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Abstract. Our main result is that integrated geodesic curvature of a (nonsimple) closed curve on
the unit two-sphere equals a half integer weighted sum of the areas of the connected components of
the complement of the curve. These weights that gives a spherical analogy to the winding number
of closed plane curves are found using Gauss—Bonnet’s theorem after cutting the curve into simple
closed sub-curves. If the spherical curve is the tangent indicatrix of a space curve we obtain a new
short proof of a formula for integrated torsion presented in an unpublished manuscript by C. Chicone
and N. J. Kalton. Applying our result to the principal normal indicatrix we generalize a theorem
by Jacobi stating thaa simple closed principal normal indicatrix of a closed space curve with
nonvanishing curvature bisects the unit two-spheneonsimple principal normal indicatrices. Some
errors in the literature are corrected.

We show that a factorization of a knot diagram into simple closed sub-curves defines an immersed
disc with the knot as boundary and use this to give an upper bound on the unknotting number of knots.

Mathematics Subject Classifications1991): 53A04, 53A05.

Key words: integral geometry, total geodesic curvature, total curvature, total torsion, index of spher-
ical curves, generalization of Jacobi’s theorem, unknotting number.

1. The Frenet Apparatus

We generally consider curves in Euclidean three-space with nonvanishing cur-
vature. This ensures that each curve has Frenet ftameb) satisfying the cross
product relations = n x b,n = b x t, andb =t x n and the Frenet formulas

t = Kn
n = —«t + 1h,
b = —n

wherex > 0 is the curvature andis the torsion ofC and primes indicate differen-
tiation with respect to arc length, of C. A curve with Frenet frame defines three
curves on the unit two-sphere, namely, the spherical indicatrices of the tangent
vectors, of the principal normal vectors, and of the binormal vectors. Denote these
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curves byl'y, 'y, andl'y, respectively. The lengths of these indicatrices are

ITt| = «(C) =/K(S) ds
c

IThl = w(C) = / VK2(s) + 12(s) ds
c

ITy| = |71(C) =/ I7(s)| ds.
C

It is not standard to use the notatidn|(C), for the total torsion of a space curve —
but it is convenient as(C) hereby can denote the integral of the torsiorCofvith
respect to arc-length, i.e.,

r(C)=/r(s)ds.
c

Our main topic is closed curves on the unit two-sphere that arise as indicatrices of
space curves. This explains

DEFINITION 1. We say that the tangent indicatri®,, of a regular curve: [0, L] —

R3, is closed ift(0) = t(L) and all derivatives of; agree in this point. With similar
definitions of closed principal normal and binormal indicatrices we say that a space
curve has closed Frenet frame if its indicatrices are closed.

An example of a nonclosed curve with closed Frenet frame is a suitable piece
of a circular Helix. This explains half of the title of this manuscript. | order to use
Gauss—Bonnet’s theorem on closed Frenet frames we have to factorize nonsimple
curves into simple sub-curves. Due to an error in the literature the next section is
devoted to this factorization.

2. Factorization of Closed Curves

In this section we consider closed continuous cuilve$! — T in a topological
spaceT. We assume that the curves are not constant in any inter& of

Assume that there exists a closed interva S* such that when we identify
the endpoints off thenT" |7 is a simple closed curve ifi. By an elementary
factorization of the curv& we mean a splitting oF into the above simple closed
curve S and into the rest of", denoted byl". For an elementary factorization of
I we writeIT" — S + I, whereS = I'| I (identifying the endpoints of) is a
simple closed sub-curve dfandI” = I"|(SN\int(/)) (identifying the endpoints of
S* minus the interior off) is the rest of".

DEFINITION 2. LetT':S* — T be a closed continuous curve in a topological
spacel. If there exists a finite number of elementary factorizations



GAUSS-BONNET'S THEOREM AND CLOSED FRENET FRAMES 297

1 11 8
54><
Pe 10
%0
2 3
6 7 T

Figure 1. A curve with two different ‘Umlaufszahlen’.

I = F0—>S1+F1—>S1+S2+F2—>...
_>S1+SZ+"'+S)1—1+F)1—1

such thatl",_; is a simple closed curvg,, then we say the curvE possesses a
simple closed sub-curve factorization (scs-factorization). In this case we simply
writeI' — S; + --- + S, and we say that the scs-factorization is of onger

The scs-factorizations are obviously preserved under homeomorphism of the
curve. This is basically why we give the definition in a general topological space.
By the simple closed sub-curve number (scs-number),(Egsof I' we mean
the minimum of the orders of the scs-factorizations that the clirpessesses. If
the curvel” does not possess an scs-factorization, then we setidcsn+-oc.

Remark3. In [10] an analogue to our scs-number, which is crucial for this paper,
is defined using an algorithm. This algorithm starts in an arbitrary p@jrdn the
curveI'g and traverses the curve until the first pre-traversed pdirs reached.
Then the simple closed sub-cun$g from the first timeP; lies on the curvd’
to the second timeP; lies on the curvd’y is excluded fromly. Now, apply the
elementary factorizatiolly — S; 4+ I'1 and markl™; with the starting pointP;. If
this iterative process stops aftesteps, ther’y (or more correctly the paily, Po))
is said to have ‘Umlaufszahl.

