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§ 1 .  I n t r o d u c t i o n  

1.1. F o r m u l a t i o n  of  the  P r o b l e m .  The  t e r m i n o l o g y  of  th i s  p a p e r  i s  tha t  of  d i f f e r e n t i a l  topo logy .  In 
p a r t i c u l a r ,  s m o o t h  m a n i f o l d s  a r e  c a l l e d  m a n i f o l d s ,  s u b m a n i f o l d s  of  s m o o t h  m a n i f o l d s  in the s e n s e  of d i f -  
f e r e n t i a l  topo logy  a r e  c a l l e d  s u b m a n i f o l d s ,  and  s m o o t h  O ( S O ) - f i b e r s  a r e  c a l l e d  O ( S O ) - f i b e r s .  

The  p r o b l e m  to which  th is  p a p e r  i s  de vo t e d  m a y  be  f o r m u l a t e d  a s  fo l l ows .  Le t  X be  a connec t ed  
c l o s e d  f o u r - d i m e n s i o n a l  m a n i f o l d ,  and  le t  ~ be  an e l e m e n t  of  the  ( in teger )  h o m o l o g y  group  Hz(X). We a s -  
s u m e  tha t  the  a c t i o n  of  t r i v i a l  f a c t o r s  i s  e x c l u d e d ,  so tha t  HI(X) = 0. What  is  the  m i n i m a l  genus  o f  the 
( o r i e n t e d  c o n n e c t e d  c l o s e d  t w o - d i m e n s i o n a l )  s u b m a n i f o l d  r e a l i z i n g  c l a s s  ~ ? 

To a n s w e r  th i s  q u e s t i o n  we m u s t  l e a r n  how to f ind e f f e c t i v e  u p p e r  and l o w e r  bounds  fo r  th is  m i n i -  
m a l  genus .  We s h a l l  d e a l  h e r e  wi th  l o w e r  bounds .  

1.2. R e s u l t s  to be  Found  in the  L i t e r a t u r e .  The  a u t h o r  is  a w a r e  of  only  t h r e e  p u b l i c a t i o n s  c o n t a i n -  
ing such  b o u n d s ,  and t h e s e  fo r  s p e c i a l  c a s e s  only .  The  c a s e  i s  c i t ed  in [5] when the r e a l i z i n g  s u b m a n i f o l d  
canno t  be a s p h e r e .  In K e r v a i r e  and M i l n o r  [3], th i s  e x a m p l e  is  g e n e r a l i z e d  to the  t h e o r e m :  i f  the  c l a s s  of  
~, r e d u c e d  modu lo  2, is  the P o i n c a r 4  dua l  to the S t i e f e l - W h i t n e y  c l a s s  w2(X), and i f  ~ - a ( X )  ~ 0 mod  16 
( ~  is  the  s e l f - l i n k a g e  index  of  c l a s s  wh i l e  ~, a(X) i s  the  s i g n a t u r e  of  m a n i f o l d  X), then  the r e a l i z i n g  s u b -  
man i fo ld  cannot  be  a s p h e r e  ( this  t h e o r e m  is a l s o  t r u e  wi thout  the  a s s u m p t i o n  tha t  Hi(X) - 0, i f  man i fo ld  X 
is  o r i e n t a b l e ) .  I t  i s  p r o v e n  in T r i s t r a m  [8] tha t  i f  X = S 2 × S 2 and ~ = nl~ 1 + n2~2, w h e r e  ~i, ~2 a r e  the 
n a t u r a l  g e n e r a t o r s  of  group H2(S 2 x S 2) * wh i l e  n I and  n 2 a r e  n o n - z e r o  i n t e g e r s  wi th  (n 1, n 2) ¢ 1, then  the  
r e a l i z i n g  s u b m a n i f o l d  canno t  be  a s p h e r e .  I t  is  a l s o  a s s e r t e d  t h e r e  tha t  the  r e a l i z i n g  s u b m a n i f o l d  cannot  
be  a s p h e r e  in  the  c a s e  when X = C P  2 and ¢ = n~0, w h e r e  ~0 i s  a g e n e r a t o r  o f  the  g roup  H2(CP 2) and n is  an  
i n t e g e r  wi th  In] > 2. 

The  K e r v a i r e - M i l n o r  f o r m u l a t i o n  g e n e r a l i z e s  a t h e o r e m  of  the  a u t h o r  a c c o r d i n g  to which  the  s i g n a -  
t u r e  of  an  o r i e n t e d  c l o s e d  f o u r - d i m e n s i o n a l  m a n i f o l d  wi th  w 2 = 0 i s  d i v i s i b l e  b y  16, and i s  qui te  s i m p l y  d e -  
r i v e d  f r o m  th i s  t h e o r e m .  T r i s t r a m ' s  p r o o f  i s  b a s e d  on the  w e l l - k n o w n  c o n n e c t i o n  b e t w e e n  the  p r o b l e m  a t  
hand and the t h e o r y  of  l i n k s ,  and m a k e s  u s e  of  t he  a l g e b r a i c  i n v a r i a n t s  of  l i nks .  I t  i s  p r o b a b l e  tha t  th i s  
me thod  could  be  p r o d u c t i v e  of  f u r t h e r  bound s ,  bu t  i t  s e e m s  m o r e  p r o m i s i n g  to e xp lo i t  t h i s  c onne c t i on  in the  
r e v e r s e  d i r e c t i o n ,  for  e x a m p l e ,  fo r  the u s e  in l ink t h e o r y  o f  the  bounds  to be  found in the  p r e s e n t  p a p e r .  

1.3. P r i n c i p a l  R e s u l t  of  the  P a p e r .  The  p r i n c i p a l  r e s u l t  of  the  p r e s e n t  p a p e r  i s  con ta ined  in  the 
fo l lowing  t h e o r e m .  

