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1. Introduction 

One of the most  useful principles of enumerat ion in discrete probabi l i ty  and 
combinatorial  theory  is the celebrated principle o/inclusion-exclusion (cf. F~LL]~R *, 
FR~C~IET, RIORDA~, R Y S ~ ) .  When  skillfully applied, this principle has yielded 
the solution to m a n y  a combinatorial problem. I t s  mathemat ica l  foundations 
were thoroughly  investigated not  long ago in a monograph  by  F~CH~T,  and it 
might  at  first appear  that ,  after such exhaustive work, little else could be said 
on the subject. 

One frequently notices, however, a wide gap between the bare s ta tement  
of the principle and the skill required in recognizing tha t  it applies to a part icular  
combinatorial  problem. I t  has often taken  the combined efforts of  m a n y  a 
combinatorial  analyst  over long periods to recognize an inclusion-exclusion 
pat tern.  For  example, for the m4nage problem it took fifty-five years, since 
CAYL~ ' s  a t tempts ,  before JACQUES TOUCHA~D in 1934 could recognize a pat tern,  
and thence readily obtain the solution as an explicit binomial formula. The 
si tuation becomes bewildering in problems requiring an enumerat ion of any  of  the 
numerous collections of  combinatorial  objects which are nowadays  coming to the 
fore. The counting of  trees, graphs, partially ordered sets, complexes, finite sets 
on which groups act, not  to  ment ion more difficult problems relating to  permu- 
tat ions with restricted position, such as Lat in  squares and the  coloring of  maps,  
seem to lie beyond present-day methods of enumeration.  The lack of  a systematic  
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theory is hardly matched by  the consummate skill of a few individuals with a 
natural  gift for enumeration. 

This work begins the study of a very general principle of enumeration, of 
which the inclusion-exclusion principle is the simplest, but  also the typical case. 
I t  often happens tha t  a set of objects to be counted possesses a natural  ordering, 
in general only a partial  order. I t  may  be unnatural  to fit the enumeration of such 
a set into a linear order such as the integers: instead, it turns out in a great many  
cases tha t  a more effective technique is to work with the natural  order of the set. 
One is led in this way to set up a "difference calculus" relative to an arbi trary 
partially ordered set. 

Looked at  in this way, a surprising variety of problems of enumeration reveal 
themselves to be instances of the general problem of inverting an "indefinite sum" 
ranging over a partially ordered set. The inversion can be carried out by  defining an 
analog of the "difference operator" relative to a partial ordering. Such an operator 
is the MSbius function, and the analog of the "fundamental  theorem of the 
calculus" thus obtained is the M5bius inversion formula on a partially ordered set. 
This formula is here expressed in a language close to tha t  of number theory, 
where it appears as the well-known inverse relation between the l~iemann zeta 
function and the Dirichlet generating function of the classical 1Vf5bius function. 
In  fact, the algebra of formal Dirichlet series turns out to be the simplest non- 
trivial instance of such a "difference calculus", relative to the order relation of 
divisibility. 

Once the importance of the MSbius function in enumeration problems is 
realized, interest will naturally center upon relating the properties of this function 
to the structure of the ordering. This is the subject of the first paper of this series; 
we hope to have at  least begun the systematic s tudy of the remarkable properties 
of this most  natural  invariant  of an order relation. 

We begin in Section 3 with a brief s tudy of the incidence algebra of a locally 
finite partially ordered set and of the invariants associated with it: the zeta 
function, MSbius function, incidence function, and Euler characteristic. The 
language of number  theory is kept, rather than that  of the calculus of finite 
differences, and the results here are quite simple. 

The next section contains the main theorems: Theorem 1 relates the MSbius 
functions of two sets related by  a Galois connection. By suitably varying one of 
the sets while keeping the other fixed one can derive much information. Theorem 2 
of this section is suggested by a technique tha t  apparently goes back to ]:~A~ANU- 
JA~r These two basic results are applied in the next section to a variety of special 
cases ; although a number  of applications and special cases have been left out, we 
hope thereby to have given an idea of the techniques involved. 

The results of Section 6 stem from an "Ideenkrcis" tha t  can be traced back 
to Whitney 's  early work on linear graphs. Theorem 3 relates the MSbius function 
to certain very simple invariants of"cross-cuts" of a finite lattice, and the analogy 
with the Euler characteristic of combinatorial topology is inevitable. Pursuing 
this analogy, we were led to set up a series of homology theories, whose Euler 
characteristic does indeed coincide with the Euler characteristic which we had 
introduced by purely combinatorial devices. 
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Some of the work in lattice theory tha t  was carried out in the thirties is 
useful in this investigation; it turns out, however, tha t  modular lattices are not 
combinatorially as interesting as a type of structure first studied by  WHITNEr, 
which we have called geometric lattices following BIRKHOFF and the French 
school. The remarkable property of such lattices is tha t  their M6bius function 
alternates in sign (Section 7). 

To prevent the length of this paper from growing beyond bounds, we have 
omitted applications of the theory. Some elementary but typical applications 
will be found in the author 's  expository paper  in the American Mathematical 
Monthly. Towards the end, however, the temptat ion to give some typical examples 
became irresistible, and Sections 9 and 10 were added. These by no means exhaust 
the range of applications, it is our conviction tha t  the MSbius inversion formula 
on a partially ordered set is a fundamental  principle of enumeration, and we hope 
to implement this conviction in the successive papers of this series. One of them 
will deal with structures in which the MSbius function is mu]tiplicative, - - - t ha t  
is, has the analog of the number-theoretic property/~ (ran) -~ # (m)/z  (n) if m and 
n are coprime --  and another will give a systematic development of the Ideenkreis 
centering around POLYA's Hauptsatz,  which can be significantly extended by  a 
suitable M6bius inversion. 

A few words about  the history of the subject. The statement of the M6bins 
inversion formula does not appear here for the first t ime: the first coherent 
version--with some redundant assumptions--is  due to WE ISNER, and was indepen- 
dently rediscovered shortly afterwards by  PHILre HALL. Ward gave the s tatement  
in full generality. Strangely enough, however, these authors did not pursue the 
combinatorial implications of their work; nor was an a t tempt  made to systemati- 
cally investigate the properties of MSbius functions. Aside from HALL'S appli- 
cations to p-groups, and from some applications to statistical mechanics by 
M. S. GREEN and NETTLETO~r little has been done; we give a hopefully complete 
bibliography at  the end. 

