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Abstract

It is well known that the signature operator on a manifold defin&slomology class which is an orientation
after inverting 2. Here we address the following puzzle: What is this class localized at 2, and what special properties
does it have? Our answers include the following:

e the K-homology classtj, of the signature operator is a bordism invariant;

o the reduction mod 8 of th& -homology class of the signature operator is an oriented homotopy invariant;
¢ the reduction mod 16 of th& -homology class of the signature operaton@an oriented homotopy invariant.
© 2005 Elsevier Ltd. All rights reserved.
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0. Introduction

The motivation for this paper comes from a basic question, of how to relate index theory (studied
analytically) with geometric topology. More specificallyMfis a manifold (say smooth and closed), then
the machinery of Kasparov theo}y,12,13]associates K-homology class with any elliptic differential
operator orM. If M is oriented, then in particular one can do this construction with the signature operator
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(with respect to some choice of Riemannian metric), and it is easy to’sttioat the classi ), so obtained
is independent of the choice of metric. It is thus some invariant of the diffeomorphism tyyeasfd
it should be possible to relate it to more familiar topological invariaRegionally, 4,, is computed by
its Chern character, which the Atiyah—Singer index theorem shows to be the Poincaré dual of the (total)
-class. This is the Atiyah—Singerclass, not the Hirzebrudhclass, but the two only differ by certain
powers of 2* So, in particular, one can recover framy, all the rational Pontrjagin classes M But
when we localize at 2, these powers of 2 really matter, and it is not so clearyheicodes. The purpose
of this paper is to take a first step toward solving this puzzle.

The main results of this paper are Theorem 2, which saysttfaas a bordism invariant, and Theorem
11, which says that the reduction #f; mod 8 is an oriented homotopy invariant. On the other hand, a
specific calculation in Proposition 17 shows that is not an oriented homotopy invariant mod 16.

Below we use the following notation. We denote homotopy functors by regular italic or Greek letters, and
we denote spectra by boldface letters. In particular, we distinguish between a spectrum and the associatec
homology theory. Thus the spectra of topologikatheory and ol_-theory are denoted big, KO, L,,
L*, etc. The spectra of oriented smooth and topological bordis@l°P, are denoted bSO, MSTop.
The Eilenberg—Mac Lane spectrum corresponding to ordinary homology with coeffi@esnidenoted
byH(G), orH if G = 7. If A denotes a spectrum, the corresponding homology theory and cohomology
theory are denoted b¥,(_; A) and H*(__; A). Thus, for exampleH.(_; H(G)) = H,.(_; G). We
write Z ) for 7 localized at 2, i.e., foZ[%, % ...] C Q. The notationA ) denotes the spectru
localized at 2. Note that sincgy, is flat overz, H.(_; A2)) coincides withH,.(_; A) ).

1. Basic properties of the invariant

Definition and Notation 1. Let M" be a closed smooth oriented manifold. Fix a Riemannian metric on
M. Then using this data, one can define signature operatoiD,;; on M, which is a self-adjoint elliptic
operator. When the dimensian= 2k of M is even,Dy, is given by the de Rham operatx- 4* on the

total exterior algebra complek ™ T2 M, together with a certaii/2-grading on this bundle manufactured
out of the Hodgex-operatof3]. More specifically, the grading operatofwhose+1 eigenspaces are the
even and odd subbundles for the grading) is givep-6orms byi?(?~D+ky andd + d* anticommutes
with 7, so that it interchanges the even and odd subbundles. There is an equivalent approach using Clifford
algebraq15, Chapter Il, Example 6.2By means of the usual identification of the exterior algebra and
Clifford algebra (as vector spaces, of course, not as algebras), we cambyjeas being given by the
Dirac-type operator on Cliff M, the complexified Clifford algebra bundle of the tangent bundle (with
connection and metric coming from the Riemannian connection and metric), with grading operator
given by the “complex volume elemeni15, pp. 33—-34 and 135-1373 parallel section of Cliff M
which in local coordinates is given ti{es - - - e,,, whereeq, . . ., e, are a local orthonormal frame for the
tangent bundle.

3 This is because a homotopy of metrics gives a homotopy of operators, and one divides out by homotopy in defining the
Kasparov groups.

4The HirzebruchL-class is attached to the power seriesoth x, whereas thez-class is attached to the power series
x coth(x/2).
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When the dimension = 2k + 1 of M is odd,t = i¥*e; - - - ¢, acting on Cliff- M by Clifford mul-
tiplication still satisfiesr? = 1, but the Dirac-type operator commutes wittFurthermore, ifs is the
usual grading operator on CliffM (which is (—1)” on products;, - - -¢;,), thent and the Dirac-type
operator both anticommute with So we define the signature operator in this case to be the restric-
tion of the Dirac-type operator to thel eigenspace of. (See alsq20, Remark following Definition
2.1].) From a slightly fancier point of view, we consider the Dirac-type operator on CWff with
the grading given by, but with the extra action of the Clifford algebi@d = Cliff ¢ R, where the
odd generator of’1 acts by:. By means of Kasparov’'s model &f-homology[12,13], D), defines a
class