In [10] it is claimed thathe ‘Umlaufszahl’ is independent of the starting point
This is false! On Figure 1 is a curve with ‘Umlaufszahl’ 3 if traversion starts at
the point P and ‘Umlaufszahl’ 2 if traversion starts at the poidt On Figure 2
we show a curve with finite ‘Umlaufszahl’ if traversion starts at the pé&irand
infinite ‘Umlaufszahl’ if traversion starts at the poigt

It is possible for a closed curve to have infinite scs-number. On Figure 3 are
shown two such curvésTo give a sufficient condition for a closed curve to possess

* In [10] it is claimed that a&losed spherical curve with continuous geodesic curvature has finite
‘Umlaufszahl’ The curve on the right-hand side on Figure 3 contradicts this statement.
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Figure 2. A curve with finite and infinite ‘Umlaufszahlen’.
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Figure 3. Pieces of curves with no scs-factorization.

an scs-factorization we need some notation. ILdie a non simple closed curve
and letP e I'(SY) be a point of self-intersection df. If the inverse image of the
point P under the mag", I'"1(P) c S?, consists ofn parameter values then we
say that the point?? has multiplicity m and that the curvé has(m — 1) self-
intersections in the poinP. For a closed curvé with self-intersection points
Py, ..., P,, each of multiplicitym ;, we lets(I') = ijl(mj — 1) denote the
number of self-intersections &f.

THEOREM 4.LetT':S* — T be a continuous closed curve with only finitely
many self-intersections. Thdh possesses at least one scs-factorization and any
scs-factorization of” has order less than or equal to the numberIt$ self-
intersections plus one. In particular the simple closed sub-curve numbEr of
fulfills csn(T") < 14+ s(I).

Proof.If T is simple there is nothing to prove. Assume thas not simple but
thats(I') = n is finite. Apply an elementary factorization — S; + I'; to T'.
As the multiplicity of the point in whichS; andI'; are glued together is one less
for I'; than forI" we have thak(T";) < n — 1. Hence, after at most elementary
factorizations we obtain an scs-factorization of O

To give a sufficient condition for a closed curve on the unit 2-sphere to possess
an scs-factorization we use the terminology that a closed regdtaurve only has
transversal self-intersections if no pair of tangents to the curve with the same base
point are parallel.

LEMMA 5. LetT be a closed regula€*-curve on the uni2-sphere. Ifl” only has
transversal self-intersections then s@@his finite
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factorization

Figure 4. Exterior angles.

Proof. By transversality and compactness the curvlas only finitely many
self-intersection points. Sinde has finite length and' is a regularC!-curve each
self-intersection point has finite multiplicity. Now Theorem 4 applies. O

Note, that Lemma 5 implies that it is a generic property for regatacurves
to possess scs-factorizations.

3. AnIndex Formula on S2

In this section we give an index of points in the complement of a closed regular
C*-curve on the unit 2-sphere and prove that the integral over the 2-sphere of this
index equals the integrated geodesic curvature of the curve in case the curve is of
type C2.

LetI' — S1+ S +--- + S, be a simple closed sub-curve factorization of a
closed regulact-curve on the unit 2-sphere. This scs-factorization is obtained by
(n — 1) elementary factorizations, each cutting away a simple closed curve defined
on an interval[a, b]. We call the pointT(a) = I'(b) a cutting point. If the tangents
I'(a) and T’ (b) are linearly independent we call the cutting point a transversal
cutting point. If all cutting points of the scs-factorization are transversal cutting
points, then we say that the scs-factorization is a transversal scs-factorization.

THEOREM 6.Let I" be a closed regulaC?-curve on the uni2-sphere with a
transversal scs-factorizatioh — S; + S> + --- + S,. Denote the area of the
positiveresp negative turned component of the complement of each simple closed
sub-curves; by u(27") resp 1(€2;). Then the integral of the geodesic curvature of

T, k,(T), with respect to arc-length satisfieg(I") = % S (7)) — ().

Remark7. If a curve only has transversal self-intersections, then the curve does
possess scs-factorizations, by Lemma 5, and all its scs-factorizations are transver-
sal. Note, that the formula given in Theorem 6 is true for all transversal scs-
factorizations of a curve.

Proof. LetI' — S; + S> + --- + S, be a transversal scs-factorizationlofind
let (27, ..., n(27) resp.u(7), ..., n(R;) be the areas of the positive resp.
negative turned components of the complements of these simple closed sub-curves.
Leta;; € (—m, ) be the exterior angle (see Figure 4) between the tangesis to
at the cutting point betwee$, and ;. If the i'th and the;j’th sub-curve do not
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have a mutual cutting point, ér= j, then we set;;; = «;; = 0. Note, that for all
1 < i, j < nthe exterior angles fulfi;; = —a ;. Gauss—Bonnet's theorem for the
i'th sub-curve,s;, gives

f kerdo 4+ ey =21 — u().
Si

j=1

By our scs-factorization of we get

[erdr = Z/S cerdo =Y |21 — w(@) - Y ay
i=1 Y0

i=1 j=1

= 2nn — iu(ﬁf) - i Qjj = 2rn — i,u(Q;’).
i=1 i=1

i,j=1

Let I" denotel” with reversed orientation. By reversing the orientation of all the
simple closed sub-curves in the scs-factorization wfe obtain an scs-factorization
of I". This gives us

—/Kg,r do = / Kk, 0o =2wn — Z'U“(Qi_)’
r r Y

i=1

Hence,

1 ~
/Flcg,r do = > (/Flcg,r do —/I;Kg’f da)

% (Z wey) — Zu(szm) : D
i=1 i=1

One of the ingredients that make the proof of Theorem 6 work is that the sum of
the exterior angles vanishes. Assume that this is not the case aEd )g; ajj =
a # 0. Using Gauss and Bonnet’s Theorem with the first orientation of the curve
I" we get

KerOo =2mn — w(QH) —a.
o 2

i=1

With reversed orientation all exterior angles change sign and hence,

_fxg,rdo:[/cg_fdG:hn—ZM(Q;)+a,
r r '

i=1
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factorization
_—

Figure 5. Exterior angles with the same sign.

