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Introduction 

This book, loosely based on a course of lectures delivered at Oxford in 1987, is 

intended as an introduction to the circle of ideas surrounding the beat equation proof 

of the Atiyah-Singer index theorem. Among the topics discussed are Hodge theory; 

the asymptotic expansion for the heat kernel; Weyl's theorem on the distribution of 

the eigenvalues of the Laplacian; the index theorem for Dirac-type operat.ors, using 

Getzler's direct method; \Vitten's analytic approach to the Morse inequalities; and 

the L2-index theorem of Atiyah for Galois coverings. As background one needs an 

acquaintance with differential geometry (connections, metrics, curvature, exterior 

derivative, de Rham cohomology) and functional analysis (elementary theory of 

Banach, Hilbert, and occasionally Frechet spaces; the spectral theorem for compact 

self-adjoint operators). Almost all the PDE theory needed is developed in the text. 

Occasionally wc quote results from representation theory or algebraic topology, but 

the reader unfamiliar with these should be able to skip over them without loss of 

continuity. Some exercises are provided. which introduce a number of topics not 

treated in the text. 

In the ten years since the first edition of this book appeared there have been a 

number of much more comprehensive treatments of this material, among which I 

have found the works by Berline-Getzler-Vergne (12J and Lawson-Michelsohn (47] 

especially useful. The book is now organized as a three-course meal: four chapters 

of geometry (1-4), and five chapters of analysis (5-9), culminate in four chapters of 

topology (10-13) in which the preceding results are brought together to prove first the 

Lefschetz formula and then the full index theorem. The final two chapters (14-15) 

are a dessert. 

Once again I am grateful to everyone who has shared insights, comments, or 

suggestions about this book, both before and after the publication of the first edition. 

I am grat.eful also to Ivan Smith and Jon Woolf who undertook the task of producing 

a 'lEX file of the first edition; I trust that enough of their work survhes in this second 

edition that they feel their efforts to have been worthwhile! 

JOHN ROE 

OXFORD AND PENN STATE, JULY 1998 
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CHAPTER 1 

Resume of Riemannian geometry 

In this chapter we give a rapid tour through some of the bask ideas of Riemannian 

geomf'try. For the most part we will omit proofs if they can be found in the beautiful 

summary by Milnor [54, Part IlJ. 

Connections 

Let M be a smooth manifold, and let V be a vector bundle 011 M. By C<lO(V) we 

denote the space of smooth sections of V. In particular, T M will denote the tangent 

bundle of AI, and COO(T AI) will denote the space of smooth sections of T M, also 

known as vector fields on AI. 

DEFINITION 1.1 A connection on V is a linear map 

assigning to a vector field X and a section Y of V a new vector field V x Y such that, 

for any smooth function I on M, 

(i) V,xY = IVxY 

(H) V x(fl") = IV x Y + (X.f)1', where X.f denotes the Lie derivative of I along 

X. 

Condition (i) may be expressed more technically by sayillS that X 1-+ V X Y is a 

homomorphism of modules over COO(M). It shows that the value of Vx Y at a point 

p depends only on the value of X at p. This allows us to regard Vasa map from 

C""'(\') to nl(\7) := COO(T' M ®' '), the space of "-valued one-forms, and it is often 

llseful to think of a connf'ction in t.his way. Condit.ion (ii) is mod(')ed on the product 

rule for differentiation. In fact, ifll is trivialized (as can always be done locally), then 

vector fields are identified with IRk-valued functions and an example of a connection 

it) given by 

V.I( = Lie derivative along X. 
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Thus many connE"Ctions exist locally. Moreover, the difference of two connections if; 

local both in X and Y, so is an End(V)-valued one-form; in other words, the space of 

connections is an affine space mooeled on the vector space lV(End('\l)). :Now using 

a partition of unity it is easy to see that local connections can be patched togeth('r 

to give a global connection. So, every vector bundle (over a paracompact manifold) 

admits connections. 

REMARK 1.2 Suppose that '\l is trivialized over a coordinate patch of AI, with io('ru 

coordinates Xl, .•• ,x". Then from our discussion above, for any conn('dion V, 

where f j is a sm(\oth section of End(V). (We abbreviate V 8; to Vi') The functions 

fi are called the Christoffel symbols and they df"tE'rmine tht> connection completely. 

Notice that they depend both on the local coordinate system for At and on the chosen 

trivialization of "-. 

REMARK 1.3 An alternative definition of connections starts from the idea of parallel 

transport. Let, be a smooth curve in M. The differ{'ntial equation V.; Y = 0 is a first 

order ordinary differential equation on sections Y of V along" which has a unique 

solution for a given initial value; one says that Y is pamllel along " or that it has 

been obtained from its initial value by parallel tmnsport. The connection determines 

the notion of parallel transport, and conversely parallel transport dctumines the 

connection V, as we shall see later. 

DEFINITION 1.4 The curvature operator K of a connection V on V is defined as 

follows: if X, }" are vector fields and Z is a section of V, then 

K(X,Y)Z = VxVyZ - VyVxZ - VIX,YjZ. 

It would appear from its definition that K is a differential opE'rator. However the 

following well-known calculation (proof in [54, Lemma 9.1]) shows that in fact K 

does not involve differentiation in any of its variables. 

10 



LEMMA 1.5 The curvature F(X, Y)Z at a point m e AI depends only on the values 

of X, Y and Z at the point m, and not on their values at nearby points. 

Thus K is induced by a vector-bundle map TAl 0TM - End(V), in other words 

a tensor field. Observe that K(X, Y) is antisymmetric in X and Y and that we may 

therefore regard K as a 2-form on M with values in End(V). Specifically. in terms of 

local coordinates Xi we define the curvature 2-lorm to be the End(V)-valued 2-form 

K = r:. K(ai , aj)dxi "dxj
• 

i<j 

(See 1.19 below for a more general discussion of differential forms and our conventions 

regarding the identification of differential forms with antisymmetric tensors.) 

Connections on the tangent bundle itself are of particular interest. Such a connec­

tion can be expressed in terms of local coordinates; let Xi be such local coordinates, 

with corresponding basic vector fields ai • Then each of the n endomorph isms r i of 

Remark 1.2 can be expressed as n x n matrices. Specifically, write 

vi(aj ) = r:. rfj a". 
" 

The connection coefficients or ChristoJJel symbols rri determine the connection com-

pletely, since if X = EXiai and Y = Eyjaj are two vector fields, the axioms (i) 

and (ii) in the definition of a connection imply that 

where by definition 

VxY = EXi1~1aj 
i.j 

yi.J' = ayi + "r~ 1'" " • L...J.a· 
" 

Thus, if AI is n-dimensional, a connection is given locally by the choice of the n3 

functions rt. 

REMARK 1.6 In the above discussion the local coordinates enter only through the 

framing of the tangent bundle provided by {ail. While it is most usual to work in 

terms of coordinate framings, we will also have occasion to use other framings of 

the tangent bundle. The discussion above can also be carried out with respect to a 

general framing. 

11 



DEFINITION 1.7 A connection on T M is smd to be symmetric (or torsion-free) if 

for any two vector fields X and Y, with Poisson bracket [X, 1'], 

VxY - VyX = [X, Y]. 

In terms of the Christoffel symbols, this condition is equivalent to rt = r~i in any 

coordinate framing. 

Riemannian geometry 

Now suppose that M is a Riemannian manifold, that is, M is equipped with a 

smoothly varying choice of inner product on the 6bers of T M. We denote these 

inner products ( • ). 

DEFINITION 1.8 One says that V is compatible with the metricif for any three vector 

fields X, Yb and l'2, 

(V xYi. l'2) + {Yi, V x Y:;!l = X· (Yi, 1';). 

A more geometrical statement of the same condition is that parallel translation 

preserves inner products (think of X as l' to see the relation between these two 

state men ts ). 

THEOREM 1.9 (LEVI-CIVITA) A Riemannian manifold possesses a unique connection 

that is symmetric and compatible with the metric. 

PROOF We work in local coordinates. As usual, the metric is represented by 

a symmetric matrix of smooth functions gjk = (OJ,Ok). Now the condit.ion of 

compatibility with the metric implies 

O,gjk = L(rfjgak + rfkgaj) 
a 

and by permuting the suffixes we get 

Ojgl:i = L(rjkgai + q,gak), 
a 

Okgij :: L{rt.gaj + rkjgai ). 
a 

Combine these and use the assumed symmetry of r to get 

L I'?jgak = !(O;gjk + Ojg;k - Okgij). 
a 

This determines the r's uniquely, since g is an invertible matrix. 0 
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From now on, we shall always think of a Riemannian manifold as equipped with 

this connection, called the Levi-Civita connection. 

REMARK 1.10 If X is a fixed vector field, then V x defines a linear map from the 

space of vector fields to itself. Vector fields are of course tensor fields of type (~), 

and in fact V x extends uniquely to a linear map (preserving type) of the space of all 

tensor fields t.o itself, satisfying the relations 

(i) Vx(A®B) =VxA®D+A®VxB; 

(ii) Vx is equal to the Lie derivative on functions (tensor fields of type (~»; 

(iii) V x commutes with contractions of covariant and contravariant indices. 

We will construct such an extension V x later, using principal bundles. Notice 

that (i) - (Hi) allow us to work out the covariant derivative in local co-ordinates. For 

instance, if A = EiJ Aijai ® aj is a tensor of type (~), then (i) implies that 

VkA = LAi~kai ® aj , 
iJ 

where 

Aij = aAij +" ri A"j + "rj Ai". 
,k axk L.J k" L.J ka 

" " 
If B = Ei.) B}ai ® dx j is a tensor of type (:), the axioms imply 

where 

V kB = L B;,kai ® d.ri 
iJ 

. aB; ". " . 
Bi,k = a k + L.J fk"Bj - L.J r;kB~. 

x" " 
These formulas can obviously be generalized. 

Since the metric uniquely determines the Levi-Civita connection, it also uniquely 

determines its curvature. 

DEFINITION 1.11 The curvature of the Levi-Civita connection on a Riemannian 

manifold is called the Riemann curvature operator (or tensor) and is denoted by R. 

In components relative to a frame {e.} for the tangent bundle we may write 

R(ej,€k)e, = 2: R;jkei. 
i 
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\Vhen ei is a coordinate frame corresponding to local coordinates Xi, direct com­

putations yield 

Ri _ ori, orj, rmr' rmri 
Ijk - oxj - oxk + kl jm - jl km' 

It is sometimes convenient also to work with the 4-covariant version of the Riemann 

curvature tensor defined by 

classically one would say that we have used the metric to 'lower the index' i of the 

Riemann tensor, to obtain the covariant version. 

PROPOSITION 1.12 The Riemann curvature operator (or tensor) R has the foUon'ing 

symmetries: 

(i) R(X, Y)Z + R(Y, X)Z = 0, or in components, R1ik + Rik; = O. (This is just 

the statement, true for any connection, that the curvature is a 2-form.) 

(ii) R(X, Y)Z +R(Y, Z)X +R(Z,X)Y = 0 (in components Rijk+R;kl+R~l; = 0). 

This is the first Bianchi identity, and it depends only on the fact that the 

connection is torsion-free. 

(Hi) (R(X, Y)Z, W) + (R(X, Y)W, Z) = O. (in components Riljk + Rliik = 0.) 

(iv) Finally. (R(X, nZ, W) = (R(Z, W)X. Y). i.e. R"jk = Rjkil. 

For proof see [54, Lemma 9.31. 

(1.13) The Riemann curvature tensor is a prett.y complicated geometric object, 

and it is reasonable to ask for some kind of condensation of the information contained 

in it. We could try contracting various indices, but the symmetries of the curvature 

mean that there is only one non-trivial contraction. This is the Ricci curoature tensor. 

which is the bilinear form on T M defined by 

Ric(Y, Z) ..... tr(X ..... R(X, Y)Z) 

or, in components, Ricao = Ei R!.o. It is clear from (iv) above that this tensor is 

symmetric. (Using the metric, any symmetric bilinear form on T M may be expressed 

as (Y, Z) ..... (Y, LZ) for some self-adjoint linear operator Z; the operator obtained 
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Notation Interpretation 

R(X,y)Z vector field obtained from X, Y, Z 

R(X,Y) (skew-symmetric) endomorph ism of TM 

R End(T M)-valued 2-form 

ej, ej framing for TAl and dual framing for T· M 

Rilj/. I (ei' R( e j, ek )e,) classical tensor form 

Ril 2-forms; matrix entries of R; Ril = Ej<k R;'jl':€j A ek 

Ricab Ricd curvature tensor; equals Ei R!ib 

K scalar curvature; equals EiJ Rijij if framing orthonormal 

RS Riemann endomorphism of a Clifford bundle (see chapter 3) 

TABLE 1.1. Notation for various interpretations of the Riemann curvature 

in this way from Ric is called th(' Ricci curvature operator.) Contracting further, we 

define the scalar curvature, denoted K, by 

..bRi K = 9 Cab, 

the trace of the Ricd curvature operator. All these interpretations and variants of 

the Riemann curvature are summarized in table 1.1. 

DEFINITION 1.14 A curve "( in a Riemannian manifold M is a geodesic if V'i'.:y = 0, 

or in other words if .:y is parallel along "(. 

The geodesic equation is a second-order differential equation, so it has a unique 

solution (at least for small values of the time parameter) subject to initial values 

1(0),1(0); in other words, there is a unique geodesic segment through a given point 

of M in a given direction. 

The geodesic equation is isochronoUS; if t ........ "(t) is a solution, then so is t ........ "(et) 

for any constant c. From this fact it follows easily that if rn is a point of M, the 

exponential map 

exp:U-M 

defined where this makes sense by sending a vector v E TmM to the value "(I) ofthe 

unique geodesic with "(0) = rn,1(0) = v, is in fact defined on an open subset U of 

TmM which is star-shaped about the origin. By the inverse function theorem, exp is 
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a diffeomorphism of a neighbourhood of zero in T m M to a neighbourhood of m in M. 

Choosing an orthononnal basis for TmM gives a special co-ordinate system, called a 

geodesic co-ordinate system, for a neighbourhood of m. 

PROPOSITION 1.15 At the origin of a geodesic co-ordinate system, the Christoffel 

symbols all vanish. 

PROOF We must show that V i8j = 0 at the origin. Since V i8j = V j8i by s~'mmetry 

of the connection, it is enough to prove that V x X = 0 at the origin for all vector fields 

X = E X j 8j , xj being a constant function. But in a geodesic co-ordinate system, the 

radial lines through the origin are unit speed geodesics; so X is of constant length and 

tangent to the geodesic through the origin in direction X. By the geodesic equation, 

VxX=O. 0 

REMARK 1.16 In fact it can be shown that, at the origin in a geodesic coordinate 

system, the me! ric tensor gij has a Taylor expansion whose Taylor coefficients are 

manufactured out of the curvature tensor at the origin and its covariant derivat.ives. 

See exercise 1.32. 

A Riemanniall manifold has a natural metric space structure. If -y: [0.11- AI is 

a curve on a RiE mannian manifold AI, we define its length by 

len{-r} = 10
1 

11"( t }Idt 

where the absolute value h'(t}1 of the tangent vector ,.'(t) is determined by using the 

Riemannian me! ric. If p, q are points of M we define their distance by 

d(p,q} = inf{len(-y}: -y(0} = p,-y(1} = q}. 

We quote without proof the following standard facts: 

PROPOSITION 1.17 d is a metric defining the topology of M. Moreover. within the 

domain of a geodesic co-ordinate system, the balls in the metric d around the origin 

are just the ordinary balls of the same radius in IRn. 

THEOREM 1.18 (HOPF-RINOW) M is a complete metric space if and only if e\'ery 

geodesic in M can be extended to arbitrary length. 

For proofs, one can consult Milnor [54, Chapter HII. 
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Differential forms 

(1.19) Differential forms are defined as smooth sections of the exterior bundle of 

the COi,angent bundle, ". T* M. To do computations, it is convenient to identify a 

differential m-form a with an antisymmetric tensor A of type (~) by writing it 

.. 1,,", .. 
a = E A""'i ... dx" A ••. A dx'ftt = -, ,L" Ai, ... i",dx" A ••. A dX' .... 

il < .. ·<i... m. il •.•. • i", 

Under this convention, the differential form dx A dy on 22 is identified with the 

antisymmetric tensor 

An important example is the curvature 2-form, which is the End(lI)-valued 2-form 

associated to the curvature operator of a connection on l/'; we may write it 

K = EF(Oj,Oi)dxi A dxi. 
'<i 

In particular we have the Riemann curvature 2-form which may be regarded as a 

matrix of 2-forms Rtl defined by 

If a is an m-form with associated antisymmetric tensor A then define for vectors 

'\'"1,,,, ,Xm 

we may write this in index notation, for instance for m = 2: 

a(X, Y) = E Xiyi Ai; 
iJ 

where Xi and yi are the components of X and y. These conventions introduce 

certain constants into expressions involving differential forms. Other publications­

and in particular the first edition of this book use different conventions and have 

different constants. You have been warned! 
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The exterior product of differential fonns may be represented in tensorial form by 

means of the generalized Kronecker delta symbol: 

This symbol is equal to + 1 if the Ij' indices are distinct and an even permutation of 

the 'i' indices, to -1 if the 'j' indices are distinct and an odd permutation of t.he "i' 

indices, and to 0 if the 'f indices and the 'i' indices do not form the same set of n 

elements. 

Now if a E {lP and 13 E {lq correspond to antisymmetric tensors A and B, then 

a A P corresponds to the antisymmetric tensor C, 

Similarly, the exterior derivative dO' corresponds t,o the antisymmetric tensor D, 

where 

In this formula we may, if we wish, replace tJAil"'i,/8xi by the covariant derh'ative 

A,)."i,J; for the difference will be a sum of terms like Ea Ait ... it_tai.+I''''prji., which is 

symmetric in j and iq and will therefore vanish on antisymmetrization. 

DEFINITION 1.20 Let M be an oriented Riemannian n-manifold. Let Xl,. " ,xn be 

oriented local co-ordinates. We define the symbol 9 = det(gii)' Now V:~ clcfine the 

volume form vol E fln(.I\1) by 

vol = J9dx l A ... A dxn. 

It is easy to check that this expression is in fact independent of local co-ordinates, 

so that it defines a global n-form on M. 

The metric on TAl induces a metric on all the associated tensor bundles, and 

therefore also on AI< T- M, considered as a bundle of antisymmetric tensors. To fix 
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a de6nite normalization, if a, {J E Ok correspond to antisymmetric tensors A and B, 

let us set 
1 ("', ~) = k' " gilll ••• gi.i'A· . B· . 

UI }J L...J 'I"". 11 "'1" 
. i" ... ,it::>" ... J, 

where gii = (dXi, dxi ) is the inverse matrix to gii' (This definition is arranged so that 

(vol, vol) = 1.) 

DEFINITION 1.21 Let a be a k-form. Define *a to be the unique {n - k)-form such 

t hat for all k-forms fJ 

(a,,8)vol = fJ A *a. 

The operation * is linear and has the property that * * a = {-I )kn+ka . Thus 

* is almost an involution. One can check this simply after choosing orthonormal 

co-ordinates at a point. 

DEFINITION 1.22 If a is a k-form, define 

d*a = (_1t k+n+1 *d*a. 

Thus d"a is a (k - I)-form. Clearly, (d*)2 = O. The importance of d* lies in the 

fact that it is the formal adjoint of d. Specifically, let a and {3 be forms of the same 

degree. De6ne their global inner product by 

(a,8) = {(a,fJ)vol= { fJA*a= {aA*{3. JM Jr., J.\{ 
This makes sense if at least one of a and {3 is compactly supported. Now 

PROPOSITION 1.23 If a, {J are smooth forms of degrees k and k - 1 on the oriented 

RiemanniaJl 1JJaJlifold M! and one of them is compactly supported, then 

(a,d!3) = {d*a,{3). 

PROOF By Stokes' theorem 

o = (d(8 A *a) = { d{3 A *0 + (_1)k-1 { {J A d(*a) Jr., ~ JM 
= {a, df3) + (-1 )k-l+(n-k+l)n+(n-k+l) ( f3 A * * d( "'a) 

J", 
= {a, dfJ) - (d-a, {3). 0 

DEFINITION 1.24 The Laplacian ~ is defined to be dd" + d"d = (d + d")2. 
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EXAMPLE 1.25 Let a = E Ajdxi be a 1-form. Then d'"o is a O-form, i.e. a function, 

often called the divergence of a. (The divergence theorem J d*o. \'01 = 0 is just a 

reformation of St.okes· theorem.) Let us calculate d-o, which is equal to - * d * o. 

First, it is e~y to check that 

Therefore 

and 

*0 = L( _1)i+ 1 J9A jgiidx1 A ... dxi- I A d:ri+1 A .. . d;;". 
iJ 

-1 "" a .. d°O' = -L... -.(Ai.Q"J9). rg .. ar1 vy 1., 
This expression can be simplified as follows. Write 

"" ( .. aAi ag'i .. a ) 
d-a = ~ - g'} ari - Ai a:rj - .4ig" ari log.;q . 

',' 
From the compatibility of the metric and connection 

agii 
L ~ j = - L (r; .. gfti + r}"gai ). 
i vI a.J 

( 1.26) 

To evaluate (a/axi ) 10g../9, differentiate the determinant g, rf'membering that gOhg 

is the cofactor of 9a"; t his gives 

and it follows that 

ag _ "" ab aYa" 
?i""""" - L... 9 9 -;:)'" . 
v:r} ... b • v.r} 

~aj log J9 = L rJo. 
vx .. 

Putting the pie<:es together. we get 

(1.27) = - L9ii Ai •i . 
iJ 

Formulae (1.26) and (1.27) may be applied to 0 == df to give an explicit formula for 

the Laplacian of a function f 

-1"" a .. af "" .. Cr.f = - L... -j {J9g'}-.} = L... _g'1I.ij. '9 .. a:r a:rl .. vy 1~ '4 
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Notice that if gii = hi;, then ~ is just the usual Laplacian of Euclidean space. 

Exercises 

QUESTION 1.28 Prove Cartan's formula for the exterior derivative of 0 E OI'(M), 

namely 

do(Xo, .• · ,XI') = 2:)-I)'o(Xo, ... ,£, ... ,XI') 
i 

+ L(-lt+i a([X;,Xj ],Xo, ... ,Xi .... ,50, ... ,XI') 
i<i 

where Xo •... ,XI' are vector fields, and the 'hat' denotes omission of the specified 

term. 

QUESTION 1.29 Prove the second Bianchi identity (for the Riemann curvature), 

which states that 

QUESTION 1.30 Let Xi be a geodesic coordinate system on a manifold AI, and let r 

denote the Riemannian distance from the point x to the origin. Prove that 

iJ iJ 

QUESTION 1.31 Let Q' be a k-form on an n-dimensional oriented Riemannian 

manifold Al. represented (in oriented local coordinates) by an antisymmetric tensor 

A. Show that 

(Notice that in this formula we have used the metric to 'raise the indices' of A.) 

QUESTION 1.32 Show that, at the origin of a geodesic co-ordinate system, the metric 

has the following Taylor expansion: 

giAx) = hij + 1 Lrl'rqRipqj(O) + O(jxj3). 
p.q 
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CHAPTER 2 

Connections, curvature, and characteristic classes 

Principal bundles and their connections 

Let G be a Lie group. Recall that a principal bundle E with structural group G 

over a smooth manifold M is a locally trivial fiber bundle whose fiber is G itself 

considered as a right G-space. Thus, G acts smoothly on E by right multiplication 

on each fiber and M = EIG. 

EXAMPLE 2.1 Let V be a k-dimensional vector bundle. The principal bundle of 

frames for \l is the space E whose fiber over a point m E .U is the collection of all 

frames in the fiher Vm on' over m. Clearly, E is a principal bundle with group GL(k). 

If l/' has a metric, onc can consider similarly the principal bundle of orthonormal 

frames for l?, which has structural group O(k) or U(k) according t.o whether V is 

real or complex. 

Conversely, let E be a principal bundle with group G and let p: G -+ GL(F) be a 

rC'presentation of G on a vector space F. Then G operates on the space E x F by 

(e,l)g = (eg, p(g-l)1) 

and the quotient space E xp F of Ex F by this action of G is a vector bundle over 

M with fibers isomorphic to F. It is called the vector bundle associated to E by the 

representation p. 

It is worth making a few comments about functions and differential forms on 

principal blmdles. Let E be a principal hundle with group G. Different.iating the 

G-action we find that to each element u of 9, the Lie algebra of G, there is associatC'd 

a G-invariant vector field Xu on E, called the Killing field corresponding to u. The 

Killing fields span a subbundle l! E of TE, which is equal to the kernel of the map 

Ttr: TE -+ TM and is called the subbundle of vertical tangent vectors to E; each 

fiber of V E is thus canonically identified with 9. A differential form a E Ol'(E) is 

called horizontal if a(X1, ••• ,Xl') = 0 whenever at least one of the vectors Xl, ... ,Xl' 
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is vertical. If {3 E OP( M) is a form it is clear that 1r-{J E OP( E) is horizontal and 

invariant. In fad, 1r- gives a bijection between the differential forms on AI and the 

horizontal, invariant differential forms on E. 

We can generalize this discussion of invariant forms to equivariant forms. Lt't (F, p) 

be a representation-space of G as above. The space of functions f: E - F has two 

commuting left G-actions, one coming from the right G-action on E and onc from 

the left G-action on F. A function f is called p-eJlftivariant if it is invariant for the 

product of thCSf' two actions, in other words if 

p(g-l)f(e) = f(eg) 'Ve E E. 9 E G. 

Similarly we call define p-equivariant differential form.s on E. with ""alues in F. 

LEMMA 2.2 In the abow~ situation there is a 1 : 1 ('orrespondence beht'een p­

equh-ariant functions on E and sections of the associated vector bundle V = E xpF. 

Similarly there is a 1 : 1 correspondence between p-equil'B.riant. horizontal differential 

forms on E and V -valued differential forms on M. 

The proof is ~imply a matter of chasing definitions, and is left to the r<>aorr. 

What should be t.he correct notion of connection on a principal bundle? To answer 

this question. consider the special case where E is the frame bundle of a wctor bundle 

V. A connection on V is defined by the parallel translation that it induces. and this 

parallel translation can bc thought of as a G-equivariant way of lifting paths from M 

to E. Differentiating, one gets a way of lifting tangent vectors from oH to E. 

To put this precisely, let 1r: E - .'Yf be the canonical projection and let V E = 
kcr(T,.) ~ T E be the sub-bundle of vertical tangent vectors. Then there is an exact. 

sequence of vector bundles over E, 

O-VE-TE 1r"TJ/-O. (2.3) 

DEFINITION 2.4 We rlcfine a connection on E to be a G-equivariant choice of splitting 

for the exact sequence 2.3. 
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In other words, a connection is a G-equivariant choice of complementary subbundle 

HE ~ TE, the bundle of horizontal tangent vectors of the connection, such that 

T E = V E $ HE. Our discussion above shows that a connection on a vector 

bundle V determines a connection 011 its frame bundle. Similarly, a connection on 

a Hermitian or Euclidean vector bundle that is compatible with the metric (in the 

sense that parallel translation presel"\'es inner products) determines a connection on 

its ort.hogonal frame bundle. 

There are a number of ways to reformulate the definition of a connection. One can 

also think of the splitting of the exact sequence as given by the induced projection 

T E - V E. The fibers of V E arc naturally identified with the Lie algebra 9 of G, 

so that this projection can be thought of as a g-valued I-form w on E. A g-valu{'d 

I-form won E is a connection I-form if 

(i) it is equivariant: w({.g) = Ad(g-l )w({); 

(ii) it represents a projection: for u E g. we must have w(Xu) = tt, where Xu 

denotes the Killing vector field on E induced by u. 

Finally. a.c;sociated to the direct sum decomposition T E = V E 6) HE there is a 

projection P.., of the space of differential forms on E onto the subspace of horizontal 

forms. The projection p ... , the connection I-form w, and the horizontal subbundle 

HE all determine one another, and we will use whichever is convenient. 

(2.5) Let E be a principal bundle over M with structural group G, and suppose 

that E is equipped with a connpction. It is easy then to see that given a path 

, : 10,11- AI and a point e E E.,(o). there is a unique path '1 : 10,1]- E starting at 

e such that 11' 0 i = 1 a.ld that i'(t) is horizontal; call i the horizontallijt of I' 

Now let p: G - GL(F) be a representation of G on a v('ctor space F, and let 

lV = E Xc F be the associated vector bundle. Given a vector U'o E W.,o' represented 

as Wo = (e, f). define the parallel translate of U'o along I to be the vector Wl E IV-,(l) 

given by Wl = CHI), /), where,), is (as abmTe) the horizontal lifting of 1 starting at 

e. Using the equivariance, it is easy to check that the vector Wl does not depend on 

the choice of the representation of Wo as (e, /). 

We can use this parallel translation to define a connection in the vector bundle W. 
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To do this, let X be a tangent vector at a point m EM, and let w be a section of 

W. Choose a curve, so that ,(0) = rn, ,'(0) = X and let IJt : W,(t) -+ lV,(o) be the 

isomorphism induced by parallel translation. Define 

Vxw = ! {1J,W1(t)}lt=o' (2.6) 

PROPOSITION 2.7 With notation as above: 

(i) Formula (2.6) is independent of the choice of the curve ~f and defines a 

connection on lV. 

(ii) If we idellti(v sections ofW with p-eq!Iivariant functions E -+ F, as in lemma 

2.2, then Vx ('orrf'Rponds to the directional derit:ati,'e along J\', the horizontal 

lift of X; 

(Hi) Equivalently, the operator V: (l°(V) -+ (ll(\,) corrf'sponds to the map f 1-+ 

P",df from p-equivariant functions on E to horizontal, p-equhariant E-llalued 

I-forms. 

PROOF It is enough to prove (ii), since the ot ber parts are immediatE' ('onscquences: 

and for this, notice that if f: E -+ F is the equivariant function corresponding to U', 

so that w = (e, !(e», then by definition of parallel translation 

where l' denotes the horizontal lift of, starting at e. Tht"refore 

; {lJ t u'1(t)}L,o = (e,d.r(-)'(O))) = (e,S . .r(e»). 

as required. 0 

EXAMPLE 2.8 Let V be a vector bundle with fibers isomorphic to F: we haw secn 

that a connection on V gives rise to one on the principal G L( F)-bundle of frames for 

V. Now let 

be a tensor product representation: then tht" bundle assodatro to p is th tensor 

product V ® .. , ® V ® V· ® " . ® V·, and the induced connection is the t.('nsor 

product connection of (l.1O). 
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The operation Pwd (taking the horizontal part of the exterior derivative of a form 

on E) is called the exterior covariant derivative on E. Notice that (Hi) above shows 

that it corresponds to the covariant derivative V on sections of an associated bundle. 

PROPOSITION 2.9 Let a be a p-equivariant horizontal p-form on E. Then its exterior 

covariant deri>'8tive P ... da is given by the formula. 

Pwda = da + p.w 1\ a. 

To explain the not.ation here, p.: g ..... gl(F) = End(F} is the Lie algebra 

homomorphism induced by p, so that p.w is an End(F)-valued one-form on E. The 

wedge product 

is obtained by tensoring the exterior product on ordinary (scalar-valued) forms with 

the natural pairing End(F) ® F ..... F. 

PROOF We will employ Cartan's formula for the exterior derivative (1.28) to check 

that both sides are equal on a (p+ 1 )-tuple of vector fields Xo .... ,Xl" where we may 

assume by linearity and locality that (for some r) the first r of the Xi are Killing 

fields and the remaining p + 1 - r are horizontal and G-invariant. We distinguish 

three cases. 

If r = 0, so that Xo, .•• ,Xl' are all horizont.al, then equalit.y results from the 

definition of P.., and the vanishing of w on horizontal vector fields. 

If r ~ 2 so that Xo and Xl are Killing fields, then every term in Cartan's formula 

has at least one vertical vector field as argument; so do(Xo, ... ,Xl') = 0 and both 

sides are zero. 

If r = 1 so that Xo is a Killing field and X\, ... ,X1' are horizontal and G-invariant, 

then Cartan's formula gives 

da(Xo, ... ,Xl') = Xo' a(X" ... ,Xl') 

since all other terms vanish. But the p-equivariance of a gives 

and this proves the result in this case also. 0 
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Now let w be the g-valued I-form of a connection on the principal bundle E. 

DEFINITION 2.10 We define the curvature n of w to be the g-valued 2-form 

where (.,.] refers to the Lie bracket in g. 

REMARK 2.11 Suppose that 9 is a Lie algebra of matrices (that is, a suba!gebra of 

g(n». Matrix-valued differential forms can be made into an (associative) algebra, 

with a product which is obtained by combining the exterior product on forms with 

the usual multiplication of matrices. The formula above may then be written n = 

dt...J+wAw. 

The curvature represents the square of the exterior covariant derivative. 

PROPOSITION 2.12 For any horizontal, p-equivariant p-form a on E. one has 

In particular, n itsel£is a horizontal and Ad-equivariant form on E. 

PROOF By 2.9, on horizontal and equivariant forms, 

Applying 2.9 again gives 

P",dP",da = p~w A do + d(p.w A o} + p.w A p.w A a = (p.(dw) + pww A p.w) A o. 

The result follows from the definition of curvature. 0 

REMARK 2.13 Notice that p.n corresponds to a 2-form on M with values in End(V}, 

where V = E xp F is the vector bundle associated to the representation p. It is easy 

to check that this 2-form is just the curvature 2-form K as defined in chapter 1 of the 

linear connection V on V' associated to w in 2.6. Indeed, one has from the definitions 

and Cartan's formula for the exterior derivative 

and this is exactly the definition of the curvature 2-form. 
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EXAMPLE 2.14 Let E be the principal bundle of frames of a m-dimensional vector 

bundle V. A froming of V is a section s of E; such framings exist locally. Using s we 

may pull back forms on E to forms on M, so that a connection on E is defined by the 

End(V)-valued 1-form s·w and its curvature by the End(V)-vaJued 2-form s·n. It 

follows from 2.9 that, if we use the framing s to trivialize V locally (so that sections 

of V are represented by JRm_valued functions), then relative to this trivialization we 

can write the connection as 

v = d+ s·w. 

Suppose now that we also choose local coordinates Xi; then we may write 

where the r, are End{ltr)-vaJued functions. In fact, these functions are simply the 

Christoffel symbols of Chapter 1. 

DEFINITION 2.15 The framing s of V is called synchronous near p (relative to the 

given local coordinates) if s is parallel along radial lines emanating from the origin p. 

Clearly such framings can be obtained by choosing any framing over p itself and 

then extending by parallel transport along radial lines. If ~v has a metric with which 

the connection is compatible, then such a framing may be chosen to be orthonormal. 

By definition, we have 

PROPOSITION 2.16 At tbe origin of a syncbronous framing tbe Cbristoffel symbols 

8.11 ""anisb. 

In fact we have a Taylor expansion, analogous to 1.32; scc exercise 2.33. 

Characteristic classes 

The theory of characteristic classes comes from the simple question: How can 

we tell two vector bundles apart? For instance, how do we know that the tangent 

bundle to tbe 2-sphere is non-trivial? (An elementary proof uses the residue theorem.) 

Characteristic classes give a systematic approach. 
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DEFINITION 2.17 A characteristic class c is a natural transformation which to each 

vector bundle y' over a manifold M associates an element reV) of the cohomology 

group H*(M), with the property that if Vi 9!! V2 then c(VI ) = c(l'2). 

The word "natural" can be given a precise sense by means of category theory. Of 

course, in the above definition the bundles may be real or complex, the cohomology 

may be taken with various coefficients, and so on. 

There are many approaches to the theory of characteristic classes. In this chapt{'r, 

we will develop the so-called Chern- Weil method. We will consider characteristic 

classes with complex coefficients of complex vector bundles. We will represent H*(U) 

as de Rham cohomology, that is closed forms (the kernel of d) modulo exact forms 

(the image of d). 

The idea of the Chern-Weil method is the following. Suppose that our bundle V is 

equipped with a connection. In some sense, the cur\'ature of this connect.ion measurf'S 

the local deviation of V from flatness. Now if \l is flat, and the bast> manifold M is 

simply-connectfd. then V' is trivial. This suggests that there may be a link between 

curvature and characteristic classes, which measure the global deviation of F from 

triviality. Such a link is provided by the theory of invariant polynomials. 

DEFINITION 2.18 Let g(m(C) denote the Lie algebra of m x In matrices oVer C­

An invariant pdynomial on glm(C) is a polynomial function P : glm(C) -- C such 

that for all X, Y E glm(C), P(XY) = P(YX). An invariant formal power serie ... 

is a formal power series over g[m(C) each of whose homogcnrouR components is an 

invariant polynomial. 

For example, the determinant and the trace arc invariant. polynomials, 

LEMMA 2.19 The ring of invariant polynomials on glm(C) is a polynomial ring 

generated by the polynomials CI:(X) = (-211'i)-k tr(Ak X), wilere AI: X denotps th(' 

transformation induced by X on A k cm . 

PROOF Let P be any invariant polynomial. If we tirst of all look at the rf'striction 
, 

of P to diagonal matrices, we see that P must. be a polynomial function of the 

diagonal entries. Since these diagonal entries can be interchanged by conjugation. P 
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must in fact be a symmetric polynomial function. Now since P is invariant under 

('onjugation, it must be a symmetric polynomial function of the eigenvalues for all 

matrices with distinct eigenvalues: since by elementary linear algebra such matrices 

are conjugate to diagonal matrices. But the set of such matrices is dense in g(m(C), 

so a continuity argument shows that P is just a symmetric polynomial function in 

the ('igcm"alllcs. Now it is easy to see that tr(A k X) is the k~th elementary symmetric 

function in the eigenvalues of X. The main theorem on symmetric polynomials (Lang, 

[46, Chapter IVI) f'tates that the ring of symmetric polynomials is it&elf a polynomial 

ring generated by the elementary symmetric functions, and this now completes the 

proof. 0 

)J"ow let V be a complex vector bundle over AI, with connection TV and curvature 

K, which is a 2-form on AI with values in End(V). Choosing a local framing for V, 

we may identify K with a matrix of ordinary 2·forms. If P is an invariant polynomial, 

we may apply P to this matrix to get an even-dimensional differential form P(K). 

Because of the invariant nature of P, the form P(K) is independent of the choice of 

local framing, and is therefore globally defined. 

In terms of the principal GLmCC)-bundle E associated to l', this constmction may 

be phrased as follows. Let f! be the cllrvature form of the induced connection on 

E; f! is a horizontal, equh"afiant 2-form on E with values in g(m(C), so P(f!) is a 

horizontal invariant form on E. Such a form is the lift to E of a form on AI, and this 

form 011 JI is P(K). 

\\Thichever approach is adopted, notice that since 2~forms are nilpotent elements 

in the exterior algebra, all formal power series with 2-form~valued variables in fact 

converge. Thus, the construction makes good sense if P is merely an invariant formal 

power series. 

PROPOSITION 2.20 For any in .... ariant polynomial (or formal power series) P, the 

differential form P(K) is closed, and its de Rham cohomology class is independent 

of the choice of connection TV on ~'. 