4o e [ Ko(M),  neven
K1(M), n odd

which is independent of the choice of Riemannian metric (since a homotopy of metrics gives a ho-
motopy of operators). (Recall that a classkig(M) is defined by a graded Hilbert space equipped
with a x-representation of’ (M), together with an odd operator “essentially commuting” with the ac-
tion of C(M). It is easiest to use the Baaj—Julg mofdl in which the operator is unbounded and
self-adjoint, with compact resolvent, and “essentially commuting” means there is a dense subalgebra
of C(M) (in this caseC*>°(M)) that preserves the domain of the operator and has bounded commu-
tator with it. A class inK1(M) is similarly defined by a graded Hilbert space with commuting ac-
tions of C1 and of C(M), and with aCs-linear odd operator “essentially commuting” with the ac-

tion of C(M).) By Bott periodicity, we will identify the group in which,, lives with the group

K, (M).

The classy, has been studied by many authors, anﬂ’,ilmM)[%], it is an orientation class, basically

agreeing with SuIIivan'sK[%]—orientation for topological manifolds. (See for exam[dlé, Chapter 4for

the theory of the Sullivan orientation afil,8,9,17,25]for the connections with the signature operator.)
Our purpose here is to study the behaviorgf in K-theorylocalized at 2 where it definitely isnotan
orientation class.

Theorem 2. Let M" be a closed oriented manifqglt X be any finite CW compleand letf : M — X
be a continuous map. Thefa(4,r) € K,(X) is a bordism invariant of the paifM, f).In other words
if M1 and M> are closed oriented-manifolds with mapg; : M; — X, W*t1is a compact oriented
manifold with boundary withW = My LI (—M>3), and if f : W — X restricts to f; on M;, then
(SD«(4py) = (f2)(A115)-

Proof. We use the fact, pointed out for examplg29, p. 290] that the signature operator Wdefines
aclasst(w ow) in the relativek -homology groupk,,1(W, oW), and thab4w aw) = k(4dp, — 4m,) In
K, (@W) = K,(M1) ® K, (M2),where

k= 1, n even
12, nodd
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(The reason for the extra factor of 2 wheis odd will be elucidated in the course of the proof of Lemma
6.) First supposa is even, and consider the commutative diagram

S
Kn+l(W» aW) — Kn+l(x’ X) =0

Kn(M1) ® Kn(Mp) 202 Ka(X).

Chasing4(w,aw) both ways around the diagram, we see

(fl)*(AMl) - (fZ)*(AMz) =0,

as desired. The general structure of this argument comes[&ain

Now supposen is odd. The situation is harder because of the factor of 2; the above argument only
shows that f1),(24x,) — (f2).(24y,) = 0, i.e., thatf..(24),) is a bordism invariant. This is not good
enough for us since we will be concerned below with 2-primary torsion. However, we can use a variant of
the trick in[20, Section 4for getting around this. As pointed out there, we can dp|if ow) as a direct
sum of two operator#&, and E», each with “boundary’Daw, provided thalW admits an everywhere
non-vanishing vector field which ondW is normal to the boundary, pointing inward. (See gisb,
Chapter IV, proof of Theorem 2.J]Then the argument just given will prove thAt(d[E1]) = 0, or that
(f1)«(my) — (f2)(4m,) = 0. The only problem is that there is an obstruction to the existeneg of
a necessary and sufficient condition for such a vector fidla exist (assuming thad is connected) is
thaty(W) = 0. First, we dispose of one exceptional case: # 1, then a closed-manifold M is just a
disjoint union of finitely many copies &f!. FurthermoreQ1(X) = H1(X) and4g is the usual generator
of K1(S1). Hence the theorem just asserts in this case that given a disjoint Mhiafrfinitely many
(oriented) copies o$! and given amay : M — X, thenf, of the orientation class ik 1(M) is just the
image of 1, of the orientation class ifi1(M) under the canonical maff; — K1, which is clear. So we
may suppose > 3. If we replac&Vby W =W#N, whereNis a closed oriente¢tk +1)-manifold (we form
the connected sum away from the boundary), we can extevet W', and (sinc&Vis even-dimensional)
1(W) is replaced by(W) + y(N) — 2.

If n +1=dim W is divisible by 4, we can makg N) whatever we want (by taking a connected sum
of copies ofcP"*+1/2 which has odd Euler characteristic+ 3)/2, and with copies 082 x "~ and
of S1 x §”, which have Euler characteristic 4 and 0, respectively), so tgkiNg = 2 — (W) reduces
us to the case where the vector fieldxists.