I t  is a pleasure to acknowledge the encouragement of G. BIRK~OFF and 
A. GLEaSOIr who spotted an error in the definition of a cross-cut, as well as of 
SEYMOUR SHERMAN and KAI-LAI CHUNG. My colleagues D. KAN, G. WHITEHEAD, 
and especially F. PETERSON gave me essential help in setting up the homological 
interpretation of the cross-cut theorem. 

2. Preliminaries 

Little knowledge is required to read this work. The two notions we shall not 
define are those of a partially ordered set (whose order relation is denoted by  < )  
and a lattice, which is a partially ordered set where max and min of two elements 
(we call them join and meet, as usual, and write them V and A ) are defined. We 
shall use instead the symbols u and n to denote union and intersection of sets 
only. A segment Ix, y], for x and y in a partially ordered set P, is the set of all 
elements z between x and y, tha t  is, such tha t  x G z G y. We shall occasionally 
use open or half-open segments such as [x, y), where one of the endpoints is to be 
omitted. A segment is endowed with the induced order structure; thus, a segment 
of a lattice is again a lattice. A partially ordered set is locally finite ff every segment 
is finite. We shall only deal with locally finite partially ordered sets. 
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The product P • Q of partially ordered sets P and Q is the set of all ordered 
pairs (p, q), where p e P and q E Q, endowed with the order (p, q) ~ (r, s) whenever 
p >= r and q ~ s. The product of any number of partially ordered sets is defined 
similarly. The cardinal power I tom (P, Q) is the set of all monotonic functions 
from P to Q, endowed with the partial order structure ] >= g whenever ] (p) ~ g (p) 
for every p in P. 

In  a partially ordered set, an element p covers an element q when the segment 
[q, p] contains two elements. An atom in P is an element that  covers a minimal 
element, and a dual atom is an element that  is covered by a maximal element. 

I f  P is a partially ordered set, we shall denote by P* the partially ordered set 
obtained from P by inverting the order relation. 

A closure relation in a partially ordered set P is a function p -+ 15 of P into 
itself with the properties (l) 25 ~ p ;  (2) ~ = 25; (3) p ~ q implies 25 ~> q. An 
element is closed if  p = 25. I f  P is a finite Boolean algebra of sets, then a closure 
relation on P defines a lattice structure on the closed elements by the rules 
P A q ~ P n g and p ~/q = p w q, and it is easy to see that  every finite lattice 
is isomorphic to one that  is obtained in this way. A Galois connection (cf. O~E, 
p. 182ff.) between two partially ordered sets P and Q is a pair of functions 

: P -+ Q and s : Q --> P with the properties : (1) both $ and z are order-inverting; 
(2) for p in P, x~ (~ (p)) >--_ p, and for q in Q, ~ (~ (q)) ~ q. Under these circumstances 
the mappings p ~+ z (~ (p)) and q --> ~ (s (q)) are closure relations, and the two 
partially ordered sets formed by the closed sets are isomorphic. 

In Section 7, the notion of a closure relation with the MacLane-Steini tz  exchange 
property wilt be used. Such a closure relation is defined on the Boolean algebra P 
of subsets of a finite set E and satisfies the following property: if p and q are points 
of E, and S a subset of E, and if p ~ S but p ~ 8 w q, then q E S~-p.  Such a closure 
relation can be made the basis of WI~IT~Eu theory of independence, as well as of 
the theory of geometric lattices. The closed sets of a closure relation satisfying the 
MAcLANw-STEI~ITZ exchange property where every point is a closed set form a 
geometric (~- matroid) lattice in the sense of DIRKIIOFF (Lattice Theory, Chapter 
IX). 

A partially ordered set P is said to have a 0 or a I if it has a unique 
minimal or maximal element. We shall always assume 0 * I.  A partially ordered 
set P having a 0 and a I satisfies the chain condition (also called the JOI~DAN- 
DEDE~:IND chain condition) when all totally ordered subsets of P having a 
maximal number of elements have the same number of elements. Under these 
circumstances one introduces the rank r (p) of an element p of P as the length of a 
maximal chain in the segment [o, p], minus one. The rank of 0 is 0, and the rank 
of an atom is 1. The height of P is the rank of any maximal element, plus one. 

Let P be a finite partially ordered set satisfying the chain condition and of 
height n -~ 1. The characteristic polynomial of P is the polynomial ~ tt (0, x) ~n-r(x), 
where r is the rank function (see the def. of/~ below). ~ e P 

I f  A is a finite set, we shall write n(A)  for the number of elements of A. 
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( , )  

Then 
(**) 

3. The incidence algebra 
Let P be a locally finite partially ordered set. The incidence algebra of P is 

defined as follows. Consider the set of all real-valued functions of two variables 
/ (x, y), defined for x and y ranging over P, and with the property that  / (x, y) ---- 0 
ff x ~ y. The sum of two such functions / and g, as well as multiplication by 
scalars, are defined as usual. The product h ----/g is defined as follows: 

h (x, y) = ~ / (x, z) g(z, y). 
x • z g y  

In  view of the assumption tha t  P is locally finite, the sum on the right is well- 
defined. I t  is immediately verified that  this is an associative algebra over the real 
field (any other associative ring could do). The incidence algebra has an identity 
element which we write ~ (x, y), the Kronecker delta. 

The zeta/unction ~ (x, y) of the partially ordered set P is the element of the 
incidence algebra of P such tha t  $ (x, y) ~- 1 ff x ~ y and $ (x, y) ~ 0 otherwise. 
The function n (x, y) z ~ (x, y) - -  5 (x, y) is called the incidence/unction. 

The idea of the incidence algebra is not new. The incidence algebra is a special 
case of a semigroup algebra relative to a semigroup which is easily associated 
with t he  partially ordered set. The idea of taking "interval functions" goes back 
to DEDEKIND and E. T. BELL; see also WARD. 

Proposition 1. The zeta/unction o/ a locally finite partially ordered set is invertible 
in the incidence algebra. 

Proo/. We define the inverse # (x, y) of the zeta function by  induction over the 
number  of elements in the segment [x, y]. First, set # (x, x) = 1 for all x in P.  
Suppose now tha t /~  (x, z) has been defined for all z in the open segment [x, y). 
Then set 

(x, y) = - ~ ~ (x, z). 
x<=z~y 

Clearly/~ is an inverse of ~. 
The function #, inverse to ~, is called t h e  MSbius /unction of the partially 

ordered set P. 
The following result, simple though it is, is fundamental:  

Proposition 2. (Miibius inversion formula). L e t / ( x )  be a real-valued/unction, 
defined/or x ranging in a locally finite partially ordered set P.  Let an element p exist 
with the property that /(x) ~ 0 unless x ~ p. 

