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1. Introduction

One of the most useful principles of enumeration in discrete probability and
combinatorial theory is the celebrated principle of inclusion-exclusion (cf. FELLER *,
FrEcHET, R10RDAN, RYSER). When skillfully applied, this principle has yielded
the solution to many a combinatorial problem. Its mathematical foundations
were thoroughly investigated not long ago in a monograph by FrfcHET, and it
might at first appear that, after such exhaustive work, little else could be said
on the subject.

One frequently notices, however, a wide gap between the bare statement
of the principle and the skill required in recognizing that it applies to a particular
combinatorial problem. It has often taken the combined efforts of many a
combinatorial analyst over long periods to recognize an inclusion-exclusion
pattern. For example, for the ménage problem it took fifty-five years, since
CavLEY’s attempts, before JacQues ToucHARD in 1934 could recognize a pattern,
and thence readily obtain the solution as an explicit binomial formula. The
situation becomes bewildering in problems requiring an enumeration of any of the
numerous collections of combinatorial objects which are nowadays coming to the
fore. The counting of trees, graphs, partially ordered sets, complexes, finite sets
on which groups act, not to mention more difficult problems relating to permu-
tations with restricted position, such as Latin squares and the coloring of maps,
seem to lie beyond present-day methods of enumeration. The lack of a systematic
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theory is hardly matched by the consummate skill of a few individuals with a
natural gift for enumeration.

This work begins the study of a very general principle of enumeration, of
which the inclusion-exclusion principle is the simplest, but also the typical case.
It often happens that a set of objects to be counted possesses a natural ordering,
in general only a partial order. It may be unnatural to fit the enumeration of such
a set into a linear order such as the integers: instead, it turns out in a great many
cases that a more effective technique is to work with the natural order of the set.
One is led in this way to set up a “difference calculus™ relative to an arbitrary
partially ordered set.

Looked at in this way, a surprising variety of problems of enumeration reveal
themselves to be instances of the general problem of inverting an “indefinite sum”
ranging over a partially ordered set. The inversion can be carried out by defining an
analog of the “difference operator’ relative to a partial ordering. Such an operator
is the Mobius function, and the analog of the “fundamental theorem of the
calculus” thus obtained is the M6bius inversion formula on a partially ordered set.
This formula is here expressed in a language close to that of number theory,
where it appears as the well-known inverse relation between the Riemann zeta
function and the Dirichlet generating function of the classical Mobius function.
In fact, the algebra of formal Dirichlet series turns out to be the simplest non-
trivial instance of such a “difference calculus”, relative to the order relation of
divisibility.

Once the importance of the Mobius function in enumeration problems is
realized, interest will naturally center upon relating the properties of this function
to the structure of the ordering. This is the subject of the first paper of this series;
we hope to have at least begun the systematic study of the remarkable properties
of this most natural invariant of an order relation.

We begin in Section 3 with a brief study of the incidence algebra of a locally
finite partially ordered set and of the invariants associated with it: the zeta
function, Mébius function, incidence function, and Fuler characteristic. The
language of number theory is kept, rather than that of the calculus of finite
differences, and the results here are quite simple.

The next section contains the main theorems: Theorem 1 relates the Mobius
functions of two sets related by a Galois connection. By suitably varying one of
the sets while keeping the other fixed one can derive much information. Theorem 2
of this section is suggested by a technique that apparently goes back to RAMANT-
JAN. These two basic results are applied in the next section to a variety of special
cases; although a number of applications and special cases have been left out, we
hope thereby to have given an idea of the techniques involved.

The results of Section 6 stem from an “Ideenkreis” that can be traced back
to Whitney’s early work on linear graphs. Theorem 3 relates the Mobius function
to certain very simple invariants of “cross-cuts” of a finite lattice, and the analogy
with the Kuler characteristic of combinatorial topology is inevitable. Pursuing
this analogy, we were led to set up a series of homology theories, whose Fuler
characteristic does indeed coincide with the Euler characteristic which we had
introduced by purely combinatorial devices.
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Some of the work in lattice theory that was carried out in the thirties is
useful in this investigation; it turns out, however, that modular lattices are not
combinatorially as interesting as a type of structure first studied by WHIITNEY,
which we have called geometric lattices following BirrHOFF and the French
school. The remarkable property of such lattices is that their Mébius function
alternates in sign (Section 7).

To prevent the length of this paper from growing beyond bounds, we have
omitted applications of the theory. Some elementary but typical applications
will be found in the author’s expository paper in the American Mathematical
Monthly. Towards the end, however, the temptation to give some typical examples
became irresistible, and Sections 9 and 10 were added. These by no means exhaust
the range of applications, it is our conviction that the Mébius inversion formula
on a partially ordered set is a fundamental principle of enumeration, and we hope
to implement this conviction in the successive papers of this series. One of them
will deal with structures in which the Mobius function is multiplicative, —-that
is, has the analog of the number-theoretic property u(mn) = p(m) p(n) if m and
n are coprime — and another will give a systematic development of the Ideenkreis
centering around Porya’s Hauptsatz, which can be significantly extended by a
suitable Mobius inversion.

A few words about the history of the subject. The statement of the Mébius
inversion formula does not appear here for the first time: the first coherent
version —with some redundant assumptions—-is due to WEISNER, and was indepen-
dently rediscovered shortly afterwards by Pricie Havr. Ward gave the statement
in full generality. Strangely enough, however, these authors did not pursue the
combinatorial implications of their work; nor was an attempt made to systemati-
cally investigate the properties of Mobius functions. Aside from Harr’s appli-
cations to p-groups, and from some applications to statistical mechanics by
M. 8. GreEN and NETTLETON, little has been done; we give a hopefully complete
bibliography at the end.

It is a pleasure to acknowledge the encouragement of G.BIrKHOFF and
A. GLEASON, who spotted an error in the definition of a cross-cut, as well as of
SEYMOUR SHERMAN and Ka1-La1 CHUNG. My colleagues D. Kax, G. WHITEHEAD,
and especially F. PETERSON gave me essential help in setting up the homological
interpretation of the cross-cut theorem.

2. Preliminaries

Little knowledge is required to read this work. The two notions we shall not
define are those of a partially ordered set (whose order relation is denoted by <)
and a lattice, which is a partially ordered set where max and min of two elements
(we call them join and meet, as usual, and write them \/ and A) are defined. We
shall use instead the symbols U and N to denote union and intersection of sefs
only. A segment [z, y], for # and y in a partially ordered set P, is the set of all
elements z between z and y, that is, such that x < z < y. We shall occasionally
use open or half-open segments such as [, ), where one of the endpoints is to be
omitted. A segment is endowed with the induced order structure; thus, a segment
of a lattice is again a lattice. A partially ordered set is locally finite if every segment
is finite. We shall only deal with locally finite partially ordered sets.
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The product P X § of partially ordered sets P and @ is the set of all ordered
pairs (p, ¢), where p € P and g € @, endowed with the order (p, ¢) = (r, s) whenever
p =7 and ¢ = s. The product of any number of partially ordered sets is defined
similarly. The cardinal power Hom (P, §) is the set of all monotonic functions
from P to @, endowed with the partial order structure f = g whenever f(p) = ¢(p)
for every p in P.

In a partially ordered set, an element p covers an element ¢ when the segment
[q, p] contains two elements. An atom in P is an element that covers a minimal
element, and a dual atom is an element that is covered by a maximal element.

If P is a partially ordered set, we shall denote by P* the partially ordered set
obtained from P by inverting the order relation.

A closure relation in a partially ordered set P is a function p — ¢ of P into
itself with the properties (1) p =p; (2) § = $; (3) p = ¢ implies § = §. An
element is closed if p = p. If P is a finite Boolean algebra of sets, then a closure
relation on P defines a lattice structure on the closed elements by the rules
pAg=pngand pVqg=pUgq, and it is easy to see that every finite lattice
is isomorphic to one that is obtained in this way. A Galois connection (cf. ORE,
p- 182ff.) between two partially ordered sets P and @ is a pair of functions
{: P— Qandn: @ — P with the properties: (1) both £ and s are order-inverting;
2)forpin P, 7w (l(p)) = p,and forqin @, {(7(g)) = ¢. Under these circumstances
the mappings p — z({(p)) and ¢ —{(m(q)) are closure relations, and the two
partially ordered sets formed by the closed sets are isomorphic.