If n +1=dim W is congruent to 2 mod 4, then there is still a further complication since we can only
makey(N) an arbitraryeveninteger. Ify(W) is even, then again takingN) = 2 — y(W) reduces us to
the case where the vector fialdxists. Ify(W) is odd, punch out a small disk frowd to obtainW’ with
oW’ = M1 U (—M>) LI §* and withy(W’) even. By the case we just handled, we kngW),.(4,) —
(f2)«(4m,) + fu(4sn) = 0. However, by constructionf is null-homotopic when restricted t§", so
f«(4sn) factors throughk1 (pt) = 0. So again( f1)(4m,) — (f2)«(4m) =0. O

Corollary 3. For eachn >0, the map(f : M — X)~ f.(4)) defines a natural transformation of
homotopy functors, : Q, — K, from oriented bordism t& -homology
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Proof. Theorem 2 shows we have a well-defined nigpX) — K, (X) for every finite CW compleX.
Naturality is obvious. O

Remark 4 (Caution). The natural transformation(s, : Q, — K}, -0 donotgive a natural transfor-
mation of homology theorie@ — K, hence do not come from a map of spedt80 — K. However,
thereis a map of spectra : MSO — K[%] (the spectrum on the right is-theory with the prime 2
inverted) defined by the natural transformations of homotopy functof¥%s, : @, — K,,[%]. To see
this, note thats, : Q, — K,},,~ o would be a map of homology theories if and only if the diagrams

Qur1(X x [0,1], X x{0,1}) 28 K,i1(X x[0,1], X x {0, 1})

Sn

Q,(X) — K, (X)
were commutative for ath. By definition ofs,, this would be tantamount to showing that for all closed
orientedn-manifoldsM”, the composite
5 .
Kps1(M x [0,1], M x {0,1}) — K,(M x {0, 1) 2% K, (M),
which is an isomorphism, would tak&s (0,17, mx0,1}) t0 4. But as we saw in the proof of Theorem
2, this is true fom even but false fon odd. However,

2—L(n+1)/2] Sntl

Qu11(X x [0,1], X x {0,1}) Kn+1(X x [0,1], X x {0, 1D[3]

27[11/2jsn 1
Q,(X) _— K, (X)[5]
is commutative for alh, because ifiis even| (n+1) /2| =|n/2|=n/2, and ifnis odd, 20*+D/21 =2.217/2]
and we have corrected for the extra factor of 2.

Theorem 5. After localization at2, the natural transformation,, : Q, — K, of Corollary 3 factors

Before starting on the proof we need to study how the signature operator on a product manifold is
related to the signature operators on the factors.

Lemma 6. Let M™ and N" be closed manifolds. Thety «ny = AyXAy if mnis evenand 4y xy =
24 X4y ifmnis odd. Her& denotes the external Kasparov prodéGi (M) K, (N) — K, 1n(MxN),
m and n interpreted mo&.

Proof of Lemma 6. Choose Riemannian metrics dhandN, and giveM x N the product metric. We
use the Clifford algebra point of view given in Definition 1. Observe that €{iff x N), with its usual

parity grading, naturally splits as the graded tensor productCHfRCliff - N [15, Chapter |, Section
1], and that the Dirac-type operatbr, .y on Cliff c (M x N) splits asD;®1+ 1® Dy, which matches
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perfectly with the Baaj—Julg “unbounded” versidd](or [5, Section 17.1J]of the Kasparov product
X. So the whole issue is to see what happens to the gradingsylLandzy be the “complex volume
elements” in Clifi- M and Cliffc N, respectively, as in Definition 1. H1, ..., e, and f1, ..., f, are
local orthonormal frames for the tangent bundle$/adindN, respectively, then

TM=iLm/2Jel"'em’ ‘L'N=l|'n/2jf]_‘fnv
and

TN = iL(m+n)/2Jel,,.emf1...fn_

The cases whemanis even are straightforward now, so we only consider the harder case milaeen
are both odd. In this casey andzy are both odd Clifford elements, and

TMIN = —TNTM, TMxN =LTMTN.

Now Cliff - (M x N) comes with the action af1®C1 = C» defined byry; andzy, and we see that the
external Kasparov product afy; and4y is the class irK K(C(M x N), C2) = Ko(M x N) defined by
Cliff c(M x N) with the Dirac-type operator and thi%-action. To compare this with ;. ;, we need
to apply the Bott periodicity isomorphism

KK(C(M x N),Co)=KK(C(M x N), C),

which comes from the Morita equivalence betweer= M>(C) (with the standard even grading) acd
This isomorphism is obtained by cutting down by a rank-one idempotefi,ifior which the obvious
choice is(1 + tpxn)/2. So the upshot is thaty; vy =2 - (4;X4y) in this case. O

Proof of Theorem 5. We use the fadi26, Lemma, p. 209]basically due to Wall, tha¥1SO ) splits as
a sum of (shifted) Eilenberg—Mac Lane spectra for the graypsandz/2. Thus for anyX,

QX)= @ Hij(X: (2)@)
0<j<n

For each summand df) in (2;) ), the associated summand of
H,—j(X; (Q))2)

corresponds to bordism classes of the fatT/ x N/ 4, X, where the mapcollapses the second factor
N/ to a point. Let us computs, on this class. By Lemma 6l v = 4yX4y (or twice this, ifM andN
are both odd-dimensional), wheRedenotes the external Kasparov product. Sineetors asf |y x ¢,
wherec is the “collapse mapN — pt, we havef, (4yXRAy) = (flm)(4m) ® c(4y), where® again
denotes a Kasparov product. Bui4y) € K;(pt) vanishes iff is odd and is just the signature Wfif j

is even. So

Sn <M"—f x NI % x) —s,_;(M"~ L X) . signatureN .