BASIC T H E O R E M .  L e t  A be an  o r i e n t e d  c o n n e c t e d  c l o s e d  t w o - d i m e n s i o n a l  s u b m a n i f o l d  of  c o n -  
nec t ed  c l o s e d  f o u r - d i m e n s i o n a l  m a n i f o l d  X with  HI(X) = 0, r e a l i z i n g  c l a s s  ~ ¢ H2(X), and l e t  g b e  the  genus  
of  s u r f a c e  A.  I f  ~ is  d i v i s i b l e  b y  2 then  

g > ~ a (x) I b2 (x) 
4 2 2 ' 

w h e r e  b2(x) i s  the t w o - d i m e n s i o n a l  Be t t i  n u m b e r  o f  m a n i f o l d  X. I f  ~ i s  d i v i s i b l e  by  odd n u m b e r  h, a p o w e r  
of  a p r i m e ,  then  

L e n i n g r a d  S ta te  U n i v e r s i t y .  T r a n s l a t e d  f r o m  F u n k t s i o n a l ' n y i  Ana l i z  i Ego P r i l o z h e n i y a ,  Vol .  5,  
No. 1, pp.  48-60 ,  J a n u a r y - M a r c h ,  1971. O r i g i n a l  a r t i c l e  s u b m i t t e d  June  24, 1970. 

© 1971 Consultants Bureau,. a division o[ Plenum Publishing Corporation, 227 West 17th Street, New York, 
N. Y. 10011. All rights reserved. This article cannot be reproduced [or any purpose whatsoever without 
permission o[ the publisher. A copy o[ this article is available from the publisher for $15.00. 

39 



g ~  (h2--i)~4h 2 o(X)_12 b~(X)2 

The last inequality also remains  valid in the case when h is an a rb i t r a ry  odd number  dividing ~ if group 
~I(X\A) is finite. 

The proof  is based on the study of f inite-sheeted cyc l ic  ramified coverings of manifold X with 
branches along A. It turns out that with such a covering the signature of the covering manifold can be 
computed in t e rms  of a(X), ~ ,  and the number of sheets of the covering and, in par t icu lar ,  does not de-  
pend on g, while its two-dimensional  Betti number,  in the most  interest ing cases ,  increases  l inearly with 
g. Since the two-dimensional  Betti number of a covering manifold cannot be less than its s ignature,  we 
obtain a lower bound for g. In many cases  this bound is  strengthened by the available information on the 
action of the group of automorphisms of the coverings in the cohomologies of the covering manifold (the 
deepest information is provided by the signature formula of At 'ya -Z inger  [1], §6). I might add that a s im- 
i lar  method was recent ly  by Massey [4] in the proof  of the Whitney hypothesis on normal  Euler numbers 
of nonoriented surfaces  in R4; see,  1.5. 

1.4. Examples.  If  X = CP 2 and ~ = n~ 0 (where, as in section 1.2, ~0 is a genera tor  of group H2(CP2), 

and n is an integer} then, according to the basic theorem,  g ~  --t4n2 - -  1 when n is even, and g ~ h~ - 1 n 2 _  1 4h 2 
when n ~ 0 rood h, where  h is a power of an odd pr ime.  On the other hand, ~ is real ized when n ~ 0 by 
algebraic  curves  of genus 1 /2 ( In ] - l )  ( In[-2) ,  and a real izat ion of a submanifold of lower genus is unknown 
for any n ~ 0. When Inl_< 41 this information provides an exact value of the minimal genus of the real izing 
surface  {what is new, of course ,  is only the exact  value g =3 for n =4). For  la rger  values of Inl, the upper 
bound is a lmost  twice as large as the lower one. 

If  X = S 2 x S 2 and ~ = nl~ 1 + n2~ 2 (as in Section 1.2, $1, ~2 are  natural  genera tors  of the group H2(S 2 × $2}, 
1 

and n I and n 2 a re  integers} then, on the basis of the theorem,  g~--~ [n~n2]- 1 for even n 1 and n2, and 

g~ _~Tin~n2h~-- l [ - - I  when n l, n 2 -= 0 mod h, where h is a power of an odd pr ime.  On the other hand, ~ is 

real ized,  when n 1 ~ 0 and n 2 ~ 0, by algebraic curves  of genus ( [n i l - l )  ([n2[-1), and no realizations by sub- 
manifolds of lower genus a re  known for any n I ~ 0, n 2 ~ 0. Exact values of the minimal genus of the rea l iz -  
ing surface  are  obtained f rom this information only in the ease when n 1 and n 2 are  even and one of them 
equals 2 or  - 2 ,  and in the tr ivial  ease when [ n i l -  1 or  In2[ -< 1. For  large values of In1[, In2[, the upper 
bound is again a lmost  twice as  large as the lower bound. 

In these two examples the resul ts  of the present  paper  disclose information which is contained in the 
Kerva i re -Mi lnor  theorem.  This is not the case if X = CP 2 # CP 2 and ~ = 3~ 1 + ~2, where ~l, ~2 a r e  natural  
genera tors  of group H2(CP ~ # CP2). By vir tue of the Kerva i re -Mi lnor  theorem,  the class  of ~ is not rea l -  
ized by a sphere,  while our  theorems say nothing on this point. 

1.5. The Non-orientable Case.  Our basic theorem takes the following fo rm for the case when sub- 
manifold A is non-orientable.  

THEOREM. Let A be a non-orientable connected closed two-dimensional  submanifold of connected 
closed four-dimensional  manifold X with Hi(X) = 0, and let g be the genus of surface A (i.e., 2 - x ( A ) ,  where 
X is the Euler  charac ter i s t ic ) .  If  A real izes  the zero  element of group H2(X; Z2) , then 

where a is the ("torsion"} normal  Euler  number of surface A. 

