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The signature operator at 2
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Abstract

It is well known that the signature operator on a manifold defines aK-homology class which is an orientation
after inverting 2. Here we address the following puzzle:What is this class localized at 2, and what special properties
does it have? Our answers include the following:

• theK-homology class�M of the signature operator is a bordism invariant;
• the reduction mod8 of theK-homology class of the signature operator is an oriented homotopy invariant;
• the reduction mod16 of theK-homology class of the signature operator isnotan oriented homotopy invariant.
� 2005 Elsevier Ltd. All rights reserved.
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0. Introduction

The motivation for this paper comes from a basic question, of how to relate index theory (studied
analytically) with geometric topology. More specifically, ifM is a manifold (say smooth and closed), then
the machinery of Kasparov theory[5,12,13]associates aK-homology class with any elliptic differential
operator onM. If M is oriented, then in particular one can do this construction with the signature operator
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(with respect to some choice of Riemannianmetric), and it is easy to show3 that the class�M so obtained
is independent of the choice of metric. It is thus some invariant of the diffeomorphism type ofM, and
it should be possible to relate it to more familiar topological invariants.Rationally, �M is computed by
its Chern character, which the Atiyah–Singer index theorem shows to be the Poincaré dual of the (total)
L-class. This is the Atiyah–SingerL-class, not the HirzebruchL-class, but the two only differ by certain
powers of 2.4 So, in particular, one can recover from�M all the rational Pontrjagin classes ofM. But
whenwe localize at 2, these powers of 2 really matter, and it is not so clear what�M encodes. The purpose
of this paper is to take a first step toward solving this puzzle.
The main results of this paper are Theorem 2, which says that�M is a bordism invariant, and Theorem

11, which says that the reduction of�M mod 8 is an oriented homotopy invariant. On the other hand, a
specific calculation in Proposition 17 shows that�M is not an oriented homotopy invariant mod16.
Belowweuse the followingnotation.Wedenotehomotopy functorsby regular italic orGreek letters, and

we denote spectra by boldface letters. In particular, we distinguish between a spectrum and the associated
homology theory. Thus the spectra of topologicalK-theory and ofL-theory are denoted byK , KO , L•,
L•, etc. The spectra of oriented smooth and topological bordism�, �Top, are denoted byMSO,MSTop.
The Eilenberg–Mac Lane spectrum corresponding to ordinary homology with coefficientsG is denoted
byH(G), orH if G= Z. If A denotes a spectrum, the corresponding homology theory and cohomology
theory are denoted byH∗( ; A) andH ∗( ; A). Thus, for example,H∗( ; H(G)) = H∗( ; G). We
write Z(2) for Z localized at 2, i.e., forZ[13, 1

5, . . .] ⊂ Q. The notationA(2) denotes the spectrumA
localized at 2. Note that sinceZ(2) is flat overZ,H∗( ; A(2)) coincides withH∗( ; A)(2).

1. Basic properties of the invariant

Definition and Notation 1. LetMn be a closed smooth oriented manifold. Fix a Riemannian metric on
M. Then using this data, one can define thesignature operatorDM onM, which is a self-adjoint elliptic
operator. When the dimensionn= 2k of M is even,DM is given by the de Rham operatord + d∗ on the
total exterior algebra complex

∧∗
T ∗CM, together with a certainZ/2-grading on this bundle manufactured

out of the Hodge∗-operator[3]. More specifically, the grading operator� (whose±1 eigenspaces are the
even and odd subbundles for the grading) is given onp-forms byip(p−1)+k∗, andd + d∗ anticommutes
with �, so that it interchanges the even and odd subbundles. There is an equivalent approach using Clifford
algebras[15, Chapter II, Example 6.2]. By means of the usual identification of the exterior algebra and
Clifford algebra (as vector spaces, of course, not as algebras), we can viewDM as being given by the
Dirac-type operator on CliffC M, the complexified Clifford algebra bundle of the tangent bundle (with
connection and metric coming from the Riemannian connection and metric), with grading operator�
given by the “complex volume element”[15, pp. 33–34 and 135–137], a parallel section of CliffC M
which in local coordinates is given byike1 · · · en, wheree1, . . . , en are a local orthonormal frame for the
tangent bundle.

3 This is because a homotopy of metrics gives a homotopy of operators, and one divides out by homotopy in defining the
Kasparov groups.

4 The HirzebruchL-class is attached to the power seriesx coth x, whereas theL-class is attached to the power series
x coth(x/2).
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When the dimensionn = 2k + 1 of M is odd,� = ik+1e1 · · · en acting on CliffC M by Clifford mul-
tiplication still satisfies�2 = 1, but the Dirac-type operator commutes with�. Furthermore, if� is the
usual grading operator on CliffC M (which is (−1)p on productsei1 · · · eip ), then� and the Dirac-type
operator both anticommute with�. So we define the signature operator in this case to be the restric-
tion of the Dirac-type operator to the+1 eigenspace of�. (See also[20, Remark following Definition
2.1].) From a slightly fancier point of view, we consider the Dirac-type operator on CliffC M, with
the grading given by�, but with the extra action of the Clifford algebraC1 = Cliff C R, where the
odd generator ofC1 acts by�. By means of Kasparov’s model ofK-homology[12,13], DM defines a
class

�M ∈
{
K0(M), n even,
K1(M), n odd,

which is independent of the choice of Riemannian metric (since a homotopy of metrics gives a ho-
motopy of operators). (Recall that a class inK0(M) is defined by a graded Hilbert space equipped
with a ∗-representation ofC(M), together with an odd operator “essentially commuting” with the ac-
tion of C(M). It is easiest to use the Baaj–Julg model[4] in which the operator is unbounded and
self-adjoint, with compact resolvent, and “essentially commuting” means there is a dense subalgebra
of C(M) (in this caseC∞(M)) that preserves the domain of the operator and has bounded commu-
tator with it. A class inK1(M) is similarly defined by a graded Hilbert space with commuting ac-
tions of C1 and ofC(M), and with aC1-linear odd operator “essentially commuting” with the ac-
tion of C(M).) By Bott periodicity, we will identify the group in which�M lives with the group
Kn(M).