Forthez/2 summands inQ;) ), things are a bit more complicated. If a homology claggjn ; (X; 7/2)
is the reduction of an integral class, then again the associated bordism classes are of & form
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N/ EN X as above. However, one also has homology classégin(X; 7/2) which are not reductions of
integral homology classes. The associated bordism classes can be represented by bordism Toda bracke!

or Massey products, in the sense[bf. ChooseP”—f—l'—f> X representing the Bockstein of the given
class inH,_;(X; z/2), and N/ representing &/2 summand in2,. By [2, Propositions 4 and 5N
may be chosen to have an orientation-reversing involutnThen our class of order 2 iH; (X, Q,_;)
corresponds to a Toda brackdt, 2, N), which we can realize as follows. Lét : V — X bound two
copiesoff : P — X.NowN x I boundsV [ [ —N.SoglueV x N to P x N x I viathe usual gluing on one
copy of P x N, id x r on the other. The resultis a fiber bundle—~ E — M, with M =V Up, o1 P x 1

non-orientable and the map — X factoring throughM. Note that since? = id, E has a double cover
of the formM x N, with the covering map the quotient map for the involutips r, whereM = M/qs
and the maff — M ISJUSt projection onto the first factoM x N)Y/(p xr) —> M/qs M.

Now fix metrics onM andN for which ¢ andr are isometries, and consider the signature operator
element orkE. We are “almost” in the situation of Lemma 6, but there are complications due to the fact that
¢ andr reverse orientation (so thit itself does not carry a signature operator, just a “twisted” signature
operator, with the twist given by the orientation line bundle). The signature operdtaasf be viewed
as acting on sections of CliffM &Cliff - N which are invariant under the involution induced gy r.

Since the magE — X factors throughM, it will be enough to show that the classh. (M), defined by
the signature operator df is 0. This class is given by the graded Hilbert space

LA(Cliff ¢ M)**&LA(Cliff ¢ NY'™* & L*(Cliff ¢ M)* U L2(Cliff ¢ N)"=™°%,

the operatoD ;;®1 @ 1® Dy, and the complex volume foray; ., which up to a power afis tj; - <y .
Since we are restricting the class k. (E) to an element oK, (M), there is no loss of generality in
replacingD;;®1 @ 1® Dy with D;;®1 and replacind.?(Cliff ¢ N) by the finite-dimensional kernel of
Dy on this Hilbert space, which we can identify with the de Rham cohomolody: @hus our class is
now given by the graded Hilbert space

L2(Cliff ¢ M)**@H*(N)"™* @ L2(CIiff ¢ M)%+"099g fr* (n)r+0dd (1)

multiplication by functions inC*° (M), the operatorDM@l, and the complex volume formy; . . Note
that sincer and¢ are orientation-reversing isometrigs, anticommutes with ;;, and similarlyr,. anti-
commutes withry . Sincer, andty anticommute, they generate a complex Clifford algebra isomorphic
to M, acting onH*(N), and so the two eigenspacestgfor of r, acting onH*(N) each have the same
dimension.

There are now various subcases, depending on the parities of the dimensidnanaffN, just as
in the proof of Lemma 6, but the differences among them are the same as before, so we content our-
selves with writing out the details of the cases where dinand dim N are both even or both odd. Since
D ;; commutes withy,,, the two summands in (1) are both invariant unbigy (as well as multiplication by

5 Anderson shows that torsion generatorQjnmay be chosen to be total spaéga @ (2k + 1)0) of rRPZ+1 bundles (for
varying k) coming from real vector bundles® (2k + 1)0. Here/ is a non-trivial real line bundle an@k + 1)0 is a trivial
r%+1pundle. The orientation-reversing involution can be chosen as the projectivization of the vector bundle automorphism
given by—1 on/ and+1 on(2k + 1)0.
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functions inC*°(M)), but are interchanged by . If the second tensor factors were absent (i.e., we
had justL2(Cliff ¢ M)% @ L2(Cliff ¢ M)%+™°9 with multiplication by functions irC> (M), the operator

Dy;, and grading given by;;), the corresponding-homology class would be the class of the twisted
signature operator oM. But because of the second factors, this class is multiplied by an integer, namely
the signature o, which is 0. Now consider the case where dithand dim N are both odd. In this case,

the K-homology class is just an integer multiple of what we would hawefere replaced by! andr

by complex conjugation (on the unit circle in the complex plane). Then (1) would reduce to

L2(Cliff ¢ M)*+@CEe"g L2(CIiff ¢ M)®+°ddgcodd

whereC®"®"andc®d denote a copy of in even (resp., odd) degree. The two eigenspaceg of;, would
then be identical a€°°(M)-modules, or more precisely, the Kasparov module has the form

(cor (2 7))

where.#’, one of the eigenspacesqyf . . is a Hilbert space module far> (M), andT is a self-adjoint
operator on#’ with compact resolvent, commuting up to bounded operators witlCtRéM )-action.
So again the class would be trivial, since it is a Kasparov product of the cldsg M) represented by
(o, T) with a (trivial) class ink K*(C, C) = 0 (comparg24, pp. 257-258] The subcases where one
dimension is even and one is odd are similar to the cases we have considered, and thus in all cases, the
Z/2 summands i, do not contribute.

SinceQ; signatur IS Z for j divisible by 4 and is 0 otherwise, we obtain the desired factorizatian.

