
A USER’S GUIDE TO CONTINUOUSLY CONTROLLED ALGEBRA

DAVID ROSENTHAL

Abstract. Continuously controlled algebra is an important tool for proving the Farrell-
Jones conjecture and the Novikov conjecture. The purpose of this expository article is to
present an accessible introduction to continuously controlled algebra and the continuously
controlled version of assembly maps.

1. Introduction

Controlled algebra was first considered by Connell and Hollingsworth in [12], and its

first major applications were developed by Quinn in [24]. Continuously controlled algebra

was introduced by Anderson, Connolly, Ferry and Pedersen [1] and was used by Carlsson

and Pedersen [10, 11] to analyze assembly maps in algebraic K- and L-theory. Carlsson

and Pedersen used this theory to prove the Novikov conjecture for a large class of groups

by showing that the assembly map was a split injection. Motivated by the groundbreaking

work of Farrell and Jones [14], Bartels, Lück and Reich [5] have recently used the continu-

ously controlled version of the assembly map in their proof of the K-theoretic Farrell-Jones

conjecture for word hyperbolic groups, and Bartels and Lück have announced the analogous

result in L-theory. These two isomorphism results combine to prove the Borel conjecture

for these groups.

The aim of this article is to provide a friendly introduction to continuously controlled

algebra, hopefully making the general framework of this proof technique a little more

accessible. To achieve this modest goal, we focus on the continuously controlled algebra

approach to equivariant homology theories and assembly maps.

The objects of study in this theory are additive categories of so-called “geometric mod-

ules.” The notation used in the literature varies from paper to paper and is often quite

involved. We hope the presentation here will serve to demystify these categories and to
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provide the reader with an understanding of the underlying concepts. Continuously con-

trolled categories are introduced without group actions and are illustrated with several

examples. Group actions are then incorporated into the definition, so that an equivari-

ant homology theory and corresponding assembly map can be defined. The presentation

focuses on algebraic K-theory. To study algebraic L-theory one has to be careful with in-

volutions, but the treatment is virtually the same. We conclude with a general discussion

of how this theory has been used to prove isomorphism and split injectivity results.

The author would like to thank Marco Varisco for useful comments and discussions.

The author would also like to thank Erik K. Pedersen for his expertise and for his many

invaluable insights.

2. Continuously controlled algebra

Let us begin by recalling some categorical terminology. Two functors F and G between

categories A and B are naturally equivalent if there is a natural transformation from F to

G that is an isomorphism for every object in A. Two categories A and B are equivalent if

there are functors F : A → B and G : B → A such that FG is naturally equivalent to idB

and GF is naturally equivalent to idA.

An additive category A is a small category in which every hom-set (i.e., the set of mor-

phisms between two objects) is an abelian group, morphism composition is bilinear, there

is a zero object, and for every finite collection of objects A1, . . . , An in A, the biproduct

A1⊕· · ·⊕An is an object of A (a biproduct is both a product and a coproduct). An additive

functor between additive categories A and B is a functor that is a group homomorphism

for every hom-set in A. Two additive categories are equivalent when they are equivalent

by additive functors.

Let A be a small additive category, and let K−∞(A) denote the non-connective K-theory

spectrum associated with the symmetric monoidal category obtained from A by restricting

to isomorphisms. That is, πn(K−∞(A)) ∼= Kn(A) for every integer n. In particular, if FR
is the category of finitely generated free R-modules, then πn(K−∞(FR)) ∼= Kn(R) for every

integer n; K−∞ is a functor from the category of small additive categories to the category

of spectra. For a more detailed description of this functor, see [22, 9].

Let X be a CW complex, Y ⊆ X be a closed subcomplex, and A be a small additive

category. A subset K ⊆ X is called relatively compact if the closure of K in X is compact.
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It is called locally finite if for every point x in K there is a neighborhood U of x such that

U ∩K = {x}.

Definition 2.1. The continuously controlled category B(X, Y ;A) is an additive category

whose objects A = (Ax) are collections of objects of A indexed by the points in the space

X − Y such that the support of A, supp(A) = {x ∈ X − Y | Ax 6= 0}, is

(1) locally finite in X − Y ; and

(2) relatively compact in X.