The class�M has been studied by many authors, and inKn(M)[12], it is an orientation class, basically
agreeing with Sullivan’sK[12]-orientation for topological manifolds. (See for example[16, Chapter 4]for
the theory of the Sullivan orientation and[11,8,9,17,25], for the connections with the signature operator.)
Our purpose here is to study the behavior of�M in K-theorylocalized at 2, where it definitely isnotan
orientation class.

Theorem 2. LetMn be a closed oriented manifold, let X be any finite CW complex, and letf : M → X

be a continuous map. Thenf∗(�M) ∈ Kn(X) is a bordism invariant of the pair(M, f ). In other words,
if M1 andM2 are closed oriented n-manifolds with mapsfi : Mi → X, Wn+1 is a compact oriented
manifold with boundary with�W = M1 � (−M2), and if f : W → X restricts tofi on Mi , then
(f1)∗(�M1)= (f2)∗(�M2).

Proof. We use the fact, pointed out for example in[20, p. 290], that the signature operator onWdefines
a class�(W,�W) in the relativeK-homology groupKn+1(W, �W), and that��(W,�W)= k(�M1−�M2) in
Kn(�W)=Kn(M1)⊕Kn(M2),where

k =
{
1, n even,
2, n odd.
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(The reason for the extra factor of 2 whenn is odd will be elucidated in the course of the proof of Lemma
6.) First supposen is even, and consider the commutative diagram

Kn+1(W, �W)
f∗−→ Kn+1(X,X)= 0

�

� �

�
Kn(M1)⊕Kn(M2)

(f1)∗+(f2)∗−−−−−−→ Kn(X).

Chasing�(W,�W) both ways around the diagram, we see

(f1)∗(�M1)− (f2)∗(�M2)= 0,

as desired. The general structure of this argument comes from[6,7].
Now supposen is odd. The situation is harder because of the factor of 2; the above argument only

shows that(f1)∗(2�M1) − (f2)∗(2�M2) = 0, i.e., thatf∗(2�M) is a bordism invariant. This is not good
enough for us since we will be concerned below with 2-primary torsion. However, we can use a variant of
the trick in[20, Section 4]for getting around this. As pointed out there, we can splitD(W,�W) as a direct
sum of two operatorsE1 andE2, each with “boundary”D�W , provided thatW admits an everywhere
non-vanishing vector fieldv which on�W is normal to the boundary, pointing inward. (See also[15,
Chapter IV, proof of Theorem 2.7].) Then the argument just given will prove thatf∗(�[E1])= 0, or that
(f1)∗(�M1) − (f2)∗(�M2) = 0. The only problem is that there is an obstruction to the existence ofv;
a necessary and sufficient condition for such a vector fieldv to exist (assuming thatW is connected) is
that�(W) = 0. First, we dispose of one exceptional case: ifn = 1, then a closedn-manifoldM is just a
disjoint union of finitely many copies ofS1. Furthermore,�1(X)=H1(X) and�S1 is the usual generator
of K1(S

1). Hence the theorem just asserts in this case that given a disjoint unionM of finitely many
(oriented) copies ofS1 and given a mapf : M → X, thenf∗ of the orientation class inK1(M) is just the
image off∗ of the orientation class inH1(M) under the canonical mapH1→ K1, which is clear. So we
may supposen�3. If we replaceWbyW ′=W#N , whereN is a closed oriented(n+1)-manifold (we form
the connected sum away from the boundary), we can extendf overW ′, and (sinceW is even-dimensional)
�(W) is replaced by�(W)+ �(N)− 2.
If n+ 1= dim W is divisible by 4, we can make�(N) whatever we want (by taking a connected sum

of copies ofCP(n+1)/2, which has odd Euler characteristic(n+ 3)/2, and with copies ofS2× Sn−1 and
of S1 × Sn, which have Euler characteristic 4 and 0, respectively), so taking�(N) = 2− �(W) reduces
us to the case where the vector fieldv exists.
If n+ 1= dim W is congruent to 2mod4, then there is still a further complication since we can only

make�(N) an arbitraryeveninteger. If�(W) is even, then again taking�(N)= 2− �(W) reduces us to
the case where the vector fieldv exists. If�(W) is odd, punch out a small disk fromW to obtainW ′ with
�W ′ =M1 � (−M2) � Sn and with�(W ′) even. By the case we just handled, we know(f1)∗(�M1) −
(f2)∗(�M2) + f∗(�Sn) = 0. However, by construction,f is null-homotopic when restricted toSn, so
f∗(�Sn) factors throughK1(pt)= 0. So again(f1)∗(�M1)− (f2)∗(�M2)= 0. �

Corollary 3. For eachn�0, the map(f : M → X)�f∗(�M) defines a natural transformation of
homotopy functorssn : �n → Kn, from oriented bordism toK-homology.
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Proof. Theorem 2 shows we have a well-defined map�n(X)→ Kn(X) for every finite CW complexX.
Naturality is obvious. �

Remark 4 (Caution). The natural transformations{sn : �n → Kn}n�0 do not give a natural transfor-
mation of homology theories� → K, hence do not come from a map of spectraMSO→ K . However,
thereis a map of spectrãs : MSO → K [12] (the spectrum on the right isK-theory with the prime 2
inverted) defined by the natural transformations of homotopy functors 2−�n/2�sn : �n → Kn[12]. To see
this, note that{sn : �n → Kn}n�0 would be a map of homology theories if and only if the diagrams

�n+1(X × [0,1], X × {0,1}) sn+1−→ Kn+1(X × [0,1], X × {0,1})
�

� �

�
�n(X)

sn−→ Kn(X)

were commutative for alln. By definition ofsn, this would be tantamount to showing that for all closed
orientedn-manifoldsMn, the composite

Kn+1(M × [0,1], M × {0,1}) �−→ Kn(M × {0,1}) proj−→ Kn(M),

which is an isomorphism, would take�(M×[0,1], M×{0,1}) to �M . But as we saw in the proof of Theorem
2, this is true forn even but false forn odd. However,

�n+1(X × [0,1], X × {0,1}) 2−�(n+1)/2�sn+1−−−−−−−−−→ Kn+1(X × [0,1], X × {0,1})[12]
�

� �

�
�n(X)

2−�n/2�sn−−−−−−→ Kn(X)[12]
is commutative for alln, because ifn is even,�(n+1)/2�=�n/2�=n/2, and ifn is odd, 2�(n+1)/2�=2·2�n/2�
and we have corrected for the extra factor of 2.

Theorem 5. After localization at2, the natural transformationsn : �n → Kn of Corollary 3 factors
through

⊕
0�k��n/4�Hn−4k( ; Z(2)).

Before starting on the proof we need to study how the signature operator on a product manifold is
related to the signature operators on the factors.

Lemma 6. LetMm andNn be closed manifolds. Then�M×N = �M��N if mn is even, and�M×N =
2�M��N if mn is odd. Here�denotes the external Kasparov productKm(M)⊗Kn(N)→ Km+n(M×N),
m and n interpreted mod2.

Proof of Lemma 6. Choose Riemannian metrics onM andN, and giveM × N the product metric. We
use the Clifford algebra point of view given in Definition 1. Observe that CliffC(M ×N), with its usual
parity grading, naturally splits as the graded tensor product CliffC M⊗̂Cliff C N [15, Chapter I, Section
1], and that the Dirac-type operatorDM×N on CliffC(M ×N) splits asDM⊗̂1+1⊗̂DN , which matches
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perfectly with the Baaj–Julg “unbounded” version ([4] or [5, Section 17.11]) of the Kasparov product
�. So the whole issue is to see what happens to the gradings. Let�M and�N be the “complex volume
elements” in CliffC M and CliffC N , respectively, as in Definition 1. Ife1, . . . , em andf1, . . . , fn are
local orthonormal frames for the tangent bundles ofM andN, respectively, then

�M = i�m/2�e1 · · · em, �N = i�n/2�f1 · · · fn,
and

�M×N = i�(m+n)/2�e1 · · · emf1 · · · fn.
The cases wheremn is even are straightforward now, so we only consider the harder case wheremandn
are both odd. In this case,�M and�N are both odd Clifford elements, and

�M�N =−�N �M, �M×N = i�M�N .

Now Cliff C(M × N) comes with the action ofC1⊗̂C1= C2 defined by�M and�N , and we see that the
external Kasparov product of�M and�N is the class inKK(C(M ×N), C2)=K2(M ×N) defined by
Cliff C(M × N) with the Dirac-type operator and thisC2-action. To compare this with�M×N , we need
to apply the Bott periodicity isomorphism

KK(C(M ×N),C2)�KK(C(M ×N),C),

which comes from the Morita equivalence betweenC2�M2(C) (with the standard even grading) andC.
This isomorphism is obtained by cutting down by a rank-one idempotent inC2, for which the obvious
choice is(1+ �M×N)/2. So the upshot is that�M×N�2 · (�M��N) in this case. �

Proof of Theorem 5.We use the fact[26, Lemma, p. 209], basically due to Wall, thatMSO(2) splits as
a sum of (shifted) Eilenberg–Mac Lane spectra for the groupsZ(2) andZ/2. Thus for anyX,

�n(X)(2)�
⊕

0�j �n
Hn−j (X; (�j )(2)).

For each summand ofZ(2) in (�j )(2), the associated summand of

Hn−j (X; (�j )(2))

corresponds to bordism classes of the formMn−j ×Nj f→X, where themapf collapses the second factor
Nj to a point. Let us computesn on this class. By Lemma 6,�M×N =�M��N (or twice this, ifM andN
are both odd-dimensional), where� denotes the external Kasparov product. Sincef factors asf |M × c,
wherec is the “collapse map”N → pt, we havef∗(�M��N)= (f |M)∗(�M)⊗ c∗(�N), where⊗ again
denotes a Kasparov product. Butc∗(�N) ∈ Kj(pt) vanishes ifj is odd and is just the signature ofN if j
is even. So

sn

(
Mn−j ×Nj f→X

)
= sn−j (Mn−j f→X) · signatureN .

