(M). An abstract Tauberian theorem
of Karamatastates that for any nondecreasing sequence of positive numbers A; having
the convergence property (x) for some A,a > 0, the associated counting function
N(A) satisfies N(A) ~ AX®/T(a + 1) as A — o0o. This immediately implies Weyl's

theorem, of course; so it remains for us to prove Karamata'’s result.

For any continuous function f on [0, 1], let us define

er(t) =3 flemi)e™H,

I claim that, for every f,

t%ps(t) — f‘(%:_)/ox fle™*)s*le~*ds (8.18)

as t — 0. An application of the Stone-Weierstrass theorem shows that it is enough
to prove this result when f is a monomial of the form f(z) = z". But then the left
hand side of 8.18 is t* ¥ e~"+1D  which tends to A(n + 1)~% as t — 0; and direct
calculation shows that the right hand side is equal to A(n + 1)~ also.

For r < 1 let f.: [0,1] — R be the continuous function such that f(z) = 0 for
z € [0,7/e], f(z) = 1/x for z € [1/e, 1], and f(r) linearly interpolates between 0 and
1/e on the interval [r/e,1/e]. We apply 8.18 to f,. and put t = 1/). Notice that

er(1/rA) < M) € 91.(1/4).

Let A — 0o and make easy estimates to obtain
Ar®
al(a)’

Now r is arbitrary, so lim A~®91()) exists and equals A/al'(a). Bearing in mind the

limsup A7°N(A) < liminf A™N(A) >

A
ol'(a)’
standard identity al'(a) = I'(@ + 1), we obtain Karamata's theorem. [

REMARK 8.19 Though we have worked all through this chapter with the scalar
Laplacian A, which is the classical case, it is clear that the methods all work to
count the eigenvalues of the general Laplace-type operator D2. Then 6 becomes the
identity ‘endomorphism of the Clifford bundle S, and tracing this according to 8.12
yields an additional factor dim(S) in the formulae, but otherwise everything is the

same.
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Notes

A classic reference for trace-class operators and related ‘operator ideals’ is Simon
[68].

Further information about spectral geometry may be found in the book by Berger
et al [11]. As well as the kind of analysis carried out in this chapter, which
relates to the asymptotic behavior of the large eigenvalues, one can investigate the
lowest cigenvalues of the Laplacian and relate them to geometric properties such as
isoperimetric constants.

In the first edition of this book we derived Karammata’s Tauberian theorem from
the general method of Wiener, expounded in many books on functional analysis [64].
The simple direct proof given here is borrowed from [12].

For more about isospectral manifolds, see Brooks [16].

Exercises

QUESTION 8.20 Prove that the sum of two trace-class operators is trace-class.

QUESTION 8.21 Give an example of an operator A defined by a continuous kernel
k, that is

Auz) = [Kz,yu)dy
which is not of trace-class. (Hint: Consider the convergence of Fouricr series.) Prove

however that if A is of trace class, then

Tr(A) = fk(x,:t) dr.

QUESTION 8.22 Prove the following quantitative version of Rellich’s theorem: the
inclusion of the Sobolev space W**+{(Af) into W*(Af) is a Hilbert-Schmidt operator

for £ > 1 dim(A{). Deduce another proof that smoothing operators are of trace class.

QUESTION 8.23 Let A; be the eigenvalues of the Laplacian A of a compact manifold,

arranged in increasing order. Define the zeta-function by

((s) =) A7,
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the summation being taken over the non-zero eigenvalues. By (8.16), this Dirichlet
series converges for R(s) > 0. Show that in fact {(s) extends to a meromorphic

function of s on the entire complex plane, and that

¢(0) = W[O,/g(m)vol(m)

where G,/ is the asymptotic-expansion coefficient as defined in (7.15). (Use the
formula T(s)A=* = [j° e~ "1 dt.)
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CHAPTER 9

Some non-compact manifolds

In this chapter we look at some Dirac-type operators on non-compact manifolds.
The example of the operator id/dx on the real line, as compared to the corresponding
operator on the circle R/Z, is a helpful one to bear in mind. On the circle, id/dr hasa
discrete spectruin with finite-dimensional eigenspaces. On the line, Fourier series are
replaced by Fourier transforms; the spectrum becomes continuous, and spectral values
no longer correspond to square-integrable eigenfunctions. Nevertheless, a spectral
decomposition still exists, and the functional calculus operates in the same way as

before.

From the perspective of quantum mechanics (sce for example [65, Chapters 4.5])
the appearance of continuous spectrum is related to the presence of non-localized or
‘unbound’ solutions for the corresponding Schirédinger equation. Now, if one adds
to the Schrodinger equation a term representing a ‘potential well’, then solutions of
the equation representing energies lower than the depth of the well will be ‘bound’
within the well. We therefore expect that the discrete spectrum property can be
restored by adding to the Dirac-type operator a potential term sufficiently strong to
localize all the eigenfunctions. In the first section of this chapter we will discuss a
famous example of this phenomenon, the quantum harmenic oscillator. In subsequent
sections we will show how operators of this sort can arise geometrically, and we will

give some of the general theory in the absence of a localizing potential.

Only the first section of this chapter is required for our proof of the Index Theorem;
the remaining sections are needed only for the more specialized applications at the
end of the book.

The harmonic oscillator

DEFINITION 9.1 The harmonic oscillator is the name given to the unbounded
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operator

H=—diQ§+a21'2 {a >0)

on L*(R).
For the physical meaning of this operator see [65, §13]. Its relevance to index
theory was observed by E. Getzler. For the moment, we will work out a few facts

about the spectral theory of H.
DEFINITION 9.2 The annihilation operator A is defined by A = ar + d/dr, the
creation operator A* is A* = ax — d/dz.

The operators A, A*, H may be taken to have as domain the Schwartz space S(R),
and they map S(R) to S(R). Elementary computations give

AA” = H+a , A"A = H-a
[4.47] = 2 (9.3)
[H.A] = -2aA , [H A"] = 2a4".

DEFINITION 9.4 The ground state of H is the function vy € L?(R) satisfying the
differential equation Av% = 0 and such that ||| = 1.

Clearly, then, Hiy = atlg, so g is an eigenfunction of H. In fact, we can calculate

¥ explicitly, thas checking that it is square-integrable:

ﬂ +aryy =
dr
Therefore
dy
o =-a / rdr .
3
The solution is ¢ = Ce~*"/2, where C is a normalizing constant: since [|¢| = 1.

C =aint.

Now for k > 1, define the ezcited states of H inductively by

1
Yy = A e (9.5)
a2
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LEMMA 9.6 i belongs to the Schwartz class. It is a normalized eigenfunction of
H, with eigenvalue (2k + 1)a

PROOF Induction. We have
1

HYp = m—)lHA‘wk-z
= (2& )1(4 H +2aA" oy (by (9.3))
= (2& ¥ T+ A*((2k = 1)aye—1 + 2ayi_)
= (2k+ 1)ayx .

Similarly

Nell®

1 .
é};;(A"/’k—hA Y1)
1 .
= ELT&(AA'%-:,%-O
1
= 5};((34' a) Py, Ye-1)

1
= m((Qk“’f’k-l)a"/)k-l)
1 0.

LEMMA 9.7 n(z) = hi(x)e~"/2, where h; is a polynomial of degree k with positive

leading coefficient.

PRrOOF Induction, using the recurrence relation

hi(z) =

Gap {8+ Deheaa(2) = Hy(@)

which follows easily from (9.5). O

Up to a normalization, the hy’s are the well known Hermite polynomials. From

9.7, it follows that the linear span of the {¢i} is the space

P={r+w plz)e /% . p polynomial} < L3(R) .

PROPOSITION 9.8 P is dense in L*(R).
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PROOF We may assume a = 1. Let fi(z) = rie~%"/2, We calculate
o .
IGIE = [ s¥eds
-0
o | dy
= 2/ e”¥ —— on substituting y = 2
A ye's Vi gy
= [ +3) <!

Now we may write

eiAz—z7/2 = f: (1A')J fj(I) .
j=o I

The L? norms of the terms in this series are bounded by [A[/j!)%, so it is convergent
in L2. Since f; € P, the functions r +— e**~#'/2 belong to P. Now suppose that

f € L? is orthogonal to D; then

/ ¥ f(z)e* " dr =0 YAER.
-00

2

But then by Plancherel’s theorem f(r)e=*"/2 = 0 almost everywhere, so f = 0 almost

everywhere. (0

We have shown that the space L?(R) admits a complete orthogonal decomposition
into (1-dimensional) eigenspaces for H, with discrete spectrum tending to infinity.
This is exactly the conclusion of Theorem 5.27 for the Dirac operator. We see
therefore that spectrally H is like the Dirac operator on a compact manifold. In
physical language, the states of the harmonic oscillator are all ‘bound states’. We may
if we wish define the analogs of the Sobolev spaces, making use of the eigenfunctions
1 instead of the characters e=™* on the torus. We will need only one result of this
kind:

LEMMA 9.9 Let u € L%(R). Then u € S(R) if and only if the “Fourier coefficients”
ai = (Y, u) are rapidly decreasing in k.

PROOF If u € S(R), then for all I, H'z € S(R), and since H! acts on the Fourier
coefficients by multiplying ax by ((2k + 1)a), the result is obvious.

Conversely, suppose that the Fourier coefficients are rapidly decreasing. Then,
for all I, (A*)'v has rapidly decreasing Fourier coefficients, by (9.5), and so does

A'y; so D'u and M'u have rapidly decreasing Fourier coefficients where D and A
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denote the differentiation and multiplication operators id/dz and z. Therefore, for
any noncommutative polynomial p, p(M, D)u € L*(R); and it is easy to check that
this implies u € S(R). O

PrOPOSITION 9.10 If f is a bounded function on the spectrum of H, then f(H) is
defined and is a bounded operator on L*(R); the map f w f(H) is a homomorphism
from the ring of bounded functions on the spectrum of H to B(L*(R)). Moreover,
f(H) maps S(R) to S(R).

PROOF As 5.30, but using 9.9 instead of the Sobolev embedding theoremn. 0

‘We now have enough analysis to carry over much of the earlier discussion of the

heat equation to the ‘harmonic oscillator heat equation’

%:;--&-Hu:ﬁ. (9.11)

Indeed, the solution operator e~*# is defined by the Hilbert space theory above
(9.10); and there is a heat kernel k¥ € S(R x R) such that

e Hu(z) = f k{(z,y)ul(y) dy.
As in the compact manifold case, the heat kernel is characterized by the facts that it
belongs to S, satisfies the heat equation in the z-variable, and tends to a §-function
ast — 0.

We will need an explicit expression for the heat kernel kY (z,y), at least when y = 0
(see exercise 9.23) for the general case. To get one, proceed by inspired guesswork.
Try

k#(2,0) = u(x,t) = a(t)e” 190

where a and 4 are functions to be determined!. Then

Hu = afz?(d®-5Y)+ ﬁ)e“%"(‘)22
i—;‘ = —(2%Ba/2 + a)e~ TP

Summing and equating coeflicients to zero, we get
'3=2(02~.‘82) 3 a::-—-/i’a .
1A trial solution like this is sometimes referred to as an ‘ansatz’.
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We solve these differential equations, looking for a solution with 8(t) — oo like 1/t

as t — 0. This gives

B(t)
a(t)

acoth(2at)
(const.)(sinh 2at)~%

If we choose the constant to equal (a/27r)%, then as t — 0,

1
U(I, f) ~ ﬁe—:z/‘u

and we know that for any function s € S(R),

e 3 /4t

s(r)dr — s(0) ast—0.

\/47

Thus u(z,t) satisfies the heat equation and tends to a é-function, so is equal to the

heat kernel. We state this result more formally:

PROPOSITION $¢.12 The harmonic oscillator heat kernel satisfies

(@) = a . —az? coth(2at)
ust = 27 sinh(2at) xp 2 )

This result is known as Mehler’s formula.

REMARK 9.13 Qur analysis of the harmonic oscillator requires the assumption that
a is a real number. However, the function u(z,t) described in 9.12 above is clearly
analytic as a function of a for a € C, |a| < 7/2¢. By analytic continuation, then, we

find that u(z,t) continues to satisfy the equation

o B

Fri 62+a:t:u=0

even if a is a (sufficiently small) compler number. This analytic continuation will be
of importance in the proef of the index theorem. Of course, if a is not real then u

may not be in the Schwarz class, and our uniqueness theorems do not apply directly.
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Witten’s perturbation of the de Rham complex

Let M be a complete Riemannian manifold (compact or not) and let h: M — R
be a smooth function. In [73], E. Witten introduced a certain perturbation of
the de Rham complex of M, determined by the function k; and this perturbation
has become important in several contexts. In particular, variants of the harmonic
oscillator appear naturally as the Laplacians of perturbed de Rham complexes on

Euclidean space.

DEFINITION 9.14 Let AM,h be as above. The perturbed exterior derivative d,
(depending on the parameter s € R*) is defined by

dyw = e~*"d(e*w) = dw + sdh A w.
Its adjoint is given by
diw = e*d*(e7*w) = d"w — sdh 1w

Note that this agrees with the calculation of 3.21, that interior multiplication is
minus the adjoint of exterior multiplication. The perturbed analogue of the de Rham
operator is

Dy=d,+d,=D+sR (9.15)
where R is the endomorphism of the exterior bundle given by (dhA) ~ (dh.).

This formula is most conveniently expressed in terms of the Clifford bimodule
structure of the exterior algebra. Recall that A* T*Af is isomorphic to the Clifford
algebra itself, and therefore carries both a left and a right multiplication action of

the Clifford algebra; these actions commute. For e € T M let us define
Lw=e¢-w, Rw=(~1*w-e.

Here the dot denotes Clifford multiplication and dw = p for w € AP. Notice
that, because of the extra sign, L. and R. now anticommute for any e,¢/. The
endomorphism R of 9.15 is equal to Ry, in this new notation. Equivalently, in terms

of a local orthonormal frame ¢;, we may write formula 9.15 as

Dyw = z(z,,‘v‘w + s(ei - h)wa)

%
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where the dot denotes the Lie derivative.

We will need a Weitzenbock-type formula for D2.

DEFINITION 9.16 Let z € M. The Hessian of h at z is the symmetric bilinear form
Hy on T M defined by

Hy(X, V) = X - (Y f)7) - (VxY) - f(2).

It is easy to see that this formula is tensorial, that is, it depends only on the
values of the vector fields X and Y at the point . The Hessian is the bilinear
form corresponding to the symmetric matrix of second derivatives of h (relative to
a synchronous orthonormal frame at the point z). Let Hy be the endomorphism of
A T*M defined by

Hy =Y Halei, ;)L R,

£
relative to an orthonormal frame e;; it is easy to check that this expression is

independent of the choice of frame.

LeEMMA 9.17 With the notations of 9.15 above,
(i) R? is the endomorphism given by multiplication by |dh|?;
(i) RD + DR = H, as an endomorphism of the exterior bundle.
Consequently, we have the formula D? = D? + s%|dh|® + sH,.

PROOF From the local coordinate formula for DD, we have
D= E(Le_.vi + sR. (e; h)) (Le, Y, + R, (e; - fz))
i
and a direct calculation, remembering that L and R anticommute and that R R,, =

bij, gives the result. DO

We consider the special case of Euclidean space. Let Af = R" with its standard
metric and let h{z) = %E )\jrf, a quadratic form on Af. The lemma above gives in

this case \
g L
Df = Z(— (%) + 32(/\jIJ)2 + SAJZ))
2
where Z; = [daiy,dzA] is the operator which is equal to +1 on a basis element

dz™ A--- Adz* which has j € {i\,... ,i:}, and equal to —1 on such a basis element.
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which has j ¢ {i1,...,ic}. Notice that the first two terms in the sum are precisely

the harmonic oscillator, discussed at the beginning of the chapter.

PROPOSITION 9.18 Consider M = R" equipped with the quadratic function h
described above. Then, for s > 0, there is a basis for L>(R"™) consisting of smooth,
rapidly decaying eigenfunctions for the operator D?; the corresponding eigenvalues

are the numbers
s Z(('\jl(l +2p;) + f\ﬂb),
j

where p; = 0,1,2,... and g; = £1. If we consider the action of D? on k-forms, the
spectrum is as above with the additional restriction that preciscly k of the numbers
g; are equal to +1.

a

i
in the j-variable. The Z and Y operators all commute, so they can be simultaneously

PROOF Let us write Y; = —( )2 + 82«\?(:::5 )2, so that Y; is a harmonic oscillator
diagonalized. By the spectral theory of the harmonic oscillator, we know that ¥ Y;
is essentially self-adjoint, with discrete spectrum: its eigenvalues are the numbers
53 |A;](1+2p;), and each of these eigenvalues has multiplicity 2" (the fiber dimension
of the exterior bundle). The operators Z; act on each of the eigenspaces as involutions,
splitting them into *1 eigenspaces for each Z;: the eigenspace with eigenvalue
s T(|A;[(1 +2p;) + Ajg;) for L is precisely the gj-eigenspace for each Z; acting on the
s T |A;)(1 + 2pj)-eigenspace for TY;. O

Functional calculus on open manifolds

Let M be a complete Riemannian manifold, D a Dirac operator on a Clifford
bundle S over M. {Our results will also be valid for a self-adjoint generalized Dirac
operator of the form D + A.} In this section we will develop a functional caleulus for
D, that is, a ring-homomorphism f + f(D) having properties analogous to those in
5.30 in the compact case.

The classical approach to these questions would require us to consider D as an
unbounded operator on the Hilbert space L?(S), with domain C®(S). The operator
D is formally self-adjoint on this domain, and one can use the completeness of

M to prove that D is in fact essentially self-adjoint in the sense of unbounded
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operator theory — meaning that the closure of D is equal to its Hilbert space adjoint,
or equivalently that D has a unique self-adjoint extension. One then applies the
spectral theorem for unbounded self-adjoint operators [29, Chapter XII] to produce

the desired functional calculus.

We will take a different approach, which is motivated by an article of Chernoff
[19]. Chernoff showed that one could use the finite propagation speed of solutions to
the Dirac wave equation (7.20) to prove essential self-adjointness. We will use finite

propagation speed to construct the functional calculus directly.

PROPOSITION 9.19 The wave equation

%=iDs

ot

has a unique solution for smooth, compactly supported initial data sy on M; and the

solution s, is smooth and compactly supported for all times t.