Suppose that 
g (x) = ~ / ( y ) .  

y ~ x  

1 (x) = ~ g (y) ff (y, x) 
y~_x 

Proo/. The function g is well-defined. Indeed, the sum on the right can be 
written as ~ / ( y ) ,  which is finite for a locally finite ordered set. 

p ~ y ~ x  
Substituting the right side of (*) into the right side of (**) and simplifying, 
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we get 
~ g ( y ) # ( y ,  x) = ~ ~ / ( z ) # ( y ,  x) = ~. ~ / ( z ) r  y)lt(y, x). 

y ~ x  y ~ x z ~ y  y ~ x  z 

Interchanging the order of summation, this becomes 

/ (z) ~ ~ (z, y) # (y, x) = ~ [ (z) 5 (z, x) = / (x), q . e . d .  
z y ~ x  z 

Corollary 1. Let r (x) be a/unction defined/or x in P. Suppose there is an element 
q such that r (x) vanishes unless x ~ q. Suppose that 

s (x) = ~ r (y). 
y~_x 

Then 
r (x) = ~ t~ (x, y) s (y).  

y ~ x  

The proof is analogous to the above and is omitted. 

Proposition 3. (Duality). Let P* be the partially ordered set obtained by inverting 
the order o /a  locally finite partially ordered set P, and let #* and # be the MSbius 
/unctions o / P *  and P. Then #* (x, y) = # (y, x). 

Pro@ We have, in virtue of Proposition 2 and Corollary 1, 

#* (x, y) = 5 (x, z). 
x ~ * y > * z  

Letting q(x, y) = #*(y, x), it follows that  q is an inverse of ~ in the incidence 
algebra of P. Since the inverse is unique, q = #, q. e. d. 

Proposition 4. The MSbius /unction o/ any segment [x, y/ o/ P equals the 
restriction to [x, y/ o/ the Mdbius /unction o/ P. 

The proof is omitted. 

Proposition 5. Let P • Q be the direct product o/ locally finite partially ordered 
sets P and Q. The MSbius /unction o / P  • Q is given by 

#((x,y) ,(u,v))  = # ( x , u ) # ( y , v ) ,  x ,u  ~ P; y,v ~Q . 

The proof is immediate and is omitted. 
The same letter # has been used for the 1V[Sbius functions of three partially 

ordered sets, and we shall take this liberty whenever it will not cause confusion. 

Corollary (Principle of Inclusion-Exclusion). Let P be the Boolean algebra o/ 
all subsets o/ a finite set o/ n elements. Then,/or x and y in P, 

# (x, y) = (-- 1)n(y)-n(x), y ~ x,  

where n (x) denotes the number o/ elements o/the set x. 
Indeed, a Boolean algebra is isomorphic to the product of n chains of two 

elements, and every segment Ix, y] in a Boolean algebra is isomorphic to a Boolean 
algebra. 

Aside of the simple result of Proposition 5, little can be said in general about 
how the M6bins function varies by taking subsets and homomorphic images of a 
partially ordered set. We shall see that  more sophisticated notions will be required 
to relate the M6bius functions of two partially ordered sets. 
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Let P be a finite partially ordered set with 0 and I .  The Euler characteristic 
E of P is defined as 

E ~- 1 + #(0,1). 

The simplest result relating to the computation of the Euler characteristic 
was proved by  PH~n~ HALL by combinatorial methods. We reprove it below with 
a very simple proof which shows one of the uses of the incidence algebra : 

Proposition 6. Let P be a finite partially ordered set with 0 and I .  For every k, 
let Ck be the number o /chains  with k elements stretched between 0 and I .  Then 

E = 1 - -  C2 Jr C a - -  C4 + ' " .  

Proo/. /~ = ~-1 = (5 _~ n)- i  = ~ _ n -~ n 2 . . . .  I t  is easily verified tha t  
n k-1 (x, y) equals the number of chains of k elements stretched between x and y. 
Letting x ~ 0 and y = I ,  the result follows at once. 

I t  will be seen in section 6 tha t  the Euler characteristic of a partially ordered 
set can be related to the classical Euler characteristic in suitable homology 
theories built on the partially ordered set. 

Proposition 6 is a typical application of the incidence algebra. Several other 
results relating the number of chains and subsets with specified properties can 
often be expressed in terms of identities for functions in the incidence algebra. In  
this way, one obtains generalizations to an arbi trary partially ordered set of some 
classical identities for binomial coefficients. We shall not pursue this line here 
further, since it lies out of the track of the present work. 

Example 1. The classical M6bius function #(n) is defined as (--  1) k ff n is 
the product of k distinct primes, and 0 otherwise. The classical inversion formula 
first derived by M6bius in 1832 is: 

him him 

I t  is easy to see (and will follow trivally from later results) tha t  ju ( ~ )  is the 

M6bins function of the set of positive integers, with divisibility as the partial 
order. In  this case the incidence algebra has a distinguished subalgebra, formed 

(~ by all functions / (n, m) of the form / (n, m) = G -n- . The product H = F G of two 

functions in this subalgebra can be written in the simpler form 

(*) H(m) = ~E(k)  a(n). 
kn=m 

I f  we associate with the element F of this subalgebra the /o rmal  Dirichlet series 
o o  

(s) = ~ F (n)/n s , then the product (*) corresponds to the product of two formal 
n = l  

Dirichlet series considered as functions of s, / t ( s )~-- /~(s)G(s) .  Under this 

representation, the zeta function of the partially ordered set is the classical Rie- 
r  

mann zeta/unction ~ (s) = ~ 1/n s, and the statement tha t  the M6bins function is 
n = l  
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r 

the inverse of the zeta function reduces to the classical identity 1/~ (s) = ~. # (n)/n s. 
n = l  

I t  is hoped this example justifies much of the terminology introduced above. 

Example 2, I f  P is the set of ordinary integers, then #(m, n ) =  - - 1  ff 
m = n -  1, #(m, m ) =  1, and #(m, n ) -~  0 otherwise. The M6bius inversion 
formula reduces to a well known formula of the calculus of finite differences, which 
is the discrete analog of the fundamental  theorem of calculus. 