In Section 7, the notion of a closure relation with the Mac Lane-Steinitz exchange
property will be used. Such a closure relation is defined on the Boolean algebra P
of subsets of a finite set / and satisfies the following property: if p and ¢ are points
of B, and S a subset of £, and if p ¢S but peSUq, then ¢ e SUp. Such a closure
relation can be made the basis of WHITNEY s theory of independence, as well as of
the theory of geometric lattices. The closed sets of a closure relation satisfying the
MacLANE-STEINITZ exchange property where every point is a closed set form a
geometric (= matroid) lattice in the sense of BirkuOFF (Lattice Theory, Chapter
IX).

A vpartially ordered set P is said to have a 0 or a I if it has a unique
minimal or maximal element. We shall always assume 0 = I. A partially ordered
set P having a 0 and a I satisfies the chain condition (also called the JoRDAN-
DEDEKIND chain condition) when all totally ordered subsets of P having a
maximal number of elements have the same number of elements. Under these
circumstances one introduces the rank r (p) of an element p of P as the length of a
maximal chain in the segment [0, p], minus one. The rank of 0 is 0, and the rank
of an atom is 1. The height of P is the rank of any maximal element, plus one.

Let P be a finite partially ordered set satisfying the chain condition and of
height n 4 1. The characteristic polynomial of P is the polynomial Z 1{0, xy An—r(@),
where r is the rank function (see the def. of y below). weP

If 4 is a finite set, we shall write n(A4) for the number of elements of 4.
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3. The incidence algebra
Let P be a locally finite partially ordered set. The éncidence algebra of P is
defined as follows. Consider the set of all real-valued functions of two variables
f(x, y), defined for = and y ranging over P, and with the property that f(z, ) = 0
if # £ y. The sum of two such functions f and g, as well as multiplication by
scalars, are defined as usual. The product » = fg is defined as follows:

hiz,y) = [, 2)g(zy).

T=z=y

In view of the assumption that P is locally finite, the sum on the right is well-
defined. It is immediately verified that this is an associative algebra over the real
field (any other associative ring could do). The incidence algebra has an identity
element which we write 6 (z, y), the Kronecker delta.

The zeta function £ (z, y) of the partially ordered set P is the element of the
incidence algebra of P such that {(z,y) = 1if < y and {(x, y) = 0 otherwise.
The function = (x, ) = (2, y) — 0 («, y) is called the incidence function.

The idea of the incidence algebra is not new. The incidence algebra is a special
case of a semigroup algebra relative to a semigroup which is easily associated
with the partially ordered set. The idea of taking “interval functions™ goes back
to DEpERIND and E. T. BerL; see also WARD.

Proposition 1. The zeta function of a locally finite partially ordered set is invertible
in the incidence algebra.

Proof. We define the inverse u (x, y) of the zeta function by induction over the
number of elements in the segment [x, y]. First, set u(x, x) = 1 for all z in P.
Suppose now that g (x, z) has been defined for all 2z in the open segment [z, y).
Then set

pl@,y)=—2 plw2).

=<y

Clearly p is an inverse of {.

The function u, inverse to {, is called the Mébius function of the partially
ordered set P.

The following result, simple though it is, is fundamental: )

Proposition 2. (Mobius inversion formula). Let f(x) be a real-valued function,
defined for x ranging in a locally finite partially ordered set P. Let an element p exist
with the property that f{x) = 0 unless x = p.

Suppose that

() ' g@) =21@).

Then =

(**) f@) =2 9@ uy.2).
y=x

Proof. The function ¢ is well-defined. Indeed, the sum on the right can be
written as Z f(y), which is finite for a locally finite ordered set.

PEYEX

Substituting the right side of (*) into the right side of (**) and simplifying,
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we get

z) = > f@u2) =2 2@y ny.).

y=w Yy=xz=y Y=x 2

Interchanging the order of summation, this becomes
IR 2y uly. zf(z (z,2) =f(x), q.e.d.
z y=x

Corollary 1. Let 7 (z) be a function defined for x in P. Suppose there is an element
q such that r (x) vanishes unless x = q. Suppose that

s@) = r(y).
Then =
x) =D u,y)sy)
y=x

The proof is analogous to the above and is omitted.

Proposition 3. (Duality). Let P* be the partially ordered set obtasned by inverting
the order of a locally finite partially ordered set P, and let u* and p be the Miobius
functions of P* and P. Then u*(x, y) = p(y, x).

Proof. We have, in virtue of Proposition 2 and Corollary 1,

ZM*(x,y) = §(x,2).
T ¥y =¥z
Letting ¢(z, y) = u*(y, x), it follows that ¢ is an inverse of  in the incidence
algebra of P. Since the inverse is unique, ¢ = y, q. e. d.

Proposition 4. The Mobius funciton of any segment [x,y] of P equals the
restriction to [x, y] of the Mobius function of P.

The proof is omitted.

Proposition 5. Let P X Q be the direct product of locally finite partially ordered
sets P and Q. The Mdbius function of P X@Q is given by

H((%Z/):(%”)) =M(%,U)M(y,7)), x,uc P; ?/,UEQ .

The proof is immediate and is omitted.
The same letter u has been used for the Mobius functions of three partially
ordered sets, and we shall take this liberty whenever it will not cause confusion.

Corollary (Principle of Inclusion-Exclusion). Let P be the Boolean algebra of
all subsets of a finite set of n elements. Then, for x and y in P,

pa,y) = (—Dr=n@, gy =,

where n(x) denotes the number of elements of the set x.

Indeed, a Boolean algebra is isomorphic to the product of n chains of two
elements, and every segment [z, y] in a Boolean algebra is isomorphic to a Boolean
algebra.

Aside of the simple result of Proposition 5, little can be said in general about
how the Mobius function varies by taking subsets and homomorphic images of a
partially ordered set. We shall see that more sophisticated notions will be required
to relate the Mobius functions of two partially ordered sets.
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Let P be a finite partially ordered set with 0 and I. The Euler characteristic
E of P is defined as

E=1+ u(0,1).

The simplest result relating to the computation of the Fuler characteristic
was proved by PHILIP HALL by combinatorial methods. We reprove it below with
a very simple proof which shows one of the uses of the incidence algebra:

Proposition 6. Let P be a finite partially ordered set with 0 and I. For every k,
let Cy be the number of chains with k elements stretched between O and I. Then

E=1—02—|—03—O4—l—"'.

Proof. y=(1=(@0+n1=0—n+n2.... It is easily verified that
nk=1(x, ¥) equals the number of chains of % elements stretched between x and y.
Letting x = 0 and y = I, the result follows at once.

It will be seen in section 6 that the Euler characteristic of a partially ordered
set can be related to the classical Euler characteristic in suitable homology
theories built on the partially ordered set.

Proposition 6 is a typical application of the incidence algebra. Several other
results relating the number. of chains and subsets with specified properties can
often be expressed in terms of identities for functions in the incidence algebra. In
this way, one obtains generalizations to an arbitrary partially ordered set of some
classical identities for binomial coefficients. We shall not pursue this line here
further, since it lies out of the track of the present work.

Example 1. The classical M6bius function p(n) is defined as (— 1)¥ if » is
the product of % distinct primes, and 0 otherwise. The classical inversion formula
first derived by Mébius in 1832 is:

gim) =3 f(n); fm)= ;g(n)u(g) .

n|m

It is easy to see (and will follow trivally from later results) that u (%) is the

Mobius function of the set of positive integers, with divisibility as the partial
order. In this case the incidence algebra has a distinguished subalgebra, formed

by all functions f(n, m) of the form f(n, m) = @ (%) The product H = F G of two

functions in this subalgebra can be written in the simpler form

*) H(m) =7 F k) G(n).
kn=m

If we associate with the element F of this subalgebra the jormal Dirichlet series

F (s) = Z F(n)/ns, then the product (*) corresponds to the product of two formal
n=1

Dirichlet series considered as functions of s, H(s) = F(s) G(s). Under this

representation, the zeta function of the partially ordered set is the classical Eie-

mann zela function (s) = Z 1/ns, and the statement that the Mébius function is
n=1
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the inverse of the zeta function reduces to the classical identity 1/ (s) = Z U (n)[ns.

It is hoped this example justifies much of the terminology introduced above.

Example 2, If P is the set of ordinary integers, then u(m,n)= —1 if
m=mn-—1, uim,m) =1, and u(m,n) =0 otherwise. The Mobius inversion
formula reduces to a well known formula of the calculus of finite differences, which
is the discrete analog of the fundamental theorem of calculus.

The Mobius function of a partially ordered set can be viewed as the analog
of the classical difference operator Af(n) = f(n 4 1)} — f(n), and the incidence
algebra serves as a calculus of finite dlfferenees onan arbltrary partially ordered set.