PrOOF Uniqueness follows from an energy estimate as in 7.4. For existence,
suppose that we want to construct the solution s, for all |t| < to, and suppose that
Supp(se) = K € M. We can build a compact manifold M’ and a Clifford bundle
S’ over it, such that M’ contains an open subset isometric to a ty-ncighbourhood U
of K in M, by an isometry which is covered by an isomorphism of Clifford bundles?
Now the wave equation can be solved on M’ by the results of Chapter 7, and finite
propagation speed shows that for [t| < fp the support of the solution s, remains

within U; so s, can be considered to be a solution on A as well. 0O

Notice that the argument above also shows that the wave equation on M has unit
propagation speed. Notice also that since the solution operator P is defined and
unitary on a dense subspace (namely C2°(S)) of L?(S), it extends by continuity to a

unitary operator on the whole of L%(S).

2This can be achieved, for example, by the ‘doubling construction®; let (Mp, M) be a compact
codimension-0 submanifold with boundary of M, such that the interior of M, contains a fo-
neighbourhood of K, and define M’ by gluing two copies of My, one with orientation reversed,

together along the boundary dM,.
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Now let f € S(R) be a Schwarz-class function. Define the operator f(D) by the

Fourier integral
1 N .
D)= — / t)et? dt
#Dy =5 [ fi
where €*? is the unitary solution operator to the wave equation, described above.

Since f is of rapid decay, the integral defining f(D) does converge in the weak sense
of 7.22.

PROPOSITION 9.20 The mapping f + f(D) is a ring homomorphism from S(R) to
B(L*(S)). Moreover,

I F(D)} < sup|f].
If f(z) = zg(z), then f(D) = Dg(D).

PrOOF All three parts of this theorem are proved in the same way, that is, by
reduction to the case of compact manifolds. We give the proof of the second part
and leave the others to the reader. Let @ = sup|f|. Suppose first of all that f
has compactly supported Fourier transform, say that Supp(f) C [~to,t0). Let s be
a compactly supported section of S, say with Supp(s) = K. As in the previous
proof, construct a compact manifold M’ isometric to M on a ty-neighbourhood U
of K. Then by finite propagation speed, f(D)s is supported within U and agrees
with f(D')s, where D' is the Dirac operator on M’. But || f(D")s]] < al|s]| by the

functional calculus on the compact manifold AM’. Thus we have shown that

1/(D)sll < alls]

for all compactly supported sections s; hence for all s € L%(S) be a density argument.
Finally this inequality holds for all f € S(R), since functions with compactly
supported Fourier transform are dense in S(R). 0O

REMARK 9.21 Since the mapping f — f(D) has [|f(D)]] < sup]|f|, it can be
extended by continuity to a map from Cp(R) to B(L?(S)) having the same properties.
Here Cy(R) denotes the space of continuous functions on R vanishing at infinity; it
is the sup norm closure of S(R).
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Notes

The harmonic oscillator is discussed in many physics texts, for example [65, 74].

Witten's perturbed de Rham complex was introduced in [73]. By considering the
asymptotics of the complex as s becomes large, he was able to give an entirely novel
approach to classical resuits of Morse and Smale relating the topology of A to the
critical values of the function & {that is, the zeros of dh). We will discuss some of
this theory in Chapter 14.

I owe question 9.24 to my colleague David Acheson.

Exercises

QUESTION 9.22 Let hi(z) be the polynomials defined in 9.7, where we assume for
simplicity that @ = 1. Prove that

2 e 25 k
exp(2tr — t?) = 7!/ kz—% Ehk(x)t .

QUESTION 9.23 Use the ansatz kf(z,y) = a(t)exp(—33(t)(z? + y?) - 7(t)zy) to

derive the geneial version of Mehler’s formula,

" _ a —a(x? + y*) coth(2at) + 2 cosech(2at)zy
ki(z,y) = V 27 sinh(2at) xp ( 2

QUESTION 9.24 Derive Mehler's formula from the more general ansatz

u=h(t)f(n), n= 3(%

by separation of variables. Obtain also another solution to the heat equation of the

form

Cr z?

u(x 3)”——ex —{_...a__
"7 (sinh2at)} P 15 tanh 2at

}

Why does not the existence of this second solution contradict the uniqueness of the

heat kernel?
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QUESTION 9.25 (Donnelly-Xavier [28]) Let Af be a complete Riemannian manifold,
h a smooth function on M with |Vh| < 1 everywhere. By using the identity DRy, +
Ry D = Hy, prove that for any s-form w,
2wl Dw > A o A v
where the function og; is defined in terms of the eigenvalues A; of the Hessian of h by
ou(z) =Y A{a) = 2kmax{\(z) :i=1,... ,n}.
i=1

Consider the case where M is hyperbolic n-space, of constant curvature -1. Take
to be the distance from a point q far from the support of w. Show that if k < (n~1)/2
then there is a positive constant C such that [|[Dw|| > Cif|«||. Deduce that the

spectrum of the Laplacian on k-forms does not contain zero in this case.

QUESTION 9.26 Let Al be a complete Riemannian manifold. Construct a sequence
@a of smooth, compactly supported functions A — [0,1] with Usuppy, = M,
¢ = 1 on supp pn-1, and |Ve,| € 1/n everywhere.

Now let D be a Dirac operator on M, and suppose that s belongs to the domain of
the Hilbert space adjoint D*. Show that, if we define s, = ¢,3, then each s, belongs
to the domain of the closure of D, that s, — s in L2, and that Ds, = D*s, — D"s

in L? also. Deduce that D is essentially self-adjoint.
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CHAPTER 10
The Lefschetz formula

In this chapter we will find our first example of a topological invariant defined by
elliptic operators. The topological invariance will come from a pairwise cancelation

of eigenspaces, which is sometimes called “supersymmetry”.

Lefschetz numbers

Let M be a manifold and ¢: Af — Af a map. Then ¢ induces an endomorphism
" of the (complex) cohomology of M, and the Lefschetz number L(i) of ¢ is defined
by

L(p) =Y (-1)7tr{¢" on HI(A)). (10.1)
q

The classical Lefschetz formula (see Spanier [69]) expresses L{() as a sum over the
fixed points of . Iu particular, if L{¢) # 0, then 4 has got some fixed points!

We want to approach the Lefschetz formula analytically and we will do so in the
more general context of Dirac complexes (6.1). Thus, let M be a compact oriented
n-dimensional Riemannian manifold, and let (S,d) be a Dirac complex over M. Let
@ be a smooth map from A to M. Then ¢ induces p*: C*(S) — C®(¢*S). In case
S is the de Rham complex, there is a natural bundle map { = A" Ty from ©*S to
S, but for a general Dirac complex there is no such map, and we must assume the
existence of a bundle map (: *S — § as part of our data. Thus there is a composite
map

F = (g : C®(S) = C®(8).

DEFINITION 10.2 If F (as above) is a map of complexes (i.e. Fid = dF), one says
that (¢, ) is a geometric endomorphism of the given Dirac complex. Its Lefschetz
number L{{, )} is defined by

L(C.9) = Y (=11 te(F" on HY(S)).
q
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This definition is arranged so that a smooth map ¢ induces a natural geometric
endomorphism of the de Rham complex, and its Lefschetz number as defined by
(10.2) agrees with the classical definition of (10.1).

To apply analysis to the calculation of the Lefschetz number, we use the Hodge
theorem (6.2); H9(S) is represented by the space H? of harmonic sections of S;. So
if we define P, to be the orthogonal projection L2(S,) — H9. then

tr(F" on HY(S)) = Tr(FF,) (10.3)

where F is considered as a coutinuous linear operator from C*(S,) to L%(S,).

REMARK 10.4 Beware that the operator F itself may not be bounded on L2?;
composition with ¢ can increase the L2 norm of a smooth function by an arbitrarily
large amount if  happens to be constant on a nonempty open set. But it is apparent
that F is bounded from C%S;) (the space of continuous sections) to L?(S,), and
therefore that the composite of F with any smoothing operator is bounded on L2

This suffices for the arguments that follow.

LEMMA 10.5 The operators P, are smoothing operators. Moreover, if A, denotes
the restriction of D? to C>(S,), then ast — oo the smoothing kernel of e~'®¢ tends

to the smoothing kernel of P, in the C* topology.

PROOF P, can be written as f(A,), where f(0) =1 and f()) = 0 for all other A.
Unfortunately, this function is not smooth. However, since A4 has discrete spectrum,
there is a smooth function f of compact support equal to 1 at zero and cqual to 0 at
all other eigenvalues of ;. Then f € S(R) and f(Qg) = Py. If gi(x) = (1= f(x))e
then g(A,) = ¢4 — P, and g, — 0 in S(R) as t — oc. Hence, by the functional
calculus, g.(A;) — 0, and the result follows. O

Therefore Tr( F P,) = lim,—., Tr(Fe~'4+) and so,
L(¢,¢) = lim 3 (=1)? Tr(Fe™'2). (10.6)
q

Let us analyze this cxpression more closely.
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PRrOPOSITION 10.7 For all values of t > 0,

(=1 Tx(Fe™'%) = L((,¢).

PROOF It is enough to prove that ¥,(—1)? Tr(Fe~‘4r) is constant in . We
differentiate, getting
S(=1) TR(F(dd” + dd)e™*3),

q
Now dF = Fd, so Tr(Fdd*e™"¢) = Tr(dFd"e~**+). Assume for the moment that we

can apply (8.8) to the operators d and Fd*e~*4¢ (which is not really allowed, since d
is unbounded); then

Tr(dFd*e™'2) = Tr(Fd'e '21d)
Te(Fd de™"+1), since Agd =dA,,.

The terms in the suin for the derivative therefore cancel in pairs, giving 0. (This
is “supersymmetry”.) It remains to verify that we may apply 8.8, which we do by
reducing to the bounded case, as follows:
Tr(dFd'e™'3) = Tr(dFd'e™te/2e=13¢/7)
= Tr(e '®/2dFd e '3/?) (by 8.8)
= Tr(Fd e '4¢/2¢724/24) (by 8.8 again)
Tr(Fde™"%d) 0O

PRrOPOSITION 10.8 If o has no fixed points, then the Lefschetz number L((, ) is
0.

Proor By (10.7)

L(¢, ) = 2 (=1) Te(Fe™*®),
q

for any t > 0. Look at the behavior of this expression for small t. If kf(m;, mo)
denotes the heat kernel corresponding to e='4¢, then Fe~'s is a smoothing operator
with kernel

(my, m2) = (. ki (p(my), mg)
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where { denotes { acting on the first variable in the tensor product bundle S® §
of which k is a section. Therefore, by (8.12},

Te(Fe~*4) = j tr(1Ck(p(m), m) vol(m).
M

Now the assumption that ¢ has no fixed points means that its graph {(¢(m),m) :
m € M} never meets the diagonal in M x M. Therefore, by the asymptotic expansion
7.15, or by the localization result 7.24, k{(¢(m), m) tends to 0, uniformly in m, as
t — 0. The result follows. [J

ExXAMPLE 10.9 Any holomorphic automorphism of complex projective space has
a fixed point. To prove this, let A be a complex projective space. Then M is a
Kéahler manifold, so its Dolbeault complex is a Dirac complex. It is known that the
Dolbeault cohomology of M is

C =0
ayan =] © @=9

0 (¢g>0).
A holomorphic automorphism of M induces a geometric endomorphism of the Dol-
beault complex, which must act identically on H®, and so has strictly positive

Lefschetz number.

The fixed-point contributions

If there are fixed points, the argument of (10.8) shows that the Lefschetz number
is given by a sum of contributions coming from the components of the fixed point
set. To get a Lefschetz formula, we must work out these contributions! We will
only consider the easiest case, that of “simple fixed points”. Let T,,¢ denote the

endomorphism of the tangent space T,, M at a fixed point m induced by 4.

DEFINITION 10.10 The fixed point m is simple if det(1 — Trp) # 0.

Another way of saying this is that a simple fixed point is one where the graph of ¢
cuts the diagonal transversally. It follows that there can be only finitely many such
fixed points. To work out the contribution from a simple fixed point, we will use the

following lemma:
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LEMMA 10.11 Let T be an n x n matrix. Then for any t > 0,

1 2 1
~jr—Tz|? /4t -
(4mt)n/2 /R- ¢ @'z |det(l = )|’

PrOOF Let A = (1 =T)1-T"), so |t —Tz|> = (Az,z). Let Aj,..., A, be the
eigenvalues of A; then by an orthogonal change of co-ordinates on R”

1 2 1 B NS PR Y2
—— —|z-Tz|?/4t o e 14y alnl
(4nt)n/2 /R» ¢ 'z (4nt)n/2 ./R» exp ( 4t ) &'z

- - ar’/&td:r e 1 = 1 |
==L )= II5r = =

THEOREM 10.12 (ATIYAH-BOTT) Let ({,) be a geometric endomorphism of a
Dirac complex (§,d), haviug ouly siinple fixed points. Then the Lefschetz number of
(¢, ) is given by the following formula:
(—1)9tr({e(m))
L(C.¢) = (———)
&2 (et fo

PROOF The argument of (10.8) shows that in order to evaluate the integral

Te(Fe™®) = [ tr(aGk(o(m), m) vol(m)

asymptotically as ¢ — 0, we need only integrate over arbitrarily small neighborhoods
of the fixed points. Therefore, we work in geodesic co-ordinates having their origin

at a fixed point. Then we have the following approximations where T = Ty and
g = det(g;;):

Glz) = ((0) + O(|x])

@lz) = Tr+0(z)
1+ O(|z]).

g(r)
Moreover, by truncating the asymptotic expansion (7.15) at a point where the error
of the expansion is uniformly of order ¢, we obtain

kl(m'.m) = d(m m)* )

G :)nn exp (= (©o(m', m) + O(t)) + O(t)

where Og(m.m) = 1.
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Since det(1 — T') # 0, there is a constant 8 > 0 such that
|z = Tz|? > 6|r).

Moreover, d(¢(z),z)? = |r — Tz|> + O(]z]*) and Oy(¢(x),z) = 1 + O(|z]), so the

asymptotic expansion formula gives

9(o(2),2) = e 77 (1 4+ O(lel) + 0(0) + OlI=P/0) + O
Therefore
e SoA2).2)Vi2) - ek (10.13)
213
< 417:)" e/ (0( lz|) + O(t) + o('#‘)) +0(1).

By integration one finds that the L' norm of

1
(art)y7?

e—6|:r|’/4t ] |1_|atb

is of order t*/2+"; so the right-hand side of (10.13) is of order 7 in L! norm ast — 0.

Therefore, as t — 0,

/tl' (ICq(I)ky(‘P(I)‘I)) Ve(z)d'z — ./R- tr (Cq(o) . Wffl:_n'z/“) 'z
tr((e(0))
aet(l =T °

tr((q(m))
|det(1 — T)|

and by Lemma 10.11, the right hand side is equal to

Tr(Fe™ ) - Y

p(m)=m

Now the result follows by (10.7). O

Many applications of this result may be found in the paper of Atiyah and Bott [2].

Here are a couple of examples.

EXAMPLE 10.14 Suppose that our Dirac complex is in fact the de Rham complex.
Then the maps (;: ©*S; — S, are just the exterior powers AYT™ of the dual of the
tangent map T = Ty to ¢. Now in general for any linear transformation T,

Z(-l)qtr(/q\ T) = det(1 - T);

q
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as one can check easily by recalling that tr(A9T) is the ¢’th elementary symmetric
function of the eigenvalues of T. Therefore the contribution from the fixed point m
in the Ativah-Bott formula is just
det(1 — Tre)
[det(1 — Tmyp)|
We therefore recover the original Lefschetz theorem:

L(p) = Z sgndet(l — Try).

p(m)=m

= sgndet(1 — Tny).

EXAMPLE 10.15 Now let ¢ be a holomorphic automorphism of a compact Kahler
manifold M. As explained in Example 10.9, ¢ induces a gecometric endomorphism of
the Dolbeault complex of M, whose Lefschetz number is defined to be the holomorphic
Lefschetz number of , denoted Lyp.

To work out the local contribution in the Atiyah-Bott forinula, we must do a
little linear algebra. The tangent space at a fixed point is a real vector space V of
even dimension equipped with a complex structure J (multiplication by ¢ = /~1),
and the tangent map T : V — V is complez linear, that is JT = TJ. Then V @g C
decomposes as a sum P®Q of cigenspaces for J of eigenvalues 4, and correspondingly
T ®g 1 decomposes as T @ T; P is isomorphic as a complex vector space to V and
Q is isomorphic to V. Now the determinant appearing in the fixed point formula is

detg(l — T), the determinant of 1 — T considered as a real linear map. But
detg(l = T) = detc((1 = T)® 1) = detc(1l — T)dete(1 — T)

by the decomposition. On the other hand, (, = A9T , acting on the bundle A?Q",

so
S(-1)7tr(¢,) = detc(1 = T).
Thus we get Atiyah and Bott’s holomorphic Lefschetz theorem:
1
o= L aci-Too)

in the case of simple fixed points.

We required M to be a Kahler manifold because only for such manifolds is the

Dolbeault complex a Dirac complex. However, by working with generalized Dirac
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operators one can prove the holomorphic Lefschetz theorem for all compact complex

manifolds.

Notes

The Lefschetz theorem and many applications may be found in Atiyah and Bott
[2]. For the “heat equation” proof, see Dieudonné [25, Volume IX], or Gilkey [34].

Exercises

QUESTION 10.16 Let M be a compact oriented n-manifold, and let .\’ be a vector
field on it. A point m € M such that X(m) = 0 is called a critical point of X, and
it is non-degenerate if the derivative of X at m (which is an n X n matrix in local
co-ordinates) is non-singular. The sign (1) of the determinant of this matrix is the
indez of the critical point.

Prove Hopf’s thcorem, that the sum of the indices of the critical points of a vector
field having only non-degenerate critical points is equal to the Euler characteristic of

M. (Apply the Lefschetz theorem to the flow generated by .\X.)

QUESTION 10.17 (ATIYAH-BOTT) Consider the endomorphism ¢ of CP" defined in

terms of homogeneous co-ordinates (z, ... , z,) by
(205--- »20) = (020, -+ + Tn2n)

where the 7’s are distinct non-zero complex numbers. From the holomorphic Lef-

schetz theorem for  deduce the Legendre interpolation formula

n n

i
1= —_—
g iz = v4)

140



CHAPTER 11

The index problem

Gradings and Clifford bundles

Recall that a module W over a Clifford algebra CI(V) is said to be graded if it
is provided with a decomposition W = W, @ W_ such that Clifford multiplication
Ly any v € V interchanges the summands 1V, and W_. A Clifford bundle S on a
Riemannian manifold is graded if it is provided with a decomposition § = S5, ® S..
which respects the metric and connection and makes each fiber S, a graded Clifford
module over CI{T_Af). It is equivalent to say that § is provided with an involution ¢
(the grading operator) which is self-adjoint, parallel' and such that ec(v) + ¢(v)e =0
for every tangent vector ». The sub-bundles S, are the %1 eigenspaces of ¢.