A morphism φ : A→ B is a collection φ = (φx
′
x : Ax → Bx′) of morphisms in A such that

(1) for every x ∈ X − Y , the set {x′ ∈ X − Y | φx′x 6= 0 or φxx′ 6= 0} is finite; and

(2) φ : A → B is continuously controlled at Y . That is, for every y ∈ Y and every

neighborhood U ⊆ X of y, there is a neighborhood V ⊆ X of y such that φx
′
x = 0

and φxx′ = 0 whenever x ∈ V and x′ /∈ U .

The continuously controlled category depends functorially on the CW pair (X, Y ) (for

a proof see, for example, [4, Section 3.3]). A map f : (X, Y )→ (X ′, Y ′) induces a functor

f∗ : B(X, Y ;A) → B(X ′, Y ′;A), defined by f∗(A)x′ =
⊕

x∈f−1(x′)Ax. Given a morphism

φ : A→ B in B(X, Y ;A), f∗(φ) : f∗(A)→ f∗(B) is defined in the obvious way.

Example 2.2 (Forget-control). Consider the categories B(X × [0, 1], X × {1};A) and

B(CX, ∗;A), where CX = X × [0, 1]/X × {1} is the cone on X and ∗ is the cone point.

The control spaces for these two categories are the same, namely X× [0, 1), but the control

conditions are different. In B(X × [0, 1], X × {1};A) the continuous control condition on

morphisms is defined with respect to the boundary X × {1}, whereas in B(CX, ∗;A) the

continuous control condition is defined with respect to the one-point boundary. Therefore,

the continuous control condition on morphisms in B(X × [0, 1], X × {1};A) is more re-

strictive than the one in B(CX, ∗;A). The quotient map X × [0, 1]→ X × [0, 1]/X ×{1},
induces a functor B(X×[0, 1], X×{1};A)→ B(CX, ∗;A) that is essentially the identity on

objects and morphisms. For this reason, it is known as a forget-control functor. In addition,

because of the relatively compact condition on objects, the map CX → pt× [0, 1], which

collapses X to a point, induces an equivalence of categories B(CX, ∗;A) ∼= B([0, 1], {1};A).

This helps to illustrate the difference between B(X × [0, 1], X × {1};A) and B(CX, ∗;A).

(Compare with Example 2.3 below.)
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An additive category B is called flasque if it admits an endofunctor Σ : B → B and a

natural equivalence between idB⊕Σ and Σ. By the Additivity Theorem, such a category

has trivial K-theory. Using an argument of this type to prove that a category has trivial

K-theory is referred to as an Eilenberg swindle.

Example 2.3. We will use an Eilenberg swindle to show that B([0, 1], {1};A) has trivial

K-theory. The idea for constructing the necessary endofunctor is to shift the objects and

morphisms towards 1. Let A and B be objects of B([0, 1], {1};A), and let φ : A→ B be a

morphism. Let S : B([0, 1], {1};A)→ B([0, 1], {1};A) be the endofunctor defined by

S(A)t := A2t−1,

S(φ)ts := φ2t−1
2s−1 : A2s−1 → B2t−1.

Now define the endofunctor Σ : B([0, 1], {1};A)→ B([0, 1], {1};A) by

Σ(A) :=
⊕
n≥1

Sn(A),

Σ(φ) :=
⊕
n≥1

Sn(φ).

For each object A there is a continuously controlled isomorphism UA : A→ S(A), defined

by

(UA)ts :=

{
idAs if s = 2t− 1

0 otherwise
.

The desired natural equivalence, η : id⊕Σ→ Σ, is given by η(A) :=
⊕

n≥0 USn(A). There-

fore, K−∞(B([0, 1], {1};A)) is weakly contractible (i.e., it has trivial homotopy groups).

At first glance it appears that B(X × [0, 1], X × {1};A) admits an Eilenberg swindle

for any X by sliding the objects and morphisms towards 1, as was done in Example 2.3.

But this does not work in general. Remember that the continuous control condition on

morphisms says that the components of a morphism must become shorter and shorter as

they approach 1. This must happen in the X-direction, as well as in the [0, 1)-direction. For

example, consider the two-point space S0 = {−1, 1}. By the continuous control condition,

the components of a morphism in B(S0 × [0, 1], S0 × {1};A) are zero between (−1, s) and

(1, t), if s or t is sufficiently close to 1. Therefore, a morphism with a non-zero component

between (−1, s) and (1, t) for some s and t away from 1, cannot be shifted arbitrarily close

to S0 × {1}.
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The support at infinity of an object A in B(X, Y ;A) is the set of limit points of supp(A)

in Y .

