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On multiple points of smooth immersions

FeLICE RoNGaA

§1. Introduction

Let f: V' — W"'" be a smooth immersion, where V" and W"*" are smooth
manifolds of dimension n and n+r respectively; we denote by V* the k-fold
product of V, Ay(k)={(x),....x)e V®|Ti#j with x,=x}, Sw(k)=
{(y,...,y)e W®} We shall say that f is regular if f*: V® — W& is transversal
to 8w(k) outside Ay (k). This means that if f(x,)=---=f(x)=y, x;#x, the
vector spaces Im (df, ), . . ., Im (df,,) are in general position in TW,,.

The following theorem has been proved by Ralph J. Herbert in his thesis [3]:

1.1 THEOREM. Let f: V" — W"*" be a regular proper immersion and set
N ={ye W|#( '(y))=k}, M, =f '(N,). Then M, and N, carry fundamental
classes over the integers modulo two; denoting by m, and n, their Poincaré duals in
V and W respectively and by e = e(N;) the Euler class of the normal bundle N; of f,
we have:

mk:f*(nk-l)_e'mkAl ()

If r is even and V and W oriented, M, and N, carry fundamental classes over
the integers, and the above formula is valid in integral cohomology.

The fundamental classes are meant as in [2], §2.2.

Remarks.

(i) If r is even and N; only is oriented, we still have integral dual classes, for
which (*) stays valid.

(ii) In proving (*) we will exhibit minimal desingularisations of M, and N,
which provide fundamental classes in bordism theory (oriented bordism if r is
even and N; oriented, complex bordism if N; has a stable complex structure,
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unoriented bordism otherwise). In the corresponding cobordism theories (*) still
holds
(iii) From (*) we deduce:

my = ' Z (—1)jeif*("k—1-,~)

In particular if W=R""", m, =(—1)*"'e*"!. This recovers the formula for triple
points of immersed surfaces in R® given in [1].

(iv) When r is even and N; oriented, the orientations we shall give for the dual
classes to M, and N, are such that f(m,)=k - n,, where f,: H*(V) — H¥(W) is
the Gysin homomorphism associated to f. Defining ¢, : H*(V)— H*(V) by
on(a)=f*f(a)—h(e - a), we deduce from (*):

(k=D'me =@y @p--- " e:(1)

Herbert’s theorem corrects a formula given in [4]. The purpose of this note is
to give a simple proof of (*). My contribution is the idea of proving (*) using
Proposition 2.2 below, which is a generalization of a proposition of D. Quillen
([5], prop. 3.3).

Particular cases of (*) were known before Herbert’s thesis. In [7], p. 131, H.
Whitney shows that m, = f*f,(1)— e; Herbert’s method for proving (*) appears to
be a generalisation of Whitney’s method, which also inspired our approach. By
different methods, the case of triple points of surfaces in R? is treated in [1] and
[6] deals with the number of triple points of an immersion V*" — R®",

§2. Proofs

We adopt the following notations: a smooth map a: A — X means a C* map
between C* manifolds. TA denotes the tangent bundle of A, N, = a™(TX)—TA
the virtual normal bundle of a; if « is an immersion, N, denotes the genuine
normal bundle of «, namely a®(TX)/da(TA), where da: TA — o*TX denotes
the derivative of a.

Let f: V" — W"*" be a smooth regular proper immersion. We set:

- N(H={yeWI|#([F 'O =k}, MH=f"(N)

- M (f)={(xs, .. ., )€ VO =AL(k) | f(x:) = f(x,)}
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The group of permutations of k objects S, acts fixed-point free on Mk(f) in
the obvious way.

- Nk(f)sz/Sk’ Mk(f)'—‘Mk/sk—h

where S, _, acts on the last k — 1 coordinates.

We write [xi, ..., %], resp. (x;.[x,. ..., x.]) for the class of (x,, ..., X.)€e M,
in N,, resp. M,. We define f, :M, = V, fi(x1,[x5 ..., %) =x, and g : N, => W,
g ([x1,. ... %D =f(x;) (=f(x)) =" -=Ff(x)). We set M(,():f,:‘(Mk), N::: gZ‘(Nk)-

Recall that N{* denotes the k-fold product of N;.

2.1 LEMMA.

(i) f, and g, are proper immersions with normal bundles N, = (N | M,)/S, and
N;, = (0x N,V M,)/S, .