Theorem 7. There are natural transformations
I Hy( Z2)) = Kn() 2= Ha (L5 K(2),

such thatafter localization a2, the natural transformatios,, : Q, — K, of Corollary 3 factors through
the natural transformation

o<k na) & n—a

GD Hy4:(_;5 Z2)

0<k<|n/4]

Kn( 2= Hn(_; K@2).

(Here we are implicitly using Bott periodicity to view, _4; as a map intdk,,.) For the reasons discussed
in Remark4, the maps¥,, do not give a natural transformation of homology theories from ordinary
homology toK -homology

Proof. This is partially contained in Theorem 5, but we need to construct the natural transformations
<, and see that they have the right properties. To do this, choose a natural transformation of homology
theoriesp : Hiy — MSO ) that splits the natural orientation map: MSO — H after localizing.
(Localizing at 2 is essential here; there is no integral splitting map, since for odd pitSO ) is

built out of Brown—Peterson spectra, not Eilenberg—Mac Lane spectra.) Thet) lets, o p. We just

need to see that the factorization of Theorem 5 indeed comesdnx’,_4;. By Theorem 5 and its

proof, it is enough to check this on the product of the imagg,ofy, with a 4-manifold of signature 1,
sayCP?%, but this case is immediate from the first calculation in the proof of Theorens.
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Theorem 8. The map, factors through théreal) symmetric L-theory orientatios. This is the natural
transformation of homology theories

2,( )5 H,(; L*(R)

obtained from the integral symmetric L-theory orientatidescribed in[21, Section 7.1pnd in[22,
Sections 16— 173s a natural transformation of homology theories

Q,() -5 Hy (s L*(2)),

followed by the obvious change-of-rings map
Hy(_; L*(2)) — Hp(_; L*(R)).
(Note thator (M) maps under symmetric L-theory assembly to the symmetric signature of Mish¢henko

Proof. One could perhaps approach the relationship between t#redo, directly, using Hutt's ide§l 0]
for describing the latter in terms of cobordism classes of complexes of sheaves satisfying Poincaré duality,
together with the description of the signature operator clagslijor [17]. But this would be technically
complicated (indeed, this is wh%0] has not been published), and here we can get away with something
simpler. We consider the mapslocalized both away from 2 and at 2. The maz)[3] — L*(R)[3]isa
homotopy equivalence, arlld(R)[%] ~KO [%] (se€16, pp. 83—85and[23]). Our previously constructed
map of homology theoriegBsISO — KO[31, given by the maps2"/2s,, coincides withsg, since both
maps do the same thing on coefficient groups, sendifit] € @, to 2-"/?IsignaturgM). (Se€16, pp.
83-85]) Hence itis clear that, factors thouglay after localizing away from 2; in fact,, is nothing butk
followed by the natural transformation (of functors but not of homology theoKe@]%]* — KO[%]*
which is multiplication by 2/2! in degreen.

Localized at 2MSO and theL-theory spectrd.®*(7Z) andL*(R) are of generalized Eilenberg—Mac
Lane type [27]; this can also be deduced from the resultel®y Chapter 7)) The natural transformation
oR, Since it comes from the symmetric signature, sends (with the notation of the proof of Theorem 5)

(M"™7 x N7 EA X) > o(M" ™/ EA X) - signatureN.

Note that the connective spectrirf(R) ) (0) is a direct summand in*(R) ), andog is a split surjection
of homology theories ontb*®(R) 2, (0). So comparison with the above calculation of whatoes on the
same generators shows thatocalized at 2 isR followed by@j Y n—aj (in the notation of Theorem 7).

Now consider the pullback diagram of functors

Qn (i) - Qn (i) (2)

I

2,3 — ().
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This square maps undef, to a corresponding square
H,(_5L°R) —  Hy(L(R)2)

J J

H,(_L*®[3) — H( LR Q).

Recall that we showed thaj} localized at 2 issr followed by EB]. Yn—aj, and thats,, inverting 2 is

o followed by multiplication by 2/2]. These two agree rationally, sp factors as followed by the
pullback of the natural transformatiof® ; ', —4; and multiplication by £'/2/. O

We can get some more information aboutthe m@ps H,(_; Z)) — K,(_)) asfollows. Consider
a closed connected orientadnanifold M", n = 4k, and letc : M — pt be the “collapse map.” Chasing
the commutative diagram

k . @’;:05/)41.
QM) — Dj_oHaj(M; Zg) ——— Ko(M) 3

%
Qu(PY2y —  Ho(Pt Z2) =Z) =3 Ko(PY)(2) = Z(2)

we see thatM — M]inthe upper left maps ta,, in the upper right and down tQ (4,,) =signaturg M)
in the lower right. (A basic principle of Kasparov theory is that for any elliptic operator such as the
signature operator, the image undgof its K-homology class is its index.) On the other hanyd[M —
M)) = [M — pt] in the lower left, which maps to signatui®) in Ho(pt). From this one can see that
S0 Ho(pt Z2)) — Ko(pY) (o) istheidentity mag o) — Z(z), thatthe magay (M) o) — Ho(M; Z2))
can be identified with the signature, and that the image of;j > 0, lies in EO(M)(Z).
More generally, consider a closed orientedhanifold M". The canonical generatpi/] of H,(M; 7)
is the top-degree part of the homology class corresponding to the bordism class of the identity map
M — M,so%,(IM]) = 4y modulo the image of/,,_4® ---. Let f : M" — S" be a map of degree
1. Thenfinduces an isomorphism d#, (by definition!) and also induces a map