PROOF For the purposes of this proof let us describe an invariant formal power 

series P as respectable if the conclusion of the proposition holds for P. Clearly the sum 
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and product of respectable formal power series are respectable. Thus, it is enough to 

prove that the generators defined in (2.19) are respectable. Equivalently, since 

det( 1 + qK) = L: q'e tr(/\ le K). 

it is enough to prove that det(1 +qK) ,considered as a formal power series depending 

on the parameter q, is respectable. 

If P is a respectable formal power series with constant term a, and g is a function 

holomorphic about a, then go P is also a respectable formal power serif's. Hence, 

det( 1 + qK) is respectable if and only if log det( 1 + qK) is rf'spf'ctable. We will now 

prove directly that log det( 1 + qK) is respectable. 

For this purpose we will work in the associated principal bundle E of frames for 

V, with matrix-valued connection I-form wand corresponding curvature 2-form O. 

We will use the formula (2.10) 

( **) 

where the product in the ring of matrix-valued forms is obtained by tensoring exterior 

product and matrix multiplication. Now suppose t.hat. w df'pends on a parameter t; 

then 0 also depends on t, and if we use a dot to denote differentiation with resppct 

to t, then 

n = dW +ww +ww. 

Consider 

d 
dt logdet(1 + qO) = qtr{(1 + qO)-ln} 

00 

= L:( _1)lql+1 tr{~i(dw + ww + ww)}. 
1=0 

We need the second Bianchi identity 

dO = Ow -wO 

which foIlows from (**) on taking the exterior derivative and then sllbstituting back 

for dw. 
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We have 

tr{OI(ww +ww)} = tr{Olww -w01w} (by the symmetry of t.race) 

= tr{(dOI)w} (by the Bianchi identity). 



Therefore 

tr{OI(~ +w~ + ww)} = dtr{O'w}, 

so 
d "" -d 10gdet(1 + qO) = dL:{-I)lql+l tr{OI~} 
t 1=0 

is an exact form; in fact it is the exterior derivative of a horizontal and invariant 

Corm on E. ThereCore, the projection to the base manifold (d/dt)logdet(1 + qK) is 

also exact. Now the rf'Sult follows: for since any connection can be deformed locally 

to fiatness, we see that 10gdet(1 + qK) is locally exact, that is closed; and since any 

two connections call be linked by a (differentiable) pat.h, t.he cohomology class of 

log det( 1 + qK) is independent of the choice of connection. 0 

It follows from the proposition that any invariant formal power series P defines a 

characteristic class for complex vector bundles. by the recipe "pick any connection 

and apply P to the curvature" . 

DEFINITION 2.21 The generators c'" defined in 2.19 correspond to characteristic 

classes called Chern classes. 

From 2.19, any characteristic class defined by an invariant polynomial is thereCore 

a polynomial in the Chern classes. 

(2.22) Suppose now that V' is a real vector bundle, and let Vc denote its com­

plexification, Vc = V ®R C. The odd Chern classes of Vc are then equal to zero (in 

complex cohomology). To see this, notice that we can give V a metric and compatible 

connection. The curvature F of such a connection is skew (o(m)-valued), so 

tr(/\ '" F) = (-1)'" tr(/\'" F). 

The non-vanishing Ch ern classes of Vc are called the Pontrjagin classes of V and are 

denoted 

If v' is an oriented even-dimensional real vector bundle it also has an extra character­

istic class called the Euler class, corresponding to the Pfaffian in"'8.riant polynomial 

011 o(m). This will be discussed in the exercises. 
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Genera 

Holomorphic functions can be used to build important combinations of character­

istic classes. In fact, let I(z) be any function holomorphic near z = O. We can use I 

to construct an invariant formal power series TI, by putting 

TIAX) = det(J( -I.X)); 
2n 

the associated charact.eristic cla.'ls is called the Chem I -genus. Notice that t.he Chern 

I-genus has the properties 

(i) for a complex line bundle L, 11,(L) = l(c)(L)); 

(ii) for any complex \'ector bundles VI and V2 , TI,(V) $\'2) = TI,(V!lI1,(l'2). 

(To see (ii) one uses a direct sum connection.) In fact, it can be seen that these 

two properties determine the characteristic cla.<;s 11, uniquely: this follows from t.he 

splitting principle I , which says that given any complex vector bundle V over M. there 

exist a space X and a map g: X -+ Al such that g"V splits as a direct sum of line 

bundles, and such that g*: H*(M) -+ H"(X) is injective. The splitting principk 

allows one to conclude that a characteristic class is determined by its values on direct 

sums of line bUIldles. 

If the eigenvalues of the matrix 2,,);X are denoted (Xj). then 

is a symmetric formal power series in the x j, which can therefore be expressed in terms 

of the elementary symmetric functions of the Xj. But these elementary symmetric 

functions are just the Chern classes. Thus in the literature the genus 11,(\'} is often 

written as TI,(l/) = n I(xj}, where xl, ... . Xm are 'formal variables' subject to the 

relations XI + ... + Xm = Cl, XIX2 + ... + X m -IXm -2 = C2. and so on. III terms of 

the splitting principle, the formal variables Xj can be considE'red to represent the first 

Ch ern classes of the line bundles into which g*V splits. 

EXAMPLE 2.23 The total Chem class 

1 We will not formally require the splitting principle, which belongs to a different approach to 

characteristic class theory, and so we do not give the proof. 
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is the genus associated with fez) = 1 + z. The multiplicative law C(VI e \12) = 
c(V.)C(V2) is the so-called Whitney sum formula for the Chern classes. 

EXAMPLE 2.24 The genus associated with fez) = (1 + Z)-l can be worked out by 

expanding the product n(l + Xj)-I as 

(1 - Xl + x~ - ... )(1 - X2 + x~ _ .. , )( ... ) = 1 - Cl + (~ - C2) + ... 

If VI $ V2 is trivial, this expresses the Chern classes of V2 in terms of those of VI' 

(2.25) The Chem chamcterch is the characteristic class associated to the formal 

power series X 1-+ trexp( 2;jX), In terms of the formal variables Xj introduced above 

we have 

ch(V) = L e~j. 
The Chern character is not a genus in the sense described above, because of the 

appearance of a sum rather than the product; but it does have the analogous property 

ch(VI e \12) = cb(l/i) + chn"2). Moreover, the identity e%le%2 = e%1+%2 implies that 

Ch(Vl ® V2 ) = ch(Vd ch(V2). Thus, ch is a kind of "ring homomorphism". Direct 

calculation of the first few terms yields 

ch(V) = (dim V) + Cl + !(c~ - 2C2) + ... 

(2.26) There is an analogous theory of genera for real vector bundles. Let 9 be 

holomorphic near 0, with g(O) = 1. Let f be the branch of 
1 

z 1-+ (g(z2»)2 

which has f(O) = 1. Notice that f is an even function of z and therefore the associated 

genus involves only the evt'D Chern classes. By definition, the Pontrjagin g-genus of 

a real vector bundle ~.r is the Chern f-genus of its complexification. The appearance 

of the various squares and square roots is explained by the following lemma. 

LEMMA 2.27 Let 9 be as above. Then for a real vector bundle V, the Pontrjagin 

g-genus is equal to 

35 



where the Pontrjagin cla.sses of V are the elementary symmetric functions in tlle 

formal variables Yj. 

PROOF Regard this as an identity between invariant polynomials over o( n), Any 

matrix in o(n) is similar to one in block diagonal form, where the hlocks are 2 x 2 

and are of the form 

x _ (0 .\) 
-,\ 0 

with eigenvalues ±i'\. Since both sidt's of the desired identity are multiplicative for 

direct sums, it is enough to prove it for this block X. Now 

c}(.Y) = 0, C2(X) = (2~i)2(i.\)( -i.\) = _ .\2 

Thus Y = p}(X) = .\2/41r2 , On the other hand, X is similar over C to 

( 
-i'\ 0), 
o i'\ 

and so 
-,\ .\ 

TI,(X) = f( 21r )f(21r) = (J('\/21r)? = g(,\2/41r2) = g(y) 

as required, 0 

As in the complex case, one can also interpret this lemma in terms of an appropriate 

splitting principle; one can take a suitable pull-hAck of V to split. as a dirt'ct sum of 

real 2-plane bundles, and the Yj are t.hen the first Pontrjagin classes of the snmmands. 

EXAMPLE 2.28 Two important examples are the A-gE"nns A{V). which is the 

Pontrjagin genus associated to the holomorphic function 

';=/2 
z 1-+ sinh..[i /2 ' 

and Hirzebruch's C-genus C(V), which is the Pontrjagin gt"nus associated with the 

holomorphic function 

~I-+ ..[i 
~ tan11,;z' 

As we will see, these combinat.ions of characteristic d<'l.C:;s('s arise naturally in t.he proof 

of the Index Theorem. 
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Notes 

A comprehensive reference for the geometry of principal bundles and associated 

connections is Kobayashi and Nomizu [44]. Volume [[ of this book also contains an 

account of Chern-Weil theory. Milnor and Stasheff [SS] give a thorough discussion 

of characteristic classes. One should consult this book to learn about the relation 

between the Ch ern-Weil method and other approaches to characteristic class theory 

which show in particular that the Chern and Pontrjagin classes belong to the cohomo­

logy with integer coefficients, a fact which has important topological implications. 

Exercises 

QUESTION 2.29 Let w, 0 be the connection and curvature forms of a connection 

on a principal bundle. Prove that if X and Y are horizontal vector fields, then 

w([X, YJ) = -O(X, Y). 

QUESTION 2.30 Let E be a principal bundle equipped with a connection. One says 

that E is flat if the curvature is zero. Prove E is fiat if and only if the horizontal 

sub-bundle of TE is integrable (that is, tangent to a foliation). 

QUESTION 2.31 Let G be a Lie group and H a closed subgroup; consider G as the 

total space of a principal H-bundle with base the coset space G/1I. Suppose that 

there is a direct sum decomposition 9 = ~ $ m, where m is an H-invariant subspace 

of the Lie algebra g. 

Prove that the ~-component of the canonical g-valued one-form on G (the Maurer­

Cartan I-form) determines a left G-invariant connection on the bundle. Show that 

for X, YE m the curvature of this connection is given by O(X, Y) = -[X, Yh" where 

the subscript denotes the ~-compoIlellt in the direct sum decomposition. 

QUESTION 2.32 This exercise considers the relation between connections on a vector 

bundle V and its dual ~r •• 

(i) Suppose that a connection on V has curvature K, and End(V)-valued 2-form. 

Prove from the defini tions that the End( I/'" )-valued curvature 2-form of V·, for 
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the associated connection. is - K", where K" denotes the dual endomorphism 

to K. 

(ii) Give an alternative proof of this by considering V· as the bundle associ­

ated to the frame bundle of V by the contragredient representation g 1-+ 

(g-I)I: GL(n) _ GL(n). 

(iii) Now suppose that V is provided with a Euclidean metric and that the con­

nection is compatible with this metric. Show that the curvature ope;ators of 

V and V* agree under the identification of V with V· provided by th~ mf'trk. 

QUESTION 2.33 Prove that at the origin of a synchronolls framing for a vector 

bundle V there is a Taylor expansion for the Christoffel symbols 

rj = -4EK(oj,Ok)Xk +O(lxr~) 
i.k 

where K is the curvature operator of the connection on \.'. 

QUESTION 2.3<1 Let M denote complex projective n-space C1P". Let V be the 

canonical complex line bundle over AI. 

(i) Assume (or prove if you wish) that H*(OP") is a truncated polynomial ring 

on a = c.(V) as generator. (See [551). 

(H) Let T denote the tangent bundle to AI, considered as a complex vector bundle. 

Prove that T EEl C = V EEl ... EEl 17, the direct sum of (n + 1) copies of the dual 

of V. Deduce that the the total Chern class c(T) = (1 - at+!. 

(Hi) Now let TR denote the tangent bundle considered as a real bundle. Show that 

TR ® C = T EEl T. Deduce that the total Pontrjagin class p(TR) = (1 + a2 )"+I. 

QUESTION 2.35 A (vector) stlperbundle is a vector bundle E provided with a direct 

sum decomposition E = E+ EEl E_; its super Chem characteris by definition ('h(Eo)­

ch(EI)' The endomorphisms of E form a superalgebra (see 4.1 for the relevant 

definitions here). If T = (: ~) is an endomorphism of E we define tr~(T) = 

tr(a) - tr(d). 

(i) Prove that tr, is a supertrace, that is, it vanishes on supercommutators. 
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(ii) Quillen [60] defined a superconnection on E to be an odd parity first order 

differential operator A on the superalgebra {r(E) of E-valued differential 

forms, which satisfies the graded version of Liebniz' rule, namely 

A(a All) = do. All + (-l)ko A AB 

for a E Ok(M) and II E O-(E). Show that the operator A2 is local, and hence 

is given by multiplication by an even differential form KA. E O*(E). Show 

that., for any superconnection A, the differential for:n trAexp( -K.4/21!'i)) is 

closed and represents the super Chern character of E. 

QUESTION 2.36 Let V be a real 2m-dimensional oriented inner product space and 

let K be an element of 0(\/) (Le. a skew-adjoint endomorph ism of V). Define an 

element 0. of A2 V by a = 'Ei<j(Kei,ej)ei Aej, where (ei) is an oriented orthonormal 

basis of \/. Note that the exterior power am lies in the I-dimensional space A2m V; 

define the Pfaffian Pf( K) by 

om = m!Pf(K)el A ... A e2m . 

(i) Show that Pf(K) does 110t depend on the choice of basis made in its definition. 

(ii) Show that for any A E g[(V), Pf(AtKA) = det(A)Pf(K), and deduce that Pf 

is an invariant polynomial on 0(2m). 

(Hi) Prove that Pf(I{)2 = det(K). 

(iv) If K is the curvature of an oriented real v('('tor bundle' ur with metric and 

compatible connection, verify that Pf( -K/21!') defines a characteristic class, 

called the Euler class e(JV). 

(v) Show that if nr is the oriented real 2-plane bundle underlying a complex line 

bundle L, then eel-V) = cl(L). 

(vi) Give an extended interpretation of the formal variables Yj introduced in 2.27, 

so that e(V') = IT Jiij. 

QUESTION 2.37 Let E be a complex vector bundle of fiber dimension k, and let 

L = Ak E be the 'determinant line bundle' of E (whose fiber at any point is the top 

exterior power of the corresponding fiber of E). Prove that Cl (E) = Cl (L). 
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CHAPTER 3 

Clifford algebras and Dirac operators 

Operators such as the Laplacian ~ introduced in the first chapter will be our chief 

objects of study in this hook. ~ is a second-order operator, and it is an important 

and from some points of view surprising fact that ~ is the square of the first-order 

operator D = d + d·. The mechanism lying behind this is the theory of ClUford 

algebras, which will be developed in this chapter. 

Clifford bundles and Dirac operators 

DEFINITION 3.1 Let l' be a vector space equipped with a symmetric bilinear form, 

denoted ( , ). A Clifford algebra for V is by definition a unital algebra A which is 

equipped with a map cp: II -+ A such that 9( v)2 = - ( l', t') 1, and which is universal 

among algebras equipped with such maps; that is, if ",': F -+ A' is another map 

from \" to all algebra and satis6es ~(v)2 = -(v, v)l, then there is a unique algebra 

homomorphisIll A -+ A' 6tting into a commutative diagram 

1/ -.:!-.4 

~! 
A' 

For example, if the bilinear form is identically zero, then the exterior algebra,,· V is 

a Clifford algebra. 

PROPOSITION 3.2 For any 1'. a Clifford aJgebra exists and is unique up to isomorph­

ism. 

PROOF The uniqueness follows by abstract nonsense from th€' universal property. 

To construct a Clifford algebra, choose a basis eh'" ,e" for l', and take A to be 

spanned by the 2n possible products 9( el )kl , ... ,tp( en )kn, each k being either 0 or 1, 

with multiplication determined by the rule 
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The unique (up to isomorphism) Clifford algebra for V will be denoted Cl(F). 

Notice that if dim V = n, then dim Cl(V) = 2n. The natural map cp: V -+ Cl(V) 

is injective; as a result, one usually identifies v E V with its image cp(v) E CI(V), 

considering Vasa suh·'pace of its own Clifford algebra. 

We will now work out a simple special case of the factorization of the Laplacian. 

Let V be a real inner product space, with orthonormal basis el, ... ,en, and let Cl(V) 

be its Clifford algebra. Let S be a vector space which is also a left module over Cl(F), 

and let C:"'(V; S) denote the smooth S-valued functions on F. Each basis element 

ej corresponds to a differential operator OJ on COO(V; S). Define the Dirac operator 

Don COO(V; S) by 

Let us calculate 

Ds = Lej(ojs) 
i 

D 2s = I>joj(ejojs) = 'EejejOjOiS = - 'Eo?s ; 
j,j i,j j 

thus D2 is equal to the Euclidean Laplacian. 

REMARK 3.3 We left it unstated above whether S should be thc.ught of as a real or 

a complex vector space. It will be most convenient for us always to consider complex 

modules; thus by a CliJJord module for a real inner product space V we will mean a 

left module over the complex algebra CI(~)') ®R C, or equivalently a complex \'cctor 

space S equipped with an IR-linear map c: V -+ Endc(S) such that c(v)2 = -(v,v)l 

for all v E V. 

The fiat-space construction above can be generalized to a Riemannian manifold. If 

M is such a manifold then TAl is a bundle whose fibers are inner product spaces, so it 

makes sense to form the bundle of Clifford algebras Cl(TM). Now let S be a bundle 

of Clifford modules; i.e. the fiber Sm at m E M is a left module over Cl(TmAf) ® c. 
The sections of S are to play the role of the S-valued functions in the pre~edillg 

example. To differentiate such sections, we need a connection on S. \Ve make some 

compatibility assumptions, summarized in the next definition: 
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DEFINITION 3.4 Let S be a bundle of Clifford modules over a Riemannian manifold 

NI. S is a Clifford bundle if it is equipped with a Hermitian metric and compatible 

conne<'tion such that 

(i) The Clifford action of each vector v e TmM on Sm is skew-adjoint, that is, 

(v . Sit S2) + (Sh V • S2) = 0; 

(ii) The connection on S is compatible with the Levi-Civita connection on M, 

in the sense that Vx(l's) = (VxY)s + YVxs for all VE'ctor fields X, Y and 

sections S e COO(S). 

The Clifford bundles that we consider will often be Z/2-graded (or 'superbundles' 

in the language of question 2.35). This means that S is provided with a direct sum 

decomposition S = S+ $ S_. In this case we will require that the connection and 

metric respect the decomposition, and that the Clifford action of a tangent vector v 

is odd, meaning that it maps S+ to S_ and S_ to S+. 

DEFINITION 3.5 The Dirac operator D of a Clifford bundle S is the first order 

differential operator on COO(S) defined by the following composition: 

where the first arrow is given by the connection, the second by the metric (identifying 

TM and T"AJ), and the third by the Clifford action. 

Notice that, in the graded case, the Dirac operator is odd; it maps sections of S+ 

to sections of S_ and vice versa. In terms of a local orthonormal basis ei of sections 

of T Af, one can write 

(3.6) 

We will develop some general properties of these operators first, and then look at 

examples. It is helpful to introduce the following terminology 

DEFINITION 3.7 Let S be a Clifford bundle and let K e n2(End(S» be a 2-form with 

values in End(S). Let ei be a local orthonormal frame for TM. ThE' endomorphism 

K = Lc(ei)c(ej)K(ei,ej) 
i<j 

of S is called the Clifford contraction of K; it does not depend on the choice of frame. 
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To calculate D2, choose the local orthonormal frame ej to be synchronous at some 

point rn Ell-I. Then, at rn, Viej = O. and the Lie bracket of ei and ej also vanishf>s 

at rn. Therefore, at rn, 

i,j 

i,j 

= - ~ V~s + ~ e·e·(V ·V· - VV ·)s L-. L-J'}' '}' 
j<i 

The two terms in the formula are of different kinds. The first term is the the 

result of applying a second-order operator analogous to the Laplacian to s; w(' will 

write it as V·V S - the notation will be explained shortly. In the second term. 

VjVi - ViVj = K(ej,e;) is just the curvature of the connection on S, and is all 

endomorph ism of S. The second term therefore is equal to the Clifford contraction K 

of the curvature, applied to s. We have thus proved the very important Weitzenbock 

formula 

(3.8) 

Why the notation V·V? The point is that V can be thought of as a differential 

operator from COO(S) to COO(T·AI ® S). These bundles are equipped with m('trics, 

so that their spaces of sections have natural inner products. With respect to these 

inner products, V has a formal adjoint V·; then v·v is an operator from COO(S) to 

itself, which I claim is precisely the one appearing in the Weitzenuock formula. To 

check this we have to work out an expression for V·. 

LEMMA 3.9 The operator V': COO(T· M ® S) -+ C~(S) is gh'en in terms of local 

coordinates by the formula 

v·(dxi ® Sj) = - L9jk(Vj Sk - qkSi) . 
k 

Therefore, in a synchronous orthonormal frame (ei), 

V'(L ei ® Si) = - L ViS i 
i 

at the origin. 
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PROOF Expressions for the formal adjoint of a differential operator are obtained 

by integration by parts. In our context this takes the following form: wanting to 

prove that 

(S, V"y) = (V 8, tp) , 

where 8 E CCO(S), tp = dxj ® Sj E CCO(T'M ® S), we look at the difference of the 

local inner products, (s, V*tp) - (Vs,tp), which is a smooth function on M, and try 

to prove that it is a divergence. Now 

(S, V·tp) - (Vs, tp) = 2: ( _gik(S, VjSk) + gikr}k(S, Si) - gik(VjS, Sk) 
k 

by (1.27), where w is the I-Corm with components (s,sd, given in coordinate-Cree 

notation by w(X) = (X ® s, y). 0 

This result justifies the notation V·V in the Weitzenbock Cormula. In particula.r, 

notice that V·V is a positive operator: (V·Vs,s) = IIVsW ~ O. Now the Clifford­

contracted curvature operator K is a self-adjoint endomorphism of the bundle S, so 

that it makes sense to ask whether it is positi\"e: 

THEOREM 3.10 (BOCHNER) If the least eigenvalue ofK at each point of a compact 

M is strictly positive, then there are no non-zero solutions of the equation D2s = O. 

PROOF By a compactness argument, there is a constant c> 0 such that (Ks, s) ~ 

cllsll2 . But by the Weitzenbock formula (3.8), if D2s = 0 then 

A basic fact about the Dirac operator is its formal seIC-adjointness: 

PROPOSITION 3.11 Let SI and S2 be smooth sections of S, one ofwbich is compactly 

supported. Then 
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PROOF As in (3.9), we must check that the local expression 

is a divergence. We compute in a synchronous framing ei: 

(Ds 1,S2) - (sl,Ds2) = ~)eiV'isl,S2) - (sl,eiV'is2) 
i 

= ~)V'ieishs2) - (eisl, V'iS2) = LV'i(eisl,s2) = d·w 
i i 

where w is the I-form w(X) = -(X Si, S2)' 0 

REMARK 3.12 This result could also have been derived from (3.9) (see the exercises). 

However we gave this derivation because we will later need to make use of the specific 

nature of the I-form w. 

Clifford bundles and curvature 

In this section we will take a more careful look at the way the compatibility that we 

have required between the Levi-Civita connection and the connection on a Clifford 

bundle restricts the form of the curvature tensor for t.hat. bundle, and therefore 

restricts the possibilities for the term K in the Weitzenbock formula. Suppose that 

S is a Clifford bundle, and let a local orthonormal framing ei of the tangent hundle 

be given. Let]( be the curvature operator of S. and let R be the corresponding 

(lliemannian) cl1rvature operator of TM. Let. r: Tl\;/ -+ End(S) denote the Clifford 

action. 

LEMMA 3.13 As endomorphisms of S, we have 

[K(X.l'), c(Z)] = c(R(X, Y)Z) 

for any tangent vector fiplds X, a.nd Y, and Z. 

PROOF The identity is a pointwise one, so choose a synchronous framing ei at. a 

point pEAl and assume that X = ei, Y = ej, and Z = ek near p. Now from the 

definition of a compatible connection one easily computes that 
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at the point p the cross-terms vanish because the framing is synchronous. But 

(again because the framing is synchronous) the curvature ofTM or of Sat p is given 

by ViVj - VjVi with respect to the appropriate connection; so the result follows 

immediately. 0 

This result can be interpreted as saying that Clifford multiplication by Rv is the 

'obstruction' to the curvature K being an endomorphism of S in the category of 

CI(Tl\l) ® Cmodules. We can remove this obstruction by a suitable 'correction 

term'. In the computation of the correction term, we need to recall that if v = Ca is 

a basis vector. then 

R(e;,cj)tt = LR/a;jc, , 
where on the right hand side \\'e have expressed the 4-covariant Riemann curvature 

tensor with respect to the orthonormal frame given by the e's. 

DEFINITION 3.14 For a Clifford bundle S as above. define the Riemann endomor­

phism RS of S to be the End(S)-valued 2-form 

RS(X. Y) = t Lc(e")c(e,)(R(X.l")e,,.e,). 
kJ 

It is easy to see that RS is independent of the choice of orthonormal basis. It is an 

End( S)-vallled two-form, canonically obtained from the Clifford module structure of 

S. Now, however, we have 

LEMMA 3.15 As endomorph isms of S, we have 

[RS(X. Y),c(Z)] = c(R(X, Y}Z) 

for any tangent vectors X, Y, and Z. 

PROOF \Vc may assume without loss of generality that Z = ea, X = ei, and 

}' = ej. Now we have 

RS(Ci. ej )c(ea) - c(ea)Rs(ei, ej) = t L R/kijC([C"l'/, e"l>. 
1.,1 

The commutator leke" ea] vanishes if k = I or if k. 1, and a are all distinct. So the 

only terms that survive are those where a = k =F I or a = 1 =F k. Dy the antisymmetry 
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of the curvature tensor on k, I these two cases make equal contributions, so we get 

~ E R/kijc([eke/, eo]) = ~ E R/oijc(2e/) = c(R( ei, ej )eo) 
k,/ / 

as required. 0 

From 3.13 and 3.15 we get 

PROPOSITION 3.16 The curvature 2-form K of a Clifford bundle Scan a;waJrs hI' 

written 

where RS is the Riemann endomorphism defined in 3.14 and FS commutes with the 

action of the Clifford algebra. 

Following [12], we call the Clifford module endomorph ism FS of S the twisting 

curvature of the Clifford bundle. 

Corresponding to this more refined analysis of the curvature of S, we can obtain a 

more refined version of the Weitzenbock formula 3.8. First we will need the following 

useful calculation: 

ER/kijc(eiejek) = -2E Ric/o c(eo) (3.17) 
iJ.k 0 

where Ric denotes the Ricci tensor. 

To verify 3.1i, note that if i,j and k are distinct indices, then eiejek = ekei€j = 
ejekei, and on the other hand, RU'ij + Rlijk + R/jki = 0 by the first llianchi iclC'ntity; 

thus all the terms in the sum on t.he left hand side wit.h i, j and k distinct will cancd. 

The terms with i = j \"anish because of the antisymmetry of R/kij on i and j, so we 

are left with the terms with i = k ¥ j and the terms with i ¥ k = j. ThC'se arl' 

equal, each giving 

E Rliijc(ej) = - E Ric/o c(eo); 
iJ 0 

the result follows. 

PROPOSITION 3.18 Let S be a Clifford bundle with associated Dirac operator D. 

Then 
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where FS = L;<j c( e;)c( ej )Fs (ej, ej) is the Clifford contraction of the twisting 

curvature, and K is the scalar curvature of the Riemannian metric. 

PROOF Comparing this statement with the earlier version of the Weitzenbock: 

formula, and using 3.16, we see that we need only prove that 

Ec(ei)c(ej)RS(ei,ei) = tK • 

i<j 

Using the definition of RS, the left hand side is equal to 

By 3,17 this equals 

i E Rl/tijC( ejejel:e/). 
jJ,I:,/ 

-, ERiclaC(eae/); 
a.l 

and since the Ricd tensor is symmetric, all terms cancel here except those wi th a = 1, 

which sum to ~K as required. 0 

The appearance of the scalar curvature in this context was first noted by Lich­

nerowicz [48]. 

Examples of Clifford bundles 

EXAMPLE 3.19 THE EXTERIOR BUNDLE Let AI be a Riemaullian manifold; we use 

the metric to identify the bundles T M and T- AI. Let S denote the bundle A- r-M ® 

C. As a vector bundle this is naturally isomorphic to CI(Ti\.f) ® <C; the isomorphism 

simply converts a basis element elA ... A el: (el, ... ,el: orthonormal) for the exterior 

algebra into the basis element el ... el: for the Clifford algebra. (Warning: This is 

not an isomorphism of algebras!) Using this isomorphism, the natural structure of 

CI( Ti\.!) ® <C as a left module over itself can be transferred to ". T- .\,f ® <C, making 

this into a bundle of Clifford modules. 

The Clifford action can be expressed concretely if we make use of tbe interior 

product operation in the exterior algebra; for a covPC'tor c, define for a k-form W 

e..Jw=(_I)nl:+rt+J *(eA*w). 
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LEMMA 3.20 The Clifford action of a covector e on w E A * T* AI is gi\'en by 

c(e)..., = e 1\ w + e...Jw . 

PROOF Compute in an orthonormal basis. 0 

LEMMA 3.21 A* T*lv/ ® C, equipped with its natural metric and connection. is a 

Clifford bundle. 

PROOF We need to check the two properties listed in Definition (3.4). R('call that 

the metric on A*T*M can be defined in terms of the *-operation by (w\,w2)vol = 
Wl 1\ *W2. 

Let W\ be a k·form, ""2 a (k - I)-form. Then 

(W2. e ...J wd vol = (- 1)nk+n+\W2 1\ * * «(' 1\ *w\ ) 

= (- I)nk+n+l+nCn-k+I)+Cn- k+I)w2 1\ e 1\ *WI 

= -(e 1\ W2,W\) vol. 

This proves th(' skew-adjointness of the Clifford action. This calculation shows 

in fact that the interior multiplication is (up to a sign) the adjoint of extl'rior 

mUltiplication. The Levi-Civita connection is compatible with exterior mUltiplica.tion 

and it is comp~tible with the metric, so it must also be compatible with intenor 

multiplication, and this proves (3.4) ii). 0 

REMARK 3.22 As well as its left Clifford module structure, A· T* M ® C also has 

a right module structure, coming from the right multiplication action of the Clifford 

algebra on itself; and these two structures commute, so that A* T* M is a Clifford 

bimodule. This bimodule structure will be important when we come to discuss the 

Witten complex of a. manifold (9.14) and its applications to Morse theory. 
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(3.23) What is the Dirac operatvr of the Clifford bundle A* T* M ® Cl Write 

Dw = Lc(ej)Vjw 

= L ej 1\ Vjw + L ej ...J V jW 

= dw+aw 



So D is the operator d + d" that we mentioned earlier, and D2 = dd" + d"d is the 

Laplacian. We call D = d + d- the de Rham operator. 

EXAMPLE 3.24 Let V be any complex vector bundle equipped with a Hermitian 

metric and compatible connection. If S is a Clifford bundle then so is S ®c V. Its 

Dirac operator is often referred to as "the Dirac operator of S with coefficients in 

V". 

EXAMPLE 3.25 COMPLEX MANIFOLDS The de Rham operator was constructed out 

of the regular representation of the algebra CI(V) ® CC; that is, we made the algebra 

act on itself by left multiplication. To obtain other interesting examples of Clifford 

bundles we need some more representations of the Clifford algebra. A fundamental 

example (called the spin representation, for reasons to be explained in the next 

chapter) arises when V is an even-dimensional (real) inner product space equipped 

with a complex structure - an operator J: V - V with J2 = -1. One can choose 

J compatible with the metric: (Jx, Jy) = (x, y). Then there is a decomposition 

where P and Q are the ±i eigenspaces of J ® 1. They are a maximal transverse 

pair of isotropic subspaces - isotropic means that for PI, P2 E P, ql, f/2 E Q one has 

(PbP2) = 0 = (q.,f/2). The inner product on li ® C places P and Q in duality. 

Now we can make the exterior algebra A- P into a module over Cl(V) ® C as 

follows. If x E A- P and p+ q E V ® C, with pEP, q E Q define 

(p + q).x = V2(p" x + q .Jx). 

This extends to an action of the Clifford algebra since it satisfies the relations p2 = 
q2 = 0, pq + qp = -Z(p,q). So A* P becomes a representation of CI(V) ® V. 

Notice that if dim V = 2m, then this representation has dimension 2"'; the regular 

representation, by contrast, has dimension 22"'. 

DEFINITION 3.26 The representation of Cl(V) ® C defined ill this way is called the 

spin representation. 
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Now let M be a 2m-dimensional Riemannian manifold. The bundle CI(T M) ® C 

has its liber at each point isomorphic to the Clifford algebra; but there mayor may 

not exist a bundle S on M with liber dimension 2m such that, for E:'ach x E Af, the 

action of CI(T",M) ® C on S", is given by the spin representation. However, it is 

clear from the construction above that this will be the case when J\l is a Hermitian 

complex manifold. In this case each tangent space T.,M actually carries the structure 

of a complex vector space, and we can therefore define the operator Jr on TrIlf 

simply as (complex) scalar multiplication by J=T. Applying our con..<;tru('t.ion of the' 

spin-representation to each tiber, we obtain a bundk S of Clifford modules. In fact, 

by construction S = A- TeM ~ A- T;.;M, and via the usual constructions of complex 

geometry [36, Chapter 1], S acquires a Hermitian metric and connection which make 

it into a Clifford bundle in the sense of definition 3.4. 

By construction, C'X>( S) ~ e'1 QO.'1( M), in the usual (p, q )-decomposition of forms 

over the complEX manifold M. Now the (O,q)-forms on a complex manifold form a 

cochain complex under the operator 8, called the Dolbeault complex: 

nO.O(M) .! no.I(M) .! n O•2(Af) -+ .... 

By analogy with the de Rham complex, onc ('an ask about t.he relation of the Dirac 

operator D of S and the 'Dolbeault operator' (8 + ff). We state the result without 

proof. 

PROPOSITION 3.27 If.H is a Kii.hler manifold, then D = ./2(8 + ff). Tl1is identity 

does not hold for a general complex manifold, but the difference between t1u' tlVO 

sides is aln'ays an operator of 'zero order', that is an endomorphism of S. 

The extra complication is caused by the fact that there do not always exist. 

"complex geodesic co-ordinates" on a complex manifold. The compatibility condition 

that allows such co-ordinates to exist is precisely the Kahler condition. See [36, page 

1071· 

Notes 

The factorization of a second order "Laplacian" operator into first order operators 

by means of the "Pauli spin matrices" (which are generators of a Clifford alg{'bra) is 
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due to Dirae. Ziman ([74]) gives an account of the relevance of this factorization to 

quantum mechanics. 

The concepts of a Clifford bundle and its associated Dirac operator are developed 

by Gromov and Lawson in 1381. A more detailed account, with many instructive 

examples, can be found in 147). The discussion of the curvature of a Clifford bundle 

follows 1121. 

Exercises 

QUESTION 3.28 Show that CI()Rl) ~ C, CI()R2) ~ lHI, CI()R3) ~ lHI III lHI, where lHI 

denotes the quaternioIls and )Rn is equipped with its usuai positive definite form. 

QUESTION 3.29 Let 

:r = EIE.E 

be an element of the Clifford algebra of )R2m ® C, where E runs owr the standard 

basis of the Clifford algebra. Show that the trace of :r as an endomorph ism of the 

spin-representation is 2"'Xl. (Set' Lemma 11.5.) 

QUESTION 3.30 Prove Proposition 3.27. (See Gilkey [34), Section III.6.) 

QUESTION 3.31 Compute the adjoint of the Clifford multiplicatioll operator 

c: CX>(TM ® S) _ Coo(S). 

Use this and the formula for V" of 3.9 to give another proof of the self-adjointness 

of the Dirac operator. 

QUESTION 3.32 A filtered algebra A is an algebra which is writ.ten as the increasing 

union of subspaces Ao, At, ... , s11ch that Ai' Aj k Ai+i for all i,j. The associated 

graded algebra O(A) is the direct sum ei;;;;'l A;/A;_l' 

(i) Show tpat 0(.4) inherits a well-defined multiplication flOm A. 

(ii) Suppose that A is finite dimensional and equipped with a.n inner product. 

Show tbat there is a linear map (f: A - O(A) such that, if a E Ai e Ai-1> 

t.hen (f(a) coincides with the image of a in A;j.-li-l' 

53 



(iii) Prove that 0' is an isomorphism of vector spaces. 

(iv) Let A be the Clifford algebra of a finite-dimensional vector space V" equipped 

with a quadratic form. Show that A is a filtered algebra, if we define Ai to be 

the span of the products of i or fewer vectors of V. Show also that G(A) is 

naturally isomorphic to the exterior algebra K V. 

This gives a more canonical approach to t.he vector space isomorphism betw€'e-n th€' 

Clifford and exterior algebras. 

QUESTION 3.33 What is the 'Dirac operator' associated to A* T* AI ® C as a right 

Clifford module? 
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CHAPTER 4 

The Spin groups 

In this chapter we will study some important subgroups of the group of invertible 

elements in a Clifford algebra, and their representations. This material is nE'edcd t.o 

understand the geometrical significance of operators of Dirac type. However, it is not 

needed immediately in the development of the book, so the reader who is in a hurry 

to get on to some analysis can skip this chapter for now and coml:' back to it later. 

The CUfford algebra as a superalgebra 

DEFINITION 4.1 An algebra A (over lR or C) is called a superalgebra (or Z/2-graded 

algebra) if it is an intE.'rnal direct sum of linear sub."paces Ao and At. with 

The subspaces Ao and Al are called the even and odd parts of the superalgebra A. 

The subset .40 U .41 is called the set of homogeneous elements of .4. and if x E .4; is 

homogeneous, i is the degree of x, written dE'g(X): conventionally, dL"g(O) = o. 

Equivalently, a superalgebra is an algebra A equipped with an automorphism c, 

the grading automorphism, 8~lch that £2 = 1; the automorpbism is ddined by 

PROPOSITION 4.2 The Clifford algebra of an orthogonal vector space 1l is a 

sllp~ralgebra. ill wllic1J the elemeuts of \l are odd. 

PROOF Choose any basis for \-', say (ej), and define the eyen (resp. odd) part of 

the Clifford algebra to be the linE'ar span of the basis eiemE'nis ejl ... e ik' where k is 

even (resp. odd). The multiplication law for the Clifford algebra ensures that this 

gives a superalgebra structure independent of the choice of ba.~is. 0 
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If A is a superalgebra. then linear operators on A can be defined on homogeneolls 

elements only, and extended by linearity to the whole of A. Thus we define the 

super-commutator 

rx, yJ~ = xy - ( _1)deg!.,) deg(y)yx 

on homogeneous elements; and the super-center 

3.(A) = (x EA: [x,yl~ = 0 Vy E Al. 

LEMMA 4.3 If V is a real inner product space, then 3a(Cl(l'"» is tlle scalar fieJd R. 

and 3 .. (CIW) ® C) is the scalar field C. 