(ii) MY and NY are open dense in M, and N, respectively, f, | MY: MY — M, and
g | NY: N — N, are diffeomorphisms.

(i) fk(Mk) =M, = Upn=x M, gk(Nk) = Nk = Un=k Nu-

Proof. Since M, = (f*)'(8w(k))— Ay (k). we deduce from the transversality
of f* to B&w(k) outside Ay(k) that T(My, . x,={v,...,0)€
T(V)E | df. (v) = df, (v)}. So, v, =0 implies v,= " -= v, =0. Hence f, and
g, are immersions; it is easily seen that their normal bundles are as stated.

Let us check that M, is closed in V®: if not, there are sequences {x%},
xB eV, f(xh)=f(xh), xh# x5, with lim, .. (x%)=1lim,_.. (x5) = x. We write f in
local coordinates as a map f:R" — R"""; we can assume that x%— x%/||x}—x5|
tends to veR", |[v]|=1. But then df,(v)=0 and f is no longer an immersion.
Hence M, and N, are closed in V®/S,_, and V®/S, respectively and since f is
proper we deduce that f, and g, are proper. This proves (i). The assertions (ii)
and (iii) follow from the fact that f, and g are proper and, using the implicit
function theorem, by writing f locally as a linear map.

We digress now to sub-cartesian diagrams; they generalize the notion of clean
intersection of Quillen ([5], §3), which concerns the case when « and 8 below are
embeddings.

DEFINITION. The diagram of smooth proper immersions:

fe
Z— B
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is said to be sub-cartesian if:

(i) faxXfsg:Z—AxB is an embedding onto AX,B={(a b)e
AxB|a(a)=B(b)).

(ii) the following sequence is exact:

(da

d(f, xfg) ,—dB)
— — fRa*TX

0— TZ ——> fXTA X f£TB

where (da, —dp) is meant to send (v, w)e (fATA X f§TB), to da(v)—dB(w). The
vector bundle E = fXa*TX/Im (d(fa X fg)) over Z is called the excess vector
bundle.

Remarks.

(i) The above diagram is cartesian if and only if E is the zero bundle.

(ii) We have not assumed Z to have constant dimension, hence E won’t have
constant rank in general.

(iii) The above condition (ii) is equivalent to say that if for ac A and be B we
choose open neighbourhoods A’ and B’ respectively such that a | A’ and 8 | B’
are embeddings, then a(A’)NB(B’) is a sub-manifold of X and T(a(A')N
B(B")) = T(a(A") N T(B(B"). This is to say that a(A’) and B(B’) intersect cleanly
in X in the terminology of [5].

2.2 PROPOSITION. For c e H¥(B) we have:
a*B!(C) = fai(e(E) - fﬁ(c))

where e denotes the Euler class, B, and f., are the Gysin homomorphisms
associated to those maps. The cohomology is taken over the integers whenever Ng
and E are oriented, the integers modulo two otherwise. (The proposition and its
proof remain valid in any generalized cohomology theory in which N; and E have
orientations.)

Proof. We replace Z by its image in A X B, still denoted by Z. We provide TX
with a metric and identify E with the orthogonal to Im (d(f4 X fg|2)) in f5a*TX.
Let e: TX — X be the exponential mapping associated to the metric; for x € X
there is an open neighbourhood U, of 0eTX, such that e,=e|U, is a
diffeomorphism onto an open neighbourhood of x in X. Let {2 be a closed tubular
neighbourhood of Z in A X B; it is a manifold with boundary 3. If 2 is small
enough, for (a, b)e 2 we have b € €,(4)(U,))- Let v:Z — E be a section trans-
versal to the zero section and denote by E and © extensions of E and v to {2, with
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E still a sub-bundle of TX'=pXa*(TX)|2, where p,:£2— A denotes the
obvious projection. Define the section w:Q — TX' by w(a, b) = e {,(B(b)), and
the section w:Q2 — TX' by w=w+0. If Q is small enough, w(a, b)¢ E—(a,,,) for
(a,b)¢ Z and hence, setting Z"={(a,b)eQ|w(a,b)=0}, we have z"=
{(a, b)e Z | v(a, b)=0}.

It follows from the exact sequence (ii) of the definition of a sub-cartesian
diagram that w is transversal to the zero section in TX'. Hence the map
F:0Q — X x X, F(a, b) = (e,a(W(a, b)), B(b)) is transversal to Ay and F '(Ax) =
Z" if v has been chosen near enough the zero section in E.