The MSbius function of a partially ordered set can be viewed as the analog 
of the classical difference operator A/(n) = [(n -}- I) - - / ( n ) ,  and the incidence 
algebra serves as a calculus of finite differences on an arbi trary partially ordered set. 

4. Main results 

I t  turns out tha t  the M6bius functions of two partially ordered sets can be 
compared, when the sets are related by  a Galois connection. By keeping one of the 
sets fixed, and varying the other from among sets with a simpler structure, such 
as Boolean algebras, subspaces of a finite vector space, partitions, etc., one can 
derive much information about  a M6bius function. This is the program we shall 
develop. The basic result is the following: 

Theorem 1. Let P and Q be finite partially ordered sets, where P has a 0 and Q 
has a 0 and a 1. Let/~p and ~u be their MSbius /unctions. Let 

~ : Q - ~ P ;  @:P--~Q 

be a Galois connection such that 

(1) ~(x)=O 
(2) ~ ( o ) = 1 .  
Then 

f f a n d o n l y f f  x = l .  

~(0, ]) = Z ~ , ( 0 ,  a)~(o(a), 0) = Z ~ ( 0 ,  a). 
a > 0  [a:o(a)=O] 

One gets a significant summand on the right for every a > 0 in P which is 
mapped into 0 by  @. One therefore expects the right side to contain "few" terms. 
In  general,/~p is a known function and # is the function to be determined. 

Pro@ We shall first establish the identity 

(*) ~ ~ (~ (x), a) = ~ (x, o (b)) 
a>=b 

for every b in P. Here ~ on the right stands for the zeta function of Q. Equation (*) 
is equivalent to the following statement : ~ (x) ~ b ff and only if x =< @ (b). But  
this latter s ta tement  is immediate from the properties of a Galois connection. 
Indeed, if 7e(x) => b, then @(~z(x)) =< @(b), but  x ~ @(~z(x)), hence x =< @(b), and 
similarly for the converse implication. 

To identi ty (*) we apply the MSbius inversion formula relative to P, thereby 
obtaining the identi ty 

(**) ~ (~(x), 0) = ~ / ~ ( 0 ,  a)~(x, q(a)). 
a ~ 0  

Now, d (~(x), 0) takes the value 1 if and only ff ~(x) = 0, tha t  is, in view of 
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assumption (1), ff and only if x = 1. For all other values of x, we have d (z (x), 0) = 0. 
Therefore, 

d(z(x),  O) = 1 --  n(x, 1). 

We can now rewrite equation (**) in the form 

1 - n(x, 1) = r O(0)) + ~ /~p(0 ,  a)r o(a)) 
a > 0  

ttowever, in view of assumption (2), $ (x, @ (0)) = ~(x, 1), and this is identically 
one for all x in  Q. Therefore, simplifying, 

- -  n ( x ,  1) = ~ / z ~ ( 0 ,  a ) ~ ( x ,  @(a)). 
a > 0  

Now, since ~ = d ~- n, we have/~ = ~3 -- /~n,  hence, recalling that  0 ~ 1, 

/~(0, 1) = - -~ /a (O ,x )n ( x ,  1) = ~. ~./zp(O,a)/z(O,x)~(x, Q(a)). 
0 G x < l  0 <x_~l a > 0  

Interchanging the order of summation, we get 

#(0, 1) = ~ # ~ ( 0 ,  a ) ~ # ( 0 ,  x)~(x, @(a)). 
a > 0  0<xG1 

The last sum on the right equals ~ (0, @ (a)), and this equals ~ (@ (a), 0). The 
proof is therefore complete. 

For simplicity of apphcation, we restate Theorem 1 inverting the order of P. 

Corollary. Let 
P and Q such that 

(1) 

(2) 

(3) 
Then 

p : Q ~ P;  q : P -+ Q be order preserving /unctions between 

I f p (x )  = 1 then x = 1, and conversely. 

q(1) = 1. 

p(q(x))=<x and q ( p ( x ) ) > x .  

#(0, 1) = ~.#p(a,  1)~(q(a), 0) = ~/~v(a,  1) 
a < 1 [a: q(a) = 0] 

where ,u is the M6bius function of Q. 

The second result is suggested by a technique which apparently goes back to 
R A M A N U J A N  (cf.  mAlaDY,  I~AMANUJAN,  page 139). 

Theorem 2. Let Q be a finite partially ordered set with O, and let P be a partially 
ordered set with O. Let p : Q --> P be a monotonic/unction o /Q  onto P. Assume that 
the inverse image o/ every interval [0, a / i n  P is an interval [0, x] in Q, and that the 
inverse image o / 0  contains at least two points. 

Then ~ ~ (0, x) = 0 
[x: p(x) = a/ 

/or every a in P. 

The proo/is by induction over the set P. Since [0, 0] is an interval and its 
inverse image is an interval [0, q /wi th  q > O, we have 

Z~(0,x) =Z~(0 ,x )=0 .  
[~:p(x)=0] O < x < q  
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Suppose now the s ta tement  is t rue for all b such tha t  b ( a in P .  Then 

Z = ~  
b<a [x:p(x)=b] 

I t  follows tha t  
x) = Z  �9 

[x:p(x) =a] b~a [x:p(~)=b] 

The last sum equals the sum over some interval  [0, r] which is the inverse 
image of the segment [0, a], t ha t  is 

Z Z (0, x) = Z (0, x) = (0, r). 
b~_a [x:p(x)=b] O<_x~_r 

But  r > 0 because a is strietly greater t han  0. Hence ~ (r, 0) =- 0, and this con- 
cludes the proof. 

5. Applications 
The simplest (and typical) application of  Theorem 1 is the following: 

Proposition 1. Let R be a subset o /a  finite lattice L with the/ollowing properties: 
1 ~ JR, and/or every x o /L ,  except x ~- 1, there is an element y o / R  such that y ~ x. 

For k ~ 2, let qk be the number o/subsets o / R  containing k elements whose meet 
is O. Then #(0,  1) =- qe - -  q3 ~- q4 + " " .  

Pro@ Let  B (R) be the Boolean algebra of  subsets of JR. We take  P = B (R) 
and  Q = L in Theorem 1, and establish a Galois connection as follows. For  x in L, 
let ~ (x) he the set of elements of R which dominate  x. I n  particular, ~z (1) is the 
e m p t y  set. For  A in B(R) ,  set @(A) = /~ A, namely,  the meet  of  all elements of 
A, an empty  meet  giving as usual the element 1. This is evidently a Galois 
connection. Conditions (1) and (2) of  the Theorem are obviously satisfied. 