4. Main results

It turns out that the Mobius functions of two partially ordered sets can be
compared, when the sets are related by a Galois connection. By keeping one of the
sets fixed, and varying the other from among sets with a simpler structure, such
as Boolean algebras, subspaces of a finite vector space, partitions, etc., one can
derive much information about a Mobius function. This is the program we shall
develop. The basic result is the following:

Theorem 1. Let P and Q be finite partially ordered sets, where P has a 0 and
has a O and a 1. Let uy, and y be their Mobius functions. Let

w:Q—+P; p:P—>Q

be a Galois connection such that

(1 n{x)=0 ifandonlyif z=1.
2 e{0)=1.
Then
#(0, 1) =3 up(0,a) 2 (0(@), 0) = > (0, a)
a>0 [a o(a)=0]

One gets a significant summand on the right for every a > 0 in P which is
mapped into 0 by g. One therefore expects the right side to contain “few’ terms.
In general, iy is a known function and g is the function to be determined.

Proof. We shall first establish the identity
*) 2. 8(m (e, 0(0))

azb
for every b in P. Here { on the right stands for the zeta function of Q. Equation (*)
is equivalent to the following statement: s (x) = b if and only if < o(3). But
this latter statement is immediate from the properties of a Galois connection.
Indeed, if 7w () = b, then ¢ (m (%)) =< 0(b), but x < o (n(x)), hence z < o (b), and
similarly for the converse implication.

To identity (*) we apply the Mébius inversion formula relative to P, thereby
obtaining the identity

(**) d(m(x), 0) = 2 pp(0,a) (2, 0(a)).

a=0

Now, d(n(x), 0) takes the value 1 if and only if m(x) = 0, that is, in view of
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assumption (1), if and only if # = 1. For all other values of z, we have ¢ (w (z),0)=0.

Therefore,
O(@(x),0)=1—n(z,1).

We can now rewrite equation (**) in the form

1—n(x,1) =1 00)+ > up(0,a)l(z, 0(a))

a>0

However, in view of assumption (2), {(x, p(0)) = {(z, 1), and this is identically
one for all & in Q. Therefore, simplifying,

- n(x> 1) = Zﬂp(oy a)C(x7 Q(a’)) .
a>0
Now, since { = é + n, we have y = § — un, hence, recalling that 0 =+ 1,
p(0,1)=—>pu0,x)n(@1) = > > up(0,a) u(0,2) (2, 0(a)) -

0=z=1 0=e=1a>0
Interchanging the order of summation, we get

p0,1) =2 pp(0,a) > 4(0,2)¢ (z, 0(a)).
a>0 0=w=1
The last sum on the right equals 6(0, o(2)), and this equals { (o (a), 0). The
proof is therefore complete.
For simplicity of application, we restate Theorem 1 inverting the order of P.
Corollary. Let p: Q — P; q: P—> @ be order preserving functions between
P and Q such that

(1) If p(zy=1 then xz=1, and conversely.
@) g(l)=1.

(3) Plg@) == and q¢p() Z <.
Then

#(0,1) =2 ppla, 1)L (g (@), 0) = > ppl(a, 1)
a<l [a:g(a)=01
where u is the M6bius function of ¢.

The second result is suggested by a technique which apparently goes back to
RaMaNUIAN (cf. HARDY, RAMANUJAN, page 139).

Theorem 2. Let Q be a finite partially ordered set with 0, and let P be a partially
ordered set with 0. Let p: @ — P be a monotonic function of @ onto P. Assume that
the inverse image of every inferval [0, a] in P is an interval [0, x] in @, and that the
inverse image of 0 contains at least two points.

Then S u(0,2) =0

[z:p(z)=a]
for every a in P.

The proof is by induction over the set P. Since [0, 0] is an interval and its
inverse image is an interval [0, g] with ¢ > 0, we have

[z:p(z)=0] 0=z=¢q
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Suppose now the statement is true for all b such that b << ¢ in P. Then

S > u0,z)=0.

b<a [z:p(z)=b]

>u0,x) =72 > u0,2).

[z:p(z)=a] b=a [z:p(x)=Db]

It follows that

The last sum equals the sum over some interval [0, 7] which is the inverse

image of the segment [0, a], that is
> > p0,2) =2 u(0,2)=06(0,7).
b=<a [z:p(x)=b] O=z=r
But 7 > 0 because a is strietly greater than 0. Hence 6(r, 0) = 0, and this con-
cludes the proof.
5. Applications
The simplest (and typical) application of Theorem 1 is the following:

Proposition 1. Let B be a subset of a finite lattice L with the following properties:
1 ¢ R, and for every x of L, except x = 1, there is an element y of R such that y = .

For k = 2, let qr, be the number of subsets of R containing k elements whose meet
ts 0. Then u(0,1) =qs —qa +qa -+ -+ .

Proof. Let B(R) be the Boolean algebra of subsets of R. We take P = B(R)
and @ = L in Theorem 1, and establish a Galois connection as follows. For x in L,
let 7z () be the set of elements of B which dominate . In particular, 7 (1) is the
empty set. For 4 in B(R), set p(4) = A A, namely, the meet of all elements of
A, an empty meet giving as usual the element 1. This is evidently a Galois
connection. Conditions (1) and (2) of the Theorem are obviously satisfied.

The function p, is given by the Corollary of Proposition 5 of Section 3, and
hence the conclusion is immediate.

Two noteworthy special cases are obtained by taking B to be the set of dual
atoms of @, or the set of all elements << 1 (cf. also WRISNER).

Closure relations. A useful application of Theorem 1 is the following:

Proposition 2. Let x — & be a closure relation on a partially ordered set Q having 1,
with the property that T = 1 only if x = 1. Let P be the partially ordered subset of
all closed elements of Q. Then: (a) If & > x, then u(x,1) = 0; (b) If & = x, then
wiz, 1) = up(x, 1), where py is the Mobius function of P.

Proof. Considering [, 1], it may be assumed that P has a 0 and z = 0. We
apply Corollary 1 of Theorem 1, setting p(z) = Z and letting ¢ be the injection
map of Pinto . It is then clear that the assumptions of the Corollary are satisfied,
and the set of all ¢ in P such that g{a) = 0 is either the empty set or the single
element 0, g. e. d.

Corollary (Ph. Hall). If O is not the meet of dual atoms of a finite lattice L,
or if 1 is not the join of atoms, then 1 (0,1) = 0.

Proof. Set £ = A A (x), where A4 (x) is the set of dual atoms of @ dominating =,
and apply the preceding result. The second assertion is obtained by inverting
the order.

Example 1. Distributive lattices. Let L be a locally finite distributive lattice.
Using Proposition 2, we can easily compute its Mobius function. Taking an interval
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[z, ¥] and applying Proposition 4 of Section 3, we can assume that I is finite.
For a € L, define @ to be the join of all atoms which @ dominates. Then ¢ — a is a
closure relation in the inverted lattice L*. Furthermore, the subset of closed
elements is easily seen to be isomorphic to a finite Boolean algebra (cf. BIRKHOFF
Lattice Theory, Ch. IX) Applying Proposition 5 of Section 3, we find: u(x, y) = 0
if y is not the join of elements covering x, and p (x, ) = (— 1)? if y is the join of
n distinet elements covering .

In the special case of the integers ordered by divisibility, we find the formula
for the classical Mobius function (cf. Example 1 of Section 3.).

The Mobius function of cardinal products. Let P and @ be finite partially
ordered sets. We shall determine the Mo6bius function of the partially ordered set
Hom (P, @) of monotonic functions from P to @, in terms of the Mobius function
of Q. It turns out that very little information is needed about P.

A few preliminaries are required for the statement.

Let R be a subset of a partially ordered set § with 0, and let B be the ideal
generated by R, that is, the set of all elements # in ¢ which are below (<C) some
element of E. We denote by @/R the partially ordered set obtained by removing
off all the elements of E, and leaving the rest of the order relation unchanged.
There is a natural order-preserving transformation of ¢ onto @/R which is
one-to-one for elements of @ not in R. We shall call @/R the quotient of Q by the
ideal generated by E.

Lemma. Lef f: P— @ be monotonic with range R c Q. Then the segment
[f, 1] in Hom (P, @) is isomorphic with Hom (P, Q/R).

Proof. For g in [f, 1], set g’ () = g(x) to obtain a mapping g — g’ of [f, 1] to
Hom (P, @/R). Since g = f, the range of g lies above E, so the map is an iso-
morphism.

Proposition 3. The Mébius function u of the cardinal product Hom (P, §)
of the finite partially ordered set P with the partially ordered set @ with O and 1 is
determined as follows:

(a) If f(p) + O for some element p of P which is not maximal, then u(0, f) = 0.