If S is a graded Clifford bundle, then the algebra of bounded operators on L%(S)

is a superalgebra in the sense of definition 4.1.

DEFINITION 11.1 Let 4 be a trace-class operator on L*(S), where S is a graded
Clifford bundle. Then the supertrace of A is defined to be

Tr,(A) = Tr(ea)
where ¢ is the grading operator.

It is easy to check, by reduction to the corresponding property of the ordinary
trace (8.8), that the supertrace vanishes on supercominutators [4, B], provided that

one of 4 and B is trace-class. There is an obvious analogue of 8.12, namely:

PROPOSITION 11.2 Let A be a smoothing operator on L*(S) with kernel k € C°(S®
57}; then
Tr,(A) = /M tr (k(zx, 1)) vol(x)

where the ‘local supertrace’ tr,(a), a € End(S,), is defined to be tr{ca).

I That is, it commutes with covariant differentiation.
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We will be concerned with Clifford bundles over even-dimensional, oriented man-
ifolds, say of dimnension 2m. For such a bundle there is always a canonical grading;
the volume element w in the Clifford algebra (4.4) has w? = (—1)™ and anticommutes
with all the Clifford generators, so that the Clifford action of i™w defines a grading
operator €y on any Clifford bundle. However, other gradings are possible. If ¢ is
another such grading then ¢¢q is a self-adjoint involution which commutes with the

whole Clifford algebra; thus we obtain

LEMMA 11.3 Any graded Clifford bundle S is split into a direct sum of two graded
Clifford sub-bundles, on one of which ¢ = ¢ and on the cther of which ¢ = —¢,.
(We refer to these as the canonically graded and anticanonically graded parts of S
respectively.)

Because of the existence of this direct sum decomposition, it is often sufficient to
restrict our attention to canonically graded Clifford bundles.

We want to analyze the local supertrace tr,(a), @ € End(S,), which appears in 11.2
above, using the representation theory of the Clifford algebra. The uniqueness of the
spin representation provides a decomposition (4.12) S; = A®V" where A denotes the
spin-representation and V is an auxiliary vector space, and there is a corresponding

decomposition on the endomorphism level
End(S;) = Ci(T: M) ® End(V), End(V) = End¢((S;)-

To say that S, is canonically graded is simply to say that the grading of S, is given as
(ALQV)B(A_®V), where Ay are the positive and negative half-spin representations.
Let 7,: Cl = C denote the supertrace of the action of the Clifford algebra on the

spin representation; then the above discussion proves
PROPOSITION 11.4 Let a = ¢ ® F be an endomorphism of S;, where ¢ € Cl(T.Al)
and F € End¢(S,). Suppose that S is canonically graded. Then
tr.(a) = 1,(c) tr5/3(F)
where the relative trace tr5/2 is definedin 4.13.

In order to apply this proposition effectively one needs to know how to compute

7,. The following lemma does this. To state it, let {e;,... ,€s,} be an orthonormal
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basis of RZ".If E C {1,...,2m}, then E will denote the element [];¢ g e; of CI(R?*™).
Recall that the E form a linear basis for the Clifford algebra CI(R?™).

LEMMA 11.5 Let ¢ = SgcgE be an element of CI(R?™). Then the super-trace
75(¢) of ¢, considered as an endomorphism of the spin representation, is equal to
(=2{)™c12.2m- That is, the supertrace is equal (up to a scalar multiple) to the ‘top
degree part’ of c.

ProoF By definition of the super-trace 1,{c) = 7(i"wc), where 7 denotes the

ordinary trace on the spin representation. It is therefore enough to prove that
7(c) = 2™cp .

To do this, we must prove that

- ™ fE=0

7(E) = L
0  otherwise.

Clearly @ = 1 acts on A with trace dim(A) = 2™. Now if E # 0, consider E acting
on the Clifford algebra itself by left multiplication. As a representation, the Clifford
algebra is equal to A @ A*, with left action on the first factor A. So the trace of
E on A is equal to 2-™ times the trace of E on the Clifford algebra itself. But E
permutes the basis elements without fixed point, so tr(E) =0. 0

REMARK 11.6 One can also deduce this lemma from the computation of the

character table for the finite group Es,,, which we carried out in Chapter 4.

Graded Dirac operators

The Dirac operator of a graded Clifford bundle anticommutes with the grading
operator, and so maps sections of Sy to sections of Sz. We may therefore think of
the Dirac operator as coming from a Dirac complex of length 2

C=(54) =~ C=(S.)
where D, is the restriction of D to sections of S, and its adjoint D} = D_ is the

restriction of D to sections of S_. The Euler characteristic of this complex is an

important invariant called the indez of D. More formally
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DEFINITION 11.7 The indez of a graded Dirac operator D is the difference

Ind(D) = dimker D, — dimker D_.

ExaMPLE 11.8 As a simple example, consider the de Rham operator D = d + d"
with the grading operator defined by ¢ = (—1)7 on Q9(M). Then by Hodge theory,
the index of D is simply the Euler characteristic of M in the sense of topology. Notice
that this grading, which we will call the Euler grading of the de Rham operator, is

neither canonical nor anticanonical.

It is immediate from the definitions that we have Ind(D) = Tr,(P), where P

denotes the orthogonal projection onto ker(D). More generally we have

PROPOSITION 11.9 Let f be any rapidly decreasing smooth function on R* with
f(0) = 1. Then Ind(D) = Tr,(f(D?)).

PROOF Since the spectrum of D is discrete, the projection P onto the kernel of D
can be written as f(D) for some appropriately chosen compactly supported smooth
function f with f(0) = 1. It therefore suffices to prove that Tr,(g(D?)) = 0 when g
is smooth and rapidly decreasing and g(0) = 0. We may write g(r) = rh(r) for some
rapidly decreasing function &; and we may further write h(z) = h,(r)hs(x) where

both h; and h; are rapidly decreasing. But now
¢(D?) = D*h(D?) = {[Dhy(D), Dho( D)},

and so Tr, g(D?) = 0 since the supertrace vanishes on supercommutators. 0

REMARK 11.10 Because of its historical importance we give a variation of this proof.
For an cigenvalue A of D2, let ny()) denote the dimension of the A-eigenspace of the
restriction of D? to S, and similarly for n_()). Then clearly

Tr, f(D%) = 3 f(N)(n4(3) = n_(3)) = Ind(D) + 3 f(A(n4(}) = n_(X)).

A>0
But for A # 0, the operator D gives an isomorphisin between the A-eigenspaces of

D?on S, and on S_, so n (A} = n_(}), giving the resuit.

The special case
Ind(D) = Tr, e~ (11.11)
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relating the index to the heat equation is known as the McKean-Singer formula [51].

REMARK 11.12 Proposition 11.9 applies to rapidly decreasing functions f. But a
study of its proof reveals that it is enough that f(z) = O(z~%), where N is some
constant, depending on the dimension, which is sufficiently large that the operators
Dh (D) and Dho(D) appearing in the proof can be chosen to have continuous kernels
and so to be Hilbert-Schmidt (see 5.32 and 8.9). This will be important in a moment.

We study the variation of the index as the operator D varies. Let Dy, t € [0,1],
be a continuous family of graded Dirac operators on (M, S); by this we mean that
the Riemannian metric, the Clifford action, and the metric and connection on §
are all varying continuously with ¢ (in such a way as to preserve the compatibility
conditionj. Then ¢t v D, is a continuous map from [0,1] to B(W**! W*) for any &,

and the operators D, all satisfy the elliptic estimates
lIslzsr < CelllsllE + 1Dsl1?)

with a constant Ci. which is uniform in ¢,

PrOPOSITION 11.13 Let D, be a continuous family of graded Dirac operators, as
above; then Ind(Dg) = Ind(Dy).

PROOF The resolvents (D, % i)~! map W* to W**! for any k, as is shown by
elliptic estimatcs. Moreover the maps ¢ ~— (D, £ i)~! are continuous from [0, 1] to

B(W* W) for any & > 0. To see this we use the resolvent formula
(Dy+ i)' = (Dp + i)™ =(Dy + i) ™Dy = Dy)(Dy +i)"

and the uniformity in the elliptic estimates which shows that the B(W*, W¥*+!) norm
of (D, +i)7! is bounded independent of ¢. It follows that (1 + D?)~¥ is continuous
from [0, 1] to B(W*,W*+2¥) When N is large enough the inclusion W*+2V _, Wk
is a Hilbert-Schmidt operator {exercise 8.22). Taking such an N we deduce that
(1 + D?)~2V is a trace class operator and that its trace, or its supertrace, vary

continuously with ¢. Thus by 11.9 and the subsequent remarks,

Ind(D) = Tr,((1 + D?)~2N)
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varies continuously with ¢. Since, however, the index is an integer, it must be

constant. O

This fundamental stability property shows that the index is a topological invariant:
it depends only on homotopy-theoretic data about the manifold M and bundle S.
The indez problem which was solved by Atiyah and Singer in the early 1960’s was
this: compute the index in terms of the conventional invariants of algebraic topology.
namely characteristic classes associated to the bundle S and to the tangent bundle
of M. The index theorem made possible a vigorous commerce between analysis
and topology. On the one hand, information about the index derived from PDE
theory — sometimes even the rather minimal information that Ind(D) is an integer
— could be used to constrain the characteristic classes and hence the topology of
M. On the other hand. topological conditions could force the existence of solutions
to differential equations — holomorphic functions, for example — which solutions
might then be used in further geometric constructions. Milnor’s construction of the
exotic spheres [53] and the Kodaira embedding theorem (see [36]) are examples of

these two phenomena which predate the general form of the index theorem itself.

The original solutions to the index problem depended on the use of algebraic
topology (either cobordism theory or K-theory) to organize the possible pairs (A, S)
into some kind of group, and thus to reduce the proof of the index theorem to a
check on some specific generators. Thus they were essentially global and topological
in nature. In this book we will prove the index thcorem by an alternative method,
which is based on the McKean-Singer formula [$1]. McKean and Singer pointed out
that we have an asymptotic expansion for the heat kernel which is in principle locally
computable, and that therefore formula 11.11 can be used to relate the index to the
local super-trace of certain coeflicients appearing in that expansion. The relevant
coefficients are, however, almost impossible to compute by brute force. Following
an idea of Gilkey, namely to use Invariant Theory to study the polynomials in the
curvature which might possibly arise in the expansion, a proof of the index theorem
using the asymptotic expansion was given by Atiyah, Bott and Patodi in [3]. But
Gilkey’s idea suffered from the defect that Invariant Theory could only determine

the coefficients up to a (finite) number of arbitrary constants; it was still necessary
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to compute examples in order to fix the values of the constants.

The situation was transformed by the appearance of Getzler's paper [31]. Getzler
showed that the computations needed in the asymptotic-expansion method can be
rendered quite tractable by paying careful attention to the role of the Clifford algebra.
In his method, the fact 11.5 that the local supertrace corresponds to the ‘top degree’
part in the Clifford algebra is of crucial importance, It is used to reduce the
computations to those in a simple local model, essentially the harmonic oscillator;
and the function a/sinh(2at) appearing in Mehler’s formula 9.12 for the harmonic
oscillator heat kernel is revealed to lead to the appearance of the A-genus (2.28),
the Pontrjagin genus associated to the function w/sinhw where w = 1,/z, on the
topological side of the index theorem for the Dirac operator. The rest of this chapter

and the next give an exposition of Getzler's proof.

The heat equation and the index theorem

With notation as above, recall the asymptotic expansion 7.15 for the heat kernel

k, associated to the smoothing operator e~t?’. Using 11.2 this gives us
Tr,(e7*P%) ~ 1 ftr <] vol+tftr 9, vol +
3 (471_{)“;2 s 0 * 1 e M

But Tr,(e~*P?) is in fact constant, and equal to the index of D, by the McKean-Singer

formula. So we get:

PROPOSITION 11.14 The index of the graded Dirac operator D is zero if n(= dim M)

is odd, and is equal to
1
W /t!’, 8,,,2 vol

if n is even, where the asymptotic expansion coefficient ©,; is a certain algebraic

expression in the metrics and connection coefficients and their derivatives.
Here is a non-trivial corollary.
COROLLARY 11.15 The index is multiplicative under coverings; i.e. if M is a k-fold

covering of M, and §, D are the natural lifts of S and D to M, then Ind(D) =
kInd(D).
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This is immediate from 11.14, since ©,/; is a local expression which is the same

on M as on M. It is not obvious from the definition of the index.

EXAMPLE 11.16 Let us consider the case of a 2-dimensional Riemannian manifold
M, and let D = d + d* be the de Rham operator equipped with the Euler grading
11.8 by the degree (mod 2) of forms. Then by the above, the index of D is equal to

1
o / (tr 09— tr0O} +tr Gf) vol

where the superscript on ©; denotes the degree of differential forms. Now we use our

calculation in 7.19, which gives
CHE ir-1- K'

where K is the Clifford-contracted curvature operator appearing in the Weitzenbock
formula. Now K% = 0 and so K? = 0 also by Hodge duality; on the other hand, K' is

the Ricci curvature operator by 6.8. Thus we get

- 21 L _le. 9 _g=-2
trO) =trO] =gk, trO; = sk -2-K=—3x,

and so we finally obtain
Ind(D) = 211? [ rvol

and bearing in mind that Ind(D) is the Euler characteristic and that  is twice the

Gaussian curvature, we recognize the Gauss-Bonnet theorem.

Notes

References for the original proofs of the index theorem are the seminar by Palais
[57] and of course the scrics of papers by Atiyah, Singer, and Segal [9, 8, 10] in
the Annals of Mathematics. Atiyah's Collected Works were published since the first
edition of this book and are a must-read for anyone interested in acquiring a deeper

understanding of the index theorem and the ideas surrounding it.

Seeley [67] gives a historical account of the development of index theory from the

point of view of singular integral operators.
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Exercises

QUESTION 11.17 Let D be a graded Dirac operator, and consider the associated
Dirac complex of length two.
(i) Show that the index of D is simply the Lefschetz number of the identity map
on this complex.
(ii) Relate the McKean-Singer formula to the Lefschetz number formula of 10.7.
(iii) Since the index is a Lefschetz number, why car’t we apply the Atiyah-Bott
Lefschetz theorem of the last chapter to calculate it?

QUESTION 11.18 Let H, and H, be Hilbert spaces and let A : H; — H; be a
bounded operator. Suppose that there is a “parametrix” for A, that is an operator
Q : Hy — H,; such that the operators AQ — 1 and QA — 1 are compact. Show
that ker A and ker A are finite-dimensional, and that the ‘Fredholm index’ Ind(A) =

dim ker A — dimker A" is a locally constant function of A.

QUESTION 11.19 Now let A : H; — H, have a parametrix @ such that, for some
positive integer p, (AQ — 1)? and (QA — 1) are trace-class operators. Show that

Ind A = Tr((QA — 1)P) - Te((AQ — 1)) .

QUESTION 11.20 Let D be a Dirac operator on a compact n-manifold, and let
k, be the corresponding heat kernel. Consider the differential n-form ¢, defined by
a{m) = tr,(k,(r, m)) vol(m), where tr, denotes the local super-trace. Prove that
the derivative da, /8t is an exact n-form, and thereby obtain yet another proof of the

McKean-Singer formula.

QUESTION 11.21 Use the heat equation method to prove the Riemann-Roch formula
for a Riemann surface (same method as 11.16 above). This is due to Kotake [45].

QUESTION 11.22 Let V be a complex vector bundle over a compact manifold M.
Show that there is a smooth function ¢ : M — My(C) for some N, which is a
self-adjoint projection (e? = €) and is such that the range of ¢ is a sub-bundle of
M x CV isomorphic to V.
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Show further that the equation
Vv = e{dv)

defines a connection on the range of e.

QUESTION 11.23 Let S be a Clifford bundle over the compact manifold M, and let D
be the corresponding Dirac operator. Let V be a vector bundie over M, represented as
the range of a projection-valued function e, and equipped with its natural connection
{see question 11.22). Show that the Dirac operator Dy on S with coefficients in 1/
(3.24) is given by Dy =¢{D & 1)e.

Now suppose further that Ker(D) = 0. Show that D~ is a bounded operator on
L?*(S). Show also that Q = e(D~! ® 1)e is a parametrix for D,-. and that in fact for
sufficiently large p,

Ind(Dy) = Tr,(QDy — 1)) .

QUESTION 11.24 (CONNES [21, 22]). In the situation of question 11.23, the

following expression is called the (cyelic) character of D:
T(fﬁ* fh ey f?p) = 'I\I‘,(D-l[D, fO]D-][Ds fl] .o D—‘I[Ds f‘Zp])
where fy, ..., fi, are (possibly matrix-valued) smooth functions on M.

{a) Show that the expression makes sense (i.e. that the operator in the brackets

is of trace-class) if p is large enough.

{b) Show that 7 is a cocycle: i.e. that for any functions fo,... , fops1.
2p i
S (=1V7(fos fieeeo s fifinree o Sopar) = T(foparfoo fro - o f2p) -
j=o

{c) Show that if e is a projection-valued function corresponding to a vector bundle
V, then Ind(Dy) = T(e,e.... ,e). ‘
{This computation lies at the beginning of tlie relationship between index theory and

Connes’ cyclic cohomology.)
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CHAPTER 12

The Getzler calculus and the local index theorem

This chapter gives the heart of the proof of the Index Theorem. We will study the
so-called symbolic calculus for operators on bundles of Clifford modules. The idea is
to provide a systematic way of investigating the ‘top order part’ of an operator or a
family of operators. For instance, our proof of the Weyl asymptotic formula 8.16 was
based on our knowledge that the ‘top order part’ of the heat kernel on a manifold is
simply the heat kernel on Euclidean space. Getzler’s innovation was the introduction
of a sophisticated notion of *order’, with respect to which the index form — discussed

at the end of the last chapter — naturally appears as a ‘top order part’.

Filtered algebras and symbols

In this scction we will be concerned with algebras over C. Recall that an algebra A
is a vector space equipped with a bilinear, associative product. A graded algebra
is an algebra provided with a direct sum decomposition 4 = @ A™, such that
A™.A™ C A™+™ Familiar exainples of graded algebras include the exterior algebra

A"V over a vector space, and the polynomial algebra C[t].