Definition 2.4. Let C be a closed subset of Y . The category B(X, Y ;A)C is the full

subcategory of B(X, Y ;A) on objects whose support at infinity is contained in C.

Example 2.5. Consider B(X×[0, 1], X×{1};A)∅, the full subcategory of B(X×[0, 1], X×
{1};A) whose objects have empty support at infinity. Because of the relatively compact

and locally finite conditions, the support of every object is finite. Furthermore, the con-

tinuous control condition is vacuous. Therefore, B(X × [0, 1], X × {1};A)∅ and A are

equivalent additive categories.

Definition 2.6. Let W be an open subset of Y . The germ category B(X, Y ;A)W has the

same objects as B(X, Y ;A), but morphisms are identified if they agree in a neighborhood

of W . Specifically, φ, ψ : A → B are identified if there is a neighborhood U ⊆ X of W

such that x ∈ U or x′ ∈ U implies that φx
′
x = ψx

′
x .

Germ categories are very interesting. As noted above, B(S0 × [0, 1], S0 × {1};A) is not

equivalent to B([0, 1], {1};A)⊕B([0, 1], {1};A), since B([0, 1], {1};A)⊕B([0, 1], {1};A) is

flasque (because each summand is flasque), while B(S0×[0, 1], S0×{1};A) is not. However,

it is true that the germ categories B(S0× [0, 1], S0×{1};A)S
0×{1} and B([0, 1], {1};A){1}⊕

B([0, 1], {1};A){1} are equivalent. The reason is that we are taking germs at 1, which

implies that every morphism has a representative that does not “jump between levels.”

What is meant by this is the following. Let φ be a morphism in B(S0× [0, 1], S0×{1};A).

The continuous control condition implies that there is a neighborhood V ⊆ S0×[0, 1] of the

point (1, 1) such that φ
(−1,s)
(1,t) = 0 = φ

(1,t)
(−1,s) whenever (1, t) is in V . Now define a morphism

ψ such that ψ
(−1,s)
(1,t) = 0 = ψ

(1,t)
(−1,s) for all s and t, and ψx

′
x = φx

′
x otherwise. Therefore, φ

and ψ represent the same morphism in the germ category B(S0× [0, 1], S0×{1};A)S
0×{1},

and the components of ψ are zero between points in {−1} × [0, 1) and {1} × [0, 1). More

generally, we have:

Lemma 2.7. If T is a discrete space, then

B(T × [0, 1], T × {1};A)T×{1} ∼=
⊕
T

B([0, 1], {1};A){1}.
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Sketch of proof. As with the two point space, since we are taking germs at 1, every mor-

phism has a representative that does not jump between levels. The reason for the direct

sum is the relative compactness condition, which implies that each object in B(T×[0, 1], T×
{1};A)T×{1} can only be non-zero for finitely many points in T . �

The categories from Definitions 2.4 and 2.6 have a special relationship. In [20], Karoubi

introduced the following notion.

Definition 2.8. Let A be a full subcategory of an additive category U . Denote the objects

of A by the letters A through F and the objects of U by the letters U through W . Then

U is said to be A-filtered if every object U has a family of decompositions {U = Eα ⊕Uα}
where

(i) the decomposition forms a filtered poset under the partial order in which Eα⊕Uα ≤
Eβ ⊕ Uβ whenever Uβ ⊆ Uα and Eα ⊆ Eβ;

(ii) every map A→ U factors through Eα for some α;

(iii) every map U → A factors through Eα for some α;

(iv) for each U and V , the filtration on U ⊕V is equivalent to the sum of the filtrations

{U = Eα ⊕ Uα} and {V = Fβ ⊕ Vβ}; that is, {U ⊕ V = (Eα ⊕ Fβ)⊕ (Uα ⊕ Vβ)}.

Karoubi also defined the quotient category U/A to have the same objects as U , but

morphisms φ, ψ : U → V are identified if their difference, φ− ψ, factors through A. The

key fact is that the induced sequence

K−∞(A)→ K−∞(U)→ K−∞(U/A)

is a homotopy fibration of spectra, which yields a long exact sequence of homotopy groups.

For this reason Karoubi filtrations play a major role in the subject.