The s imples t  co ro l l a ry  of this theorem is that the normal  Euler  number of a non-oriented connected 
closed two-dimensional  submanifold of sphere S 4 does not exceed twice the ge~as of this submanifold. As 
a conjecture ,  this s ta tement  had been published in 1941 by Whitney [9]. Recently, Massey [4] published 
his proof  of it, differing only slightly f rom that contained in the present  paper.  Par t ia l  resul ts  bearing on 
the Whitney conjecture and deriving f rom the Kerva i re -Mi lnor  theorem a re  to be found in [6]. 
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§ 2 .  B a s i c  C o n s t r u c t i o n  

2.1. Initial Data. We assume as given: oriented connected closed four-dimensional  manifold X 
with HI(X) = 0; its oriented connected closed two-dimensional  submanifold A realizing the nonzero class 
of ~ E H2(X); integer m > 1 dividing the class of ~. These conventions will be al tered only in § 7. 

We shall denote by n the largest  natural number dividing ~; the fract ion n / m  will be denoted by/~; 
the self- l inkage index of class  ~ (the normal  Euler number  of surface A) will be denoted by a; g will de- 
note the genus of surface A; the fundamental group ul{X\A) will be denoted by 11. 

We r emark  that it follows f rom the condition HI(X) = 0 that (by virtue of the Poincar~ duality) Tor  
H2(X) = 0, H3(X) = 0. 

2.2. Manifold U. Let T be a (closed) cyl indrical  neighborhood of surface A in X, and let U be its 
closed complement.  

A neighborhood of T has the s t ruc tu re  of an SO(2)-fiber over  A with fiber D 2 and Euler number a ,  
while its boundary 0T has the s t ruc ture  of the associa ted fibration with fiber S 1. The fibers of these 
fibrations over  marked points of surface A will be denoted by D and C. The complement U is an oriented 
connected compact  four-dimensional  manifold with boundary 0 U = OT. It is a deformation r e t r ac t  of mani-  
fold X \ A ,  so that the fundamental group 7rl(U) can be identified with 11. 

Group Hi(U) is isomorphic to Zn and the embedding homomorph i sm HI(C) -,- HI(U) is an epimorphism:  

Proof .  Study of the homology sequences of the pai r  X, A shows that H3{X, A) = 0 and Tor  H2(X, A) 
Zn. Since the embedding (X, A) --* (X, T) is a homotopy equivalence then, in these relat ionships,  the pai r  
X, A can be replaced by the pa i r  X, T, af ter  which the excision permits  the replacement  in them of pair  
X, T by the pair  U, aU. Thus, H3(U, 0U) = 0, Tor  H2{U, 0U) -~ Zn, and, by virtue of the Poincar~-Lefschetz  
duality and the formula  of universal  coefficients,  

Hi (LO ~ H" (U, OU; Z~ ~ Horn (H,~ (U, OU), Z) Q Ext (H~ (U, OU), Z) ~ Z,. 

Consider  the embedding homomorphisms  

e : HI (ov) ~ H~ (T), ~ : H, (OU)-~ Hi (tO, ,~ : H, (C)-~ Hi (oto. 

It follows f rom the equation Hi(X) = 0 (by virtue of the exactness of the additive sequences of t r iads of X, 
T, and U) that the homomorphism a (~ 3: HI(aU) --* Hi(T) • Hi(U) is an epimorphism.  In par t icu lar ,  for 
any u E HI(U) there exists  u 1 E HI(OU) with (a • 3) (ul) = (0, u), i.e.,  with a(u  1) = 0, 3(u t) =u,  and this 
means that fl(Ker ~) = H~(U). But Ker ot = Im y (this is obvious f rom the commutative d iagram 

0 
• H2 (D, C) -> H, (C) 

! , .  
0 ~ tt 

H e (r, aT) -> H 1 (OT) -> I-f, (T), 

in which the lower row is exact,  while the upper boundary homomorphism and the left ver t ical  homomor-  
phism, corresponding to an embedding are  i somorphisms) .  Thus, Im (3 ° ~/) = fl (Im 1') = Hi(U), while 

° 3' is also the embedding homomorphism of in teres t  to us Hi(C) ~HI(U).  

2.8. Covering p: V -~ U. We denote by iG, where G is a group and i a natural number ,  the set  of 
those x E G, for which xi is contained in the commutant  [G, G]. It is c lear  that iG is a normal  divisor  con- 
taining [G, G]. If group HI(G) = G/[G, G] is isomorphic to Zi . j  (with some natural j), then the group G/iG 
is i somorphic  to Zj. 

For  us ,  the role of G will be played by the group 7ri(U) = II, and the roles  of i and j by the numbers 
# = n f m  and m. Since HI(H) = HI(U) ~ Zn, then II/#II ~ Zm- 

Let us const ruct  the covering p: V -~U with p . r l ( V )  =/~II. This is a regular  m-sheeted  covering,  
and V is an oriented connected compact  four-dimensional  manifold with boundary DV = p-l(OU). It follows 
f rom the fact  that the embedding homomorphism HI(C ) ~ HI(U) is an ep imorphism that the composit ion of 
the embedding homomorphism ~rl(C) ~ 7rl(U) = II and the project ion II -~ I I /p  II is also an epimorphism,  and 
f rom this it fo]lows that the pre image  p-l(C) of neighborhood C is connec ted  (We have used here the evi-  
dent genera l  theorem:  let spaces F ,  F 0 c F and A be l inearly connected, and let ¢: ~ --* F be a regular  
covering; if the composit ion of the embedding homomorphism ~i(F 0) --* lrl(F) and the project ion 7rl(F) -* 
~rl(F)/~°*lrl(A) is an epimorphism,  then the set  ¢ - l (F  0) is l inearly connected.) Thanks to this connectedness 
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of manifold aV we can be confident of the s t ructure  of the SO(2)-fibration over  A with fiber S -1. The p ro -  
jection of this f ibration is the composition of contract ion 9V ~ 813 of covering p (this contraction,  as p i t -  
self, is an m-sheeted  covering), and the project ion 9U -* A. The Euler number of this fibration equals 
a /m .  

2.4. Manifold Y. Let W be the total manifold of the associated SO(2)-fibration with fiber D 2, We 
shall denote the null section of this fibration by B. The boundary 0W can be identified with ~V and, using 
this ident i fcat ion,  we splice V and W in oriented connected closed four-dimensional  manifold Y (its or ien-  
tation is defined by the orientation of V). 