The notion of graded algebra should be contrasted with that of filtered algebra:

DEFINITION 12.1 A filtration of an algebra A is a family of subspaces A,,, m € Z,
with A, € Amy, and such that Ay, - A € Apime, for all m,m’ € Z. An algebra
provided with a filtration is called a filtered algebra.

EXAMPLE 12.2 The aigebra D(A) of differential operators acting on functions on
a manifold M is a filtered algebra, with D,,(AI) equal to the space of differential

operators of order £ m.

ExaMpLE 12.3 The Clifford algebra CV) of an inner product space V is a filtered

algebra, with Cl,,(V') equal to the linear span of the products of m or fewer elements
of 17,
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REMARK 12.4 Clearly, any graded algebra can be regarded as a filtered algebra (just
define A,, = A°®---&® A™). Moreover, any homomorphic image of a filtered algebra
is a filtered algebra. These ideas can be put together to generate a filtration on any
algebra from an assignment of degrees to members of some generating set. For an
example sufficient for our purposes, suppose that A is generated by BUV, where B
is a subalgebra of A, V is a vector subspace, and we want to think of elements of
B as having degree zero and elements of V' as having degree one. Then there is a

surjective homomorphism of algebras
RV=Bo(BOVE®B)®(BOV®BOVE®B)® - — A
B

and so A inherits a filtration from the tensor algebra. For instance, the Clifford
algebra Cl(V') is generated in this way by BUV (where B = C ), and the filtration

defined by these generators is the one in example 12.3 above.

DEFINITION 12.5 Let A be a filtered algebra and let G be a graded algebra. A
symbol map g,: A — G is a family of linear maps o, 4,, — G™, such that

(i) If a € Ay, then op(a) = 0.

(ii) If a € A,, and @' € A, then o,(a)on(a’) = Omim(ad’).

We refer to (ii) as the homormnorphism-like property of the symbol.

DEFINITION 12.6 Let A be a filtered algebra. The associated graded algebra G(A)

is the direct sum
G(A) = @Am/Am_l

with the product operation induced from A (which the reader should verify is well-
defined).

The quotient maps A,, — An/Am-1 give rise to a symbol map o,: A — G(A). In
fact this is obviously the ‘universal’ symbol map on A in an appropriate sense, but

we will not spell this out in detail.

EXAMPLE 12.7 Let A = CI(V) be the Clifford algebra of V. Then the associated
graded algebra G(A) is the exterior algebra A*17; and the symhol maps g,: CI(1") —
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A*(V) give the top degree part of the linear isomorphism between the Clifford and

exterior algebras discussed in 3.23 and exercise 3.32.

ExaMPLE 12.8 Let A = D(M), the algebra of differential operators on M. To
describe symbols on A, we need to investigate differential operators modulo lower

order operators.

Let V be a finite-dimensional vector space, and let €(V') denote the algebra of
constant cocfficient differential operators acting on functions on V. Then €(V) is a
graded algebra, its degree m part being made up of homogeneous differential operators
of order m. We may form the bundle €(T°Af) whose fiber at a point p is €(T,M); and
the space of smooth sections C®(C(TM)) forms a graded algebra. We will construct

a symbol map
de: D(M) = C=(C(TM)).

Fix p € M. Given a differential operator T € A, choose local coordinates z* with

origin p and write

a*
T= 3 calr)z—

jolgm

in terms of these local coordinates. Let a,, ,(T) be the constant coeflicient differential

operator on T, A obtained by ‘freezing coefficients’
omp(T) = > c‘,((}
|a|==m

It is straightforward to check that this definition is independent of the choice of local
coordinate system, and it obviously vanishes on operators of order < m. Moreover, if
T e A, and T € Ay, then 0ppm(TT') = Op(T)om:(T"), because the commutator
of T and multiplication by a smooth function is an operator of order < m. The maps

Omp s p varies fit together to give a linear map
Dp(M) - C=(C™(TM))
which is the desired symbol.

153



REMARK 12.9 The algebra of differential operators D(M) is generated by B =
C*(M) in degree zero and V = X(M) (the vector fields on A, acting by Lie
derivative) in degree one; and the filtration on D(Af) is that determined by these
generators. To specify the symbol map completely it is therefore enough to specify
its action on the generators. It is easy to see that the symbol o¢(f) of a smooth
function f is f itself (thought of as the operator of multiplication by the constant
f(p) on T,M for each p) and similarly the symbol o,(X) of a vector field X is X

itself (thought of as the constant-coefficient first order operator dx(,) on T, ).

Getzler symbols

Now let M be an even-dimensional Riemannian manifold and S a Clifford bundle

over it. Recall from 4.12 that we have an isomorphism
End(S) = C{TA{) ® End¢y(S)

and we use this isomorphism to make End(S) into a bundle of filtered algebras, using
the standard filtration of CI{(TAf) and giving degree zero to elements of Endc(S).
We will call this the Clifford filtration on End(S).

We want to study the algebra D(S) of differential operators acting on sections of
S. This algebra is generated by Clifford multiplications, covariant derivatives, and

sections of the bundle Endc(S).

DEFINITION 12.10 The Getzler filtration on D(S) is that determined (using the
construction of 12.4) by the following assignment of degrees to the gencrators of
D(S):

(i) A Clifford module endomorphism of S has degree zero;

(ii) Clifford multiplication ¢(X), for X € X(Af), has degree one;

(iii) Covariant differentiation Vx, for X € X(M). also has degree one.
Whenever we think of D(S) as a filtered algebra. we will use this filtration.
We will define a symbol map on D(S). Like that of the previous section, its range

will be the sections of a certain bundle of differential operators on TAf. But the

operators no longer have constant coefficients.
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DEFINITION 12.11 Let V be a vector space. The notation (V') will denote the

algebra of polynomial coefficient differential operators acting on functions on V.

Notice that (V) is a graded algebra, if we give an operator z09°/8z” the degree
18] - laf.

EXAMPLE 12.12 Recall that the Riemann curvature operator R may be regarded
as a 2-form with values in End(TM). Let X € X’(M) be a given tangent vector field.
On T,M, the function v — (R,X,.v) is a linear map T,M — A? T, (M); identifying
T with T via the metric we may regard this as a degrec onc polynomial function
on T, with values in A?7T,. This member of P(TM) ® A" TM constructed by this
process will be denoted by (RX, ).

PROPOSITION 12.13 There is a unique symbol map
0.: D(S) = C2(P(TM)® A" TM ® Endc(S))

which has the following effect on generators:
(i) oo(F) = F for a Clifford module endomorphism F;
(it) a,(c(X)) = e(X), that is exterior multiplication by X, for X € X(M);
(iii) 01(Vx) = 8x + L(RX,-). where the notation is that of 12.12.

It is clear that such a symbol map is uniquely determined by its effect on the
generators. In fact, the specification of its effect on the generators does determine a
unique symbol map on @3 V', where B = End¢(S) and V = X (M) & X(M). The
question is whether the symbol is well-defined on D(M); does it factor through the
quotient map @3 V — D(S), or in other words does it respect the relations between
the chosen gencrators of D(S). We will complete the proof that o, is well-defined
in the next section, by considering the action of a differential operator on a suitable
space of formal Taylor series. Here, however, is an example to show that o, does
respect a crucial relation, that which expresses the curvature as the commutator of

covariant derivatives.
ExaMPLE 12.14 In D(S) we have the relation

VxVy = VyVy ~ Vixy) = K(X.Y) = RS (X,Y) + F5(X,Y) (12.15)
155



where we have decomposed the curvature K into the sum of the Riemann endomor-
phism and the twisting curvature according to proposition 3.16. Let us calculate the
second order Getzler symbols g5 of both sides of this identity ard verify that they
agree. On the left, the operator V|x y) is of first order and so may be ignored. It is
convenient now to work in local coordinates; let e; be an orthonormal basis of T,Af,
with associated coordinate functions z‘. Then!
(V) = % - %E(R(e;.ej)ek,e,)zfek Aep.

Now when we calculate 02(V; ® V; - V; ® V;) = 01(V,)01(V;) — 01(V;)a1(V,), the
second order derivative and the 4-form terms will cancel between the two products

and we are left with the cross-terms, which are equal and give a total of
[al(V,»),al(Vj)] = % Z(R(e,-.ej)ek,e,)ek A [
kd

which is the symbol of the Riemann endomorphism R%(e;, e;). The twisting curvature
F3 is a Clifford module endomorphism, and so has degree zero; so we have verified

that the second order symbols of the left and right hand sides of equation 12.15 agree.
Continuing for the moment to take on trust the existence of the Getzler symbol

map

0e: D(S) = C(P(TM)® A" TM ® Endci(S)

defined by 12.13, let us calculate the symbols of some important differcntial operators.

EXAMPLE 12.16 The Dirac operator D is of Getzler order 2, and its symbol is the
exterior derivativc operator dr,s on each tangent space TAM. To see this, we choose a
local orthonormal frame and write D = ¥ ¢(e;)V;; then o2(D) = ¥ 01(c(e;))o1 (V).
We may substitute the symbols of the Clifford multiplication and covariant derivative
operators to get
ao(D) = Ze;% -3 ”H(R(e.-.ej)ek,e,)rje,» AerAe
i ij

and the term involving curvature vanishes because of the Bianchi identity.

1We have used the symmetry (R(ei.¢;)ex,e;) = (R{ex, ei)ei,€;).
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Since d? = 0, the fourth order symbol of D? vanishes. In fact, although this is not
obvious, D? also has Getzler order 2; the computation of its second order symbol is

crucial to the proof of the index theorem.

PROPOSITION 12.17 The operator D? has Getzler order 2. Its Getzler symbol

relative to an orthonormal basis of T,M is

2
- (i ZR,,x:) e
where R;; is the Riemann curvature at p (thought of as a matrix of 2-forms) and F*
is the twisting curvature 2-form at p .
PROOF This follows from the Weitzenbock formula 3.18, which states that
D*=V'V+ic+FS

where F® is the Clifford contraction of the twisting curvature. The formula 3.9 for
the operator V* gives, in local coordinates,
V'V = Z —gf&(Vle& - F;,:Vt)
ik
where the functions I}, are the Christoffel symbols associated to the Riemannian
connection. Notice that at p, the origin of coordinates, ¢’* = 6/ and T, = 0; so the
second order Getzler symbol of V*V is the same as that of the operator — 3; V;V,;,

which is

The second order Getzler symbol of F® is simply F¥, and the second order Getzler
symbol of & is zero, so the result follows. [
The Getzler symbol of the heat kernel

We will apply the Getzler calculus to the asymptotic expansion of the heat kernel
of the Dirac operator, which we derived in 7.15:

klp,q) ~ m%)—m,—?exp{ d@. Q) }Zt’(—) (p.q) (12.18)
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with ©g(p, p) equal to the identity. The heat operator is obviously not a differential
operator; we will extend the Getzler calculus to deal with smoothing operators of

this sort.

DEFINITION 12.19 For a vector space V', let C[[V']] denote the ring of formal power

series over V (formally speaking, this is the infinite direct product ﬁ ®'V).
=0

The algebra B(V) of polynomial coefficient differential op:rators acts naturally on
C[[V]]. If we make C[[V]] into a graded vector space by giving a monomial r* the
degree —|a], this makes C[[V]] into a graded P(V )-module.

Now let s be a smooth section of the bundle S® S* on M x M. Fix ¢ € A and
choose geodesic local coordinates r* with origin q. Taylor’s theorem tells us that
the function s,(r) which is the local coordinate representation of p +— s(p,q) can be

expanded (asymptotically) near zero in a Taylor series
sp(1) ~ Z % o
a

where the s, are synchronous sections of S ® S; (that is, they are parallel along
geodesics emanating from ¢). Since each s, is determined by its value s,(0) €
End(S,). the Taylor series may be thought of as an element of C[[T,M]] ® End S,.
As q varies we obtain a section I(s) of the bundle C[[TAf]] ® End S. We will call
this section simply the Taylor series of s.

The algebra C[[T,A]] ® End S, is filtered; its filtration is the tensor product
(exercise 12.30) of the filtration coming from the grading of C[[T, Af]] and the Clifford
filtration of End(S,;). \We will use this filtration to induce a filtra*ion on the space
of smooth sections s of S ® 5™; so we say that s has degree < m if its Tavlor series
Z(s) has degree < m (in the product filtration) at each point. The Clifford symbol
End(S,;) = A" T,M & Endc|(S,). composed with the Tayvlor expansion map X. gives

rise to a symbol map
0o: C*(SBS*) = C=(C[[TM] ® A" TM ® Endc(S)).

DEFINITION 12.20 We will call the degree m of s relative to the filtration that we

have defined above its Getzler degree, and we will call the symbol o,,(s) the Getzler
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symbol of 5. We will also use the notation 0% (s) for the constant term in the Taylor

series o,,(s), which we will call the constent pert of the Getzler symbol.

REMARK 12.21 The natural product on smoothing kernels C*(5R 5%} is, of course,
given by the composition of the corresponding smoothing operators. The symbol
that we have defined does not have the homomorphism-like property with respect
to this product (it does have this property with respect to ‘pointwise multiplication’
of kernels, defined in an appropriate way). But this is irrelevant for our purposes;
the relevant algebraic structure is the action of the differential operators D(S5) on
C*(S ® §7), and here there is a good relationship between the Getzler symbols of
differential operators defined in the previous section, and the newly defined Getzler

symbols of smoothing kernels. This is described in the next proposition.

PROPOSITION 12.22 Let T € D(S) be one of the generators used in the previous
section; that is, T is either a Clifford module endomorphism F, a Clifford multipli-
cation operator ¢(X), or a covariant derivative Vy. Let m € {0,1} be the Getzler
order of T. Then for any smoothing operator @ on C=(S), with Getzler order £ k,
the smoothing operator TQ has Getzler order € m + k, and the relation

Om4(TQ) = 0m(T)ow(Q)
holds between the syinbols.
The ‘composition’ on the right hand side of this inequality is obtained from the

module action of B(T M) on C[[TAf]] and the algebra structure of A*TM and
Endei{TAM).

PROOF Let Q have smoothing kernel s, fix ¢ € M and geodesic coordinates z* with
origin ¢, and let s,(z) ~ ¥ 5,7° be the Taylor expansion of s near q.

First we consider the case T = F, a Clifford module endomorphism. If F happens
to be synchronous at ¢ then the Taylor coefficients of Fs are precisely F's,, so the
result is obvious in this case. In general let F}; be the synchronous section of Endci($)
which agrees with F at ¢; then F — Fy has vanishing constant term in its Taylor

expansion, so gg(F — Fy) = 0 and thus
ok(Fs) = ox(Fos) = oo( Fp)ow(s) = ap(F)ow(s)
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as required.

Second, if T = ¢(X) where X is a vector field an exactly similar argument shows
that op41(c(X)s) = 0y(c(X))or(s).

Third, and most important, let us consider the case where X is a vector field and
T = Vx. Let J; be the vector fields associated to the geodesic local coordinate svstem
z'; it suffices to prove the result for X = ;. Let ¥ = Zj £/9; be the radial vector
field.

Suppose that s is a syuchronous section: then Vy s = 0. Let
sz ~ Z fa.‘L‘a
[+ 4
be the Taylor expansion of Vxs. By definition
VxVys = VyVyxs — Vixyis = K(X,Y)s
where K is the curvature operator. But Vy s = 0, and an easy calculation shows that
[X.Y]=X and Y - r* = |a|z°, so we get
=Y (lal + Dtaz® ~ K(X,Y)s =3 Kija's.
a J

Thus the Taylor coefficients of V xs are determined by the Taylor coefficients of K.
But we have the identity K = RS + FS, where the Riemann endomorphism R
is an element of the Clifford algebra of degree < 2, and F¥ is a Clifford module

endomorphism. Therefore if we retain only the terms of degree < k + 1 in the above

expansion we get

Vxs=-3Y 17 R%(8;,8;)s + lower order terms.
j

But the second order symbol of RS(9;,9;) is —LR;;, so that

-2

okr1(Vxs) = 3 Y Rijz’ Aoi(s) = 01(V)ou(s)
J

which verifies the desired identity in case s is synchronous. The general case follows
by applying the special case to each of the coeflicients s, appearing in the Taylor

expansion. (O

This allows us to give our deferred proof of the remaining part of 12.13.
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COROLLARY 12.23 The Getzler symbol is well defined on D(S), and satisfies the
identity
Om+k(TQ) = om(T)or(Q)
for all T € D(S) of Getzler order € m, and all Q of Getzler order £ k.
PROOF Given T € D(S) of Getzler order < m, let T denote a particular repre-

sentation of T in terms of generators and relations. We must show that the symbol

om(T ) depends only on T. But by repeatedly applying 12.22 we sec that
Im+i(TQ) = 0m(T)or(Q)

and since 0x{Q) may be an arbitrary formal power series the polynomial coefficient

differential opcrator om(T) is uniquely determined by this equation. [

We apply the calculus that we have developed to the heat kernel ki{(p, q). The heat
kernel has the asymptotic expansion given by 12.18, and it satisfies the equation

8
[g + Df,] kdp.q) = 0.

PROPOSITION 12.24 The terms ©;(p.q) is the asymptotic expansion of the heat
kernel have Getzler order € 2j. The ‘heat symbol’

W, = h(0g8g + 10201 + --- +t"%0,0,,3)

satisfies the equation OW/dt + oo( D)W = 0, and it is the unique solution of this
equation of the form h,(vg + tv, + - -+ + t"/%v,5) in which v; is a symbol of Getzler

order 2j and vy = 1.

PrOOF We recollect from 7.15 the process by which the asymptotic expansion of
the heat kernel was constructed. Suppose that the heat kernel is represented, in local
coordinates near g, by a formal series (z,t) = h(z)(uo(z) + tuy(x) + ---). Using
the formula for the commutator of D? with multiplication by a smooth function, and
the fact that h, approximately satisfies the heat equation, wc obtained a system of
differential equations

Va/ar (T‘Jg]“u,) = “#-‘g]’ldD?“}‘__]
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where by convention we put u;_, = 0. These equations determine the u; uniquely
from the single requirement that uo(0) be the identity. Comparing the Taylor series on
the left and the right hand sides, and remembering that V5,5, annihilates synchronous
sections, we see vy induction that u; has Getzler order < 2j and that

d , . -
o (7"021(Uj)) = " ay(D?)agja(uj-1)

on T,M. These however are precisely the recurrence relations satisfied by the
asymptotic-expansion coeflicients of the solution to the equation OW /3t + oo( D)WV =
0. Since the recurrence relations determine the coefficients uniquely (given the value

of ug at the origin), the claimn follows. O

The exact solution

We will now construct an explicit solution to the differential equation 911’/9t +
02(D*)W = 0 which appears in proposition 12.24. Because of the uniqueness

assertion in that proposition, this will give us an explicit formula for the heat symbol.

