TWO-DIMENSIONAL SUBMANIFOLDS OF FOUR-
DIMENSIONAL MANIFOLDS

V. A. Rokhlin

§1. Introduction

1.1. Formulation of the Problem. The terminology of this paper is that of differential topology. In
particular, smooth manifolds are called manifolds, submanifolds of smooth manifolds in the sense of dif-
ferential topology are called submanifolds, and smooth O(SO)-fibers are called O(SO)-fibers.

The problem to which this paper is devoted may be formulated as follows. Let X be a connected
closed four-dimensional manifold, and let £ be an element of the (integer) homology group Hy(X). We as-
sume that the action of trivial factors is excluded, so that Hy(X) = 0. What is the minimal genus of the
{oriented connected closed two-dimensional) submanifold realizing class £?

To answer this question we must learn how to find effective upper and lower bounds for this mini-
mal genus. We shall deal here with lower bounds.

1.2. Results to be Found in the Literature. The author is aware of only three publications contain-
ing such bounds, and these for special cases only. The case is cited in [5] when the realizing submanifold
cannot be a sphere. In Kervaire and Milnor [3], this example is generalized to the theorem: if the class of
£, reduced modulo 2, is the Poincaré dual to the Stiefel-Whitney ciass wy(X), and if ££—06(X) = 0 mod 16
(£¢ is the self-linkage index of class while £, 0(X) is the signature of manifold X), then the realizing sub-
manifold cannot be a sphere (this theorem is also true without the assumption that Hy(X) - 0, if manifold X
is orientable). It is proven in Tristram [8] that if X = S? x S? and § = n,&; + ny,, where £, £, are the
natural generators of group Hy(S? x §%)* while n; and n, are non-zero integers with (ny, n,) # 1, then the
realizing submanifold cannot be a sphere. It is also asserted there that the realizing submanifold cannot
be a sphere in the case when X = CP? and £ =né,, where &; is a generator of the group H,(CP% and n is an
integer with |n| > 2.

The Kervaire-Milnor formulation generalizes a theorem of the author according to which the signa-
ture of an oriented closed four-dimensional manifold with w, = 0 is divisible by 16, and is quite simply de-
rived from this theorem. Tristram's proof is based on the well-known connection between the problem at
hand and the theory of links, and makes use of the algebraic invariants of links. It is probable that this
method could be productive of further bounds, but it seems more promising to exploit this connection in the
reverse direction, for example, for the use in link theory of the bounds to be found in the present paper.

1.3. Principal Result of the Paper. The principal result of the present paper is contained in the
following theorem.

BASIC THEOREM. Let A be an oriented connected closed two-dimensional submanifold of con-
nected closed four-dimensional manifold X with Hy(X) =0, realizing class § € Hy(X), and let g be the genus
of surface A. If £ is divisible by 2 then ’

B o) | bhX
g>"4 2 2

where b,(x) is the two-dimensional Betti. number of manifold X. If £ is divisible by odd number h, a power
of a prime, then
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The last inequality also remains valid in the case when h is an arbitrary odd number dividing £ if group
7,(X\A) is finite.

The proof is based on the study of finite-sheeted cyclic ramified coverings of manifold X with
branches along A. It turns out that with such a covering the signature of the covering manifold can be
computed in terms of 6(X), ££, and the number of sheets of the covering and, in particular, does not de~
pend on g, while its two-dimensional Betti number, in the most interesting cases, increases linearly with
g. Since the two-dimensional Betti number of a covering manifold cannot be less than its signature, we
obtain a lower bound for g. In many cases this bound is strengthened by the available information on the
action of the group of automorphisms of the coverings in the cohomologies of the covering manifold (the
deepest information is provided by the signature formula of At'ya-Zinger [1], §6). I might add that a sim-~
ilar method was recently by Massey [4] in the proof of the Whitney hypothesis on normal Euler numbers
of nonoriented surfaces in RY; see, 1.5.