For theZ/2 summands in(�j )(2), things are a bitmore complicated. If a homology class inHn−j (X; Z/2)
is the reduction of an integral class, then again the associated bordism classes are of the formMn−j ×
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Nj f→X as above. However, one also has homology classes inHn−j (X; Z/2)which are not reductions of
integral homology classes. The associated bordism classes can be represented by bordism Toda brackets

or Massey products, in the sense of[1]. ChoosePn−j−1 f→X representing the Bockstein of the given
class inHn−j (X; Z/2), andNj representing aZ/2 summand in�j . By [2, Propositions 4 and 5], N
may be chosen to have an orientation-reversing involutionr.5 Then our class of order 2 inHi(X,�n−i)
corresponds to a Toda bracket〈P,2, N〉, which we can realize as follows. LetF : V → X bound two
copies off : P → X. NowN×I boundsN ∐−N . SoglueV×N toP×N×I via theusual gluingonone
copy ofP ×N , id×r on the other. The result is a fiber bundleN → E→ M, withM=V⋃

P×{0,1} P ×I
non-orientable and the mapE → X factoring throughM. Note that sincer2 = id, E has a double cover
of the formM̃ ×N , with the covering map the quotient map for the involution�× r, whereM = M̃/�
and the mapE→ M is just projection onto the first factor(M̃ ×N)/(�× r)→ M̃/�=M.
Now fix metrics onM̃ andN for which � andr are isometries, and consider the signature operator

element onE.We are “almost” in the situation of Lemma 6, but there are complications due to the fact that
� andr reverse orientation (so thatM itself does not carry a signature operator, just a “twisted” signature
operator, with the twist given by the orientation line bundle). The signature operator ofE can be viewed
as acting on sections of CliffC M̃⊗̂Cliff C N which are invariant under the involution induced by�× r.
Since the mapE→ X factors throughM, it will be enough to show that the class inK∗(M), defined by
the signature operator onE, is 0. This class is given by the graded Hilbert space

L2(Cliff C M̃)�∗⊗̂L2(Cliff C N)
r∗ ⊕ L2(Cliff C M̃)�∗-odd⊗̂L2(Cliff C N)

r∗-odd,

the operatorDM̃⊗̂1⊕ 1⊗̂DN , and the complex volume form�M̃×N , which up to a power ofi is �M̃ · �N .
Since we are restricting the class inK∗(E) to an element ofK∗(M), there is no loss of generality in
replacingDM̃⊗̂1⊕ 1⊗̂DN with DM̃⊗̂1 and replacingL2(Cliff C N) by the finite-dimensional kernel of
DN on this Hilbert space, which we can identify with the de Rham cohomology ofN. Thus our class is
now given by the graded Hilbert space

L2(Cliff C M̃)�∗⊗̂H ∗(N)r∗ ⊕ L2(Cliff C M̃)�∗-odd⊗̂H ∗(N)r∗-odd, (1)

multiplication by functions inC∞(M), the operatorDM̃⊗̂1, and the complex volume form�M̃×N . Note
that sincer and� are orientation-reversing isometries,�∗ anticommutes with�M̃ , and similarlyr∗ anti-
commutes with�N . Sincer∗ and�N anticommute, they generate a complex Clifford algebra isomorphic
toM2 acting onH ∗(N), and so the two eigenspaces of�N or of r∗ acting onH ∗(N) each have the same
dimension.
There are now various subcases, depending on the parities of the dimensions ofM andN, just as

in the proof of Lemma 6, but the differences among them are the same as before, so we content our-
selves with writing out the details of the cases where dimM and dimN are both even or both odd. Since
DM̃ commuteswith�∗, the two summands in (1) are both invariant underDM̃ (aswell asmultiplication by

5Anderson shows that torsion generators in�∗ may be chosen to be total spacesP(�⊕ (2k + 1)�) of RP2k+1 bundles (for
varyingk) coming from real vector bundles� ⊕ (2k + 1)�. Here� is a non-trivial real line bundle and(2k + 1)� is a trivial
R2k+1-bundle. The orientation-reversing involution can be chosen as the projectivization of the vector bundle automorphism
given by−1 on� and+1 on(2k + 1)�.
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functions inC∞(M)), but are interchanged by�M̃×N . If the second tensor factors were absent (i.e., we
had justL2(Cliff C M̃)�∗ ⊕L2(Cliff C M̃)�∗-oddwith multiplication by functions inC∞(M), the operator
DM̃ , and grading given by�M̃ ), the correspondingK-homology class would be the class of the twisted
signature operator onM. But because of the second factors, this class is multiplied by an integer, namely
the signature ofN, which is 0. Now consider the case where dimM and dimN are both odd. In this case,
theK-homology class is just an integer multiple of what we would have ifN were replaced byS1 andr
by complex conjugation (on the unit circle in the complex plane). Then (1) would reduce to

L2(Cliff C M̃)�∗⊗̂Ceven⊕ L2(Cliff C M̃)�∗-odd⊗̂Codd,

whereCevenandCodddenote a copy ofC in even (resp., odd) degree. The two eigenspaces of�M̃×N would
then be identical asC∞(M)-modules, or more precisely, the Kasparov module has the form(

H⊕H,

(
0 T

T 0

))
,

whereH, one of the eigenspaces of�M̃×N , is a Hilbert space module forC∞(M), andT is a self-adjoint
operator onH with compact resolvent, commuting up to bounded operators with theC∞(M)-action.
So again the class would be trivial, since it is a Kasparov product of the class inK1(M) represented by
(H, T ) with a (trivial) class inKK1(C,C) = 0 (compare[24, pp. 257–258]). The subcases where one
dimension is even and one is odd are similar to the cases we have considered, and thus in all cases, the
Z/2 summands in�∗ do not contribute.
Since�j⊗signatureZ isZ for j divisible by 4 and is 0 otherwise, we obtain the desired factorization.�

Theorem 7. There are natural transformations

Sn : Hn( ; Z(2))→ Kn( )(2) =Hn( ; K (2)),
such that, after localization at2, the natural transformationsn : �n → Kn of Corollary3 factors through
the natural transformation⊕

0�k��n/4�
Hn−4k( ; Z(2))

⊕
0� k� �n/4� Sn−4k−−−−−−−−−−−−−→ Kn( )(2) =Hn( ; K (2)).