PROPOSITION 12.25 Suppose that Ri.i is a skew symmetric matrix of real scalars,

and that F is a real scalar. Then the differential equation
0 7/ ?
o _ G LIS Rl wa Fuw=
5 §i (6:‘+4§j:R"I) w+ Fu

has a solution for smallt which is an analytic function of the matrix entries R;; and of
F, and which is asvmptotic to (4nt)~"/2 exp(—|z|?/4t) as t approaches 0. Explicitly,
this solution is equal to

’ tR/2 1 /tR tR .
47t)""2 det!/? (_—) ex (—— <—coth —-—1-,1:>) exp(—tF).
(471) sinhtR/2 P\7a\2 2 p(=F)

PROOF An obvious substitution shows that it is enough to prove the special case

F = 0. We use separation of variables. There is an orthonormal basis with respect

to which the matrix of R is a direct sum of 2 x 2 blocks

(52)
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with eigenvalues +i6. It is enough then to prove the 2-dimensional case, that if R
has this 2 x 2 block form, then the heat kernel is

itd . ;
w(z,t) = (4at)~! (&T:(tgw) exp (-%zﬂxl? coth(ztﬁ/?)) .

The differential equation to be solved is dw/dt + Lw = 0, where

2 2
() () e

9r 4 8y 4
with
* & 2.2, 2
Ly (axz—'a?)-ﬁo (z°+y)
1 a a
Ly = 53(35§—y-§;) .

The claimed solution w is invariant under rotations of R2. Thercfore, Lyw = 0,
since L, is the infinitesimal generator of the rotation group acting on R?, and thus
annihilates rotationally symmetric functions. It will suffice then to show that dw/8t+
Low = 0. Now we can separate variables further into r and y. By Mehler’s formula

{see 9.12 and remark 9.13), a solution to the equation

ow w 1 5,
5t oz 1w cv=0

o 82 \* a2 evps
(4xt)"3 (sinh 6] 2) exp (-—839x coth(zt@/?}) .
Taking the product of this formula for z and the corresponding formula for y, we get

the result. O

The operator g2(D?} is equal to

2
9 . :
-.Z,-: (5;:—' +3ZR;J-IJ) +F
j
as we calculated above. Here the curvature R is a skew symmetric matrix whose
entries are 2-forms, and F is a 2-form with values in Ende{S). The matrix entries

of R all commute with one another and with F.
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Two-forms are nilpotent elements of the exterior algebra. Therefore, if we think of
the formula from 12.25

= (am) -2 dett/2 [ tH/2 (-l(ﬁ tR >> -
W = (4xt)"/“det (sinhtR/Q exp (— 2coth 55T exp(—tF)

as a formal power series in the entries of R and F, it converges for all valuss of ¢, and
(by analytic continuation) it gives a solution to the equation 8W/8t + ao( D)W = 0.

Moreover, by explicit calculation, this solution W has an expansion

1
(4nt)n/2

where the formal power series v; has Getzler order < 27, aud v9(0) = 1. From the

(vo + tvy + -+ + t" 0 )

uniqueness assertion of proposition 12.24 we therefore obtain in particular:

PROPOSITION 12.26 The constant parts of the Getzler symbols of the terms appear-
ing in the asymptotic expansion of the heat kernel for the Dirac-type operator D are

given by

n/‘2 sz =
0 (0.} = 1/2 e —
jgoorz,(@,) det (sinh R/’Q) exp(—F) € ATM @ Endai(S).

The index theorem

We have now arrived at the main theorem of this book.

ATIYAH-SINGER INDEX THEOREM 12.27 Let M be a compact, even-dimensional
oriented magifold and let S be a canonically graded Clifford bundle over it with

associated Dirac operator D. Then
Ind(D) = /M A(TM) A ch(S/A)

where ch(S/A) denotes the relative Chern character of § as defined in 4.25. In
particular, if M is 2 spin manifold and § = A is the spinor bundle, the index of the
Dirac operator on A is equal to the A-genus of the manifold M.

REMARK 12.28 In the notation of cohomology theory the right-hand side of the
formula is usually written (A(TM) — ch(S/A),[M]), where — denotes the cup
product and [M] is the fundamental homology class of M.
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REMARK 12.29 It is easy to extend the statement of the theorem to the case of a
general grading on §. Recall from 11.3 that S can be written as a direct sum S, @ S,
of canonically and anticanonically graded sub-bundles. Using D, and D, to denote

the corresponding Dirac operators, we have
Ind(D) = Ind(D,) - Ind(D,) = /M A(TM) A ch,(S/A),

where the relative super Chern character is defined by ch,(S/A) = ch(S./A) —
ch(S,/A).

PROOF OF THE INDEX THEOREM Recall from the previous chepter (11.14) that

1
Ind(D) = .(W /M tr, E),,;g

where ©,,/5 is one of the asymptotic-expansion coefficients that we have been con-
sidering. Moreover by Lemma 11.5, the supertrace of ©,;, which belongs to
C(TM )@Em‘ic;(!i‘), can be computed from the top degree part of ©,2 in the filtration
of the Clifford algebra. Now the symbol ¢(©,2) picks out this top degree part, and
so by 11.4 and 11.5,

tr, Orp2 = (—2i)2tr5/2(03(On2)).
However by 12.26, the symbol ¢%(©,/2) is exactly equal to the n-form part of

det!/? (le;/_}?/z) exp(—F), and therefore tr ©,,, is the n-form part of
R/2

_5\/2 qar1/2
(=20)"" det (sinhR/z

) tr/2(exp(-F).

But by definition of the ﬁ-genus and of the relative Chern character, this equals
(—2i)"/%(+2xi)*/? times the n-form part of A(TM)ch(S/A). The index theorem
follows. O

Notes

Getzler’s proof of the index theorem appeared in [31], with a different version in
[32]. The argument in this chapter is rather closer to that in [31], although the reader
should note that the symbol algebra defined in [31] is the ‘Fourier transform’ of that
which we have employed here. For the ‘rescaling’ approach of [32], see exercise 12.31.
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The ‘Getzler calculus’ has been employed in many other index-theoretic calculations
involving the asymptotics of Dirac-type operators; for a significant example see [23].
A number of similar proofs of the index theorem have appeared; for bibliography

and discussion consult [12], especially the notes at the end of Chapter 4.

The original statement of the Index Theorem applied to any elliptic operator on
a manifold, not necessarily of generalized Dirac type. It can be shown however that
any such operator is equivalent, for index-theoretic purposes, to a generalized Dirac
operator. This assertion is implicit in [9]; the fundamental reason is the appearance
of Dirac operators in the formulae for Poincaré duality between K-theory and A-

homology.

Exercises

QUESTION 12.30 Let A and B be filtered algebras. Show that a filtrationon A® B
may be defined by

(A®B)m= z Ak®Bl-

k4l=m
(This is called the tensor product filtration.)

QUESTION 12.31 Let M be a compact spin manifold, S the spinor bundle, and for
a point ¢ € M let Oy(S) denote the space of germs of sections of S ® S near to
g. By choosing geodesic coordinates with g as origin, and trivializing S near ¢ by
radial parallel transport, we may identify elements of O,(S) with germs of smooth
functions f: R* — End(S,) = Cl(R"). We will write such an f as }33_, fi(), where
fr € CI(R™)* © Cl(R™)¥~1. Getzler’s rescaling is the map Ry: O, — O, defined by
Ryf(z) = Z": Ak fi ().
k=0
Show that if D € D(S) has Getzler order £ m, then

(D) = lim A"RI'DR,

in an appropriate topology. (Notice that this gives a different proof that the Getzler

symbol of a diffcrential operator is well-defined.)

166



QuEesTION 12.32 Extending the argument of the previous question, suppose that f
is now the germ of a time-dependent section of S ® 57, and define
Rxf(l', t) = z An_kfk(Axa Azt)‘
k=0

If f is a solution to the heat equation 8f/dt + D*f = 0, show that g = R;'f isa
solution to the rescaled equation (8/8t + Ry'D?R,)g = 0. Now deduce the index
theorem, by letting A — 0 and making use of the fact that the asymptotic expansion
coefficients for /9t + L depend continuously on the coefficients of the operator L.
(See [32, appendix B].)
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CHAPTER 13

Applications of the index theorem

In this chapter we will review a number of classical applications of the Index Theorem.
Some of the results (such as Hirzebruch’s signature theorem) actually predate the
index theorem itself, and were instrumental as motivation for the first proof. Others
(such as the index theorem for the spinor Dirac operator) were among the first new

consequences to flow from it. We begin with the spinor Dirac case.

The spinor Dirac operator

Let M be a compact even-dimensional spin-manifold, A the associated spin bundle,

and D the Dirac operator on A. In this case the index theorem takes the form
Ind(D) = (A(M),[M]).

Recall that the A-genus of M which appears on the right hand side is a certain

combination of the Pontrjagin classes of TM. In fact we have
Ay =—p1 /24, As=(—4p, + 1p%)/5760, Ay = (—16p3 + 44p\p2 — 31p3)/967680

where A, denotes n-dimensional component of 4. We recall from lemma 2.27 how
these expressions are calculated. Let

2 1 7
VE2 1, T o

9= anEE LT 5760

Expand the product [] g(y;), where the y; are formal variables, as a symmetric formal
power series, and then substitute the Pontrjagin class p; for the i"th elementary
symmetric function in the formal variables y;. The result is the expansion of the

A-class in terms of the Pontrjagin classes.

An early application of the spinor index theorem was to the study of topological
obstructions to positive scalar curvature,
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THEOREM 13.1 (LICHNEROWICZ [48]) Let M be a compact manifold which admits
a spin structure, and for which the A-genus (A(M), [M]) is non-zero. Then M admits

no metric of strictly positive scalar curvature.

Proor This is a consequence of the Bochner vanishing argument (3.10). Note that

for the spinor Dirac operator, the Weitzenbock formula just says
D*=V'V+ik
where k is the scalar curvature. (This follows from 3.18 and 4.21). Thus, if «x > 0,

the Bochner argument shows that the kernel ker D = ker D? is zero. But then
Ind(D) = A(M) is zero also, a contradiction. O

REMARK 13.2 In high dimensions the scalar curvature is a very weak invariant
of the geometry of a manifold, since it is determined by averaging a large number
of components of the Riemann curvature tensor. This means that it is difficult to
control the possible scalar curvatures of metrics on a compact manifold Af; in fact,
it is known that there is no obstruction to any manifold having a metric of negative
scalar curvature!. Thus the simple obstruction to positive scalar curvature provided

by Lichnerowicz’ theorem is a remarkable one.

There is in fact a well-developed theory of positive scalar curvature manifolds, in
which Lichnerowicz’ theorem appears as the first of a series of obstructions which
are related to the cohomology of the fundamental group. To investigate the higher
obstructions one needs a version of the Index Theorem which works on the universal
cover of a compact manifold, taking the fundamental group action into account. Such
a theory can be developed using the K-theory of operator algebras. In chapter 15
we will discuss (in an elementary way) a simple example of a higher index theorem

of this sort.

One piece of information which the Index Theorem immediately impliesis that the
A-genus of a spin manifold is an integer. The expression of the j—genus in terms
of the Pontrjagin classes does not provide any a priori reason for this; in fact, the

.Z—genus of a non-spin manifold need not be an integer (exercise 13.18), and Atiyah

YOr even of negative Ricci curvature! see [49].
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has recorded that the question ‘why is the A-genus of a spin manifold an integer?’
provided one of the original motivations for the Index Theorem. In certain dimensions
one can get slightly more information by studying the real (as opposed to complex)
representation theory of the Clifford algebra.

PROPOSITION 13.3 The A-genus of a 4-dimensional spin manifold is an even integer.

In fact, the conclusion holds in any dimension congruent to 4 modulo 8 (see [47])
but we do not propose to develop the theory needed to prove the result in this
generality.

ProOF We need to know about the structure of the four-dimensional Clifford
algebra. Recall that the skew-field H of quaternions is spanned as an R-vector space
by 1, i, j, and k, with i? = j2 = k? = ijk = ~1. Now consider the matrix algebra
M,(H). The matrices

a0 0N (oK) _fo1
1“2,012 j013 kov‘l -1 0

all have square —1 and anticommute, so they generate 2 homomorphism of algebras
CI{(R*) — M,(H), which by dimension counting must be an isomorphism. Thus
CI{R%) acts as a matrix algebra on the two-dimensional quaternionic (right) vector
space H?, and therefore CI(R*)®C acts as a matrix algebra on the underlying complex
vector space C*?, which (again by dimension counting) is just the spin representation.
The point of this calculation is to show that the spin representation of CI{RY)
has a natural quaternionic structure; it is the complex vector space underlying a
quaternionic vector space, or, equivalently, it is provided with a canonical antilinear
anti-involution J (equal to right multiplication by the quaternion j). Therefore the
spin representation of Spin(4} also has such a quaternionic structure. The spinor
bundle A can be considered as a bundle of quaternionic vector spaces, and since
the quaternionic structure is compatible with the connection and coinmutes with the
Clifford action, the kernels of Dy and D_ are quaternionic vector spaces also. The

result follows since the dimension over C of a quaternionic vector space must be even.
O
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The signature theorem

Let M be a smooth, oriented, compact Riemannian manifold, of even dimension
2m. Let D denote the de Rham operator on differential forms on M, i.e. the Dirac
operator of A*T*M @ C considered as a Clifford bundle. We will equip this bundle
with the canonical grading, in the sense of 11.3; it is defined by the Clifford action of
i™w, where w is the volume form in the Clifford algebra. We refer to the associated
Dirac operator D (with this grading) as the signature operator.

Clifford multiplication by w is just the Hodge *-operator (1.21) up to sign. Thus
we may define the grading operator

€ = 1™w = i™HP~D . (on p-forms)

without reference to Clifford algebras.

We can evaluate the index of the signature operator in terms of algebraic topology.
Suppose that the dimension 2m of M is a multiple of 4. Then the cup-product in
cohomology induces a symmetric bilinear form (the intersection form, see 6.5) on
H™(M;R):

H™(M;R) ® H™(M;R) — H"(M;R) -J-; R.

This bilinear foum is non-degenerate, by Poincaré duality (6.4).

DEerFINITION 13.4 The signature of the 2m-dimensional oriented manifold A (where
m is even) is the signature (that is, the number of positive eigenvalues minus the

number of negative eigenvalues) of the intersection form on H™(M;R).

By its definition, the signature is an invariant of the oriented homotopy type of AM.

PROPOSITION 13.5 Let M be a compact oriented manifold of dimension 2m, where

m is even. Then the index of the signature operator on M is equal to the signature
of M as defined above.

PROOF Let us write the Laplacian A = D? as a direct sum A* & A~ relative to
the canonical grading £. Then

Ind(D) = dimKer(A*) — dim Ker(A™) .
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Now let Af, A; denote the restrictions of A+, A~ to the ¢-invariant subspaces
CO(ANT"M @ A7 'T*M), 0 < | < mand CRA™T"M) (I = m). Ifl <m
and o € Ker(A]), then a = § + ¢(8), where 8 is a harmonic I-form; and then
B — ¢(B) € Ker(Af). Therefore, Ker(A]) and Ker(A;) are isomorphic for | < m,

and

Ind(D) = dimKer(A}) - dimKer(A)
= dim(H*) - dim(H")

where H* and H™ are the +1-eigenspaces of * on harmonic m-forms (notice that

€ = x on m-forms). The quadratic form
a— / aAa

is positive definite on H* and negative definite on ™, so Ind(D) equals the signature
of this quadratic form on the space of harmonic m-forms. The Hodge theorem, 6.2,

now completes the proof. O

Now we will calculate the index of the signature operator. Let § = A" T*M be the
graded Clifford bundle on which the signature operator acts. We need to know the
relative Chern character ch(S/A).

LEMMA 13.6 The relative Chern character ch(S/A) is equal to 2"S(TM), where
G is the Pontrjagin genus associated to the holomorphic function z s cosh(%z).

Proor The bundle S is isomorphic, as a bundle of Clifford modules, to the Clifford
algebra Cl(TM) with its canonical grading. But, locally, Cl = A ® A* and therefore
the relative Chern character of S is equal (locally, as a differential form) to the
absolute Chern character of A*, the dual of the spin representation. Proposition 4.23
then identifies this Chern character as 2™&(T'M). Because these calculations can all
be thought of as local ones with the curvature tensor, they remain valid even in the
absence of a global spin structure on the manifold M. O

Recall that Hirzebruch’s £ class is the Pontrjagin genus associated to the holomor-
phic function z — /z/tanh /.
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HIRZEBRUCH SIGNATURE THEOREM 13.7 The signature of a manifold M (of
dimension 2m divisible by 4) is given by evaluating the £ class on the fundamental
homology class; in symbols

Sign(M) = (L(TM),[M]).

PROOF As we have seen, the signature of M is equal to the index of the signature
operator D. By the Index Theorem,

Ind(D) = 2™(A(TM)S(T M), [M]).

Now £,(TM) = A(TM)S(TM) is the Pontrjagin genus associated to the holomor-

phic function

gz} = 'sm\éz—jgjz) . {COSh(‘/;/z)} = MI\%

whereas the L class is by definition associated to the holomorphic function ¢(z) =
V/Z/ tanh /z. Therefore we have the equality
[Cy(T M) = 27T M)k

between the k-dimensional pieces of £, and £; so that in particular 2™[L(TM)]or, =
[£(TM)]2m and the index theorem follows. [

REMARK 13.8 One sees from the proof above that the genus £, is in some respects
more natural than £, and some auathors therefore define the £-genus to be what we
have called £,. We have retained the original definition of Hirzebruch.

By calculations analogous to those carried out above for .i, one can work out the

first few components of the £-genus,
Li=p/3, Lg=(Tp2—p})/45, Li2 = (62p3 — 13p1p2 + 2p})/945.

In particular we see that in dimension four, the signature is equal to —8 times the

A-genus. From 13.3 we therefore obtain

RocHLIN'S THEOREM 13.9 The signature of a (smooth) spin four-manifold is
divisible by 186.
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We emphasized smoothness here for the following reason. The spin condition on
a four-manifold has a simple interpretation in terms of the intersection form; an
oriented four-manifold is spin if and only if its intersection form is even, that is, if
its matrix (relative to an integral basis of H2(M;Z)) has its diagonal entries even.
1t is known for number-theoretic reasons that any even, unimodular quadratic form
over Z must have signature equal to a multiple of 8. The additional factor of 2
in Rochlin’s theorem depends crucially upon smoothness; Freedman produced an
example of a compact topological four-manifold which has even intersection form and
signature 8, an indication of the dramatic difference between the topological and

smooth categories in this dimension [30, 27].

