

The Signature of Quasi-Nilpotent Fiber Bundles

Joseph Roitberg

City University of New York, Hunter College, Department of Mathematics, 695 Park Avenue, New York, N.Y. 10021, USA

A quasi-nilpotent fibration, as defined in [HR], is a Serre fibration $F \rightarrow E \rightarrow B$ of connected spaces with the property that $\pi_1 B$ acts nilpotently on $H^*(F; A)^1$. [This notion depends, of course, on the abelian group of coefficients used; in our theorem below, A will be the real numbers **R**.]

An important class of quasi-nilpotent fibrations is that of the simple fibrations, namely those in which the action of the fundamental group is simple (=trivial). A number of results concerning fibrations, originally proved under the assumption that the fibration be simple, have been recently extended to the more general context. An example of such a result, useful in certain situations, is the Zeeman comparison theorem for the spectral sequence of a fibration [HR]. Another, much simpler, result is the multiplicativity of the Euler characteristic

 $\chi(E) = \chi(F) \cdot \chi(B),$

where A is taken to be an arbitrary field, for example. The classical spectral sequence proof of this formula for simple fibrations (see, for example, [D]) generalizes readily to quasi-nilpotent fibrations. The multiplicative formula for χ does break down in general (loc. cit.) although it continues to hold if B has the homotopy type of a finite complex.

In this note, we study the analogous question of the multiplicativity of the signature. We henceforth assume that the spaces F, E and B are (connected) closed, oriented, differential manifolds and that the fibration $F \rightarrow E \rightarrow B$ is a coherently oriented differential fiber bundle. Moreover, we assume $A = \mathbf{R}$.

Theorem. If $F \rightarrow E \rightarrow B$ is a quasi-nilpotent fiber bundle of the kind just described, then

 $\sigma(E) = \sigma(F) \cdot \sigma(B),$

 σ denoting the signature.

¹ In [HR], the definition was actually formulated in terms of (integral) homology, rather than cohomology

[Examples of (non-simple) quasi-nilpotent fiber bundles are easy to construct. For instance, let $U(n, \Lambda)$, $\Lambda = \mathbb{Z}$ or \mathbb{R} , be the unipotent, upper triangular group with entries in Λ ; thus $(u_{ij}) \in U(n, \Lambda)$ provided $u_{ii} = 1$, $u_{ij} = 0$ if i > j, $u_{ij} \in \Lambda$. Then

 $U(n, \mathbb{Z}) \rightarrow U(n, \mathbb{R}) \rightarrow U(n, \mathbb{R})/U(n, \mathbb{Z})$

is clearly the universal principal $U(n, \mathbb{Z})$ -bundle. Now $U(n, \mathbb{Z})$ acts nilpotently in a natural way on the torus $T^{n}([\mathbb{R}])$ and we may pass to the associated fiber bundle

 $T^n \rightarrow E \rightarrow U(n, \mathbf{R})/U(n, \mathbf{Z}).$

The resulting π_1 -action, being induced by the $U(n, \mathbb{Z})$ -action on T^n , is plainly nilpotent.]

For simple fiber bundles, the above theorem was proved by Chern, Hirzebruch and Serre [CHS]. Their argument was based on the real cohomology Serre spectral sequence of the bundle, the hypothesis on the π_1 -action being exploited to express the E_2 -term in the usual way. About ten years later, Kodaira [K] and Atiyah [A] constructed examples to show that, in rough analogy with the Euler characteristic, the signature fails to be multiplicative in a general fiber bundle. Further, Atiyah derived an explicit formula, discussed below, expressing $\sigma(E)$ in terms of $\sigma(F)$, $\sigma(B)$ and a certain invariant of the action of $\pi_1 B$ on the middle-dimensional real cohomology of F. We use Atiyah's formula, together with some standard facts in the theory of real algebraic Lie groups,² to obtain a proof of our theorem.

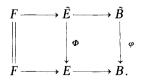
Before proceeding, we point out a slight extension of the theorem.

Corollary. Take the data given in the theorem except that we now assume only that $\pi_1 B$ admits a subgroup of finite index which acts nilpotently on $H^*(F; \mathbf{R})$. Then the same conclusion

$$\sigma(E) = \sigma(F) \cdot \sigma(B)$$

continues to hold.

Proof. Let $\Gamma = \pi_1 B$ and suppose $\hat{\Gamma}$ is a subgroup of Γ of finite index r acting nilpotently on $H^*(F; \mathbb{R})$. Let $\hat{B} \xrightarrow{\varphi} B$ be the r-sheeted covering map corresponding to $\hat{\Gamma}$ and let $\hat{E} \rightarrow \hat{B}$ be the bundle induced via φ from $E \rightarrow B$ so that we have a commutative diagram (compare [S])



Clearly, $\hat{E} \xrightarrow{\Phi} E$ is an *r*-sheeted covering map. By the well-known formula ([CHS]),

$$\sigma(\hat{B}) = r \cdot \sigma(B), \qquad \sigma(\hat{E}) = r \cdot \sigma(E);$$

 $^{^2}$ See, for example, [B]. By a real algebraic group, we shall understand its group of real-valued points

and by the theorem applied to the quasi-nilpotent fiber bundle $F \rightarrow \hat{E} \rightarrow \hat{B}$, $\sigma(\hat{E}) = \sigma(F) \cdot \sigma(\hat{B})$.

The corollary follows.