The funct ion #p is given by  the Corollary of Proposit ion 5 of  Section 3, and 
hence the  conclusion is immediate.  

Two no tewor thy  special cases are obtained by  taking R to be the set of dual 
a toms of Q, or the  set of all elements ~ 1 (cf. also W~ISNE~). 

Closure relations. A useful application of  Theorem 1 is the following : 

Proposition 2. Let x -> 2. be a closure relation on a partially ordered set Q having 1, 
with the property that ~ = 1 only i/ x ~-- 1. Let P be the partially ordered subset o/ 
all closed elements o/ Q. Then: (a) I / ~  > x, then #(x,  1) = 0; (b) I f  ~ -~ x, then 
#(x,  l) : #p(x, 1), where ttp is the Mtbius  /unction o / P .  

Pro@ Considering [x, ]], it  m a y  be assumed tha t  P has a 0 and x = 0. We 
apply  Corollary 1 of  Theorem 1, setting p (x) --~ ~ and letting q be the injection 
map  of P into Q. I t  is then clear t ha t  the assumptions of the Corollary are satisfied, 
and  the set of all a in P such tha t  q (a) = 0 is either the empty  set or the single 
element 0, q. e. d. 

Corollary (Ph. tIall).  I /  0 is not the meet o/ dual atoms o/ a finite lattice L, 
or i/ 1 is not the join o/atoms, then # (0, l) = 0. 

Pro@ Set ~ = A A  (x), where A (x) is the set of dual a toms of Q dominat ing x, 
and apply  the preceding result. The second assertion is obtained by  invert ing 
the order. 

Example 1. Distributive lattices. Let  L be a locally finite distributive lattice. 
Using Proposi t ion 2, we can easily compute  its MSbius function. Taking an interval  
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[x, y/ and applying Proposition 4 of Section 3, we can assume tha t  L is finite. 
For a e L, define 5 to be the join of all atoms which a dominates. Then a -+ ~ is a 
closure relation in the inverted lattice L*. Furthermore, the subset of closed 
elements is easily seen to be isomorphic to a finite Boolean algebra (cf. BmKHO~F 
Lattice Theory, Ch. IX)  Applying Proposition 5 of Section 3, we find:/z (x, y) ----- 0 
f l y  is not the join of elements covering x, and/u(x, y) -~ (-- 1) n i f y  is the join of 
n distinct elements covering x. 

In  the special case of the integers ordered by divisibility, we find the formula 
for the classical MSbius function (cf. Example 1 of Section 3.). 

The M6bius /unction o/ cardinal products. Let P and Q be finite partially 
ordered sets. We shall determine the MSbins function of the partially ordered set 
Horn (P, Q) of monotonic functions from P to Q, in terms of the MSbius function 
of Q. I t  turns out tha t  very li t t le information is needed about P. 

A few preliminaries are required for the statement.  
Let  R be a subset of a partially ordered set Q with 0, and let k be the ideal 

generated by  R, tha t  is, the set of all elements x in Q which are below ( ~ )  some 
element of R. We denote by Q/R the partially ordered set obtained by  removing 
off all the elements of R, and leaving the rest of the order relation unchanged. 
There is a natural  order.preserving transformation of Q onto Q/R which is 
one-to-one for elements of Q not in R. We shall call Q/R the quotient of Q by the 
ideal generated by R. 

Lemma. Let / : P---> Q be monotonic with range R c Q. Then the segment 
[/,1] in t t om (P, Q) is isomorphic with Hom (P, Q/R). 

Proo/. For g in [/, 1], set g'(x) = g(x) to obtain a mapping g -+ g' of [/, 1] to 
Horn (P, Q/R). Since g ~ / ,  the range of g lies above R, so the map is an iso- 
morphism. 

Proposition 3. The M6bius /unction # ol the cardinal product Horn (P, Q) 
o/the finite partially ordered set P with the partially ordered set Q with 0 and 1 is 
determined as/ollows: 

(a) I] / (p) • 0/or some element p o / P  which is not maximal, then/z (0,/) = O. 
(b) In  all other cases, 

/~ (o,/) = ~ [ ~  (o, / (m)), / e P ,  
9n  

where the product ranges over all maximal elements o / P ,  and where # on the right 
stands/or the M6bius /unction o/Q. 

(c) For / ~ g,/z (/, g) ~ # (0, g'), where g' is the image o/ g under the canomial 
map o/[ / ,  1] onto Horn (P, Q/R), provided Q/R has a O. 

Proo/. Define a closure relation in [0,/]*, namely the segment [0,/] with the 
inverted order relation, as follows. Set g (m) ~ g (m) if m is a maximal element of P,  
and g (a) --~ 0 if a is not a maximal element of P. I f  ~ ~ 0, then g (m) ~ 0 for all 
maximal elements m, hence g (a) ~ 0 for all a ~ some maximal  element, since g 
is monotonic. Hence g ~-- 0, and the assumption of Proposition 2 is satisfied. The 
set of closed elements is isomorphic to Horn (M, P), where M is a set of as many  
elements as there are maximal  elements in P. Conclusion (a) now follows from 
Proposition 2, and conclusion (b) from Proposition 5 of Section 3. Conclusion (e) 
follows at  once from the Lemma.  



On the Foundations of Combinatorial Theory. I 351 

We pass now to some applications of Theorem 2. 

Proposition 4. Let a--~ 5 be a closure relation on a finite lattice Q, with the 

property that a V b = 5 V b and O >  O. T h e n / o r  all a ~ Q, 

Z f ( 0 ,  x) = o .  
[z :5 = a] 

Proo]. Let  P be a part ial ly ordered set isomorphic to  the set of closed elements 
of L. We define p (x), for x in Q, to be the element of P corresponding to the 

closed element 2. Since O ~ 0, any  x between 0 and 0-is mapped  into O. Hence the 
inverse image of 0 in P under  the homomorphism p is the nontr ival  interval 

[0, o]. 
Now consider an interval  [0, a] in P .  Then p - i  ([0, a]) = [0, 2], where ~ is the  

closed element of L corresponding to a. Indeed,  if 0 ~ y ~ ~ then ~ ~ ~ = 2, 
hence p(y)  ~ a. Conversely, ff p(y)  ~ a, then ~ = ~ bu t  y ~ Y, hence y =~ 2. 
Therefore the condition of  Theorem 2 is satisfied, and the conclusion follows at 
o n c e .  