The Hirzebruch-Riemann-Roch theorem

Now we will briefly discuss the most famous application of the index theorem in
compler geometry. Let M be a compact n-dimensional complex manifold. As we saw
in 3.25, the complex structure gives an operator J on each real tangent space to M,
with J2 = —1, and we get a decomposition of TM @ C into two complex conjugate
pieces

TMQC=T"MaTM (13.10)

where T'YM is isomorphic as a compler bundle to TM. Then (3.26) the bundle
S = A(T%'M)* carries a spin representation of the bundle of Clifford algebras
CI(TM). By remark 4.30, M can be endowed with a Spin°-structure of which S is

the spin representation; and the fundamental line bundle for this Spin® structure is
L= Homc;(g, S) = Homc|(/\(T”°M)‘,/\(T‘“‘IM')‘).

A homomorphism of Clifford modules from A*(T'PM)* to A"(T%' M) is determined
by the image of 1 € A?, and a moments thought shows that 1 must be mapped to an
element of the top exterior power A"(T%!' M)*. Thus L = A®(T%' M)*.

LEMMA 13.11 For the Clifford bundle S defined above, the relative Chern character
ch(S/A) is equal to the Chern genus of the complex tangent bundle T*®M associated
to the holomorphic function z v e~*/2,
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PROOF By exercise 2.37, ¢;(L) = ¢;({(T*' M)*) = ¢;,(T"°M). Therefore the Chern
character of the bundle L is e~®. However, by 4.29, the twisting curvature of S is
half the curvature of L and thus the relative Chern character of S is e~/2. This is

exactly the Chern genus associated with the function e=*/2. [

In applying the Atiyah-Singer index theorem it is helpful to reformulate the expres-
sion for the j-gcnus. Recall that the Pontrjagin classes of TM are, by definition, the
Chern classes of its complexification TM ® C. Using the decomposition 13.10 above,
and remembering that ¢;(T*'M) = (=1)'c(T'®M), we can express the Pontrjagin
classes of TM in terms of the Chern classes of the complex tangent bundle 7% °Af.

A simple calculation gives

LEMMA 13.12 The A-genus of a complex manifold is equal to the Chern genus of
its complex tangent bundle associated to the holomorphic function
zf2
e sinlfz/.?'

Let W be a holomorphic vector bundle over M. The space of holomorphic sections
of W is then finite-dimensional and in many situations in complex geometry one
wants to compute, or at least estimate, its dimension. One may form the Dolbeault
complez of W

QO(W) o, Qo1 (W) s .3 QW)
where %F(W) denotes the space of sections of the bundle A*(T%1Af)* @ W. By
Hodge theory this complex has finite-dimensional cohomology groups, of which the
first, H99(W), is just the space of holomorphic sections of W. The Riemann-Roch

theorem compuies the Euler characteristic of the Dolbeault complex.
THEOREM 13.13 (HIRZEBRUCH-RIEMANN-ROCH) In the above situation we have
S (-1)* dim H**(W) = (Td(T"°M) ch(W), [M])
k

where the Todd genus Td of a complex vector bundle is by definition the Chern genus

associated to the holomorphic function z v

OUTLINE PROOF Provide W with a hermitian metric and compatible connection.
Consider the graded Clifford bundle S @ W. If M is a K&hler manifold, the Dirac
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operator of this Clifford bundle is equal to v2(8 + 8”) (see 3.27), and therefore
its index is equal to the Euler characteristic of the Dolbeault complex Q%*(W). In
general v2(8 +8") = D + A, where A € End(S) is a zero order term. The homotopy
D +1tA, t € [0,1], together with the homotopy invariance of the index (11.13), shows
that the index of D is still equal to the Euler characteristic in this case. Now by the
Index Theorem,

Ind(D) = (A(TM)ch(S/A)ch(W),[M])

and the two lemmas above show that A(TM)ch(S/A) is the Chern genus associated

to the holomorphic function

2f2 a2
sinhz/2'e Te-1 =

Local index theory

The classical examples that we have presented so far all depend on the global
formula for the index in terms of characteristic classes. However, it is one of the
virtues of the heat equation approach to the index theorem that it does not merely
identify the index in global, topological terms (as a characteristic class), but also in
local, geometrical terms (as a specific differential form). In this final section we will

mention without proofs some results that make essential use of this local structure.

As one might expect, locality becomes important on non-compact manifolds.

PROPOSITION 13.14 Let M be a complete Riemannian manifold, D a Dirac operator
on a Clifford bundle S, and suppose that the curvature term K in the Weitzenbock
formula is uniformly positive outside a compact subset of M. Then the L2-kernel of

D is finite-dimensional, and D is invertible on the orthocomplement of this kernel in
L%(S).

This proposition means that, if S is graded, the index Ind(D) can be defined as
in the compact manifold case. Can we find a formula for the index? Suppose for
instance that we are considering the classical Dirac operator on a spin manifold M

with a cylindrical end. This means that M is the union of two pieces

M= Afo U8M0=N N x [0,00)
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a compact manifold M, with boundary My = N, and a semi-infinite cylinder (with
the product metric) N x [0,00). If we assume that N has positive scalar curvature,
then the conditions of the proposition above are satisfied. Moreover the ff—genus
form vanishes along th= end, so is compactly supported in My. Thus the integral

1Y A makes sense, and one might conjecture that this integral equals the index of D.

Examples show that this conjecture is false. To quantify its failure, Atiyah, Patodi
and Singer introduced the eta invariant of the manifold M. Recall from exercise 8.23
that we can define the zeta function associated to a Dirac operator D on a compact

manifold such as N by
§s) =21

j
where the numbers A; are the non-zero eigenvalues of D). Similarly, we define the eta

function by
n(s) = 3 (sgn A;)|A; ™%
I

where sgn A; € {%1} is the sign of A;. These Dirichlet series converge for large values
of Rs, but using the asymptotic expansion for the heat equation one can show that
they can in fact be analytically continued to meromorphic functions on the whole
complex plane. It turns out that the eta-function has no pole at zero (this is quite
a deep result, proved by a Getzler symbol argument analogous to that used in the
proof of the Index Theorem). The value n(0) can be thought of as a renormalization
of the ‘signature’ of the quadratic form associated to D, the ‘difference between the
dimensions’ of the (infinite-dimensional!) positive and negative eigenspaces of the
operator D. For this reason Atiyah, Patodi, and Singer describe it as a measure of

spectral asymmetry.

THEOREM 13.15 (ATIYAH-PATODI-SINGER [5]) Let M be a spin manifold with a

cylindrical end of positive scalar curvature, as above. Then
Ind Dy = /M A(TM) - Lnw(0)

where D)y denotes the Dirac operator on M, and ny is the eta-function associated

to the Dirac operator on N.
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The proof uses the heat equation method, with a careful analysis of the heat
kernel obtained by grafting the construction of chapter 7 on the compact piece My

to a construction using separation of variables on the cylindrical end.

REMARK 13.16 Notice that, as a consequence of this result, if M and M’ are two
different manifolds which have isomorphic cylindrical ends, then the difference of the
indices of the Dirac operators on My and M, is equal to the difference of the integrals
of the A-forms. A statement of this kind in fact holds in great generality for any
two manifolds which are ‘isomorphic at infinity’: this is the relative index theorem of
Gromov and Lawson [38], a key tool in some studies of the positive scalar curvature

problem.

Notes

For a survey of the theory of positive scalar curvature metrics, see [70].

The original reference on the signature theorem is the book by Hirzebruch [40);
this also contains the first version of the generalized Riemann-Roch theorem. The
treatment of the signature theoremn by Milnor and Stasheff [55] is another classic. In
particular this book gives the application of the signature theorem to the construc-
tion of (some) ‘exotic spheres’, that is smooth manifolds homeomorphic, but not
diffeomorphic, to the standard sphere. The connections between signatures and the
topology of manifolds lead to surgery theory, which involves ‘inverting’ the signature

theorem in a certain sense. See [17].
For much more about Riemann-Roch theorems and complex geometry, see [36).
The papers [5, 6, 7] are the original ones on the eta-invariant. The book [52]

embeds the theorem in a sophisticated geometric-analytic framework which also

includes the proof of the ordinary index theorem.

Higher index theory, that is index theory taking into account the fundamental
group or other ‘large scale’ structure, is a rapidly developing subject. An overview is
attempted in [63], and see also [43, 22] for related deep discussions. The transition
from ‘lower’ to ‘higher’ indices corresponds in surgery theory to the transition from
[17] to [72].
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Exercises

QUESTION 13.17 Show directly (that is, without appealing to the index theorem)
that the index of the spinor Dirac operator on a 6-dimensional spin manifold is zero.
(You will need to investigate the real structure of the Clifford algebra, as in our
proof of Rochlin’s theorem.) Can you extend the argument to cover all dimensions

congruent to 2 modulo 47

QUESTION 13.18 Compute the A-class and the L-class of CP2. Verify the signature

theorem in this case, and show that CP? has no spin structure.

QUESTION 13.19 Construct a natural homomorphism U{k} — Spin®(2k) which

makes the diagram
U(k)

Spin‘(2k)

SO(2ky x U(1)
commute. {Here the map U(k) — SO(2k) x U(1) is equal to i x det, where i: U(k) —
SO(2k) is the vatural inclusion.) Hence get another proof that a complex manifold
has a natural Spin® structure, for which the canonical line bundle is the determinant

bundle of the complex tangent bundle.

Verify that this is the same Spin® structure as we used in the text.

QUESTION 13.20 Let A be a compact oriented manifold and let S = A" T"Af @ C
equipped with the Euler grading (see 11.8). Show that the canonically and anticanon-
ically graded parts of § are locally isomorphic to A ® A, and A ® A_ respectively.
Using exercise 4.34, obtain the Chern-Gauss-Bonnet theorem

(=1) dim(H(M; R)) = ((TM), [M])
from the index theorem.

QUESTION 13.21 Let A be a compact oriented 4-manifold. The anti-self-dual (ASD)
complex of M is

QO(M) —2» QY(M) —2> Q2 (M)
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where Q2 consists of those two-forms for which @ = — x . Show that the ASD

complex has finite-dimensional cohomology, and compute its Euler characteristic.

(Nonlinear equations involving self-duality are of critical importance in the study

of smooth four-manifolds; see [27].)
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CHAPTER 14

Witten’s approach to Morse theory

Let M be a compact smooth manifold, h: M — R a suitable smooth function, and
for c € R let M, = {p € M: h(p) < c}. For c sufficiently small, M. = @, and for ¢
sufficiently large, M, = Af. The idea on which classical Morse theory depends is that,
as c varies, the topology of M. will not change except when ¢ passes through a critical
value of h: and that when ¢ does pass through such a critical value. the change in
the topology can be investigated locally, near to the corresponding critical point (or
points) of . Thus the critical point structure of h will give rise to a combinatorial
model for the topology of Af. For an account of this classical and powerful theory
see [54].

In 1982, Witten [73] gave a new approach to some of the ideas of Morse theory.
His method was to deform the de Rham complex of Af, in a manner depending on
h, so that the low-energy eigenvectors of the Laplace operators became concentrated
near the critical points of h. The object of this chapter is to give an elementary
exposition of some of Witten'’s argument. For a much more sophisticated discussion
see [39].

The Morse inequalities

In Chapter 6 we defined a Dirac compler over a compact Riemannian manifold
M and we proved the Hodge theorem, that the cohomology of such a complex is
represented by harmonic sections. The index of the associated Dirac operator is just
the Euler characteristic of the complex, that is the alternating sum of the dimensions
of the various cohomology groups. If we define the Betti numbers of the Dirac complex
(S.d) by

3; = dim H’(S. d), (14.1)

then Ind(d + d*) = T(—1)/3;. The Morse inequalities are a system of inequalities

that allow one to estimate the individual Betti numbers 3;.
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In analysis, tlie Morse inequalities arise as follows. Suppose that ¢ is a smooth
rapidly decreasing positive function on Rt with ¢(0) = 1. Then the operator ¢(D?)

(where D is the Dirac operator) is smoothing and therefore of trace class. Set
p=Tr (¢(D2)|Sj). (14.2)
Then

PROPOSITION 14.3 With the hypotheses above, the numbers (u;) and (8;) satisfy

the following system of inequalities (known as the Morse inequalities) :

M1 — Ho
Mo—p+py 2 Po—br+ 5

and so on, and finally an equality
2(=1Pp; =3 (~1YB;.

PRrOOF By the Hodge theorem (6.2), f; is equal to the dimension of the kernel of
D? on sections of S;. Since the spectrum of D? is discrete, there is a smooth function
@ on Rt which is positive, rapidly decreasing, with $(0) = 1 and @()) = 0 for all
non-zero eigenvalues A of D?; there is no loss of generality in assuming also that

#< . Then ;= Tr (DY) ), so that ; = §; = Tr (¢ - #XDY) )-

We may write the function ¢ — ¢ in the form

(¢ = @)X = A(P(A))?

where 3 is positive and rapidly decreasing, vanishes at zero and is differentiable there.
So we may write (¢ — @)(D?) = D*((D?))?. Now we make a trace argument exactly
as in the proof of 10.7. We have D? = dd* + d"d and

Te (d" (WD), ) = Tr(9(DY)|  ddw(D?)] )
Tr (d‘(w(Dz))""sjd)

Te (@D )-
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Therefore

(i = Bj) = (i1 = Bi—1) + (pj-2 Bi—2) —---=Tr (d‘d(w(D2))2‘s,~)'

If § ecuals the top dimension of the complex, then this is zero. In general, write

d"d(:p(D?))?‘S, = A"A, whereA = dy(D?)

SJ‘.
Now A is a trace-class operator, so we may write in any orthonormal basis (¢;) for
L*(S)

THAA) = ) (A"Aei, e} = Y ||Aei]> > 0.

Therefore {¢; — ;) = (-1 — Bj-1) + (pj—2 — Bj—2) — - - - 2 0, and the result follows.
0

Morse functions

From now on, we will consider only the case of the de Rham complex.

DEFINITION 14.4 A smooth function h : M — R is called a Morse functionon M
if at its critical points (that is, the points where the first derivatives Vh vanish) the

Hessian! Hj, (the matrix of second derivatives) is non-singular.

Clearly the critical points of a Morse function are isolated, co there are only finitely
many of them. Each critical point has an indez, defined to be the number of negative
eigenvalues of the Hessian at that point.

Let d, be Witten’s perturbed exterior derivative associated to the function h, as
in 9.14. Let d; be its adjoint, and D, = d, + d; the perturbed de Rham operator.
We will look at the asymptotics of the perturbed de Rham complex as s — oo.
Eventually we will need to choose a special metric on M that is nicely related to the
Morse function h, but we can do the first part of the calculation without making this
special choice,

‘We will need to know that the basic elliptic theory of Chapter 5, and the results
on finite propagation speed such as 7.23, extend without change to the operator
D,. Indeed, the operator D, differs from the standard Dirac operator D only by a

iSee 9.16.
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zero order perturbation, so it belongs to the class of self-adjoint generalized Dirac
operators which was already considered in Chapter 5; the proof of finite propagation
speed goes over verbatim. As an example, let us verify the Garding inequality for
D,. By Lemma 9.17,

D?=d +sH, +s%|dh|2 = D*+ L
where L is an operator of order zero. Therefore
IDwl? = IDwl® + (Lw,w) 2 1 Dw]? ~ Cillw|l?
for some constant C;. Hence
(1 + COUDwI + ol > 1D + [l > = ol
by the usual Garding inequality (5.14); the Garding inequality for D, follows.
REMARK 14.5 Notice that the norm of L is of order s2, so the constant appearing

in the Garding inequality is bounded by a polynomial in s. The same is true of the

constants appearing in the elliptic estimates.

We begin our asvmptotic calculation of Witten’s complex bv fixing a number
p > 0 and chousing a positive even function ¢ € S(R) with ¢{0) = 1 and such
that the Fourier transform ¢ is supported within the interval [~p, p]. According to
14.3, the Betti numbers of M satisfy the Morse inequalities relative to the numbers
pi=Tr (“"(D ’)l.\i'r-u
function of D2, so (14.3) is applicable.) We investigate the asymptotics of ¢(D,) as

). (Note that since ¢ is even, p(D;) can in fact be written as a

s — oo. First, we work on the complement of a neighbourhood of the set of critical

points of h. Let us denote this set of critical points by Crit(k).

LEMMA 14.6 On the complement of a 2p-neighbourhood of Crit(h), the smoothing

kernel of ¢(D,) tends uniformly to zero as s — 0.

PROOF Since M is a compact manifold, there is a constant C such that [Vh(z)| >
C > 0 for all r in the complement of a p-neighbourhood of Crit{h). Now by the
formula

D? = d&* + sHy + s?|dn|?
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and lemma 9.17 we find that for s large
(D2w,w) > $C2s2ul? (14.7)

provided that w is supported in the complement of such a neighbourhood. Now
let £ denote the Hilbert space of L? differential forms on M that vanish on a p-
neighbourhood of Crit(h). Formula 14.7 shows that D? is a positive formally self-
adjoint operator on $. It therefore has a self-adjoint extension A on § satisfying the
same positivity condition, by Friedrichs’ extension theorem [29]. Now we will show
that if w is supported in the complement of a 2p-neighbourhood of Crit(h), then

@(D,)w = (VA

To do this we use unit propagation speed (7.20) for the operator D,. Consider the

time-dependent differential form
wy = cos(tD,w = %(e:w. + et Jo.

Clearly w, is a solution to the partial differential equation

aw¢

5+ Diw =0

with initial conditions wy = w, wy = 0; in fact it is the unique solution, as one can
easily check by verifying that the “energy”

|l + (2

is conserved (compare the proof of 7.4). But by the unit propagation speed property,
w; is supported in the complement of a p-neighbourhood of Crit(h) for |¢t| < p, and

therefore D%w, = Aw,. Thus w for |t| < p is also the unique solution to the equation

with the same initial conditions, so we may write w, = cos(1vA)w.
Now ¢ has support in [—p,p] and moreover is an even function (since ¢ is).
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Therefore

(D, % f_ :(e“”'u)f,a(z) dt

1 7
= ? [} &(t) cos(tD, )w dt
»
= - /o P(t)w dt
= ;1;/0» @(t) cos(tVA)w dt
= ... = p(VAw.
This proves our claim. But now notice that /4 is a positive operator, bounded below

by 3Cs. It follows from the spectral theorem, then, that the L? operator norm of
o(V/A) is bounded above by

ofs) = sup{lp(V)] : A > 5Cs}.