(Here we are implicitly using Bott periodicity to viewSn−4k as a map intoKn.)For the reasons discussed
in Remark4, the mapsSn do not give a natural transformation of homology theories from ordinary
homology toK-homology.

Proof. This is partially contained in Theorem 5, but we need to construct the natural transformations
Sn and see that they have the right properties. To do this, choose a natural transformation of homology
theories	 : H(2) → MSO(2) that splits the natural orientation mapO : MSO → H after localizing.
(Localizing at 2 is essential here; there is no integral splitting map, since for odd primesp, MSO(p) is
built out of Brown–Peterson spectra, not Eilenberg–Mac Lane spectra.) Then letSn = sn ◦ 	. We just
need to see that the factorization of Theorem 5 indeed comes from

⊕
k Sn−4k. By Theorem 5 and its

proof, it is enough to check this on the product of the image of	n−4k with a 4k-manifold of signature 1,
sayCP2k, but this case is immediate from the first calculation in the proof of Theorem 5.�
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Theorem 8. The mapsn factors through the(real) symmetric L-theory orientation�R.This is the natural
transformation of homology theories

�n( )
�R−→Hn( ; L•(R))

obtained from the integral symmetric L-theory orientation, described in[21, Section 7.1]and in [22,
Sections 16– 17]as a natural transformation of homology theories:

�n( )
�−→Hn( ; L•(Z)),

followed by the obvious change-of-rings map

Hn( ; L•(Z))→ Hn( ; L•(R)).
(Note that�R(M) maps under symmetric L-theory assembly to the symmetric signature of Mishchenko.)

Proof. One could perhaps approach the relationship between thesn and�R directly, usingHutt’s idea[10]
for describing the latter in terms of cobordism classes of complexes of sheaves satisfying Poincaré duality,
together with the description of the signature operator class in[11] or [17]. But this would be technically
complicated (indeed, this is why[10] has not been published), and here we can get away with something
simpler.We consider themapssn localized both away from2and at 2. ThemapL•(Z)[12] → L•(R)[12] is a
homotopy equivalence, andL•(R)[12]�KO [12] (see[16, pp. 83–85]and[23]). Our previously constructed
map of homology theoriesMSO→ KO [12], given by the maps 2−�n/2�sn, coincides with�R, since both
maps do the same thing on coefficient groups, sending[Mn] ∈ �n to 2−�n/2�signature(M). (See[16, pp.
83–85].) Hence it is clear thatsn factors though�R after localizing away from2; in fact,sn is nothing but�R

followed by the natural transformation (of functors but not of homology theories)KO[12]∗ → KO[12]∗
which is multiplication by 2�n/2� in degreen.
Localized at 2,MSO and theL-theory spectraL•(Z) andL•(R) are of generalized Eilenberg–Mac

Lane type ([27]; this can also be deduced from the results in[16, Chapter 7]). The natural transformation
�R, since it comes from the symmetric signature, sends (with the notation of the proof of Theorem 5)

(Mn−j ×Nj f→X) �→ �(Mn−j f→X) · signatureN .

Note that the connective spectrumL•(R)(2)〈0〉 is a direct summand inL•(R)(2), and�R is a split surjection
of homology theories ontoL•(R)(2)〈0〉. So comparison with the above calculation of whatsn does on the
same generators shows thatsn localized at 2 is�R followed by

⊕
j Sn−4j (in the notation of Theorem 7).

Now consider the pullback diagram of functors

�n( ) −→ �n( )(2)�
�

�n( )[12] −→ �n( )⊗Q.
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This square maps under�R to a corresponding square

Hn( ;L•(R)) −→ Hn( ;L•(R)(2))�
�

Hn( ;L•(R)[12]) −→ Hn( ;L•(R)⊗Q).

Recall that we showed thatsn localized at 2 is�R followed by
⊕

j Sn−4j , and thatsn inverting 2 is

�R followed by multiplication by 2�n/2�. These two agree rationally, sosn factors as�R followed by the
pullback of the natural transformations

⊕
j Sn−4j and multiplication by 2�n/2�. �

Wecanget somemore informationabout themapsSn : Hn( ; Z(2))→ Kn( )(2) as follows.Consider
a closed connected orientedn-manifoldMn, n= 4k, and letc : M → pt be the “collapse map.” Chasing
the commutative diagram

�4k(M)(2) −→ ⊕k
j=0H4j (M; Z(2))

⊕k
j=0 S4j−−−−−−→ K0(M)(2)

c∗

� c∗

� c∗

�
�4k(pt)(2) → H0(pt; Z(2))= Z(2)

S0−→ K0(pt)(2) = Z(2)

we see that[M → M] in the upper left maps to�M in the upper right and down toc∗(�M)=signature(M)

in the lower right. (A basic principle of Kasparov theory is that for any elliptic operator such as the
signature operator, the image underc∗ of itsK-homology class is its index.) On the other hand,c∗([M →
M]) = [M → pt] in the lower left, which maps to signature(M) in H0(pt). From this one can see that
S0 : H0(pt; Z(2))→ K0(pt)(2) is the identitymapZ(2) → Z(2), that themap�4k(M)(2) → H0(M; Z(2))

can be identified with the signature, and that the image ofSj , j >0, lies inK̃0(M)(2).
More generally, consider a closed orientedn-manifoldMn. The canonical generator[M] ofHn(M; Z)

is the top-degree part of the homology class corresponding to the bordism class of the identity map
M → M, soSn([M]) ≡ �M modulo the image ofSn−4 ⊕ · · ·. Let f : Mn → Sn be a map of degree
1. Thenf induces an isomorphism onHn (by definition!) and also induces a map


 : Kn(M)→ Hn(M
n; Z)

via the composite


 : Kn(M)�K̃n(M)
f∗→ K̃n(S

n)�Hn(S
n; Z)

�−−→
(f∗)−1

Hn(M
n; Z). (2)

(Here the isomorphism̃Kn(S
n)�Hn(S

n; Z) is not quite the Chern character (which involves denomi-
nators!) but instead comes from the degeneration of the Atiyah–Hirzebruch spectral sequence.) One can
also view
 as the map induced by collapsing the(n−1)-skeleton of a suitable CW decomposition ofM.