Corollary (Weisner). 
(a) Let  a ~ 0 in  a finite lattice L.  T h e n , / o r  any b in  L,  

Zf(o, x) = 0 
x v  a~b  

(b) Let a < 1 in  L.  T h e n , / o r  any b in  L ,  

Z f ( x ,  1) = o.  
x A a = b  

Proof. Take 2 = x V a. P a r t  (b) is obtained by  invert ing the order. 

Example 2. Let  V be a finite-dimensional vector  space of  dimension n over 
a finite field with _q elements. We denote by  L ( V )  the lattice of  subspaces of  V. 
We shall use Proposi t ion 4 to compute  the Mtbius function of L (V). 

I n  the lattice L (V), every segment [x, y], for x ~= y, is isomorphic to  the lattice 
L ( W ) ,  where Wis  the quotient  space of  the subspace y by  the subspace x. I f  we 
denote by  f n  =/~n(_q) the value of f ( 0 ,  1) for L(V),  it follows tha t  f ( x ,  y) = f j ,  
when j is the  dimension of  the quotient  space W. Therefore once f n  is known for 
for every n, the  entire Mtbins  funct ion is known. 

To determine fin, consider a subspace a of dimension n - -  1. I n  view of the 
preceding Corollary, we have for all a < 1 (where 1 stands for the entire space V) : 

Z f ( x ,  1) = o 
z A a ~ 0  

where 0 stands of course for the 0-subspace. Let  a be a dual a tom of L ( V ) ,  t ha t  
is, a subspace of  dimension n - -  1. Which subspaces x have the proper ty  tha t  
x A a = 0 ? x mus t  be a line in V, and such a line mus t  be disjoint except for 0 
f rom a. A subspace of  dimension n - -  1 contains qn- i  distinct points, so there will 
be qn __ qn- i  points outside of  a. However,  every line contains exact ly q - -  1 
points. Therefore, for each subspace a of dimension n - -  1 there are 

qn __ qn-1 
q -- 1 __ qn- i  

distinct  lines x such t h a t  x A a = 0. Since each interval  Ix, 1] is isomorphic to 
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a space of  d imension n - -  1, we ob ta in  

fin --~ f ( 0 ,  l )  --~ - -  ~ f ( x ,  l )  ----- - -  qn - l f n_  1. 
x A a ~ O  

x :i: O 

This is a 'difference equa t ion  for fin which is easi ly solved b y  i te ra t ion .  W e  ob t a in  
the  result ,  first es tabl i shed  b y  PHILIP HALL (see also WEISNER and  S. DELSARTE) : 

fn(q)  = (-- 1)nq n(n-1)/2 = ( - -  1)nq(~)- 

6. The Euler characteristic 

Sharper  resul ts  re la t ing  f (0, 1) to  combina tor ia l  i nva r i an t s  of  a finite l a t t i ce  
can be ob t a ined  b y  app l ica t ion  of Theorem 1, when the  "compar i son  s e t "  P 
remains  a Boolean  algebra.  

A cross-cut C of a finite l a t t i ce  L is a subset  of  L wi th  the  f o l l o ~ n g  proper t ies  : 
(a) C does no t  conta in  0 or 1. 
(b) no two e lements  of  C are comparab le  ( tha t  is, i f  x and  y belong to C, t hen  

ne i ther  x < y nor  x > y holds).  
(c) A n y  m a x i m a l  chain s t re tched  be tween 0 and  1 meets  the  set C. 
A spanning subset S of L is a subset  such t h a t  ~ / S  = 1 and  A S : 0. 
The ma in  resul t  is the  following Cross.cut Theorem: 

Theorem 3. Let f be the M6bius /unction and E the Euler characteristic o/ a non. 
trivial finite lattice L, and let C be a cross-cut o/ L. For every integer k ~ 2, let q~ 
denote the number o/ spanning subsets o/ C containing ]c distinct elements. Then 

E - -  1 = f ( 0 ,  1) = q2 qa + q 4 - -  q5 + "'" 

The proo/is  b y  induc t ion  over  the  d is tance  of a cross-cut  C from the  e lement  1. 
Define the  d is tance  d (x) of  an  e lement  x f rom the  e lement  1 as the  m a x i m u m  

length  of a chain s t r e tched  be tween x and  1. F o r  example ,  the  d is tance  of  a dua l  
a t o m  is two.  I f  C is a cross-cut  of  L, define the  d is tance  d (C) as  m a x  d (x) as x 
ranges over  C. Thus,  the  d is tance  of the  cross-cut  consist ing of  all dua l  a toms  is 
two, and  conversely,  th is  is the  only  cross-cut  hav ing  d is tance  two. 

I t  follows f rom Propos i t ion  1 of Sect ion 5 t h a t  the  resul t  holds  when d (C) = 2 
( take B = C in the  asser t ion of  the  Proposi t ion) .  Thus,  we shall  assume the  
t r u t h  of  the  s t a t emen t  for all  cross-cuts whose d is tance  is less t h a n  n, and  prove  
i t  for a cross-cut  wi th  d(C) = n. 

I f  C is a subset  of  L, we shall  wri te  x > C or x ~ C to mean  t h a t  there  is an 
e lement  y or C such t h a t  x > y, or t h a t  there  is an  e lement  y of C such t h a t  
x _< y. F o r  a general  C, these  possibil i t ies m a y  no t  be m u t u a l l y  exclusive;  t h e y  
are  m u t u a l l y  exclusive  when C is a cross-cut.  W e  shall  r epea t ed ly  make  use of  
th is  r e m a r k  below. 

Define a modif ied la t t ice  L' as follows. Le t  L '  conta in  all  the  e lements  x such 
t h a t  x ~ C in the  same order.  On top  of  C, a d d  an  e lement  1 covering all  the  
e lements  of  C, b u t  no others ;  this  defines L'. 