As s — oo, this quantity tends to zero with rapid decay. So we deduce that if w is

supported in the complement of a 2p-neighbourhood of Crit(k),

lle(Da)wll < els)llel (14.8)

with ¢(s) — 0 rapidly as s = oo.

This is nearly what we want. In fact, if we can show that there is a ¢;{s), tending

to zero as § — oo, with
le(D)w| = < er(s)lwllzs (14.9)

(under the same condition on Supp(w)), we will be done, since for any integral
operator with continuous kernel the supremum of the kernel can be estimated by the
norm of the operator as a map from L! to L*; this is simply a rephrasing of the fact
that (L})* = L*.

To get the improved estimate 14.9 from 14.8 we rely on the familiar techniques
of Sobolev embedding. The key point is this: for any k, the operator (1 + D?)~! is
bounded as an operator from W¥* to W*+2 with norm bounded by a polynomial in
s. This follows from the elliptic estimates for D,. Now by Sobolev embedding (5.7),
WP C L™ for p > %, and therefore (1 + D?)~* is bounded from L? to L* for k > %,
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the bound being polynomial in s. By duality and self-adjointness, (1 + D?)~* is also

bounded (polynomially in s) as an operator from L! to L2

We deduce that the norm of (D,) acting as an operator from L' to L™ is bounded
by a polynomial in s times the norm of (1 + D?)?*¢(D,) acting as an operator on L2.
But this operator is just $(D,), where 3(1) = (1+ A2)%*()); the function  satisfies

the same conditions as ¢, so

NB(D)wll < &(s)llevl
provided that w satisfies the support condition, with &(s) of rapid decay in s.
Therefore
(Do)l < ar(s)llwles

with ¢i(s) = &(s) X (polynomial in s), which tends to zero as s — co. O

From Lemma (14.6) it follows that as s — oo, the trace of ¢(D,) is given by a sum
of contributions from the critical points of h. The reader should notice the similarity
with the Lefschetz theorem {Chapter 8). We will now evaluate the contributions from

the critical points.

The contribution from the critical points

It is convenient to make a special choice of metric on our manifold A. This choice

of metric uses the Morse lemma.

LEMMA 14.10 There are local co-ordinates (z;) centered at each critical point of h
with the property that in terms of these local co-ordinates h is @ diagonal quadratic

form
1 .
h(:c) = Z): Z A’(.’S})g
Of course the number of negative A's is just the index of the critical point.

We will not go through the proof of the Morse lemma here. A proof may be found
in Milnor [54].
Now we choose our special metric g on M as follows; ¢ is defined to be flat Euclidean

(gi; = 6ij) in Morse co-ordinates near each critical point, and is patched up away from
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Crit(h) using a partition of unity. We choose p so small that g is flat Euclidean at

least to distance 4p from each critical point.

We calculated in chapter 9 that, when k is a quadratic form on flat Euclidean

space, the operator D? is equal to
d N2 )
L,= Z { - ('a?) + 32,\3(1?")2 + S,\jz;}
7

where Z; = [dz’ J.,dz7 A .]. Moreover we recall from proposition 9.18 that the
spectrum of L, can be described explicitly: L, is an essentially self-adjoint operator,

with discrete spectrum. The eigenvalues of L, are the numbers
s 2 (X101 + 2p;) + Ajg5)
i

where p; = 0.1,2,... and ¢; = +1. If we consider the action of L, on k-forms, the
spectrum is as above with the additional restriction that exactly k of the ¢;’s are
equal to +1.

LeMMA 14.11 Suppose that precisely m of the );'s are negative. Then

AL 1 (k=m).

Jim T (w(y/2.)

Moreover, the same limit holds good for Tr (B<p( VL) A") where B is the operator
of multiplication on R* by any § € CZ(R"*) with 3(0) = 1.

Proor By 8.7 and 9.18,

Tr (/L)

where the summation is over p; = 0,1,2,... and ¢; = £1 and exactly & of the g;’s

,\k) =Y. (‘/3 Z(l'\jl(l +2p;) + Aj‘lj))

Pids

equal +1. If k£ # m then all the eigenvalues of L, are of order s. Since ¢ is rapidly
decreasing, it is easy to check that the sum tends to 0 as s — 00. On the other hand,
if &k = m then precisely one eigenvalue equals 0 and the others arc of order s. The
0-eigenvalue contributes 1 to the sum and the sum of the remaining terms tends to

0, for the same reason as before.
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In the case of the more general trace Tr(ng( vL,)

normalized eigenform of L, corresponding to (p;,¢;). Then 8.7 gives

Tr (Bo(y/L.)

For the same reason as before, only the zero eigenvalue makes a contribution to

M), let e(p;,g;) denote the

MED N (\/S 2 (511 +2p;7) + Aﬂ?j)) (Be(pj, 45), e(ps» 95))-

P59

this sum that does not vanish as s — oo. The corresponding eigenform eg is just the
ground state eigenfunction of the harmonic oscillator multiplied by a certain constant
differential form; namely, by dz! A ... Adz™ if we assume that the first m of the A;’s
are negative and the rest are positive. That is, by 9.7, the eigenform ¢ is given

explicitly by
eo = (s™?x"4T] A}l)exp(—sz X2 [2)ds AL A dz™,
i i

It is now easy to check that as s — oo, (Beg,ep) — 1; so the stated result follows.
O

We can now state and prove Morse’s theorem.

THEOREM 14.12 Let h be a Morse function on the compact manifold M. Let 3;
denote the j'th Betti number of M and let v; denote the number of critical points of
h of index j. Then

Be € w
Ph=0F € i-w
Ba=Bi+P € m—un+uy
(18 = Y(=1)y;

ProoF Choose a metric on M, euclidean near the critical points, and a cut-off
function ¢ as above. By 14.3, the Betti numbers B; of Witten's perturbed de
Rham complex satisfy the Morse inequalities with respect to the numbers M=

T ((D,)|,,)-
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But the perturbed de Rham complex is conjugate to the unperturbed one; the two
complexes therefore have isomorphic homology groups. In particular §{ = f3; for all
J. The proof will therefore be completed if we can show that yu} — v; as s — oco.

By 8.12, the trace of (D;)|a; is obtained by integration of the local trace of
the smoothing kernel of this operator over the diagonal. By (14.6) this local trace
tends uniformly to zero except on a 2p-neighbourhood of each critical point. So
the limit as s — oo of ¢(D,)|a; is a sum of contributions from the critical points.

The contribution from a critical point can be written lim,_, Tr (Bga( D,)

M), where
B is the multiplication operator by a smooth function on M equal to 1 on a 2p-
neighbourhood of the critical point and supported in a 3p-neighbourhood of the
critical point.

Now take Morse co-ordinates around the critical point. These enable us to identify
forms supported on a 4p-neighbourhood of the critical point in M with forms
supported on a 4p-neighbourhood of the origin in R*. Under this identification,

D? corresponds to L,.

Now a unit propagation speed argument exactly analogous to that given in 14.6

¢(D,)a = ¢(L,)a

provided that ¢« is supported in a 3p-neighbourhood of the critical point. Hence

T (Be(D,)],,) = Tr (Be(y/L.)],)-
But by Lemma (14.11), as s — oo, Tr (B(p(\/'L—,) A’,) tends to 1 if the critical point

has index j, and otherwise to 0. The result follows. 0O

shows that

Notes

For an inspiring overview of Morse theory, read the lectures of Bott [14].

192



CHAPTER 15

Atiyah’s I'-index theorem

In 11.15 we showed that the index is multiplicative under coverings: if D is a Dirac
operator on the compact manifold M, and D the lifted operator on a k-fold covering
M, then Ind(D) = k.Ind(D). We may express this by saying that the amount of
index per unit area is the same on M as on M. This, however, immediately suggests a
possible generalization to infinite coverings of M, provided that we can make sense of
the concept “average amount of index per unit area”. The generalization is Atiyah’s

I'-index theorem.

An algebra of smoothing operators

Throughout this chapter, the following notation will be fixed. M denotes a compact
oriented Riemannian manifold, and § is a Clifford bundle over M with Dirac operator
D. M denotes a Galois covering of M with Galois group I'; this means that I' is a
homomorphic image of m,(M) and M is the natural cover of M with fiber I'; T" acts
discontinuously on M by deck transformations and M/T = M. Let § and D denote
the natural lifts of S and D to M, and n: M — M be the covering map. By 9.20,
the operator D is essentially self adjoint on L2%(S) and operators f(D) can be defined
for every f € Co(R).

In our discussion of the ordinary index theorem we saw tue key rdle played by the
algebra of smoothing operators. On the non-compact manifold M, a central idea is to
introduce an algebra A of smoothing operators on M that reflects the extra structure

of the I'-action.

DEFINITION 15.1 With notation as above, let A be the set of bounded operators A
on L?(5) satisfying the following conditions:
(i) A is T-equivariant; that is, for all s € L%(S),A(ys) = 4(As) where by
definition
1s(p) = s(py™");
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(ii) A is represented by a smoothing kernel k(p, ¢) so that

As(p) = / k(p, g)s(q) vol(q);

(iii) There is an absolute constant C such that

[kl vole) < €, [Ikp.a)f volp) <C

We must be careful what we mean by “smoothing kernel” on the non-compact man-
ifold M, since differentiation under the integral sign is not automatically legitimate.

We will therefore assume (as part of condition (ii)) that
m s k(p,.) and ¢~ k(.,q)

are C° maps of M to the Hilbert space L%(S).

LEMMA 15.2 The set of operators A forms an algebra.

ProOF The only thing that is not obvious is that A is closed under multiplica-
tion. If A;, Ay € A are represented by the smoothing kernels k;, ko then A;.A, is

represented by the smoothing kernel

(p,7) / ki(p, g)k2(q, 1) vol(g).

Let A be a bounded operator on the Hilbert space L2(S) which is represented by a
smoothing kernel k. By the Riesz representation theorem for functionals on Hilbert

space, the quantity

[ Koo vl

is the square of the norm of the linear functional s — As(p) on L%(S). Therefore,
there is a constant C such that [ |k(p,q)|? vol(q) < C if and only if A maps L(S)
continuously to the space CB(S) of bounded continuous sections of 5. Similarly,
there is a constant C such that [ |k(p,q)[? vol(p) < C if and only if A* maps L2(S)
continuously to C B(5.' ). Now the desired result is clear; for if A;, A; and their
adjoints map L2(S) continuously to L%(S) and to CB(S), then so do A,.A, and
(Ar.Az) = A3.4;. O
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DEFINITION 15.3 The space CB"(8) is defined to be the space of sections s of §

wliich are r times continuously differentiable with bounded derivatives.

This definition needs some explanation. The r’th derivative V7(s) of a section s
of § is defined in terms of the connection on S as a tensor of type (3) with values in
§, that is, a section of the bundle @ (T"M 1® S. This tensor bundle has a natural
metric, and we require that the derivative be uniformly bounded in terms of this
metric. Clearly CB"(5) is a Banach space under the natural supremum norm of the

first r derivatives.

We now prove a non-compact Sobolev embedding theorem.

PROPOSITION 15.4 Let n = dim(Af) = dim(M). For any integer p > % and any
T 2 0 therc is a constant C such that

Islics < C(llsh + I Dsll + - - + 157*"s]])
for all s in the domain of DP*", the norms on the right-hand side being L? norms.
PRrROOF To show that s is of class CB", it is enough to show that it is uniformly of
class C" locally. Choose m € M and pick a bump function ¢, on M, equal to one in
a neighbourhood of m and supported within a fundamental domain for the action of

[. Notice that we can choose such bump functions ¢,, in such a way that their first
(p + r) derivatives are bounded uniformly in m. Now

lomsll + -+ + 107 (oms)| < Cu(llsll + -+ + [ D?*s]])

where the constant C,, depends ou the first (p+r) derivatives of ¢, and may therefore
be taken to be bounded uniformly in m. But now ¢,,s may be identified by means
of the covering map = with a section 7.(@ms) of S over M. By the elliptic estimates
and Sobolev embedding theorem on Af, then

I7(¢ms)llcris) < (comst.)([lems|| +--- + 1 D"+ (ems)Il).-
The result now follows, as p,, =l nearm. 0O
LEMMA 15.5 Let A be a bounded, self-adjoint, equivariant operator on L*(S), and

suppose that A maps L? boundedly to CB" for each r. Then A? belongs to the
algebra A.
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PROOF Clearly A? is equivariant. For the remainder of the proof, assume for
simplicity that S is a trivial bundle; the general case is a bit more complicated
notationally. Choose a point p € M. The functional on L%(S) given by S — As(p)
is continuous linear, so it is represented by a vector v, € L?(S), in the sense that
As(p) = (s,v,). The norms of the vectors v, are bounded uniformly in p; this is

because A maps L? to the bounded continuous functions.

We claim that for any r > 0, the map p — v, is a C"-differentiable map of M to
the Banach space L2(S). We will write out the details only for the case r = 0. Then
for any s € L%(S), one has an estimate on the first derivative of As in terms of the

L2-norm of s. By the mean-value theorem, therefore,

(s, vp — v)| = |As(p) — As(q)] < Cl|s]|=d(p,q)

for some constant C. Therefore, ||v, — v,|| < C d(p,¢), which proves (with room to
spare!) that m — v,, is a continuous map of M to L2
Now we write
As(p) = [ s()i(q) vol(g)
Since A is self-adjoint, (As), s2) = (s1, Asa). Therefore

[ 51@)52(p)5(0) vol(p) vol(a) = [ s1(@)52()ep(a) vol(p) vol().

This gives v,(q) = T,(p) so we may write

4s(p) = [ s(@)ue(p) vollg).
So
A%s(p) = [ K(p,q)s(q) vol(q),

where

k(p.q) = Ary(p).
The kernel k is of class C7, since ¢ — v, is a C" map of M to L*(S), so q — Avy, is
a C" map of M to CB"(S). Moreover, the functions k(:,q) = Az, form a bounded
subset of L?(S), and they are equal by self-adjointness to the functions k(q,-). This
completes the proof. 0O
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PROPOSITION 15.6 For any rapidly decreasing function f on R, the operator f(D)
belongs to the algebra A.

PROOF We may assume that f is non-negative. Then f!/2 is rapidly decreasing
too, so by proposition 15.4 f/2(D) maps L%(S) boundedly to CB"(S) for all 5. Also
fY%(D) is bounded, self-adjoint, and equivariant. Hence

f(D) = (f'*(D))* € A

by 15.5. O

DEFINITION 15.7 The functional 7: A — C is defined as follows: if A € A, let k be

its kernel and choose any fundamental domain F for the I-action on M; then

7(A) = /F trk(p, p). vol(p).

Notice that since A is equivariant, its kernel k is equivariant in the sense that
k(pvy,q7) = k(p,q)- Therefore the definition of 7 does not depend on the choice of
fundamental domain. The functional 7 on A will play the role of the trace on the
algebra of smoothing operators on a compact manifold. The next result is analogous

to the important property 8.8:

PROPOSITION 15.8 For A;, Az € A,
T(A‘Ag) = T(AzAl )

PROOF Let A4; and A, be represented by kernels k; and k3. Then A Ay — AsA4, is

represented by the kernel

(p1 T) - -/f:l (kl(pv q)k'l(qv T) - k2(p1 Q)kl (qv T)) \'Ol(q).

Therefore, if F is a fundamental domain,

(e = AeAr) = [ tr (kb @kala,p) — kalp, )ka(q.p) vol(g) vol(p)

Because of the estimate (15.1)(iii) this double integral converges absolutely. So we

may decompose M = U,¢r Fv, and write

T(A1A2 — A241) = Y o(7),
yer

where () equals
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[ tr (6a(p. )kl g7.p) = Ealp.07)r(g7.9)) vol(g) vol(p).
But, by equivariance of k; and ky, this equals
[t (a(er ™ okala.pr™) = kapr ™ ka(g.pr™) vol(g) vol(p)

which is —p(771). So

Yo = =3 (™,

4€l ~€l
hence is equal to 0. O

Renormalized dimensions and the index theorem

DEFINITION 15.9 If H is a subspace of L2(S) with the property that the orthogonal

projection operator P from L2(S) onto H belongs to A, then we define

dimp(H) = 7(P).

Of course. this definition is motivated by the fact that the trace of a projection

operator is the dimension of its range. We will see that dimg conforms to our intuitive

idea of measuring the “average amount of dimension per unit area”. In particular

LEMMA 15.10 Under the hypotheses of 15.9, if dimp(H) > 0 and I is infinite, then

‘H is infinite-dimensional (in the usual sense).

PROOF Suppose to the contrary that H is finite-dimensional, and let sy,...

an orthonormal basis for it. Then the operator I has smoothing kernel
k(p,q) = Esx ) ® si(g),
(where we have identified S* with S by means of the metric) and so
trk(p, p) = Z ls:(p)I?

is an integrable function of p. Let F denote a fundamental domain. Then
/ [ tr k(p, p)| vol(p) < oo,

and since the integral is independent of y it must be zero. [
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Now suppose that D (and hence D) is a graded Dirac operator. By 15.4 and 15.5,
the orthogonal projection P onto the kernel of D belongs to the algebra A. We can
therefore define

Indp(D) = dimp(ker D, ) ~ dimg(ker D_).
Let £ be the grading operator. By analogy with 11.1, for A € A we define 7,(A) =
r{gA). The following is the analogue of the McKean-Singer formula.

PROPOSITION 15.11 Foranvt >0,

ro(€~P*) = Ind(D).

PROOF Because 7 has the basic ‘trace property’ (15.8), the proof that 7,(e'2*)
is independent of ¢ is exactly the same as that given in 11.9; in fact, 7,(f(D?)), is
independent of the choice of rapidly decreasing function f with f(0) = 1. To complete
the proof we need an analogue of Lemma 10.5, and here we must proceed differently.
What we need to show is that as £ — o0, the smoothing kernel of e=D* tends to the
smoothing kernel of P uniformly on compact subsets of A x M.

We claim first that as t — oo, e~*D’
L?(S), which means that

— P in the strong operator topology on

e’z - Pz forallz € L2, (15.12)

This is a consequence of the spectral theorem for self-adjoint operators [29], but an
elementary argument may be given as follows. Since D is self-adjoint, the orthogonal
complement of the kernel of D is the closure of its range. This means that it suffices to
verify 15.12 in two special cases: when z belongs to the kernel, and when z belongs

to the range. In the first case e’z = z = Pz for all ¢; in the second case, let

£ = Dy and note that then
"y, & —_i1D?
lle™z|| = || De™""y|| = 0

since sup, |[Ae~**"| = O(t1/?). The result follows.