Proposition 9. LetMn be a closed oriented n-manifold, and letSn be as defined in Theorem7 and
 as
defined in(2), localized at2.Then
 ◦Sn is multiplication by2�n/2� onHn(M).
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Proof. SinceSn is a natural transformation,
 ◦Sn mappingHn(M) to itself must be multiplication by
a constant, and it is enough to compute for a sphereSn. Forn= 0 or 1,�Sn is the usual orientation class
in Kn(S

n). Forn even, the Clifford algebra ofCn is isomorphic to a matrix algebra, andDSn is basically
the Dirac operator with coefficients in the dual of the (complex) spinor bundle, which has dimension√
2n = 2n/2. Since the Dirac operator gives an orientation forK-homology, the result is correct in this

case. Fornodd, the Clifford algebra ofCn splits as a sum of two matrix algebras each of dimension 2n−1,
andDSn is basically the Dirac operator with coefficients in a spinor bundle of dimension

√
2n−1=2�n/2�,

so again the calculation is correct.�

Another important fact about the elementf∗(�M) associated with a bordism class[f : Mn → X],
which is true integrally (in other words, without having to localize either at or away from 2), is the
following.

Theorem10. LetMn be a closed oriented n-manifold, let� be any countable group,and letf : M → B�
be any map. Thenf∗(�M) ∈ Kn(B�) is an oriented homotopy invariant of M providedeither that the
assembly mapK∗(B�)→ K∗(C∗(�)) is injective(the“Strong Novikov Conjecture”) or the assembly map
H∗(B�; L•(R))→ L•∗(R�) is injective(a weak form of the“ Integral Novikov Conjecture”). By“oriented

homotopy invariant,” we mean that ifNn h→Mn is an orientation-preserving homotopy equivalence of
manifolds, thenf∗(�M)= (f ◦ h)∗(�N).
Proof. This was proved in[14, Section 9, Theorem 2]and in[11] when theC∗-algebraic assembly map
is injective. However, injectivity of theC∗-algebraic assembly map only implies the Integral Novikov
Conjecture inL-theoryafter localizingaway from2[23,Corollary 2.10], and there is noknown implication
in the other direction, so another argument is needed if we assume instead the injectivity of theL-theoretic

assembly map. However, the image of the symmetric signature�R(M
f→B�) ∈ Hn(B�; L•(R)) in

L•n(R�) is a homotopy invariant, so that�R(M
f→B�) is itself a homotopy invariant when theL-theoretic

assembly map is injective. Butf∗(�M) is the image of�R(M
f→B�) under a natural transformation, by

Theorem 8. �

Theorem 11. Let Mn be a closed oriented n-manifold. Then the image of�M in Kn(M; Z/8) is an

oriented homotopy invariant of M. In other words, if Nn h→Mn is an orientation-preserving homotopy
equivalence of manifolds, thenh∗(�N)= �M in Kn(M; Z/8).

Proof. We make use of Theorem 8, which factorssn through

�R︷ ︸︸ ︷
�n( )

�→Hn( ; L•(Z))→ Hn( ; L•(R)) .
By surgery theory, the homotopy equivalenceh defines a class

[h] ∈ Hn(M; L•(Z)),
and�R(M) − h∗(�R(N)) ∈ Hn(M; L•(R)) is the image of[h] under symmetrizationL•(Z)→ L•(Z)
followed by the change-of-ringsmapL•(Z)→ L•(R). The symmetrizationmap ismultiplication by 8 on
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homotopy groups in degrees divisible by 4[21, Section 4.3], [22, pp. 12–13], so�R(M)− h∗(�R(N)) ∈
Hn(M; L•(R)) is divisible by 8 and maps to 0 inKn(M; Z/8). �

Remark 12. Note that we did not make full use of the assumption thath was a homotopy equivalence
here. We would have gotten the same conclusion if it was only a degree-1 normal map (in the sense of
surgery theory).

2. Examples and calculations

If Mn is a closed manifold, the image of�M inH∗(M; Q) under the Chern character only differs from
the Poincaré dual of theL-class by certain powers of 2 (explained by Theorem 7). So�M is completely
computed rationally in terms of the Pontrjagin classes. In fact,�M is basically the same as the Sullivan
orientation inKO[12]n except for powers of 2. So calculations of our invariants are only interesting in
the presence of 2-torsion. That makes it quite natural to compute them for real projective spaces and lens
spaces for cyclic 2-groups and quaternion groups. Calculation for such manifolds is expedited by the
following.

Lemma 13. LetMn be a closed manifold equipped with aspinc structure, and letD/M be the corre-
sponding Dirac operator. Then inKn(M), �M = [D/M ] ∩ [E], where[E] ∈ K0(M) is the class of the
complex spinor bundle E and[E] ∈ K0(M) is the class of the dual bundle. (Note that the complex Clifford
algebra bundle of M is isomorphic toEnd(E)�E ⊗ E when n is even and to a direct sum of two copies
ofEnd(E) when n is odd. The rank of E orE is 2�n/2�.)