(b) In all other cases,

p0.f)=][u®,f(m), feP,

m
where the product ranges over all maximal elements of P, and where p on the right
stands for the Mébius function of Q.

(c) For f < g, plf, 9) = u(0,g’), where g’ is the image of g under the canomial
map of [f, 1] onto Hom (P, @Q|R), provided Q|R has a 0.

Proof. Define a closure relation in [0, f]*, namely the segment [0, f] with the
inverted order relation, as follows. Set g (m) = g (m) if m is a maximal element of P,
and g (a) = 0 if a is not a maximal element of P. If g = 0, then ¢g(m) = 0 for all
maximal elements m, hence g(a) = 0 for all & << some maximal element, since g
is monotonic. Hence ¢ = 0, and the assumption of Proposition 2 is satisfied. The
set of closed elements is isomorphic to Hom (M, P), where M is a set of as many
elements as there are maximal elements in P. Conclusion (@) now follows from
Proposition 2, and conclusion (b) from Proposition 5 of Section 3. Conclusion (¢)
follows at once from the Lemma.
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We pass now to some applications of Theorem 2.
Proposition 4. Let a — a be a closure relation on o finite lattice @, with the
property that a \/ b = @\/ b and 0 > 0. Then for all a € Q,

>u0,z) =0,
[z z=a)]

Proof. Let P be a partially ordered set isomorphie to the set of closed elements
of L. We define p(x), for z in @, to be the element of P corresponding to the
closed element &. Since 0 > 0, any « between 0 and 0 is mapped into 0. Hence the
inverse image of 0 in P under the homomorphism p is the nontrival interval
[0, 0].

Now consider an interval [0, @] in P. Then p~1([0, a]) = [0, &], where & is the
closed element of L corresponding to a. Indeed, if 0 <y < 7 then § < x = &,
hence p(y) < a. Conversely, if p(y) < a, then § =< & but y < 7, hence y =< Z.
Therefore the condition of Theorem 2 is satisfied, and the conclusion follows at
once.

Corollary (Weisner).

(a) Let @ > 0 in a finite latéice L. Then, for any b in L,

z[u(O, x) =0
Vv a=b
(b) Let @ << 1 in L. Then, for any b in L,
D@ 1)=0.
zha=b

Proof. Take & = x \/ a. Part (b) is obtained by inverting the order.

Example 2. Let V be a finite-dimensional vector space of dimension n over
a finite field with ¢ elements. We denote by L(V) the lattice of subspaces of V.
We shall use Prop?)sition 4 to compute the Mobius function of L(V).

In the lattice L(V), every segment [x, y], for x = ¥, is isomorphic to the lattice
L(W), where W is the quotient space of the subspace y by the subspace x. If we
denote by un = pn(g) the value of 4 (0, 1) for L(V), it follows that u(x, y) = p;,
when j is the dimension of the quotient space W. Therefore once uy is known for
for every n, the entire Mébius function is known.

To determine pu,, consider a subspace a of dimension » — 1. In view of the
preceding Corollary, we have for all ¢ << 1 (where 1 stands for the entire space V):
Sz, 1) =0

zAa=0
where 0 stands of course for the 0-subspace. Let a be a dual atom of L(V), that
is, a subspace of dimension » — 1. Which subspaces » have the property that
z A @ = 0%z must be a line in ¥, and such a line must be disjoint except for 0
from a. A subspace of dimension » — 1 contains g7~ distinet points, so there will
be g» — ¢»~1 points outside of a. However, every line contains exactly ¢ — 1
points. Therefore, for each subspace @ of dimension n — 1 there are

distinet lines & such that & A @ = 0. Since each interval [z, 1] is isomorphic to
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a space of dimension n — 1, we obtain

pn=p(0,1) = —> u(@, 1) = — gL uy1.
xANa=0
z+0

This is a difference equation for [n which is easily solved by iteration. We obtain
the result, first established by PrILIp HALL (see also WEISNER and S. DELSARTE):

palg) = (— Lrgnn-072 — (— 1) gld).

6. The Euler characteristie

Sharper results relating (0, 1) to combinatorial invariants of a finite lattice
can be obtained by application of Theorem 1, when the “comparison. set” P
remains a Boolean algebra.

A cross-cut C of a finite lattice L is a subset of L with the following properties:

(a) C does not contain 0 or 1.

(b) no two elements of C are comparable (that is, if  and y belong to C, then
neither # << ¥ nor x > y holds).

{c}) Any maximal chain stretched between 0 and 1 meets the set C.

A spanning subset S of L is a subset such that V § =1and A § = 0.

The main result is the following Cross-cut Theorem :

Theorem 3. Let u be the Mdbius function and E the Euler characteristic of a non-
trivial finite lattice L, and let C be a cross-cut of L. For every integer k = 2, let qi
denote the number of spanning subsets of C containing k distinct elements. Then

E—1=p0,1)=¢2—q3+qa—¢q5+

The proof is by induction over the distance of a cross-cut € from the element 1.

Define the distance d(x) of an element z from the element 1 as the maximum
length of a chain stretched between x and 1. For example, the distance of a dual
atom is two. If C is a cross-cut of L, define the distance d{C) as max d(») as x
ranges over (. Thus, the distance of the cross-cut consisting of all dual atoms is
two, and conversely, this is the only cross-cut having distance two.

It follows from Proposition 1 of Section 5 that the result holds when d(C)=2
(take B = C in the assertion of the Proposition). Thus, we shall assume the
truth of the statement for all cross-cuts whose distance is less than %, and prove
it for a cross-cut with d(C) = n.

If C is a subset of L, we shall write £ > € or z < C to mean that there is an
element y or C such that x > y, or that there is an element y of C' such that
x = y. For a general C, these possibilities may not be mutually exclusive; they
are mutually exclusive when C is a cross-cut. We shall repeatedly make use of
this remark below.

Define a modified lattice L’ as follows. Let L’ contain all the elements = such
that = C in the same order. On top of C, add an element 1 covering all the
elements of C, but no others; this defines IL'.

In I/, consider the cross-cut C and apply Proposition 1 of section 5 again.
If 4’ is the Mobius function of L', then

@ 0,1y =ps—p3+ps...,
where pyg is the number of all subsets 4 ¢ C c I’ of & elements, such that A 4 =0.
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Comparing the lattices L and L', we have
0=2 u(0,a) + > u,x)=>u(0,x) + p'(0,1).

a=C z>C z=C

However, for z < C, we have u'(0, ) = u(0, ) by construction of L’. Hence

2 u(0,7)=—pa+pg—pst -

z=C
Since the sets (z/x < C) and (z/x > () are disjoint, we can write

<<l z<C 1>z>C

We now simplify the first summation on the right:

*) #(0,1) = p2 —p3 + pa--- — > p(0,2).
1>z>C
Now let g (x) be the number of subsets of C having k elements, whose meet
is 0 and whose join is x. In particular, ¢x (1) = gz. Then clearly

= q®), k=2,

z>C
the summation in (*) can be simplified to

(**) p0,1)=(g2—gz+qa—+)— > [—qa(®@) + g3 (®) — qa(z)
1>2>C
e 4 p(0,2)].

For x above ' and unequal to 1, consider the segment [0, z]. We prove that
C(x) = CnN[0,x] is a cross-cut of the lattice [0, ] such that d(C(z)) < d(0).
Once this is done, it follows by the induction hypothesis that every term in
brackets on the right of (**) vanishes, and the proof will be complete.

Conditions (a) and (b) in the definition of a cross-cut are trivially satisfied by
C(x), and condition (c) is verified as follows. Suppose @ is a maximal chain in
[0, «] which does not meet C'(x). Choose a maximal chain R in the segment [z, 1];
then the chain QU R is maximal in L, and does not intersect C.

It remains to verify that d(C(x)) < d(C), and this is quite simple. There is
a chain ¢ stretched between C and x whose length is d(C'(x)). Then d(C) exceeds
the length of the chain QU R, and since x << 1, R has length at least 2, hence
the length of QU R exceeds that of @ by at least one. The proof is therefore
complete.

Theorem 3 gives a relation between the value (0, 1) and the width of narrow
cross-cuts or bottlenecks of a lattice. The proof of the following statement is im-
mediate.

Corollary 1. (a) If L has a cross-cut with one element, then (0, 1) = 0.

(b) If L has a cross-cut with two elements, then the only two possible values of
u(0,1) are 0 and 1.

(¢) If L has a cross-cut having three elements, then the only possible values of
#{0,1) are 2,1,0 and —1.

In this connection, an interesting combinatorial problem is to determine all
possible values of (0, 1), given that L has a cross-cut with » elements.