1.4. Examples. f X=CP?and ¢ = né, (where, as in section 1.2, £, is a generator of group HZ(CPZ),
=1
h2
when n = 0 mod h, where h is a power of an odd prime. On the other hand, £ is realized when n * 0 by
algebraic curves of genus 1/2(Jn]—1) ([n|—2), and a realization of a submanifold of lower genus is unknown
for any n # 0. When |n|=< 4| this information provides an exact value of the minimal genus of the realizing
surface (what is new, of course, is only the exact value g =3 for n =4). For larger values of Inl, the upper
bound is almost twice as large as the lower one.

and n is an integer) then, according to the basic theorem, g> n*—1 when n is even, and g >

IfX=82x8%and £t= nyé4 + nyé, (as in Section 1.2, £, £, are natural generators of the group H2(82 x 8%,

and ny and ny are integers) then, on the basis of the theorem, g> 'i | anl — 1 for even ny and n,, and

a> L—— {nng|—1 when ny, ny =0 mod h, where h is a power of an odd prime. On the other hand, ¢is
realized, when ny # 0 and n, # 0, by algebraic curves of genus (Inli 1) (Inyl—1), and no realizations by sub-
manifolds of lower genus are known for any ny # 0, n, #0. Exact values of the minimal genus of the realiz~
ing surface are obtained from this information only in the case when n; and n, are even and one of them
equals 2 or ~2, and in the trivial case when Inj=1or Inl=1. For large values of Inyl, In,l, the upper
bound is again almost twice as large as the lower bound.

In these two examples the results of the present paper disclose information which is contained in the
Kervaire-Milnor theorem. This is not the case if X =CP2 # CP? and £ = 3£y + £,, where &, £, are natural
generators of group Hz(CP2 # CPY. By virtue of the Kervaire-Milnor theorem, the class of £ is not real-
ized by a sphere, while our theorems say nothing on this point. : :

1.5. The Non-orientable Case. Our basic theorem takes the following form for the case when sub-
manifold A is non-orientable.

THEOREM. Let A be a non-orientable connected closed two-dimensional submanifold of connected
closed four-dimensional manifold X with Hy(X) =0, and let g be the genus of surface A (i.e., 2~y (A), where
x is the Euler characteristic). If A realizes the zero element of group Hy(X; Z,), then

>\§—0<X)]—b2(xx

where a is the ("torsion") normal Euler number of surface A.

The simplest corollary of this theorem is that the normal Euler number of a non-oriented connected
closed two-dimensional submanifold of sphere S* does not exceed twice the genus of this submanifold. As
a conjecture, this statement had been published in 1941 by Whitney [9]. Recently, Massey [4] published
his proof of it, differing only slightly from that contained in the present paper. Partial results bearing on
the Whitney conjecture and deriving from the Kervaire-Milnor theorem are to be found in {6].
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§2. Basic Construction

2.1. Initial Data. We assume as given: oriented connected closed four-dimensional manifold X
with Hy{(X) = 0; its oriented connected closed two-dimensional submanifold A realizing the nonzero class
of § €Hy(X); integer m > 1 dividing the class of £&. These conventions will be altered only in § 7.

We shall denote by n the largest natural number dividing £; the fraction n/m will be denoted by p;
the self-linkage index of class £ (the normal Euler number of surface A) will be denoted by @; g will de-
note the genus of surface A; the fundamental group #{(X\A) will be denoted by II.

We remark that it follows from the condition Hy(X) = 0 that (by virtue of the Poincaré duality) Tor
Hy(X) =0, Hy(X) = 0.

2.2. Manifold U. Let T be a (closed) cylindrieal neighborhood of surface A in X, and let U be its
closed complement. :

A neighborhood of T has the structure of an SO(2)-fiber over A with fiber D? and Euler number a,
while its boundary 8T has the structure of the associated fibration with fiber S!, The fibers of these
fibrations over marked points of surface A will be denoted by D and C. The complement U is an oriented
connected compact four-dimensional manifold with boundary 0 U =8T. It is a deformation retract of mani-
fold X\ A, so that the fundamental group 7,(U) can be identified with II.

Group Hy(U) is isomorphic to Zy and the embedding homomorphism H;(C) — H,(U) is an epimorphism.

Proof. Study of the homology sequences of the pair X, A shows that Hg(X, A) = 0 and Tor Hy(X, A) =
Zn. Since the embedding (X, A) — (X, T) is a homotopy equivalence then, in these relationships, the pair
X, A can be replaced by the pair X, T, after which the excision permits the replacement in them of pair
X, T by the pair U, 8U. Thus, Hy(U, 8U) =0, Tor Hy(U, 8U) = Zp, and, by virtue of the Poincaré-Lefschetz
duality and the formula of universal coefficients,

H, (U) = H* (U, dU; Z) 2 Hom (H, (U, 8U), Z) ® Ext (H, (U, V), Z) = Z,,.