Subtracting the last equation from the first equation and dividing by two we get
I 1 n
f Kerdo =23 (w(Q) — w®)) —a.
0 i=1

We conclude, that the equation in Theorem 6 is only valid if the sum of the exterior
angles vanishes. As shown on Figure 5 there are nontransversal self-intersections
with both exterior angles equal #o. So for a curve with this kind of nontransversal
self-intersections the rhs. and the lhs. of the equation in Theorem 6 differ by an
integral multiple of Zr. If we smoothen the curve on Figure 1 and consider the two
scs-factorizations of this curve, then the alternating sum of a€ag, ; (11(2;) —
(), for the two scs-factorizations exactly differ byr 2This is found using
a little Linear Algebra remembering that the sum of the seven unknown areas
equals 4.

If instead of the unit 2-sphere we consider any topological 2-sphere we have a
theorem similar to Theorem 6 where the arﬁaQii) are exchanged by the integral
of Gaussian curvature over the corresponding sets. At first sight this looks like a
generalization of Gauss and Bonnet's theorem to nonsimple closed curves. But
given a closed curvE on the unit 2-sphere there is a topological 2-sphéfein
R® and a simple closed curye on M such that the image of the surface normal
to M alongy equalsl’. Note, that it is necessary thaf is a topological 2-sphere
since we have to use Gauss and Bonnet's theorem in both orientations of the curve
y, i.e., both components of the complemeniabn M have to be disks Now the
normal image ofM gives the formula in Theorem 6.

* Such a surfacé/ can be constructed as follows: We can assumeIthanly has transversal
double points and that in a neighbourhood of each double point the Eures on two great circles.
In this neighbourhood we choose a piece of the cylinder orthogonal to each great circle to lie on our
surfaceM. Lifting one of the great circles fixing the rulings of the cylinder preserves the normal
image. Hence, we have a surfalteand a simple curvey, on M such that the surface normal along
y equal the prescribed cunie on the unit 2-sphere. By choosing over- and under- crossings such
thaty is unknottedy bounds a disk oi/. By reversing the orientation a@f, and thus also op, we
also have that the other complementobn M is a disk. HenceM is a topological 2-sphere and
is a simple closed curve a1 such that the image of the surface normaMalongy equalsr.
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We now prove that in the alternating sum of areas in Theorem 6 each connected
component of the complement is counted a half integer number of times indepen-
dent of the scs-factorization. To do this we need some notationx:l[81/] — R?
be a plane, continuous closed curve. Recall that the index or winding number of
the plane curver relative to a pointpg is a map Indet, po): R?\« ([0, 1) — Z
defined on the complement of the curveinto the integers. By continuity, Index
is constant on each connected component of the complementnfl it counts
the number of times the plane cureewraps around each connected component.

If a plane curvex: [0, /] — [R? is a closed regula€!-curve then its rotation index,
Indexg (@), is the number of complete turns given by the tangent vector field along
the curve. The index and the rotation index of plane curves can be found in e.g. [4]
pp. 392—-393.

The following theorem (Theorem 9) is implicitly used in [3] but first formulated
in [8]. This theorem gives a spherical analogy to the index of plane curves. To state
this theorem let- P and P be a pair of antipodal points on the unit 2-sphere and
denote the stereographic projection from the unit 2-sphere onto the tangent plane
of S2at P, TpS?, by IMp: S?\{—P} — TpS2

DEFINITION 8. LetT':[0,/] — S? be a closed regular curve of ty@gg on the
unit 2-sphere. Denote the complement@f0, /]) by Q. Let—P € Q and letP be
its antipode. Define the map Indp: Q\{—P} — Z/2 by

Indr_p(Q) = 3Indexe(I1p(I)) — Index(T1p(T), M(Q)), Q € Q\[-P}.

The condition— P € Q in Definition 8 ensures that the stereographic projection
of the curverl is a closed curve. One could define maps frax{— P} using any
expression in the rotation index and the winding number, but the linear combination
used in Definition 8 is, up to a multiplicative constant, the only linear combination

giving
THEOREM 9.The mapndr _p: Q\{—P} — Z/2defined in Definitior8 is inde-
pendent of the point P € Q used to define it. Hereby, we have a well-defined map

Indr: Q@ — Z/2from the complement of any closed regular curve of ypen the
unit 2-sphere intdZ /2.

A direct proof of Theorem 9 can be found in [8] pp. 26—-29. Here Theorem 9
will follow from Lemma 10 which gives a reformulation of the map fd

LEMMA 10. LetI" be a closed regula€*-curve on the unie-sphere. With notation
as in Theoren®, we for Q in the complement of* have thaind-(Q) = %(jj{ilQ €
Q;} — 8{i|Q € }) for all transversal scs-factorizations bf

Proof of Lemma.0 and Theoren®. LetT be a closed regulatt-curve on the
unit 2-sphere and Idt = S; + S, + - -- + S, be a transversal scs-factorization of
I". Denote the positive resp. negative turned component of the complem#&nt of
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by Q" resp.Q; . Consider a stereographic projection of the unit 2-sphere such that
the image ofl" is closed under this projection. See Definition 8.