Z. Wahrscheinlichkeitstheorie, Bd. 2 25
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Reduction of the main formula. In several applications of the cross-cut theorem,
the computation of the number g5 of spanning sets may be long, and systematic
procedures have to be devised. One such procedure is the following:

Proposition 1. Let C be a cross-cut of a finite lattice L. For every integer k& = 0,
and for every subset A c C, let q(A) be the number of spanning sets containing A,
and let Sy = Z q(A4), where A ranges over all subsets of C having k elements. Set So

4

to be the number of elements of C. Then
$(0,1)=2=80—281 228, — 2883 + ---.
Proof. For every subset BcC, set p(B)=1 if B is a spanning set, and

p (B) = 0 otherwise. Then

q(4)=>p(B).
C=2B=24

Applying the Mébius inversion formula on the Boolean algebra of subsets of C,
we get

p(4) =2 q(B)u(4, B),
B=24

where p is the Mobius function of the Boolean algebra. Summing over all subsets
A c € having exactly k elements,

w=_pA)=>  2qB)ud, B).

w(d)=k n(d)=k B2A4

Interchanging the order of summation on the right, recalling Proposition 5 of

Section 3 and the fact that a set of £ +- [ elements possesses (k —l*‘ l) subsets of k

elements, we obtain
k41 k12 n
Qk=5'1c—< —1|— )Sk+1—l-< _2'_ )Slc+z"'+(—1)”_k(k)sn-

A convenient way of recasting this expression in a form suitable for computation
is the following. Let V be the vector space of all polynomials in the variable x,
over the real field. The polynomials 1, z, 22, ..., are linearly independent in V.
Hencs there exists a linear functional L in V such that

L@xky=8;, £=0,1,2,....
Formula (*) can now be rewritten in the concise form
E+2 xk
qr = L (@b — (k+1)xk+l_}__( 5 >xk+2 —) :L<W)'

Upon applying the cross-cut theorem, we find the expression (where qo and ¢
are also given by (*), but turn out to be 0)

1 x 22
#O.) =I5 — i e )
1

=S0—281—[—4Sz——— v, qed
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The cross-cut theorem can be applied to study which alterations of the order
relation of a lattice preserve the Kuler characteristic. Every alteration which
preserves meets and joins of the spanning subsets of some cross-cut will preserve
the Euler characteristic. There is a great variety of such changes, and we shall
not develop a systematic theory here. The following is a simple case.

Following BIRKHOFF and JéxssonN and TArskI we define the ordinal sum of
lattices as follows. Given a lattice L and a function assigning to every element x
of L a lattice L(x), (all the L(xz) are distinct) the ordinal sum P = ZL(x) of

i7
the lattices L (x) over the lattice L is the partially ordered set P consisting of the
set \_J L (x), where u < v if u e L(x) and v € L(z) and w < v in L(x), or if u € L ()
zel
and v e L(y) and & << y. It is clear that Pis a lattice if all the L (x) are finite lattices.

Proposition 2. If the finite lattice P is the ordinal sum of the lattices L(x) over the
non-trivial lattice L, and py, pr and pg, are the corresponding Méobius functions, then:

If L(0) is the one element lattice, then puy (0, 1) = pr(0, 1).

Proof. The atoms of P are in one-to-one correspondence with the atoms of L
and the spanning subsets are the same. Hence the result follows by applying the
cross-cut theorem to the atoms.

In virtue of a theorem of Jonssox and TARSKI, every lattice P has a unique
maximal decomposition into an ordinal sum over a ‘“skeleton” L. This can be
used in connection with the preceding Corollary to further simplify the computa-
tion of u(0, n) as » ranges through P.

Homological interpretation. The alternating sums in the Cross-Cut Theorem
suggest that the Huler characteristic of a lattice be interpreted as the Huler
characteristic in a suitable homology theory. This is indeed the case. We now
define* a homology theory H(C) relative to an arbitrary cross-cut C of a finite
lattice L. For the homological notions, we refer to Eilenberg-Steenrod.

Order the elements of C, say a1, as, ..., ay. For k = 0, let a k-simplex o be
any subset of C of & + 1 elements which does not span. Let Oy, be the free abelian
group generated by the k-simplices. We let C_y = 0; for a given simplex ¢, let
a; be the set obtained by omitting the (¢ + 1)-st element of ¢, when the elements
of ¢ are ordered according to the given ordering of C. The boundary of a k-simplex

;

is defined as usual as dyo = Z (—1)to;, and is extended by linearity to all of
i=0

Oy, giving a linear mapping of Cy into Cy_1. The k-th homology group Hy is
defined as the abelian group obtained by taking the quotient of the kernel of o
by the image of 0z11. The rank b of the abelian group Hp, that is, the number
of independent generators of infinite cyclic subgroups of Hy, is the k-th Bett;
number.

Let oz be the rank of Cp, that is, the number of k-simplices. The Euler cha-
racteristic of the homology H (C) is defined in homology theory as

oo

E(C) = (—1)koy.
k=0

* This definition was obtained jointly with D. Kax, F. PETERsoN and G. WHITEHEAD,
whom I now wish to thank.

25%
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It follows from well-known results in homology theory that
EC)= Z(— 1)k by,
¥=0

Let gz be the number of spanning subsets with k elements as in Theorem 3.

Then ggy1 + oy is the total number of subsets of C having & 4- 1 elements; if C
N

has N elements, then oz = < b+ 1) — qg+1- It follows from the Cross-Cut Theo-

rem that

BO =30 V)= 3 (- D

> () e,

We have however

,2(_1)’“(;-\; 1) - —_Z(“l)i (Z:,) =1 —_?(—l)i(lj) =1—(1—-1)V=1,

i =0

and hence
E(C) =1+ p(0,1) = E;
in other words:

Proposition 3. In a finite lattice, the Euler characteristic of the homology of any
cross-cut C equals the Euler characteristic of the lattice.

This result can sometimes be used to compute the Mobius functions of “large”
lattices. In general, the numbers g are rather redundant, since any spanning
subset of k£ elements gives rise to several spanning subsets with more than %
elements. A method for eliminating redundant spanning sets is then called for.
One such method consists precisely in the determination of the Betti numbers by.

We conjecture that the Betti numbers of H (C) are themselves independent of
the cross-cut C, and are also “‘invariants’ of the lattice L, like the Euler charac-
teristic 2 (C). In the special case of lattices of height 4 satisfying the chain con-
dition, this conjecture has been proved (in a different language) by Dowkzr.

Example 1. The Betti numbers of a Boolean algebra. We take the cross-cut ' of
all atoms. If the height of the Boolean algebra is # + 1, then every k-cycle, for
k < n — 2, bounds, so that bp = 1 and by = 0 for 0 << k£ << n — 2. On the other
hand, there is only one cycle in dimension » — 2. Hence b, = 1 and we find
E =1+ (—1)*2, which agrees with Proposition 5 of Section 3.

A notion of Euler characteristic for diséributive lattices has been recently intro-
duced by HapwicER and KLEE. For finite distributive lattices, KLEER’s Euler
characteristic is related to the one introduced in this work. We refer to K1.EE’s
paper for details.

7. Geometric lattices

An ordered structure of very frequent occurrence in combinatorial theory is
the one that has been variously called matroid (WHITNEY), matroid lattice (BIRK-
HOFF), closure relation with the exchange property (MacLANE), geometric lattice
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(BrrHOFF), abstract linear dependence relation (BrEIcHER and PRESTON).
Roughly speaking, these structures arise in the study of combinatorial objects
that are obtained by piecing together smaller objects with a particularly simple
structure. The typical such case is a linear graph, which is obtained by piecing
together edges. Several counting problems associated with such structures can
often be attacked by Mobius inversion, and one finds that the M6bius functions
involved have particularly simple properties.

We briefly summarize the needed facts out of the theory of such structures,
referring to any of the works of the above authors for the proofs.

A finite lattice L is a geometric lattice when every element of L is the join of
atoms, and whenever if ¢ and b in L cover a A b, then @ \/ b covers both ¢ and b.
Equivalently, a geometric lattice is characterized by the existence of a rank func-
tion satisfying r(a AD) + r(a \V b) < r(a) -+ r(b). Notice that this implies the
chain condition. In particular if ¢ is an atom, then r(a \V ¢) = r(¢) or r(c) + 1.
If M is a semimodular lattice, then the partially ordered subset of all elements
which are joins of atoms is a geometric sublattice.

Geometric lattices are most often obtained from a closure relation on a finite
set which satisfies the MacLANE-STEINITZ exchange property. The lattice L of
closed sets in such a closure relation is a geometric lattice whenever every one-
element set is closed. Conversely, every geometric lattice can be obtained in this
way by defining one such closure relation on the set of its atoms.