The covering p: V --* U is naturally continued to the mapping P: Y --* X which may be called a r ami -  
fied covering with ramificat ions along A. Over XkA this is a true covering,  with manifold B = P-I(A) be-  
ing diffeomorphically mapped by P onto A. 

The au tomorph i sms  of this ramified covering (i.e., the diffeomorphisms 0: Y ~ Y such that P o 0 =P) 
constitute a group, which we shall denote by ~r. This group is canonically isomorphic to group I1/laI1 of the 
automorphisms of covering p: V --~ U and is therefore  isomorphic to Zm. The set  of its fLxed points is 
p rec ise ly  B. On the complement  Y\B it acts freely and, on the fibers of f ibration aV ~ A, as a rotation 
group. It is c lear  that in r there is exactly one automorphism which rotates  these fibers by angle 360°/m 
(we consider  the f ibers to be oriented in accordance  with the orientations of A and 0V), and that this auto- 
morph ism is a genera tor  of group 7r. It will be denoted by t. 

§ 3 .  T h e  B e t t i  N u m b e r  o f  M a n i f o l d  Y 

3.1. The Group Hi(V). Since the covering p: V --* U is defined by the condition p.Trt(V) = #II and 
the homomorphism p . :  lrl(v) --~II is a monomorphism,  group 7q(V) is isomorphic  to /zI I .  Consequently, 

H, (Y) ~ H, (~II). (1) 

We are principally interested in the case when this group is finite, i.e., when bi(V) = O. For example, 
this is the case  when group II i tself  is finite. A less obvious condition, necessa ry  for the sequel,  will be 
specified in sect ion 3.5. Here we shall only note that, whatever the group G, subgroup iG and, with it, sub- 
group [iG, iG], increases  when the number i is replaced by its multiple. Therefore ,  if i 1 is divisible by i 
then, f rom the finiteness of groups G/iG and HI(iG), follows the finiteness of group Hi(jiG). In par t icu lar ,  
if the group of (1) is finite then it remains  finite upon replacement  of the number  m by its d iv isors .  

3.2. Formulas  for bl(Y) and b~(Y). The following equations are  valid 

b~ (y) = b~ (v), (2) 

b,(Y) ----- mb~(X) + 2(m--  1)g + 2 b~ (V). (3) 

In par t icu lar ,  if group HI(#II) is finite then 

b2(.Y) --- mb,(X) ÷ 2(m-- 1)g. 

Proof .  The homology sequence of the pai r  W, ~W (with rational coefficients) shows that the embed-  
ding homomorphism HI(0W;Q) --* Hi(W; Q) is an isomorphism.  This fact allows us to derive Eq. (2) f rom 
the additive sequence of t r iads Y, V, and W (with rational coefficients).  

We can compute the Euler  charac te r i s t i c  of manifold Y by the obvious formula 

Z (Y) = rn~ (X) - -  (m-- 1) Z (A). (4) 

Since b3(X~ = bl(X) = 0 and b3(Y) = bl(Y) = bl(V), then x(X) = 2 + b~(X) and X (Y) = 2-2bi(V) + b2(Y). Sub- 
stituting these values of X (X) and X (Y), and the value X (A) = 2 -  2g into formula (4), we obtain (3). 

3.3. LEMMA. Let r be an automorphism of infinite, f ini tely-generated,  Abelian group F, with 
r j  = 1. If  j is a power of p r ime  q, then the o rde r  of fac tor  group F / I m  ( 1 - r )  is either infinite o r  is divi- 
sible by q. 

Proof.  Factor izat ion into periodic subgroups shows that it suffices to consider  the case when Tor  
F = 0. In this case ,  the o rder  of factor  group F / I m  ( l - r ) ,  if it is finite, equals the value of the cha rac t e r -  
istic polynomial of au tomorphism r at point 1. This cha r ac t e r i s t i c  polynomial has the form 

k / q - - 1  ~, Or 

',s- ''s'r-') ' " '  
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w h e r e  P0, Pl . . . . .  P r  a r e  n o n - n e g a t i v e  i n t e g e r s  wi th  p o s i t i v e  s u m .  S ince  the  f i n i t e n e s s  of  f a c t o r  g roup  
F / I m  ( 1 -  7) is  e q u i v a l e n t  to the  equa t ion  P0 = 0, i t  r e m a i n s  to r e m a r k  tha t  when  P0 = 0 the va lue  of p o l y -  
n o m i a l  (5) a t  po in t  k = 1 e q u a l s  qPI + .  . • +Pk. 

3 .4 .  Suf f i c ien t  Cond i t ion  fo r  F i n i t e n e s s  o f  Group  Hl( iG) .  L e t  i be  a n a t u r a l  n u m b e r ,  j a p o w e r  of  a 
p r i m e ,  and G a g roup  wi th  Hi(G) -~ Zi . j .  I f  g r o u p  Hl(iG) i s  f i n i t e l y - g e n e r a t e d ,  then  i t  i s  f i n i t e . *  

P r o o f .  I t  su f f i ce s  to c o n s i d e r  the  c a s e  when the n u m b e r s  i and j a r e  r e l a t i v e l y  p r i m e :  in  the  g e n -  
e r a l  c a s e  they  c a n  be  r e p l a c e d  b y  u s i n g  the  r e m a r k  in s e c t i o n  3.1,  b y  the  n u m b e r s  i / ( i ,  j ) ,  j • ( i ,  j ) ,  w h e r e  
(i,  j) i s  the  g r e a t e s t  c o m m o n  d i v i s o r  of  the n u m b e r s  i and j .  G r o u p  G ac t s  in G as  a g roup  of  i n n e r  a u t o -  
m o r p h i s m s ,  and  th i s  d e f i n e s  the  a c t i o n  of  g roup  G / i G  in  HI( iG).  L e t  r b e  a g e n e r a t o r  of  g roup  G / i G .  Con-  
s i d e r  the  s e q u e n c e  