k:K,(M)— H,(M"; 7)

via the composite

i Kn (M) Ry (M) 5 Ry (8 2 Hy (8" 7) — Ha(M"; D). 2
(S~

(Here the isomorphis@n(sn);Hn(S”; 7) is not quite the Chern character (which involves denomi-
nators!) but instead comes from the degeneration of the Atiyah—Hirzebruch spectral sequence.) One can
also viewx as the map induced by collapsing tiwe— 1)-skeleton of a suitable CW decomposition\df

Proposition 9. Let M" be a closed oriented n-manifgldnd let,, be as defined in Theorefrand« as
defined in(2), localized at2. Thenx o %, is multiplication by2"/2l on H,,(M).
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Proof. Sincev, is a natural transformatior,o .%;,, mappingH,, (M) to itself must be multiplication by

a constant, and it is enough to compute for a splséré&-orn = 0 or 1,4 is the usual orientation class

in K,,(S™). Forn even, the Clifford algebra af” is isomorphic to a matrix algebra, aili- is basically

the Dirac operator with coefficients in the dual of the (complex) spinor bundle, which has dimension
V2" = 2'/2, Since the Dirac operator gives an orientation kshomology, the result is correct in this
case. Fon odd, the Clifford algebra of” splits as a sum of two matrix algebras each of dimensfon,2
andDg» is basically the Dirac operator with coefficients in a spinor bundle of dimer&ont = 217/2!

S0 again the calculation is correct]

Another important fact about the elemefit(4,,) associated with a bordism clagg : M" — X],
which is true integrally (in other words, without having to localize either at or away from 2), is the
following.

Theorem 10. LetM" be a closed oriented n-manifglét = be any countable groypandletf : M — B=n
be any map. Therf.(4)) € K, (Br) is an oriented homotopy invariant of M providedherthat the
assembly mag . (Br) — K.(C*(n)) isinjective(the” Strong Novikov Conjectufeor the assembly map
H.(Bn; L*(R)) — L3(Rn) is injective(a weak form of théIntegral Novikov Conjectui@. By“oriented

homotopy invariant we mean that iiv" X Mrisan orientation-preserving homotopy equivalence of
manifoldsthen f.(4x) = (f o h),.(4n).

Proof. This was proved ifil4, Section 9, Theorem 2ind in[11] when theC*-algebraic assembly map
is injective. However, injectivity of th&*-algebraic assembly map only implies the Integral Novikov
Conjecture irL-theory after localizing away from[23, Corollary 2.10]and there is no known implication
in the other direction, so another argument is needed if we assume instead the injectivity-tif¢oeetic

assembly map. However, the image of the symmetric signa;t@u(M‘—’; Bn) € H,(Bm; L*(R)) in
Ly (Rn) is a homotopy invariant, so thag (M EA Bn) is itself a homotopy invariant when thetheoretic

assembly map is injective. Byt (4,,) is the image obr(M —f> Br) under a natural transformation, by
Theorem 8. O

Theorem 11. Let M" be a closed oriented n-manifold. Then the imaget gfin K,,(M; 7/8) is an
oriented homotopy invariant of M. In other words N * M7 is an orientation-preserving homotopy
equivalence of manifolgd¢henh. (4y) = Ay in K, (M; 7/8).

Proof. We make use of Theorem 8, which factegghrough

OR

Q,() > Hy(_; L*(2)) — Hu(_; L*(R)).

By surgery theory, the homotopy equivalercgéefines a class
[h] € Hy(M; Lo(2)),

andor(M) — hy(or(N)) € H,(M; L*(R)) is the image of] under symmetrizatiol.,(Z) — L°*(Z)
followed by the change-of-rings mdg (Z) — L°(R). The symmetrization map is multiplication by 8 on
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homotopy groups in degrees divisible by24, Section 4.3][22, pp. 12—-13]s0or(M) — hy(cr(N)) €
H,(M; L*(R)) is divisible by 8 and maps to O ik, (M; 7/8). O

Remark 12. Note that we did not make full use of the assumption thatas a homotopy equivalence
here. We would have gotten the same conclusion if it was only a degree-1 normal map (in the sense of
surgery theory).

2. Examples and calculations

If M" is a closed manifold, the image af, in H,(M; Q) under the Chern character only differs from
the Poincaré dual of thie-class by certain powers of 2 (explained by Theorem 7)4§ds completely
computed rationally in terms of the Pontrjagin classes. In fagtjs basically the same as the Sullivan
orientation inKO[%],, except for powers of 2. So calculations of our invariants are only interesting in
the presence of 2-torsion. That makes it quite natural to compute them for real projective spaces and lens
spaces for cyclic 2-groups and quaternion groups. Calculation for such manifolds is expedited by the
following.