Consider the embedding homomorphisms
a:H @U)—>H (D), B:H,@U)—H ), 1:H, C)~H, (@U).

1t follows from the equation H,(X) = 0 (by virtue of the exactness of the additive sequences of triads of X,
T, and U) that the homomorphism a & 8: H(8U) — Hy(T) © Hy(U) is an epimorphism. In particular, for
any u € Hy(U) there exists uy € Hy(8U) with (& & B) (uy = (0, v), i.e., with a(uy) =0, B(uy) =u, and this
means that B(Ker @) =Hy(U). But Ker @ =Im v (this is obvious from the commutative diagram

aJ
: Hz(?: 1) B Hll(c)
Hy (T, o) > H,@T) > H, (T),

in which the lower row is exact, while the upper boundary homomorphism and the left vertical homomor-
phism, corresponding to an embedding are isomorphisms). Thus, Im (8° v) = 8(Im y) = Hy(U), while
B ° v is also the embedding homomorphism of interest to us Hy(C) —Hy(U).

2.3. Covering p: V —U. We denote by ;G, where G is a group and i a natural number, the set of
those x € G, for which x! is contained in the commutant [G, G]. It is clear that {G is a normal divisor con-
taining [G, G]. If group Hy(G) =G/[G, G] is isomorphic to Zj. j (with some natural j), then the group G/;G
is isomorphic to Zj. '

For us, the role of G will be played by the group 7;(U) =1I, and the roles of i and j by the numbers
¢ =n/mand m. Since Hy@) = Hy(U) = Zp, then II/ull = Zp.

Let us construct the covering p: V —U with px®4(V) = 4II. This is a regular m-sheeted covering,
and V is an oriented connected compact four-dimensional manifold with boundary 8V =p~1(8U). It follows
from the fact that the embedding homomorphism H,(C) — Hy(U) is an epimorphism that the composition of
the embedding homomorphism m,(C) — m(U) =1l and the projection II —II/uIl is also an epimorphism, and
from this it follows that the preimage p XC) of neighborhood C is connected. (We have used here the evi-
dent general theorem: let spaces I', I';y S I’ and A be linearly connected, and let . A—=Thbhea regular
covering; if the composition of the embedding homomorphism 7;(I) — 7 (T’) and the projection 7 (I") —

T (L)/¥*m(A) is an epimorphism, then the set ¥ “4T")) is linearly connected.) Thanks to this connectedness
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of manifold 8V we can be confident of the structure of the SO(2)-fibration over A with fiber S1, The pro-
jection of this fibration is the composition of contraction 8V — 8U of covering p (this contraction, as p it-
self, is an m~-sheeted covering), and the projection 8U — A. The Euler number of this fibration equals
a/m,

2.4. Manifold Y. Let W be the total manifold of the associated SO(2)~fibration with fiber D?, We
shall denote the null section of this fibration by B. The boundary 8W can be identified with 6V and, using
this identification, we splice V and W in oriented connected closed four-dimensional manifold Y (its orien~
tation is defined by the orientation of V).

The covering p: V — U is naturally continued to the mapping P: Y — X which may be called a rami-
fied covering with ramifications along A. Over X\A this is a true covering, with manifold B = P71(A) be-
ing diffeomorphically mapped by P onto A.

The automorphisms of this ramified covering (i.e., the diffeomorphisms ¢: Y — Y such that P- 9 =P)
constltute a group, which we shall denote by 7. This group is canonically isomorphic to group H/,,;H of the
automorphisms of covering p: V — U and is therefore isomorphic to Zm. The set of its fixed points is
precisely B. On the complement Y\B it acts freely and, on the fibers of fibration 8V — A, as a rotation
group. It is clear that in 7 there is exactly one automorphism which rotates these fibers by angle 360°/m
(we consider the fibers to be oriented in accordance with the orientations of A and 9V}, and that this auto-
morphism is a generator of group 7. It will be denoted by t.