0 --~ H, (,G)/Im ( 1 - -  "0 -*  Ht (G) -~  G/,G--> O, 

in  which  the  s e c o n d  h o m o m o r p h i s m  on the  lef t  i s  de f ined  by the e m b e d d i n g  iG --~ G, whi le  the  t h i r d  i s  a 
p r o j e c t i o n .  A s i m p l e  check  s h o w s  tha t  t h i s  s e q u e n c e  i s  e x a c t  (i t  i s  a s p e c i a l  c a s e  of  a w e l l - k n o w n  s e -  
quence  of  c o v e r i n g  t heo ry ;  s e e ,  fo r  e x a m p l e ,  [2], c h a p t e r  16, ~9).  C o n s e q u e n t l y ,  g r o u p  H i ( i G ) / I m  ( l - r )  
i s  i s o m o r p h i c  to Z l which ,  by  v i r t u e  of L e m m a  3.3 i s  i m p o s s i b l e  i f  g roup  HI(iG) i s  i n f in i t e .  

3 .5.  C O R O L L A R Y .  I f  m is  a p o w e r  of a p r i m e  then  g r o u p  HI(/~II) is  f in i t e .  

§ 4 .  A l g e b r a i c  I n t e r l u d e :  v - S i g n a t u r e  

4.1.  Def in i t ion  of  T - S i g n a t u r e .  L e t  L b e  a f i n i t e - d i m e n s i o n a l  r e a l  v e c t o r  s p a c e  and r a l i n e a r  t r a n s -  
f o r m a t i o n  o f  s p a c e  L such  tha t  T m  = 1 (m is  an  a r b i t r a r y  n a t u r a l  n u m b e r ) .  F u r t h e r m o r e ,  l e t f  be  a ( rea l )  
q u a d r a t i c  f o r m  on L,  i n v a r i a n t  u n d e r  r .  We s e t  l = [m/2 ] ,  ~ = e 27fi lm and we def ine  the  p o l y n o m i a l s  E0, 

. . . .  El by  the  f o r m u l a  

{ ~ , - -  1, if r : O, 

&(~,)=](~,--~ ' ) (~-- ; - ' ) ,  ~f I ~ r < r a / 2 .  
[ ~ -~- 1, if r = m/2.  

O b v i o u s l y ,  

l 

x m -  = I I  e , ( x ) ,  
y ~ 0  

and th i s  e x p a n s i o n  c o r r e s p o n d s  to an  e x p a n s i o n  of  s p a c e  L in  the  d i r e c t  s u m  of  s u b s p a c e s  L(r)  = K e r  E r ( r ) .  
We d e n o t e ,  fo r  r = 0 . . . . .  l ,  b y  a ( r ) ,  the  s i g n a t u r e  of f o r m f  on L ( r ) ,  and  we s e t  

l 

. ( f ,  ~) = y,,  ~ (r) c o s  ~ 
t n  

This  r e a l  a l g e b r a i c  n u m b e r  i s  c a l l e d  the  r - s i ~ a t u r e  of  f o r m f o  

I t  i s  c l e a r  tha t  a ( f ,  r )  does  not  depend  on the a r b i t r a r y  c h o i c e  of  m ( i . e . ,  i t  i s  not  changed  when m 
is  m u l t i p l i e d  by  a n a t u r a l  n u m b e r ) .  S ince  K e r  E r ( ~  1) = Ker  E r ( r ) ,  then ¢ ( f ,  r -~) = ~ ( f ,  r) .  If r = 3 ,  then 
¢ ( f ,  r) c o i n c i d e s  wi th  the o r d i n a r y  s i g n a t u r e  a ( f )  of f o r m  f .  In e v e r y  c a s e ,  l ¢ ( j ,  r) l - d im L.  

We now de f ine  the  n u m b e r s  a ' ( 0 )  . . . . .  e ' ( m - 1 )  by  the f o r m u l a  

(,~(r), if r = O , ~ ,  

] aft) if l ~ r ~ .  rn 
. ' ( r ) . :  { 2 ' T '  

] a(m--r)  ff . z ~  
2 ' 2 .. r<~.nz--1.  

O b v i o u s l y ,  ~ (f, r) -= \ '  a '  (r) .#.J 

r ~ 0  

* T h e r e  i s  a s p e c i a l  c a s e  o f  t h i s  t h e o r e m  in M a s s e y  [4]. I a m  indeb ted  to S.  A .  Y uz b in sk i i  f o r  a u s e f u l  
d i s c u s s i o n  o f  th i s  g roup  of  q u e s t i o n s .  
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4.2. Orthogonali ty of  Subspaces  L(r) .  Subspaces L(0) . . . . .  L(/) a re  pa i rwise  orthogonal  with r e -  
spect  to f o r m f .  

I t  is n e c e s s a r y  to show that  i f  u E L(r) ,  v E L(ri) and r < r l, then (u, v) = 0. The re  a r e  four  cases  to 
distinguish: 1 < r < r l ' <  m/2;  0 = r <  r l <  m/2 ;  1 -<- r < r l  = m / 2  (m even); r = 0 ,  r 1 = m/2  (m even). 

In the f i r s t  case  we p e r f o r m  s c a l a r  mult ipl icat ion of the equation r 2 u - ( g r  + ~ - r )vu  + u = 0 by r v ,  
and rep lace  (r2u, rv)  by ( ru ,  v) and (ru, rv)  by (u, v). This leads to the re la t ionship ( ru ,  v) + (u, TV) = 
(gr + g- r )  (u, v), and, exact ly  the s ame ,  (Tu, v) + (U, rV) = (~rl + £ - r l )  (u, v). Consequently,  (gr + £-r} 
(u, v) = (~rl + g-rl)  (u, v),  and since ~r  + £ - r  ~ £- r l ,  then (u, v) = 0. 

In the three  other  c a se s ,  the p roof  is analogous,  but s imp le r .  