PROOF Let Cl •.• ele be an orthonormal basis for F. Let x E 3.(CI(1')) and write 

where a and b can be expanded in terms of basis elements that do not im'oh'e 

any el '5. 'Ye may assume without loss of generality that I is homogeneous. so 

deg(x) = deg(a} == deg(b) + 1. Now 

but CIX = Cia - b. 

xel = aCI + el bel 

= (-l)deg(r)(ela-eib) 

= (_l)deg(r)(cla+b) 

Since Ix, eda == 0, we deduce that b = O. Thus 1" does not im'olve Cl. Similarly, it 

does not involve any other basis element, so it is a scalar. 0 

(4.4) Let an orientation for V be chosen. The volume element in CI(\/) is the 

product Wv = et ... CIe, where {CI. ... ,cd is a positively oriented orthonormal basis 

for V; one easily checks that the definition is independent of the choice of ba.c;is. 

Moreover, calculation shows that 

Thus, if k = 2m is even, the grading automorphism is an inner automorphism. 

e:(x) = wxw- I ; moreover. w- I = (-l)"'w. If k = 2m + 1 is odd then w is central 

in CI(V) and w2 = (_l)m+l. In fact, it is easy to check that the center of Cl(\') 
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consists just of the scalars if V is even-dimensional, and is spanned by 1 and w if V 

is odd-dimensional. We leave this to the reader. 

Groups of invertibles in the Clifford algebra 

From now on, let CI(k) denote the Clifford algebra of IRk with its usual positive 

definite form. In this section we will investigate certain subgroups of the group of 

invertible elements of CI(k). Notice that, for t' E IRk. V . V = -11 vll2 in the Clifford 

algebra; so any nonzero v is an invertible in CI(k}. 

DEFINITION 4.5 

(0 The group Pin(k) is the multiplicative subgroup of CI(k} generated by the 

unit vectors t: E IRn. 

(H) The group Spin(k) is the even part of Pin(k), i.e. Spin(k) = Pin(k) n Cl(k)o. 

Let v E IRk be a unit vector. It is invertible in the Clitrord algebra with inverse 

V-I = -v. For I E V consider 

-tIIv- 1 = vxv = x - 2(x, tl)t' 

on expressing x in components parallel and perpendicular to the unit vector v. Notice 

that the right hand side of this equation call be described geometrically: it is the 

reflection of x in the hyperplane perpendicular to Z'. Since the unit vectors v generated 

the Pin group, we have proved that the twisted adjoint representation p: Pin(k) -+ 

Aut(CI(!')) defined by 

p(y)x = yxe(y-I} 

maps the subspace RI. of CI(k) to itself by an orthogonal transformation (a product of 

reflections) and so gives a homomorphism p: Pill( k) -+ O( k). Elements of Spine k) are 

products of an even number of vectors in IRk, so the rt:'Striction of p maps Spine k) -+ 

SO(k), 

PROPOSITION 4.6 There;s an exact sequence 

0-+ 7./2 -+ Spin(k) .e. SOCk) -+ 0 

where 7./2 = {±1} C Spin(k). 
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PROOF It is well-known that every element of SO(k) is a product of an even number 

of reflections, and in view of the calculation above this shows that p is surjective. 

An element y of the kernel of p must supercommute with every v E IRk; since such v 

generate the Clifford algebra, y must belong to 3.(CI{k)), and it must therefore be a 

scalar by 4.3. We need to show that the only scalars in Spin{k) are {±1}. 

For this purpose introduce the transposition antiautomorphism of CI( k); if x = 
VI··· Vm E CI{k) is a product of basis vectors, we define x, = tom ···1'1. It is a simple 

exercise using the universal property of the Clifford algebra to show that x ....... x, is a 

well-defined antiautomorphism of CI{k). But for a generator v of Pin{k) we dearly 

have V-I = v'; it follows that X-I = x, for every x E Pin(k). In particular if x is a 

scalar, X-I = x, = x, so x has square one. 0 

The exact sequence abov€- displays Spin{k) as a double covering group of SO(1.:); 

in particular, this shows that Spin{k) is a compact Lie group. 

PROPOSITION 4.7 For k ~ 2, the group Spin{k) is connected; for k ~ 3 it is simpJ.v 

connected, and the exact sequence above displays Spin{k) as the uni\'ersal cmw of 

SO{k). 

PROOF Consider a part of the exact homotopy sequence of the fibration 

0 ..... Z/2 ..... Spin(k) ..... SO{k) ..... O. 

The exact homotopy sequence gives 

where we know 'lrIZ/2 and "IroSO{k) are trivial, "IroZ/2 is Z/2, and "IrISO(k) is Z/2 

if k ~ 3. It is enough to show that the map "IroZ/2 ..... "Iro Spin(k) is trivial. This 

amounts to showing that the points +1 and -1 are connected in Spin{k), which they 

are by the path 

provided that k ~ 2. 0 
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Since p : Spin( k) - SO(k) is a covering map, there is a natural identification of the 

Lie algebra of Spin(k) with that of SO(k), which is the Lie algebra of antisymmetric 

k x k matrices. On the other hand, since Spin(k) is a submanifold of the vector space 

CI(k), its Lie algebra can be identified with a vector subspace of Cl(k). What is the 

relationship between these identifications? 

LEMMA 4.8 The Lie algebra ofSpin(k) may be identified with the vector subspace 

of Cl(k) spanned by the products ejej, i :f:. j. The idc:ltification associates an 

antisymmetric matrix aij with the element t EjJ ajjeje; of Cl( k ,. 

PROOF Since (ejej)2 = -1, 

exp(tejej) = cost + ejejsint E Spin(k). 

Thus all the ejej belong to the Lie algebra; and they span it, since it has dimension 

~k(k-1). 

Now 

p(x)v = xvx-1 (for x E Spin(k» = Ad(x)v; 

so if u belongs to the Lie algebra, p.(u)tt = ad(u)v = [u,vJ. If u = ele2 (say), we 

compute 

ad(u)ej = 0 (i:f:. 1,2). 

So ad( u) is represented by the matrix 

Representation theory of the CUfford algebra 

We now want to study the representations of the Spin group and of the Clifford 

algebra. We will do this by looking at the representation theory of a finite multi­

plicative subgroup. Let ell'" • elc be the standard orthonormal basis of]R1c and let 

EIc ~ Pin(k) be the group of order 21c+1 consisting of all the plcmf'nts 
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where each of i l , i2 , ••• , il: is either 0 or 1. In particular, El: contains (-1) E CI( k); 

denote this by /I when it is considered as an el('rr:ent of El:. 

PROPOSITION 4.9 There is a 1-1 correspondence between 

(i) Representations of the Clifford algebra CI( k): 

(ii) Representations ofPin(k) on which 11 acts as -1; 

(iii) Representations of El: on which 11 acts as -1. 

The proof is obvious. In the remainder of this section we will take 'representation' 

to mean 'complex representation', although the proposition is clearly valid over the 

real field as well. 

By the proposition, one can use the complex representation theory of the finite 

group El: to study that of Cl( k) ® C. We will assume that the reader is familiar wit h 

the representation theory of finite groups, and in particular with the properties of 

group characters; a possible reference for this subject is [461. 

Since 11 is a central involution in the finite group E", it must act as + 1 or -1 on 

each irreducible representation of E. Those irreducible representations on which /I 

acts as +1 are representations of the abelian group El:/(/I) of order 2l:, so there are 

2l: of them. How many more representations does El: have? Here a distinction makes 

itself apparent according to whether k is even or odd. 

LEMMA 4.10 

(a) Ifkiseven. thecenterofE" is {1,/I}. 

(b) If k is odd, tIle center of El: is {1,II,W,IIW}, where W is the volume element 

(4.4) in the CIifford algebra. 

PROOF Let 9 = e~' ... e~. If i,. = 1, is = 0 then one can check hy hand that 

e,.esg = IIge,.es. So the only possible central elements are 1, /I,W = el ... e", and IIW. 

If k is odd, we have seen that W is central; if k is even 

so W is noncentral. The result follows. 0 
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Now we count conjugacy classes in El::. The conjugacy class of geE" must be 

either {g} (if 9 is central) or {g,vg} (otherwise); this is an easy consequence of the 

fact that E/(v) is abelian. The number of conjugacy classes is therefore 

2"+1_ 2 
2 + 2 = 2" + 1 (k even), 

2"+l - 4 
2 + 4 = 2" + 2 (k odd). 

We have seen that E" has 2" irreducible representations on whi;::h v acts as + 1. Since 

the number of conjugacy classes is equal to the number of irreducible representations, 

it follows that if k is even El:: has just one more irreducible representation, on 

which v must act as -1; and that if k is odd E" has two inequivalent irreducible 

representations 0:1 which v acts as -1. 

One must consider the two cases separately from now on, and we will concentrate 

on the even case, where k = 2m. (The odd case is considered in the exercises.) 

Our argument shows that Cl(k) ®C has just one irreducible representation, which is 

denoted a and called the spin representation. Its dimension can be calculated if we 

recall that the sum of the squares of the dimensions of the representations of E" is 

equal to the order of El., so 

Therefore, dim a = 2m. 

Since a is its only irreducible representation, CI(k)®C is isomorphic to the matrix 

algebra End(a}. As a check on this, note that 

dim(End(..l» = (2m)2 = 210 = dim(CI(k) ®C). 

In 3.26 we gave a concrete construction of a representation of CI(k)®C, of dimension 

2m. By dimension counting, this must in fact be (isomorphic to) the spin represen­

tation. 

REMARK 4.11 As a complex representation of the finite group El., a is provided with 

a Hermitian metric with respect to which El. acts by unitary transformations. Since 

each generator ej has square -1 and is unitary on ~, it must in fact be skew-adjoint 

on D.. So the act.ion of the Clifford algebra verifies the first part of definition 3.4. 
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(4.12) Any finite-dimensional complex representation W of CI(k) must he a direct 

sum of copies of ~, or to put it another way Ur = ~® V for some auxiliary 'coefficient' 

vector space V. Notice that V can be recovered from W' as HOmCI(k)(~' UT). 

Moreover, we h~Lve 

Endc(W) = CI(k) ® Endc(V) = CI(k) ® Endc1(k)0c(W), 

DEFINITION 4.13 Let F be aClifford module endomorphism of a reprE'Sentation W = 

~ ® V of CI(k). Its relative trace trw/6 (F) is defined to be t.he trace of the Clinear 

endomorph ism of V corresponding to F under the ident.ificat.ion End c1(k)0c(lV) = 

Endc(V). 

(4.14) Notice that ~ is also an irreducible representation ofPin(k). Representation 

theory allows two possibilities for the restriction of ~ to the index two normal 

subgroup Spin(k); either the restriction is irreduciblc, or it splits as the direct. slim of 

two inequivalent irreducible representations of the same dimension. To see that. the 

latter case actually occurs, recall that the volume element w E CI(k) has w2 = (_I)m, 

and that wx = e(x)w for all x E CI(k). Let ~+ and ~_ be the ±1 eigenspaces of 

imw acting on D.; then CI(k) ® C acts on ~ = ~+ $ D._ in such a way t.hat even 

elements of the Clifford algebra preserve this direct sum decomposition. and odd 

elements reverse it. In particular, ~ + and ~ - are themselves represent at ions of 

Spin(k); they are called the positive and negat.ive half-spin representations. amI thcy 

are irreducible. 

REMARK 4.15 \Ve can reformulat.e this by saying that the super vector space 

D. = ~+ $ ~_ becomes a graded representation of CI(k). 

Spin structures on manifolds 

Now let M be an oriented Riemannian manifold, of dimension 71, and let. E be the 

principal SO(n)-bundle of oriented orthonormal frames for the t.angent bundle. We 

will assume n is even, but an analogous discussion can be made for odd n, once the 

theory of the spin representation has been worked out. 
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DEFINITION 4.16 A spin-structure on M is a principal Spin(n)-bundle E over M 

which is a double covering of E such that the restriction to each 6ber of the double 

covering E -+ E is the double covering p: Spin(n) -+ SO(n). If M admits a spin 

structure, it is called a spin manifold. 

'We don't want to go too deeply into questions about the existencE" and uniqueness 

of spin structures here. However, we should at least prove that spin structures are 

not uncommon: 

PROPOSITION 4.17 If AI is 2-connected, then it admits a unique spin structure. 

PROOF The double coverings of the connected space E are classified by the 

homomorphisms of the fundamental group 1f')E to Z/2; and those double coverings 

that restrict on a 6ber to the standard double covering of SO( n) are those classified 

by homomorphisms 1f')E -+ Z/2 such that the composite 1f')SO(n) -+ 1f')E -+ Z/2 is 

an isomorphism. But if AI is 2-connected, the E"xact homotopy sequence gives 

so 1f')SO(n) -+ 1f')E is an isomorphism, and AI has a unique spin structure. 0 

DEFINITION 4.18 If M is a spin manifold, then its spin bundle ~ is the vector bundle 

associated to the principal spin bundle by means of the spin representation. 

DEFINITION 4.19 The spin connection on the principal Spin(n) bundle E over a 

spin manifold At is defined to be the lifting to E of the principal SO(n) connection 

on E induced by the Levi-Civita connection on TM. The spin connection on ~ is 

the connection on ~ associated (via the spin representation) to the spin connection 

011 E. 

Since the spin representation is unitary, the bundle ~ has a natural hermitian 

metric. Moreo\'er. the spin connection is compatible with this metric. Thus we 

conclude 

PROPOSITION 4.20 The spin bundle ~ (equipped with its Hermitian metric and 

spin connection) orer a spin manifold M is a Cli!ford bundle (3.4). 

The fundamental nature of the spin representation is revealed by 
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PROPOSITION 4.21 The twisting curvature (3.16) of tIle spin bundle associated to a 

spin structure is zero. 

PROOF Let {ek} be a local orthonormal frame for TM. Recall that the conn('ction 

and curvature forms for TM ha\"e their values in the Lie algebraso(n) of antisymmet­

rie matrices. In particular, the curvature is an so( n)-valued two-form, whose matrix 

entries are (Re", e/) where R denotes the Riemann curvature operator. By lemma 

4.8, the corresponding spin( 11 )-valued two-form (which gives thf' cur\"ature of the spin 

connection) is 

t L( Re,,, el )eket 
k,1 

and this acts on the spin representation by 

t L( ReI<. el )c( Pk )c( et ) 
k,l 

which is exactly the End(.6)-valued 2-form R[}. of definition 3.14. The result now 

follows from the definition of twisting curvature (3.16). 0 

REMARK 4.22 Suppose now that S is any Clifford bundle over a spin manifold M. 

Then there is a vector bundle V = Homc.(.6, S), ('quipped wit.h hermitian mE'tric and 

connection, such that S ~ ~ 0 V as Clifford bundles. The curvature of the natural 

connection on a tensor product of this type is (in an obvious notation) 

K[}. 0 1 + 1 0 K" . 

Proposition 4.21 identifies the first term as the Riemann endomorph ism (3.H) of S 

and the second as the twisting curvature (3.16). 

Spin bundles and characteristic classes 

Let M be a spin manifold, of even dimension 2111, and let ~ the assodat('o spin 

bundle. We will need to know the Chern character of the complex vector bundle ~. 

PROPOSITION 4.23 The Chern character ch(A) of the spin bundle is equal to 

2mS(T M), lvhere S denotes the Pontrjagin genus associated to the holomorphic 

function g( z) = coshO.jZ). 
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We will denote the Pontrjagin genus associated to this particular holomorphic 

function by V 1-+ 6(V). 

PROOF In general, an even-dimensional oriented Euclidean (real) vector bundle V 

is called a spin vector bundle if there is given a double covering of its associated SO 

principal bundle of oriented orthonormal frames satisfying the conditions of (4.16). 

(Thus, the tangent bundle to a spin manifold is a spin bundle.) Given such a spin 

vector bundle we can form its spin bundle ~(V) as above and we want to show that 

ch(~{V)) = 2!dimV 6(\") (4.24) 

We regard this as a pointwise identity between certain polynomial functions of the 

curvature of V. To prove it, we may therefore assume that the curvature is block 

diagonal, so that V is a direct sum of 2-dimensional bundles. Moreover, if V = VI $ V2 

(with V .. V2 even-dimensional) then ~(\,,.) = ~Wd ® ~(V2)' so both sides of (4.24) 

are mUltiplicative on direct sums; thus it suffices to consider 2-dimensional V. Such 

a V can also be regarded as a I-dimensional complex vector bundle, then denoted Vc. 
On the other hand, ~(V) is a 2-dimensional complex vector bundle, decomposed by 

the grading operator into the direct sum of two I-dimensional complex components 

.:l +(V) and D. -(V). I claim that 

~+ ®c~+ ~ Vc, 

as vector bundles, or equivalently as representations of Spin(2). This must be checked 

explicitly. 

The Clifford algebra CI(JR2 ) ® C is isomorphic to M2(C) and it is spanned by the 

four matrices 

(10) (i 0) (0 i) (0 -1) 1 = 0 1 ' el = 0 -i ' e2 = i 0 ' ele2 = 1 0 . 
It is not hard to verify directly from the definition that. in this representation, Spin(2) 

is the rotation group consisting of matrices 

(

COS 0 - sin 0 ) 

sinO cos 0 
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and that the action of an element of Spin(2) on an element of lR2 represent.ed by the 

matrix 

i (: ~x) 
rotates it through 20, as we should expect. 

On the other hand, the grading operator is iel e2, which equals 

(~ ~i) 
so the eigenspaces ~ + and ~ - are given by 

The action of an element of Spin( 2) on ~ + is given by 

(
C:OSO -sinO) ( x) (COsO+isinO)x) 
Rin 0 cos 0 -ix - -i( cos (J + i sin (J)x 

that is rotation through (J. So ~ + ~ ~ + ~ Vc. and similarly ~ - ~ ~ - e! \'~-. 

Now let x denote the first Chern class Cl (~ +), Thm 

On the other hand, 

The result now follows from the definit.ion of t.he Pontrjagin genus 6. 0 

(4.25) Now let S be a general Clifford bundle on AI. By definition, the relative 

Chern character of S is the cohomology class represented by the different.ial form 

ch(Sj~) = trs/~(exp( _Fs j21ri») 

where F S is the twisting curvature and trs/~ is the relative trace of 4.13. Notice that. 

if S = ~ ~ V, then ch(Sj~) is just the ordinary Chern character of V. (The fact 

that such a decomposition is always possible locally shows that ch( S / ~) is indeed a 
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closed form, and so does represent a cohomology class.) From the a.bove results we 

have 

ch(S) = 2m S(TM)ch(S/a). 

The complex Spin group 

DEFINITION 4.26 The group Spin"(k) is the subgroup of CI(k) €I C generated by 

Spin(k) together with the circle Si of unit complex numbers. 

Notice that SI belongs to the center of CI( k) €I C; thus we have an epimorphism 

Spin(k) x Si - Spin"(k). The kernel of this epimorphism consists of pairs (,\-1, ,\), 

where ,\ E SI n Spin(k). But we have already remarked that the only scalars in 

Spin(k) are ±l, so we get the isomorphism 

SpinC(k) ~ Spin(k) X {:t:l} Si 

where the notation refers to the quotient ofthe product Spin(k) x SI by {(,\-1,'\) : 

,\E{±I}}. 

If k is even, it is clear that the spin representation (and also the half-spin repre­

sentations) are representations of the group Spin" as well as of Spin; since they are 

in fact representations of the complexified Clifford algebra. 

PROPOSITION 4.27 There is a short exact sequence 

0- Z/2 - SpinC(k) - SOCk) x Si - 1 

where the Z /2 subgroup is generated by [( -1, 1)] = [(1, -1 )]. 

The map Spin"(k) - SOCk) x SI is (x,'\) 1-+ (p(x), ,\2), where p: Spin(k) --+ SOCk) 

is the double covering. Notice that the composite 

Si _ Spin"(k) _ Si 

is the double covering map, not the identity. 

Let M be an oriented Riemannian manifold. Let E denote the oriented orthonor­

mal frame bundle of M, as before, and let L be a principal SI-bundle on M (the 

obvious representation of Si on C allows us to regard L as a complex hennitian line 

bundle, whence the notation). 
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DEFINITION 4.28 A Spine-structure on M is a principal SpinC(n)-bundle E O\'er M 

which is a double covering of E x L such that the restriction to each fiber of the 

double covering E - E is the double covering p : SpinC( n) - SO( n) X SI. The 

bundle L is called the fundamental line bundle associated to the SpinC-structure. 

Using the spin representation, as before, we can associate a spin bundle S to any 

SpinC-structure. It has a hermitian metric; to equip it with a compatible connection 

we must choose a connection on L, and then lift t.he product SO(n) X SI conn('Ction 

on E x L to a SpinC( n) connection on E. The analogue of proposition 4.21 is 

PROPOSITION 4.29 The twisting curvature of the spin bundle associated to a Spine 

structure is ~F, where F is the curvature operator of the chosen connection on the 

fundamental line bundle L. 

The proof is left to the reader. 

REMARK 4.30 Let lvf bp. a Riemannian manifold and suppose that there exists a 

Clifford bundle S over M whose fiber at each point is a copy of the spin r('presentat.ion. 

Then it can be shown (see exercise 4.36) that M admits a Spinc structure for which 

S is the associated spin bundle. In particular, the fundamental line bundle L can 

be recovered from S; it is simply the bundle Homc,€dS, S) of module-isomorphisms 

between the representation S and its complex conjugate. 

Notes 

Fundamental references on Clifford modules are the paper 14] and the book 147], 
both of which give a much more systematic development than we have done. The 

approach taken here, by way of the finite groups E/c:. comes from unpubiished lecture 

notes of the late J.F. Adams. 

Exercises 

QUESTION 4.31 Using the fibration SO(n-l) - SO(n) - sn-l, verify the assertion 

in the text that 'lr l SO(n) ~ Z/2 for n ~ 3. 
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QUESTION 4.32 Show that the even part of CI(k) is isomorphic to CI(k - 1). In 

particular, identify the even part of CI(3) 0 C with a matrix algebra M2(C). Using 

this identification, construct an isomorphism Spin(3) ~ SU(2). 

QUESTION 4.33 The graded tensor product of two super vector spaces U = U+ $ U_ 

and V = V+ $ V_ is their ordinary tensor product as vector spaces, with grading 

defined by 

(U®V)+ = U+ ® V+ + U_ 0 V_, (U®V)_ = ll+ ® V_ + U_ 0 V+. 

Prove the graded analogue of 4.12, namely that the most general graded representa­

tion of CI(k) for k even is of the form Do®V for some graded vector space V. 

QUESTION 4.34 Suppose that we consider the spin bundle D. of an even-dimensional 

spin manifold as a super vector bundle by way of the decomposition Do = Do + $ ~ - . 

(Notice that this grading depends on the orientation of AI.) Prove that the super 

Chern character chs(D.) is equal to e(TM), where e(TM) denotes the Euler class of 

question 2.36. 

QUESTION 4.35 Work out (using the method in the text) the complex representation 

theory of the ClifFord algebra of an odd-dimensional Euclidean space. 

QUESTION 4.36 Let 0:: SpinC(2k) -+ U(2k) be the homomorphism arising from the 

spin representation. 

(i) Show that there is a pull-back diagram 

SpinC(2k) ~ U(2k) 

! 1 r 

SO(2k) --.!- PU(2k) 

wherE' PU(2k) = U(2k)/U(1) is the projective unitary group. 'If is the obvious 

quotient map, and cp is the projectivization of the spin representation. 

(H) Suppose that M is a 2k-dimensional manifold which admits a CIifford bundle 

S whose fiber at each point is a copy of the spin representation, so that 

Cl(TM) ®C 9! End(S). Let E be the orthonormal frame bundle of M, and 
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El be the complex orthonormal frame bundle of S. Show that 1f.E ~ rp.EI as 

principal PU(2k )-bundles. Deduce that there is a. principal Spint:(2k) bundle 

E" over M which covers E. Thus M is a Spin" manifold. See Plymen 159J. 

QUESTION 4.37 In this question we will consider the general classification of spin 

structures; some information from homotopy theory will be required. Let M be 

a compact oriented Riemannian manifold, and let E be its principal SO(n) frame 

bundle (n even). 
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(a) By considering the Serre spectral sequence ofthe fibration SO(n) - E - M, 

derive the exact sequence 

(b) Show that the set of spin structures on M may be identified with the comple­

ment of Ker(i*) in Hl(E;Z2)' 

(c) The image under b of the generator of Hl(SO(n);Z2) is a characteristic class 

of M, called the second Stiefel- Whitney class w2(M). Show that Al admits 

a spin structure iff w-z(M) = 0, and that if this is so, the number of distinct 

spin structures is equal to the number of elements in Hl(M; Z2) . 

• It can bE shown 155, page 1711 that the Stiefel-Whitney classes of a complex 

manifold are the mod 2 reductions of its Chern classes. Use this fact to show 

that <P" has no spin structure. 



CHAPTER 5 

Analytic properties of Dirac operators 

A harmonic lunction u (for instance on JR2) is a solution of the Laplace equation 

82u 82u 
8x2 + 8y2 = O. 

One of the basic properties of harmonic functions is that they are smoother than 

you think; though u need only be twice differentiable for the equation above to make 

sense, one knows from complex variable theory that 'U is locally the real part of a 

holomorphic function, and hence is infinitely differentiable. 

It turns out that the more general Dirac operators we have bren considering have 

analogous properties. To obtain these properties we need a quantitative measure of 

the degree of differentiability of a function on a compact manifold. Such a measure 

is provided by the Sobolev spaces which we will now study. 

Sobolev Spaces 

These are defined by Fourier series. Initially, therefore, we work on the torus 

1\"" = Rn /27r71n . 

DEFINITION 5.1 Let I: 1\"n -+ C be an integrable function. The Fourier series for 

1 is the formal series 

where 
. l/,. all = 1(/1) = -- I(x)e-IV,Z dx . 

(27r)n 1'" 

When 1 is a trigonometric polynomial it is equal to its own Fourier series. Many 

delicate results describe conditions under which the Fourier series converges to I, but 

for our purposes some of the simplest will suffice, which all follow from the fact that 

the functions e,,: x 1-+ (27r)-n/2e;v.z form an orthonormal basis of the Hitbert space 

L2(1\""). 
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PARSEVAL'S THEOREM 5.2 For f E L2(T"), 

INVERSION THEOREM FOR L2 5.3 For f E L2('JI'''), the Fourier series of f convergE'S 

ill the L2-norm to f. 

INVERSION THEOREM FOR COO 5.4 For f E COO ('JI'R), the Fourier series of f 
converges in the Frechet Coo topology to f. The Fourier cOE'fficients i(lI) are rapidly 

decreasing: for any k there is a constant C" such that 11(11)1 ~ C,,(l + 11I1}-" . 

(The Frechet topology of Coo(TR) is the topology of uniform convergence of all 

derivatives. ) 

The Fourier transform converts differentiation into multiplir.ation. Thus, state­

ments about the differentiability of a function f on Tn may be translated into 

statements about the rate of growth of its Fourier coefficients. 

DEFINITION 5.5 Let k be a positive integer. The Sobolev k-inner product on coo('JI'n) 

is defined by the formula 

(11,12)" = (221')" L:i.(II)i2(1I)(1 + 11112
)" • 

11 

(This makes sense since I. and 12 are rapidly decreasing.) 

The Sobolev k-norm is the norm induced by this inner product. The k'th Sobolev 

space, denoted WIt, is the completion of COO(T") in the k-norm. 

By Parseva\'s theorem, WO is isometrically isomorphic to L2. The space WIt can 

be thought of as the space of functions whose first k derivatives belong to L2; making 

this statement precise, however, requires some distribution theory. 

There are three basic facts about Sobolev spaces, given in the next three proposi­

tions. 

PROPOSITION 5.6 The space C"(T") of k times continuously differentiable functions 

is a subspace ofW"(T8), and the inclusion map is continuous. 
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PROOF If I E C"('J['R) , then one can differentiate the Fourier SE-ries formally to 

obtain 

1(11) = (~)" li(lI) 
Wj 

where h = (8J8xi )" I. (To prove this integrate by parts k times in the fonnula for 

j,) Each h is continuous, hence square integra.ble, so Ij belongs to 12 by Parseval's 

theorem. Therefore 

111-+ 1(11)(1 + IIID" 
belongs to fl, which means exactly that I E W". The asst-rted continuity is easy to 

check. either directly or by means of the closed graph theorem. 0 

SOBOLEV EMBEDDING THEOREM: 5.7 For any integer p > nJ2, the space WHp is 

continuously included in C". 

PROOF Let I E W"+p; then 

L 1i<IIW(1 + 11112)"(1 + 11I12)P < 00 • 

" 
By Caucby-Schwartz, then, 

(~II(II)I(1 + 11112)"/2) 2 ~ (~II(IIW(I + 11112)"(1 + 11I12)P)(~(1 + 11I12)-P 

and this is finite since p > nJ2. Therefore, E" 1111"11(11)1 < OO,so that the Fourier 

series for the first k derivatives of I converges absolutely and uniformly. 0 

RELLICH'S THEOREM: 5.8 If kl < k2 then the inclusion operator Wk2 ----+ W"J is a 

compact linear operator. 

PROOF Let B be the unit ball of W"2. Given t > 0, one can choose a subspace Z 

of Wk2 of finite codimension with the property that for alII E B () Z, 11/11"1 < t: just 

take Z to be the space (J : 1(11) = 0 for 1111 < N}, for a suitably large N. The unit 

ball of W k2 JZ is precompact, so can be covered by finitely many balls of radius t. 

Hence B can be covered by finitely many balls of radius 2t in the W"· nonn. Since 

€ is arbitrary, B is precompact in that norm. 0 

Now we will define Sobolev spaces on manifolds other than 'J['R. To do this we need 

to give a different definition of the Sobolev norms. 
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PROPOSITION 5.9 The Sobolev k-norm on COO('lJ""} is equivalent to the norm given 

by 

f- E 11::011 
101~1: 

where the norms on the right are L2 norms. 

PROOF This is a straightforward application of the argument used in proving 

proposition (5.6). 0 

COROLLARY 5.10 Multiplication by a Coc function ads as a bounded operator on 

each Sobolev space. Linear differential operators of order I act boundedly from 1<",'1: 

to Wk-'. 

PROOF Obvious. 0 

COROLLARY 5.11 Let f E L2('lJ"") , with support supp(f) in a compact subset K. 

Let V be an open subset of'lJ"" containing J<, and Jet IP be a diffeomorphism of U 

into'lJ"". Then f 0 IP belongs to Wit if and only if f does. 

PROOF It is enough if we can estimate the L2 norms of derivatives of f 0 <f in 

terms of the norms of derivatives of f. By the chain rule, the derivatives up to ordf'r 

k of f 0 IP can be written as linear combinations of products of derivatives up to 

order k of f and derivatives up to order k of IP. To compute the L2 norms of those 

derivatives one must change variables in the integral, introducing the Jacobian of 9 

also. However, a.ll the quantities that depend on IP are bounded by comp&tnE'ss. so 

the result follows. 0 

Now we can define Sobolev spaces on manifolds. Let AI be a compact smooth 

manifold. Let (Vi) be a cover of AI by coordinate patches, and (l/']) a smooth 

partition of unity subordinate to Vi' Let 'Pi be a diffeomorphism of Vi into 'JI'n. 

DEFINITION 5.12 We define the Sobolev k-inner product on coc(.Al) by 

(I, g}1: = E«tPjf) 0 9jl, (Wjg) 0 IPjlh • 
; 

The Sobolev k-inner products on the right hand side refer to 'lJ"n. Of course, the 

norm associated to this inner product depends on the various choices made in its 
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definition. However, (5.10) and (5.11) show that if we make different choices, we 

replace the norm by an equivalent one. So the k-norm is canonically defined up to 

equivalence. We define the Sobolev space Wk(M) to be the completIOn of CQO(M) in 

the k-norm; it is a topological vector space provided with a class of inner products 

which define equivalent norms, with respect to any of which it is complete (sometimes 

called a 'Hilbertian space'). 

If V is a vector bundle over M, one can define similarly the Sobolev space Wk(V) 

of W k sections of V, by making an arbitrary choice of trivialization of V over each 

of the coordinate patches Uj • 

Notice that propositions 5.6, 5.7, and 5.8 still apply to the Sobolev spaces of an 

arbitrary manifold. It is easy to reduce the more general versions of these propositions 

to their special cases on the torus. 

Analysis of the Dirac operator 

We now return to the Dirac operator D on a Clifford bundle S over the manifold 

M. A critical part in the analysis is played by the Weitzenbock formula 3.8, which 

we recall states that 

where K is a certain curvature operator. In fact, the precise form of the operator K is 

of little importance here, and all the analysis will work for any first order operator D 

on sections of a bundle S (with hermitian metric and compatible connection) which 

satisfies 

(5.13) 

where B is a first order operator on S. Such an operator is called a generalized Dirae 

operator; an important example is the operator D+A, where D is a Dirac operator in 

the old sense and A is any endomorphism of S. The Dolbeault operator V2(8 + F) 

on a non-Kihler complex manifold, for example, is of this form. 

Since D is a first order operator, (5.10) gives the estimate 

IIDsllo ~ Cllslh 
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for some constant C. The main analytical property of generalized Dirac operators is 

a sort of 'approximate converse' to this: 

GARDING'S INEQUALITY: 5.14 Let D be a generalized Dirac operatc-r on a compact 

manifold. There is a constant C such that, for any S E COC(S). 

IIsll1 ~ C(IIsllo + IIDsllo} . 

PROOF By means of a partition of unity. one can reduce to the case where s is 

supported in a coordinate patch. Now we use the formula 5.13. Taking the L2 inner 

product with s. onc gets 

IIDsII~ = IIVsII~ + (Bs, s)o 

so, using Cauchy-Schwarz and the fact that B is first order, 

(5.15) 

for some constant Cl. Now let us write V in local coordinates as ViS = 8s/8xi +f,s, 

where s is thought of as a vector-valued function and the Christotfel symbols fi are 

endomorphisms of S. Then 

and so (using 5.15) 

for some constants C2,Ca,C4 ,Cs. Now use the fact that given any e > 0 there 

is a K > 0 such that ab ~ ea2 + K~ for all a,b > 0 to write CslIslloIIslb ~ 
!C4l1slll + C61is1l3, and so to deduce 

IIDslI~ ~ !C4l1slli - C61isll~ . 

Rearranging this and changing notation slightly, one gets the result. 0 

There is a generalization of Garding's inequality which relates the Sobolev k-norm 

of Ds to the Sobolev (k + I)-norm of s. 
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PROPOSITION 5.16 (ELLIPTIC ESTIMATE) For any k > 0 tbere is a constant Cl: such 

that, for any s E COO(S), 

PROOF The case k = 0 is just Garding's inequality. To obtain the more general 

result, we use induction on k. By a partition of unity, we may assume that s is 

supported in a coordinate patch. Let OJ denote the operator a/ox'. 
From (5.9). 

IIsllA:+l ~ At E lIojsllA: 
j 

for some constant Al. Now by induction 

But OJ is a first order operator, so 

Also [D,Oi] is a first order operator, so 

Therefore 

11 DOjs IIA:-l ( lIo,DslIA:-I + IIID,o,lsllA:-I 

( A2I1DslIA: + Aallslli . 

which yields the result. 0 

To analyze D, we will think of it as an unbounded operator on the Hilbert space 

H = L2(S). Recall that an unbounded operator on a Hilbert space H is simply a 

linear map from a dense subspace of H (called the domain of the operator) to H. 

Such operators need not be continuous; but a basic idea in the theory of unbounded 

operators is that the closedness of the graph of the operator in HEEl H acts as a partial 

substitute for continuity. 
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DEFINITION 5.17 Let A be an unbounded operator. The graph G A of A is the 

subspace 

GA = ((x,Ax) : x E dom(A)} 

of H$H. 

LEMMA 5.18 The closure G of the graph G of the Dirac operator is also a graph. 

PROOF This is in fact a general property of differential operators, and is based on 

the existence of a so-called 'formal adjoint' operator Df such that 

(5.19) 

for all smooth &eetions SI> S2 of S. For the classical Dirac operators of Chapter 3, we 

have proved in 3.11 that Dt = D. Suppose now that G is not a graph. Then there is 

a point (O,y) in G with y '" O. That is, there is a sequence (Xj) of smoot.h sections 

of S with Xj - 0 and DXj - y in L2(S). But t.hf'n, for any smooth s, 

(DXj, s) - (y, s), 

as j - 00. However (Dxj. s) = (Xj, Dts), 50 (y, s) = 0 for all smooth s, and 50 y = o. 
o 

Since G is a graph, it too defines an unbounded operator, denoted D. The domain 

of D is the collection of all x E L2(8) such that there is a sequence (Xj) of smooth 

sections of 8 for which Xj - x in L2(8) and DXj converges in L2(8). By Garding's 

inequality (5.14), this domain is precisely the Sobolev space W'(8). 

Suppose that x and y are smooth sections of 8, and t.hat Dx = y. Then by 5.19. 

for all smooth sections !I, 

(x. Dts) = (y, s) . 

This equation makes sense for arbitrary x, y E L2(8); if it holds one says that the 

equation Dx = y is satisfied in the weak sense. Such a concept can be defined for more 

general partial differential equations, and for most of them the concept of solvability 

in the weak sense is a proper generalization of honest solvability; but for the Dirac 

operator it will turn out that this concept is the same as that of ordinary solvability. 

To prove this w(~ need some additional concepts. 
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DEFINITION 5.20 A bounded operator A on L2(S) is called a smoothing opemtor if 

there is a smooth kernel k(p,q) on M x M, with values k(p,q) E Hom(Sq,Sp), such 

that 

As(p) = fM k(p, q)s(q). vol(q) . 

Formally, k is a smooth section of S 181 S· := 1I"iS €I 1I"2S·, where 11") and 11"2 are the 

canonical projections of M x M to M. By differentiation under the integral sign, one 

sees that the range of a smoothing operator consists of smooth sections. 

DEFINITION 5.21 A Friedrichs' mollijierfor S is a family Fe, € E (0,1) of self-adjoint 

smoothing operators on L2(S) such that 

(0 (Fe) is a bounded family of operators on L2(S). 

(H) ([B, FeD extends to a bounded family of operators on L2(S), for any first order 

differential operator B on S. 

(Hi) Fe -+ 1 in the weak topology of operators on L2(S). (This means that for all 

x,y E L2(S), (Fex,y) -+ (x,y) as € -+ 0.) 

Friedrichs' mollifiers exist (see exercise 5.34). Let us grant that for now, and go on 

to prove our result on weak solutions of Dx = y. 

PROPOSITION 5.22 Suppose tlIat x, y E L2(S), and that Dx = y weakly. Then 

x E lVI(S) = domeD), and Dx = y. 

PROOF Let Fe be a Friedrichs' mollifier, and let Xt = Ftx. Then Xe is smooth, and 

we may write for s E Coo(S) 

(Dxe,s) = (xt,Df s) 

= {x, FeDfs) 

= {x, Dt Fes} + (x, [Ft, Dt]s) 

= (y,Fes) + (X, [Fe, Dfls} . 