§3. The Betti Number of Manifold Y

3.1. The Group Hy(V). Since the covering p: V - U is defined by the condition p+my(V) = I and
the homomorphism p#: 7 (V) —II is a monomorphism, group m;(V) is isomorphic to H Consequently,

H(V)=H (D). (1)

We are principally interested in the case when this group is finite, i.e., when by(V) =0. For example,
this is the case when group M itself is finite. A less obvious condition, necessary for the sequel, will be
specified in section 3.5. Here we shall only note that, whatever the group G, subgroup ;G and, with it, sub-
group [iG, iG], increases when the number i is replaced by its multiple. Therefore, if i; is divisible by i
then, from the finiteness of groups G/jG and Hy(;GQ), follows the finiteness of group H1(1 G). In particular,
if the group of (1) is finite then it remains finite upon replacement of the number m by 1ts divisors.

3.2. Formulas for by(Y) and b,(Y). The following equations are valid
by (V) = b,(V), (2)
by (V) = mby(X) + 2(m— 1) g + 2b, (V). (3)
In particular, if group Hi(ul'l) is finite then
by (¥) = mby (X) + 2(m—1)g.

Proof. The homology sequence of the pair W, 8W (with rational coefficients) shows that the embed-
ding homomorphism H{(dW;Q) — Hy(W; Q) is an isomorphism. This fact allows us to derive Eq. (2) from
the additive sequence of triads Y, V, and W (with rational coefficients).

We can compute the Euler characteristic of manifold Y by the obvious formula
' LY = m¥ (X) — (m— 1) % (A). 4 _ (4)
Since bg(X) =by(X) =0 and bg(Y) =by(Y) =by(V), then y(X) =2 +by(X) and x(Y) = 2—2by(V) +Dby(Y). Sub-
stituting these values of ¥ (X) and x(Y), and the value x(A) =2—2g into formula (4), we obtain (3).

3.3. LEMMA. Let T be an automorphism of infinite, finitely-generated, Abelian group F, with
Tj =1, If j is a power of prime q, then the order of factor group F/Im (1—7) is either infinite or is divi-
sible by q.

Proof. Factorization into periodic subgroups shows that it suffices to consider the case when Tor
F =0. In this case, the order of factor group F/Im (1—7), if it is finite, equals the value of the character-
istic polynomial of automorphism T at point 1. This characteristic polynomial has the form

k g—1 r—1" er
a—1]] (2 A% ) : (5)

5==0 /
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where pg, Py, . - ., Pr are non-negative integers with positive sum. Since the finiteness of factor group
F/Im (1—7) is equivalent to the equation p; = 0, it remains to remark that when py =0 the value of poly-
nomial (5) at point A = 1 equals gP1t- « - #Pk,

3.4. Sufficient Condition for Finiteness of Group Hy(;G). Let i be a natural number, j a power of a
prime, and G a group with Hy(G) = Zj.j. If group Hy(jG) is finitely-generated, then it is finite.*

Proof. It suffices to consider the case when the numbers i and j are relatively prime: in the gen-
eral case they can be replaced by using the remark in section 3.1, by the numbers i/G,9,3 (i, j), where
{i, j) is the greatest common divisor of the numbers i and j. Group G acts in G as a group of inner auto-
morphisms, and this defines the action of group G/iG in Hy(jG). Let T be a generator of group G/iG. Con-
sider the sequence

0— H,(G)/Im (1l —1)— H, (@)~ G/G— 0,

in which the second homomorphism on the left is defined by the embedding iG — G, while the third is a
projection. A simple check shows that this sequence is exact (it is a special case of a well-known se-
quence of covering theory; see, for example, [2], chapter 16, §9). Consequently, group Hy(iG)/Im (1—7)
is isomorphic to Z; which, by virtue of Lemma 3.3 is impossible if group Hy(;G) is infinite.

3.5. COROLLARY. If mis a power of a prime then group Hi(un) is finite.

§4. Algebraic Interlude: T-Signature

4.1. Definition of T-Signature. Let L be a finite-dimensional real vector space and 7 a linear trans-
formation of space L such that TM =1 (m is an arbitrary natural number). Furthermore, letf be a (real)
quadratic form on L, invariant under 7. We set I = [m/2], £ = 2™/ M 914 we define the polynomials Eg,

« « +» E] by the formula

A—1, it r=0,
EM=3—tYA—CT), if  1<r<m2
A1, if  r=m/2.

Obviously,
I
At—1=11E®,
=0

and this expansion corresponds to an expansion of space L in the direct sum of subspaces L(r) = Ker Ep(T).
We denote, for r =0, ..., 1, by a(r), the signature of form f on L(r), and we set
{
- s
a(f, ©) =D} alr)cos —.

r=0

This real algebraic number is called the 7-signature of form f.