The fundamental property of the Mobius function of geometric lattices is the
following:

Theorem 4. Let u be the Mobius function of a finite geometric lattice L. Then:

(a) u(x,y) = 0 for any pair x, y in L, provided » < y.

(b) If y covers z, then u(x,y) and u(x, z) have opposite signs.

Proof. Any segment [z, y] of a geometric lattice is also a geometric lattice.
It will therefore suffice to assume that z =0, y = 1 and that z is a dual atom
of L.

We proceed by induction. The theorem is certainly true for lattices of height 2,
where (0, 1) = — 1. Assume it is true for all lattices of height » — 1, and let L
be a lattice of height n. By the Corollary to Proposition 4 of Section 5, with =1,
and ¢ an atom of L, we have

@(0,1) = —> pu(0,2).
zVa=1
x*1

Now from the subadditive inequality

rieANa)+rzVa) Zrx) 4 ra)

we infer that if x Ve = 1, then n < dim z - dim «, hence dim x = n — 1. The
element & must therefore be a dual atom. It follows from the induction assumption
and from the fact that L satisfies the chain condition, that all the u (0, z) in the
sum on the right have the same sign, and none of them is zero. Therefore, (0, 1)
is not zero, and its sign is the opposite of that u (0, ) for any dual atom z. This
concludes the proof.
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Corollary. The coefficients of the characteristic polynomial of a geometric laittice
alternate in sign.

‘We next derive a combinatorial interpretation of the Euler characteristic of
a geometric lattice, which generalizes a technique first used by WHITNEY in the
study of linear graphs.

A subset {a, b, ..., ¢} of a geometric lattice L is independent when

r@VbV-Ve)=r@+rb)+ 4 7).

Let C be the cross-cut of L of all elements of rank k£ > 0. A maximal independent
subset {a, b, ..., ¢} c Oy is a basis of Cy. All bases of U have the same number
of elements, namely, n — k if the lattice has height n. A subset 4 c Oy is a circuit
(WHITNEY) when it is not independent but every proper subset is independent.
A set is independent if and only if it contains no circuits.

Order the elements of L of rank k in a linear order, say a1, @3, ..., ;. This
ordering induces a lexicographic ordering of the circuits of Cj.

If the subset {a;,, as,, ...,aij.} (11 <@g << +-- < 4y) is & circuit, the subset a;,,
Qiys - @i;_y Will be called a broken circust.

Proposition 1. Let L be a geometric latiice of height n - 1, and let Cy be the
cross-cut of all elements of rank k. Then u(0,1) = (—1)2my, where my is the
number of subsets of Cy whose meet is 0, containing n — k -+ 1 elements each, and
not containing all the arcs of any broken circuit.

Again, the assertion implies that m1 = mg = mg = -+,

Proof. Let the lexicographically ordered broken circuits be Py, Pg, ..., Py,
and let S; be the family of all spanning subsets of Oy containing P; but not
Py, Pa, ..., or Py In particular, Syu1 is the family of all those spanning sub-
sets not containing all the arcs of any broken circuit. Let ¢¢ be the number of
spanning subsets of j elements and not belonging to 8;. We shall prove that for
each 7 = 1

(*) pO,1)=qt — g5 +qi .

First, set ¢ = 1. The set S; contains all spanning subsets containing the
broken circuit P;. Let P; be the cicuit obtained by completing the broken cir-
cuit P;. — A spanning set contained in §; contains either Py or else Py but

not P;; call these two families of spanning subsets 4 and B, and let g‘;1 and qf
be defined accordingly. Then g; = q} + ¢f* + ¢f, and

pO, V=g —q3+ga-=gs — g5+ -+
o+ @ - — @ —ag) -+

Now, q.‘z"‘ == 0, because no circuit can contain two elements; there is a one-to-one
correspondence between the elements of 4 and those of B, obtained by com-
pleting the broken circuit P;. Thus, all terms in parentheses cancel and the
identity (*) holds for ¢ == 1.

To prove (*) for 7 > 1, remark that the element c; of C, which is dropped
from & circuit to obtain the broken circuit P;, does not occur in any of the pre-
vious circuits, because of the lexicographic ordering of the circuits. Hence the
induction can be continued up to i = o -- 1.
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Any set belonging to Sg+1 does not contain any circuit. Hence, it is an inde-
pendent set. Since it is a spanning set, it must contain n — k& + 1 elements.
Thus, all the integers ¢541 vanish except g5 7%, and the statement follows from (*),
q-e.d.

Corollary 1. Let q(1) = A + m1 A% 1 + moA?2 -+ «++ 4 my be the character-
istic polynomial of a geometric lattice of height n -+ 1. Then (— 1)kmy is a positive
wnteger for 1 < k =< n, equal to the number of independent subsets of k atoms not
containing any broken circuit.

The proof is immediate: take £ = 1 in the preceding Proposition.

The homology of a geometric lattice is simpler than that of a general lattice:

Proposition 2. In the homology relative to the cross-cut Cy of all elements of rank
k=1, the Betli numbers by, bg, ..., bgr—o vanish.
The proof is not difficult.

Example 1. Partitions of a set.

Let § be a finite set of n elements. A partition 7 of § is a family of disjoint
subsets Bi, Bs, ..., By, called blocks, whose union is S. There is a (well-known)
natural ordering of partitions, which is defined as follows: # = ¢ whenever every
block of 7 is contained in a block of partition ¢. In particular, 0 is the partition
having #n blocks, and I is the partition having one block. In this ordering, the
partially ordered set of partitions is a geometric lattice (cf. BIRKHOFF).

The Mobius function for the lattice of partitions was first determined by
ScHOTZENBERGER and independently by RosErro FRUCHT and the author. We
give a new proof which uses a recursion. If 7 is a partition, the class of 7 is the
(finite) sequence (k1, ko, ...), where k; is the number of blocks with ¢ elements.

Lemma. Let Ly, be the lattice of partitions of a set with n elements. If me Ly
s of rank k, then the segment [m, 1] is isomorphic to Liy—x. If 7 is of class (k1, ks, ...),
then the segment [0, 7] is isomorphic to the direct product of ki lattices isomorphic to
L1, ko lattices isomorphic fo Lg, ete.

The proof is immediate.

It follows from the Lemma that if [z, y] is a segment of L,, then it is iso-
morphic to a product of k; lattices isomorphic to L;, ¢ = 1,2, .... We call the
sequence (k1, kg, ...) the class of the segment [z, y].

Proposition 3. Let puy = w(0, 1) for the lattice of partitions of a set with n ele-
ments. Then p, = (—1)»"1(n — 1)L
Proof. By the Corollary to Proposition 4 of Section 5, Z u(x, 1) = 0. Let a

zAa=0
be the dual atom consisting of a block €y containing n — 1 points, and a second
block ('3 containing one point. Which non-zero partitions  have the property
that # A @ = 0% Let the blocks of such a partition x be By, ..., B. None of the
blocks B; can contain two distinet points of the block €, otherwise the two
points would still belong to the same block in the intersection. Furthermore,
only one of the B; can contain the block Cs. Hence, all the B; contain one point,
except one, which contains Uy and an extra point. We conclude that x must be an
atom, and there are n — 1 such atoms. Hence, yy = 1 (0, 1) = — Z u{z, 1), where
x

ranges over a set of » — 1 atoms. By the Lemma, the segment [z, 1] is isomorphic
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to the lattice of partitions of a set with » — 1 elements, hence p, = — (n — 1) ptp—1.
Since y2 = — 1, the conclusion follows.

Corollary. If the segment [z, y] is of class (k1, k2, ..., ky), then
pl@,y) = ppphe . e = (= Dpthdthnen @k @k ((n — 1)1

The Mobius inversion formula on the partitions of a set has several com-
binatorial applications; see the author’s expository paper on the subject.

8. Representations

There is, as is well known, a close analogy between combinatorial results
relating to Boolean algebras and those relating to the lattice of subspaces of
a vector space. This analogy is displayed for example in the theory of ¢-difference
equations developed by F. H. JacksoN, and can be noticed in many number-
theoretic investigations. In view of it, we are led to surmise that a result analogous
to Proposition 1 of Section 5 exists, in which the Boolean algebra of subsets of R
is replaced by a lattice of subspaces of a vector space over a finite field. Such a
result does indeed exist; in order to establish it a preliminary definition is needed.

Let L be a finite lattice, and let V be a finite-dimensional vector space over
a finite field with ¢ elements. A representation of L over ¥ is a monotonic map p
of L into the lattice M of subspaces of V, having the following properties:

(1) p(0) = 0.