I n  L', consider  the  cross-cut  C and  a p p l y  Propos i t ion  1 of  sect ion 5 again.  
I f  f '  is the  MSbius funct ion of  L ' ,  t hen  

f ' ( 0 ,  1) = P 2  - - P 3  -l-P4 . . . .  

where p~ is the  number  of  all  subsets  A c C c L' of k elements ,  such t h a t  A A = 0. 
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Comparing the lattices L and L', we have 

0 ---- ~,#(0,  x) + ~ # ( 0 ,  x) = ~ #'(0, x) + #'(0, 1). 
x < C  x > C  x < C  

Itowever, for x ~ C, we have #'(0, x) = # (0, x) by construction of L'. Hence 

~ ( 0 ,  x) = - / 0 2  +/0~ - / 0 4  + " "  
x < C  

Since the sets (x/x ~ C) and (x/x > C) are disjoint, we can write 

#(0, 1 ) =  - - ~ / t ( 0 ,  x ) =  --  [~,#(0,  x ) §  ~ # ( 0 ,  x)]. 
x < l  x<=C, l > x > C  

We now simplify the first summation on the right: 

(*) /~(0, 1) =/02 --/08 § . . . .  ~ / z  (0, x). 
l>x>C 

Now let qk (x) be the number of subsets of C having k elements, whose meet 
is 0 and whose join is x. In  particular, q~(1) = qk. Then clearly 

/ok = 7 qk (x), ~ __> 2,  
x > C  

the summation in (*) can be simplified to 

(**) #(O, 1 ) = ( q ~ - - q 3 §  . . . .  ) - - ~ [ - - q 2 ( x ) § 2 4 7  
l>x>C 

§  + ~ ( 0 , x ) ] .  

For x above C and unequal to 1, consider the segment [0, x]. We prove that  
C(x) ~-- C (~ [0, x] is a cross-cut of the lattice [0, x] such that  d(C(x)) < d(C). 
Once this is done, it follows by the induction hypothesis that  every term in 
brackets on the right of (**) vanishes, and the proof will be complete. 

Conditions (a) and (b) in the definition of a cross-cut are trivially satisfied by 
C(x), and condition (c) is verified as follows. Suppose Q is a maximal chain in 
[0, x] which does not meet C(x). Choose a maximal chain R in the segment Ix, 1]; 
then the chain Q u R is maximal in L, and does not intersect C. 

I t  remains to verify tha t  d(C(x)) < d(C), and this is quite simple. There is 
a chain Q stretched between C and x whose length is d (C (x)). Then d (C) exceeds 
the length of the chain Q u R, and since x < 1, R has length at least 2, hence 
the length of Q u R exceeds that  of Q by at least one. The proof is therefore 
complete. 

Theorem 3 gives a relation between the value # (0, 1) and the width of narrow 
cross-cuts or bottlenecks of a lattice. The proof of the following statement is ira- 
mediate. 

Corollary 1. (a) I / L  has a cross-cut with one element, then #(0, 1) = 0. 
(b) 1 / L  has a cross-cut with two elements, then the only two possible values o[ 

#(0, l) are 0 and 1. 
(e) I / L  has a cross-cut having three elements, then the only/0o~sible values o/ 

/~(0, 1) are 2, 1,0 and - -1 .  
In this connection, an interesting combinatorial problem is to determine all 

possible values of #(0, 1), given that  L has a cross-cut with n elements. 

Z. "Wahrscheinlichkeitstheorie, :Bd. 2 25 
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Reduction o/the main ]ormula. In several applications of the cross-cut theorem, 
the computation of the number q~ of spanning sets may be long, and systematic 
procedures have to be devised. One such procedure is the following: 

Proposition 1, Let C be a cross-cut o /a  finite lattice L. For every integer Ic >= O, 
and/or every subset A c C, let q(A) be the number o/spanning sets containing A, 
and let S~ = ~ q (A), where A ranges over all subsets o/ C having lc elements. Set So 

A 

to be the number o/ elements o] C. Then 

/~(0, 1) = So -- 2S1 ~- 22S2 --  2aSa ~- . . . .  

Pro@ For every subset B c C, set p (B) = 1 if B is a spanning set, and 
p (B) = 0 otherwise. Then 

q(A) = ~ p ( B ) .  

Applying the M6bius inversion formula on the Boolean algebra of subsets of C, 
we get 

p(A)  = ~ q ( B ) / ~ ( A , B ) ,  
.B~_A 

where/~ is the MSbius function of the Boolean algebra. Summing over all subsets 
A c C having exactly ]c elements, 

q~= ~.p(A)  = ~ ~ q ( B ) # ( A , B ) .  
n(A)=k n(A)=k B ~ - A  

Interchanging the order of summation on the right, recalling Proposition 5 of 

elements, we obtain 

A convenient way of recasting this expression in a form suitable for computation 
is the following. Let  V be the vector space of all polynomials in the variable x, 
over the real field. The polynomials 1, x, x ~, . . . ,  are linearly independent in V. 
Hence there exists a linear functional L in V such that  

L(x ~ ) = S ~ ,  k = 0 , 1 , 2  . . . . .  

Formula (*) can now be rewritten in the concise form 

qk L(  xk ( k + l ) x k + l + ( k ~  2) = -- x~+2 . . . .  ) =  L((  1 + x)k+l) " 

Upon applying the cross-cut theorem, we find the expression (where q0 and ql 
are also given by (*), but  turn out to be 0) 

( 1 x x 2 ) 
# ( 0 , 1 ) = L - l + x - -  ( t+x )2  § (1+x)3 . . . .  

- - L  1 
- - ( 1 - - ~ 2 x ) = L ( 1 - - 2 x + 4 x 2 - - 8 x a + . . . )  

= S o - - 2 S 1 - 1 - 4 S 2  . . . .  , q.e.d.  
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The cross-cut theorem can be applied to study which alterations of the order 
relation of a lattice preserve the Euler characteristic. Every alteration which 
preserves meets and joins of the spanning subsets of some cross-cut will preserve 
the Euler characteristic. There is a great variety of such changes, and we shall 
not develop a systematic theory here. The following is a simple case. 

Following B r a ~ o r F  and J6~sso~ and T ~ s K I  we define the ordinal sum of 
lattices as follows. Given a lattice L and a function assigning to every element x 
of L a lattice L(x),  (all the L(x) are distinct) the ordinal sum P = ~ L(x) of 

L 

the lattices L (x) over the lattice L is the partially ordered set P consisting of the 
set ~.J L (x), where u ~ v if u E L (x) and v E L (x) and u =~ v in L(x), or if u ~ L (x) 

and v e L (y) and x < y. I t  is clear that  P is a lattice if all the L (x) are finite lattices. 