So there is a constant C such that 

uniformly in e. Since Coo(S) is dense in L2(S), this implies that IIDxell ~ C. 
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Now by Garding's inequality (5.14), {xt:} fonns a bounded subset of the Sobolev 

space W I • Therefore, there is a sequence of values ej -+ 0 such that Xej tends to 

a limit weakly in WI, by the weak compactness of the unit ball of the Hilbertian 

space WI. By R.ellich's theorem (5.8). xti tends to its limit in the norm topology of 

WO = £2. By property iii) of Friedrichs' mollifiers, this limit must be x; so x E WI, 

as asserted. 0 

REMARK 5.23 For the benefit of readers familiar with unhounded operator theory, 

we summarize what we have shown in that language. For simplicity restrict attention 

to the classical case where Df = D, which means that the operator D is symmetric. 

in the sense of unbounded operator theory. Proposition 5.22 above shows that the 

domain of the closure of D is equal to the domain of the (Hilbert space) adjoint 

of D (they are both equal to W'), and thus that D is self-adjoint in the sense of 

unbounded operator theory. We now go on to develop a spectral decomposition 

theory for D; Lemma 5.25 and the subsequent calculation are classical results of 

unbounded operator theory, due to von Neumann, which we have specialized to the 

case at hand. 

PROPOSITION 5.24 The kernel of D (i.e., the set of s E WI such that Ds = 0) 

consists of smooth sections. 

PROOF Let s belong to the kernel of D; we will prove inductively that SEW" for 

all k, and the r-esult will follow by the Sobolev embedding theorem. Suppose thf>n 

that it is already known that s E Wk-l, and let Ft be a Friedrichs' mollifier. It is 

easy to check (from the properties of Friedrichs' mollifiers and the definition of the 

Sobolev spaces) that Fe and [D, Ft] form bounded families of operators on lVk- l • 

Now by the elliptic estimate 

since Ds = O. Thus IlFtsllk is bounded, and since Fts converges in L2 to s, and a 

suitable subsequence converges weakly in W k , we deduce that s E W k as required. 

o 
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Recall that G denotes the graph of D, and H = L2(5). From now on we will 

assume that D = Dt; all true Dirac operators satisfy this condition. 

LEMMO\ 5.25 Let J: H(J)H -+ H(J)H denote the map (x,y) 1-+ (y, -x). Then there 

is an orthogonal direct sum decomposition 

PROOF Suppose that (x,y) E GJ.. This means that for all s E C OO(5}, 

(x,y),(s,Ds)} = 0 

i.e. 

(x,s) + (y,Ds) = 0, 

that is, Dy + x = 0 weakly. But then by (5.22), yEW', so (y, -x) E G, so 

(x,y) E JG. 0 

(5.26) Now define an operator Q as follows: for any x E L2(5) = H, let (Qx, DQx) 

be the orthogonal projection of (x,O) onto G in H (J) H. Clearly Qx e lV', and 

since IIxll2 = IIQxll2 + IID'QzIl2, Garding's inequality shows that Q is bounded as an 

operator L2 -+ W'. Hence, by Rellich's theorem (5.8), Q is compact when considered 

as a bounded operator on L2( 5). Clearly it is also self-adjoint, positive, and injective, 

and has norm ~ l. 

Now we have the following basic result, which decomposes the operator D into 

manageable (Le. finite dimensional) pieces. 

THEOREM 5.27 There is a direct sum decomposition of H into a sum of countably 

many ortbogonal subspaces H l . Eacb Hl is a finite dimensional space of smooth 

sections, and is an eigenspace for D with eigemalue A. The eigenvalues >. form a 

discrete subset ofR. 

PROOF Consider the compact self-adjoint operator Q defined above. The spectral 

theorem for such operators (proved in most first courses on functional analysis; see 

{29] for a comprehensive treatment} says that H can be decomposed into an orthog­

onal direct sum of finite dimensional eigenspaces for Q, with discrete eigenvalues 

81 



tending to zero. Since Q is positive and injective, the eigenvalues are in fact strictly 

positive. 

Now let x E WI be an eigenvector for Q, with eigenvalue p > O. Then by 5.25 

there is y E W I such that 

(.r,O) = (Qx, DQx) + (-15y,y) = p(x,15x) + (-Dy,y) 

and thus (p - 1)x = Dy and y = -pDx. Putting,\2 = (1- p)/p and z = -(1/p'\)y, 

we have 

Dx = '\z, lJz = '\x 

so x + z and x - z are eigenvectors of 15 with eigenvalues ,\ and -,\ respectively. 

We conclude that Thus H can be written as a direct sum (necessarily orthogonal) of 

eigenspaces for D, each eigenspace being a finite dimensional subspa.ce of WI(S). 

To show that the eigenvectors are smooth, notice that an eigenvector for D (with 

eigenvalue ,\) is a member of the kernel of the generalized Dirac operator D -'\. So 

5.24 completes the prGof. 0 

REMARK 5.28 Returning to where this chapter began, observe that if D is the 

operator i( d/ dx I on the circle SI, the decomposition provided by this theorem is just 

the Fourier serks decomposition of L2(SI). 

The functional calculus 

Let I7(D) denote the spectrum (set of eigenYalues) of D. Any section s E L2(S) 

has a 'Fourier expansion' as an orthogonal direct sum 

where 8,\ is the component of 8 belonging to the '\-eigenspace of D. It is elementary 

that 118,\11 " 11811 for all ,\. 

PROPOSITION 5.29 A section 8 E L2(S) is smooth ifand only if 118,\ 11 = O(I,\I-k ) for 

each k. (In this case we say that the terms of the expansion are rapidly decreasing.) 
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PROOF Since s~ is an eigenvector for D with eigenvatue A, the elliptic estimate 

gives the bound 118~1I1: ~ C~~1."s" for the Sobolev k-norm. The condition of rapid 

decay therefore implies that the expansion converges in each Sobolev space. 0 

If f is a bounded function on (F(D), we can define a bounded operator feD) on 

L2(5) by setting f(D)8 = E f(A)s~ where s = E 8). as above; in other words, feD) 

is the 'diagonal' operator which acts as multiplication by f(A) on the A-eigenspace 

of D. The following proposition is apparent from the discussion above. 

PROPOSITION 5.30 The map f 1-+ feD) is a unitaJ homomorphism from the ring 

of the bounded illnctions on (F(D)) to B(H). The nonn of the operator feD) is less 

than or equal to the supremum of If I· If D commutes with an operator A, so does 

every feD). Moreover, every feD) maps COO(S) to C<X>(S). If f(x) = xg(x), with f 

and 9 bounded functions, then feD) = Dg(D) as bounded operators. 

The argument shows that if f itself is rapidly decreasing, that is If(A)I = O(IAI-1.) 

for each k, then feD) maps L2(S) to C<X>(S). In fact feD) is actually a smoothing 

operator in this case, that is, given by a smooth kernel. To see this notice that 

for A E (F(D) the CJrthogonal projection operator p~ onto the A-eigenspace of D is 

smoothing; indeed, any orthogonal projection whose range is a finite-dimensional 

space of smooth functions is a smoothing operator. Moreover it is not hard to see 

(exercise 5.35) that for each k there is an t(k) such that the Sobolev k-nonn (on 

M x M) of the smoothing kernel of p~ is bounded by C1.At(I:). Thus, jf f is rapidly 

decreasing, the series 

feD) = L f(A)P~ 
~ 

converges in the topology of smoothing kernels on 1H x M. To summarize, we have 

proved 

PROPOSITION 5.31 If f is rapidly decreasing, tbe associated operator feD) is a 

smoothing operator. The map from f to the smoothing kernel of feD) is continuous, 

from the space R(R) of rapidly decreasing functions on R (equipped with its natural 

Frechet topology), to the space of smoothing kernels on M x At. 
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REMARK 5.32 It is plain from this discussion that there is an N (depending only 

on the dimension of M) such that, if f(>.) = O(>.-N), then f(D) has a continuous 

kernel. This will be of some importance later. 

Notes 

There are many expositions of the theory of linear elliptic operators, a part of 

which has been presented in this chapter. Our approach owes most to Griffiths and 

Harris [361. Instead of making Hilbert space theory central, one can prove the main 

results by constructing a parametrix for D; an operator Q such that DQ - 1 and 

QD - 1 are smoothing. This line is followed in [12] and in de Rham's book [24], 

where parametrices are constructed very explicitly. 

One can also construct parametrices by making use of the general theory of pseudo­

differential operators, as in [34] and [47]. We have not emphasized pseudo-differential 

operators in this text, since our main concern is with Dirac operators, which are in 

some sense mOf{' "rigid". However, pseudo-differential operators are invaluable when 

one needs to di::cuss deformations of elliptic operators: see for example At.iyah and 

Singer 19]. 

We have only defined the Sobolev spaces of positive integer order. Sobolev spa~es 

of negative and fractional order can be defined, AS well as Sobolev spacf'S hASed on 

V rather than L2 norms; these are of importance in non-linear problems. 

For more on unbounded operators, consult Dunford and Schwartz [29]. 

Exercises 

QUESTION 5.33 Invest:gate whether elements of the Sobolev space l-V"/2(ll'n} must 

be continuous (this is the 'critical case' of the Sobolev embedding theorem). Hint: 

consider the function (r,8) >-+ log(1-10gr) on the uuit hall in JR.2. 

QUESTION 5.34 Show that Friedrichs' mollifiers exist, by following the outline below. 

(i) Choose a function t.p on JR." which is positive, smooth, compactly supported, 

radially symmetric and has I t.p = 1; and let 'r'e(x) = e;-nt.p(xJe). Define F, on 
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L2(lRn) by the convolution integral 

Fts(x) = i.pt * s(x) = ..!:.. J i.p( x - Y)s(y) dy. en e 
Prove that the operators FE are uniformly bounded on L2. 

(ii) Prove that if s is continuous and compaetlysupported, then Pes - s uniformly 

as E - O. 
(Hi) Deduce that if sE £2, then Fts _ s in L2 as e -+ O. 

(iv) Let B = a(x)8J8x1• By integration by parts, show that 

[B,Ff]s(x) = 
~ j i.p(x - y )81a(y)s(y)dy + ~l j(a(x) - a(y»oli.p( x - Y)s(y) dy 
en £ c:n+ e 

and deduce that the operator norm of [B, Fe] is uniformly bounded. 

(v) Using the construction above in coordinat.e pat('hes. and a partition of unity, 

construct Friedrichs' mollifiers on a ('ompaet manifold. 

QUESTION 5.35 Let K be a smoothing operator on £2(5). Prove that the L2 norm 

of the smoothing kernel of K is bounded by a multiple of tbe operator norm of K 

as an operator from £2(5) to CO(5). Hence prove that, if K is the projection P 

onto the A-eigenspace of D, the WI;- norm of its kernel is bounded by CI;-At, for some 

f. > k + nJ2. 

QUESTION 5.36 Let D be a Dirac operator. Prove that the operators Ft = 

exp( -eD2), defined by the functional calculus, form a family of Friedrichs' mollifiers. 

QUESTION 5.37 Prove the Fredholm alternative theorem for a Dirac operator D: 

given a complex number A, either the equation Du + AU = 0 has a non-zero solution 

or for all v there is a unique solution U to the equation Du + AU = tJ. (Take u and v 

to be Coo sections of 5.) 
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CHAPTER 6 

Hodge theory 

We have seen that several of the classical Dirac operators are related to complexes 

(in the sense of homological algebra), such as the de Rham complex. Our analysis of 

Dirac operators allows us to say something about the co homology of these complexes. 

DEFlNlTlON 6.1 Let AI be an n-dimensional compact oriented Riemannian manifold, 

and let So, SI,'" ,Sic be a sequence of vector bundles over AI, equipped with 

Hermitian metrics and compatible connections. Suppose given differential operators 

dj : Coo(Sj) -+ COO(Sj+l) in such a way that dj +l dj = 0, i.e. that 

Coo(So) :!.. Coo(S.) :!.. Coo(S2) -... ,. -+ Coo(Sk) 

is a complex. It will be called a Dime complex if S = e Sj is a Clifford bundle whose 

Dirac operator D equals d + d-. 

By (3.23), the de Rham complex of AI is an example of a Dirac complex. De 

Rham's theorem says that the cohomology of this complE'x is isomorphic to the 

usual cohomology (with coefficients q of the manifold AI, as computed in algebraic 

topology. We will not prove de Rh am 's theorem here; a proof can be found in [24] 

or [15]. 

By (3.27) the Dolbeault complex of a Kiihler manifold is also a Dirac complex. 

The Dolbeault complex of any complex manifold is a 'generalized Dirac complex'; 

the operator a + a- is a self-adjoint generalized Dirac operator in the sense of the 

last chapter. 

To define the cohomology of a Dirac complex we make no use of the metric. The 

idea which leads to Hodge Theory is the following one: can we use the metric to 

choose a canonical representative of each cohomology class? Such a cohomology class 

is an affine subspace of Coo( S), a vector space on which the mE'tric gives a natural 

L2 inner product; so it is reasonable to look for the element of smallest norm in a 

cohomology class. If CS;; Coo(Sj) is a cohomology class, then it is an affine subspacc 
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whose associated vector subspace is dCOO(Si_.)' Therefore, arguing non-rigorously, 

we expect a norm-minimizing element 0 to be perpendicular to dCOO(Sj_.); which 

translates to say that d*o = O. Since also do = 0, it must be that Do = 0, or 

equivalently that D2 0 = O. In this case one says that 0 is harmonic. So we are led 

to conjecture that each cohomology class has a harmonic representative. 

The problem with this argument (as was already pointed out by Weierstrass in 

the nineteenth century) is that it assumes, but does not prove, the existence of the 

desired norm-minimizing element. However, the desired conclusion is in fact true: 

THEOREM 6.2 (HODGE THEOREM) Each cohomology class for a DirltC complex 

contains a unique harmonic representative. Indeed, the j'tb cobomology Hj(S; d) of 

such a complex is isomorphic as a vector space to the space of harmonic sections of 

Sj' 

PROOF Let 'hi denote the spctee of harmonic sections of Si' Then the 1-£'s form a 

subcomplex of the Dirac complex with trivial differential: 

1-£i-1 0 • 1-£i O. 1-£i+! __ .... 

!, dJ-I ! ' dj !, 
Coo(Si_d -- Coo(Si) - Coo(Sj+d-

We shall prove that the inclusion map t is a chain €'Quivalence. Define an inverse 

map P: Coo(Sj) - 1-£i to be the restriction to COO(Si) of the orthogonal projection 

£2(Si) _1-£i. Then Pt = 1, and tP = 1 - f(D), where 

f(A) = { ~ (A =F 0) 

(A = 0) 

and f(D) is defined by the functional calculus (5.30). Let 

{ 

A-2 
g(A) = 0 

(A =F 0) 

(A =0) 

Then 9 is bounded on the spectrum 0'( D) of D, so that the Green's opemtor G = g( D) 

is defined; and D2G = f(D) = 1 - LP. But D2G = (dd* + d*d)G = dH + Hd, where 

H = d*G; for G commutes with d since D2 commutes with d. So 

I-tP=dH+Hd. 
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We deduce that H is a chain hOlllotopy between LP and 1, so L is a chain equivalence. 

o 

\Ve can get some immediate consequences from this. 

COROLLARY 6.3 The cohoIllology of a Dirac complex (over a compact manifold!) is 

finite-dimensional. 

COROLLARY 6.4 (POINCARE DUALITY) Let AJ be a compact connected oriented 

n-manifold. Then the cap product 

is a non-degenerate pairing, and so places H"(Af;C) and H"-"(M;C) in duality. 

PROOF We use de Rham cohomology; then the cap product on cohomology is 

induced by the exterior product of differential forms. We must check that if C E H" 

satisfies C n C' = 0 for all C' E H"-", then C = O. To do this, choose any Riemannian 

metric, and represent C by a harmonic form o. Then *0 is also a harmonic form, 

representing a cohomology class C': so C n C' is represented by the form 0 A *0. The 

isomorphism of Hn(.Af; C) with C is given by integration; but 

This gives the result. 0 

The last two corollaries (when applied to the De Rham complex) gave examples 

of purely topological results proved by analytical methods. Of course there are more 

geometric means of approaching the same results, by means of Morse Theory for ex­

ample; but there are examples (6.12) on Kabler manifolds of topological consequences 

of Hodge theory that seem to be inaccessible by purely topological means. 

(6.5) To make full use of Poincare duality one needs to supplement the analytical 

understanding of duality in terms of differential forms with a geometrical under­

standing in terms of homology classes. The simplest examples of homology classes 

are those defined by closed submanifolds of a manifold. Let A[ be a compact oriented 
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n-manifold and let C be a closed oriented k-dimensional submanifold. Then C defines 

a linear functional on cohomology by 

[C]: [a] E Hk(M) 1-+ fc a; 

it is a simple application of Stokes' theorem to see that le a depends ('nly on the 

co homology class of a. We can extend [Cl to a functional CPe on ni2(M) by using 

the orthogonal projection P: ni2 - 1{" (which preserves the cohomology class) and 

defining 

cp(a) = fc Pa. 

Notice that the integral of an L2 function, or form, over a lower-dimensional sub­

manifold is not well-defined in general; but the smoothing property of P means that 

cp(a) is well defined for each L2 form a, and moreover that cP is a continuous linear 

functional on L2. By Riesz' representation theorem for the dual of a Hilhcrt space, 

there is a uniqu.~ {3 E ni2 such that cp(a) = {a, {3) for all a; and, since p 2 = P = p., 

(a,{3) = (Pa,{3) = (a,P{3) 

so P{3 = {3, that is, {3 is harmonic. The dual *{3 represents a cohomology class which 

has the property that 

r a = r 0 1\ *.0; (6.6) le lM 
this cohomology class [PcI = [*p] E Hn-k(M) is called the Poincare dual of C. 

Although we have used the Riemannian structure to define it, the dual cohomology 

class is independent of the choice of metric, since it is characterized by the metric­

independent equation 6.6. 

If C and C' are two closed oriented submanifolds of complementary dimensions 

(that is, their dimensions sum to n) and in general position, then from 6.6, we haw' 

r Pe' = ± r Pe le le' 
where the - sign appears only if both dimensions are odd. It can be shown that 

this number is the geometric intersection number of the submanifolds C ano C': 

that is, it is the total count of the (necessarily isolated) intersection points of C and 

C', taken with a sign according to the orientations. (The usual proof of this fact 

proceeds by relating Poincare duality to the Thorn isomorphism theorem: see [15]. 
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In exercise 6.13 we outline an argument which depends only on the analytical tools 

we have so far developed.) Because of this geometric interpretation, the bilinear form 

(a, {3) 1-+ J a A {3 on the de Rham cohomology is often called the intersection form. 

(6.7) Bochner introduced the idea of combining the representation of cohomology 

by harmonic forms with the Weitzenbock formula (3.8, 3.10) to obtain results on the 

topological consequences of positive curvature. To carry out his method, one needs 

to know precisely what is the K term in the Weitzenbock formula. We will work out 

one example. 

LEMMA 6.8 Let D = d+d- be the de Rham operator. Then the restriction to I-forms 

of the Clilford-contracted curvature operator K appearing in the Weitzenbock formula 

associated to D is equal to the Ricci curvature operator. 

PROOF Let ei be an orthonormal frame for TA!. Then by definition 

K = ~ Ec(ei)c(ej)K(ei, ej)' 
iJ 

Here K should in fact denote the curvature operator for the cotangent bundle T* AI; 

but, if we use the metric to identify TM and T· M, then the compatibility of the 

connection and metric allows us to identify K with the Riemann curvature operator 

(see exercise 2.32). Thus 

Ke" = ~ E eiejet( R( eh ej )e", et) = ERic,," ea 
iJ,l a 

by 3.17. The result follows. 0 

THEOREM 6.9 (BOCHNER) Let M be a compact oriented manifold whose first Betti 

number is nonzero. Then M does not have any metric of positive Ricci curvature. 

PROOF Combine (3.10), (6.2) and (6.8). 0 

Notes 

Hodge theory was introduced by Hodge [41J, inspired by the representation of 

the cohomology of a Riemann surface in terms of holomorphic and anti-holomorphic 

differentials. Boroner's original paper is Bochner [131. The method is an extremely 

important one, particularly in complex geometry; see Grifliths and Harris [36]. 
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Exercises 

QUESTION 6.10 Let G be a compact connected Lie group. The Killing form of G 

is the bilinear form B on the Lie algebra 9 defied by 

where ad denotes the adjoint representation 9 - g[(g). G is called semi·simple if B 

is negative definite. 

(i) Prove that if G is semi-simple, then the form -B on g extends uniquely to a 

bi-invariant Riemannian metric on G. 

(H) Prove that if V is the Riemannian connection and u is an element of g 

(considered as a left invariant vector field on G) then V .. u = O. Deduce 

that Vuv = i[u, vJ for u, veg. 

(iii) Prove that the Riemann curvature is given by 

1 
R(u, v)w = -4"[[u, vI, 111] 

for u, v, w e g. 

(iv) Prove that G has positive Ricd curvature, and deduce that the first Betti 

number of G is zero. (It may be helpful to know that one-parameter subgroups 

of a Lie group are geodesics of any bi-invariant metric.) 

QUESTION 6.11 Improve Bochner's theorem by showing that the first cohomology 

vanishes if the Ricd curvature is everywhere non-negative, and positive at just one 

point. Must Hl{M) vanish if M has zero Ricci curvature everywhere? 

QUESTION 6.12 This question gives a simple topological obstruction to the existence 

of a Kahler metric. 
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(i) Let R bl! a compact Riemann surface, equipped with a Riemannian metric 

that is compatible with its conformal structure. Show that every harmonic 

I-form on R is the sum of a holomorphic and an anti-holomorphic i-form. 

(ii) More generally, let M be a compact Kahler manifold. There are then three 

"Laplacians" that can be defined on the space of differential forms on .M: 



!:lD = (d + d*)'l, !:la = (0 + 0*)2, and !:la = (8 + 8*)2. Prove that !:la = !:la = 
i!:lo (see [36, page 115)). 

(Hi) Deduce that the conjugate of a hannonic form of type (p, q) is a hannonic fonn 

of type (q,p), and hence that the odd Betti numbers of a Kahler manifold are 

even. 

QUESTION 6.13 Let C be a closed oriented k-dimensional submanifold of M as in 

(6.5). Let 9 be a rapidly decreasing function on R+, with g(O) = 1, and define a 

k-form {3, on M by 

(a, (3,) = 1 g(!:l)a. 

(i) Prove that {3, is a smooth k-form. 

(ii) Prove that *{3, is closed, and that its cohomology class does not depend on 

the choice of g. Deduce that for all g. *{3, represents the Poincare dual of C. 

(Ui) Prove that given any neighbourhood U of C in M, one can choose 9 in such 

a way that *{3, is supported within U. (You will probably need to use the 

results on finite propagation speed from the next chapter.) 

(iv) Let U be a tubular neighbourhood of C, dilfeomorphic to the total space of 

the normal bundle of C in M. Prove that the integral of *(3, over any fiber of 

the normal bundle is 1 (if orientations are chosen consistently). [Use a local 

product metric.] 

(v) Deduce that if C and C' ar~ submanifolds of complementary dimension 

meeting transversally, then the integral f Pc /\ Pc' is equal to their geometric 

intersection number. 
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CHAPTER 7 

The heat and wave equations 

In this chapter we will study two important partial differential equations involving the 

Dirac operator. So, throughout the chapter, M will denote a compact Riemannian 

manifold, equipped with a Dirac operator D acting on sections of a Clifford bundle 

S. (The reader is invited to check that all the results remain valid for the larger 

class oC generalize.1 Dirac operators oC the Corm D + A, where A is a self-adjoint 

endomorphism of S.) 

Existence and uniqueness theorems 

DEFINITION 7.1 The heat equation for D is the partial differential equation 

The wave equation Cor D is the partial differential equation 

as _ iDs = 0 
Ut 

(7.2) 

(7.3) 

In both cases, s is a smooth section oC S depending smoothly on the "time" 

parameter t; we shall often write s as t 1-+ s" where St is a smooth section oC S. 

PROPOSITION 7.4 Both the heat and wave equations have unique smootb solutions 

St corresponding to given smootb initial data So. The solutions exist for all t ~ 0 in 

the case of the heat equation, and for all t E R in the case of the wave equation. Tbey 

satisfy £2 norm estimates of the form IIStll ~ IIsoll in tbe case of the beat equation, 

IIStll = 11 So 11 in the case of the wave equation. 

PROOF We Jo it Cor the heat equation. First oC all, assume that there is a smooth 
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solution s,. Then 

8 
at (St, s,) 

= -(D2s" s,) - (s" D2 St) 

This gives the a priori estimate 

(t ~ 0) 

and proves uniqueness. Now for existence, Pllt 

-tD' St = e So (7.5) 

where the operator e- tD' is defined by functional calcullls (5.30); then .~t E C'O(S). 

Moreover, since the function .A ...... e-o.
2 

can h differentiated arbitrarily often with 

respect to t > (\, uniformly in .A, we may differentiate (7.5) to find that St depends 

smoothly on t and 8s,f8t = -D2st. So St is a solution. 

The proof for the wave equation is similar. Notice that the uniqueness proof applies 

to any solution which is C2 in space and Cl in time. 0 

From the functional calculus, the solution operator e- tD' to the heat eqllation is a 

smoothing operator. Thus there is a time-dependent section kt of the bundle S 181 S· 

over M x M, ca.lled the heat kernel, such that 

e- tD2 
s(p) = fM kt(p, q)s( q) vol(q) 

for all smooth sections S and all t > O. 

PROPOSITION 7.6 The heat kernel kt(p, q) has the following properties. 

(i) We have 
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[! + D;] kt(p,q) = 0 

where Dp denotes the Virae operator D applied in the p-variable. That is, for 

each fixed q, the section p ...... kt(p, q) of S ® S; satisfies the heat equation. 

(ii) For each smooth section s, 

fM kt(p,q)s(q) vol(q) -+ s(p) 



unHormly in past - O. 

Moreover, the heat kernel is the unique time-dependent section of sas· which is 

C2 in p and q, Cl in t, and has the properties (i) and (ii) abOlre. 

PROOF It is plain from our discussion above that the heat kernel has properties 

(i) and (ii). 

Conversely, suppose that k, has these properties, and let K, be the family of 

smoothing operators with kernels k,. Then, for any section s, the time-dependent 

section K,s satisfies the heat equation for t > 0; and therefore, by uniqueness for C2 

solutions of the heat equation, 

K' - -(,-e)D2 K ,s - e eS 

for all e > O. But, as e _ 0, Kes - s uniformly, and e-(I-c)D2 _ e-tD2 in L2 

operator norm; so e-(I-e)D2 Kcs _ e-tD2 s. It follows that K,s = e-tD2 s for all s, so 

Kt is the heat kernel. 0 

REMARK 7.7 Property (ii) of the heat kernel may be expressed by saying that k, 

'tends to a 6-function' as t - O. 

Our proof of the Index Theorem will be based on the study of certain approxima­

tions to the heat kernel. 

DEFINITION 7.8 Let m be a positive integer. An approximate heat kernel of order m 

is a time-dependent section ~(p, q) of sas· which is Cl in t, C2 in p and q, and which 

tends to a IS-function in the sense of property (ii) above, and which approximately 

satisfies the heat equation in the sense that 

where r,(p, q) is a cm section of S t8I S· and depends continuously on t for t ~ O. 

We aim to prove that approximate heat kernels are asymptotic, in an appropriate 

sense, to the true heat kernel. Our main tool is the following result, known as 

Duhamel's principle. 
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PROPOSITION 7.9 Let s, be a continuously varying C2 section of S. Then there is 

a unique smooth section s, of S, differentiable in t and with So = 0, satis(ring the 

inhomogeneous heat equation 

In fact, s, is given by the integral formula: 

- -lot -(t-t')D' dt l 
St - e St" 

o 

PROOF Uniqueness follows from uniqueness in the ordinary heat equat.ion (7.4). As 

for existence, differentiate the formula, getting 

as, 
7it = S,+ lot(-D2e-Ct-nD'Stl)dtl 

= St - D2 s" 0 

COROLLARY 7.10 For each k ~ 0 there are estimates in Sobolev norms for the 

solution of the inhomogeneous heat equation 7.9 of the form 

PROOF This follows from the int.egral formula once we know that the operators 

e- tD' are uniformly bounded on every Sobolev space. This fact is a consequence, 

by an argument which is surely familiar by now, of the elliptic estimate (5.16), the 

uniform boundedness of e-'D' on L2 (5.30), and the fact that D" commutes \\rith 
-ID' e . o 

PROPOSITION 7.11 Let k, denote the true heat kernel on M. For C'I!C'ry rn there 

exists an rn' ~ rn such that, if k~ is an approximate heat kernel of order rn', then 

k,(p,q) - k/(p,q) = tmet(p,q) 

where et is a cm section of S 18I S· depending continuously on t ~ O. 
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PROOF We take rn' > rn + l dim M. By definition, the approximate heat kernel 

ki tends to a 6-function and satisfies (a/Ut + D;)k~(p,q) = tmrm(p,q), where rm is 

a em error term. Let St (Pt q) denote t he unique solution (dependent on q) to the 

inhomogeneous heat equation 

(! + D!)St(p,q) = -tmrt(p,q) 

with So = O. Then the uniqueness of the heat kernel shows that 

~(p,q) + s,(p,q) = kc(p,q). 

But by (7.10), IIstllmt ~ etm'+! for some constant C. The Sobolev embedding 

theorem now completes the proof. 0 

The asymptotic expansion for the heat kernel 

Now we will show how to build an approximate heat kernel from local data. Recall 

from the elementary theory of POE that the heat kernel on Euclidean space is the 

function 

(x, 1/, t) 1-+ (411':)"/2 exp{ -Ix - vI2
/ 4t}. 

This suggests consideration of the function 

ht(p,q) = (4~)"/2 exp{-d(p,q)2/4t}. 

on a Riemannian manifold NI as a first approximation to the heat kernel there. 

Let us fix the point q, and take a geodesic local coordinate system xi with q as 

origin. Let r2 = E(Xi)2 = ElixiXi, so that r is the geodesic distance from q and h 

is the function (411't)-,,/2e-r
2
/4t. 

LEMMA 7.12 We have the following expressions for the derivatives of the function h: 
h a 

(a) V h = - 2{ ar; 

(b) a;: + ah = ;; :;. where Y = det(Yii) is the determinant of the metric. 

PROOF It is clear that dh = (-h/2t)rdr. The gradient Vh is the vector field that 

corresponds to dh under the isomorphism provided by the metric between the tangent 
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and cotangent spaces; but this isomorphism takes dr to %r because the coordinate 

system is geodesic. This proves (a). 

As for (b), wc recall the general formula 

V"(fV) = fV'V - {V f. V} 

for a function f and vector field V. Now Ah = V'Vh, and we have already computed 

Vh in (a). Thus we get 

!:1h = -!!.. V· (r~) + !:.. oh. 
2t or 2t or 

The second term equals -r2h/4t2• To compute the first we nlay use the formula 1.26 

to write 

Thus 

V· (r~) = __ 1 'E ~ (xil9) =-n 
Or 19 i Ox} 

Ah = (_.:: +.:: +.!... Og) h. 
4t2 2t 4gt or 

r og 
2gor' 

On the other hand. it is easy to work out that oil/at = (-n/2t + r2/4t2)h, and 

combining this with our calculation of Ah we get the result. 0 

We will also need some calculations about the commutator of the Dirac operator 

with multiplication by a smooth function. 

LEMMA 7.13 Let D be the Dirac operator on sections of a Clifford bundle S, let .<; 

be a section of S, and let f be a smooth fllnction. Then 

(a) D(fs) - fDs = C(V /)s, n'here c denotes Clifford multiplication. 

(b) D2(fs) - fD2s = (A/)s - 2Vv/s. 

PROOF Choose a synchronous orthonormal frame ej. Then we have 

D(fs) = 'Ee;Vi(fs) = I LeiVis + L dl(ej)ej . S = I Ds + c(V j)s. 
i i. i 

This proves (a). For (b), a similar computation gives 

D2(fs) = f'EeiejViVjS + 'E(ViVjf)eiejS + Leiej[V;fVjs + ViIViS], 
i,j i,j i,j 

The first term is equal to f D2s, the second to (Af)s, and in the third the terms with 

i i- j cancel to leave simply -2EV;fV i s = -2Vvfs. 0 

100 



Our intention now is to use the function h, as a starting-point for the construction 

of an asymptotic expansion for the heat kernel. 

DEFINITION 7.14 Let I he a function on R+ with values in a Banach space E. A 

formal series 
00 

I(t) - E a,,(t), 
k=O 

where the a" are functions R+ -+ E, is called an asymptotic expansion for I near 

t = 0 if for each positive integer n there exists an fn such that, for all f ~ fn there is 

a constant Ct,n such that 

t 
11/(t) - E a,,(t)11 ~ Ct,nltln 

h:O 

for sufficiently small t. 

To put this more straightforwardly, for any n, almost all the partial sums of the 

series must approximate I to within an error which is of order tn. An asymptotic 

expau&ion need not converge: an instructive example is furnished by the Maclaurin 

series 
I(t) '" t l(k);O) tk 

k=O k. 
for a Coo function. This is always a valid asymptotic expansion; but it is convergt'nt 

only if I is analytic near zero. 

We will obtain the following asymptotic expansion for the heat kE'rnel. 

THEOREM 7.15 Let AI be a compact Riemannian manifold equippt'd with a Clilford 

bundle S and Dirac operator D. Let k, denote the beat kernel of AI. Then 

(i) Tbere is an asymptotic expansion for kt. of the form 

k,(p,q) '" ht(p,q)(Bo(p,q) + tB1(p,q) + t2B 2(p,q) + ... ), 

wbere the B i are smootb sections of S 181 S· . 

(ii) The expansion is valid in the Banacb space cr(s t8I S*) for alII intcgf'rs r ~ O. 

It may be dilferentiated formally to obtain asymptotic expansions for the 

d('rivatives (both 'I'frith respect to x and t) of the beat kernel. 

lThe constants implicit in the notion 'asymptotic expansion' may depend on r, of course. 
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(Hi) The values aj(p,p) of the sections a j along the diagonal can be computed by 

algebraic expressions im'olving the metrirs and connection coefficients, and 

their derivatives, of which the first is 9 0(p, p) = 1. the identity endomorphism 

ofS. 

PROOF Because of proposition 7.11, it suffices to show that one can determine 

smooth sections aj of S 181 S· in such a way that for each m the partial sum 

J 
hdp,q) L t i 9 j (p, q) 

j-O 

is an approximate beat kernel of order m for all sufficiently large J. Moreover, it 

suffices to construct the 9 j (p, q) for p near to q, since h/(p, q) is of order tOO outside 

any neighbourhood of the diagonal in M x M. We may therefore use local coordinates, 

so fix a geodesic local coordinate system with origin q, and let Xl, ••• ,xn be local 

coordinates for the point p. Let h be the local coordinate representation of the smoot h 

function hth q) defined above. 

By 7.12 and 7.13, we have for any section s of S (or of S 0 S;) 

1 [0 2] OS 2 r og 1 h at +D (hs) = at +D s+ 4gtorS+-('ilr8/8rS. (7.16) 

Now write s ""' Uo + tUI + t2U2 + ... where the Uj are independent of t, and attempt 

to solve the equation (0/ at - L )(hs) = 0 by equating to zero the coefficients of powers 

of tin 7.16 above. We obtain the following system of equations for j = 0.1,2, ... : 

(
. r og) 2 

'il r8/BrUj + J + 4g ar Ui = -D Uj-l' (7.17) 

The equations 7.17 are just ordinary differential equations along each ray emanating 

from the origin. and we may soh'e them recl1rsiveiy. To do this w~ introduce an 

integrating factor gl/4 and rewrite the equations as 

V (rigl/4U') _ { 0 (j = 0), 
B/8r 1 - _ri-lgl/4D2Uj_1 (j;?; 1) 

For j = 0, this shows that Uj is uniquely determined by its initial value Uj{O), which 

we fix as 1, the identity endomorphism of Sq. For j ;?; 1 the equation determines ltj 

in terms of Uj-l, up to the addition of a constant multiple of a term which is of order 
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r-j near r = O. The requirement of smoothness at the origin forces this constant of 

integration to vanish, so we conclude that all the 'Uj are uniquely de;;ermined by the 

single initial condition no(O) = 1. 

Now define 8 j (p, q) to be the S ~ S·-valued function which is represented in local 

coordinates near q by the function 'Uj(x) constructed in the preyious paragraph. Since 

eo(p,p) = 1, elementary estimates show that for any J the partial sum 

J 

kf (p, q) = h,(p, q) L ti 8 j (p, q) 
;=0 

tends to a 6-funct ,ion as t -+ O. Moreoyer the construction of the 'U; shows that 

for some smooth error term ef(p,q). But for J > m + n/2, the function tJh,(p,q) 

tends to zero in the cm topology as t -+ O. Thus, for sufficiently large J, kf(p, q) is 

all approximate heat kernel of order m. As we already observed, this together with 

7.11 establishes that 

ht(p, q) L tjej(p, q) 
j 

is an asymptotic expansion for the heat kernel, as required. 

Finally, we must justify our assertion that the ej(p,p) can be computed byalgebra­

ic expressions involving the metric and connection coefficients and their derivatiyes. 

III terms of our local expressions, 8;(p,p) corresponds to 'Uj(O); and notice that the 

coefficients in the differential equation 7.17 are themselves functions of the metric 

and connection coefficients of the sort described. Expand both sides of 7.17 in Taylor 

series about the origin, and compare coefficients. The assertion follows by induction 

onj. 0 

EXAMPLE 7.18 In principle, it is possible to calculate all the coefficients 8 j in the 

asymptotic expansion just by following through the proof. But in practice the details 

soon become exhausting. The computation of the second term is not too laborious, 

however; We will compute the coefficient 8 1 along the diagonal. 
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From the calculations above, Uo = g-I/4. We substitute this back into 7.17 to find 

UI. We only want the value of Ul at the origin, and from 7.17 this is given by 

udO) = -D2uo(0) = 2;: (8~.)2(g-I/4) - K at the origin, 
• 

where K is the Clifford-contracted curvature term which appears in the Weitzenbock 

formula. Now from the Taylor expansion of the metric in geodesic coordinates (1.32), 

9 = 1 +! ExpxqR;pqi + 0(lxI3), so g-I/4 = 1 - l~ ExpxqR;pqi + 0(lxI3). Therefore 

~ (~)2(g_l/4) __ ~ lR- . - lK 
~ 8xi - ~ 6 'pp< - 6 . .~ 

where K denotes the scalar curvature (1.13). 

We state our result formally as a proposition: 

PROPOSITION 7.19 The asymptotic expansion for the heat kernel of D2 begins with 

the terms 

8 o(p,p) = 1 

9 l (p,p) = tK(p) - K(p), 

where K(p) denotes the scalar curvature at the point p and K(p) is the Clifford­

contracted curV,'lture operator appearing in the Weitzenbock formula. 