To simplify notation the stereographic projection of a set, denoted by a capital
letter, will be denoted by the corresponding small letter. Hepds the projection
of the pointQ, y — s1+s2+---+s, is the projection of the curvé — S+ S>+
st Sy, andwii is the projection of the s@f AsT" andy are homeomorphic their
scs-factorizations are in one-to-one correspondence. Furthermote; le¢ the
bounded component 6f's complement and letbc; be the unbounded component
of s;’'s complement. As eac) is simple

v;, If g € bc;,
Inde ,8) = .
Xg, 5i) {0, if g €ubc;,
wherev; = 1 if 5; runs in the positive direction ang = —1 if 5; runs in the

negative direction. Let, in analogue to the proof of Theorem 6,1 < i, j < n be
the jump of the tangent vectors to the sub-cusvat the cutting point between the
sub-curves; and the sub-curve;. If we let Index:(y)|s; denote the contribution to
Indexz(y) coming froms;, then by Hopf’'s Umlaufsatz we have

1 &
|nde)h()/)|si + E ;O{U =V;.

For the contribution to the map Ind from Definition 8 we have
Indr(Q)ls; = 3Indexz(y)ls; — Index(q, s:)

1 1< v, if g € be;
_Evi_ﬂgalj—{O, if g €ubc;

1 < 1 =1, if g € be;
T 4 ;al/—i_zvl { +1, if g €eube;

In casew;" is the bounded componentp’ complement; = +1, asQ;" is defined
to be the positive turned component$k complement. Hereby,

INdr(O)ls; = 1 < +l -1, ifqea);r
r ST T4 = %jT3 +1, if g € w;
1 < 1(-1 if Qe Qf
__E;““JFE{H, if Qeq
In casew;” is the unbounded component gk complement; = —1. Hereby,

1 & 1(-1 if gew;
Ind P = —— i — = . !
r(Q)ls 4 ;“1 2{ +1, if g ew;
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1 < 1(-1 if Qe Qf
__E;““JFE{H, if Qe

The following calculation completes the proof of Lemma 10.

Indr(Q) = ) Indr(Q)|s:

i=1

1 n
= g Doy T3 Qe )~ il Qe Q)

ij=1

= 1lilQeQf —tlilQeQ).

The right-hand side of the above equation is clearly independent of the stereo-
graphic projection used to define the left hand sidey (d8). Hence, the map Ind
is well-defined as a map from the complement of a regular cléSedurve into
the half integers. This proves Theorem 9. O

COROLLARY 11 (of Lemma 10)All transversal scs-factorizations of a regular
C*-curve on the uni2-sphere have either odd or even degrees

Proof. Given a regularC!-curve on the 2-sphere the map ndither takes
integer values or values equal to one half plus integafdnd (takes integer
values/takes values equal to one half plus integers) then Lemma 10 implies that
each transversal scs-factorizations of the curve has (even/odd) degree. 0O

Combining Theorem 6 and Lemma 10 we get our main result

THEOREM 12.LetT be a closed regulacC?-curve on the uni@-sphere and let
Indr be as in Theoren®. Then the integrated geodesic curvatureIgfx,(I"),
fulfills

ko(I') = / Indr(Q) dA.
QeS?

Proof. By Theorem 6, Remark 7, and Lemma 10 the desired formula is true
for all regularC?-curves with only transversal self-intersections. As the right-hand
side of the equation is well-defined for all regular cloggdcurves the formula,
by continuity, is true for all regular closec?-curves. O

Remarkl3. Kroneckers Drehziffer. Lt be a closed curve on the unit 2-sphere.
Let Q € S?be a point such that neithe nor its antipodal point-Q lie onT". Now

* It is easily checked that Indtakes values equal to one half plus integers for all regaGfar
curvesI in the equators regular homotopy class and that Itakes integer values for all regular
CL-curvesr in the other (the double-covered equators) regular homotopy class. Confer [11].
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the stereographic projectiofi, (T"), of I" into T, S?is a closed curve avoiding the
origin, 0, of T,S2 Hereby,IT,(T") has a well-defined winding number with respect
to the origin, Index0, I, (I")). As the author reads [2] this winding number is
called Kroneckers Drehziffek(Q, I'). In [2] p. 83 it is stated that the integral of
continuous geodesic curvaturelofx,(I'), fulfil

2Kg(r)=—/ k(Q,T)dA.
0eS?

As IndexO, [Ty(I")) = —Index(O, IT_,(I")) for all pairs of antipodal pointsQ
and —Q, not touchingl” the sphere integraszk(Q, I")dA equals zero for all
closed spherical curves. It appears there is a mistake in [2].

In [5] p. 53 the Kroneckers Drehziffer integral formula is mentioned as the dual
(in the sense of spherical dual curves) of the Crofton formula for length of spherical
curves. If we add (or subtract) the index, lpof a spherical curv& and the index,
Ind_r, of its antipodal curve-T" (according to the orientation chosen-ef), then
we obtain an index of and its antipodal curve with the property that Kroneckers
Drehziffer is claimed to have in [5]. It could be interesting to check if this antipodal
curve pair weight is the correct dual of the Crofton formula for length of spherical
curves.