(2) plaVb)=p(a)Vp().

(3) Each atom of L is mapped to a line of the vector space ¥V, and the set of
lines thus obtained spans the entire space V.

A representation is faithful when the mapping p is one-to-one. We shall see
in Section 9 that a great many ordered structures arising in combinatorial pro-
blems admit faithful representations. Given a representation p:L — M, one
defines the conjugate map q: M — L as follows.

Let K be the set of atoms of M (namely, lines of V), and let 4 be the image
under p of the set of atoms of L. For s € M, let K (s) be the set of atoms of M
dominated by s, and let B(s) be a minimal subset of 4 which spans (in the vector
space sense) every element of K (s). Let 4 (s) be the subset of 4 which is spanned
by B(s). A simple vector-space argument, which is here omitted, shows that the
set A (s) is well defined, that is, that it does not depend upon the choice of B(s),
but only upon the choice of s.

Let C(s) be the set of atoms of L which are mapped by p onto A(s). Set
g(s) = V C(s) in the lattice L; this defines the map ¢. It is obviously a mono-
tonic function.

Lemma. Let p: L — M be a faithful representation and let g : M — L be the
conjugate map. Assume that every element of L is a join of atoms. Then p(q(s)) = ¢
and q(p(x)) ==.

Proof. By definition, ¢(s) = V C(s), where C(s) is the inverse image of A4 (s}
under p. By property (2) of a representation,

Pg)=p(VO(E)=Vp(C3B)=\VA(s).
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But this join of the set of lines A (s) in the lattice M is the same as their span in
the vector space V. Hence V A (s) = s, and we conclude that p(g(s)) = s.

To prove that ¢(p(x)) =< =, it suffices to show that A(p(x)) = B, where B
iz the set of atoms in 4 dominated by p(x). Clearly Bc A{(p(x)), and it will
suffice to establish the converse implication. By (2), and by the fact that x is
a join of atoms, we have p(x) = \/ B. Therefore every line ! dominated by p(x)
is spanned by a subset of B. If in addition /€ 4, then I = \/ C for some subset
C ¢ B, hence 1€ B. This shows B> A (p(x)), g.e.d.

Theorem 5. Let L be a finite lattice, where every element is a join of atoms, let
p: L — M be a faithful representation of L into the lattice M of subspaces of a vector
space V over a finite field with q elements, and let g : M — L be the conjugate map.
For every k = 2, let my be the number of k-dimensional subspaces s of V such that
q(s)=1. Then

(*) 10, 1)22,(%)79@2__g(é)m3+g(3)m4_...7

where u is the Mébius function of L.

Proof. Let Q = L*, let ¢: L - and ¢*:Q — L be the canonical isomor-
phisms between L and . Define w: @ —~M as w =pc*, and p: M —@Q as p = cq.
We verify that & and g give a (lalois connection between @ and M satisfying the
hypothesis of Theorem 1. If 7 (z) = 0, then there is a y € L such that y = ¢¥(x)
and p (y) = 0. It follows from the definition of a representation that y = 0. Hence
2z = c(y) = 1. Furthermore, ¢ (0) = ¢(q(0)) = 1. It follows from the preceding
Lemma that z and o are a Galois connection. Applying Theorem 1 and the
result of Example 2 of Section 5, formula (*) follows at once.

Remark. It is easy to see that every lattice having a faithful representation
is a geometric lattice. The converse is however not true, as an example of T. La-
ZARSON shows.

A reduction similar to that of Proposition 1 of Section 7 can be carried out
with Theorem 5 and representations, and another combinatorial property of the
Euler characteristic is obtained.

9. The coloring of graphs

By way of illustration of the preceding theory, we give some applications to
the classic problem of coloring of graphs, and to the problem of constructing
flows in networks with specified properties. Our results extend previous work of
G. D. Bmrkuorr, D. C. Lewis, W. T. TurTE and H. WHITNEY.

A linear graph G = (V, E) is a structure consisting of a finite set V, whose
elements are called vertices, together with a family E of two-element subsets of V,
called edges. Two vertices @ and b are adjacent when the set (o, b) is an edge;
the vertices ¢ and b are called the endpoints of (a, b). Alternately, one calls the
vertices regions and calls the graph a map, and we use the two terms interchange-
ably, considering them as two words for the same object. If S is a set of edges,
the vertex set V{(S) consists of all vertices which are incident to some edge in §.

A set of edges § is connected when in any partition S = AU B into disjoint
non-empty sets A and B, the vertex sets V (4) and V (B) are not disjoint. Every set
of edges is the union of disjoint connected blocks.
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The bond closure on a graph G = (V, £) is a closure relation defined on the
set E of edges as follows. If S c E, let S be the set of all edges both of whose end-
points belong to one and the same block of 8. Every set consisting of a single
edge is closed, and these are the only minimal non-empty closed sets.

Lemma 1. The bond closure S — § has the exchange property.

Proof. Suppose ¢ and f are edges, S c E, and e S U | but e ¢ S. Then every
endpoint of e which is not in ¥ (8) is an endpoint of f; on the other hand, S and f
have at least one point in common, otherwise e e 8. Thus both ¢ and f either
connect the same two blocks of S, or else they have one endpoint in .S and one
common endpoint; hence fe SUe, q.e.d.

The lattice L = L(&) of bond-closed subsets of ¥ is called the bond lattice of
the graph G. Suppose that E has n blocks and p(4) is the characteristic poly-
nomisal of L, then the polynomial A7 p{(A) is the chromatic polynomial of the graph G,
first studied by G. D. BIRkHOFF. From Theorem 4 we infer at once the theorem
of WHITNEY that the coefficients of the chromatic pelynomial alternate in sign.

The chromatic polynomial has the following combinatorial interpretation. Let
C be a set of n elements, called colors. A function f: V — C is a proper coloring
of the graph, when no two adjacent vertices are assigned the same color. To every
coloring f — not necessarily proper — there corresponds a subset of £, the bond
of {, defined as the set of all edges whose endpoints are assigned the same color
by f. The bond of f is a closed set of edges. For every closed set S, let p(4, S)
be the number of colorings whose bond is S. Then we shall prove that p(4, S)
= Arq(4, 8), where g (4, S) is the characteristic polynomial of the segment [§, 1]
in the lattice L. Since every coloring has a bond z p(A, T) equals the total

T28

number of colorings having some bond 7' = §. But this number is ev1dently Je—rts)
where k is the number of vertices of the graph and r(S) is the rank of S in L
Applying the Mobius inversion formula on the bond-lattice, we get
*) p(A)=p(2,0) =3 7" u(0,T).

Tel
But the number of colorings whose bond is the null set 0 is exactly the number
of proper colorings.

WHITNEY's evaluation (cf. A logical expansion in Mathematics) of the chro-
matic polynomials of a graph in terms of the number of subgraphs of s edges
and p connected components is an immediate consequence of the cross-cut theorem
applied to the atoms of the bond-lattice of @. This result of WHITNEY’s can now
be sharpened in two directions: first, a cross-cut other than that of the atoms
can be taken; secondly, the computation of the coefficients of the chromatic poly-
nomial can be simplified by Proposition 1 of Section 8. The cross-cut of all elements
of rank 2 is particularly suited for computation, and can be programmed. The
interested reader may wish to explicitly translate the cross-cut theorem and the
results of Section 8 into the geometric language of graphs.

Example 1. For a complefe graph on » vertices, where every two-element sub-
set is an edge, the bond-lattice is isomorphic to the lattice of partitions of a set
with » elements. The chromatic polynomial is evidently (1), = A(4 —1)...
(A — n + 1), and the coefficients s(n, k) are the Stirling numbers of the first kind.
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Thus, z (0, m) = s(n, k). This gives a combinatorial interpretation to the Stirling
rn)y=k
numb(el)rs of the first kind.

For a map m embedded in the plane, where regions and boundaries have their
natural meaning and no region bounds with itself, one obtains an interesting
geometric result by applying the cross-cut theorem to the dual atoms of the bond
lattice L (m).

Let m be a connected map in the plane; without loss of generality we can
assume: (a) that all the regions of m, except one which is unbounded, lie inside
a convex polygon, the outer boundary of m; (b) that all boundaries are segments
of straight lines. The dual graph of m is the linear graph made up of the boundaries
of m. A circuit in a linear graph is defined as a simple closed curve contained in
the graph. We give an expression of the polynomial P (4, m) in terms of the
circuits of the dual graph. The outer boundary is always a circuit.

A set of circuits of a map m in the plane spans, when their union — in the
set-theoretic sense — is the entire boundary of m.