Proof. This is just a restatement of the relationship between the Dirac and signature operators, as ex-
plained in[15]. �

Remark 14. It is important to note in Lemma 13 that ifMn is a spinc manifold, the Dirac operatorD/M
defines a Poincaré duality isomorphism betweenK0(M) andKn(M) which depends on the choice of
spinc structure. The class[E] ∈ K0(M) will also vary with the spinc structure. However,�M ∈ Kn(M)

only depends on the orientation ofM, not on the spinc structure. (If we fix the orientation of the manifold
M and assume thatM admits a spinc structure, then the groupH 2(M; Z) acts freely6 on the set of spinc

structures compatiblewith this orientation. IdentifyH 2(M; Z)with the group of isomorphism classes[L]
of line bundles onM, the group operation being tensor product. Then if we operate on the spinc structure
by the class[L], [D/M ] is multiplied by[L], while [E] is also multiplied by[L], so[E] is multiplied by
[L]−1 and�M = [D/M ] ∩ [E] remains unchanged.)

Example 15. Consider a cyclic groupG= Cr of orderr = 2k acting linearly onCn with the action free
away from the origin. We identifyG with the group ofrth roots of unity. The action is the restriction of
an action of the circle groupS1 by a direct sum of characterstj1, . . . , tjn , wherej1, . . . , jn are relatively
primemodr andt is the canonical generator ofR(S1)�Z[t, t−1]. The action ofG is free on the unit sphere
S(Cn)�S2n−1 and the quotient spaceM=S(Cn)/G is an orientable lens space of dimension 2n−1 with

6 In fact, the groupH1(M; Z/2)×H2(M; Z) acts simply transitively. The action ofH1(M; Z/2) corresponds to twisting
by real line bundles, which also does not change the class�M .
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fundamental groupG. Since the action ofG on Cn is complex linear,G preserves the canonical spinc

structure onS(Cn) andM is a spinc manifold. (This is also clear from the fact thatH 3(M; Z) is torsion-
free.) (Caution: the manifoldM admits 2r different spinc structures compatible with its usual orientation,
sinceH 2(M; Z)�G andH 1(M; Z/2)�Z/2. They differ from one another simply by tensoring with flat
real and complex line bundles. But there is a canonical choice of spinc structure coming from the unique
spinc structure onS(Cn). This is the one we will use.) First, we computeK0(M). This is most easily
computed asK0

G(S(C
n)), which in turn is obtained from theR(S1)-moduleK0

S1
(S(Cn)) by dividing out

by the additional relationt r = 1. From the inclusion ofS(Cn) in the unit diskD(Cn), we have the exact
sequence ofR(S1)-modules

K0
S1
(D(Cn), S(Cn)) −→ K0

S1
(D(Cn)) −→ K0

S1
(S(Cn)) −→ 0.

Here the quotient map is not just a map ofR(S1)-modules but also a map of rings (with respect to the cup
product). SinceD(Cn) is equivariantly contractible, its equivariantK-theory isR(S1), and equivariant
Bott periodicity gives an isomorphism ofK0

S1
(D(Cn), S(Cn)) with R(S1) via the alternating sum of the

exterior powers oftj1 + · · · + tjn . So

K0
S1
(S(Cn))�Z[t, t−1]

/
n∏

m=1
(tjm − 1).

In particular, whenj1= · · · = jm = 1 andr = 2, we obtain the standard calculation ofK0(RP2n−1) as

Z[t, t−1]/((t − 1)n, t2− 1)= Z[u]/(un, u(u+ 2))�Z⊕ (Z/2n−1)u,

whereu corresponds tot − 1 (note thatt corresponds to a non-trivial flat line bundle, 1 to the trivial line
bundle), andu2=−2u.
Now, as a class inK0

S1
(S(Cn)), the complexified tangent bundle ofS(Cn) is given by the image of

tj1 + · · · + tjn + t−j1 + · · · + t−jn − 1 ∈ K0
S1
(D(Cn)) = R(S1) (since on addition of the normal line

bundle, which is trivial, one obtains the sum of the restrictions of the holomorphic and anti-holomorphic
tangent bundles ofCn). So the complex spinor bundleE, which has rank 2n−1, hasK-theory class:

1

2

n∏
m=1

(tjm + 1).

Here the division by 2 has a well-defined meaning inK0
S1
(S(Cn)), which is torsion-free as an abelian

group, and then one can specialize fromS1 toG. For example, in the case ofRP2n−1, this becomes

1

2
(t + 1)n = 1

2
(u+ 2)n

in Z[t, t−1]/((t − 1)n)= Z[u]/(un), which works out to

1

2

n−1∑
j=0

(
n

j

)
uj2n−j =

n−1∑
j=0

(
n

j

)
uj2n−j−1.
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When one then adds the relationu2=−2u, this becomes

2n−1+ nu2n−2+
n−1∑
j=2

(
n

j

)
(−2)j−1u2n−j−1

= 2n−1+ 2n−2u
n−1∑
j=1

(
n

j

)
(−1)j−1

= 2n−1+ 2n−2u(1+ (−1)n),
which simplifies simply to 2n−1 since 2n−1u = 0. What this means is that inRP2n−1, �M is simply
2n−1[D/ ]. From this we can deduce:

Proposition 16. If M is a closed manifold with the homotopy type ofRP2n−1, then�M is 2n−1 times a
K-theory fundamental class, and is an oriented homotopy invariant.