4. Definition of Integrated Geodesic Curvature

The map Ind, given by Definition 8, is defined on closed regafacurves on the
unit 2-sphere. We thus give

DEFINITION 14. LetI" be a closed regulaf!-curve on the unit 2-sphere then the
integrated geodesic curvaturelofx,(I'), is defined by

ke(I') = / Indr(Q) dA.
0eS?

Consider a continuous closed spherical curve possessing more than one scs-
factorization. As the two components of the complement of a simple closed sub-
curve, Q- and Q*, are open sets they are Lebesgue measurable. Hence, for a
fixed scs-factorization the real numb%E?:l(u(Qi‘) — w(Qh)) is well-defined.

By lack of transversality we have to take this number moduto But it is un-
known to the authoif integrated geodesic curvature can be defined, mo@ulp
on closed continuous scs-factorizeable curves on the2ssfthere using the ex-

pressions 1, (u(2;) — u(2)).

5. Closed Spherical Indicatrices

In this section we apply Theorem 12 to closed spherical curves given as the tangent
indicatrix, principal normal indicatrix, binormal indicatrix, or Darboux indicatrix
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of a space curve. Hereby we obtain a new and short proof of a formula for inte-
grated torsion of space curves due to C. Chicone and N. J. Kalton and we generalize
a classical theorem by Jacobi.

THEOREM 15.LetI'i:[0,1] — S? be a regularC2-curve on the uniR-sphere.
Then the integral of torsion for any space cu@e with I'; as spherical tangent
indicatrix, equals the integral of the geodesic curvatur&ofFurthermore, ifl'; is
closed then

T(C) = / |nd1~t(Q) dA.
0eS?

Remarkl6. In analogy with Definition 14 we have a natural definition of inte-
grated torsion of a regulaf?-space curve with nonvanishing curvature and closed
tangent indicatrix given by the equation in Theorem 15.

Proof. Let I't: [0, /] — S? be a closed regulaf?-curve on the unit 2-sphere
parametrized by arc-length. Any space curve with; as spherical tangent indi-
catrix can be written as

r(s) —r(0) = /S (o) de, sel[0,L],
0

whereL is the length of this space curveis its arc-length, ané: [0, L] — [0, ]
is a nondecreasing-map given byo = o (s).

t = ar =T
== (o (s))

r_ dt _ dFt dO' _

t= = do (0 (s)) & (8) = kr(s)N(s).
Hence,d“ (s) = kr(s) is the curvature of the space curve at the poir) and
n(s) = d“ 't (5 (s)). Hereby,

dn  dIy

n = Pl —(G(S))—(S)

giving torsion of the space curve as

() =n-b=n" <Ft X d—) (o (s))

a "do do?

Here[-] is the triple scalar product iR3. As

dr, d’r
Ke.r(0) = [Ftd s ;]<o>

do dFt dZFt
= — S)[ ](G(S))-
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is the geodesic curvature Df we obtain

L L 2
f 7 (s) ds :/ [F dFtdFt](o(s))%(s)ds
0 0

“do do?
LT dry &Iy
= /O [Ftd—oﬁ] (o) o

!
= / Kg.Ty da=/ Indr, (Q) dA,
0 QeS?

where the last equality follows by Theorem 12 in c&igés closed. O

The formula for integrated torsion given in Theorem15 is due to C. Chicone
and N. J. Kalton. Their proof can be found in [3] and in [8] pp. 18—-36. This proof
is by induction on the number of connected components of the complement of
the tangent indicatrix. By homotopying the stereographic projection of the tangent
indicatrix and inserting needles to change its Index they use Green's Formula to
transform the torsion integral such that the index-formula from Definition 8 is
recognizable. Observing that the integral over the unit 2-sphere appearing in the
Chicone—Kalton formula depends only on the closed tangent indicatrix and not on
the space curve itself, lead to the wish of finding a proof of this formula reflecting
this fact. Having found such a proof we now give similar formulas for closed
principal normal and binormal indicatrices of space curves.

THEOREM 17.Let C be a regular curve inR® of type C* with nonvanishing
curvature and closed Frenet frame. Denote the spherical indicatrix of the principal
normal vector and of the binormal vector by, I'y: [0, I] — S2 Then

/ Indrn(Q) dA = 0.
Qes?

If furthermoreC has nonvanishing torsion then the total curvatur€ dfilfil
f Indr, (Q) dA = «(C).
Qes?

Remarkl8. As the lengths of the curv&s, I'y: [0, I] — S? arex (C) and|z|(C),
respectively this theorem gives an ‘almost duality’ between total curvature and total
torsion for space curves with closed Frenet-frames. In fact, we have the following
identities

ITt| =« (C) / Indr, (Q)dA = (C)
Qes?

ITh| = 0 (C) / Indr,,(Q)dA =0
Qes?
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ITp| = [7](C) / Indr, (Q) dA = k(C).
Qes?