It is clear that o (f, 7) does not depend on the arbitrary choice of m (i.e., it is not changed when m
is multiplied by a natural number). Since Ker Ey(7"!) = Ker Ex(7), then o(f, 7% =a(f, 7). I 7 =1, then
o(f, 7 coincides with the ordinary signature o(y) of form f. In every case, Io(f, 7| = dim L.

We now define the numbers a'(0), . . ., @'(m—1) by the formula

l(a(r), if  r=0, Lg—,
o) = 20, 1<r <2,
lla(mz——r) , if %/\ r<<m—1.

-1
Obviously, o(f,t) = S a' (N
s

r=o

*There is a special case of this theorem in Massey [4]. T am indebted to S. A. Yuzbinskii for a useful
discussion of this group of questions.
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4.2. Orthogonality of Subspaces L(r). Subspaces L(0), . . ., L{l) are pairwise orthogonal with re-
spect to form f.

Tt is necessary to show that ifu € L(r), v € L(ry) and r <ry, then (u, v) = 0. There are four cases to
distinguish: 1 =r<r;<m/2 0=r<r;<m/2 1=r<r;=m/2 (meven); r=0,r; = m/2 (m even).

In the first case we perform scalar multiplication of the equation 72u~ (T + £&~T)Tu + u =0 by Tv,
and replace (T2, Tv) by (7u, v) and (Tu, Tv) by (u, v). This leads to the relationship (Tu, v) + (u, 7v) =
(¢F + &7 (u, v), and, exactly the same, (Tu, v) +(u, Tv) = (£¥t + €7TY (u, v). Consequently, (£T + &-T)
(u, v) = (&1 + £7T1) (u, v), and since &T + &-T # ¢TI then (u, v) = 0.

In the three other cases, the proof is analogous, but simpler.

4.3. Certain Relationships. It follows from the pairwise orthogonality of spaces L(r) that

m—1 i

o(f,T) = 3 a' (1) o s Sl a(r)ers Zrsn =0, ...,m—1), (6)

m

Ir==0 r==9
and, in particular,

m—1 4

o(f)-= S a(r) =3 al) (7)
r==u r=0
Since
m‘;x crsp—rsy _ Im’ if s=s,
== loi  if s=s,

the formulas in (6) are readily inverted. We obtain

m—1
u’(r)=-:l—20(f,rs)§_’s r=0, ... ,m—1) (8)
S=0 -
and, in particular,
g ™t . v
a(0) =— > of, 7). 9)

$=0

Formulas (6) and (8) show that the set of integers {cuz'(r)}m;o1 and the set of algebraic numbers
{o(f, 78)}5X} define one another uniquely. Since o (f, T5) =0 (f, T!M"8), the sets {« =y, £ 7, TS)}ls=o
also uniquely define one another. We note that these sets constitute an essential part of the invariants of
the triple L, 7,f: in order to obtain the complete set of its invariants we need to adjoin to them the num-
ber B(r) =dim L(r) (r = 0, . . ., ]) or (sometimes more convenient} the numbers 8'(0), .. ., 8'(m—1), de~
fined by the formula

iB(r), if r=02,
Fo=E2,  w 1<r<3,
I[B(m:;f), if —';i<r§m—~l

We can present formula (9) in the form

o (f) = ma(0)— 3 o(f, v)
s=1
and substitute this value of ¢ (f) in formula (8). We gef
o () = a(0>—-f;m2ﬂc(f, (1 —") = a«»—%mz: o (f, ) sin? 25 (10)

m
s==1

Formula (10) provides the numbers, needed in the sequel, @'(}), . . ., @'(m—1) in terms of a(0) and ¢ (f, 7),
co O ff, T,
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§5. Action of Group 7in H%(Y; R)

5.1. Notation. In this section we study the automorphism t*: H¥(Y; R) — HXY, R), defined by the
diffeomorphism t: Y — Y (see, 2.4). This study is comprehended in the algebraic scheme of the previous
section if one takes HXY; R) for L, automorphism t* for 7, and the quadratic form defined on H3(Y; R) by
cohomological multiplication as f. This triple L, T,/ corresponds to the subspace L(r) =Ker Ey(7T) and
the numbers B(r) (B'(r)), and a(r) (@'(r)); we will now compute them.