Finite propagation speed for the wave equation 

A consequence of t he asymptotic expansion is that as t - 0 the heat kemel becomes 

more and more localized near the diagonal in M x M. In this section we'll discuss 

another method, using the wave equation, of obtaining such localization results. The 

method is particularly useful in the study of non-compact manifolds, as we will see 

later. It is based on a fundamental fact about the wave equation: rlist.urbances 

governed by it ("photons") travel at a finite speed. In fact, with the normalizations 

we have selected, this speed is 1. 

PROPOSITION 7.20 For any sE C:O(S). the support ofeitDs lies within a distance 

It I of the support of s. 

104 



PROOF This will be done by means of an "energy estimate", as it is called. The 

energy estimate is the following 

CLAIM: Let meAl, and let B(m; r) denote the ball ofradius r around m. Choose 

R sufficiently small that B( mj R) is contained in the domain of a geodesic co-ordinate 

system around m. Let s, be a solution to the wave equation. Then the integral 

( Is,I2 

JB(m;R-t) 

is a decreasing function of t. 

Before proving this claim, we clleck that it implies the stated result. To prove 

the result in general it is enough to prove it for t small and positive, because of 

the group property eitlDeit2D = ei (tl+l2)D and the duality (eitD )* = e-itD • Choose R 

small enough that for any mEAl, the ball B(mi R) lies in the domain of a geodesic 

co-ordinate system around m. Then for all m at a distance R or more from supp( s), 

( IsI2 = o. 
JB(m;R) 

Therefore, for 0 < t < R, 

( leitD sI2 = 0 
JB(m;R-t) 

by the claim, and hence in particular ei,D s{m) = O. This proves the result. 

To check the claim, differentiate the expression ( IStl2 with respect to t, 
JB(m;R-t) 

obtaining 

{ [(iDst, s,) + (s" iDs,)} - { (St. s,) da J B(m:R-I) JS(m;R.-I) 
(7.21) 

where S denotes the sphere and da is the element of surface area on S. Now recall 

from the proof of (3.11) that 

(iDs" St) + (SI, iDst ) = id"w 

where w is the 1-formw(X) = -(XS"s,), Therefore, by the divergence theorem, the 

first term of (7.21) is equal to 

-i { (N,sh St) da 
JS(m:R.-t) 

where IV is tht unit normal to S. By Cauchy-Schwarz, 

I { (N.st,St)dal ~ ( Istl2 da, 
JS(m;R-t) JS(m;R-I) 
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since Clifford multiplication by the unit vector N acts as an isometry. The claim 

follows. 0 

We will need some properties of the Fourier t.ransform on Schwartz space. Recall 

that the Schwartz space S(JR.) is the space of C<XJ functions on JR. which are rapidly 

decreasing and all of whose derivatives are also rapidly decreasing. 

If f E S(JR.) its Fourier tmnsform i is defined by 

i(>.) = J f(x)e-irJ.. dx. 

The Fourier inversion formula 

f(x) = ~fi(>.)e+irJ.. d>' 
211" 

shows that the Fourier transformation gives a linear homeomorphism of S(JR.) to 

S(IR). The theory of the Fourier transformation may be found e.g. in Rudin [64]. 

Now let f E S(JR.) and consider the operator f(D) defined by the functional calculus 

5.30. We may write 

f(D) = ;11" J i(>.)eiJ..D d>.. (7.22) 

The vector-valued integral should be thought of in the 'weak sense' that 

(J(D)x, y) = 2111" f i(>')(ei>.Dx , y} d>' 

for all x, yE L2(S). To prove this it is enough (by the spectral theorem) to <'onsider 

the case when x, y are eigenvectors of D; but there it reduces to the Fourier imoersion 

formula. 

Now combinE: the formula 7.22 with the unit propagat.ion speed of the wave 

equation. We obtain 

PROPOSITION 7.23 Suppose that f E S(JR.) and that the Fourier transform i is 

supported in [-c, cl. Then (J(D)x, y) = 0 whenever x and y are sections of S whose 

supports satisfy d(supp(x),supp(y)) > c. Consequently, the smoothing kernel of 

f(D) is supported within a c-neighbourhood of the diagonal in AI x M. 

We can easily derive a localization property, which includes that for the heat kernel 

as a special case. 
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PROPOSITION 7.24 Let f E S(lR). As u -+ 0, the smoothing kernel of the operator 

f( uD) tends to zero on the complement of any neighbourhood of the diagonal in 

Afx M. 

PROOF Given a neighbourhood of the diagonal, choose 6 > 0 such that all points 

within distance 26 of the diagonal lie within the given neighbourhood. Then pick a 

COO "bump function" t/J on lR such that 

1I7(A) = {01 (IAI < 6) 
(IAI > 26) 

and let 11, h be the Schwartz..class functions whose Fourier transforms are 

11(A) = (l/u)j(A/u)I/J(A), 12(A) = (1/u)1(A/u)(1 - t/J(A)). 

Then lI(x) + h(x) = f(ux). The operators II(D) and h(D) are smoothing, and by 

proposition 7.23, the kernel of II(D) is supported within 26 of the diagonal. Outside 

the given neighbourhood of the diagonal, therefore, the kernel of f( uD) is equal to 

the kernel of h(D). But as t -+ 0,12 -+ 0 in the Schwartz space S(JR), so by Fourier 

theory h -+ 0 in S(lR), and so the smoothing kernel of h(D) tends to zero in the 

Coo topology. 0 

Notes 

The heat and wave equations are, of course, standard topics in Mathematical 

Physics. Our ''wave equation" is in a sense the square root of the usual one; Dirac 

operators were introduced in order that such a square root could be extracted. 

The main result of this chapter - the asymptotic expansion of the ht'at kernel -

has a long history. It was first proved (for the scalar Laplacian) by Minakshisundaram 

and Pleijel [56], and generalized to the Laplacian on differential forms and other 

operators by McKean and Singer [51], Gilkey [33J and Patodi [58]. We have followed 

more or less the argument of Patodi's paper. A direct proof can also be given using 

the calculus of pseudo-differential operators; see [34]. 

Our proof of the finite propagation speed for the wave equation is modeled on that 

of Chernoff [19]. The observation that finite propagation speed together with the 
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Fourier transform can be used to obtain kernel estimates is due to Cheeger, Gromov 

and Taylor [18]. 

Exercises 

QUESTION 7.25 Use the Poisson summation formula to show that the heat kernel on 

a fiat torus agrees with that on Euclidean space up to an exponentially small error. 

QUESTION 7.26 A function f on R is said to belong to the class S°(lR) ifit is smooth 

and satisfies estimates of the form 

Prove that if f belongs to this class and D is a Dirac operator, then f(D) has the 

following pseudo-local property: for any s belonging to £2(S), the section f(D)s is 

smooth on the complement of the support of s. (Use the Fouri£'r representation and 

(7.20». In fact f( D) is an example of a pseudo-differential operator; see Taylor [71, 

Chapter XII]. 
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CHAPTER 8 

Traces and eigenvalue asymptotics 

Eigenvalue growth 

Let AI be a compact oriented n·dimensional manifold. We have seen in chapter 

5 that the Laplacian operator ~ on L2(M} has discrete spectrum, with eigenvalues 

o ~ AO ~ A) ~ A2 ~ .•• tending to infinity. In this chapter we want to refine this 

result by asking how many eigenvalues of ~ lie below a fixed value of Aj in other 

words, we want to study the CQunting /unction 

The results we obtain will also be valid (with trivial modifications) for the square D2 

of any generalized Dirac operator. 

A crude estimate for the counting function can be obtained from the Sobolev 

embedding theorem. Specifically, let s), ... ,Sj, j = 'Jl( A), be orthornormalized eigen­

functions belonging to eigenvalues ~ A. Let S = 1: a,s, be any linear combination of 

SI, ••• ,Si' Using the elliptic estimates and the Sobolev embedding theorem we find 

that there is a constant C (depending only on the geometry) such that for all x E M 

Is(x)1 ~ C(! + A)k/2 CE la,12f/2 

where k is the least integer strictly greater than n/2. Fix x E lvi, take a, = Si(X), 

and rearrange to obtain the identity 

L Is,(xW ~ C2(1 + A)k. 

Integrate over lvI to obtain j = 'Jl(A) ~ C2(1 + A)kvol(Af). 

A more precise estimate of 'Jl(A) can be obtained from the heat equation asymJr 

totics or the previous chapter. The link between dimensions (of E'igenspaces) and 

functional analysis is provided by the notion of trace for appropriate compact opera· 

tors on a Hilbert space. Simply put, the trace of an operator is the sum of the diagonal 

entries of an infinite matrix representing it; and, as in ordinary li&ear algebra, the 
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trace of a projection is the dimension of its range. We begin with the general theory 

of traces. 

Trace-class operators 

Let H and 11' be (separable, infinite dimensional) Hilbert spaces. and choose 

orthonormal bases (ei) and (ej) in Hand H'. A bounded linear operator A: H -+ H' 

can be represent.ed by an "infinite matrix" with coefficientsl 

cij(A) = {Aei,ej}. 

PROPOSITION 8.1 Tbe quantity 

iJ 

is independent of the cboice of orthonormal bases ill Hand H'. 

PROOF By Parseval's theorem 

IIAII~s = E ICij(A)12 = E IIAeill 2 

i~ i 

which is certainly independent of the choice of basis in H', Dut since Cij( A) = Cji( A·). 

IIAllhs = IIA-lIhs which is independent of the choice of basis in H by the same 

argument, 0 

DEFINITION 8.2 An operator A such that IIAIIHS < 00 is called a Hilbert-Schmidt 

operator, and 1I.4IIHs is called its Hilbert-Schmidt norm. 

PROPOSITION 8.3 

(i) The Hilbert-Schmidt norm is induced by an inner product 

iJ 

(ii) Relative to this inner product, tbe space of Hilbert-Schmidt opf'rators is a 

Hilbert space. 

(iii) The Hilbert-Scbmidt norm dominates the operator norm. 

IOC course, not l!Very such infinite matrix rE'prE'$E'nt!i a nonndE'd opE'rator; but this does not mattE'r 

here. 
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(iv) Hilbert-Scbmidt operators are compact. 

(v) Tbe sum of two Hilbert-Schmidt operators, and tbe product (in eitber order) 

of a Hilbert-Schmidt and a bounded operator are Hilbert-Schmidt. 

The proofs are all easy. Our interest in the Hilbert-Schmidt operators is as a crutch 

to get us to trace-class operators, which we now define. 

DEFINITION 8.4 A bounded operator T on a Hilbert space H is said to be of 

trace-class if there are Hilbert-Schmidt operators A and B on H with T = AB. Its 

trace Tr(T) is defined to be the Hilbert-Schmidt inner product (A*,B)Hs, 

A priori, the trace depends on the choice of A and B. However 

Tr(T) = LCiAA*)CiAB) = LCii(A)Cij(B) = LCii(T) (8.5) 
iJ i.i i 

ill fact depends only on T. 

REMARK 8.6 We have now defined several classes of operators: 

(trace-class) C (Hilbert-Schmidt) C (compact) C (bounded) . 

This sequence of inclusions should be thought of as the "non-commutative analogue" 

of the sequence of inclusions 

of sequence spaces, see Simon 1681. 

PROPOSITION 8.7 Let T be self-adjoint and of trace class. Then Tr(T) is tbe sum of 

tbe eigenvalues ofT. 

PROOF Choose an orthonormal basis of eigenvectors (which exists by the spectral 

theorem for compact self-adjoint operators) and apply (8.5). 0 

The conclusion still holds if T is not self-adjoint, a result known as Lidskii's 

theorem. This is very much harder to prove. 

The most important fact about the trace is its commutator property: 
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PROPOSITION 8.8 Let T and B be bounded operators on a Hilbert space H, and 

suppose tha.t either T is of trace-class, or both T and Bare Hilbert-Schmidt. Then 

TB and ET are trace-class, and Tr(TB) = Tr(BT). 

PROOF That TB and ET are trace-class follows from (8.4) and (8.3) v). Now 

choose an orthonormal basis (e,) for H. and write 

Tr(TB) = L(TBej,e;) 
i 

= L(Bej,T'ei) 
i 

= LCjj(B)c;j(T) (by Parseval's tneorem). 
iJ 

This sum is absolutely convergent, and it is symmetrical in B and T, so the result 

follows. 0 

Examples of Hilbert.-Schmidt and trace-class operators come from integral opera­

tors on manifolds. 

PROPOSITION 8.9 Let M be a compact manifold equipped with a smooth volumf> 

form vol (e.g. an oriented Riemannian manifold) and let A be a bounded operator 

on L2(M) de6ned by 

where k is continuous on Al x M. Then A is a. Hilbert-Schmidt operator, and 

PROOF Choose an orthonormal basis (ej) for L2(.~1), and recall from the proof of 

(8.1) that 
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IIAI\~s = L IIAejll2 
j 

= ~ J I J k(ml. m2)ej(m2) vol(m2>1
2 

vol(md 
1 

= J~IJ k(mh m2)ej(m2)vol(m2)1
2

vol(md. 
1 



But by Parseval's theorem 

r;.1 1 k(ml, m2)ej(m2) vol(m2)1
2 

= 1 Ik(ml, m2W vol(m2) 
1 

so 

as asserted. 0 

THEOREM 8.10 Now let AI and A be as in (8.9), but assume that k is smooth on 

AI x AI, so that A is a smoothing operator. Then A is of trace-class, and 

'!'reA) = 1 k(m, m) vol(m) . 

PROOF Suppose first of all that A = BC, where Band C are Hilbert-Schmidt 

operators represented by continuous kernels kB and kc, as in (8.9). Then 

k(ml' m3) = 1 kB(ml, m2)kc(m2' m3) vol(m2) . 

The trace of A is the Hilbert-Schmidt inner product of BO and C. However, (8.9) 

determines the Hilbert-Schmidt norm, and therefore by polarization the Hilbert­

Schmicit inner product also, on the space of operators with continuous kernels. Thus, 

Tr(A) = 11 kB(mh m2)kc(m2,mdvol(mdvol(m2) 

= 1 k(m, m) vol(m) . 

So all we need to check i& that any smoothing operator A can be written in the 

form BC. However, by remark 5.32, the operator (1 + 6.)-N for sufficiently large 

N is a Hilbert-Schmidt operator with continuous kernel. Thus we may write any 

smoothing operator A in the form BC, where B = (1 + b.)-N has continuous kernel 

and C = (1 + 6.)+N A is a smoothing operator. 0 

REMARK 8.11 In (8.9) and (8.10) we dealt for simplicity only with operators 

on functions on AI, which have scalar valued kernels. We will want to use the 

corresponding results which apply to operators on sections of a vector bundle S, 

where the kernels have values in S C!Sl So. Then k(m, m) E Srn ® S;" 9! Hom(Sm, Srn), 

and the stat.ement corresponding to (8.10) is 
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THEOREM B.12 Let A be a smoothing operator on L2(S), with kernel k. Then A is 

of trace-class, and 

Tr(A) = f trk(m, m) vol(m) 

where tr: Sm ® S;" - CC denotes the canonical trace on endomorph isms of the finite 

dimensional \-"ector space Sm. 

To prove this, use local trivializations and partitions of unity to reduce to (8.10). 

Weyl's asymptotic formula 

Recall the sitllatioll considered in the introduction to this chapter: M is a compact 

oriented Ricmannian manifold, and the spectrum of the Laplace operator ~ on AI is 

a discrete set of positive real numbers, 

tending to infinity. One can vaguely think of these numbers as the "resonant 

frequencies" of At under some kind of "oscillation". It is then natural to ask to what 

extent the geometry of Al can be recovered from this set of "resonant frequencies". 

a question put memorably in the title of Kac's paper [421. 

Most approarhes to this question rely on the following idea. The operator e-t6 

is smoothing, hence of trace-class (B.lO), and its trace is given by integration of its 

kernel over the diagonal. So, from the asymptotic expansion (i.15), 

Tr(e-tA ) "" 1 (ao + tal + ... ) 
( 47rt)n/2 

where 

a; = fM e;(m)vol(m). 

On the other hand, by (8.i), 

Therefore 
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Tr(e- t6 ) = Le-t'\j. 
i 

(47rtr/2 L e-t'\j "" ao + tal + ... 
i 

(B.13) 



and we see that the spectrum of A determines the quantities n, ao, al •... which 

encode geometric information about the manifold M. The more coefficients we can 

calculate, the more we will know about spectral geometry. 

We know that ao = vol(M) and Ol = ~ fM K(rn) vol(m) by 7.19. Thus we can state: 

PROPOSITION 8.14 Tbe spectrum of the Laplacian on M determines the dimension, 

the volume and the total scalar curvature of M. In case dim(AJ) = 2, it determines 

the topology of iH. 

PROOF The first statement follows from the expansion (8.13). As for the second, 

in dimension 2, the total curvature determines the topology, because of the Gauss­

Bonnet theorem and the classification of 2-manifolds. 0 

REMARK 8.15 In more general contexts it may not be the case th.1.t the curvature 

determines the geometry, or indeed even the topology. For the resolution of Kac's 

question in the original context of planar domains see [35]. 

The formula (8.13) can also be used in the other direction; knowing (some of) the 

e's, we try to discover information about the spectrum. We will prove a famous 

theorem of Weyl in this direction. 

THEOREM 8.16 Let 91(A) denote the number of eigem-aJlles less than A. Then as 

A -+ 00, 

REMARK 8.17 This theorem may be reformulated as an asymptotic estimate for the 

j'th eigenvaiue: 

Ai"'" 41r (r«n/~) + 1) VOI(M») 2/n j2/n. 

PROOF We can think of the sum E e-Ilj as giving us an "eJCponentially weighted 

average count" of the number of eigenvalues of A. To reconstruct 91 from such 

averages is the task of Tauberian theory. In fact, from 8.13 we have 



as t -+ 0, where a = n./2 and A = (411')-n/2 vol(M). An abstract Tauberian theorem 

of Karamata states that for any nondecreasing sequence of positive numbers >'j having 

the convergence property (*) for some A, a > 0, the associated counting function 

1)1(>.) satisfies 1)1(>.) '" A >.0 /r(a + 1) as >. -+ 00. This immediately implies Weyi's 

theorem, of course; so it remains for us to prove Karamata's result. 

For any continuous function I on [0, I], let us define 

I claim that, for every I, 

(8.18) 

as t -+ 0. An application of the Stone-\Veierstrass theorem shows that it is enough 

to prove this result when I is a monomial of the form I(x) = xn. But then the left 

hand side of 8.18 is tOLe-(n+l)I~j, which tends to A(71 + 1)-0 a.c; t -+ 0; and dir('ct. 

calculation shows that the right hand side is equal to A(n + 1)-0 also. 

For r < 1 let Ir: [0, I] -+ IR be the continuous function such that I( x) = ° for 

x E [O,r/e], I(x) = I/x for x E [I/e, 1], and I(T) linearly interpolates between ° and 

I/e on the interval [r/e,I/e]. We apply 8.18 to Ir' and put t = 1/>.. Notice that 

Let>. -+ 00 and make easy estimates to obtain 

Now r is arbitrary, so lim>.-ol)1(>.) exists and equals A/ar(a). Bearing in mind the 

standard identity ar(a) = r(a + 1), we obtain Karamata's theorem. 0 

REMARK 8.1!) Though we have worked all through this chapter with the scalar 

Laplacian A, which is the classical case, it is clear that the methods all work to 

count the eigenvalues of the general Laplace-type operator D2. Then 6 0 becomes the 

identity 'enclomorphism of the Clifforcl bundle S, and tracing this according t.o 8.12 

yields an additional factor dim(S) in the formulae, but otherwise everything is the 

same. 
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Notes 

A classic reference for trace-class operators and related 'operator ideals' is Simon 

[681· 

Further information about spectral geometry may be found in the book by Berger 

et al (11). As well as the kind of analysis carried out in this chapter, which 

relates to the asymptotic behavior of the large eigenvalues, one can investigate the 

lowest eig€'n,'alucs of the Laplacian and relate them to geometric properties such as 

isoperimetric constants. 

In the first edition of this book we derived Karalllata's Tauberian theorem from 

the general mt't.hod of Wiener, expounded in many books on functional analysis [64). 

The simple direct proof given here is borrowed from [12J. 

For more about isospectral manifolds, see Brooks [16). 

Exercises 

QUESTION 8.20 Prove that the sum of two trace-class operators is trace-class. 

QUESTION 8.21 Give an example of an operator A defined by a continuous kernel 

k, that is 

Au(x) = f k(x, y)u(y) dy 

which is not of trace-class. (Hint: Consider the convergence of Fouricr series.) Prove 

however that if A is of trace class, tht'n 

Tr(A) = f k(x,x) dx. 

QUESTION 8.22 Prove the following quantitative version of Rellich's theorem: the 

inclusion of the Sobolev space W"+t(M) into W"(.t\I) is a Hilbert-Schmidt operator 

for e > ~ dime M). Deduce another proof that smoothing operators are of trace class. 

QUESTION 8.23 Let Aj be the eigenvalues of the Laplacian Ll of a compact manifold, 

arranged in increasing order. Define the uta-function by 
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the summation being taken over the non-zero eigenvalues. By (8.16), this Dirichlet 

series converges for ~(s) ~ O. Show that in fact « s) ext..-nds to a meromorphic 

function of s on the entire complex plane, and that 

«0) = (411\n /2 J en/2(m)VO!(m) 

where en /2 is the aSjmptotic-expam;ion coeffit'it'nt. as ddined in (7.15). (Use the 

formula r(s)'\-s = J;o e-l).ts- 1 at.) 
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CHAPTER 9 

Some non-compact manifolds 

In this chapter we look at some Dirac-type operators on non-compact manifolds. 

The example of the operator id/dx on the real line, as compared to the corresponding 

operator on the circle R/Z, is a helpful one to bear in mind. On the circle, id/ dx has a 

discrete spectrum with finite-dimensional eigenspaces. On the line, Fourier series art' 

replaced by Fourier transforms; the spectrum becomt>s continllolls, and spectral values 

no longer correspond to square-integrable eigenfunctions. Nevertheless, a spectral 

decomposition still exists, and the functional calculus opt'rates in the same 'way as 

before. 

From the perspecth'e of quantum mechani('S (8('e for example [65, Chapters 4.5]) 

the appearance of continuous spectrum is related to the preSf'nce of non-localized or 

'unbound' solutions for the corresponding SchrOdinger t>quation. Now, if one adds 

to the SchriXiinger equation a term representing a 'potential well', then solutions of 

the equation representing energies lower than the depth of the well will be 'bound' 

within the well. We therefore expect that the discrete spectrum property can be 

restored by adding t.o the Dirac-type operator a potent.ial term suflkiently strong to 

localize all the eigenfunctions. III the first section of this chapter we will discuss a 

famous example of this pht>nomenon, the quantum harmonic oscillator. In subsequent 

sections we will show how operators of this sort call arise geonletrically, and we will 

give some of the gent>ral theory in tht> abscncc of a localizing potential. 

Only the first section of this chapter is required for our proof of the Index Theorem; 

the remaining sections are needed only for the more specialized applications at the 

end of the book. 

The harmonic oscillator 

DEFINITION 9.1 The harmonic oscillator is the name given to the unbounded 
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operator 

(a > 0) 

For the physical meaning of this operator see [65, §13J. Its relevance to index 

theory was observed by E. Getzler. For the moment, we will work out a few facts 

about the spectral theory of H. 

DEFINITION 9.2 The annihilation operator A is defined by A = ax + djdx, the 

creation operator A* is A* = ax - djdx. 

The operators A, A*, H may be taken to have as domain the Schwartz space S(IR), 

and they map 5(R) to S(IR). Elementary computations give 

AA" = H + a 

[A.A"J = 2a 

[H.AJ = -2aA 

(9.3) 

DEFINITION 9.4 The ground state of H is the function tt'o E £2(R) satisfying the 

differential equation 041/'0 = 0 and such that IItl'oll = 1. 

Clearly, then. H1i'o = a~'o, so Wo is an eigenfunct.ion of H. In fact, we can calculate 

Wo explicitly, thus checking that it is square-integrable: 

d1/Jo 
- + ax1/'o = 0 . 
dx 

Therefore 

J 
dtt'o = -a JXdx . 
1/'0 

The solut.ion is 1/'0 = Ce-ar2
/
2 , where C is a normali7.ing const.ant: since !if/JolI = 1. 

C=aht. 

Now for k ~ 1, define the excited states of H inductively by 
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1 *,1 tt'le = --I A ll'le-l • 
(2ka); 

(9.5) 



LEMMA 9.6 !Pk belongs to the Schwartz class. It is a normalized eigenfunction of 

H, with eigenvalue (2k + 1 la. 

PROOF Induction. We have 

Similarly 

= _1 -H A*.I'L 

(2ka)! 0/ .. -1 

= _1 -1 (04* H + 2aA~),pk-l (by (9.3» 
(2ka)2 

= -1-1A*«2k -l)alPk-l +2aWk-d 
(2ka)2 

= (2k + 1 }U1t'k • 

IIlPkU
2 = 2!a (A -l/'k-I, A ",pk-I) 

= 2!a (AA-.,pk-I, .,pk-I) 

1 
= 2ka ( H + a )l/'k-I, 'I,/'k-I) 

= 2!a «2ka.,pk_l), lPk-l) 

= 1 O. 

LEMMA 9.7 .,pk(X) = hk(X)e-az'/2, where hk is a polynomial of degreek with positive 

leading coefficient. 

PROOF Induction, using the recurrence relation 

h,,(x) = _1_1. «a + l)xh/C_I(x) - hk_l(x» 
(2ka)f 

which follows easily from (9.5). 0 

Up to a normalization, the h/c's are the well known Hermite polynomials. From 

9.7, it follows that the linear span of the {lPk} is the space 

P = {x 1-+ p(x)e-az2
/
2 : p polynomial} ~ L2(R} . 

PROPOSITION 9.8 P is dense in L2(R). 
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PROOF We may assume a = 1. Let hex) = xi e-z1 /2
• We calculate 

IIhll2 = i: x2ie-
z1 

dx 

= 2 (lOO yie-II dy on substituting y = x2 
10 2..jY 

= r(j +~) ~ j! 

Now we may write 

iJ.Z-Zl/2 = f: (i~t h(x) . 
i=o J. 

The L2 norms of the terms in this series are bounded by !>.Ii ~j!)! , so it is convergent 

in L2. Since h E p, the functions x 1-+ ei J.z-zl/2 belong to P. Now suppose that 

! E L2 is orthogonal to P; then i: !(x)eiJ.z-z
1 
/2 dx = 0 "f). E IR . 

But then by Plancherel's theorem !(x)e-z1
/
2 = 0 almost everywhere. so! = 0 almost 

everywhere. 0 

We have shown that the space L2(JR) admits a complete orthogonal decomposition 

into (l-dimensi.)nal) eigenspaces for H, with discrete spectrum tending to infinity. 

This is exactly the conclusion of Theorem 5.27 for the Dirac operator. We see 

therefore that spectrally H is like the Dirac operat.or on a compact manifold. In 

physical language, the states of the harmonic oscillator are all 'bound states'. \Ve may 

if we wish define the analogs of the Sobolev spaces, making use of the eigcnfunctions 

tPk instead of the charact.ers e- imz on the torus. We will need only one result of t.his 

kind: 

LEMMA 9.9 Let u E L2(IR). Then tl E S(JR) if and only if the "Fourier coefficients" 

ak = (tP", u) are rapidly decreasing in k. 

PROOF If u E S(IR), then for all I, H'u E S(JR), and since H' acts on the Fourier 

coefficients by multiplying ak by «2k + 1 )a)'. the result is obvious. 

Conversely, suppose that the Fourier coefficients are rapidly decreasing. Then, 

for all I, (A*)'tt has rapidly decreasing Fourier coefficients, by (9.5), and so does 

A'u; so D'u and .H'u have rapidly decreasing Fourier coefficient.s where D amI. M 
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denote the differentiation and multiplication operators id/ dx and x. Therefore, for 

any noncommutative polynomial p, p(M, D)u E L2(2); and it is easy to check that 

this implies u E S(2). 0 

PROPOSITION 9.10 If f is a bounded function on the spectrum of H, then f( H) is 

defined and is a bounded operator on L2(JR); the map f 1-+ f(H) is a homomorphism 

from the ring of bounded functions on tbe spectrum of H to B(L2(R». Moreover, 

f(H) maps S(2) to S(2). 

PROOF As 5.30, but using 9.9 instead of the Sobolev embedding theorem. 0 

We now have enough analysis to carry over much of the earlier discussion of the 

heat equation to the 'harmonic oscillator heat equation' 

ou 
at +Hu=O. (9.11 ) 

Indeed, the solution operator e-1H is defined by the Hilbert space theory above 

(9.10); and there is a heat kernel kfI E S(a x a) such that 

e-1Hu(x) = J kfI(x, y)u{y) dy. 

As in the compact manifold case, the heat kernel is characterized by the facts that it 

belongs to S, satisfies the heat equation in the x-variable. and tends to a 6-function 

as t -- O. 

We will need an explicit expression for the heat kernel kIf (x, y), at least when y = 0 

(see exercise 9.23) for the general case. To get one, proceed by inspired guesswork. 

Try 

ktH(x,O) = u(.1'.t) = a(t)e-~;1(t)zl 

where a and 13 are functions to be determined 1• Then 

Hu = a(x2(a2 - 132 ) + 13)e-V(t)zl 
ou at = -(x2Pa/2 + a)e-!.8(t):r

1 
• 

Summing and equating coefficients to zero, we get 

1 A trial solution like this is sometimes referred to as an 'ansatz'. 
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We solve these differential equations, looking for a solution with fJ(t) - 00 like l/t 

as t -> O. This gives 

fJ(t) = acoth(2at) 

o(t) = (const.)(sinh 2a.t)-t . 

1 
If we choose the constant to equal (a/27r) 2 , then as t -> 0, 

and we know that for any function s E S(IR), 

Thus u(x, t) satisfies the heat equation and tends to a 6-fllnction, so is equal to the 

heat kernel. We state this result more formally: 

PROPOSITION !1.12 "I'he harmonic oscillator heat k('rnd satisfies 

u(x, t) = a (-ax2 coth(2at)) 
. ( ) exp . 27rsmh 2at 2 

This result is known as Mehler's formula. 

REMARK 9.13 Our analysis of the harmonic oscillator requires the assumption that 

a is a real numher. However, the function u(x, t) described in 9.12 above is clearly 

analytic as a function of a for a E C, 10.1 < 7r /2t. By analytic continuation, then, we 

find that u(x, t) continues to satisfy the equation 

even if a is a (sufficiently small) complex number. This analytic continuation will be 

of importance in the proof of the index theorem. Of course, if a is not real then u 

may not be in the Schwarz class, and our uniqueness theorems do not apply directly. 
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Witten's perturbation of the de Rham complex 

Let M be a complete Riemannian manifold (compact or not) and let h: M -+ R 

be a smooth function. In 173], E. Witten introduced a certain perturbation of 

the de Rham complex of M, determined by the function h; and this perturbation 

has become important in several contexts. In particular, variants of the harmonic 

oscillator appear naturally as the Laplacians of perturbed de Rham complexes on 

EucUdean space. 

DEFINITION 9.14 Let Al, h be as above. The perturbed exterior derivative dll 

(depending on tl>e paramet.er S E R+) is defined by 

dsw = e-Shd(eshw) = dw + sdh "w. 

Its adjoint is given by 

Note that this agrees with the calculation of 3.21, that interior multiplication is 

minus the adjoint of exterior multiplication. The perturbed analogue of the de Rham 

operator is 

(9.15) 

where R is the endomorphism of the exterior bundle given by (dh") - (dhJ). 

This formula is most conveniently expressed in terms of the Clifford bimodule 

structure of the exterior algebra. Recall that 1\* T* Al is isomorphic to the Clifford 

algebra itself, and therefore carries both a left and a right mUltiplication action of 

the Clifford algebra; these actions commute. For e E T M let us define 

Lew = e ·w, Rew = (-I)o ... w. e. 

Here the dot denotes Clifford multiplication and 8w = p for wEN. Notice 

that, b('('ause of the extra sign, Le and Re' now anticommute for any e, e. The 

endomorphism R of 9.15 is equal to RVh in this new notation. Equivalently, in terms 

of a local orthonormal frame ei, we may write formula 9.15 as 

Dsw = ~(Le.ViW+ s(e;· h)Reiw) 
1 
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where the dot denotes the Lie derivative. 

We will need a Weitzenbock-type formula for D~. 

DEFINITION 9.16 Let x E M. The Hessian of h at x is the symmetric bilinear form 

Hh on TzM defined by 

Hh(X, Y) = X· (Y . I)(x) - (V x y). f(x). 

It is easy to see that this formula is tensorial, that is, it depends only on t.he 

values of the vector fields X and Y at the point x. The H('Ssian is the bilinear 

form corresponding to the symmetric matrix of second derivatives of h (rE'lath'e to 

a synchronous orthonormal frame at the point x). Let Hh be the endomorphism of 

A· T* M defined by 

Hh = L Hh( ei, ej )Le• Re, 
i.i 

relative to an orthonormal frame ej; it is easy to check that this expression IS 

independent of the choice of frame. 

LEMMA 9.17 Wit.h the notations of 9.15 above, 

(i) R2 is the endomorph ism given by multiplication by Idhl 2 ; 

(ii) RD + DR = Hh as an endomorphism of the exterior bundle. 

Consequently, we have the formula D~ = D2 + s21dhl2 + sHh . 

PROOF From the local coordinate formula for D. we ha"e 

D; = ~(Le.Vi + SRe.(ei· h)) (Le, V, + sR<,(ej' h)) 
I., 

and a direct cakulation, remembering that Land R anticommut.e and that Re; Re, = 
bij, gives the result. 0 

We consider the special case of Euclidean spare. Let .\1 = Rn with its standard 

metric and let h.(x) = 41: ~j:r1' a quadratic form on M. The lemma above gives in 

this case 

D; = ~( - (8~i r + S2pjXi )2 + SAjZj) 

where Zj = [dJ i.J, dxj A] is the operator which is equal to + 1 on a basis elE'ment 

dXil A ... A dxit which has j E {i1 , ••• ,ik}, and equal to -1 on such a ha.<;is el('mf'nt. 
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which has j 1. {i1, ... ,i,,}. Notice that the first two terms in the sum are precisely 

the harmonic oscillator, discussed at the beginning of the chapter. 

PROPOSITION 9.18 Consider M = Rn equipped with the quadratic function h 

described above. Then, for s > 0, there is a basis for L2(Rn) consisting of smooth, 

rapidly d~cayjng eigenfundions for the operator D;; the corresponding eigenvalues 

are the numbers 

5 2;:(IAjl(l +2pj} + Ajqj), 
) 

wllere Pi = 0, 1,2, . .. and qj = ± 1. If we consider the action of D; on k-forms, the 

spectrum is as a.bove ,,'Uh the additional restriction that precis('ly k of the numbers 

qj are equal to + l. 

PROOF Let liS write lj = - (o~j) 2 
+ 52 Aj(xj )2, so that lj is a harmonic oscillator 

in the j-variable. The Z and Y operators all commute, so they can be simultaneously 

diagonalized. Dy the spectral theory of the harmonic oscillator, we know that E Yj 

is essentially self-adjoint, with discrete spectrum: its eigenvalues are the numbers 

sE IAjl(1 +2pj), and each of these eigenvalues has multiplicity 2" (the fiber dimension 

of the exterior bundle). The operators Zj act on each of the eigenspaces as involutions, 

splitting them into ±1 eigenspaces for each Zj: the eigenspace with eigenvalue 

5 E(lAjl(1 + 2pj) + Ajqj} for L is precisely the q;-eigenspace for each Zj acting on the 

5 L: IA;I(1 + 2pj)-eigenspace for E lj. 0 

Functional calculus on open manifolds 

Let lvt be a complete Riemannian manifold, D a Dirac operator on a Clifford 

bundle S over M. (Our results will also be valid for a self-adjoint generalized Dirac 

operator of the form D + A.) In this section we will develop a functional calculus for 

D, that is, a ring-homomorphism f 1-+ f(D) having properties analogous to those in 

5.30 in the compact case. 

The classical approach to these questions would require us to consider D as an 

unbounded operator on the Hilbert space L2(5), with domain C:O(S). The operator 

D is formally self-adjoint on this domain, and one can use the completeness of 

AI to prove that D is in fact essentially self-adjoint in the sense of unbounded 
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operator theory - meaning that the closure of D is equal t.o its Hilbert space adjoint, 

or equivalently that D has a unique self-adjoint extension. One then applies the 

spectral theorem for unbounded self-adjoint operators [29, Chapter XIIJ to produce 

the desired functional calculus. 

We will take a dift'erent approach, which is motivated by an article of Chernoff 

[19J. Chernoff showed that one could use the finite propagation speed of solutions to 

the Dirac wave equation (7.20) to prove essential self-adjoint.ness. We will use finite 

propagation speed to construct the functional calculus directly. 

PROPOSITION 9.19 The wave equation 

as, 'D 7}t=r s 

has a unique solution for smooth. compactly supported initial data So on M; and thp 

solution s, is smooth and compactly supported for all times t. 

PROOF Uniqueness follows from an energy estimat.e as ID 7.4. For existence, 

suppose that we want to construct the solut.ion s, for all It I ~ to, and suppose that 

Supp(so) = K ~ Al. We can build a compact manifold AI' and a Clifford blind\(' 

S' over it, such that AI' contains an open subset isometric to a to-neighbourhood U 

of K in M, by an isometry which is covered hy an isomorphism of Clifford bundles2 

Now the wave equation can be solved on M' by the results of Chapter 7, and finite 

propagation speed shows that for It I < to t.he support of the solution S, rf'mains 

within U; so s, can be considered to be a solution on M as \\"('11. 0 

Notice that the argument above also shows that the wave equation on AI has unit 

propagation speed. Notice also that since the solution operator ,!iID is defined and 

unitary on a dense subspace (namely C~(S)) of £2(S), it extends by continuity to a 

unitary operator on the whole of £2(S). 

2This can be achieved, for example, by the 'doubling construction'; let (Alo,cJAlo) be a C'ompact 

codimension-O submanifold with boundary of M, such that the interior of Mo contains a '0-
neighbourhood of K, and define AI' by gluing two C'opiE's of Jlo, one with orientation re\'ersed, 

together along the boundary 8Mo• 

128 



Now let f e S(R.) be a Schwarz-dass function. Define the operator f(D) by the 

Fourier integral 

feD) = ...!... ji(t)itD dt 
211' 

where eilD is the unitary solution operator to the wave equation, described above. 

Since j is of rapid decay, the integral defining feD) does converge in the weak sense 

of 7.22. 

PROPOSITION 9.20 Tbe mapping f ..... feD) is a ring homomorpbism from S(R.) to 

8(L2(5». Moreover, 

IIf(D)1I ~ sup Ifl· 

11 f(x) = xg(x), tben feD) = Dg(D). 