4.3. Cer ta in  Rela t ionships .  I t  follows f r o m  the pai rwise  orthogonali ty of spaces  L(r) that 

and, in pa r t i cu l a r ,  

rn- -1  l 

(f, ,s) :: ~ a '  (r) ~'~ :: ~ a (r) c~s 2rsn (s = 0 . . . . .  rn--  1), 
r ~ o  r ~ o  

m - - I  l 

(f) =:: ~ . ' ( r )  = ~ a (r). 
r ~ o  r ~ o  

(6) 

(7) 

S i n c e  

,n-1 Ira, if S : St, -.~ ,,rs~.--rs I = 

,z ~ ~ jOj i f  s=#sl, 
r : o  

the formulas  in (6) a r e  read i ly  inver ted .  We obtain 
m - - I  

a' (r) = -~ ~_j a ( ~ ,  TS) ~ - r s  

$==0 

(r : 0 . . . . .  rn-- 1) (8) 

and, in pa r t i cu la r ,  
t r l - - I  

a (0) = y ,  q,  (9) 
$ ~ 0  

Formulas  (6) and (8) show that  the se t  of in tegers  {a'(r)}m=-. t and the se t  of  a lgebra ic  numbers  
{a0e, rs)}~n=-01 define one another  uniquely. Since a ( f ,  V s) = a 0 P ~ ¥ m - s ) ,  the se ts  {~ (r)}/r=0, {a(f, vs)}/s= 0 
also uniquely define one another .  We note that these  se ts  const i tute an essen t ia l  pa r t  of the invar iants  of 
the t r iple  L, r , f :  in o rde r  to obtain the complete  se t  of its invar iants  we need to adjoin to them the num-  
b e r  p(r) = d im L(r) (r = 0 . . . . .  I) o r  ( somet imes  m o r e  convenient) the numbers/3,(0) . . . . .  / 3 ' ( m - I ) ,  de-  
fined by the fo rmula  

l ~( r ) ,  if  r = O ,  2 ,  

~(r) , if l ~ < r ~ 2 ,  ~' (0 = {-'y--  

~ ( m - - r )  if rn ~ r . % m - - 1 .  
2 ' 2 

We can p r e sen t  fo rmula  (9) in the f o r m  
m - - 1  

s=l 

and substi tute this value of  a (f) in fo rmula  (8). We get 
I 72--1 rn--1  

a '  (r) = a (0)  - -  - ~  ~ ~ q ,  xs) (1 - -  ~-~s)  = a (0) - -  2rn - -  ~q' ~ (f '  vs) sin ~ rsnm ( 1 0 )  
$ ~ 1  5 2 1  

Fo rmula  (10) provides  the number s ,  needed in the sequel ,  or'(1) . . . . .  a ' ( m - 1 )  in t e r m s  of a(0) and or(f, r ) ,  
. . . .  a{f,  ~m-1).  
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§ 5 .  A c t i o n  o f  G r o u p  ~r in  H 2 ( y ;  R) 

5.1. Notation. In this section we study the automorphism t*:H2(y; R) -~ H2(y, R), defined by the 
dif feomorphism t: Y --~ Y (see, 2.4). This study is comprehended in the algebraic scheme of the previous 
section if one takes H2(y; it) for L, au tomorphism t* for T, and the quadratic form defined on H2(Y; R) by 
cohomological  multiplication as f .  This tr iple L, T,f corresponds  to the subspace L(r) = Ker  Er(T) and 
the numbers fl(r) (fl'(r)), and a( r )  (a '(r));  we will now compute them. 

In addition to the ramified covering P: Y --* X, constructed on the basis of tr iple X, A, m, we need 
to cons ider  the ramified covering Ph: Yh "-* X, constructed in the same way, but on the basis  of the triple 
X, A, h, in which X and A are the same,  but h is a divisor  of m. The objects pertaining to cover ing 
Ph: Yh --~ X, will be denoted the same as the corresponding objects appertaining to cover ing P: X ~ X, 
but with subscr ip t  h. 

5.2. Computation of ~(0) and a(0). Consider the homomorphism P*: H2(X; R) --~H2(Y; R), defined 
by the mapping P: Y ~ X. Since P is a project ion of manifold Y on the space of orbits of group 7r ~ Zm, 
then P* isomorphical ly  maps H2(X; R) on the set  of elements  of group H2(Y; It) which are  fixed with re -  
spect  to ~r (see, for example,  [7], p. 38), i .e. ,  on L(0) = K e r  E0(r). Moreover ,  (P*X)2[Y] = mx2[X] for  
x E H2(X; R), so that the s ignature  a ( f / Im P*) equals the signature a(X) of manifold X. Thus, 

(0) = b. (X), (11) 

(0) = ~ ( ~  (12)  

5.3. LEMMA. If m = wh then 

Proof .  We set  v = n/h. Since v = ~  then 

p.nl (V) = ~II C .~H = (Pa). :~ (Va) 

(cf., 3.1). This inclusion defines the w-sheeted covering ~: V -~ V h which is natural ly continued to the 
mapping P : Y -~Yh. This lat ter  can be considered as the project ion of manifold Y on the space of orbits 
of  a cycl ic  group of o rde r  w, generated by the di f feomorphism th, so that homomorphism P*: H2(Yh; R) 
H2(y; R) i somorphical ly  maps H2(Yh; R) on the set  of vec tors  of space H~(Y; R) which a re  fixed with r e -  
spect  to r h  (see, 5.2), i .e. ,  on the orthogonal sum of subspaces L(r) 'with r = 0 mod w.  To these facts we 
add the commutat ive d iagram 

H ~ (Y; R) ~ m (Y; R) 

H ~ (y~; ~) :_~ H~ (y~; R), 

showing that P*Lh(P) c L(wp). Thus, P* isomorphical ly  maps Lh(P) on L(wp), whence also follows (13). 