It is straightforward to check that

B(X, Y ;A)C → B(X, Y ;A)

is a Karoubi filtration, where C is a closed subset of Y . Furthermore, the corresponding

quotient category is precisely the germ category B(X, Y ;A)Y−C . Therefore, the sequence

(1) B(X, Y ;A)C → B(X, Y ;A)→ B(X, Y ;A)Y−C
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yields a homotopy fibration of spectra after applying K−∞. Similarly, it is an exercise to

show that

(2) B(X, Y ;A)WC → B(X, Y ;A)W → B(X, Y ;A)W−C

is a Karoubi filtration sequence, where W is an open subset of Y .

Example 2.9. An instance of (1) that is useful for studying assembly maps is the sequence

B(X × [0, 1], X × {1};A)∅ → B(X × [0, 1], X × {1};A)→ B(X × [0, 1], X × {1};A)X×{1}.

When X is a point, the associated long exact sequence implies that

Kn+1(B([0, 1], {1};A){1}) ∼= Kn(B([0, 1], {1};A)∅) ∼= Kn(A),

since K−∞(B([0, 1], {1};A)) is weakly contractible. Therefore, ΩK−∞(B([0, 1], {1};A){1})

is weakly homotopy equivalent to K−∞(A).

The functor ΩK−∞(B(−× [0, 1],−× {1};A)−×{1}) from the category of CW complexes

to the category of spectra is homotopy invariant and excisive, thereby yielding the gen-

eralized homology theory H∗(X; KA) := π∗(ΩK−∞(B(− × [0, 1],− × {1};A)−×{1})). By

Example 2.9, its value at a point is the K-theory of A. Karoubi filtrations are needed to

establish the fact that H∗(X; KA) is in fact an homology theory. Excision is proved by

showing that the pushout diagram of CW complexes

X ∩ Y

��

// X

��
Y // X ∪ Y

induces a homotopy Cartesian square

(3) K−∞(B(X ∩ Y ;A)(X∩Y )×{1})

��

// K−∞(B(X;A)X×{1})

��

K−∞(B(Y ;A)Y×{1}) // K−∞(B(X ∪ Y ;A)(X∪Y )×{1})
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where B(−× [0, 1],−×{1};A) is denoted by B(−;A). To prove this, consider the following

commutative diagram of Karoubi filtrations induced by inclusion.

(4) B(X;A)
X×{1}
(X∩Y )×{1}

��

// B(X;A)X×{1}

��

// B(X;A)(X−Y )×{1}

��
B(X ∪ Y ;A)

(X∪Y )×{1}
Y×{1}

// B(X ∪ Y ;A)(X∪Y )×{1} // B(X ∪ Y ;A)(X−Y )×{1}

It is an exercise to show that, when C is a closed subset of X, the inclusion func-

tor B(C;A)C×{1} → B(X;A)
X×{1}
C produces an equivalence of categories. Therefore,

B(X ∩ Y ;A)(X∩Y )×{1} ∼= B(X;A)
X×{1}
(X∩Y )×{1} and B(Y ;A)Y×{1} ∼= B(X ∪ Y ;A)

(X∪Y )×{1}
Y×{1} .

One also checks that B(X;A)(X−Y )×{1} → B(X ∪ Y ;A)(X−Y )×{1} has an inverse induced

by projection. Thus, diagram (4) becomes

(5) B(X ∩ Y ;A)(X∩Y )×{1}

��

// B(X;A)X×{1}

��

// B(X;A)(X−Y )×{1}

∼=
��

B(Y ;A)Y×{1} // B(X ∪ Y ;A)(X∪Y )×{1} // B(X ∪ Y ;A)(X−Y )×{1}

Applying K−∞ to (5) yields a commutative diagram of spectra in which each row is

a fibration. Since fibration sequences are also cofibration sequences in the category of

spectra, the two rows of the induced diagram are cofibration sequences with equivalent

cofibers. Therefore, diagram (3) is a homotopy co-Cartesian square, which means it is a

homotopy Cartesian square, since we are working in the category of spectra.

The above argument can be found in [17, Corollary 9.3], [15, p. 48] and [4, Proposition

4.3]. For a proof of homotopy invariance, the reader is referred to [4, Section 5]. The

proof employs a trick, dating back to Pedersen and Weibel [22], that makes clever use of

Eilenberg swindles.