PROOF All three parts of this theorem are proved in the same way, that is, by 

reduction to the case of compact manifolds. We give the proof of the second part 

aud leave the others to the reader. Let a = sup If I· Suppose first of all that f 
has compactly supported Fourier transform, say that Supp(j) c [-to,toJ. Let s be 

a compactly supported section of S, say with Supp(s) = K. As in the previous 

proof, construct a compact manifold M' isometric to M on a to-neighbourhood U 

of K. Then by finite propagation speed, f(D)s is supported within U and agrees 

with f(D')s, where D' is the Dirac operator on .-,..,1'. But IIf(D')sll ~ allsl! by the 

functional calculus on the compact manifold }.I'. Thus we have shown that 

IIf(D)sll ~ allsll 

for all compactly supported sections s; hence for all s e L2(5) be a density argument. 

Finally this inequality holds for all f e S(JR), since functions with compactly 

supportp.d Fourier transform are dense in S(R). 0 

REMARK 9.21 Since the mapping f ..... feD) has IIf(D)1I ~ sup If I, it can be 

extended by continuity to a map from Co(lR) to B(L2(5» having the same properties. 

Here Co(R) denotes the space of continuous functions on R vanishing at infinity; it 

is the sup norm closure of S(R). 
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Notes 

The harmonic oscillator is discussed in many physics texts, for example [6S, 74J. 

Witten's perturbed de Rham complex was introduced in [73]. By considering the 

asymptotics of the complex as s becomes large, he was able to give an entirely novel 

approach to classical results of Morse and 5mal€' rt'lating the topology of AI to the 

critical values of the function h (that is, the zeros of dh). We will discuss some of 

this theory in Chapter 14. 

I owe question 9.24 to my colleague David Acheson. 

Exercises 

QUESTION 9.22 Let hk(X) be the polynomials defined in 9.7, where we assume for 

simplicity that n = 1. Prove that 

QUESTION 9.23 Use thf' ansatz kf(x,y) = o(t)exp(-~/1(t)(x2 + y2) -l'(t)xy) to 

derive the genelal version of Mehler's formula, 

a (-a(x2 + y2) coth(2at) + 2 COSeCh(2at)xy ) 
kf (x, y) = 211'Sinh(2at) exp 2 

QUESTION 9.24 Derive Mehler's formula from the more general ansatz 

u = h(t)/( Tt), 

by separation of variables. Obtain also another solution to the heat equation of the 

form 

ex ax2 

u(x t) = exp -{ }. 
, (sinh 2at) t 2 tanh 2at 

Why does not the existence of this second solution contradict the uniqueness of the 

heat kernel? 
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QUESTION 9.25 (Donnelly-Xavier [28]) Let AI be a complete Riemannian manifold, 

h a smooth function on AI with IVhl ~ 1 everywhere. By using the identity DRvh + 
RVhD = Hh , prove that for any k-fonn w, 

211wllllDwll ~ { (TkW A *w ),.t 
where the function (Tk is defined in terms of the eigenvalues Ai of the Hessian of h by 

" 
(Tk(X) = LAi(x) - 2kmax{Ai(x): i = 1, ... ,n} . 

• =1 

Consider the case where Ai is hyperbolic n-space, of constant cur'vature -1. Take h 

to be the distance from a point q far from the support of w. Show that if k < (n-1)/2 

then there is a positive constant C", such that IID ...... II > C",II"""II. Deduce that the 

spectrum of the Laplacian on k-forms does not contain zero in this case. 

QUESTION 9.26 Let AI be a complete Riemanllian manifold. Construct a sequt:nce 

Yn of smooth, compactly supported functions M -+ [O,ll with UsuPP'P" = M, 

'r'" = 1 on SUpPYn_l, and IVynl ~ 11n everywhere. 

Now let. D be a Dirac operator on AI, and suppose that S belongs to the domain of 

the Hilbert space adjoint D*. Show that, if we define Sft = 'Yns, then each Sft belongs 

to the domain of the closure of D, that Sn -+ S in L2, and that Ds" = D*s" -+ D*s 

in [2 also. Deduce that D is essentially self-adjoint. 

131 



CHAPTER 10 

The Lefschetz formula 

III this chapter we will find our first example of a topological invariant defined by 

elliptic operat.ors. The topological invariance will come from a pairwise cancelation 

of eigenspaces, which is sometimes called "supersymmetry". 

Lefschetz numbers 

Let AI be a manifold and cp: AI - M a map. Then i.p inducE's an endomorphism 

y. of the (compl('x) cohomology of M, and the Lefschetz number £( <;) of i.p is defined 

by 

(10.1 ) 
'I 

The classical Lefschetz formula (see Spanier [69]) expresses £(rp) as a sum over the 

fixed points of:.p. Iu particular, if £(rp) '# 0, thE'n y ha.<; got somE' fixed points! 

Wc want to approach the tcfschetz formula analytically and we will do so in the 

more general context of Dirac complexes (6.1). Thus, let AI be a compact oriented 

7l-dimensional Riemannian manifold, and let (S,d) be a Dirac complex over AI. Let 

rp be a smoot h map from M to AI. Then cp induces cp.: GOO( S) - G""'( rp* S). In case 

S is the de Rham complex, there is a natural bundle map ( = A* T*rp from 'P*S to 

S, but for a general Dirac complex there is no such map, and we must assume the 

existence of a bundle map': :.p* S - S as part of our data. Thus there is a composite 

map 

DEFINITION 10.2 If F (as above) is a map of complexf>S (i.e. Fd = dF), one says 

that (C, 'P) is a geometric endomorphism of the given Dirac compl('x. Its Lefschetz 

number £(', rp) is defined by 

£«(,rp) = ~)-l)'ltr(F* on H'l(S». 
'I 
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This definition is arranged so that a smooth map cp induces a natural geometric 

endomorph ism of the de Rham complex, and it.s Lcf.c;chctz nnmbcr a.c; ciefined hy 

(10.2) agrees with the classical definition of (10.1). 

To apply analysis to the calculation of the Lef.c;chetz numbcr, wc use thc Hodge 

theorem (6.2); Hq(S) is represcnted by the space Hq of harmonic sections of Sq. So 

if we define Pq to be the orthogonal projection £2(Sq) -+ Hq. then 

( 10.3) 

where F is considered as a continuous linear operator from Coo(Sq) to U(Sq)' 

REMARK 10.4 Bcware that the operator F itself may not be bounded on L2; 

composition with r.p can increase the L2 norm of a smooth function by an arbitrarily 

large amount if <p happens to be constant on a nonempty open set. But it is appar('nt 

that F is bounded from CO(Sq) (the spacc of continuous scctions) to £2(Sq), and 

therefore that the composite of F with any smoothing operator is bounded on L 2 • 

This suffices for the arguments that follow. 

LEMMA 10.5 The operators Pq are smoothing operators. Morem'er, if Aq denotes 

the restriction (>f D2 to C'O(Sq), then as t -+ 00 the smoothing kernel of e- tA, tends 

to the smoothing kernel of Pq in the Coo topology. 

PROOF Pq can be written as I(Aq ), when' 1(0) = 1 amI 1(>") = 0 for all other >... 

Unfortunately, this function is not smooth. However. since ~q has discrete spectrum, 

there is a smooth function 1 of compact support equal to 1 at zero ann ('qnal to 0 at 

all other eigenvalues of ~q. Then 1 E S(IR) and !(~q) = Pq. If gt(x) = (1- !(.T))e- tr 

then gt(Aq) = e- tA, - Pq and gt -+ 0 in S(IR) as t -+ oc. Hence, by t.he functional 

calculus, g/(Aq ) -+ 0, and the result follows. 0 

Therefore Tr(FPq ) = limt_oo Tr(Fe- tA,) and so, 

(10.6) 

Let us analyze this cxpression more closely. 
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PROPOSITION 10.7 For all values oft> 0, 

L(-1)qTr(Fe-l~t) = L«(,I;'). 
q 

PROOF It is enough to prove that I:q(-1)qTr(Fe-I~.) is constant in t. We 

differentiate, getting 

L(-l)q+lTr(F(dd" + d"d)e- 1A,). 
q 

Now dF = Fd, so Tr(Fdd-e- tA,) = Tr(dFd"e-I~.). Assume for the moment that we 

can apply (8.8) to the operators d and Fd·e-I~, (which is not rf'Ally allowed, since d 

is unbounded); then 

Tr(dFd-e-t~,) = Tr(Fd·e-t~'d) 

= Tr(Fd·de-I~'-l), since t:lqd = dL1q_1• 

The terms in the sum for the derivative therefore cancel ill pairs, giving O. (This 

is "sllpersymmetry".) It r('mains to verify that we may apply 8.8, which we do by 

reducing to the bounded case, as follows: 

Tr(dFd-e- tA.) = Tr( dF d" e -1~,/2 e -IA,/2) 

= Tr( e-t~,/2dFd* e-tA,/2) (by 8.8) 

= Tr( Fd* e-t~./2e-~,/2d) (by 8.8 again) 

= Tr( F d" (' -t~. d) 0 

PROPOSITION 10.8 If 9 has no fixed points, then the Lefschetz number L«(, 1;') is 

O. 

PROOF By (10.7) 

L«(,<;) = L(-I)qTr(Fe-tA,), 
q 

for any t > O. Look at the behavior of this expression for small t. If k1( ml, m2) 

denotes the heat kernel corresponding to e-t~" then Fe-tA, is a smoothing operator 

with kernel 
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where ,( denotC'S ( acting on the first variable in the tensor product bundle S 181 S· 

of which k is a tiection. Therefore, by (8.12), 

Tr(Fe-t~.) = fM tr(,(kH<p(m),m)vol(m). 

Now the assumption that <p has no fixed points means that its graph ((<p(m), m) : 

m E M} never meets the diagonal in M x M. Therefore, by the asymptotic expansion 

7.15, or by the localization result 7.24, kl(9(m),m) tends to 0, uniformly in m, as 

t -+ O. The result followl';. 0 

EXAMPLE 10.9 Any holomorphic automorphism of complex projectiye space has 

a fixed point. To prove this, let AI be a complex projective space. Then A.f is a 

Kahler manifold, so its Oolbeault complex is a Oirac complex. It il'; known that the 

Oolbeault cohomology of M is 

Hq(M) = {C (q=O) 
il 0 (q > 0). 

A holomorphic automorphism of M induces a geometric endomorph ism of the 001-

beault complex, which must act identically on HO, and so has strictly positive 

Lefschetz number. 

The fixed-point contributions 

If there are fixed points, the argument of (10.8) sho\\"S that t.he u:>fschetz number 

is given by a sum of contributions coming from the components of the fixed point 

set. To get a Lefschetz formula, we must work out these contributionsl We will 

only consider the ea.c;i~t case, that of "simple fixed points". Let Tm9 denote the 

endomorphism of the tangent space TmM at a fixed point m induced by 9. 

DEFINITION 10.10 The fixed point m is simple if det(1 - Tm9) :j:. O. 

Another way of saying this is that a simple fixed point is one where the graph of 'P 

cuts the diagonal transversally. It follows that there can be only fiuitely mally such 

fixed points. To work out the contribution from a simple fixed point., we willnse tbe 

following lemma: 
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LEMMA 10.11 Let T be an n X n matrix. Tben for any t > 0, 

1 r -I.r-T.rl' /41 et' _ 1 
(4irt)n/2 Jft" e X-I det(1 - T}I' 

PROOF Let A = (I-T)(I-T-), so Ix-Tx12 = (Ax,x). Let AI, .. ' ,An be the 

eigenvalues of A; then by an orthogonal change of co-ordinates on ]Rn 

1 r -lr-Trl'/41 -'" 1 r (-A1Xi - ... - AnX!) -'" 
(4irt)n/2 Jf/!' e u X = (4irt)n/2 Jf/!' exp 4t 'u X 

- IT (_1_1"" e- A,.r'/41 dx) - IT _1_ - 1 0 
- j=l ../41rt "" - i=llAjli - Idet(I-T)1' 

THEOREM 10.12 (ATIYAH-BOTT) Let «(,ip) be a geometric endomorpbism of a 

Dirae complex (5, d), haviIlg oIl1y simple fixed points. 'J'llen the Lefscbetz number of 

((, ip) is given by tbe following formula: 

L«(.ip) = L t (-I)qtr((q(nt))). 
,,:>(m)=mq=O 1 det(1- Tmip)1 

PROOF The argument of (10.8) shows that in order to evaluate the integral 

Th(Fe-I~.) = r tr(l(qk1(~(m),m)vol(m) 
J,\{ 

asymptotically as t --. 0, we need only integrate over arbitrarily small neighborhoods 

of the fixed points. Therefore, we work in geodesic co-ordinates having their origin 

at a fixed point. Then we have the following approximations where T = To~ and 

g = det(gij); 

(,/1') = (.,(0) + O(lxl) 

!p(,r) = Tx + 0(lxI2
) 

g(x) = 1 + O(l,rl). 

Moreover, by truncating the asymptotic expansion (7.15) at a point where the error 

of the expansion is uniformly of order t, we obtain 

kq ( ') 1 (-d(m' ,m)2) (a( /) ) ( 
'/ m.m = (41rt)n/2exP 4t • 0 m,m +O(t )+0 t) 

where ao(m. m) = 1. 
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Since det( 1 - T) ::j:. 0, there is a constant fJ > 0 such that 

Ix - Txl2 ~ 61r12. 

Moreover, d(rp(x),x)2 = Ix - Txl2 + 0(lxI3 ) and eo(c,.~(r),x) = 1 + O(lrl), so the 

asymptotic expansion formula gives 

kHIP(x),x) = (411"!)n/2e-, .. -rz,2/4t(1 + O(lxl) + O(t) + 0(IXI3/t)) + O(t). 

Therefore 

(10.13) 

~ 1 e-6,z,2/41(0(lxl) + O(t) + O(~)) + O(t) . 
....., (411"t),,/2 f 

By integration one finds that the LI norm of 

1 e-6IzI2/41 • IxlOth 
(411"t ),,/2 

is of order ta/ 2+i
'; so thl' right-hand side of (10.13) is of ordl"'r d in £1 norm as t ~ O. 

Therefore, as t -+ 0, 

f tr (l(q(x)kHcp(x),I))Vg(x)d"x ~ fit" tr ((q(O). (411"!),,/2e-lr-rrI2/41) d"I 

. .. tr( ( (0)) 
and by Lemma 10.11, the rIght hand sIde IS equal to I det(: _ T}I" So 

Tr(Fe-I~.) -+ L: tr((q(m)). 
",,(m)=m I det(1 - T",';?)I 

Now the result follows by (10.7). 0 

Many applications of this result may be found ill thl' papf'r of Atiyah and Bott [21. 

Here are a couple of examples. 

EXAMPLE 10.14 Suppose that our Dirac complex is in fact the de Rham complex. 

Then the maps (q: ';?" Sq ~ Sq are just the exterior powers /\q T" of the dual of the 

tangent map T = T:.p to cp. Now in general for any linear transformation T, 
q 

L:( -1)q tr(/\ T) = det( 1 - T); 
q 
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as one can check easily by recalling that tr(N T} is the q'th elementary symmetric 

function of the eigenvalues of T. Therefore the cont.ribut.ion from the fixed point m 

in the Atiyah-Bott formula is just 

det(1 - T';'~} 
I det(1 - Tmcp}1 = sgndet(1 - Tmrp}. 

\Ve therefore recover the original Lefschetz theorem: 

L(~} = L sgndet(1 - Tm~} . 
..,(m)=m 

EXAMPLE 10.15 Now let ~ be a holomorphic automorphisIll of a compact Kahler 

manifold M. As explained in Example 10.9, ~ induces a g('ometric endomorphism of 

the Dolbeault complex of M, whose Lefschetz number is defined to be the holomorphic 

Lefschetz number of .p, denoted La:;. 

To work out the local contribution in the Atiyah-Bott formula, we must do a 

little linear algebra. The tangent space at a fixed point is a real vector space V of 

even dimension equipped with a complex structure J (multiplication by i = A), 

and the tangent map T : V - F is complex linear, that is JT = T J. Then V ®a C 

decomposes as a sum P$Q of eigenspa.ces for J of eigcnvallles ±i, and correspondingly 

T ®R 1 decomposes as T $ T; P is isomorphic as a complex \·ector space to V and 

Q is isomorphic to v. Now the determinant appearing in the fixed point formula is 

deta(1 - T), the determinant of 1 - T considered as a real linear map. But 

deta(1 - T) = detd(1 - T) ® I} = detdl - T)detdl - T) 

by the decomposition. On the other hand, (q = .\ qT', acting on the bundle A qQ*, 

so 

Thus we get Atiyah and Bott's holomorphic Lefschetz theorem: 

1 
La( ~) = L d t (1 T. ) 

..,(m)=m e C - "'~ 

in the case of simple fixed points. 

We required M to be a Kahler manifold because only for such manifolds is the 

Dolbeault complex a Dirac complex. However. by working with generalized Dirac 
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operators one can prove the holomorphic Lefschetz theorem for all compact complex 

manifolds. 

Notes 

The Lefschetz theorem and many applications may be found in Atiyah and Bott 

[2]. For the "heat equation" proof, see Dieudonne [25, Volume IX], or Gilkey [34]. 

Exercises 

QUESTION 10.] 6 L<-t AI he a compact oriented n-manifold, and let X be a vector 

field on it. A point m E M such that X(m) = 0 is called a critical point of X, and 

it is non-degenemte if the dE'rivative of X at m (whic:h is an n x n matrix in local 

co-ordinates) is non-singular. The sign (± 1) of the determinant of this matrix is the 

index of the critical point. 

Prove Hopf's theorem. that the sum of the indices of the critical points of a vector 

field having only non-degenerate critical point.s is equal to the Euler characteristic of 

M. (Apply the Lefschetz theorem to thE' flow generated by X.) 

QUESTION 10.17 (ATIYAH-BoTT) Consider the endomorphism cp of <C)pn defined in 

terms of homogeneous co-ordinates (zo, ... , z,,) by 

(zo, ... ,z,,) = bozo, ... . /nzn) 

where the /'s are distinct non-zero complex numbers. From the holomorphic Lef­

schetz theorem ~or '-P deduce the Legendre interpolation formula 
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CHAPTER 11 

The index problem 

Gradings and Clifford bundles 

Recall that a module HT OVE'r a Clifford algebra CI(\·') is said to be gmded if it 

is provided with a decomposition IV = H'+ El' H'_ such that C'lifford multiplication 

by any v E \' interchanges the summands lV+ and W_. A C'lifford bundle S on a 

Riemanniall manifold is graded if it is provided with a decomposition S = S+ El'S­

which respects the metric and connection and makes each fibE'r Sz a graded Clifford 

module over CI(T",AI). It is equivalent to say that S is prO\'ided with an involution e 

(the grading operator) which is self-adjoint, parallel I and such that eC( v) + c( v)e = 0 

for every tangent vector l'. The sub-bundles Si; are the ±I eigenspaces of e. 

If S is a graded Clifford bundle, then the algebra of bounded op('rators on L2(S) 

is a superalgebra in the sense of definition 4.1. 

DEFINITION 11.1 Let.4 be a trace-class operator on L2(S), where S is a graded 

C'lifford bundle. Then the supertrace of .4. is defined to be 

Tr.(.4) = Tr(ta) 

where e is the grading operator. 

It is easy to check. by reduction to the corresponding property of the ordinary 

trace (8.8), that the supertrace vanishes on sllpercommutators [A, DJ .. provided that 

one of .4 and B is trace-class. There is an obvious analogue of 8.12, namely: 

PROPOSITION 11.2 Let A be a smoothing operator on L2(S) with kernel k E COO (St82 

S-); tlJen 

Tr.(A) = r tr .. (k(x, x)) vol(r) lM 
where the 'local supertrace' trAa), a E End(S",), is defined to be tr(;:a). 

1 That is, it commutes with ('ovariant diffl'rl'ntiation. 
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We will be concerned with Clifford bundles over even-dimensional, oriented man­

ifolds, say of dimension 2m. For such a bundle t.hprc is always a canonical grading; 

the volume element w in the Clifford algebra (4.4) has w2 = (_l)m and anticommutes 

with all the Clitford generators, so that the Clifford action of imw defines a grading 

operator eo on any Clifford bundle. However, other gradings are possiille. If e is 

another such grading then eeo is a self-adjoint involution which commutes with the 

whole Clifford algebra; thus we obtain 

LEMMA 11.3 Any graded Clifford bundle S is split into a direct SlIm of two graded 

Clifford sub-bundles, on one of which e = eo and on the ether of which e = -[0' 

(We refer to these as the canonically graded and anticanonically graded parts of S 

respecti vely.) 

Because of the existence of this direct sum decomposition, it is often sufficient to 

restrict our attention to canonically graded Clifford bundles. 

We want to analyze the local supertrare tr.{ a), a E End( Sr), which appears in 11.2 

above, using th{' representation theory of the Clifford algebra. The uniqueness of the 

spin representation provides a decomposition (4.12) Sr = ~® V where ~ denotes the 

spin-representation and V' is an auxiliary vector space, and there is a rorrl'spollr\ing 

decomposition on t.he endomorph ism level 

End(Sr) = Cl(T .. M) ® End(V), 

To say that S .. is canonically graded is simply to say that the grading of Sz is givCD as 

(~+®V)$(~_®V'), where ~± are the positive and negative half-spin representations. 

Let T.: Cl - C denote the supertrace of the action of the Clifford algebra on the 

spin representat.ion; then the above discussion pron's 

PROPOSITION 11.4 Let a = c ® F be an endomorphism of Sr, where c E Cl(TrAl) 

and F E EndCl(S .. ). Suppose tllat S is canonically graded. Then 

where the relative trace trs/a is definedin 4.13. 

In order to apply this proposition effectively one needs t.o know how to comput.e 

T •. The following lemma does this. To st.ate it., let {eJ, ... ,e2m} be an orthonormal 
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basis of R2". .If E C {I, ... ,2m}, then E will denote the element TIiE e ei of CI(R2m). 

Recall that the E form a linear basis for the Clifford algebra CI(R2m). 

LEMM~ 11.5 Let c = LE cEE be an element of CI(R2m). Then the super-trace 

ra(c) of c, considered as an endomorphism of the spin representation, is equal to 

(-2i)mc12. .. 2m. That is, the supertrace is equal (up to a scalar multiple) to the 'top 

degree part' of c. 

PROOF By definition of the super-trace T,,(e) = T(imWC). where T denotes the 

ordinary trace on the spin representation. It is therefore enough to prove that 

To do this, we must prove that 

if E = 0 

otherwise. 

Clearly 0 = 1 acts on ~ with trace dim(a) = 2m. Now if E :# 0, consider E acting 

on the Clifford algebra itself by left multiplication. As a representation, the Clifford 

algebra is equal to a ® a·, with left action on the first factor a. So the trace of 

E on A is equal to 2-m times the trace of E on the Clifford algebra itself. But E 
permutes the basis elements without fixed point, so treE) = O. 0 

REMARK 11.6 One can also deduce this lemma from the computation of the 

character table for the fiuite group Ezm, which we carried out iu Chapter 4. 

Graded Dirac operators 

The Dirac operator of a graded Clifford bundle anticommutes with the grading 

operator, and so maps sections of SJ:; to sections of 51" We may therefore think of 

the Dirac operator as coming from a Dirac complex of length 2 

where D+ is the restriction of D to sections of 5+ and its a·jjoint D:;' = D_ is the 

restriction of D to sections of 5_. The Euler characteristic of this complex is an 

important invariant called the index of D. More formally 
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DEFINITION 11,7 The index of a graded Dirac operator D is the difference 

Ind(D) = dim ker D+ - dim ker D_, 

EXAMPLE 11.8 As a simple example, consider the de Rham operator D = d + d' 

with the grading operator defined by E = (-1)9 on f!9( AI). Then by Hodge theory, 

the index of D is simply the Euler characteristic of M in the sense of topology. Notice 

that this grading, which we will call the Euler grading of the de Rham operator, is 

neither canonical nor anticanonical. 

It is immediate from the definitions that we ha\'e Ind(D} = TrAP), where P 

denotes the orthogonal projection onto ker(D). ~lor(' generally we have 

PROPOSITION 11.9 Let I be any rapidJy decreasing smooth function on IR+ with 

1(0) = 1. Then Illd(D) = Tra(f(D2», 

PROOF Since the spectrum of D is discrete, the projection P onto the kernel of D 

can be written as I{D) for some appropriately chosen compactly supported smooth 

function I with I{O) :-:: 1. It therefore suffices to prove that Tr ... (g(D2» = 0 when g 

is smooth and rapidly decreasing and g(O} = O. We may writ,e geT) = :rh(.r) for some 

rapidly decreasing function h; and we may further write h(x) = hl(.r)h2(T) wh€'re 

both hJ and h2 are rapidly decreasing. Out now 

and so Tra g(D2 ) = 0 since the supertrace vanishes on supercommutat.ors. 0 

REMARK 11.10 Because of its historical importanc(' we gh'e a variation of this proof. 

For an eigenvallle >. of D2, let n+ (>.) denote the dim€'nsion of the >.-eigenspace of the 

restriction of D2 to S+, and similarly for n_(>'). Then clearly 

Tra I{D2) = L I{>.)(n+{>.) - n_{>'» = Ind{D) + L I(>')(n+(>') - n_(>.}). 
1 1>0 

But for>. 1= 0, the operator D gives an isomorphism bet.weeu the >.-eigenspaces of 

D2 on S+ and on S_, so n+{>') = n_().), giving t.h(' result. 

The special case 

(11.11) 
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relating the index to the heat equation is known as the McKean-Singerformula 151]. 

REMARK 11.12 Proposition 11.9 applies to rapidly decreasing functions f. But a 

study of its proof reveals that it is enough that f(x) = O(x-N
), where N is some 

constant, depending on the dimension, which is sufficiently large that the operators 

Dh1(D) and Dh2(D) appearing in the proof can be chosen to have continuous kernels 

and so to be Hilbert-Schmidt (see 5.32 and 8.9). This will be important in a moment. 

We study the variation of the index as the operator D varies. Let DI> t E [0,1], 

be a continuous family of graded Dirac operators on (AI, S); by this we mean that 

the Riemannian metric, the Clifford action. and the metric and connection on S 

are all varying continuously with t (in such a way as to preserve the compatibility 

conditionj. Then t 1-+ D t is a continuous map from [0,1] to B(W"+I, W") for any k, 

and the operators D, all satisfy the elliptic estimates 

with a constant Ck which is uniform in t. 

PROPOSITION 11.13 Let DI bo Il continuous family of graded Virae operators, as 

above; then Ind{Do) = Ind(Dt}. 

PROOF The resolvents (Dt ± i)-I map W" to W"+I for any k, as is shown by 

elliptic estimates. Moreover the maps t 1-+ (D t ± i)-l are continuous from [0, I} to 

B(W", WHl) for any k ~ O. To see this we use the resolvent formula 

and the uniformity in the elliptic estimates which shows that the B(Wk , IV"+ I) norm 

of (D, + i)-I is bounded independ<>nt of t. It follows that (1 + D'f)-N is continuous 

from [0, I} to B(lV", Wk+2N). When N is large enough the indusion IVk+2N -+ W" 

is a Hilbert-Schruidt operator (exercise 8.22). Taking such an N we deduce that 

(1 + D'f)-2.V is a trace class opf'rator and that its trace, or its supertrace, vary 

continuously wi th t. Thus by 11.9 and t he subsequent remarks, 
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varies continuously with t. Since, however, the index IS an integer, it must be 

constant. 0 

This fundamenta.l stability property shows that the index is a topological invariant: 

it depends only on homotopy-theoretic data about the manifold M and bundle S. 

The index problem which was solved by Atiyah and Singer in the early 1960's was 

this: compute the index in temlS of the conventional invariants of algebraic topology. 

namely chara.ct('ristic classes associated to the bundle S and to the tangent bundl(' 

of M. The index theorem made possible a vigorous commerce between analysis 

and topology. On the one hand, information about the index derived from POE 

theory - sometimes even the rather minimal information that Ind(D) is an int.eger 

- could be used to constrain the characteristic classes and hence the topology of 

M. On the other hand. topological conditions could force the existence of solutions 

to differential equations - holomorphic functions, for examplo - which solutions 

might then be used in further geometric constructions. r..mnor's const.ruction of t.he 

exotic spheres [53] and the Kodaira embedding theorem (see [36]) are examples of 

these two phenomena which predate the general form of the index theorem itself. 

The original solutions to the index problem depended on the use of algebraic 

topology (either cobordism theory or K-theory) to organize the possible pairs (U, S) 

into some kind of group, and thus to reduce the proof of the index theorem to a 

check on some specific generators. Thus they were essentially global and topological 

in nature. In tl:is book we will prove the index theorem by an alternative method. 

which is based on the McKean-Singer formula [51]. McKean and Singer pointed out 

that we have an asymptotic expansion for the heat kernel which is in principle locally 

computable, a.nd that therefore formula 11.11 can be used t.o relate the index to the 

local super-trace of certain coefficients appearing in that expansion. The relevant 

coefficients are, however, almost impossible to compute by brute force. Following 

an idea of Gilkey, namely to use Invariant Theory to study the polynomials in the 

curvature which might possibly arise in the expansion, a proof of the index theorem 

using the asymptotic expansion was given by Atiyah. Bott and Patodi in [31. But 

Gilkey's idea suffered from the defect that Invariant Theory could only determine 

the coefficients up to a (finite) number of arbitrary constants; it was still necessary 

146 



to compute examples in order to fix the values of the constants. 

The situation was transformed by the appearance of Getzlcr's paper [311. Getzler 

showed that the computations needed in the asymptotic-expansion method can be 

rendered quite tractable by paying careful attention to the role of the Clifford algebra. 

In his method, the fact 11.5 that the local supertrace corresponds to the 'top degree' 

part in the Clifford algebra is of crucial importance. It is used to reduce the 

computations to those in a simple local model, essentially the harmonic oscillator; 

and the function aJ sinh(2at) appearing in Uehler's formula 9.12 for the harmonic 

oscillator beat kernel is revealed to lead to the appearance of tbe A-genus (2.28), 

the Pontrjagin genus associated to the function w J sinh U' where 10 = !,fi, on the 

topological side of the index theorem for the Dirac operator. The rest of this chapter 

and the next give an exposition of Getzler's proof. 

The heat equation and the index theorem 

\Vith notation as above, recall the asymptotic expansion 7.15 for the heat kernel 

J.:t associated to the smoothing operator e-tD'. Using 11.2 this gives us 

Tr~( e-
tDl

) ...., (41I"!)n /2 (1 tra eo vol +t 1 tr$ SI vol + ... ) . 

But Tr .. (e- tD') is in fact constant, and equal to the index of D. by the McKean-5inger 

formula. 50 we get: 

PROPOSITION 11.14 Tbe index oftbe graded Diracoperator D is zero ifn(= dim U) 

is odd, and is equal to 

(41r~n/2 1 tra en/2 vol 

if n is even, wbere the asymptotic expansion coefficient &,,/2 is a certain algebraic 

expression in the metrics and connection coefficients and their derivatives. 

Here is a non-trivial corollary. 

COROLLARY 11.15 Tbe index is multiplicative under coverings; i.e. if M is a k-foJd 

cO\Tering of M, and S, iJ are tile natural lifts of S and D to Ai, tben Ind(D) = 
kInd(D). 
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This is immediate from 11.14, since 6"/2 is a local expression which is the same 

on !If as on Al. It is not obvious from the definition of the index. 

EXAMPLE 11.16 Let us consider the case of a 2-dimensional Riemannian manifold 

M, and let D = d + d* be the de Rham operator equipped with the Euler grading 

11.8 by the degree (mod 2) offorms. Then by the above, the index of D is equal to 

4~ J (tre~ - tre: + tren \'01 

where the superscript on 6 1 denotes the degree of differential forms. Now we use our 

calculation in 7.19, which gives 

ei - lK 1 Ki 1 - 6 . -

where K is the Clifford-contracted curvature operator appearing in t.he \Veitzenbock 

formula. Now KO = 0 and so K2 = 0 also by Rodge duality; on the ot.her hand, KI IS 

the Ricci curvature operator by 6.8. Thus we get 

tre? = tre~ = ~K, tre~ = ~K' 2 - K = -~K. 

and so we finally obtain 

Ind(D) = ~ J K \'01 
471" 

and bearing in mind that Ind(D) is the Euler characteristic and that 1\ is twi('e tlu' 

Gaussian curvature, we recognize the Gauss-Bonnet. t.heorem. 

Notes 

References for the original proofs of the index theorem arC' t.he seminar by Palais 

[57] and of ('ourse t.he series of papers by Atiyah, Singer, and Segal [9, 8, 10] in 

the Annals of Mathematics. Atiyah's Collected Works were published since t.hC' first. 

edition of t.his book and are a must-read for anyone interestC'd in a('qlliring a deeper 

understanding of the index theorem and the ideas surrounding it. 

Seeley [67] gives a historical account of the de\'e!opment of illdl"x t.heory from the 

point of view of singular int.egral operators. 
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Exercises 

QUESTION 11.17 Let D be a graded Dirac operator, and consider the associated 

Dirac complex of length two. 

(i) Show that the index of D is simply the Lefschetz number of the identity map 

on this complex. 

(H) Relate the McKean-Sillger formula to the Lefschetz number formula of 10.7. 

(Hi) Since the index is a Lefschetz number, why can't we apply the Atiyah-Bott 

Lefschetz theorem of the last chapter to calculate it? 

QUESTION 11.18 Let HI and H2 be Hilbert spaces and let .4 : HI - H2 be a 

bounded operator. Suppose that there is a "parametrix" for A, that is an operator 

Q : H2 - H) such that the operators AQ - 1 and QA - 1 are compact. Show 

that ker A and ker A* are finite-dimensional, and that the 'Fredholm index' Ind(A) = 
dim ker A - dim ker A' is a locally constant function of .4. 

QUESTION 11.19 Now let A : HI - H2 have a parametrix Q such that, for some 

positive integer p, (AQ - l)P and (QA - l)P are trace-class operators. Show that 

IndA -= Tr«QA - l)P) - Tr«AQ -It). 

QUESTION 11.20 Let D be a Dirac operator on a compact n-manifold, and let 

kt be the corresponding heat kernel. Consider the differential n-form 0'1 defined by 

O't(m) = tr .. (kt(m, m» vol(m), where tr .. denotes the local super-trace. Prove that 

the derivative 8o:dlJt is an exact n-form, and thereby obtain yet another proof of the 

McI~ean-Singer formula. 

QUESTION 11.21 Use the heat equation method to prove the Riemann-Roch formula 

for a Riemann surface (same method as 11.16 above). This is due to Kotake [45]. 

QUESTION 11.22 Let l' be a complex vector bundle over a compact manifold AI. 

Show that there is a smooth function e : AI - ,\-f",(C) for some N, which is a 

self-adjoint projection (e2 = e) and is such that the range of e is a sub-bundle of 

Ai x CN isomorphic to lo-. 
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Show further that the equation 

defines a connection on the range of c. 

QUESTION 11.23 Let S be a Clifford bundle over the compact manifold AI, and let D 

be the corresponding Dirac operator. Let ~r be a vector bundle over 1\1, represented as 

the range of a projection-valued function e, and equipped with its natural connection 

(see question 11.22). Show that the Dirac operator Dv on S with coefficients ill F 

(3.24) is given by Dv = e( D ® 1 }c. 

Now suppose further that Ker(D) = O. Show that D-I is a bOllndf'ci operator on 

L2(S}. Show also that Q = e(D-l ® l)e is a parametrix for D I ·. and that in fact for 

sufficiently large p, 

Illd(Dv) = Tr~(QD\, - I)P) . 

QUESTION 11.24 (CONNES [21, 221). In the situation of question 11.23, the' 

following expre~ion is called the (cyclic) character of D: 

where /0,'" ,hp are (possibly matrix-\'&Iued) smooth functions on Al. 

(a) Show that the expression makes sense (Le. that the operator in the brackets 

is of trace-class) if p is large enough. 

(b) Show that r is a cocycle: Le. that for any functions /0,'" ,hp+l. 

2p 

L,(-l}ir(fo,/I .... ,hh+1· .. · .hp+d = r(J2p+Iio,/I,'" ,hp) . 
j=o 

(c) Show tbat if e is a projection-valued function corresponding to a \"Cctor bundle 

V, then [nd(Dd = r(e,e •... ,e). 

(This computation lies at the beginning of the relationship bE'tweell iudex tilE'Ory and 

Connes' cyclic eohomology.) 
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CHAPTER 12 

The Getzler calculus and the local index theorem 

This chapt.er gives the heart of t.he proof of the Index Theorem. We will study the 

sQ-callC'd symbolic calculus for operat.ors on bundles of Clifford modules. The idea is 

to provide a systematic way of im'estigating the 'top order part' of an operator or a 

family of operators. For instance, our proof of the \Veyl asymptotic formula 8.16 was 

b~ed on our knowledge that the 'top order part' of the heat kernel on a manifold is 

simply the heat kernel on Euclidean space. Getzler's innO\·at.ion was the introduction 

of a sophisticated notion of 'order', with respect to which t he index form - discllssed 

at the end of the last chapter - naturally appears as a 'top order part'. 

Filtered algebras and symbols 

In this section we will be concerned with algebras over cc. Recall that an algebra A 

is a vector space equipped with a bilinear, associati"e product. A graded algebra 

is all algebra provided with a direct sum decomposition A = $ A"', such that 

A m ,.4 m' ~ A rn +rn'. Familiar examples of graded algebras include t.he ext('rior alg('bra 

A' \' over a vector space, and the polynomial algebra Cif]. 

The notion of graded algebra should be contrasted with that of filterPA algebra: 

DEFINITION 12.1 A filtration of an algebra A is a family of subspaces Am, rn Ell, 

with Am ~ Am+t. and such that Am' Am' ~ A rn +m" for all rn, rn' E Il. An algebra 

prO\'ided with a filtration is called a filtered algebra. 

EXAMPLE 12.2 The aigebra !>(M) of differential operators acting on functions on 

a manifold .u is a filtered algebra, with llm(.M) equal to the spa.l:e of differential 

operators of order :s;; rn. 

EXAMPLE 12.3 The Clifford algebra CI(\,) of an inner product space l' is a filtered 

algebra, with Clm(V) equal to the linear span of the products of rn or fewer elements 

ofF. 
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REMARK 12.4 Clearly, any graded algebra can be regarded as a filtered algebra (just 

define Am = AO El) ••• El) Am). Moreover, any homomorphic image of a filtered algebra 

is a filtered algebra. These ideas can be put together to generate a filtration on any 

algebra from an assignment of degrees to members of some generating set. For an 

example sufficient for our purposes, suppose that A is generated by B U V, where B 

is a subalgebra of A, V is a vector subspace, and we want to think of elements of 

B as having degree zero and elements of V as having degree one. Then there is a 

surjective homomorphism of algebras 

® V = BEl) (B 13> V ® B) El) (B ® V ® B ® F ® B) El) ••. -> A 
B 

and so A inherits a filtration from the tensor algebra. For instance, the Clifford 

algebra CI(\:') is generated in this way by B U V (where B = C ), and t.he filtration 

defined by these generators is the one in example 12.3 above. 

DEFINITION 12.5 Let A be a filtered algebra and let G be a graded algebra. A 

symbol map a.: A -> G is a family of linear maps am: Am -> Gm, such t.hat 

(i) If a E Am-I. then am(a) = O. 