Proof of Theorem. We begin by briefly reviewing Atiyah's formula. We may clearly assume that F is even-dimensional and set $k = \frac{1}{2} \dim F$. The cup product pairing induces on the real vector space $H^k(F; \mathbf{R})$ a nondegenerate bilinear form, symmetric if k is even, skew-symmetric if k is odd; further, the action of $\Gamma = \pi_1 B$ on $H^k(F; \mathbf{R})$ preserves this form. Hence we have a homomorphism

$$\pi\colon \ \Gamma \to G$$

where G is the subgroup of $Gl(n, \mathbf{R})$ $(n = \dim H^k(F; \mathbf{R}))$ consisting of all matrices preserving this form. Atiyah then shows how to associate with π a certain virtual vector bundle $\sigma(\pi)$ over B, real if k is even, complex if k is odd. Viewed as a homotopy class of maps into $\mathbf{Z} \times BO$ (k odd) or $\mathbf{Z} \times BU$ (k even), the Zcomponent of $\sigma(\pi)$ is always $\sigma(F)$. The BO-component, resp. BU-component, is determined by the composite

$$B \xrightarrow{c} B\Gamma \xrightarrow{B\pi} BG$$
,

where $B \xrightarrow{c} B\Gamma$ is the canonical map; in particular, it will be (stably) trivial if $B\pi$ is nullhomotopic. The formula in question reads ([A])

 $\sigma(E) = \{c h(\sigma(\pi)) \cdot L(B)\} \cdot [B],$

where L(B) is the Hirzebruch polynomial of B.

In view of this formula and the preceding discussion, it suffices to show that $B\pi$ is nullhomotopic in the situation at hand.³ The crux of the proof is contained in the following lemma.

Lemma. If Γ acts nilpotently on $H^k(F, \mathbf{R})$, there exists a contractible subgroup C of G such that $\pi(\Gamma) \subset C$.

Proof. From the nilpotency assumption, it follows that each element γ of $\pi(\Gamma)$ is unipotent, that is, satisfies the equation

$$(\gamma-1)^n=0.$$

Let $C = \pi(\Gamma)$ be the algebraic hull of $\pi(\Gamma)$, that is, the real algebraic closure of $\pi(\Gamma)$ in the real algebraic Lie group G. It is clear that C is a real algebraic Lie group, each of whose elements satisfies the above equation and so is unipotent. We show that C is contractible. (Compare [Au].)

By [B; 4.9], C is conjugate to a subgroup (which we continue to denote by C) of $U(n, \mathbf{R})$. Now the Lie algebra $u(n, \mathbf{R})$ of $U(n, \mathbf{R})$ maps diffeomorphically onto $U(n, \mathbf{R})$ by the exponential map; furthermore, exp: $u(n, \mathbf{R}) \rightarrow U(n, \mathbf{R})$ is

algebraic (because the exponential series $1+u+\frac{u^2}{2!}+\cdots$ terminates when u is a nilpotent matrix). Suppose $\gamma \in C$ and write

 $\gamma = \exp u, \quad u \in u(n, \mathbf{R}).$

³ In fact, a slightly weaker assertion suffices. Namely suppose that $\tilde{\Gamma}$ is a subgroup of finite index in Γ and suppose $\tilde{\pi}: \tilde{\Gamma} \to G$ is the restriction of π . Then knowing only that $B\tilde{\pi}$ is nullhomotopic would imply, using the notation in the proof of the corollary, that $\sigma(\hat{E}) = \sigma(F) \cdot \sigma(\hat{B})$, hence that $\sigma(E) = \sigma(F) \cdot \sigma(B)$

Then, since C is algebraic and exp is algebraic, the group

 $\Lambda = \{\lambda \in \mathbf{R} / \exp \lambda \, u \in C\}$

is also algebraic. As Λ contains infinitely many elements (namely the integers), it must be the whole of **R**. Thus $u \in L(C)$, the Lie algebra of C, and so exp maps L(C) diffeomorphically onto C. Hence C is contractible.

Returning now to the proof of the theorem, note that the factorization

of the lemma gives rise to a corresponding factorization

Since BC is a contractible space, $B\pi$ is nullhomotopic, thereby completing the proof of the theorem.

In conclusion, I would like to record my indebtedness to J.F. Adams, L. Auslander and M. Moskowitz for a number of very valuable discussions.

References

- [A] Atiyah, M.F.: The signature of fiber bundles. Global analysis (Kodaira volume). Princeton pp. 73-84 (1969)
- [Au] Auslander, L.: An exposition of the structure of solvmanifolds. Part I: Algebraic theory. Bull. Amer. Math. Soc. 79, 227-261 (1973)
- [B] Borel, A.: Linear algebraic groups. Mathematics Lecture Note Series. New York: Benjamin 1969
- [CHS] Chern, S.S., Hirzebruch, F., Serre, J.-P.. On the index of a fibered manifold. Proc. Amer. Math. Soc. 8, 587-596 (1957)
- [D] Douady, A.: Applications de la suite spectrale des espaces fibres. Sem. H. Cartan (1958/59), expose 3
- [HR] Hilton, P.J., Roitberg, J.: On the Zeeman comparison theorem for the homology of quasinilpotent fibrations. Quart. J. Math. 27, 433-444 (1976)
- [K] Kodaira, K.: A certain type of irregular algebraic surface. J. Anal. Math. 19, 207-215 (1967)
- [R] Roitberg, J.: Note on nilpotent spaces and localization. Math. Z. 137, 67-74 (1974)
- [S] Schafer, J.A.: The signature of fiber bundles. Proc. Amer. Math. Soc. 33, 548-550 (1972)

Received October 16, 1976