3. Equivariant homology and the assembly map

Given a discrete group G and a ring R, the classical assembly map in algebraic K-theory,

introduced by Loday [21], is a map that relates the K-theory of the group ring R[G] to

the homology of BG with coefficients in the K-theory spectrum of R. In the revolutionary

work of Farrell and Jones [14], a more general assembly map relating the K-theory of R[G]

to a generalized G-equivariant homology theory was formulated using Quinn’s “homology

of simplicially stratified fibrations” [24]. Davis and Lück [13] used the “orbit category”
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to create an abstract approach to Farrell-Jones assembly, and Hambleton and Pedersen

formalized the continuously controlled version of the Farrell-Jones assembly map in [15].

Recently, Bartels and Reich [7] used the Davis-Lück machinery to construct an assembly

map with coefficients in an additive category on which G acts. This more general formu-

lation allows one to study, for example, twisted group rings. It also possesses interesting

inheritance properties (see [7, 16]). In this section the assembly map with coefficients

is defined using continuously controlled algebra. In order to do this the corresponding

equivariant homology theory must be developed.

An additive category with right G-action A is an additive category together with a

collection of covariant functors {g∗ : A → A | g ∈ G} such that (g ◦ h)∗ = h∗ ◦ g∗ and

e∗ = idA. A subset S ⊆ X is called G-compact if S = G · K for some compact subset

K ⊆ X. It is called relatively G-compact if its closure in X is G-compact.

Definition 3.1. Let G be a discrete group, A be an additive category with right G-

action, X be a G-CW complex and Y ⊆ X be a closed G-invariant subcomplex of X. The

category D(X, Y ;A) has objects A = (Az), consisting of collections of objects of A indexed

by G× (X − Y ) such that the support of A, supp(A) = {z ∈ G× (X − Y ) | Az 6= 0}, is:

(1) locally finite in G× (X − Y ); and

(2) relatively G-compact in G×X.

A morphism φ : A→ B is a collection φ = (φz
′
z : Az → Bz′) of morphisms in A such that:

(1) for every z ∈ G× (X −Y ), the set {z′ ∈ G× (X −Y ) | φz′z 6= 0 or φzz′ 6= 0} is finite;

and

(2) φ : A→ B is continuously controlled at Y , which means that for every y ∈ Y and

every Gy-invariant neighborhood U ⊆ X of y, there is a Gy-invariant neighborhood

V ⊆ X of y such that φz
′
z = 0 and φzz′ = 0 whenever z ∈ G× V and z′ /∈ G× U .

Adding a factor of G to the control space, an idea due to Pedersen, creates an interesting

action of G on D(X, Y ;A). The right G-action on D(X, Y ;A) is induced by the diagonal

action of G on G×X and the right G-action on A. It is given by

(g∗A)z := g∗(Agz),

(g∗φ)z
′

z := g∗(φgz
′

gz ).
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In the corresponding fixed point category, DG(X, Y ;A), every object A and every mor-

phism φ satisfy Az = (g∗A)z = g∗(Agz) and φz
′
z = (g∗φ)z

′
z = g∗(φgz

′
gz ) for every g in G

and every z, z′ in G × (X − Y ). If A = FR with the trivial G-action, then the objects of

DG(X × [0, 1);FR) are free R[G]-modules and the morphisms are R[G]-homomorphisms.

Furthermore, the direct sum of the pieces of an object A over an entire orbit,
⊕

g′∈GAg′z =⊕
g∈GA(g,gx) for some x in X − Y , is a finitely generated free R[Gx]-module. Thus, we

can think of objects in DG(X, Y ;FR) as being built out of finitely generated free R[Gx]-

modules, where x is a point in X. In particular, notice that DG(pt, ∅;FR) is equivalent to

FR[G], the category of finitely generated free R[G]-modules. For this reason the category

DG(pt, ∅;A) is denoted by A[G].

As in the unequivariant case, DG(X, Y ;A) depends functorially on the G-CW pair

(X, Y ) [4, Section 3.3]. In order to construct an equivariant homology theory and an

assembly map, we will work with the category DG(X × [0, 1], X × {1};A), where X is a

G-CW complex. For brevity, denote this category by DG(X × [0, 1);A).