Now consider the smoothing kernels X, of e~'D* as elements of the Fréchet space

C>®(S® S*). From the proof of proposition 15.8, as t — oc, the kernels k, form a
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bounded subset of this Fréchet space. But in this Fréchet space, bounded subsets
are relatively compact; so we deduce that given any sequence t; — oo, there is a
subsequence of the ¢;'s such that the kernel of e~D? tends to a limit uniformly on
compact subsets as ¢t — oo through this subsequence. By weak convergence, this
limit must be the kernel of P. Finally, to complete the proof, we apply a lemma of
general topology: if ¢ — z(t) is a curve in a metric space X, and there is 7 € X
such that for each sequence t; — oo there is a subsequence *;, such that z(t;,) — z¢

as k - oo, then z(t) » rgast - o00. O

THEOREM 15.13 (ATivAH’s [-INDEX THEOREM) Under the hvpotheses of this

chapter,

Indp(D) = Ind(D).

Proor By (15.11}),
Indr(D) = r.(eD%),

for any t > 0. Now the asymptotic expansion 7.15 still applies to e“éz; the estimate
(15.4) plays the rdle of the elliptic estimate in its proof. So as in 11.14 we get the

formula

~ 1 -
Indr(D) = WL“: 61!12

where © is the asymptotic-expansion coefficient for e~tD*. But the asymptotic-
expansion coefficient is simply a local algebraic expression in the metrics and con-

pection coefficients and their derivatives, so

O,/2 =7 Opp

where © is the corresponding asymptotic-expansion coefficient for D on the compact
manifold M. Therefore

1 = 1
(47{)"*’2‘/}"1\':‘-39“}2 == (‘m—nﬂ_/‘;{tr’eﬂfz s Ind(D)

by 11.14. O
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EXAMPLE 15.14 Let M be a Riemann surface of genus g > 2, equipped with its
Poincaré metric (of constant curvature —1). Then M is 2-dimensional hyperbolic
space, that is the unit disc with its Poincaré metric. Let D be the de Rham operator
on M, equipped with the grading it inherits from the de Rham complex, so that
Ind(D) = Euler characteristic of M = 2 — 2g. By the I'-index thecrem, Ind(D) =
2 — 2¢ < 0; which implies by 15.10 that the space of square-integrable harmonic
1-forms on the disc is infinite-dimensional. Of course we knew this already, but in
some sense this shows us what topology the space of L? harmonic 1-forms is detecting.

For more on this, see [26].

EXAMPLE 15.15 An unsolved conjecture in geometry, apparently due to Hopf, is
that if M is a compact 2m-dimensional Riemannian manifold of negative sectional
curvature, then the sign of the Euler characteristic of M is (—1)™. Singer suggested
an approach to this problem by way of the L? Gauss-Bonnet theorem; show that the
space of L? harmonic forms on the universal cover A vanishes except in the middle

dimension. Some progress has been made in this direction, see [28, 37].

EXAMPLE 15.16 In a major application of the I'-index theorem, Atiyah and Schmid
constructed certain representations (the so-called “discrete series”) of Lie groups as
spaces of L? holomorphic sections of certain vector bundles. The I-index theorem

was used to show that these spaces of sections are non-zero. See Schmid [66].

Notes

The L? index theorem is due to Atiyah [1]. Several of its techniques — the
introduction of operator algebras, of traces and of generalized “dimension functions”
-— have served as paradigms for other index theorems on non-compact manifolds, such
as the foliation index theorem of Connes [20, 22] or the exhaustion index theorem
of [61, 62].

The theory of ‘L? homological algebra’ inspired by the L%-index theorem is quite
active at present. For a survey see Liick [50].

201



10.

11.

12

13.

14.

References

. M.F. Atiyah. Elliptic operators, discrete groups and von Neumann algebras.

Astérisque, 32:43-72, 1976.
M.F. Atiyah and R. Bott. A Lefschetz fixed-point formula for elliptic complexes
1. Annals of Mathematics, 86:374-407, 1967.

. M.F. Atiyah, R. Bott, and V.K. Patodi. On the heat equation and the index

theorem. Inventiones Mathematicae, 19:279-330, 1973.

. M.F. Atiyah, R. Bott, and A. Shapiro. Clifford modules. Topology, 3 (supplement

1):3-38, 1964.

M.F. Atiyah, V. K. Patodi, and .M. Singer. Spectral asymmetry and Riemannian
geometry I. Mathematical Proceedings of the Cambridge Philosophical Society,
77:43-69, 1975.

M.F. Atiyah, V.K. Patodi, and I.M. Singer. Spectral asymmetry and Riemannian
geometry II. Mathematical Proceedings of the Cambridge Philosophical Society,
78:405-432, 1975.

M.F. Atiyah, V.K. Patodi, and L.M. Singer. Spectral asymmetry and Riemannian
geometry III. Mathematical Proceedings of the Cambridge Philosophical Society,
79:71-99, 1976.

M.F. Atiyah and G.B. Segal. The index of elliptic operators II. Annals of
Mathematics, 87:531-545, 1968.

M.F. Atiyah and I.M. Singer. The index of elliptic operators I. Annals of Math-
ematics, 87:484-530, 1968.

M.F. Atiyah and I.M. Singer. The index of elliptic operators III. Annals of
Mathematics, 87:546-604, 1968.

M. Berger, P. Gauduchon, and E. Mazet. Le spectre d’une variété Riemannienne,
volume 194 of Lecture Notes in Mathematics. Springer, 1971.

N. Berline, E. Getzler, and M. Vergne. Heat kernels and Dirac operators. Springer
Verlag, New York, 1992.

S. Bochner. Curvature and Betti numbers. Annals of Mathematics, 49:379-390,
1948.

R. Bott. Lectures on Morse theory, old and new. Bulletin of the American
Mathematical Society, 7:331-358, 1982.

203



15.

16.

17.

18.

19.

20.

21.

22.
23.

24.
25.
26.
27.

28.

29.

30.

31.

32.

33.

34.

204

R. Bott and L.W. Tu. Differential Forms in Algebraic Topology, volume 82 of
Graduate Texts in Mathematics. Springer Verlag, New York, 1982.

R. Brooks. Constructing isospectral manifolds. American Mathematical Monthly,
95:823-839, 1988.

W. Browder. Surgery on simply-connected manifolds. Springer, 1972.

J. Cheeger, M. Gromov, and M. Taylor. Finite propagation speed, kernel es-
timates for functions of the Laplace operator, and the geometry of complete
Riemannian manifolds. Journal of Differential Geometry, 17:15-54, 1982.

P.R. Chernoff. Essential self-adjointness of powers of generators of hyperbolic
equations. Journal of Functional Analysis, 12:401-414, 1973.

A. Connes. A survey of foliations and operator algebras. In Operator Algebras and
Applications, pages 521-628. American Mathematical Society, 1982. Proceedings
of Symposia in Pure Mathematics 38,

A. Connes. Non-commutative differential geometry. Publications Mathématiques
de Ulnstitut des Hautes Etudes Scientifiques, 62:41-144, 1985.

A. Connes. Non-Commutative Geometry. Academic Press, 1995,

A. Connes and H. Moscovici. Cyclic cohomology, the Novikov conjecture, and
hyperbolic groups. Topology, 29:345-388, 1990.

G. de Rham. Differentiable manifolds. Springer, 1984,

J. Dieudonpé. Eléments d’analyse. Gauthier-Villars, Paris.

J. Dodziuk. L? harmonic forms on complete manifolds. In S.T. Yau, editor,
Seminar on Differential Geometry, pages 291-302. Princeton, 1982. Annals of
Mathematics Studies 102.

S.K. Donaldson and P. Kronheimer. The geometry of four-manifolds. Oxford
University Press, 1990.

H.M. Donnelley and F. Xavier. On the differential form spectrum of negatively
curved Riemannian manifolds. American Journal of Mathematics, 106:169-185,
1984.

N.T. Dunford and J.T. Schwartz. Linear Operators Part II: Spectral Theory.
Wiley, 1963.

M. Freedman and F. Quinn. Topology of 4-manifolds, volume 39 of Princeton
Mathematical Series. Princeton University Press, 1990,

E. Getzler. Pseudodifferential operators on supermanifolds and the Atiyah-Singer
index theorem. Communications on Mathematical Physics, 92:163-178, 1983.

E. Getzler. A short proof of the local Atiyah-Singer index theorem. Topology,
25:111-117, 1986.

P.B. Gilkey. Curvature and the eigenvalues of the Laplacian for elliptic complexes.
Advances in Mathematics, 10:344-381, 1973.

P.B. Gilkey. Invariance Theory, the Heat Equation, end the Atiyah-Singer Index
Theorem. Publish or Perish, Wilmington, Delaware, 1984.



35.

36.

37.

39.
40.
41.
42.
43.
44,
45.
46.
47.
48.

49.

51.

52.

53.

C. Gordon, D.L. Webb, and S. Wolpert. One cannot hear the shape of a drum.
Bulletin of the American Mathematical Society, 27:134-138, 1992,

P. Griffiths and J. Harris. Principles of Algebraic Geometry. Wiley, New York,
1978.

M. Gromov. Kihler hyperbolicity and L? Hodge theory. Journal of Differential
Geometry, 33:263-292, 1991.

M. Gromov and H.B. Lawson. Positive scalar curvature and the Dirac operator.
Publications Mathématiques de U'Institut des Hautes Etudes Scientifiques, 58:83~
196, 1983.

B. Helffer and J. Sjostrand. Puits multiples en mécanique semi-classique. IV.
Etude du complexe de Witten. Communications in PDE, 10:245-340, 1985.

F. Hirzebruch. Topological Methods in Algebraic Geometry. Springer, 1978,1995.
W.V.D. Hodge. Harmonic Integrals. Cambridge, 1941.

M. Kac. Can one hear the shape of a drum? American Mathematical Monthly,
73:1-23, 1966.

G.G. Kasparov. Equivariant K K-theory and the Novikov conjecture. Inventiones
Mathematicae, 91:147-201, 1988.

S. Kobayashi and M. Nomizu. Foundations of differential geometry. Wiley-
Interscience, 1963 and 1969.

T. Kotake. An analytical proof of the classical Riemaunn-Roch theorem. In Global
Analysis, volume 16 of Proceedings of Symposia in Pure Mathematics, pages 137
146. American Mathematical Society, 1970.

S. Lang. Algebra. Addison-Wesley, 1995. Third edition.

H.B. Lawson and M.L. Michelsohn. Spin Geometry. Princeton, 1990.

A. Lichnerowicz. Spineurs harmoniques. Comptes Rendus de U’Académie des
Sciences de Paris, 257:7-9, 1963.

J. Lohkamp. Metrics of negative Ricci curvature. Annals of Mathematics,
140:655-683, 1994.

W. Liick. L? invariants of regular coverings of compact manifolds and CW
complexes. In R.J. Daverman and R.B. Sher, editors, Handbook of Geometry.
Elsevier, 1998.

H.P. McKean and I.M. Singer. Curvature and the eigenvalues of the Laplacian.
Journal of Differential Geometry, 1:43-69, 1967.

R.B. Melrose. The Atiyah-Patodi-Singer Index Theorem, volume 4 of Research
Notes in Mathematics. A.K. Peters, Wellesley, Massachusetts, 1993.

J.W. Milnor. On manifolds homeomorphic to the seven-sphere. Annals of Math-
ematics, 64:399-405, 1956.

. J.W. Milnor. Morse Theory, volume 51 of Annals of Mathematics Studies. Prince-

ton, 1963.

205



55.

56.

57.

58.

59.

60.
61.

62.
63.
64.

65.
66.

67.

68.
69.
70.

71
72.
73.

74.

206

J.W. Milnor and J.D. Stasheff. Characteristic Classes, volume 76 of Annals of
Mathematics Studies. Princeton, 1974.

S. Minakshishundaram and A. Pleijel. Some properties of the eigenfunctions of
the Laplace operator on Riemannian manifolds. Cenadian Journal of Mathemat-
ics, 1:242-256, 1949.

R. Palais. Seminar on the Atiyah-Singer Indez Theorem, volume 57 of Annals of
Mathematics Studies. Princeton, 1965.

V.K. Patodi. An analytic proof of the Riemann-Roch-Hirzebruch theorem for
Kahler manifolds. Journal of Differential Geometry, 5:233~249, 1971.

R. Plymen. Strong Morita equivalence, spinors, and symplectic spinors. Journal
of Operator Theory, 16:305-324, 1986.

D. Quillen. Superconnections and the chern character. Topology, 24:89-95, 1985.
J. Roe. An index theorem on open manifolds I. Journal of Differential Geometry,
27:87-113, 1988.

J. Roe. An index theorem on open manifolds II. Journal of Differential Geometry,
27:115-136, 1988.

J. Roe. Indez theory, coarse geometry, and the topology of manifolds, volume 90
of CBMS Conference Proceedings. American Mathematical Society, 1996.

W. Rudin. Functional Analysis. McGraw-Hill, 1973.

L. I. Schiff. Quantum Mechanics. McGraw-Hill, 1968. Third edition.

W. Schmid. Representations of semismiple Lie groups. In M.F. Atiyah, editor,
Representation theory of Lie groups, pages 185-235. Cambridge University Press,
1979.

R.T. Seeley. Elliptic singular integral equations. In Singular Integrals, volume 10
of Symposia in Pure Mathematics, pages 308-315. American Mathematical Soci-
ety, 1967.

B. Simon. Trace ideals and their applications. Cambridge University Press, 1979.
E. Spanier. Algebraic Topology. McGraw-Hill, 1966.

S. Stolz. Positive scalar curvature metrics: existence and classification questions.
In Proceedings of the International Congress of Mathematicians, Zirich 199/,
volume I, 2, pages 625-636, Basel, 1995. Birkhauser.

M. Taylor. Pseudodifferential Operators. Princeton, 1982.

C.T.C. Wall. Surgery on Compact Manifolds. Academic Press, 1970.

E. Witten. Supersymmetry and Morse theory. Journal of Differential Geometry,
17:661-692, 1982.

J.M. Ziman. Elements of advanced quantum theory. Cambridge, 1969.



algebra of equivariant operators, 194
ansatz, 123
asymptotic expansion, 101
of heat kernel, 161
Atiyah, ML.F., collected works of, 148
Atiyah-Singer index theorem, 164
historical discussion of, 146

Betti number, 81, 183
Bianchi identity, 14, 32
bundle
frame, 23
principal, 23

characteristic class, 30
Chern character, 35

relative, 66
Chern class, 33
Chern-Weil theory, 30
Christoffel symbol, 10, 11, 29
Clifford algebra, 41
Clifford bimodule, 50
Clifford bundle, 43

graded, 43, 141

Riemann endomorphism of, 47, 156

Clifford contraction, 43
Complex manifold, 51
comaplex manifold, 175
connection, 9, 24
induced, 25
Levi-Civita, 12
curvature, 10, 28
Ricei, 14, 48
Riemann, 13, 155
scalar, 15, 49, 170
twisting, 48, 64
cyclic cohomology, 150
cylindrical end, 177

de Rham

Index

207

cohomology, 87
operator, 51
Dirac complex, 87
discrete series, 201
divergence, 20, 45
Duhamel’s principle, 98

elliptic estimate, 77

eta function, 178

Euler characteristic, 140
Euler class, 39

filtered algebra, 151
finite propagation speed, 104
fixed point, 135
simple, 136
formal power series, 158
four-dimensional geometry, 175, 181
Fourier series, 71
framing, 29
synchronous, 29
functional calculus, 83, 127

Garding inequality, 186
Garding's inequality, 76
genus
A, 36, 169
of complex manifold, 176
L, 36,173
Chern, 34
Pontrjagin, 35
geodesic, 15
coordinates, 16, 99, 160
geometric endomorphism, 133
Getzler filtration, 154
Getzler symbol, 156, 158
constant part of, 159
well defined, 161
graded algebra, 151
associated, 152



grading, 141
canonical, 142

graph, 78

Green's operator, 88

half-spin representation, 62
harmonic oscillator, 119
heat equation, 95
harmonic oscillator, 123
heat kernel, 96, 157
approximate, 97
asymptotic expansion of, 99
Hessian, 126
higher index theory, 170
Hodge
star operation. 19, 172
theorem, 88
homomorphism-like property, 152
Hopf conjecture, 201
horizontal, 25
hyperbolic space, 131, 201

index, 143

multiplicativity of, 147, 183
interior product, 49
intersection, 91, 172

Laplacian, 19
spectrum of, 115

Lefschetz number, 133

localization, 106

McKean-Singer formula, 145, 199
Mehler’s formula, 124, 163
mollifier, 79, 84

Morse function, 185

Morse inequalities, 184, 191
Morse lemma, 189

Morse theory, 183, 192

operator
annihilation, 120
creation, 120
de Rham, 51
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Dirac, 43

with coeflicients, 51
Dolbeault, 52
Hilbert-Schmidt, 110, 145
polynomial coeflicient, 155
signature, 172
smoothing, 79, 113, 193
trace class, 111
unbounded, 80

Piaffian, 33, 39

Pin group. 57

Poincaré duality, 89

polynomial
Hermite, 121
invariant, 30

Pontrjagin class, 33

Pontrjagin genus, 64

quaterniens, 53, 171

rapidly decreasing function. 83
representation

spin, 51
rescaling, 166

Schwartz space, 106
Sobolev space, 72, 74
spin bundle, 63

Spin group, 57

spin representation, 61
spin structure, 63
Spin® group, 67
Spin® structure, 68
superalgebra, 55
superbundle, 38
superconnection, 39
supersymmetry, 135
supertrace, 141, 143
symbol map, 152

tensor, 13
algebra, 152
antisvmmetric, 17



theorem
Atiyah I-index, 200
Atiyah-Bott-Lefschetz, 137
Atiyah-Patodi-Singer, 178
Atiyah-Singer, 164
Bochner, 45, 91
Gauss-Bonnet, 148, 180
Hirgebruch signature, 174
Hodge, 88
Hopf, 140
Hopf-Rinow, 16
Karamata, 116
Lichnerowicz, 170
Lidskii, 111
Parseval, 72
relative index, 179
Rellich, 73, 117
Riemann-Roch, 149, 176
Rochlin, 174
Soholev embedding, 73, 109, 195
spectral, 81
Stokes, 19
trace, 111, 141, 197
relative, 62, 142
transposition, 58

vertical, 23
volume form, 18, 56

wave equation, 95, 128
Weitzenbock formula, 44, 48, 157
Witten complex, 125, 185

zeta function, 117, 178
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