5.4. Computation of/3'(r) with r > 0. If group Hl(g[1) is finite then, when r > 0, 

~' (r) = b, (X) 5- 2g. (14) 

Proof .  If the numbers  e2Zrir/m and e27rirl/m are  conjugate over  Q, then, obviously, fl'(r) = fi '(r 0.  
Therefore  it follows f rom the equation fl'(0) ~:fl'(1) + . . .  + f l ' (m-1)  = b2(Y) that 

dim. d~rn 

where ¢p is the Euler function (summation is over  all divisors  of m less than m). Exactly the same for 
any divisor  h > 1 of m, 

~a (0) 5- ~ ~ ( h )  ~; (d) ~ b~(Yh). (15) 
dlh, d<~h 

According to sect ion 3.1, f rom the finiteness of group HI(/~ II) follows the finiteness of group Hl(vII) with 
v = r / h ,  and, therefore ,  

b2 (Y~) = hb2(X) ~ 2 ( h - -  l )g 
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(see,  3.2). Moreove r ,  in accordance  with sect ions 5.2 and 5.3, flh,0) =b2(X) , fl~(p) = ~' (-~ ~ ) .  Substituting 

these  values of bg(Yh), flh(0) and {3~(p) into (15), we see  that the numbers  /3 '(d) sa t i s fy  the s y s t e m  of l inear  
a lgebra ic  equations 

dlh, d<t~ 

(in which both the number  of  unknowns and the number  of equations a r e  one less  than the number  of divi-  
s o r s  of number  m).  As shown by the obvious induction on m,  this s y s t e m  is uniquely solvable ,  and it is 
c l e a r  that  i t  is sa t i s f ied  by the values in (14). 

5.5. The A t ' y a - Z i n g e r  Formula .  A decis ive  contr ibution to the following calculat ions is made by 
the formula  

~(f, v~) -~ a (s = 1 . . . . .  rn--  l), (16) 
ra s in  ~ -  

m 

which is  an adaptat ion to our  s i tuat ion of a spec ia l  case  of the genera l  s ignature  fo rmulas  of At 'ya  and 
Zinger .  These  genera l  fo rmulas  and the i r  p roofs  a r e  to be  found in [1], }6. We requ i re  only formula  (16). 

5.6. Computat ion of a ' ( r )  with r > 0. Knowing a(0) and a f f ,  T) . . . . .  a ( f ,  Tin-i) ,  we can compute 
ct '(r) with r = 1 . . . . .  m - 1  by formula  (10). We find: 

m - - I  s in~--m--  
2 a  

a '  (r) = ~ (X) - -  - ~  ~ s~ 
s~ l  Sill ~ -  

/n 

As will  be  shown in the next sect ion,  

m-- I  $i t l  ~ -  

y, 
s = l  s i n 2  s--~- ~ 

m 

Thus,  

= r (m--  r) when ,n ~ 2 and O.~< r ~ m. (17) 

2at (m - r) (18) ~'  (r) = ~ (X) = '  

5.7. P roo f  of  Fo rmu la  (17). We se t  ~s(r) =s in  S rsn /sin2 sn and denote the left  side of Eq. (17), i .e . ,  
m ~  ra 

the sum ~bl(r ) + . . .  + ~ m - l ( r ) ,  by ~0(r), and the r ight  side of (17), i .e . ,  r ( m - r ) ,  by  ~ ' ( r ) .  Simple ca lcu la -  
t ions show that the second di f ference  A2~s(r) = ~ s ( r  + 2 ) - 2 ~ s  (r  + 1) + ~Vs(r) equals 2cos (2(r + 1 ) s r / m ) ,  
so that,  when r = 0, . . . .  m - 2 ,  

A s ¢  (r) = A ~ , ~  (r) + . . .  + A 2 , m _ l  (r) = - -  2 .  

But we also  have Az@ '(r) = - 2  (and for  any r) and, s ince ~(0) =~'(0) and ~(1) = ~0 '(1), then ~(r)  = ~'(r) for  
r - - -0 ,  . . . , m .  

5.8. Signature of Manifold Y. Signature ~ (Y) of manifold Y is no o ther  than the s ignature  a Of) of  
f o r m f .  We can compute it  by fo rmula  (7), subst i tut ing the value of a ' ( r )  f r o m  formula  (187. Af ter  s imple  
calculat ions we obtain 

a(Y) = ma(X) (r,,~--l)a (19) 
3m 

Formula  (19) was f i r s t  obtained by  the author independently of the A t ' y a - Z i n g e r  fo rmula  on the bas i s  
of  the cor responding  va r i an t  of cobo rd i sm theory.  This  theory  pe rmi t s  the genera l  computat ion of the 
s ignature  a(Y) to be reduced to i ts  computat ion for  concre te  complex -a lgeb ra i c  ramif ied  cover ings ,  which 
can be p e r f o r m e d  by t radi t ional  means .  For tunate ly ,  when m = 2, 3, fo rmula  (16) is  eas i ly  der ivable  f rom 
fo rmula  (19). A s imple  genera l  p roof  of fo rmula  (16) is not known to the author .  
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§ 6 .  B o u n d s  o n  G e n u s  g 

6.1. Basic Inequality_. The invariants of ramif ied covering P: Y - -  X considered in the previous sec -  
tions can be divided into two groups:  in the f i rs t  belong the numbers  b2(Y) and fl(r) (fl'(r)) and, in the sec -  
ond, the numbers  a(Y) and a(r)  (a '(r)). The invariants of the second group depend on class  ~ E H2(X) rea -  
lized by surface  A, but not on this surface  itself.  The invariants of the f i r s t  group depend on the genus g 
of surface A. Obviously, fl (r) -> It~(r) I, which provides  a se r ies  of lower bounds fo r  g. The best  of these, 
at least in the case when group HI(#II) is finite, is obtained f rom the inequality fl (l) -> la(l) l ,  i .e.,  f rom the 
inequality 

b2(X) + 2g> [ 2l(m--Orn, a--a (X)]. (20) 

Considering the various possibi l i t ies  for  m, we a r r ive  at the following formulations of sections 6.2-6.4. 

6.2. The Case When ~ is Divisible by 2. If ~ is divisible by 2 then 

a o(X) I b2(X) (21) 
g 4 2 2 

This bound is obtained f rom inequality (20) for m = 2 (that group Hl(ttii) is finite follows f rom 3.5). 