Proof. Let the curveC be as in the theorem and let[0, /] — R2 be an arc-
length parametrization of. Let t;(s), n.(s), by (s), & (s), andt,(s) denote the
tangent vector, the principal normal vector, the binormal vector, the curvature, and
the torsion of the curv€ at the pointr (s). Define a curvex: [0, ] — R3 by

X(s) = /S n(s)ds, for s e]0,1].
0

Note, thatx is an arc-length parametrization of a regular curve of peln order
to calculate the torsiony(s), of the curve parametrized bywe find

X' = —iity + by (2 0= kx(s) > 0)

X/// = _Kr/tr - Krznr + Tr/br - Trznr
0 —« —K,
XX'X"1=|1 0 —«k?—12|=r1/K —KT".
0 1 T/
Hence,
29 (T
LRl a S BN e ik
X K2+ 1?2 K2+ 1?2 ds k)]’

Using Theorem 15 we as > 0 get

/ Indrnr (0)dA
Qes?

i i
:/ Indr,, (Q)dA :/ T (s) ds = [Arctan(ﬁﬂ =0.
Qes? 0 Ky 0

This proves the first part of the theorem. To prove the last part of the theorem
let the curvey: [0, 1] — RS be given by

y(s) = /S b,(s)ds, for s e]0,1].
0

Note, thaty is an arc-length parametrization of a regular curve of gpeln order
to calculate the torsion(s), of the curve parametrized lyywe find

y =D
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Y=—tn (#0=«ky=|t|>0)
V' = —t/n + ket — ‘L’rzbr
0 0 k1
Yy'y"1=[0 —n —1/|=1.
1 0 <2
Hence,
Ty(s) = % = Ky (5),

r

for all s € [0, ], which together with Theorem 15 imply the last statement in the
theorem as

/ |I'1drbr (0)dA
Qes?

! i
:f Indl—ty(Q) dA 2/ Ty(s) ds 2/ kr(s)ds =« (C). O
Qes? 0 0

Remarkl19. Letr be an arc-length parametrization of a reguidrcurve with
isolated points of either zero curvature or zero torsion. If the curve allo@$ a
binormal vector field, i.e., a vector field orthogonal to botrandr”, then with
this new definition of the Frenet frame, the Frenet’s formulas are still valid but
curvature can be negative. See e.g. [5] Section 2. Denote (as in [10]) the index of
the plane curvex (s), t(s)) with respect to origin(0, 0), by the nutationy(C),
of the curveC. Allowing negative curvature of space curves the first equation in
Theorem 17 is replaced by

/ Kg,Fn dO’
In

_ /Qeszlndrn(Q) dA = fc % (Arctan(%)) ds = 27v(C).

Combining the first equation in Theorem 17 with Lemma 10 we obtain a gen-
eralization of a theorem by Jacobi (1842) that stafesimple closed principal
normal indicatrix of a regularC*-curve with nonvanishing curvature bisects the
unit 2-spheré.

THEOREM 20.Let T, be the closed principal normal indicatrix of a regulér*-
curve with nonvanishing curvature. IIf, possesses a transversaisfactorization
* In [10] there is another generalization of this theorem but that generalization uses the previous

mentioned ‘Umlaufszahl’ which not is well-defined. See also the footnote on page 53 in [5] and the
review by S. B. Jackson [Math. Rev. Vol. 8 (1947) p. 226] on [10].
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then the sum of the areas of the positive turned complements of the sub-curves
equals the sum of the areas of the negative turned complements of the sub-curves.
Proof. Under the assumptions taken in the theorem we have that

1 n
0= / Ker o = 5 ) (@) — (@),
I'n i=1

where the first equality is given in the proof of Theorem 17 and the last equality
uses Theorem 6. O

Another spinoff is the classical

COROLLARY 21.LetC: S* — R be a closed regula€3-curve lying on a sphere
of radiusr. Then the integrated torsion df is zero. Or equivalently: A tangent
indicatrix of a closed spherical regula®3-curve has integrated geodesic curvature
zero.

Proof. It is sufficient to prove the theorem in case of the unit 2-sphere. Thus let
C be a closed regulaf3-curve on the unit 2-sphere and IEtbe a space curve
with nonvanishing curvature which h@sas tangent indicatrix. Semg.the proof
of Theorem 17. Now the tangent indicatrix 6f I'; - prescribe the same curve as
the principal normal indicatrix o€, I', & Using Lemma 15 and Theorem 17 we
gett(C) = ky(I't.c) = k(I ) = 0. O

It is noteworthy that the generalization of Jacobi's theorem and the well-known
fact that closed spherical curves has integrated torsion equal to zero in fact are
equivalent. Again we note that the generalization of Jacobi’'s theorem, and hereby
Jacobi’s theorem in particular, are not to be considered as ‘space curve theorems’
as they are implied by the fact that the principal normal indicatrix is the tangent
indicatrix of a closed spherical curve.

The method used in the proof of Theorem 17 provides a wealth of integral
formulas as follows. Le€ be a regular space curve of type at le@with nonva-
nishing curvature and closed Frenet frame andlee a unit vector field along the
curveC such thatX is closed relative t@’s Frenet frame. In coordinates that is — if
C is given byr: [0, /] — R thenX given bys — a(s)t(s) + B(s)n(s) + ¥ (s)b(s)
has to be a closed regular curve of tygé regarded as a curve on the unit 2-
sphere. Hencédg, 8, y) must describe a closed curven the unit 2-sphere. Now,
integration of the geodesic curvature &f gives a new integral formula using
Theorem 15.