In addition to the ramified covering P: Y — X, constructed on the basis of triple X, A, m, we need
to consider the ramified covering Pr: Yh — X, constructed in the same way, but on the basis of the triple
X, A, h, in which X and A are the same, but h is a divisor of m. The objects pertaining to covering
Ph: Yy — X, will be denoted the same as the corresponding objects appertaining to covering P: X — X,
but with subscript h.

5.2. Computation of 5(0) and «(0). Consider the homomorphism P* H%X; R) —H%(Y; R), defined
by the mapping P: Y — X. Since P is a projection of manifold Y on the space of orbits of group 7 = Zm,
then P* isomorphically maps H%(X; R) on the set of elements of group H2(Y; R) which are fixed with re-
spect to 7 (see, for example, [7], p. 38), i.e., on L(0) = Ker Ey(T). Moreover, (P*x)[y] = mx%[X] for
x € HXX; R), so that the signature 6(f/Im P*) equals the signature ¢ (X) of manifold X. Thus,

B(0) = b (X), (11)
a(0) = o (X). (12)

5.3. LEMMA. If m = wh then
B =80n (p=0, ... .[3]) B =B ) =0, ... ,h=1). (13)

Proof. We set ¥ = n/h. Since v =wy then
p,7y (V) = WILCWIT = (pg), 75 (Vi)

(cf., 3.1). This inclusion defines the w-sheeted covering p: Vv — Vi, which is naturally continued to the
mapping P: Y —YhL. This latter can be considered as the projection of manifold Y on the space of orbits
of a cyclic group of order w, generated by the diffeomorphism th, so that homomorphism P*: HXYh; R) —~
H2(Y; R) isomorphically maps H%(Yn; R) on the set of vectors of space H¥(Y; R) which are fixed with re-
spect to 7h (see, 5.2), i.e., on the orthogonal sum of subspaces L(r) with r =0 mod w. To these facts we
add the commutative diagram

H (v R) E 2 (Y5 R)

15 Tp

H? (V13 R) L H2 (Vi R),

showing that 'Iv’*Lh(p) < L(wp). Thus, p* isomorphically maps Lu(p) on L(wp), whence also follows (13).
5.4. Computation of 8'(r) with r > 0. If group Hi(yﬂ) is finite then, when r > 0,
B'(r) = b2(X) + 2g. (14)

Proof. If the numbers e2™ir/M apq eﬂiri/ ™ are conjugate over Q, then, obviously, 8'(r) = g'(r).
Therefore it follows from the equation 8'(0) +8'(1) +. .. +A'(m—1) =b,y(Y) that

m\ .
BO+ 3 o(F)F@=0),
dim, d<m
where ¢ is the Euler function (Summation is over all divisors of m less than m). Exactly the same for
any divisor h> 1 of m,
, f '
BO - 3 o(7)R@d = ban). (15)
dlh. d<h

According to section 3.1, from the finiteness of group Hy(y IT) follows the finiteness of group Hy(,,11) with

v = r/h, and, therefore,
by (Vn) = hby(X) +-2(h— 1) g
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(see, 3.2). Moreover, in accordance with sections 5.2 and 5.3, B(0) =b,(X), fp(p) =B’ (LZ- P) . Substituting

these values of by(Yh), Bh(0) and Bh(p) into (15), we see that the numbers B '(d) satisfy the system of linear
algebraic equations

w(ﬂ@(%d):m—nwam+am (k| m, h>1)

i, d<h

(in which both the number of unknowns and the number of equations are one less than the number of divi-
sors of number m). As shown by the obvious induction on m, this system is uniquely solvable, and it is
clear that it is satisfied by the values in (14).

5.5. The At'ya-Zinger Formula. A decisive contribution to the following calculations is made by
the formula

off, ) =—2— (s=1,...,m—1), (16)

L, ST
m sin?—
m

which is an adaptation to our situation of a special case of the general signature formulas of At'ya and
Zinger. These general formulas and their proofs are to be found in [1], §6. We require only formula (16).