Proof. We have checked this forM = RP2n−1 itself. Now if

M2n−1 h→RP2n−1

is an orientation-preserving homotopy equivalence,h∗(�M) and �RP2n−1 have the same image in
H2n−1(RP2n−1)�Z by Proposition 9, so their difference lies in the torsion subgroup ofK2n−1(RP2n−1),
which as we have seen is cyclic of order 2n−1. However, by Theorem 7, this difference lies in the image
of the odd-dimensional homology ofRP2n−1 not in top degree, which is all torsion of exponent 2. So
h∗(�M) − �RP2n−1 is therefore either 0 or the unique element ofK2n−1(RP2n−1) of order 2. The latter
possibility is ruled out by the proof of Theorem 11, since the symmetrization map

H∗(RP2n−1; L•(Z))→ H∗(RP2n−1; L•(Z))
is multiplication by 8 and thus 0 on all the 2-torsion inH2n−1−4j (RP2n−1; Z). �

The fact that this is somewhat special is indicated by the following example.

Proposition 17. For five-dimensional lens spaces(this corresponds to the case ofn = 3 above), �M is
not necessarily4 times a K-theory fundamental class, and isnot an oriented homotopy invariant, even
mod16.

Proof. Retain the same notation as above and taker = |G| = 2k with k large (or at least�3). Then
the five-dimensional lens spaceM is classified by the triple(j1, j2, j3), wherej1, j2, j3 are odd and
defined modulor. Also, without loss of generality we may takej1 = 1 (otherwise change generators of
G). The oriented homotopy type ofM is determined byj1j2j3 ∈ (Z/r)×, modulo multiplication bys3

for s ∈ (Z/r)× [19, Theorem VI]. Since(Z/r)× has order 2k−1, which is a positive power of 2, and
since 3 is relatively prime to 2,s3 runs through all of(Z/r)× ass runs through(Z/r)×, and hence all
five-dimensional lens spaces with fundamental groupG are homotopy equivalent. However, there are
many diffeomorphism classes of such lens spaces (see[18, Theorem 12.7]for the exact classification
theorem).
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To compute the structure ofK0(M), it suffices to takej1 = j2 = j3 = 1 (since all other lens spaces
with the same dimension and fundamental group have the same homotopy type). Calculation just as in
Example 15 gives

K0(M)�Z[t, t−1]/((t − 1)3, tr − 1)

=Z[u]/(u3, (u+ 1)r − 1)

=Z[u]
/(

u3, ru+
(
r

2

)
u2

)
,

with againu= t − 1. Since
(
r
2

)= 2k−1(2k − 1), we see that

2k+1u= 2 · 2ku=−2k(2k − 1)u2= (−(2k − 1)u)(2ku)= 2k−1(2k − 1)2u3= 0,

sou has additive order 2k+1 and

K̃0(M)�(Z/2k+1)u⊕ (Z/2k−1)(2u+ (2k − 1)u2).

Next we compute the class of the spinor bundleE. If j1 = j2 = j3 = 1, we see (just as in Example 15)
that[E] is the image of

1
2(t + 1)3= 1

2(u+ 2)3 ∈ K0
S1
(S(Cn))= Z[t, t−1]/((t − 1)3)= Z[u]/(u3).

This is of course just

1
2(2

3+ 3 · 22u+ 3 · 2u2+ u3)= 4+ 6u+ 3u2.

Note that inK0(M), this is not only not divisible by 4, but not divisible by 2. So�M is not 4 times a
K-theory fundamental class; in fact, it is not even divisible by 2.
On the other hand, supposek = 4, r = 2k = 16, letM be the standard lens space above, letCn′ beCn

with theS1-action given byj1 = 1, j2 = 3, andj3 = 11, and letM ′ be the associated lens space. The
numbersj2 andj3 were chosen so thatj1j2j3 ≡ 1(mod 16), so that

f : (z1, z2, z3) �→ (z1, z
3
2, z

11
3 )

induces an orientedG-homotopy equivalenceS(Cn) → S(Cn′) and an oriented homotopy equivalence
M → M ′. Then[EM ′ ] is the image of

1
2(t + 1)(t3+ 1)(t11+ 1) ∈ K0

S1
(S(Cn

′
))= Z[t, t−1]/((t − 1)(t3− 1)(t11− 1)).

Let u= t − 1, v = t3− 1,w = t11− 1. Then inK0
S1
(S(Cn′)), uvw = 0 and

1
2(t + 1)(t3+ 1)(t11+ 1)= 1

2(u+ 2)(v + 2)(w + 2)

= 1
2(uvw + 2uv + 2uw + 2vw + 4u+ 4v + 4w + 8)

= uv + uw + vw + 2u+ 2v + 2w + 4.
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But f∗ : K0
G(S(C

n)) → K0
G(S(C

n′)) is a ring isomorphism sendingt to t, and hence 32u = 0, 16u +
120u2= 0, andu3= 0 inK0

G(S(C
n′)), as well as inK0

G(S(C
n)). So

v = (u+ 1)3− 1= 3u+ 3u2= 3u(1+ u),

w = (u+ 1)11− 1= 11u+ 55u2= 11u(1+ 5u),

and

uv + uw + vw + 2u+ 2v + 2w + 4

= 3u2(1+ u)+ 11u2(1+ 5u)+ 33u2(1+ u)(1+ 5u2)
+ 2u+ 6u(1+ u)+ 22u(1+ 5u)+ 4

= 4+ 30u+ 163u2= 4− 2u+ 3u2,

which is different fromwhatweobtained forM. Hencef∗(�M) #= �M ′ , so�M is not a homotopy invariant.
Note, incidentally, thatf∗([EM ]) and[EM ′ ] differ by 8u, so our calculation does not contradict Theorem
11. �

The above examples show that any formula for the image of�M in Kn(M; Z/8) must be fairly
complicated. But in a sequel paper we will give a simple formula for the image of�M in Kn(M; Z/2).
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