* In the proof of Theorem 17 these ‘curves’ were the poifitd, 0) and(0, O, 1).
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In order to obtain interesting integral formulas the vector field along the curve
must have geometric meaning. An example of such a vector field is the Darboux
vector field

T(s)t(s) + x(s)b(s)

VKE2(s) + T2(s)

This vector field is the direction af x n” and gives e.g. the direction of the rulings

on the surface known as the rectifying developable of the curve. This ruled surface
is the ruled surface with zero Gaussian curvature on which the curve is a geodesic
curve. See e.g. [9]. Using this vector field and a straightforward calculation we get

D(s) =

COROLLARY 22 (of Theorem 15).et C be a regular curve irR3 of typeC* with
nonvanishing curvature and closed Frenet frame andldte the Darboux vector
field along the curve&. ConsideringD as a closed curve of?we have

f Idp(Q) dA = &(C) = Tyl.
Qes?

6. The Tennis Ball Theorem and the Four Vertex Theorem

The tennis ball theorem [1] p. 53 statésclosed simple smooth spherical curve
dividing the sphere into two parts of equal areas has at least four inflection points
(points with zero geodesic curvatiret is natural to note that a nonsimple curve

on S? that bisectsS? in the sense of Theorem 20, need only have two inflection
points. An example is a curve of the shape of the figure eighf%rHere we

draw a connection between the tennis ball theorem and the four vertex theorem for
C* closed convex simple space curves which restricted to spherical closed curves
statesAny simple closed spherical®-curve has at least four verticgpoints with

zero torsion), see [6].

LEMMA 23. LetI" be a regular closed spherical®-curve and lef; be its tangent
indicatrix. If the number of verticeg (I") and the number of inflection poinigI")
of I both are finite therW(I") > I(T") and V(I') = I(I't) whereI(I%;) is the
number of inflection points df;.

Proof LetI" be as in the lemma. We can assume thdies on the unit 2-
sphere. As the curvature, and the geodesic curvature,, of I" fulfil 1 + ng = k?
the curvature has global minima precisely in the inflection point§.oBy the
equationkk,t = «’, which is easily derived from [12] equation (6) p. 365, all
other local extremas of the curvaturelofie in vertices ofl". Assuming tha (I")
and/ (T") both are finite Rolles theorem givéqT") > I(IN).

In the proof of Theorem 15 we found = ««, ,, wherek, r, is the geo-
desic curvature of the tangent indicatrix Bf I';. As the spherical curv& has
nonvanishing curvature we conclude thatl™) = 7 (). O
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The tennis ball theorem, the ‘spherical’ four vertex theorem, and their connect-
ing Lemma 23 give

THEOREM 24.Let T be a regular closed spherical’3-curve and letl’; be its
tangent indicatrix. Ifl" or I'; is simple orT is the iterated tangent indicatrix of a
simple spherical curve, thel has at least four vertices anid; has at least four
inflection points.

Proof. Let "y be a sufficiently smooth closed spherical curve andlet,, . ..
be its iterated tangent indicatrices. By Lemma 23 we have

ITo) S V(I =1Ty) VI =IT2) <.

If I',, n > 0, is simple thenvV (I",) > 4, by the four vertex theorem. Hence,
V() > 4fori >nandI(I';) > 4forj >n+1.1fI,, n > 1, is simple then
by Theorem 20 and the proof of Corollary 2} bisects the unit 2-sphere. Hence,
I(",) > 4 by the tennis ball theorem aid(T’;) > 4 fori > n —1andI(l';) > 4
for j > n. O

7. Topological Bounds for Geodesic Curvature

In this section we consider closed curves on the 2-sphere amith transversal
self-intersectionsThe (integral) formulas for integrated geodesic curvature of a
spherical curvd” presented here,

_ _1iy ot
/r ky(0) do = /Q ,Indr(0)dA = zg(msz,.) w@h),

give some topological bonds on integrated geodesic curvature. Letmdaxde-
note the maximal value of Irdon the complement df and let mir{indr) denote
the minimal value of Ind. Recall that scsft") is the simple closed sub-curve num-
ber of I" and finally that §I') is the number of self-intersections Bfas defined in
Section 2. As each component B complement have area less than we get
the inequalities

=27 (s(I') + 1) < =27 scsnI') < 47 min(Indp) < / Kkq(0) do,
r

/ Kkq(0)|, do < 4w max(Indr) < 27 scsil’) < 2 (s(I") + 1).
r

By Theorem 17 the total curvature of a reguizf-curve,C, with nonvanishing
curvature and nonvanishing torsion equals the integrated geodesic curvature of its
binormal indicatrix,I",. This gives the inequalities

k(C) = / kg(0)do < 4w max(Indr,)
I'p

< 2rsesly) < 2n(s(Tp) + 1).
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In the following we use some results on total curvature of closed space curves
that all can be found in [7]. The first result is due to W. Fenchel who in 1929
proved that a closed space curve has total curvatu@r, where equality holds
if and only if the curve is planar and convex. As we have assumed nonvanishing
torsion we have a strict inequality. The other result is due to J.W. Milnor and states
that if we let K be a knotted knot type and define the curvature of a knot type
k(K) as the greatest lower bound of the total curvature of its representatives, then
k(K) = 27, whereu is an integee> 2 (the crookedness of the knot type defined
as the minimal number of local maxima in any direction of any representative of the
knot typeK —thus the crookedness equals the bridge number of the knot type). This
greatest lower bound is never attained for knotted space curves. By the inequalities

2npu < k(C) < 2rsesnly) < 2n(s(Tp) + 1),
whereu = 1 corresponds to unknotted space curves, we get

THEOREM 25 LetC be a regularC® representative of a knot tyge with crooked-
nessu(K). If C has both nonvanishing curvature and torsion then the binormal
indicatrix of C, I'y, has simple closed sub-curve number $Csh > w(K) + 1
andT has at leasj self-intersectiongin the sense of Sectid).