(ii) If a E Am and a' E A",., then am(a)am·(a') = am+m·(aa'). 

We refer to (ii) as the homomorphism-like property of the symbol. 

DEFINITION 12.6 Let A he a filtered algebra. The associated graded algebra G(A) 

is the direct sum 

G(A) = EBAm/Am-l 
m 

with the product operation induced from A (which the reader should \'erify is well­

defined). 

The quotient. maps Am -> Am/Am- 1 give rise to a symbol map a.: A -> G(04). In 

fact this is obviously the 'universal' symbol map 011 A in an appropriate sense, but 

we will not spell this out in detail. 

EXAMPLE 12.7 Let A = Cl(V) be the Clifford alg<'hra of L Then the associated 

graded algebra G(A) is the exterior algebra A -l'; and the symhol maps a.: CJ(l')-> 
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""(V) give the top degree part of the linear isomorphism between the Clifford and 

exterior algebras discussed in 3.23 and exercise 3.32. 

EXAMPLE 12.8 Let A = 'D(M), the algebra of differential operators on M. To 

describe symbols on A, we need to investigate differential operators modulo lower 

order operators. 

Let F be a finite-dimensional vector space, and let C!:(V') denote the algebra of 

COflstant coefficient differential operators acting 011 fUllctions OIl V. Then c!:(V) is a 

graded algebra, its degree m part being made up of homogeneous differential operators 

of order m. We may form the bundle c!:(TM) whose fiber at a point p is c!:(TpM); and 

the space of smooth sections C'O( c!:(T AI» forms a graded algebra. We will construct 

a symbol map 

a.: D(Jlf) -+ C""'(c!:(TM)). 

Fix p e JU. Given a differential operator TeAm. choose local coordinates Xi with 

origin p and write 

in terms of these local coordinates. Let a m,p(T) be the constant coefficient differential 

operator on TpM obtained by 'freezing coefficients' 

o 
am,p(T} = L c .. (O) oxo ' 

lol=m 

It is straightforward to check that this definition is independent of the choice of local 

coordinate system, and it obviously vanishes on operators of order < m. Moreover, if 

TeAm and T' e Am" then am+m,(TT) = am(T}am,(T}, because the commutator 

of T and multiplication by a smooth function is an operator of order < m. The maps 

a m •p as p varies fit together to give a linear map 

which is the desired symbol. 
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REMARK 12.9 The algebra of differential operators 1)(M) is generated by B = 
COO(M) in degree zero and V' = X(M) (the vector fields on M, acting by Lie 

derivative) in degree one; and the filtration on 1)(M) is that determined by these 

generators. To specify the symbol map completely it is therefore enough to specify 

its action on the generators. It is easy to see that the symbol O'o(f) of a smooth 

function f is f itself (thought of as the operator of multiplication by the constant 

f(p) on TpM for each p) and similarly the symbol O'l(X) of a vector field X is X 

itself (thought of as the constant-coefficient first order operator aX(p) on TpM). 

Getzler symbols 

Now let M be an even-dimensional Riemannian manifold and S a Clifford bundle 

over it. Recall from 4.12 that we havf' an isomorphism 

End(S) = CI(TU) ® Endcl(S) 

and we use this isomorphism to make End(S) into a bundle of filtered algebras, using 

the standard filtration of Cl(T AI) and giving degree zero to elements of Endcl(S). 

We will call this the Clifford filtration on End(S). 

We want to study the algebra 1)(S) of differential operator::; acting on sl'ctions of 

S. This algebra is generated by Clifford multiplications, covariant deri"ath'es, and 

sections of the bundle Endcl(S). 

DEFINITION 12.10 The Getzler filtration on 1)(S) is that determined (using the 

construction of 12.4) by the following assignment of degrees to the g('nerators of 

1'(5): 

(i) A Clifford module endomorphism of S has degree zero; 

(ii) Clifford multiplication c(X), for X E X(M), has degree one; 

(iii) Covariant differentiation V'x, for X E X(Af), also has degree one. 

Whenever we think of 1)(S) as a filtered algebra. we will use this filtration. 

We will define a symbol map on 1)(S). Like that of the previous section, its range 

will be the sections of a certain bundle of differential operators on TM. But the 

operators no longer have constant coefficients. 
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DEFINITION 12.11 Let V' be a vector space. The notation ~(V) will denote the 

algebra of polynomial coefficient differential operators acting on functions on V. 

Notice that ~(V) is a graded algebra, if we give an operator xQo!3 joxfJ the degree 

1,81-lal· 

EXAMPLE 12.12 Recall that the Riemann curvature operator R may be regarded 

as a 2-form with values in End(TM}. Let X E X(M} be a given tangent vector field. 

On TpJ/, the function 17 t-+ (RpXp.v) is a linear map TpAf -+ 1\2T;(!~f}; identifying 

T with T" via the metric we may regard this as a degree one polynomial function 

on Tp with values in 1\2Tp. This member of ~(TM) ® 1\* TAl constructed by this 

process will be denoted by (RX,·). 

PROPOSITION 12.13 There is a unique symbol map 

which has the following effect on generators: 

(i) O'o(F) = F for a Clifford module endomorph ism F; 

(ii) (11(C(X)) = e(X}, that is exterior multiplication by X, for X E X(U}; 

(iii) O'I(V'X) = Ox + ~(RX, .). where the notation is that of 12.12. 

It is clear that such a symbol map is uniquely determined by its effect on the 

generators. In fact, the specification of its effect on the generators does determine a 

unique symbol map on ®8 F, where B = Endcl(S) and ~r = X(M} $ X(A/}. The 

question is whether the symbol is well-defined on D(.\I}; does it factor through the 

quotient map ®li ~r -+ D(S}, or in other words does it respect the relations between 

the chosen generators of ::D(S). We will complete the proof t.hat. a, is well-defined 

in the next section, by considering the action of a differential operator on a suitable 

space of formal Taylor f,eries. Here. however, is an example to show that 0'. does 

respect a crucial relation, that which expresses the cun'ature as the commutator of 

covariant derivatives. 

EXAMPLE 12.14 In !>(S) we have the relation 

(12.15) 
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where we have decomposed the curvature K into the sum of the Riemann f'nclomor­

phism and the twisting curvature according to proposition 3.16. Let us calculate the 

second order Getzler symbols CT2 of both sides of this identity ar.d verify that they 

agree. On the left, the operator VrX,YJ is of first order and so may be ignored. It is 

convenient now to work in local coordinates; let ei be an orthonormal basis of TpAf, 

with associated coordinate functions Xi. Then' 

Now when we calculate CT2(Vi ® Vj - Vj ® V;) = CTl(Vi)CT,(Vj) - CT,(Vj)CT1(Vi), the 

second order derivative and the 4-form terms will cancel between the two proclucts 

and we are left with the cross-terms, which are equal ancl giw a total of 

[CT1(Vi),CT,(Vj)] = ~ ~)R(ei.ej)e.he/h, /\ el, 
1r.1 

which is the symbol of the Riemann endomorph ism R"(ei, ej). The twisting curvature 

FS is a Clifford module endomorph ism, and so has degree zero; so wc havc verified 

that the second order symbols of the left. and right hand sides of equation 12.15 agree. 

Continuing fN the moment to take on trust the existence of thc Gctzlcr symbol 

map 

defined by 12.13, let us calculate the symbols of some import.ant differential operators. 

EXAMPLE 12.16 The Dirac operator D is of Getzler ordpr 2, and its symbol is the 

exterior derivat.ive op<'rator dnl on each tangent space TAl. To see this, we choose a 

local orthonormal frame and write D = Lc(ei)Vi; then CT2(D) = LCT,{e(e;))CT1(V.). 

We may substitute the symbols of the Clifford multiplication and covariant derivative 

operators to get 

and the term involving curvature vanishes because of the Bianchi identity. 
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Since tP = 0, the fourth order symbol of D2 vanishes. In fact, although this is not 

obvious, D2 also has Getzler order 2; the computation of its second order symbol is 

crucial to the proof of the index theorem. 

PROPOSITION 12.17 The operator D2 has GetzJer order 2. Its Getzler symbol 

relative to an orthonormal basis ofTpM is 

_ ~ (~+! ~ R-oxi) 
2 + FS 

~ aTi 4 ~ *J 
* J 

where Rij is tbe Riemann curvature at p (thought of as a matrix of 2-forms) and FS 

is the twisting curvature 2-form at p . 

PROOF This follows from the Weitzenbock formula 3.18, which states that 

D2 = V·V + tK + FS 

where FS is the Clifford contraction of the twisting curvature. The formula 3.9 for 

the operator V· gives, in local coordinates, 

V·V = E -gi"'(VjVk - r)", Vi) 
i.j.'" 

where the functions r~k are the Christoffel symbols associated to the Riemannian 

connection. Notice that at p, the origin of coordinates, gi'" = 6jk and r}k = 0; so the 

second order Getzler symbol of V·V is the same as that of the operator - Li Vi Vi, 

which is 

-~ (! + I ~ R;j~ )' 
The second order Getzler symbol of FS is simply FS, and t.he second order Getzler 

symbol of K is zero, so the result follows. 0 

The Getzler symbol of the heat kernel 

We will apply the Getzler calculus to the asymptotic expansion of the heat kernel 

of the Dirac operator, which wc derived in 7.15: 

) 1 { d(p, q )2 } ~ i 
kt(p,q - (4,.-t)0/2 exp - 4t L.;t eJ(p,q) (12.18) 
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with 8 o(p,p) equal to the identity. The heat operator is obviously not a differential 

operator; we will ext.end t.he Getzler calculus to deal with smoothing operators of 

this sort. 

DEFINITION 12.19 For a vector space F, let q[FII denote the ring of formal power 
00 . 

series over V (formally speaking, this is the infinite direct product n ®'V). 
i=O 

The algebra '.J3(V) of polynomial coefficient differential op~rators acts naturally on 

q[vlI. If we make qlV"1I into a graded vector space by giving a monomial TO the 

degree -10-1, this makes CIIVII into a graded '.J3(V)-module. 

Now let S be a smooth section of the bundle S 181 S" on M X Al. Fix q E M and 

choose geodesic local coordinates Xi with origin q. Taylor's theorem tells us that 

the function sq(x) which is the local coordinate representation of p 1-+ s(p,q) can be 

expanded (asymptotically) near zero in a Taylor series 

where the So are syuchronous sections of S ® S; (that is, they are parallel along 

geodesics emanating from q). Since each So is determined by its value 5 0 (0) E 

End(Sq). the Taylor series may be thought of as an element of CIITqMII ® End Sq. 

As q varies we obtain a section r:( s) of the bundle q[T M]] ® End S. We will call 

this section simply t.he Taylor series of s. 

The algebra tClITq .HII ® End Sq is filtered; its filtration is the tensor product 

(exercise 12.30) of the filtration coming from the grading of qlTq AI]] amI the Clifford 

filtration of End( Sq). We will use this filtration to induce a filt.ra'ion on t.he space 

of smooth sections s of S 181 S-; so we say that s has degree ~ m if its Taylor series 

E(s) has degree ~ m (in the product filtration) at each point. The Clifford symbol 

End(Sq) -+ A" TqM ~ Endcl(Sq). composed with t.he Taylor ('xpansion map ~. giws 

rise to a symbol map 

DEFINITION 12.20 We will call the degree m of s relative to the filtration that we 

have defined above its Getzler degree, and we will call the symbol 0" m (5) the Getzler 
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symbol of s. We will also use the notation a~(s) for the constant term in the Taylor 

series am(s), which we will call the constant part of the Getzler symbol. 

REMARK 12.21 The natural product on smoothing kernels COO(SI8IS*) is, of course, 

given by the composition of the corresponding smoothing operators. The symbol 

t.hat we have defined does not have the homomorphism-like property with respect 

to this product (it does have this property with respect to 'pointwise multiplication' 

of kernels, defined in an appropriate way). Dut this is irrelevant for our purposes; 

the relcV"dIlt algebraic structure is the action of the differential operators :1)(S) on 

COO(S 181 S°), and ht:'re th('re is a good r('lationship betwe€'n the Gctzler symbols of 

differential operators defined in the previous section, and the newly defined Getzler 

symbols of smoothing kernels. This is described in the next proposition. 

PROPOSITION 12.22 Let T E :D(S) be one of the generators used ill the previous 

section; that is, T is either a Clilford module endomorph ism F, a Clilford multipli­

cation operator c(X), or a cOl-'8.riant deril'ati\.'e Vx . Let m E {O, I} be the Getzler 

order ofT, Tllen for any smoothillgoperator Q on C)O(S), witll G(·tzler order ~ k, 

the smoothing operator TQ has Gf'tzlC'r order," m + k, and the relation 

llOlds betweell tlle symbols. 

The 'composition' on the right hand side of this inequality is obtained from the 

module action of ~(TJI) on C[[TMJ] and the algebra structure of A* TA! and 

EndCl(TM). 

PROOF Let Q have smoothing kernel s, fix q E M and geodesic coordinates Xi with 

origin q, and let Sq(x) "'" E s(.lx(.l be the Taylor expansion of s near q. 

Fin;t we consider the case T = F, a Clifford module endomorphism. If F happens 

to be synchronous at q then the Taylor coefficients of Fs are precisely Fs(.l, so the 

result is obvious in this case. In general let Fo be the synchronous section of Endcl(S) 

which agr~s with F at q; then F - Fo has vanishing constant term in its Taylor 

expansion. so ao(F - Fo) = 0 and thus 
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as required. 

Second, if T = c(X) where X is a vector field an exactly simila.r argument shows 

that Ok+l(C(X)s) = Ol(C(X»Ok(S). 

Third, and most important, let us consider the case where X is a vector field and 

T = V x. Let ai be the vector fields associated to the geodesic local coordinate system 

xi; it suffices to prove the result for X = ai . Let Y = Lj Xjaj be the radia.l vector 

field. 

Suppose that S is a syuchronous section: then V1,s = O. Let 

be the Taylor expansion of V xs. By definition 

where K is the ("urvat.ure operator. But Vys = 0, and an easy calculation shows that 

IX. Yl = X and Y· xo< = lalxo<, so we get 

- ~)IQI + 1 )to<xO< '" K(X, }'")s = L: KijX
j 
S. 

o j 

Thus the Taylor coefficient.s of Vxs are determined by the Taylor coefficients of K. 

But we have the identity K = RS + ps, where the Riemann endomorph ism R<j 

is an element of the Clifford algebra of degree ~ 2, and ps is a Clifford module> 

endomorphism. Therefore if we retain only the te>rms of degree ~ k + 1 in the above 

expansion we g<'t 

V x s = - ~ L: x j RS (ai, aj)s + lower order terms. 
j 

But the second order symbol of RS(Di.aj ) is -!Rij , so that 

OH1(VXS) = l L: RijXj 
/I. Ok(S) = 01(V X )o,,(s) 

j 

which verifies the desired identity in case S is synrhronous. The general case follows 

by applying the special case to each of the coefficients So appearing in the Taylor 

expansion. 0 

This allows us to give our deferred proof of the remaining part of 12.13. 
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COROLLARY 12.23 The Getzler symbol is well defined on :D(S), and satisfies tbe 

identity 

for all T E :D(S) of Getzler order ~ rn, and all Q of GetzJer order ~ k. 

PROOF Given T E :D(S) of Getzler order ~ rn, let T denote a particular repre­

sentation of T in terms of generators and relations. \Ve must show that the symbol 

um(T) depends only on T. But by repeatedly applyiug 12.22 we see that 

and since Uk(Q) may be an arbitrary formal power series the polynomial coefficient 

differential operator um(T) is uniquely determined by this equation. 0 

We apply the calculus that we have developed to the beat kernel k/(p, q). The heat 

kernel has the asymptotic expansion given by 12.18, and it satisfies the equation 

[! + D!] kt(p,q) = o. 

PROPOSITION 12.24 The terms 9 j (p, q) is the BSJ'mptotic expansion of the beat 

kernel have GetzJer order ~ 2j. The 'heat symbol' 

satisfies the equation fJW/lJt + u2(D2)W = 0, and it is the unique solution of this 

equation of the form hA t'o + hI! + ... + tn/ 2Vn /2) in which Vj is a symbol of Getzler 

order 2j and Vo = 1. 

PROOF We recollect from 7.15 the process by which the asymptotic expansion of 

the heat kernel was constructed. Suppose that the heat kernel is represented, in local 

coordinates near q, by a formal series (x,t) 1-+ ht(x)(uo(x) + fUI(x) + ... ). Using 

the formula for the commutator of D2 with multiplication by a smooth function, and 

the fact that h, approximately satisfies the heat equation, we obtained a system of 

differential equations 
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where by convention we put Uj-l = O. These equations determine the Uj uniquely 

from the single requirement that 110(0) be the identit.y. Comparing the Taylor series on 

the left and the right hand sides, and remembering that V' alar annihilates synchronol1s 

sections. we see 0y induction that Uj has Getzler order ~ 2j and that 

on TqM. These howe\'er are precisely the recurrence relations satisfied by the 

asymptotic-expansion coefficients of the solution to t.he equat.ion aWj&t +a2(D)W = 
O. Since the recurrence relations determine the coefficients uniquely (gh'en the value 

of Uo at the origin), the claim follows. 0 

The exact solution 

We will now .:onstruct an explicit solution to the differential equation aH'1 at + 
a2(D2)lV = 0 which appears in proposition 12.24. Because of the uniql1('ll('sS 

assertion in that proposit.hn, this will give us an explicit formula for the heat symbol. 

PROPOSITION 12.25 Suppose tllat R;j is a skew symmetric matrix of real sra.lars. 

and that P is a r('a.l sra.Ja.r. Then the diifer('ntia.l r.qlla.tion 

( )

2 
au' a 1 '. • - -" -. + - " n··x] U' + Fw = 0 at ~ ox' 4 ~ '] 

I ] 

has a solution for small t which is an analytic function of the matrix entries R;j and of 

fr, and which is asymptotic to (41rt)-n/2 exp( -lxl2 1olt) as t approaches O. Explicitly, 

this solution is ('qlla.1 to 

(41rt)-n/2det l / 2 . _ exp -- -coth-x,x exp(-tF). , (tRI2) (1 (tEl tR)) -
smh tRI2 4t 2 2 

PROOF An obvious substitution shows that it is enough to prove the special case 

fr = O. "Ve use separation of variables. There is an orthonormal basis wit.h respect 

to which the matrix of R is a direct sum of 2 x 2 blocks 
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with eigenvalues ±iO. It is enough then to prove the 2-dimensional case, that if R 

has this 2 x 2 block form, then the heat kernel is 

w(x,t) = (41ft)-1 (sin~t!t:/2») exp (-~i8IxI2coth(itO/2») 
The differential equation to be solved is fJw/iJt + Lw = 0, where 

with 

Lo = - - - - - -f} (x + Y ) (
fJ

2 
fJ2) 1222 

Ox2 fJy2 16 

Ll = !O (x~ -y~) . 
2 fJy fJx 

The claimed solution w is invariant under rotations of R2. Therefore, L1w = 0, 

since Ll is the infinitesimal generator of the rotation group acting on R2, and thus 

annihilates rotationally symmetric functions. It will suffice then to show that fJw / iJt+ 

Low = O. Now we can separate variables further into x and y. By Mehler's formula 

(see 9.12 and remark 9.13), a solution to the equation 

8w fJ2w 1 2 2 -----f}xw=O 8t fJx2 16 

is 

(41rt)-t Ci~~f}!t:/2) t exp (-li8x2 coth(it8/2») 

Taking the product of this formula for x and the corresponding formula for y, we get 

the result. 0 

The operator 112(D2) is equal to 

as we calculated above. Here the curvature R is a skew symmetric matrix whose 

entries are 2-forms, and F is a 2-form with values in Endcl(S). The matrix entries 

of R all commute with one another and with F. 
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Two-forms are nilpotent elements of the exterior algebra. Therefore, if we think of 

the formula from 12.25 

W = (41rt)-n /2 detJ/2 (Si~::~/2) exp ( - ~t (t: coth t: x, x) ) exp( -tF) 

as a formal power series in the entries of Rand F, it converges for all valu"!s of t, and 

(by analytic continuation) it gives a solution to the equation 8W/Oi + 0'2(D2)1V = O. 

Moreover, by explicit calculation, this solution W has an expansion 

1 (vo + tVI + ... + t n/2v 12) (411't )n/2 n 

where the formal power series Vj has Getzler order ~ 2j, altd vo(O) = 1. From the 

uniqueness assertion of proposition 12.24 we therefore obtain in particular: 

PROPOSITION 12.26 The constant parts of the Getzler symbols of the terms a.ppear­

ing in the a.'>ymptotic expansion of the heat kernel for the Dime-type operator D are 

given by 

n/2 ( R/2 ) • 
:;0'~i(ej)=detl/2 sinhR/2 exp(-F)EI\TM@Endcl(S). 

The index theorem 

We have now arrived at the main theorem of this book. 

ATIYAH-SINGER INDEX THEOREM 12.27 Let At be a compact, even-dimensiona.l 

oriented manifold and let S be a canonically graded Clifford bundle over it with 

associated Dirac: operator D. Then 

Ind(D) = iM A(TM) 1\ ch(S/a) 

where ch( S / t:.) denotes the relative Chern character of S as defined in 4.25. In 

particular, if M is a spin manifold and S = t:. is the spinor bundle, the index of the 

Dirac operator on t:. is equal to the A-genus of the manifold M. 

REMARK 12.28 In the notation of cohomology theory the right-hand side of the 

formula is usually written (A(TJ,/) '-"' ch(S/ t:.), [1,\,fj}. where '-"' denotes t.he cup 

product and [M] is the fundamental homology class of AI. 
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REMARK 12.29 It is easy to extend the statement of the theorem to the case of a 

general grading on S. Recall from 11.3 that S can be written as a direct sum Se ESSo 

of canonically and anticanonically graded sub-bundles. Using Dc and Do to denote 

the corresponding Dirae operators, we have 

Ind(D) = Ind(De ) - Ind(Do) = iM A(TM) 1\ ch.(S/Il), 

where the relative super Chern character is defined by ch.(S/Il) = ch(Sc/ll) -

ch(So/Il). 

PROOF OF THE INDEX THEOREM Recall from the previous ch?,pter (11.14) that 

Ind(D) = (41r~"/2 iM tr. 8 .. /2 

where 8 .. /2 is one of the asymptotic-expansion coefficients that we have been con­

sidering. Moreover by Lemma 11.5, the supertrace of 8 .. /2, which belongs to 

CI(T M)@Endcl(S). can be computed from the top degree part of 8,,/2 in the filtration 

of the Clifford algebra. Now the symbol a~(8"/2) picks out this top degree part, and 

so by 11.4 and 11.5. 

tr. 8 .. /2 = (-2i)"/2 trs/.o.(a~(8n/2»' 

However by 12.26. the symbol a~(8n/2) is exactly equal to the n-form part of 

det 1/2 (sin~/~ /2) exp( - F), and therefore tr e n / 2 is the n-form part of 

(-20"/2 det l /2 ( . R/2 ) t~/.o.(exp( -F). 
stnhR/2 

But by definition of the A-genus and of the relative Chern character. this equals 

(-2i)n/2(+21rit/2 times the n-form part of A(TM)ch(S/A). The index theorem 

follows. 0 

Notes 

Getzler's proof of the index theorem appeared in [31], with a different version in 

[32]. The argument in this chapter is rather closer to that in [31]. although the reader 

should note that the symbol algebra defined in [31] is the 'Fourier transform' of that 

which we have employed here. For the 'rescaling' approach of [32], see exercise 12.31. 
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The 'Getzler calculus' has been employed in many other index-theoretic calculations 

involving the asymptotics of Dirac-type operatoI1"; for a significant example see [23J. 

A number of similar proofs of the index theorem have appeared; for bibliography 

and discussion consult [12], especially the notes at the end of Chapter 4. 

The original statement of the Index Theorem applied to any elliptic operat.or on 

a manifold, not necessarily of generalized Dirac type. It can be shown however that. 

any such operator is equivalent, for index-theoretic purposes, to a generalized Dirac 

operator. This assertion is implicit in [9]; the fundamental reason is the appearance 

of Dirac operators in the formulae for Poincare duality bet.ween K-theory and 1\"­

homology. 

Exercises 

QUESTION 12.30 Let A and B be filtered algebras. Show that a filtration on A ® B 

may be defined by 

(This is called the tensor product filtmtion.) 

QUESTION 12.31 Let M be a compact spin manifold, S the spinor bundle, and for 

a point q E M let Oq(S) denote the space of germs of sections of S ® S; near to 

q. Dy choosing geodesic coordinates with q as origin, and trivializing S near q by 

radial parallel transport, we may identify elements of Oq(S) with germs of smooth 

functions f:!Rn 
-+ End(Sq) = CI(!Rn). We will write such an f as Lk=ofd;r), where 

fie E CI(!Rn)k eCI(jRn)k-l. Getzler's rescalingis the map R>.: Oq -+ Oq defined by 

n 

R>.f(x) = L )..n-le!k{>,x). 
k=O 

Show that if DE X>(S) has Getzler order ~ m, then 

O'm(D) = lim)..mR~IDR>. 
>'-0 

in an appropriate topology. (Notice that this gives a different proof that the Getzler 

symbol of a differential operator is well-defined.) 
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QUESTION 12.32 Extending the argument of the previous question. suppose that / 

is now the germ of a time-dependent section of S ® S;, and define 
n 

R>./(x,t) = LAn
-

kh,(AX,A2t). 
10=0 

If / is a solution to the heat equation 0/ I Ot + D2/ = 0, show that 9 = Ri. l
/ is a 

solution to the rescaled equation (olOt + R;lD2R>.)g = O. Now deduce the index 

theorem, by letting A - 0 and making use of the fact that the asymptotic expansion 

coefficients for /)1 at + L depend continuously on the coefficients of the operator L. 

(See [32, appendix B].) 
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CHAPTER 13 

Applications of the index theorem 

In this chapter we will review a number of classical applications of the Index Theorem. 

Some of the results (such as Hirzebruch's signature theorem) actually predate the 

index theorem itself, and were instrumental as motivation for the first proof. Others 

(such as the index theorem for the spinor Dirac operator) were among the first new 

consequences to flow from it. \Ve begin with the spinor Dirac case. 

The spinor Dirac operator 

Let M be a compact even-dimensional spin-manifold, ~ the associated spin bundle, 

and D the Dirac operator on ~. In this case the index theorem takes the form 

Ind(D) = (A(M), (M]). 

Recall that the A-genus of M which appears on the right hand side is a certain 

combination of the Pontrjagin classes of T M. In fact we have 

-. - 2 - 3 A4 = -p./24, As = (-4P.l + 7pd/5760, AI2 = (-16p3 + 44pIP2 - 31pJl/967680 

where An denotes n-dimensional component of A. We recall from lemma 2.27 how 

these expressions are calculated. Let 

JZ/2 1 7 2 
g(z) = sinh JZ/2 = 1 - 24 z + 5760 z + .... 

Expand the product 11 g(Yj), where the Yj are formal variables, as a symmetric formal 

power series, and then substitute the Pontrjagin class Pi for the i'th elementary 

symmetric function in the formal variables Yj. The result is the expansion of the 

A-class in terms of the Pontrjagin classes. 

An early application of the spinor index theorem Was to the study of topological 

obstructions to positive scalar curvature. 
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THEOREM 13.1 (LICHNEROWICZ 148]) Let M be a compact manifold which admits 

a spin structure, and for which the A-genus (A(M), IM]) is nOD-zero. Then M admits 

DO metric of strictly positive scalar curvature. 

PROOF This is a consequence of the Bochner vanishing argument (3.10). Note that 

for the spinor Dirac operator, the Weitzenbock formula just says 

where K is the scalar curvature. (This follows from 3.18 and 4.21). Thus, if K > 0, 

the Bochner argument shows that the kernel ker D = ker D2 is zero. But then 

Ind(D) = A(M) is zero also, a contradiction. 0 

REMARK 13.2 In high dimensions the scalar curvature is a very weak invariant 

of the geometry of a manifold, since it is determined by averaging a larg(' numher 

of components of the Riemann curvature tensor. This means that it is difficult to 

control the po~ible scalar curvatures of metrics on a compact manifold Af; in fact, 

it is known that there is no obstruction to any manifold having a metric of negative 

scalar curvature l . Thus the simple obstruction to positive scalar curvature provided 

by Lichnerowicz' theorem is a remarkable one. 

There is in fact a well-developed theory of positive scalar curvature manifolds, in 

which Lichnerowicz' theorem appears as the first of a series of obstructions which 

are related to the cohomology of the fundament.al group. To investigate the higher 

obstructions on(' needs a version of the Index Theorem which works on the universal 

cover of a compact manifold, taking the fundamental group action into account. Such 

a theory can be developed using the K-theory of operator algebras. In chapter 15 

we will discuss (in an elementary way) a simple example of a higher index theorem 

of this sort. 

One piece of information which the Index Theorem immediately implies is that the 

A-genus of a spin manifold is an integer. The expression of the A-genus in terms 

of the Pontrjagin classes does not provide any a priori reason for this; in fact, the 

A-genus of a non-spin manifold need not be an integer (exercise 13.18), and Atiyah 

IOr even of negative Ricei curvature! see [491. 
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has recorded that the question 'why is the A·genus of a spin manifold an integer?' 

provided one of the original motivations for the Index Theorem. In certain dimensions 

one can get slightly more infonnation by studying the real (as opposed to complex) 

representation theory of the Clifford algebra. 

PROPOSITION 13.3 The A-genus of a 4-dimensional spin manifold is an even integer. 

In fact, the conclusion holds in any dimension congruent to 4 modulo 8 (see [47]) 

but we do not propose to develop the theory needed to prove the result in this 

generality. 

PROOF We need to know about the structure of the four-dimensional Clifford 

algebra. Recall that the skew-field lIll of quatemions is spanned as an IR-vector space 

by 1, i, j, and k, with i 2 = j2 = k2 = ijk = -1. Now consider the matrix algebra 

M2(lIll). The matrices 

(
0 i) 

el = i 0 ' ( ~j) e2 = j 0 ' e3=(~ ~), e4 = (0 1) 
-1 0 

all have square -1 and anticommute, so they generate a homomorphism of algebras 

CI(1R4) - M2(\lll) , which by dimension counting must be an isomorphism. Thus 

Cl(1R4) acts as a matrix algebra on the two.dimensional quaternionic (right) vector 

space !IF, and therefore CI(1R4 )®C acts as a matrix algebra on the underlying complex 

vector space et, which (again by dimension counting) is just the spin representation. 

The point of this calculation is to show that the spin representation of CI(1R4) 

has a natural quaternionic structure; it is the complex vector space underlying a 

quaternionic vector space, or, equivalently, it is provided with a canonical antilinear 

anti-involution J (equal to right multiplication by the quaternion j). Therefore the 

spin representation of Spin(4) also has such a quaternionic structure. The spinor 

bundle Do can be considered as a bundle of quaternionic \'ector spaces, and since 

the quaternionic structure is compatible with the connection and commutes with the 

Clifford action. the kernels of D+ and D_ are quaternionic vector spaces also, The 

result follows since the dimension over C of a quaternionic vector space must be even. 

o 
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The signature theorem 

Let M be a smooth, oriented, compact Riemannian manifold, of even dimension 

2m. Let D denote the de Rham operator on differential forms on M, Le. the Dirac 

operator of A aT" M ® C considered as a Clifford bundle. We will equip this bundle 

with the canonical grading, in the senSe of 11.3; it is defined by the Clifford action of 

imw, where w is the volume form in the Clifford algebra. We refer to the associated 

Dirac operator D (with this grading) as the signature operator. 

Clifford multiplication by w is just the Hodge *-operator (1.21) up to sign. Thus 

we may define the grading operator 

c = ~mw = im+p(p-I) * (on p-forms) 

without reference to Clifford algebras. 

We can evaluate the index of the signature operator in terms of algebraic topology. 

Suppose that the dimension 2m of M is a multiple of 4. Then the cup-product in 

cohomology induces a symmetric bilinear form (the intersection form, see 6.5) on 

Hm(M;IR): 

This bilinear fOlm is non-degenerate, by Poincare duality (6.4). 

DEFINITION 13.4 The signature of the 2m-dimensionaloriented manifold AI (where 

m is even) is the signature (that is, the number of positive eigenvaJues minus the 

number of negat.ive eigenvalues) of the intersection form on Hm(M; 1R). 

By its definition, the signature is an invariant of the oriented homotopy type of M. 

PROPOSITION 13.5 Let AI be a compact oriented manifold of dimension 2m, where 

m is even. Then the jndex of the signature operator on M is equal to the signature 

of M as defined above. 

PROOF Let us write the Laplacian 6 = D2 as a direct sum 6+ (& 6- relative to 

the canonical grading c. Then 
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Now let tl.t, tl./' denote the restrictions of tl.+, tl.- to the e-invariant subspaces 

coo(A'T*/vI e A2m- 'T*/vI). 0 ~ I < m and coo(AmT*/vI) (I = m). If I < m 

and 0' E Ker(tl.n, then 0' = 13 + £(13), where 13 is a harmonic I-form; and then 

{3 - £({3) E Ker{tl.n. Therefore, Ker(tl.n and Ker(tl.n are isomorphic for I < m, 

and 

Ind{D) = dimKer(tl.!) - dim Ker(tl.;.) 

= dim(1i+) - dim(1C) 

where 1i+ and 1i- are the ±l-eigenspaces of * on harmonic m-forms (notice that 

e = * on m-forms). The quadratic form 

is positive definite on 1i+ and negative definite on 1i-, so Ind(D) equals the signature 

of this quadratic form on the space of harmonic m-forms. The Hodge theorem, 6.2, 

now completes the proof. 0 

Now we will calculate the index of the signature operator. Let S = A * T- /vi be the 

graded Clifford bundle on which the signature operator acts. We need to know the 

relative Cht>rn character ch(S/ tl.). 

LEMMA 13.6 Tbe relative Chern character ch(S/tl.) is equal to 2m6(T/vI), where 

(5 is the Pontrjagin genus associated to the holomorpbic function z 1-+ cosh( ~z). 

PROOF The bundle S is isomorphic, as a bundle of Clifford modules. to the Clifford 

algebra CI(TM') with its canonical grading. But, locally, Cl = tl. ® tl. - and therefore 

the relative Chem character of S is equal (Iocally, as a differential form) to the 

absolute Chern character of tl.«, the dual of the spin representation. Proposition 4.23 

then identifies this Chem character as 2m6(T /vi). Because these calculations can all 

be thought of as local ones with the curvature tensor, they remain valid even in the 

absence of a global spin structure on the manifold /vi. 0 

Recall that Hirzebruch IS C class is the Pontrjagin genus associated to the holomor­

phic function z 1-+ JZ / tanh JZ. 
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HIRZEBRUCH SIGNATURE THEOREM 13.7 The signature of a manifold M (of 

dimension 2m divisible by 4) is given by evaluating the C class on the fundamental 

homology classj in symbols 

Sign(M) = (C(TM). [M\}. 

PROOF As we have seen, the signature of lv! is equal to the index of the signature 

operator D. By the Index Theorem. 

Ind(D) = 2m{A(TM)6(TM).IMl). 

Now C.(TM) = A(TM)6(T.\f) is the Pontrjagin genus associated to the holomor­

phic function 

vrz/2 vfZ/2 
gl(z) = sinh( vrz/2) . {cosh( vrz/2)} = tanh( VZ/2) 

whereas the C class is by definition associated to the holomorphic function g( z) = 
VZ / tanh vrz. Therefore we have the equality 

between the k-dimensional pieces of Cl and Cj so that in particular 2T11 [C. (TM)hm = 
[C(T M)hm and the index thE'orem follows. 0 

REMARK 13.8 One sees from the proof above that the genus Cl is in some respects 

more natural than C, and some authors therefore define the C-genus to be what we 

have called C •. We have retained the original definition of Hirzebruch. 

By calculations analogous to those carried out above for A, one can work out the 

first few components of the C-genus, 

In particular WE' see that in dimension four, the signature is equal to -8 timE'S the 

A-genus. From 13.3 we therefore obtain 

RoCHLIN'S THEOREM 13.9 The signature of a (smooth) spin four-manifold is 

divisible by 16. 
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We emphasized smoothness here for the following reason. The spin condition on 

a four-manifold has a simple interpretation in terms of the intersection form; an 

oriented four-manifold is spin if and only if its intersection form is even, that is, if 

its matrix (relative to an integral basis of H2(M; Z» has its diagonal entries even. 

It is known for number-theoretic reasons that any even, unimodular quadratic form 

over Z must have signature equal to a multiple of 8. The additional factor of 2 

in Rochlin's theorem depends crucially upon smoothness; Freedman produced an 

example of a compact topological four-manifold which has even intersection form and 

signature 8, an indication of the dramatic difference between the topological and 

smooth categories in this dimension [30, 27]. 

The Hirzebruch-Riemann-Roch theorem 

Now we will briefly discuss the most famous application of the index theorem in 

complex geometry. Let M be a compact n-dimensional complex manifold. As we saw 

in 3.25, the complex structure gives an operator J on each real tangent space to M, 

wi th J2 = -1, and we get a decomposition of T M @ C into two complex conjugate 

pieces 

TM@C = T1.oM erD·1M (13.10) 

where TI.oM is isomorphic as a complex bundle to TM. Then (3.26) the bundle 

S = A "(TI·l M)" carries a spin representation of the bundle of Clifford algebras 

CI(TM). By remark 4.30, M can be endowed with a Spin"-structure of which S is 

the spin representation; and the fundamental line bundle for this Spin" structure is . .. 
L = Homcl(S,S) = HomCl(A(T1.oM)·,A(rD·1M)*). 

A homomorphism of Clifford modules from A*(TI.oM)· to K(TI·I M)- is determined 

by the image of 1 E A 0, and a moments thought shows that 1 must be mapped to an 

element of the top exterior power A ft(TI·1 Al)·. Thus L Si!! A ft(TI·1 M)· . 

LEMMA 13.11 For the Clilford bundle S defined above, the relative Chern character 

ch(S/.6) is equal to the Chern genus of the complex tangent bundleTI.oM associated 

to the holomorphic function z _ e-z/ 2• 
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PROOF By exercise 2.37, Cl (L) = Cl «ro·l M)") = Cl (TI.O M). Therefore the Chern 

character of the bundle L is e-c1 • However, by 4.29, the twisting curvature of S is 

half the curvature of L and thus the relative Chern character of S is e-c1/,l. This is 

exactly the Chel'D genus associated with the function e-:/2• 0 

In applying the Atiyah-Singer index theorem it is helpful to reformulate the expres­

sion for the A-gt::nus. Recall that the Pontrjagin classes of T M are, by definition, the 

Chern classes of its complexification TM ®C. Using the decomposition 13.10 above, 

and remembering that Ci(ro,l M) = (-1 )ici(T1,O ,\-1), we can express the Pontrjagin 

classes of TM in terms of the Chern classes of the complex tangent bundle TI.o.",!. 