Lemma 13. Let M" be a closed manifold equipped withsain® structure and let oy, be the corre-
sponding Dirac operator. Then iK,, (M), 4y = [Py] N [E], where[E] € K9(M) is the class of the
complex spinor bundle E and ] € K9(M) isthe class of the dual bundi@Note that the complex Clifford
algebra bundle of M is isomorphic @8nd(E) ~ E ® E when n is even and to a direct sum of two copies
of End(E) when n is odd. The rank of E @ is 2\/2 )

Proof. This is just a restatement of the relationship between the Dirac and signature operators, as ex-
plained in[15]. O

Remark 14. Itis important to note in Lemma 13 thatM” is a spiri manifold, the Dirac operatapy,
defines a Poincaré duality isomorphism betwé&h{M) and K,,(M) which depends on the choice of
spirf structure. The clag] € K(M) will also vary with the spifi structure. Howeverj, € K, (M)
only depends on the orientationf not on the spifistructure. (If we fix the orientation of the manifold
M and assume thall admits a spifistructure, then the grouli?(M; 7) acts freel§ on the set of spif
structures compatible with this orientation. Identif (M; z) with the group of isomorphism classés]

of line bundles oM, the group operation being tensor product. Then if we operate on thfestpinture
by the clasgL], [Py is multiplied by[L], while [E] is also multiplied by[L], so[E] is multiplied by
(L1~ anddy = [Py] N [E] remains unchanged.)

Example 15. Consider a cyclic grou = C, of orderr = 2* acting linearly orc” with the action free
away from the origin. We identifg with the group ofrth roots of unity. The action is the restriction of
an action of the circle groug! by a direct sum of characterd, ..., t/», wherejy, . .., j, are relatively
prime mod andtis the canonical generator 8(S1) ~7[¢, 1~1]. The action of3 is free on the unit sphere
S(C") ~S5?~1 and the quotient spadé = S(C")/G is an orientable lens space of dimensian-21 with

61n fact, the groupt 1(M; 7/2) x H2(M; 7) acts simply transitively. The action éf1(M; 7/2) corresponds to twisting
by real line bundles, which also does not change the clgss
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fundamental grouis. Since the action o6 on C" is complex linearG preserves the canonical spin
structure onS(C") andM is a spiri manifold. (This is also clear from the fact thd€(M; ) is torsion-
free.) Caution the manifoldM admits 2 different spii structures compatible with its usual orientation,
sinceH2(M; 7)~G andHY(M; 7/2)=7/2. They differ from one another simply by tensoring with flat
real and complex line bundles. But there is a canonical choice of spiicture coming from the unique
spirf structure onS(C"). This is the one we will use.) First, we comp®&@(M). This is most easily
computed aKg(S(C”)), which in turn is obtained from thR(Sl)-moduIngl(S(C”)) by dividing out
by the additional relation” = 1. From the inclusion of (C") in the unit diskD(C"), we have the exact
sequence oR(S1)-modules

K(D(C"), S(C") — Kqu(D(C") — KA (S(C")) — 0.

Here the quotient map is not just a mapRifst)-modules but also a map of rings (with respect to the cup
product). SinceD(C") is equivariantly contractible, its equivarialittheory isR(S1), and equivariant
Bott periodicity gives an isomorphism ﬁfgl(D(C”), S(C™)) with R(S1) via the alternating sum of the

exterior powers of 1 + ... + t/n. So
n
Kgl(S(Cn));Z[l, [_l] 1_[ ([]m _ 1)
m=1

In particular, whenj; = - - - = j,, = 1 andr = 2, we obtain the standard calculationff(rP?*~1) as
e, 171/ = D", 12 = D) = Z[u) /", ulu+ 2) =7 & (Z/2" D,

whereu corresponds to — 1 (note that corresponds to a non-trivial flat line bundle, 1 to the trivial line
bundle), andi? = —2u.

Now, as a class irKgl(S(C")), the complexified tangent bundle 8fC") is given by the image of
Pl =i — 1 € Kgl(D(C”)) = R(SY) (since on addition of the normal line
bundle, which is trivial, one obtains the sum of the restrictions of the holomorphic and anti-holomorphic
tangent bundles af”). So the complex spinor bundie which has rank 21, hask-theory class:

15 .
5 []@"+0.
m=1

Here the division by 2 has a well-defined meaningd@l(S(C")), which is torsion-free as an abelian
group, and then one can specialize fréfto G. For example, in the case Bf*2'~1, this becomes

1 1
= D'== 2)"
U+ D =5w+2)

inz[t, t=11/((t — 1)™) = z[u]/ ™), which works out to
n—1

n—1

1 N\  jon—i n) i on—j—1
= w2V = w2V
21,;0(]) Z(]

Jj=0
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When one then adds the relatioh= —2u, this becomes

n—1
2n—l + nuzn—z + Z (l’l) (_2)j—1u2n—j_l

=2 N

n—1
:21171+2n72u (I’l) -1 Jj—1
S (1)

j=1
— 2n—1 + 2’1_21/!(1 + (_1)n),

which simplifies simply to 2-1 since 21 = 0. What this means is that iRP?"~1, 4, is simply
2"~1[p]. From this we can deduce:

Proposition 16. If M is a closed manifold with the homotopy typersf?*—1, then4,, is 2"~ times a
K-theory fundamental clasand is an oriented homotopy invariant