6.3. The Case When ~ is Divisible by qk. If ~ is divisible by the power qk of odd pr ime q then 

l q~k--i ~(_~[ b,(X) ( 2 2 )  

g ~ 4q 2~ a - 2 

This bound is obtained f rom inequality (20) when m = qk (the finiteness of group Hl(gII) follows f rom 

sect ion 3.5). 

6.4. A Broader  Formulat ion.  If ~ is divisible by odd number h and group Hi(vii) with u = n/h,  is 
finite, then 

i ~ (X) I b~ (x) 
g> h 2-I a-- (23) 

4h ¢ 2 2 

This bound is obtained f rom inequality (20) when m = h. 

6.5. Signature Bound. The bounds just presented are  apparently the bes t  that can be extracted f rom 
the computations of the preceding major  sect ion.  The following bound (24), while known to be worse  than 
these if m > 3, still  has the advantage that it is based,  not on the A t ' ya -Z inge r  formula  (16), but only on 
formula  (19) for the s ignature a(Y). It is obtained f rom the evident inequality b2(Y)-fl(0) >- [ a ( y ) - a ( 0 ) [ .  
By substituting into this the values of fl(0), a(0) and a (y )  f rom formulas  (11), (12), and (19), we find: 

I .(x)[ b~(X) (24) g >  m + i  a - - - -  - -  

6m 2 2 

The lower m is,  the bet ter  this bound. Since finiteness of group Hi(it 1I) is provided, if m is the least 
p r ime d iv isor  of number  n, Ineq. (24) is valid on the sole condition that ~ is divisible by m. 

When m = 2, inequality (24) provides the same resul t  as Theo rem 6.2 and, when m = 3, the same as 

Theo rem 6.3. 

§ 7 .  T h e  N o n - O r i e n t a b l e  C a s e  

7.1. Basic Construction.  In this section we assume given an oriented connected closed four -d im-  
ensional manifold X with HI(X) = 0 and its non-orientable connected closed two-dimensional  submanifold A 
real iz ing the zero  element of the group H2(X; Z2). The genus of surface  A will be denoted by g, its normal  
Euler  number  by a .  

Let  U be the closed complement  of a cyl indrical  neighborhood of sur face  A in X. This is an oriented 
connected compact  four -d imens ional  manifold whose boundary has the natural  s t ruc ture  of an O(2)-fibration 
over  A with f iber S ' and Euler  rmmber a (the one-dimensional  Stiefel-Whitney class of this fibration coin- 
cides with the one-dimensional  Stiefel-Whitney class  wl(A) of surface  A). Repeating, with the appropriate  
changes,  the computations of sect ion 2.2., we see that group Hi(U) is isomorphic  to Z 2. Consequently, the 
two-sheeted covering p: V ~ U  with p.~ri(V) = [Trl(U), ~rl(u)] is defined and, as in section 2.3, V is an 
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oriented connected compac t  four -d imens iona l  manifold with boundary 0V = p-l(0U). Repeating the subse -  
quent computat ions (with the obvious changes) of sect ion 2.2, we see  that  the embedding h o m o m o r p h i s m  
Hl(~) ~ Hi(U), where  C is a f iber  of the aforement ioned f ibrat ion ove r  the indicated points of sur face  A, is 
an ep imorph i sm.  Consequentiy,  the p re image  p-l(C) of neighborhood C is connected (see,  2.3) and man i -  
fold 3V has  the na tu ra l  s t ruc tu re  of an O(2)-fibrat ion over  A with f iber  S i. The Euler  number  of  this f ib ra -  
t ion equals  a/2 (and the one-d imens iona l  Stiefel-Whitney c lass  coincides with wl(Z)). 

Le t  W be the total  manifold of the assoc ia ted  O(2)-fibrat ion with f iber  D 2. As in sect ion 2.4, we 
spl ice V and W in or iented connected closed four -d imens iona l  manifold Y, and continue the cover ing  
p: V ~ U to the r ami f i ed  cover ing  P: Y ~ X with ramif ica t ions  along A. The au tomorph i sms  of this 
rami f ied  cover ing  const i tute  a group i somorphic  to Z 2. We denote its genera to r  by t .  

7.2. Bound on Genus g. It follows f rom T h e o r e m  3.4 that group Hi(V) is finite,  i .e . ,  that bl(V) -- 0. 
Repeating the computat ions of sect ion 3.2 we conclude f r o m  this that bi(Y) = 0 and 

b~ (.Y) = 2b2(X) + g. (25) 

As in sect ion 5.2, we define the t r ip le  L, T, and f ,  taking H2(Y; It) for  L, the au tomorph i sm t* :  
H2(Y; R) -~ I-I2(Y; R) for r ,  and the quadrat ic  fo rm defined on H2(Y; 1D by cohomological  mult ipl icat ion 
for f .  This t r iple  co r r e sponds  to the numbers/3(0) ,  ~(0), 8(1), q(1),  which can be computed by the fo rmulas  

(0) = b, (X), (26) 

a (0) = ~ (X), (27) 

~(1) = b,(X) ~ - g ,  (28) 

a (29) a 0 )  = ~ ( X ) - -  ~ 

Formulas  (26) and (27) a r e  p roven  jus t  as in sect ion 5.2, a f te r  which formula  (28) is der ived f rom the r e -  
lationship/3(0) +/~(1) -b2(Y) and fo rmulas  (25) and (26), while formula  (29) is der ived f r o m  formula  (27) 
and the A t ' y a - Z i n g e r  fo rmula  (16) which, as applied to this s i tuat ion,  means that ce(0)-ct(1) = a/2. 
Final ly,  

~(y) = a(o) + a(1) = 2 a ( x ) - - ~ .  

The bes t  bound on genus g which can be der ived f r o m  these computat ions is contained in the inequality 
/3(1) -> I~(1)l. We obta in :  

e~12--.(X)!--b,(X) 
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