Let DG(X×[0, 1);A)∅ be the full subcategory of DG(X×[0, 1);A) on objects A such that

the intersection of X×{1} with the closure of supp(A) in X×[0, 1] is the empty set. Notice

that, as in Example 2.9, the quotient category, which we denote by DG(X × [0, 1);A)>0,

is a germ category. The objects are the same as in DG(X × [0, 1);A) but morphisms are

identified if they agree close to G × X × {1}, i.e., on the complement of a neighborhood

of G×X × {0}. (It is not difficult to check that taking germs and taking fixed categories

commute.) Furthermore, there is a corresponding Karoubi filtration sequence

DG(X × [0, 1);A)∅ → DG(X × [0, 1);A)→ DG(X × [0, 1);A)>0.

Example 3.2. Let A be an object in DG(pt × [0, 1);FR)∅. Since objects have empty

support at infinity, the local finiteness condition implies that there are only finitely many

t ∈ [0, 1) with A(e,t) 6= 0, where e is the identity of G. By equivariance, A(g,t) = A(e,t) for

every t ∈ [0, 1). Therefore, A is a finitely generated free R[G]-module. Since the continuous

control condition is vacuous, equivariance tells us that the morphisms inDG(pt×[0, 1);FR)∅

are just R[G]-homomorphisms. Thus, DG(pt × [0, 1);FR)∅ is equivalent to FR[G]. (In

fact, DG(X × [0, 1);FR)∅ is equivalent to FR[G] for every X, because of the relatively G-

compact condition on objects.) As in Example 2.9, since DG(pt × [0, 1);FR) is flasque,

ΩK−∞(DG(pt× [0, 1);FR)>0) is weakly homotopy equivalent to K−∞(FR[G]).
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More generally, we have the following lemma about orbits G/H.

Lemma 3.3. ΩK−∞(DG(G/H × [0, 1);A)>0) ' K−∞(A[H]).

Proof. Equivariance tells us that the objects of DG(G/H × [0, 1);A)>0 are determined by

their value over the points in {eH}×[0, 1). Since the isotropy at every point in {eH}×[0, 1)

is H, the objects over {eH}× [0, 1) are objects in A[H]. Since G/H is a discrete space and

we are taking germs at 1, the morphisms in DG(G/H × [0, 1);A)∅ cannot jump between

different points of G/H (compare with Lemma 2.7). Combining this with the equivariance

of morphisms, we see that DG(G/H× [0, 1);A)>0 is equivalent to D{e}(pt× [0, 1);A[H])>0.

Since D{e}(pt× [0, 1);A[H]) is flasque, ΩK−∞(DG(G/H × [0, 1);A)>0) ' K−∞(A[H]). �

The functor K(−;A)G := ΩK−∞(DG(−× [0, 1);A)>0) from the category of G-CW com-

plexes to the category of spectra is G-homotopy invariant and G-excisive [4, Section 5].

As in the unequivariant case, the proof of this fact makes use of Karoubi filtrations and

Eilenberg swindles. In this sense K(−;A)G defines a G-equivariant homology theory. The

corresponding equivariant homology groups are denoted by HG
∗ (X; KA) := π∗(K(X;A)G).

The collapse map, X → pt, induces the continuously controlled assembly map

AG : K(X;A)G → K(pt;A)G,

which yields a map on homology, AG∗ : HG
∗ (X; KA) → HG

∗ (pt; KA) = K∗(A[G]). In

light of Example 2.2, this construction interprets assembly as a forget-control map. It is

also worth noting that the continuously controlled assembly map is a map of fixed point

spectra, since K−∞ commutes with taking fixed sets. That is, if G acts on an additive

category B, then there is an induced action of G on K−∞(B), and the fixed point set of

this spectrum, K−∞(B)G, is equivalent to the spectrum K−∞(BG). This implies that AG

is the map induced by the equivariant map of spectra K(X;A)→ K(pt;A).

The continuously controlled version of the assembly map is homotopy equivalent to the

one defined by Bartels and Reich, who used the Davis-Lück machinery for constructing

assembly maps [7, 16]. In the case A = FR, Hambleton and Pedersen used Lemma 3.3 to

identify the Davis-Lück assembly map with the continuously controlled assembly map [15].

They also showed that both versions were equivalent to the classical definition of the

assembly map.

The Farrell-Jones conjecture with coefficients predicts that the assembly map is an iso-

morphism for all coefficients A when X = EVCycG, where VCyc is the family of virtually
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cyclic subgroups of G. 1 This is a very strong statement. For example, if the Farrell-Jones

conjecture with coefficients is true for a group G, then the Fibered Farrell-Jones conjec-

ture is true for G [7]. Furthermore, it would imply that the Farrell-Jones conjecture with

coefficients is true for every subgroup of G. It also behaves well with respect to extensions

(see [16]).