5.6. Computation of ¢'(r) with r > 0. Knowing a(0) and d(f, s oee olf, TM-Y e can compute
a'(r) withr =1, ..., m~1 by formula (10). We find:

2 ™1 sint %
") = il
@ (1) = o (X) — 22

s=1 sin?—
m

As will be shown in the next section,

rsn

m—1 sin?
2 ’s"u =r(m—r)ywhenm>2 and 0 rCm, (17)

=1 sin?—
m

Thus,

2ar (m —1r)
m2

a(N=0cX)— (18)

5.7. Proof of Formula (17). We set () = sin® = //sin2 _S:T and denote the left side of Eq. (17), i.e.,
m

the sum ¥(r) +...+ ¢m_1(r) , by #(r), and the right side of (17), i.e., r(m—r), by $'(r). Simple calcula-
tions show that the second difference A%¥4(r) = ¥5(r +2)—2¥5 (r + 1) + ¥5(r) equals 2cos (2(r + 1)s¥/m),
so that, whenr =0, ..., m—2,

A () =A% (1) + ... AN () = —2.

But we also have A% '(r) =—2 (and for any r) and, since ¥(0) =¥'(0) and ¥ (1) =¥ (1), then ¥ (r) =¥'(r) for
r=0,... m.

5.8. Signature of Manifold Y. Signature 0(Y) of manifold Y is no other than the signature 0 (f) of
form f. We can compute it by formula (7), substituting the value of ¢'(r) from formula (18). After simple
calculations we obtain

{m*—1)a
3m ’

6 (Y) = ma(X)— (19)

Formula (19) was first obtained by the author independently of the At'ya-Zinger formula on the basis
of the corresponding variant of cobordism theory. This theory permits the general computation of the
signature 0(Y) to be reduced to its computation for concrete complex-algebraic ramified coverings, which
can be performed by traditional means. Fortunately, when m = 2, 3, formula (16) is easily derivable from
formula (19). A simple general proof of formula (16) is not known to the author. o
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§6, Bounds on Genus g

6.1. Basic Inequality. The invariants of ramified covering P: Y — X considered in the previous sec-
tions can be divided into two groups: in the first belong the numbers b,(Y) and 8(r) (8'(r)) and, in the sec-
ond, the numbers 0(Y) and a(r) (@'(r)). The invariants of the second group depend on class § € Hy(X) rea-
lized by surface A, but not on this surface itself. The invariants of the first group depend on the genus g
of surface A. Obviously, g{r) = lee(r) |, which provides a series of lower bounds for g. The best of these,
at least in the case when group H,(,II) is finite, is obtained from the inequality B () =z la@)], i.e., from the
inequality

b2<X)+2g>lﬂ;,-‘9—a—a<X)}. : (20)

Considering the various possibilities for m, we arrive at the following formulations of sections 6.2-6.4,

6.2. The Case When £ is Divisible by 2. If £ is divisible by 2 then
e

s oX)|_ b (21)

4 2 2

This bound is obtained from inequality (20) for m = 2 (that group Hy(yIl) is finite follows from 3.5).
6.3. The Case When £ is Divisible by qK. If ¢ is divisible by the power a¥ of odd prime q then

2k
—1

g S
4q2k 2

kX ] (22)

q
2>| :

This bound is obtained from inequality (20) when m =K (the finiteness of group Hifun) follows from
section 3.5).

6.4. A Broader Formulation. If £ is divisible by odd number h and group H;(,1II) with ¥ =n/h, is
finite, then

B—1  s(X)|_ (X
ol > o (23)

g=>

This bound is obtained from inequality (20) when m =h.

6.5. Signature Bound. The bounds just presented are apparently the best that can be extracted from
the computations of the preceding major section. The following bound (24), while known to be worse than
these if m > 3, still has the advantage that it is based, not on the At'ya-Zinger formula (16), but only on
formula (19) for the signature ¢ (Y). It is obtained from the evident inequality b,(Y)—B(0) = o (Y)—a©)].
By substituting into this the values of 8(0), @(0) and ¢ (Y) from formulas (11), (12), and (19), we find:

m—]—ia__ﬂ(x)i__bz(x)_ (24)
6m 2 2

&>

The lower m is, the better this bound. Since finiteness of group Hl(uﬂ) is provided, if m is the least
prime divisor of number n, Ineq. (24) is valid on the sole condition that £ is divisible by m.

When m = 2, inequality (24) provides the same result as Theorem 6.2 and, when m = 3, the same as
Theorem 6.3.

§7. The Non-Orientable Case

7.1. Basic Construction. In this section we assume given an oriented connected closed four-dim-
ensional manifold X with H,(X)} = 0 and its non-orientable connected closed two-dimensional submanifold A
realizing the zero element of the group Hy(X; Z,). The genus of surface A will be denoted by g, its normal
Euler number by a.