EXAMPLE 26. The standard shadow of the trefoil knot has three self-intersections
but it can not be obtained as a stereographic projection of the binormal indicatrix
of a knotted space curve — since this shadow has simple closed sub-curve number
equal to two.

8. Knots and SCS-factorization

Recall the construction of Seifert surfaces from a knot diagram. Firstly the knot
diagram is ‘factorized’ into a number of disjoint simple closed curves, the so-called
Seifert circles. Each Seifert circle bounds a disc and these disjoined discs are glued
together by half twisted bands given by the crossings in which the ‘factorizations’
have taken place. The constructed Seifert surface is an embedded orientable surface
with the knot as its only boundary curve.

Let K D be a knot diagram and I&D — S; + - - -+ S, be an scs-factorization
of the shadow of this knot diagram. Using the Seifert construction on an scs-
factorization of a knot diagram we also get an orientable surface, with the knot as
its only boundary curve. In the following we call such a surface an scs-surface. The
simple closed sub-curves in an scs-factorization may intersect each other. Hence,
an scs-surface may, and generally will, have self-intersections — but each disc is
embedded.

THEOREM 27.All scs-surfaces are immersed discs
Proof.Let K D be a knot diagram of a kndf and letK D — S1+---+ S, be an
scs-factorization of the shadow of this knot diagram. By the Seifert construction the
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scs-surface has only one boundary curve, the knot, and the scs-surface is orientable.
The genusg, of a surface constructed by the Seifert construction can be found
in any textbook on knots andg2equals the number of half twisted bands minus

the number of discs plus one. The Seifert construction from an scs-factorization
KD — S1+---+ S, replaces the simple closed sub-curves laydiscs and the

(n — 1) cutting points by(n — 1) half twisted bands. Hence, the genus of the scs-
surfaceS is g(S) = %((n —1) —n+ 1) = 0 and the scs-surface is topologically a
disc. |

Start with an scs-surface of a knot and deform the surface until it is an embed-
ding. Now the boundary of the embedded surface is unknotted by Theorem 27.
Hence, by removing the self-intersections of the scs-surface we unknot the bound-
ary curve. On the other hand, change a knot diagi#im, to a knot diagram of the
unknot, U D, by a number of crossing changes. The two knot diagr&nfisand
U D possess the same scs-factorization& If possesses an scs-factorization such
that these changes of crossings do not take place in cutting points, then the self-
intersections of the corresponding scs-surface are removed. Therefore, scs-surfaces
are intimately connected with the unknotting of knots. Here we improve a standard
upper bound on the unknotting number.

THEOREM 28.LetK D be a knot diagram of akndt and letK D — S1+---+3S,
be an scs-factorization of order of the shadow of this knot diagram.dfK D) is
the number of crossings ik D andu(K) is the unknotting number of the knkit
thenu(K) < 3(c(KD) —n + 1).

Proof.LetK, KD — S1+---+8,, andu(K) be as in the theorem and I&be
the scs-surface defined by the scs-factorization. Recall, that the scs-factorization is
obtained by(n — 1) elementary factorizations D — S;+I'y — S1+So+1 —
cor—=> 8§14+ 8+ -+ S,. Consider the elementary factorizati&D — S; + I'y.

Letm, denote the number of crossings betwégmandI'; not counting the cutting
point betweenS; andI';. As S; andI'; are closed curves and they only have
transversal intersectiona; is even. By changing at most half of twe, cross-
ings we can brings; to lie entirely abovd™; or entirely belowI';. Hence, a disc
spanned by; need not intersedt; after at mosin; /2 crossing changes in the knot
diagramK D.

Doing these changes of crossings for each elementary factorization we can un-
knot the diagrank D by changing at most half of the crossings not used as cutting
points. Hence, the kn&t can be unknotted by use of at m@stK D) — (n — 1))
changes. O

The orders of scs-factorizations of a knot diagram are generally changed when
the knot diagram is changed by Reidemeister moves. It is therefore natural to
define a knot invariant by attaching to each knot the minimal order of all scs-
factorizations of any knot diagram of the knot. This gives a measure of complexity



GAUSS-BONNET'S THEOREM AND CLOSED FRENET FRAMES 315

of the knot type — but due to the quite surprising Theorem 29 this measure only
detects knottedness.

THEOREM 29.The unknot is the only knot with a knot diagrdansimple curvie
that can be factorized into one simple closed curve. Any knotted knot has a knot
diagram that can be factorized into two simple closed curves

Proof (Sketch). The first part of the theorem is obvious. To prove the last part
let K D be a knot diagram with an scs-factorizati®D — S, + - - - + S, of order
n > 3 and letS be a corresponding scs-surface. The surfacensists of: discs,
D, ..., D,, each of which is embedded and these discs are connected-by)
half-twisted bands. Lets assume that there is only one half-twisted band attached
to D; connectingD; and D,. If D; and D5, intersects then this intersection can
be pushed intds, ..., D, without changing the knot type of the boundarySof
The part of the surfacé given by D, and D, and their connecting band is now
embedded allowing us to consider it as one embedded disc. We can now flatten
out the(n — 1)-disc surface and obtain a knot diagram with an scs-factorization of
order(n — 1). Hence, by changing the knot diagram we can reduce the order of
scs-factorizations until order two is reached. O
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