Let a': A — X be near a such that a’'xX3: A X B — X X X is transversal to Ay
and set Z'=(a'X B) '(Ax). The following diagram is cartesian:

fo
yA B
f;l 1
A SN X

where f/ and f} are the obvious projections; hence a'*B,(c) = fa,f&*(c). If &' is
near enough to a, F'=(a’x B)| 2 and F are homotopic through maps transversal
to Ax and sending 82 into X X X — Ay. Hence there is an isotopy of {2 leaving 42
fixed and sending Z’ onto Z".

Consider the inclusions i: Z< £, i':Z'<, i":Z"<(}, j:Z"< Z, the projec-
tion ps:2—> A and the associated Gysin homomorphisms i: H*(Z)—
H*(0, 00), similarly for i} and i, and p.,: H*(Q2, 0Q2) — H*(A). Since Z' and Z"
are isotopic in {2 rel. a82, i\f5 = i"(fgj)*. Also, since Z" is the set of zeroes of
v:Z — E which is transversal to the zero section, j,(1) = e(E). Hence, using that
f'a=Dpai's i"=1ij, fa =pai and j(*(x))=j(1) - x:a*Bi(c) = a*By(c) = fa f5(c) =
Padif5(c) = PA!il!'f*fﬁ(C) = PA!i!j!f*fg(C) = (pai):(jr(1) - f5(c)) = fa(e(E) - fﬁ(c))

Proof of 1.1. Consider the diagram:

Mk UMk-l - Nk—l

fi Ufk—ll l&-:

V;W

where p(x;,[x5 ..., % D=[x2.... %), POy, [x2 s e D=[x1,. ... 0] It
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follows from the transversality of f*: V& — Ay (k) > W® to 8y (k) that the above
diagram is sub-cartesian, the excess bundle being zero on M, and fiE_«(N;) on
M, _,. From 2.1 we deduce that f,~((M,]) and g,~([N,]), where [ ] denotes the
fundamental class, are fundamental classes for M, and N, respectively, for which
my = fi (1), ne = g,(1). Applying 2.2 to the above diagram with ¢ =1 we get:

f*(nk—l)=f*(gk—ll(l))=fk!(l)+fk—1! ;ck‘l(e(Nf))) =mte- - m._,.

If r is even and N; oriented, the induced orientation on N | M{ is invariant
by the action of S, and 2.1 (i) shows that N, , and N,  are oriented. The
above calculations hold in integral cohomology. If W is not orientable, m, and n,
can be interpreted as follows. Let 6y, denote the sheaf of orientations of W; then
f*(6w) = 6y since N; is oriented, and also fif(6y) = Oy, 8¥(6w)= Ox,. Letting [ ]
denote the fundamental class with twisted coefficients, we have that f,«([M,]) and
g+([N.]) are fundamental classes for M, and N, respectively with twisted
coeflicients, whose Poincaré duals are m, = f,,(1) and n, = gg,(1).

In the terminology of [7], the above considerations amount roughly to say that
the homological intersection of f(V) and N,_, in W consists of the “far intersec-
tion” (that is M,) plus the “‘near intersection” (that is the set of zeroes of a section
of the non-zero part of the excess bundle).

§3. Divisibility conditions

3.1 PROPOSITION. If the compact oriented manifold V*" immerses in
R*"*2 P (V) is divisible by 2p + 1, where P.(V) denotes the r-th Pontriagin class
of the stable normal bundle of V.

Proof. Let f: V%" — R*"™?" be an immersion; after perturbing it slightly we
can assume it to be regular. Then M,,,, consists of isolated points whose number
equals m,, ., evaluated on [V]; since e(N;)*>=P,, by 1.1 m,,,, =(=1)**" - P(V).
If xq,...,%5,41€ V are distinct and f(x,)=" - = f(x,,.,) =y, the orientation we
have given to N(f,,.,) shows that they are all counted with the same sign, say &,.
Hence (—1)**' - P,(V) evaluated on [V] equals (¥,cn,,., &) (2p+1).

For example, if V*" immerses in R***2, P} is divisible by 2n+1. (The case
n=1 was considered by J. H. White in [6]). If V'> immerses in R, P,=
P}—2P,P,+ P, is divisible by 3. If V'® immerses in R*’, (PZ— P,)? is divisible by
S.

In fact 3.1 is probably a consequence of the integrality of the L-genus, taking
inaccount that P, =0 for i >r.
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