Let U be the closed complement of a cylindrical neighborhood of surface A in X. This is an oriented
connected compact four-dimensional manifold whose boundary has the natural structure of an O(2)~fibration
over A with fiber 5! and Euler number 2 {the one-dimensional Stiefel-Whitney class of this fibration coin-
cides with the one-dimensional Stiefel-Whitney class wy(A) of surface A). Repeating, with the appropriate
changes, the computations of section 2.2.; we see that group H{(U) is isomorphic to Z,. Consequently, the
two-sheeted covering p: V — U with p*m (V) = [14(U), m(U)] is defined and, as in section 2.3, V is an
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oriented connected compact four-dimensional manifold with boundary 8V = p~LevU). Repeating the subse-
quent computations (with the obvious changes) of section 2.2, we see that the embedding homomorphism
H{(C) — H4(U), where C is a fiber of the aforementioned fibration over the indicated points of surface A, is
an epimorphism. Consequently, the preimage p~XC) of neighborhood C is connected (see, 2.3) and mani-
fold 8V has the natural structure of an O(2)-fibration over A with fiber S!. The Euler number of this fibra-
tion equals @/2 (and the one-dimensional Stiefel-Whitney class coincides with w,(Z)).

Let W be the total manifold of the associated O(2)-fibration with fiber D?. As in section 2.4, we
splice V and W in oriented connected closed four-dimensional manifold Y, and continue the covering
p: V — U to the ramified covering P: Y — X with ramifications along A. The automorphlsms of thls
ramified covering constitute a group isomorphic to Z,. We denote its generator by t.

7.2. Bound on Genus g, It follows from Theorem 3.4 that group H(V) is finite, i.e., that b(V) = 0.
Repeating the computations of section 3.2 we conclude from this that by(Y) = 0 and

by (V) = 26,(X) + g. (25)

As in section 5.2, we define the triple L, T, and f, taking HX(Y; R) for L, the automorphism t*:
HXY; R) —HXY; R) for T, and the quadratic form defined on H%(Y; R) by cohomological multiplication
for f. This triple corresponds to the numbers B(0), «(0), 8(1), a(1), which can be computed by the formulas

B(0) = b,(X), (26)
a(G) = G(X)y 27)
B() =b.(X) + & (28)
a(l)=o0(X)—7- (29)

Formulas (26) and (27) are proven just as in section 5.2, after which formula (28) is derived from the re-
lationship B(0) + (1) =by(Y) and formulas (25) and (26), while formula (29) is derived from formula (27)
and the At'ya-Zinger formula (16) which, as applied to this situation, means that a(0)—a(1l) = a/2.

Finally,

c@) =a(0+a(l) =220 —2.

The best bound on genus g which can be derived from these computations is contained in the inequality
B(1) Z |a(1)]. We obtain:

e>|5—o (| —b,00.

LITERATURE CITED

1. M. F. At'ya and I. M. Zinger, "Index of elliptical operators. IlI," Usp. Matem. Nauk, 24, No. 1,.127-
182 (1969).

2. E. Cartan and S. Eilenberg, Homological Algebra [Russian translation], IL, Moscow (1960).

3. M. A. Kervaire and J, W, Milnor, "On 2-spheres in 4-manifolds," Proc. Nat. Acad. Sci., USA, 47,
No. 10, 1651-1657 {1961).

4. = W.S. Massey, "Proof of a conjecture of Whitney," Pacif. J. Math., 31, No. 1, 143-156 (1969).

5. V. A. Rokhlin, "New results in the theory of four-dimensional manifolds,"” Dokl. Akad. Nauk SSSR,
84, No. 2, 221-224 (1952). '

6. V. A, Rokhlin, "On normal Euler numbers of the projective plane and the Klein bottle in four-dimen~-
sional Euclidean space," Dokl. Akad. Nauk SSSR, 191, No. 1, 27-29 (1970).

7. Semipar on Transformation Groups, Ann. Math. Studies No. 46, Princeton (1960).

8. A. G. Tristram, "Some cobordism invariants for links," Proc. Camb. Phil. Soc., 66, 251-264 (1969).

9. H. Whitney, "On the topology of differentiable manifolds,"” Univ. of Michigan Lectures, 101-141
(1941).

48