Propesition 1, For every integer k = 1, let Oy, be the number of spanwning sets of k
distinct circuits of @ map m in the plane. Then

Mm(ozl):~01+02—03+04_---

Proof. 1f the map has two regions, then C; = 1 and all other C, = 0, so the
result is trivial. Assume now that m has at least 3 regions. Then C; = 0. All we
have to prove is that the integers Cy, are the integers ¢i of Theorem 3, relative to
the cross-cut of L(m) consisting of all the dual atoms.

By the Jordan curve theorem, every circuit divides the plane into two regions;
this gives a one-to-one correspondence of the circuits with the dual atoms of L (in).
Conversely, because we can assume that the map is of the special type described
above, every dual atom in L (m) is & map with two connected regions, and so must
have as a boundary a simple closed curve, q.e.d.

Tt has been shown by RicHARD Rapo (p. 312) that the bond-lattice L(G) of
any linear graph @ has a faithful representation. Accordingly, Theorem 5 can also
be applied to obtain expression for u (0,1). These expressions usually give sharper
bounds than similar expressions based upon the cross-cut of atoms.

Farther-reaching techniques for the computation of the Mébius function of L (G)
are obtained by applying Theorem 1 to situations where P and @ are both bond-
lattices of graphs. This we shall now do. A monomorphism of a graph @ into a
graph H is a one-to-one function f of the vertices of G onfo the vertices of H,
which induces a map f of the edges of & info the edges of H. Every monomorphism
f:G — H induces a monotonic map p: L(G) — L(H), where p(S) is defined as
the closure of the image f(S) in H. It also induces a monotonic map ¢ : L (H) —
— L(G), where q(T') is defined as the set of edges of G whose image is in 7.

Lemma 2, q(p(8)) = 8 for Sin L(@) and p(g(T)) £ T for T in L(H).

Proof. Intuitively, p(S) is obtained by “adding edges” to S, and ¢(p(S))
simply removes the added edges. Thus, the first statement is graphically clear.
The second one can be seen as follows. ¢(7') is obtained from 7' by removing a
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number of edges. Taking p(g(7)), some of the edges may be replaced, but in
general not all. Thus, p(g(7)) < 7.

Taking M = L(H)* and ¢: L(H) -~ M to be the canonical order-inverting
map, we see that = = ¢p and { = gc¢ give a Galois connection between L (@)
and M. Now, n(z) = 0 is equivalent to p(x) = 1 for x € L(G). This can happen
only if # has only one component, that is — since @ is closed — only if z = 1
in L(@). Thus n(x) = 0 if and only if x = 1. Secondly, ¢(0) = ¢(1) = 1, evi-
dently. We have verified all the hypotheses of Theorem 1, and we therefore
obtain:

Proposition 2. Let f : G — H be a monomorphism of a linear graph @ into a linear
graph H, and let uq and pg be the Mébius functions of the bond-lattices. Then

,MG(O: 1) = ZluH(a, 1)9
[a e L(H); g(a)=0]

where q is the map of L(H) into L(Q) naturally associated with f, as above.

Proposition 1 can be used to derive a great many of the reductions of
G. D. Brxrorr and D. C. Lewis, and provides a systematic way of investigating
the changes of Mo6bius functions — and hence of the chromatic polynomial —
when edges of a graph are removed. It has a simple geometric interpretation.

An interesting application is obtained by taking H to be the complete lattice
on n elements. We then obtain a formula for x which completes the statements
of Theorems 3 and 5. Let G be a linear graph on = vertices. Let C be the family
of two-element subsets of G which are not edges of ¢. Let F be the family of all
subsets of € which are closed sets in the bond-lattice of the complete graph on n
vertices built on the vertices of G. Then,

Corollary. pe(0,1)=> u@,1),

aeF
where g is the Mobius function of the lattice of partitions (cf. Example 5) of a
set of n elements.

Stronger results can be obtained by considering “epimorphisms’ rather than
“monomorphisms” of graphs, relating ug to the Mobius function obtained from
G by “coalescing” points. In this way, one makes contact with G. A. D1raC’s
theory of critical graphs. We leave the development of this topic to a later work.

10. Flows in networks

A network N = (V, E) is a finite set V of vertices, together with a set of
ordered pairs of vertices, called edges.

We shall adopt for networks the same language as for linear graphs.

A circuit is a sequence of edges S such that every vertex in V (S) belongs to
exactly two edges of 8. Every edge has a positive and a negative endpoint. Given
a function @ from E to the integers from 0 to 2 — 1, let for each vertex v, @ (v)
be defined as

D) =2 1(e,v)P(e),

where the sum ranges over all edges incident to v, and the function # (e, v) takes
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the value +1 or — 1 according as the positive or negative end of the edge e abuts
at the vertex », and the value zero otherwise. The function @ is a flow (mod. 1)
when @ (v) = 0 (mod. 1) for every vertex v. The value @ (¢) for an edge e is called
the capacity of the flow through e. The mod. 1 restriction is inessential, but will
be kept throughout.

A proper flow is one in which no edge is assigned zero capacity. TuTTE was
the first to point out the importance of the problem of counting proper flows (cf.
A contribution to the theory of chromatic polynomials) in combinatorial theory.

We shall reduce the solution of the problem to a Mébius inversion on a lattice
associated with the network. This will give an expression for the number of
proper flows as a polynomial in 4, whose coefficients are the values of a Mobius
function.

Every flow through X is a proper flow of a suitable subnetwork of N, obtained
by removing those edges which are assigned capacity 0. However, the converse
of this assertion is not true: given a subnetwork S of N, it may not be possible
to find a flow which is proper on the complement of V. This happens because
every flow which assigns capacity zero to each edge of § may assign capacity zero
to some further edges. We are therefore led to define a closure relation on the set
of all subgraphs as follows: S shall be the set of all edges which necessarily are
assigned capacity zero, in any flow of N which assigns capacity zero to every edge
of S. In other words, if ¢ ¢ S, then there is a flow in N which assigns capacity =+ 0
to the edge e, but which assigns capacity zero to all the edges of S. Tt is immediately
verified that § — § is a closure relation. We call it the circuit closure of S. The
circuit closure has the exchange properiy: if ee S U p but e ¢ 8, then pe S Ue.
Before verifying it, we first derive a geometric characterization of the circuit
closure. A set 8 is circuit closed (8 = S) if and only if through every edge e not
in § there passes a circuit which is disjoint from 8. For if 8 is closed and e ¢ S,
then there is a flow through e and disjoint from §. But this can happen only if
there is a circuit through e.

If there is a circuit through the edge p disjoint from S Ue, and a circuit
through e disjoint from S and containing p, then there is — as has been ob-
served by WHITNEY — also a circuit through e not containing § U p. This im-
plies that ¢ is not in the closure of § U p, and verifies the exchange property.

The lattice C(NV) of closed subsets of edges of the network N is the circuit
lattice of N. An atom in this lattice is not necessarily a single edge.

Proposition 1, The number of proper flows, (mod. A) on a network N with v ver-
tices, e edges and p connected components is a polynomial p(1) of degree ¢ — v - p.
This polynomial is the characteristic polynomial of the circuit lottice of N. The co-
efficients alternate in sign.

Proof. The last statement is an immediate consequence of Theorem 4 of
Section 8.

The total number of flows on N (not necessarily proper) is determined as
follows. Assume for simplicity that NV is connected. Remove a set D of v — 1
edges from N, one adjacent to each but one of the vertices.

Every flow on & can be obtained by first assigning to each of the edges not
in D an arbitrary capacity, between 0 and A — 1, and then filling in capacities
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for the edges in D to match the requirement of zero capacity through each vertex.
There are Ae~?+1 ways of doing this, and this is therefore the total number of
flows mod. A. If the network is in p connected components, the same argument
gives A¢~v+»_Now, every flow on G is a proper flow on a unique closed subset S,
obtained by removing all edges having capacity zero.
Hence
Aevp = Z.p (S-, }') s

Sec(@)

where p (8, 1) is the characteristic polynomial of the closed subgraph S. Setting
n(s) = e(s) — v(s) + p(s), the number of edges, vertices and components of s,
and applying the inversion formula, we get

P(G, ) =21 u(S, @), q.ed
SEC(@)

In the course of the proof we have also shown that »(s) is the rank of § in
the circuit lattice of @. The rank of the null subgraph is one.

The four-color problem is equivalent to the statement that every planar net-
work without an isthmus has a proper flow mod 5. (An isthmus is an edge that
disconnects a component of the network when removed.)

Most of the results of the preceding section extend to circuit lattices of a net-
work, and give techniques for computation of the flow polynomials of networks.
We shall not write down their translation into the geometric language of networks.
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