By the universal property, there is a map EF inG → EVCycG, where F in is the family

of finite subgroups of G. Bartels [2] proved that for every discrete group G, the induced

map on homology, HG
∗ (EF inG; KA) → HG

∗ (EVCycG; KA), is a split injection. (He showed

this for A = FR, but the proof works in the general case as well.) As a result, the

Farrell-Jones conjecture implies that the assembly map for the family of finite subgroups,

HG
∗ (EF inG; KA)→ K∗(A[G]), should be a split injection for every discrete group G.

4. Proving isomorphism and injectivity results

In this section we present an alternate description of the continuously controlled assembly

map that is useful for proofs.

Consider the following commutative diagram.

DG(X × [0, 1);A)∅

∼=
��

// DG(X × [0, 1);A)

��

// DG(X × [0, 1);A)>0

AG

��
DG(pt× [0, 1);A)∅ // DG(pt× [0, 1);A) // DG(pt× [0, 1);A)>0

Since DG(pt× [0, 1);A) is flasque, K−∞(DG(pt× [0, 1);A)) is weakly contractible. There-

fore, it is a simple diagram chase to verify that the assembly map, AG, is homotopy equiv-

alent to the connecting map ΩK−∞(DG(X × [0, 1);A)>0)→ K−∞(DG(X × [0, 1);A)∅).

This variant of the continuously controlled assembly map shows us that in order to

prove isomorphism results one needs to prove that the category DG(X × [0, 1);A) has

trivial K-theory. For this reason, Bartels-Lück-Reich call this category the obstruction

category. In [5] they were able to prove the K-theoretic Farrell-Jones conjecture for all

word hyperbolic groups and all coefficient categories by showing that the K-theory of this

1Recall that if F is a family of subgroups of G that is closed under conjugation and taking subgroups,
then the universal space for G with isotropy in F , EFG, is a G-CW complex with the property that
(EFG)H is contractible if H is in F and is empty otherwise. Such spaces are universal for G-actions with
isotropy in F , meaning that given any G-CW complex Y whose isotropy groups belong to F , there is a
map Y → EFG that is unique up to G-equivariant homotopy equivalence. Thus, EFG is unique up to
G-equivariant homotopy equivalence.
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category vanishes when X = EVCycG. (Because of the nice inheritance properties of the

assembly map with coefficients, their result proves the K-theoretic Farrell-Jones conjecture

for all subgroups of finite products of word hyperbolic groups.) Recently Bartels and Lück

have announced the corresponding result in algebraic L-theory. Combining these two

theorems proves the Borel conjecture for all subgroups of finite products of word hyperbolic

groups.

The ultimate result about the assembly map is that it is an isomorphism. Proving that

the obstruction category vanishes achieves this goal, but it is a difficult task. However,

with a bit less one can still prove that the assembly map is a split injection using a trick

known as the descent principle. Using the fact that the continuously controlled assembly

map is a map of fixed spectra, one can employ homotopy fixed point sets to prove the

following theorem (a proof can be found in [8].)

Theorem 4.1 (The Descent Principle). Let G be a discrete group, A be an additive G-

category and EF inG be a finite dimensional G-CW complex. Assume that the K-theory of

the category DH(EF inG× [0, 1);A) vanishes for every finite subgroup H of G.

Then AG∗ : HG
∗ (EF inG; K−∞A )→ K∗(A[G]) is a split injection.

Consider the case when G is torsion-free. Then the descent principle says that one can

prove the assembly map is a split injection by proving that it is an equivalence unequiv-

ariantly. This is the original version of the descent principle. It was used by Carlsson and

Pedersen in [10] to prove the Novikov conjecture for torsion-free groups whose universal

space EG satisfied certain geometric conditions. Since Carlsson and Pedersen’s seminal

work, the descent principle and continuously controlled algebra have been used to prove

split injectivity results (see, for example, [11, 2, 3, 25, 8]). This method was recently used

to prove that the assembly map is a split injection for all discrete subgroups of virtually

connected Lie groups [8], and for all S-arithmetic subgroups of algebraic groups defined

over global fields, regardless of rank, by Ji [19].
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