A simple calculation gives 

LEMMA 13.12 The A-genus of a complex manifold is equal to the Cbern genus of 

its complex tangent bundle associated to the holomorpbic function 

zl2 
ZI-+ I' sinhz 2 

Let W be a holomorphic vector bundle over M. The space of holomorphic sections 

of W is then finite-dimensional and in many situations in complex geometry one 

wants to compute, or at least estimate, its dimension. One may form the Dolbeault 

complex of W 

where nO.k(W) denotes the space of sections of the bundle "k(ro·1 AI)" ® W. By 

Hodge theory this complex has finite-dimensional cohomology groups, of which the 

first, no,O(W), is just the space of holomorphic sections of W. The Riemann-Roch 

theorem compules the Euler characteristic of the Dolbeault complex. 

THEOREM 13.13 (HIRZEBRUCH-RIEMANN-RoCH) In the above situation we llave 

E( _1)k dim HO.k(W) = (Td(TI,O M) ch(W), [M]) 
k 

where tbe Todd genus Td of a complex vector bundle is by definition the Chern genus 

associated to the holomorpbic function z 1-+ ----=-1' 
e' -

OUTLINE PROOF Provide W with a hermitian metric and compatible connection. 

Consider the graded Clifford bundle S ® lV. If AI is a Kiihler manifold, the Dirac 
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operator of this Clifford bundle is equal to v'2(8 + 8") (see 3.27), and therefore 

its index is equal to the Euler characteristic of the Dolbeault complex {lo·*(W). In 

general v'2( 8 + 8*) = D + A, where A E End( S) is a zero order tenn. The homotopy 

D + tA, t E [0,11, together with the homotopy invariance of the index (11.13), shows 

that the index of D is still equal to the Euler characteristic in this case. Now by the 

Index Theorem, 

Ind(D) = (A(TM) ch(S/ ~)ch(W), [M]) 

and the two lemmas above show that A(T M) ch( S / ~) is the Chern genus associated 

to the holomorphic function 

z/2 . e-z/2 = _z_. 0 
sinh z/2 eZ 

- 1 

Local index theory 

The classical examples that we have presented so far all depend on the global 

formula for the index in terms of characteristic classes. However, it is one of the 

virtues of the heat equation approach to the index theorem that it does not merely 

identify the index in global, topological terms (as a characteristic class), but also in 

local, geometrical terms (as a specific differential form). In this final section we will 

mention without proofs some results that make essential use of this local structure. 

As one might expect, locality becomes important on non-compact manifolds. 

PROPOSITION 13.14 Let M be a complete Riemannian manifold, D a Dirac operator 

on a Clilford bundle S, and suppose that the curvature term K in the Weitzenbock 

formula is uniformly positive outside a compact subset of M. Then the L2-kernel of 

D is finite-dimensional, and D is invertible on the orthocomplement of this kernel in 

U(S). 

This proposition means that. if S is graded, the index Ind(D) can be defined as 

in the compact manifold case. Can we find a formula for the index? Suppose for 

instance that we are considering the classical Dirac operator on a spin manifold J.[ 

with a cylindrical end. This means that M is the union of two pieces 

M = Mo UaMo=N N x [0,(0) 
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a compact manifold Mo with boundary aMo = N. and a semi-infinite cylinder (with 

the product metric) N x [0,00). If we assume that N has positive scalar curvature, 

then the conditions of the proposition above are satisfied. Moreover the A-genus 

form vanishes along th~ end, so is compactly supported in Mo. Thus the integral 

IM A makes sense, and one might conjecture that this integral equals the index of D. 

Examples show that this conjecture is false. To quantify its failure, Atiyah, Patodi 

and Singer introduced the eta invariant of the manifold M. Recall from exercise 8.23 

that we can define the zeta function associated to a Dirac operator D on a compact 

manifold such as N by 

(s) = L IAjl-2. 
j 

where the numbers Aj are the non-zero eigenvalues of D. Similarly, we define the eta 

function by 

1](s) = L(sgnAj)IAjl-2. 
j 

where sgn Aj E {±1} is the sign of Aj. These Dirichlet series converge for large values 

of Rs, but using the asymptotic expansion for the heat equation one can show that 

they can in fact be analytically continued to meromorphic functions on the whole 

complex plane. It turns out that the eta-function has no pole at zero (this is quite 

a deep result, proved by a Getzler symbol argument analogous to that used in the 

proof of the Index Theorem). The value 1](0) can be thought of as a renormalization 

of the 'signature' of the quadratic form associated to D, the 'difference between the 

dimensions' of the (infinite-dimensional!) positive and negative eigenspaces of the 

operator D. For this reason Atiyah, Patodi, and Singer describe it as a measure of 

spectral asymmetry. 

THEOREM 13.15 (ATIYAH-PATODI-SINGER [51) Let M be a spin manifold with a 

cylindrical end of positive scalar curvature, as above. Tllen 

where D M denotes the Dirac operator on AI, and 1]N is the eta-function associated 

to the Dirac operator on N. 
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The proof uses the heat equation method, with a careful analysis of the heat 

kernel obtained by grafting the construction of chapter 7 on the compact piece Mo 

to a construction using separation of variables on the cylindrical end. 

REMARK 13.16 Notice that, as a consequence of this result, if M and Mf are two 

different manifolds which have isomorphic cylindrical ends, then the difference of the 

indices of the mrac operators on A10 and MI is equal to the difference of the integrals 

of the A-forms. A statement of this kind in fact holds in great generality for any 

two manifolds whieh are 'isomorphic at infinity': this is the relative index theorem of 

Gromov and Lawson 1381, a key tool in some studies of the positive scalar curvature 

problem. 

Notes 

For a survey of the theory of positive scalar curvature metrics, see [701. 

The original reference on the signature theorem is the book by Hirzebruch [401; 
this also contains the first version of the generalized Riemann-Roch theorem. The 

treatment of the signature theorem by Milnor and Stasheff [55] is another classic. In 

particular this book gives the application of the signature theorem to the construc­

tion of (some) 'exotic spheres', that is smooth manifolds homeomorphic, but not 

diffeomorphic, to the standard sphere. The connections bctween signatures and the 

topology of manifolds lead to Sflrgery theory, which involves 'inverting' the signature 

theorem in a certain sense. See [171. 

For much more about Riemann-Roch theorems and complex geometry, see [361. 

The papers [5, 6, 7] are the original ones on the eta-invariant. The book [52] 

embcds the theorem in a sophisticated geometric-analytic framework which also 

includes the proof of the ordinary index theorem. 

Higher index theory, that is index theory taking into account the fundamental 

group or other 'large scale' structure, is a rapidly developing subject. An overview is 

attempted in [631, and see also [43, 22] for related deep discussions. The transition 

from 'lower' to 'higher' indices corresponds in surgery theory to the transition from 

[17] to [721. 
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Exercises 

QUESTION 13.17 Show directly (that is, without appealing to the index theorem) 

that the index of the spinor Dirac operator on a 6-dimensional spin manifold is zero. 

(You will need to investigate the real structure of the Clifford algebra, as in our 

proof of Rochliu's theorem.) Can you extend the argument to cover all dimensions 

congruent to 2 modulo 4? 

QUESTION 13.18 Compute the A-class and the .c-class of0P2. Verify the signature 

theorem in this case, and show that (p2 has no spin structure. 

QUESTION 13.19 Construct a natural homomorphism U(k) ...... SpinC(2k) which 

makes the diagram 
U(k) • SpinC(2k) 

~l 
SO(2k) x U(1) 

commute. (Here the map U(k) ...... SO(2k) x U(l) is equal to i x det, where i: U(k) -+ 

SO(2k) is the Latural inclusion.) Hence get another proof that a complex manifold 

has a natural Spinc structure, for which the canonical line bundle is the determinant 

bundle of the complex tangent bundle. 

Verify that tllis is the same Spinc structure as we used in the text. 

QUESTION 13.20 Let 'AI be a compact oriented manifold and let S = A* T* AI ® C 

equipped with the Euler grading (see 11.8). Show that the canonically and anticanon­

ically graded parts of S are locally isomorphic to ~ ® ~+ and ~ ® ~_ respectively. 

Using exercise 4.34, obtain the Chern-Gauss-Bonnet theorem 

2)-1)idim(Hi (M;IR)) = (e(TM),[M]) 
i 

from the index theorem. 

QUESTION 13.21 Let At be a compact oriented 4-manifold. The anti-sel/-dual(ASD) 

complex of At is 

O:'(M) 
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where n: consists of those two-forms for which et = - * et. Show that the ASD 

complex has finite-dimensional cohomology, and compute its Euler characteristic. 

(Nonlinear equations involving self-duality are of critical importance in the study 

of smooth four-manifolds; see [271.) 
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CHAPTER 14 

Witten's approach to Morse theory 

Let M be a compact smooth manifold, h: M -+ IR a suitable smooth function, and 

for e E IR let Mc = {p E A.f: h(p) ~ e}. For c sufficiently small, Mc = 0, and for e 

sufficiently large, M" = AI. The idea on which classical Morse theory depends is that, 

as c varies, the topology of Af" will not change except when c passes through a critical 

value of h: and that when c does pass through such a critical value. the change in 

the topology can be investigated locally, near to the corresponding critical point (or 

points) of h. Thus the critical point structure of h will give rise to a combinatorial 

model for the topology of AI. For an account of this classical and powerful theory 

see [54]. 

In 1982, Witten [731 gave a new approach to some of the ideas of Morse theory. 

His method was to deform the de Rham complex of AI, in a manner depending on 

h., so that the low-energy eigenvectors of the Laplace operators became concentrated 

near the critical points of h. The object of this chapter is to give an elementary 

exposition of some of \ViUen's argument. For a much more sophisticated discussion 

see 139]. 

The Morse inequalities 

In Chapter 6 we defined a Dirae complex over a compact Riemannian manifold 

M and we proved the Hodge theorem, that the co homology of such a complex is 

rppresent.ed by hannonic sections. The index of the associated Dirac operator is just 

the Euler characteristic of the complex, that is the alternating sum of the dimensions 

of the various cohomology groups. If we define the Betti numbers of the Dirac complex 

(S, d) by 

f3j = dim Hj(S. d). (14.1) 

then Ind(d + d*) = E( -I)i Pj. The Morse inequalities are a system of inequalities 

that allow one to estimate the individual Betti numbers Pj. 
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In analysis, the Morse inequalities arise as follows. Suppose that r.p is a smooth 

rapidly decreasing positive function on IR+ with cp(O) = 1. Then the operator cp(D2) 

(where D is the Dirac operator) is smoothing and therefore of trace class. Set 

( 14.2) 

Then 

PROPOSITION 14.3 With the hypotheses above, the numbers (J.Li) and (/3i) satisfy 

the following system of inequalities (known as the Morse inequalities) : 

J.Lo ~ /30 

III - J.Lo ~ /31 - /30 

112 - III + J.Lo ~ /32 - /31 + /30 

and so on, and finally an equality 

PROOF By the Hodge theorem (6.2), /3i is equal to the dimension of the kernel of 

D2 on sections of Si' Since the spectrum of D2 is discrete, there is a smooth function 

rp on IR+ which is positive, rapidly decreasing, with rp(O) = 1 and rp(A) = 0 for all 

non-zero eigenvalues A of D2; there is no loss of generality in assuming also that 

rp ~ cp. Then Pi = Tr (rp(D2)ls) , so that J.Li - Pi = Tr (cp - rp)(D2)ls} 
J J 

We may write the function r.p - rp in the form 

where'IjJ is positive and rapidly decreasing, vanishes at zero and is differentiable there. 

So we may write (cp - cp)(D2) = D2('IjJ(D2))2. Now we make a trace argument exactly 

as in the proof of 10.7. We have D2 = dd* + d*d and 
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Tr (dd*( t/J(D2))2Is) = Tr (t/J(D2)ls/d*t/J(D2)ls) 

= Tr(d*(t/J(D2))2Isd ) , 
= Tr (d-d(t/J(D2))21 . ). 
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Therefore 

If j ~uals the top dimension of the complex, then this is zero. In general, write 

Now A is a trace-class operator, so we may write in any orthonormal basis (ei) for 

£2(5) 

Therefore (Pj - /3j) - (/tj-I - /3j-d + (/ti-2 - /3;-2) _ ... ? 0, and the result follows. 

o 

Morse functions 

From now on, we will consider only the case of the de Rham complex. 

DEFINITION 14.4 A smooth function h : M - R is called a Morse function on M 

if at its critical points (that is, the points where the first derivatives Vh vanish) the 

Hessian! Hh (the matrix of second derivatives) is non-singular. 

Clearly the critical points of a Morse function are isolated, eo there are only finitely 

many of them. Each critical point has an index, defined to be the number of negative 

eigenvalues of the Hessian at that point. 

Let ds be Witten's perturbed exterior derivative associated to the function h, as 

in 9.14. Let d; be its adjoint, and Ds = ds + d: the perturbed de Rham operator. 

We will look at the asymptotics of the perturbed de Rham complex as s - 00. 

Eventually we will need to choose a special metric on M that is nicely related to the 

Morse function h, but we can do the first part of the calculation without making this 

special choice. 

We will need to know that the basic elliptic theory of Chapter 5, and the results 

on finite propagation speed such as 7.23, extend without change to the operator 

Ds. Indeed, the operator Ds differs from the standard Dirac operator D only by a 

lSee 9.16. 
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zero order perturbation, so it belongs to the class of self-adjoint generalized Dirac 

operators which was already considered in Chapter 5; the proof of finitf' propagation 

speed goes over verbatim. As an example, let us verify the Garding inequality for 

Ds. By Lemma 9.17, 

where L is an operator of order zero. Therefore 

for some constant Cl' Hence 

(1 + Cl )(11 Dswll 2 + IIw1l2 ) ) IIDwll2 + IIwll2 ) ~2l1wlli 
by the usual Garding inequality (5.14); the Garding inequality for Ds follows. 

REMARK 14.5 Notice that the norm of L is of order s2, so the constant appearing 

in the Garding inequality is bounded by a polynomial in s. The same is true of t.he 

constants appearing in the elliptic estimates. 

We begin our asymptotic calculation of \Vitten's complex by fixing a number 

P > 0 and cho')8ing a positive even function t.p E S(R) wit.h tp(O) = 1 and such 

that the FourieI transform tj> is supported within the interval [-p, plo According to 

14.3, the Betti numbers of M satisfy the Morse inequalities relative to the numbers 

IlJ' = Tr (tp(Ds)l· ). (Note that since t.p is even, :.p(Ds) can in fact be written as a 
.VT°,.., 

function of D;, so (14.3) is applicable.) We investigat(' the asymptotic's of t.p(D .• ) as 

s -+ 00. First, wc work on the complement of a neighbourhood of the set. of critical 

points of h. Let us denote this set of critical points by Crit(h). 

LEMMA 14.6 On the complement of a 2p-neighbourhood ofCrit(h), the smootlJillg 

kernel of t.p(Ds) tends uniformly to zero &5 s -+ 00. 

PROOF Since At is a compact manifold, there is a constant C such that IVh(x)1 ) 

C > 0 for all x in the complement of a p-neighbourhood of Crit(h). :'Ilow by the 

formula 
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and lemma 9.17 we find that for s large 

(14.7) 

provided that W is supported in the complement of such a neighbourhood. Now 

let .f.I denote the Hilbert space of L2 differential forms on M that vanish on a p­

neighbourhood of Crit(h). Formula 14.7 shows that D; is a positive formally self­

adjoint operator on .f.I. It therefore has a self-adjoint extension A on .f.I satisfying the 

same positivity condition, by Friedrichs' extension theorem [29]. Now we will show 

that if W is supported in the complement of a 2p-neighbourhood of Crit(h), then 

IP(D,)w = IP( v'A)w. 

To do this we use unit propagation speed (7.20) for the operator D,. Consider the 

time-dependent differential form 

Clearly w, is a solution to the partial differential equation 

with initial conditions Wo = w, Wo = 0; in fact it is the unique solution, as one can 

easily check by verifying that the "energy" 

Il aWt 112 2 at + (D,Wt,wt) 

is conserved (compare the proof of 7.4). But by the unit propagation speed property, 

Wt is supported in the complement of a p-neighbourhood of Crit(h) for It I < p, and 

therefore D;w, = AWt. Thus Wt for It I < p is also the unique solution to the equation 

a2w 
at2t + AWt = 0 

with the same initial conditions, so we may write Wt = cos(tVA)w. 

Now ;p has support in [-p, p] and moreover is an even function (since IP is). 
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Therefore 

rp(D.,)w 1 jP . D = - (elf 'w)$(t)dt 
211' -P 

= .!:. [P $(t) cos(tD.)w dt 
11' 10 

= 2:. [P $(t)w, dt 
11' 10 

= .!:. [P $(t) cos(tJA)w dt 
11' 10 

= ... = cp(JA)w. 

This proves our claim. But now notice that v'A is a positive operator, bounded below 

by tCs. It follows from the spectral theorem, then, that the L2 operator norm of 

rp( v'A) is bounded above by 

1 
c(s) = sup{lcp(>.)1 : >. ~ 2Cs }. 

As s - 00, this quantity tends to zero with rapid decay. So we deduce that if w is 

supported in th(~ complement of a 2p-neighbourhood of Crit(h), 

(14.8) 

with c( s) - 0 rapidly as s - 00. 

This is nearly what we want. In fact, if we can show that there is a Cl (s ), tending 

to zero as s - 00, with 

(14.9) 

(under the same condition on Supp(w)), we will be done, since for any integral 

operator with continuous kernel the supremum of the kernel can be estimated by the 

norm of the operator as a map from £l to Loo; this is simply a rephrasing of the fact 

that (Ll)'" = LO). 

To get the improved estimate 14.9 from 14.8 we rely on the familiar techniques 

of Sobolev embedding. The key point is this: for any k, the operator (1 + D;)-l is 

bounded as an operator from W k to Wk+2, with norm bounded by a polynomial in 

s. This follows from the elliptic estimates for D". Now by Sobolev embedding (5.7), 

WP C LOO for p > ~, and therefore (1 + Dn-k is bounded from L2 to LOO for k > ~. 
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the bound being polynomial in s. By duality and self·adjointness, (1 + D;)-k is also 

bounded (polynomiaIly in s) as an operator from LI to L2. 

We deduce that the norm of y(D.) acting as an operator from LI to Loo is bounded 

by a polynomial in s times the norm of (1 + D;)2kcp(D,) acting as an operator on L2. 

But this operator is just ';;(D.,), where rp(>') = (1 + >.2)2krp( >.); the function cp satisfies 

the same conditions as rp, so 

provided that w satisfies the support condition, with c(s) of rapid decay in s. 

Therefore 

with CI(S) = c(s) x (polynomial in s), which tends to zero as s -- 00. 0 

From Lemma (14.6) it follows that as s -- 00, the trace of cp(D.) is given by a sum 

of contributions from the critical points of h. The reader should notice the similarity 

with the Lefschetz theorem (Chapter 8). We will now evaluate the contributions from 

the critical points. 

The contribution from the critical points 

It is convenient to make a special choice of metric on our manifold M. This choice 

of metric uses the Morse lemma. 

LEMMA 14.10 There are local co-ordinates (Xj) centered at each critical point of h 

with the property that in terms of these local co-ordinates h is a diagonal quadratic 

form 

hex) = ~ E >.j(xi)2. 

Of course the number of negative>. 's is just the index of the critical point. 

We will not go through the proof of the Morse lemma here. A proof may be found 

in Milnor [54]. 

Now we choose our special metric 9 on M as follows; 9 is defined to be Bat Euclidean 

(gij = !Si}) in Morse co-ordinates near each critical point, and is patched up away from 

189 



Crit(h) using a partition of unity. We choose p so small that 9 is flat EuclidE"an at. 

least to distance 4p from each critical point. 

We calculated in chapter 9 that, when h is a quadratic form on flat Euclidt'an 

space, the operator D; is equal to 

where Zj = [dxj.J., dxi 1\ .]. Moreover we recall from proposition 9.1B that the 

spectrum of L, can bt' described explicitly: L, is an es.<>entiaIly self-adjoint operator, 

with discrete spectrum. The eigenvalues of L, are the numbers 

s L)IAil(l + 2pj) + Aiqj) 
i 

where Pi = 0.1,2, ... and qj = ±1. If we consider the action of L, on k-forms, the 

spectrum is as above with the additional restriction that exactly k of the qj'S ar(' 

equal to +1. 

LEMMA 14.11 Suppose that precisely m of tht' Aj S are negative. Then 

. r;- {O (k;e m) 
hm Tr (!p( V L,)I .) = ,-co fI 1 (k = m). 

Moreover, the same limit holds good for Tr (B!p( v'I:)lfI.) where B is the operator 

of multiplication on JR." by any /3 E C:",,(IR") with 11(0) = 1. 

PROOF By B.7 and 9.1B, 

where the summation is over Pi = 0,1,2, ... and qj = ±1 and exactly k of the q/s 

equal +1. If k ;e m then all the eigenvalues of L, are of order s. Since q: is rapidly 

decreasing, it is easy to check that the sum tends to 0 as 8 - 00. On the other hand, 

if k = m then precisely one eigenvalue equals 0 and the others are of order s. The 

O-eigenvalue contributes 1 to the sum and the sum of the remaining terms tends to 

0, for the same reason as before. 
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In the case of the more general trace Tr (B<p( v'l;)III.)' let e(Pit qj) denote the 

normalized eigenform of L. corresponding to (Pj, qi)' Then 8.7 gives 

For the same reason as before, only the zero eigenvalue makes a contribution to 

this sum that does not vanish as S - 00. The corresponding eigenform eo is just the 

ground state eigenfunction of the harmonic oscillator multiplied by a certain constant 

differential form; namely, by dx l A •.. A dxm if we assume that the first m of the Ai's 

are negative and the rest are positive. That is, by 9.7, the eigenform eo is given 

explicitly by 

eo = (sn/21C-fl/4 II Aj)exp( -s L Aj(Xi )2/2)dx1 A ••• A dxm • 

i j 

It is now easy to check that as S - 00, {Beo, eo} - 1; so the state.:! result follows. 

o 

We can now state and prove Morse's theorem. 

THEOREM 14.12 Let h be a Aforse function on the compact manifold M. Let Pj 
denote the j'th Betti number of M and let I/j denote the number of critical points of 

h ofindex j. Then 

Po ~ I/o 

PI - Po ~ 1/1 - I/o 

P2 - PI + Po ~ "2 - 1/1 + I/o 

PROOF Choose a metric on M, euclidean near the critical points, and a cut-off 

function <p as above. By 14.3, the Betti numbers Pj of Witten's perturbed de 

Rham complex satisfy the Morse inequalities with respect to the numbers pj = 

Tr (<p(Ds)IIIJ 
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But the perturbed de Rham complex is conjugate to the unperturbed one; the two 

complexes therefore have isomorphic homology groups. In particular (JJ = (Jj for all 

j. The proof will therefore be completed if we can show that J.Lj - Vj as s - 00. 

By 8.12, the trace of cp(D.)Lv is obtained by integration of the local trace of 

the smoothing kernel of this operator over the diagonal. By (14.6) this local trace 

tends uniformly to zero except on a 2p-neighbourhood of each critical point. So 

the limit as s - 00 of cp(D.)IM is a sum of contributions from the critical points. 

The contribution from a critical point can be written Iim._oo Tr (Bcp(D.)IM)' where 

B is the multiplication operator by a smooth function on M equal to 1 on a 2p­

neighbourhood of the critical point and supported in a 3p-neighbourhood of the 

critical point. 

Now take Morse co-ordinates around the critical point. These enable us to identify 

forms supported on a 4p-neighbourhood of the critical point in M with forms 

supported on a 4p-neighbourhood of the origin in IRn. Under this identification, 

D~ corresponds to L •. 

Now a unit propagation speed argument exactly analogous to that given in 14.6 

shows that 

provided that et is supported in a 3p-neighbourhood of the critical point. Hence 

Tr (Bcp(D.)I,J = Tr (Bcp(VL.)I,J. 
But by Lemma (14.11), as S - 00, Tr (Bcp( v'L.')IM) tends to 1 if the critical point 

has index j, and otherwise to O. The result follows. 0 

Notes 

For an inspiring overview of Morse theory, read the lectures of Bott 114]. 
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CHAPTER 15 

Atiyah's r-index theorem 

In 11.15 we showed that the index is multiplicative under coverings: if D is a Dirac 

operator on the compact manifold M, and D the lifted operator on a k-fold covering 

:NI, then Ind(D) = k.Ind(D). We may express this by saying that the amount of 

index per unit area is the same on M as on !l-i. This, however, immediately suggests a 

possible generalization to infinite coverings of M, provided that we can make sense of 

the concept "average amount of index per unit area". The generalization is Atiyab's 

r-index theorem. 

An algebra of smoothing operators 

Throughout this chapter, the following notation will be fixed. AI denotes a compact 

oriented Riemannian manifold, and S is a Clifford bundle over AI with Dirac operator 

D. !l-i denotes a Galois covering of !vI with Galois group r; this means that r is a 

homomorphic image of 7rl(M) and :NI is the natural cover of M with fiber r; r acts 

discontinuously on if by deck transformations and if Ir = M. Let 5 and D denote 

the natural lifts of S and D to Ai, and 7r: M - !vI be the covering map. By 9.20, 

the operator b is essentially self adjoint on L2(5) and operators I(D) can be defined 

for every I E Co{R). 

In our discussion of the ordinary index theorem we saw tne key role played by the 

algebra of smoothing operators. On the non-compact manifold Ai. a central idea is to 

introduce an algebra A of smoothing operators on if that reflects the extra structure 

of the r -action. 

DEFINITION 15.1 With notation as above, let A be the set of bounded operators A 

on L2(5) satisfying the following conditions: 

(i) A is r-equivariant; that is, for all s E L2(S).A(-ys) = "Y(As) where by 

definition 
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(ii) A is represented by a smoothing kernel k(p, q) so that 

As(p) = J k(p, q)s( q) vol( q); 

(iii) There is an absolute constant C such that 

jlk(p,qWvol(q) < C, jlk(p,qWvol(p) <C. 

We must be careful what we mean by "smoothing kernel" on the non-compact man­

ifold M, since differentiation under the integral sign is not automatically legitimate. 

We will therefore assume (as part of condition (ii)) that 

m..-. k(p,.) and q..-. k(.,q) 

are cce maps of Ai to the Hilbert space L2(5). 

LEMMA 15.2 The set of operators A forms an algebra. 

PROOF The (Inly thing that is not obvious is that A is closed under multiplica­

tion. If AI,A2 E A are represented by the smoothing kernels kl,k2 then A\.A2 is 

represented by the smoothing kernel 

(p,r)..-. J k l (p,q)k2(q,r) vol(q). 

Let A be a bounded operator on the Hilbert space £2(5) which is represented by a 

smoothing kernel k. By the Riesz representation theorem for functionals on Hilbert 

space, the quantity 

j Ik(p,q)12 vol(q) 

is the square of the norm of the linear functional s 1-+ As(p) on L2(5). Therefore, 

there is a constant C such that f Ik(p, q)12 vol(q) < C if and only if A maps L2(5) 

continuously to the space C B( 5) of bounded continuous sections of 5. Similarly, 

there is a constant C such that f Ik(p,q)12 vol(p) < C if and only if A* maps L2(5) 

continuously to C B( 5). Now the desired result is clear; for if AI, A2 and their 

adjoints map L2(5) continuously to L2(5) and to CB(5), then so do AI.A2 and 

(A\.A2r = Ai.Ai. 0 
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DEFINITION 15.3 The space C BT(S) is defined to be the space of sections s of S 

which are r times continuously differentiable with bounded derivatives. 

This definition needs some explanation. The r'th derivative Vr(s) of a section s 

of 5 is defined in terms of the connection on 5 as a tensor of type (~) with values in 

5, that is, a section of the bundle @T(T*kt) ® 5. This tensor bundle has a natural 

metric, and we require that the derivative be uniformly bounded in terms of this 

metric. Clearly CB"(S) is a Banach space under the natural supremum norm of the 

first r derivatives. 

We now prove a non-compact Sobolev embedding theorem. 

PROPOSITION 15.4 Let n = dim(.i\.1) = dim(l\.l). For any integer p > i and any 

r ~ 0 ther(' is a constant C sucb that 

IIsllcBP ~ C(lIsl! + IIDslI + ... + IIDP+TslI) 

for all s in tbe domain of Dp+r, the norms on tbe right-band side being L2 norms. 

PROOF To show that s is of class C BT, it is enough to show that it is uniformly of 

class cr locally. Choose m E Pvl and pick a bump function <Pm on M, equal to one in 

a neighbourhood of m and supported within a fundamental domain for the action of 

r. Notice that we can choose such bump functions 'Pm in such a way that their first 

(p + r) derivatives are bounded uniformly in m. Now 

where the constant Cm depends 011 the first (p+r) derivatives of 'Pm and may therefore 

be taken to be bounded uniformly in m. But now 'PmS may be identified by means 

of the covering map 11' with a section 1r.(t;:'mS) of S over M. By the elliptic estimates 

and Sobolev embedding theorem on AI, then 

The result now follows, as 'Pm :: 1 near m. 0 

LEMMA 15.5 Let A be a bounded, self-adjoint, equivariant operator on L2(5), and 

suppose that A maps L2 boundedly to CBr for each r. Then A2 belongs to the 

algebraA.. 
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PROOF Clearly A2 is equivariant. For the remainder of the proof, assume for 

simplicity that S is a trivial bundle; the general case is a bit more complicated 

notationally. Choose a point pE M. The functional on L2(S) given by S 1-+ As(p) 

is continuous linear, so it is represented by a. vector t'p E L 2(S), in t.he sense that 

As(p) = (s, vp). The norms of the vectors tip are bounded uniformly ill p; this is 

because A maps L2 to the bounded continuous functions. 

We claim that for any r ~ 0, the map p 1-+ vp is a er-differentiable map of .M to 

the Banach space L2(S). We will write out the details only for the case r = O. Then 

for any s E L2(S), one has an estimate on the first derivative of As in terms of the 

L2-norm of s. By the mean-value theorem, therefore, 

I(s, vp - 17q)1 = IAs(p) - As(q)1 ~ Cllsllu d(p, q), 

for some constant e. Therefore, 1I1'p - vqll ~ ed(p,q), which proves (with room to 

spare!) that m 1-+ Vm is a continuous map of AI to L2. 

Now we write 

As(p) = J s(q)vp(q) vol(q). 

Since A is self-adjoint, (As" S2) = (SI. As2). Therefore 

J S,(Q)S2(p)Vp(q) vol(p) vol(q) = J '~I(q)S2(q)Vp(q) vol(p) vol(q). 

This gives vp(q) = vq(p) so we may write 

As(p) = J s(q)vq(p} vol(q). 

So 

A2s(p) = J k(p,q).~(q) vol(q), 

where 

k(p. q) = At'q(p). 

The kernel k is of class er, since q 1-+ t'q is a er map of AI to L2(S), so q 1-+ At7q is 

a er map of M to eW(S). Moreover. the functions k(·,q) = AVq form a boundl:'d 

subset of L2(S), and they are equal by self-adjointness to the functions k(q, .). This 

completes the proof. 0 
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PROPOSITION 15.6 For any rapidly decreasing function 1 on JR, the operator I(D) 
belongs to the algebra A. 

PROOF We may assume that 1 is non-negative. Then 1\/2 is rapidly decreasing 

too, so by proposition 15.4 jI/2(D) maps £2(5) boundedly to C W(5) for all s. Also 

11/2(D) is bounded, self-adjoint, and equivariant. Hence 

by 15.5. 0 

DEFINITION 15.7 The functional r: A - CC is defined as follows: if A E A, let k be 

its kernel and choose any fundamental domain F for the r-action on AI; then 

r(A) = L trk(p,p). vol(p). 

Notice that since A is equivariant, its kernel k is equivariant in the sense that 

k(yy, q'Y) = k(p, q). Therefore the definition of r does not depend on the choice of 

fundamental domain. The functional r on A will play the role of the trace on the 

algebra of smoothing operators on a compact manifold. The next refult is analogous 

to the important property 8.8: 

PROPOSITION 15.8 For AI, A2 E A, 

PROOF Let 04\ and A2 be represented by kernels kl and k2. Then A\A2 - A2AI is 

represented by the kernel 

(p,r) - fit (k l (p,q)k2(q,r) - k2(p,q)kl (q,r») yol(q). 

Therefore, if F is a fundamental domain, 

r(.41.42 - A2Ad = r ( _ tr (k l (p,q)k2(q,p) - k2(p,q)k l (q,p») vol(q)vol(p) 
J JFxM 

Because of the estimate (15.1)(iii) this double integral converges absolutely. So we 

may decompose if = U.,.erF'Y, and write 

r(AIA2 - A2A.) = L cph), 
.,.ef 

where 'P('Y) equals 
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But, by equivariance of kl and k2 , this equals 

J. f tr (kJ (p-y-l, q)k2(q, p-y-l) - k2(P"'Y-t, q)kl (q, n-1)) vol( q) vol(p) 
iFxF 

hence is equal to O. 0 

Renormalized dimensions and the index theorem 

DEFINITION 15.9 If 1t is a subspace of L2(5) with the property that the orthogonal 

projection operator P from L2(5) onto 1t belongs to A, then we define 

dimr(1t) = ,(P). 

Of course. this definition is motivated by the fact that the trace of a projection 

operator is the dimension of its range. We will see that dimr conforms to our intuitive 

idea of measuring the "average amount of dimension per unit area". In particular 

LEMMA 15.10 Under the bypotheses of 15.9, if dimr(1t) > 0 and r is infinite, then 

1t is infinite-dimensional (in the usual sense). 

PROOF Suppose to the contrary that 1t is finite-dimensional, and let SI. •.• ,s j be 

all orthonormal basis for it. Then the operator P has smoothing kernel 

k(p, q) = :E Si(P) ® s,(q), 

(where we have identified S· with S by means of the metric) and so 

trk(p,p) = :Els,(p)12 

is an integrable function of p. Let F denote a fundamental domain. Then 

L 1. I tr k(p,p)1 vol(p) < 00, 
"er F.., 

and since the integral is independent of ) it must be Zf'ro. 0 
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Now suppose that D (and hence D) is a graded Dirac operator. By 15.4 and 15.5, 

the orthogonal projection P onto the kernel of D belongs to the algebra A. We can 

therefore define 

Indr(D) = dimr(ker D+) - dimr(ker D_). 

Let e be the grading operator. By analogy with 11.1, for A E A we define T,,(A) = 
T(eA). The following is the analogue of the McKean-Singer formula. 

PROPOSITION 15.11 For any t > 0, 

T,,(e- Il:>2) = Indr(D). 

PROOF Because T has the basic 'trace property' (15.8), the proof that T,,{e- tD2 ) 

is independent of t is exactly the same as that given in 11.9; in fact, TA/(D2». is 

independent of the choice of rapidly decreasing function I with 1(0) = 1. To complete 

the proof we need an analogue of Lemma 10.5, and here we must proceed differently. 

What we nC'ed to show is that as t -+ 00, the smoothing kernel of e- tD' tends to the 

smoothing kernel of P uniformly on compact subsets of AI x AI. 
We claim first that as t -+ 00, e- tD2 

-+ P in the strong operator topology on 

£2(5), which means that 

(15.12) 

This is a consequence of the spectral theorem for self-adjoint operators [29]' but an 

elementary argument may be given as follows. Since D is self-adjoint, the orthogonal 

complement of the kernel of D is the closure of its range. This met..ns that it suffices to 

verify 15.12 in two special cases: when x belongs to the kernel, and when x belong~ 

to the range. In the first case e- tD2 x = x = Px for all t; in the second case, let 

x = Dy and note that then 

lIe-tD' xII = IIDe- tD' yll -+ 0 

since sUPA IAe- tA' I = O{t1/ 2 ). The result follows. 

Now consider the smoothing kernels kt of e-tD' as elements of the Frechet space 

Coo(S \81 SO). From the proof of proposition 15.6, as t -+ 00, the kernels kt form a 
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bounded subset of this Frechet space. But in this Frechet space, bounded subsets 

are relatively compact; so we deduce that given any sequence tj ...... 00, there is a 

subsequence of the tj'S such that the kernel of e-tb1 tends to a limit uniformly on 

compact subsets as t ...... 00 through this subsequence. By weak convergence, this 

limit must be the kernel of P. Finally, to complete the proof, we apply a lemma of 

general topology: if t ...... x( t) is a curve in a metric space X, and there is Xo E X 

such that for each sequence tj ...... 00 there is a subsequence ":jt such that x(tjt) ...... Xo 

as k ...... 00, then x(t) ...... IO as t -+ 00. 0 

THEOREM 15.13 (ATIYAH'S r-INDEX THEOREM) Under tbe bypotheses of this 

chapter, 

Indr(D} = Ind(D). 

PROOF By (15.11), 

for any t > O. Now the asymptotic expansion 7.15 still applies to e-tb2
; the estimate 

(15.4) plays the role of the elliptic estimate in its proof. So as in 11.14 we get the 

formula 

- 1 I -
Indr(D) = (411'}n/2 iF tr4 Bn/2 

where e is the asymptotic-expansion coefficient for e- ,D2 . But the a. ... ymptotic­

expansion coefficient is simply a local algebraic expression in the metrics and con­

nection coefficients and their derivatives, so 

where e is the corresponding asymptotic-expansion coefficient for D on the compact 

manifold M. Therefore 

by 11.14. 0 
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EXAMPLE 15.14 Let M be a Riemann surface of genus 9 ~ 2, equipped with its 

Poincare metric {of constant curvature -I}. Then if is 2-dimensional hyperbolic 

space, that is the unit disc with its Poincare metric. Let D be the de Rham operator 

on M, equipped with the grading it inherits from the de Rham complex, so that 

Ind{D} = Euler characteristic of Ai = 2 - 2g. By the f-index theorem, Ind{D) = 
2 - 2g < 0; which implies by 15.10 that the space of square-integrable harmonic 

I-forms on the disc is infinite-dimensional. Of course we knew this already, but in 

some sense this shows us what topology the space of L'l harmonic I-forms is detecting. 

For more on tllis, see [26]. 

EXAMPLE 15.15 An unsolved conjecture in geometry, apparently due to Hopf, is 

that if M is a compact 2m-dimensional Riemannian manifold of ne>gative sectional 

curvature, then the sign of the Euler characteristic of At is (_1)m. Singer suggested 

an approach to this problem by way of the L'l Gauss-Bonnet theorem; show that the 

space of L2 harmonic forms on the universal cover AI vanishes except in the middle 

dimension. Some progress has been made in this direction, see [28, 37]. 

EXAMPLE 15.16 In a major application of the f-index theorem, Atiyah and Schmid 

constructed certain representations (the so-called "discrete series") of Lie groups as 

spaces of L'l holomorphic sections of certain vector bundles. The f-index theorem 

was used to show that these spaces of sections are non-zero. See Schmid [66]. 

Notes 

The L'l index theorem is due to Atiyah [lJ. Several of its techniques - the 

introduction of operator algebras, of traces and of generalized "dimension functions" 

- have served as paradigms for other index theorems on non-compact manifolds, such 

as the foliation index theorem of Connes {20, 22J or the exhaustion index theorem 

of [61, 62J. 

The theory of 'L'l homological algebra' inspired by the L2-index theorem is quite 

active at present. For a survey see Liick [50J. 
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