Proof. We have checked this far = RP2*—1 itself. Now if
m2-11 gp2i-1

is an orientation-preserving homotopy equivaleneg(4,y) and App2.-1 have the same image in
Ho,_1(RP?"~1)~ 7 by Proposition 9, so their difference lies in the torsion subgrougsf 1 (RPZ*~1),
which as we have seen is cyclic of ordér?2. However, by Theorem 7, this difference lies in the image
of the odd-dimensional homology @2~ not in top degree, which is all torsion of exponent 2. So
hs«(Apm) — Agpn—1 is therefore either O or the unique elementkof,_1 (RP2~1) of order 2. The latter
possibility is ruled out by the proof of Theorem 11, since the symmetrization map

H, (RP?'™Y Ly(2)) > Ho(RPP'E; L*(2))
is multiplication by 8 and thus 0 on all the 2-torsionfif,_1-4; (RP?'~1; 7). O

The fact that this is somewhat special is indicated by the following example.

Proposition 17. For fiveedimensional lens spacéthis corresponds to the casef= 3 above, 4, is
not necessarilyl times a K-theory fundamental clagnd isnotan oriented homotopy invarianéven
mod16.

Proof. Retain the same notation as above and take|G| = 2¢ with k large (or at least=3). Then
the five-dimensional lens spadé is classified by the tripl€ j1, j2, j3), where j1, j», j3 are odd and
defined modula. Also, without loss of generality we may take= 1 (otherwise change generators of
G). The oriented homotopy type ™ is determined byj1 j»jz € (Z/r)*, modulo multiplication bys3

for s € (z/r)* [19, Theorem VI] Since(z/r)* has order 21, which is a positive power of 2, and
since 3 is relatively prime to 22 runs through all ofz/r)* ass runs throughz/r)*, and hence all
five-dimensional lens spaces with fundamental gr@uare homotopy equivalent. However, there are
many diffeomorphism classes of such lens spaces[{&erheorem 12.7for the exact classification
theorem).
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To compute the structure &°(M), it suffices to takej; = j» = js = 1 (since all other lens spaces
with the same dimension and fundamental group have the same homotopy type). Calculation just as in
Example 15 gives

K°My=~7[t, t711/(¢c — 13, ¢ — 1)
=7[u]/®, (w+1)" -1

—zt (s (5) ).

with againu =t — 1. Since(5) = 2¢-1(2F — 1), we see that

2Ly = 2. 2ky = —2K(2F — 1u? = (-2 — Du)(2u) = 2712k — %P =0,
sou has additive order’z* and

KoMy =2/ Yu & (2/2 Yy (2u + (2% — 1)ud).

Next we compute the class of the spinor buniléf j; = jo» = j3 =1, we see (just as in Example 15)
that[E] is the image of

Fe+ 13 =3w+23e kKA(SE@) =21t 171/t — 13 = Z[ul/ W®).
This is of course just
223 +3.22u + 3 2u® + u®) = 4+ 6u + 3u?.

Note that ink°(M), this is not only not divisible by 4, but not divisible by 2. Sg; is not 4 times a
K-theory fundamental class; in fact, it is not even divisible by 2.

On the other hand, suppoke=4,r = 2k = 16, letM be the standard lens space above(létbe C"
with the S-action given byj; = 1, j» = 3, andj3 = 11, and letM’ be the associated lens space. The
numbersj, and j3 were chosen so that j» j3 = 1(mod 16, so that

3 11
f (21, 22, 23) > (21, 23, 237)

induces an oriente@-homotopy equivalenc§(C") — S(C") and an oriented homotopy equivalence
M — M'.Then[E,;]is the image of

Fe+ D@+ DM+ e KA(SE@) =20, 7Y/ (0 = D2 = Dt - D).
Letu=r—1,v=r3—1,w=r"1—1.Then ianl(S(C"’)), uvw = 0 and

e+ D@+ DM+ D =L+ 20 +2)w +2)
=%(uvw+2uv+2uw+2vw+4u+4v+4w~|—8)
=uv +uw +vw + 2u + 2v + 2w + 4.



62 J. Rosenberg, S. Weinberger / Topology 45 (2005) 47-63

But f; : Kg(S(C”)) — Kg(S(C”/)) is a ring isomorphism sendirtgto t, and hence 32=0, 16: +
12u?2 =0, andu® = 0 in K2(S(C")), as well as ik 2 (S(C™)). So

v=w+1%—1=3u+3u?=3ul+u),
w=(u+ DM —1=1%u + 552 = 11u(1 + 5u),
and
uv +uw +vw+ 2u + 2v + 2w + 4
= 3u?(1 + u) + 1% + 5u) + 332 (L + u)(1 + 5u?)

+ 2u + 6u(1+ u) + 22u(1 +5u) + 4
=44 30u + 1632 =4 — 2u + 3u?,

which is different from what we obtained fbt. Hencef, (457) # Ay, S04y, isSnotahomotopy invariant.
Note, incidentally, thay, ([E 1) and[E ;] differ by 84, so our calculation does not contradict Theorem
11. O

The above examples show that any formula for the imagd@fin K,(M; 7/8) must be fairly
complicated. But in a sequel paper we will give a simple formula for the image,dh K, (M; 7/2).
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