Proposition 2. I[ the finite lattice P is the ordinal sum o/the lattices L(x) over the 
non-trivial lattice L, and #~ , #x and #L are the corresponding Mbbius /unctions, then: 

1] L(O) is the one element lattice, then #p(0, 1) = teL(O, 1). 

Pro@ The atoms of P are in one-to-one correspondence with the atoms of L 
and the spanning subsets are the same. Hence the result follows by applying the 
cross-cut theorem to the atoms. 

In  virtue of a theorem of J6~sso~ and TARSKI, every lattice P has a unique 
maximal decomposition into an ordinal sum over a "skeleton" L. This can be 
used in connection with the preceding Corollary to further simplify the computa- 
tion of te (0, n) as n ranges through P. 

Homological interpretation. The alternating sums in the Cross-Cut Theorem 
suggest that  the Euler characteristic of a lattice be interpreted as the Euler 
characteristic in a suitable homology theory. This is indeed the case. We now 
define* a homology theory H (C) relative to an arbitrary cross-cut C of a finite 
lattice L. For the homological notions, we refer to Eilenberg-Steenrod. 

Order the elements of C, say al, a 2  . . . . .  an. For ]c ~= O, let a k-simplex o be 
any subset of C of k + 1 elements which does not span. Let C~ be the free abelian 
group generated by the k-simp]ices. We let C-1 = 0; for a given simplex o, let 
oi be the set obtained by omitting the (i ~- 1)-st element of o, when the elements 
of o are ordered according to the given ordering of C. The boundary of a k-simplex 

k 

is defined as usual as 0ka = ~ (--1)io~, and is extended by linearity to all of 
i = 0  

Ce, giving a ]inear mapping of C~ into Ck-1. The k-th homology group H~ is 
defined as the abelian group obtained by taking the quotient of the kernel of ~ 
by the image of ~+1. The rank b~ of the abelian group H~, that  is, the number 
of independent generators of infinite cyclic subgroups of H~, is the k-th Betti 
number. 

Let ~ be the rank of C~, that  is, the number of k-simpliees. The Euler cha- 
racteristic of the homology H (C) is defined in homology theory as 

o o  

~(v)  = ~ ( -  1)~ ~.~. 
/c=0 

* This definition was obtained jointly with D. K ~ ,  F. PETE~SO~ and G. W~IT~AD, 
whom I now wish to thank. 

25* 
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I t  follows from well-known results in homology theory tha t  

E(C) = ~ ( - - 1 ) ~ b k .  
k=0 

Let q~ be the number of spanning subsets with ]C elements as in Theorem 3. 
Then qe+i q- ak is the total  number of subsets of C having ]C q- 1 elements; ff C 

has N elements, then ~g = ]c k 1 - -  qg+i. I t  follows from the Cross-Cut Theo- 

rem that  

E(C) ==~0 ( -  1)~ N __ ~ (__ 1)~ qe+ i 
= ] c + 1  ~=0 

We have however 

7 ( -  1)~ 
k=o ]C+I 

and hence 

c o  

= -  (-1)~ = 1 -  -1 )~  = 1 - ( 1 - 1 )  ~ = l ,  
i=1  i=0  

E(C) = 1 + ~(0, l) = E;  
in other words: 

Proposition 3, In  a finite lattice, the Euler characteristic o/the homology o/any 
cross-cut C equals the Euler characteristic o/the lattice. 

This result can sometimes be used to compute the M6bius functions of "large" 
lattices. In  general, the numbers qk are rather  redundant, since any spanning 
subset of ]C elements gives rise to several spanning subsets with more than k 
elements. A method for eliminating redundant  spanning sets is then called for. 
One such method consists precisely in the determination of the Bett i  numbers b~. 

We conjecture tha t  the Betti  numbers of H (C) are themselves independent of 
the cross-cut C, and are also "invariants" of the lattice L, like the Euler charac- 
teristic E (C). In  the special case of lattices of height 4 satisfying the chain con- 
dition, this conjecture has been proved (in a different language) by  DOWKER. 

Example 1. The Betti numbers o/a Boolean algebra. We take the cross-cut C of 
all atoms. I f  the height of the Boolean algebra is n -1- 1, then every ]c-cycle, for 
]c < n --  2, bounds, so tha t  b0 = 1 and b~ = 0 for 0 < k < n - -  2. On the other 
hand, there is only one cycle in dimension n - -  2. Hence bn-2 = 1 and we find 
E = 1 + (--  1) n-u, which agrees with Proposition 5 of Section 3. 

A notion of Euler characteristic for distributive lattices has been recently intro- 
duced by  H A D W m ~  and KLEE. For finite distributive lattices, KLEE'S Euler 
characteristic is related to the one introduced in this work. We refer to KLEE'S 
paper for details. 

7, Geometric lattices 

An ordered structure of very frequent occurrence in combinatorial theory is 
the one tha t  has been variously called matroid (WKITNEY), matroid lattice (BI~K- 
~OFr), closure relation with the exchange property (IVIAcLA~]~), geometri c lattice 
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(BIRKHOFF), abs t rac t  ]inear dependence relation (BLEICttER and PRESTON). 
Rough ly  speaking, these structures arise in the s tudy  of  combinatorial  objects 
t h a t  are obtained by  piecing together  smaller objects with a part icular ly simple 
structure.  The typical  such case is a linear graph, which is obtained by  piecing 
together  edges. Several counting problems associated with such structures can 
often be a t tacked  by  M6bius inversion, and one finds tha t  the MSbius functions 
involved have part icular ly simple properties. 

We briefly summarize the needed facts out  of  the theory  of  such structures, 
referring to  any  of the works of the above authors  for the proofs. 

A finite lattice L is a geometric lattice when every element of  L is the join of 
atoms,  and  whenever  if a and b in L cover a/~ b, then a V b covers both  a and b. 
Equivalent ly ,  a geometric lattice is characterized by  the existence of a rank func- 
t ion satisfying r (a/~ b) + r (a V b) ~ r (a) + r (b). Notice tha t  this implies the 
chain condition. I n  part icular  if a is an  atom, then r (a U c) ~-- r (c) or r (c) -F 1. 
I f  M is a semimodular  lattice, then  the part ial ly ordered subset of all elements 
which are joins of a toms is a geometric sublattiee. 

Geometric lattices are most  often obtained from a closure relation on a finite 
set which satisfies the MAcLA~-STEI~ITZ exchange property.  The lattice L of 
closed sets in such a closure relation is a geometric lattice whenever every one- 
element set is dosed.  Conversely, every geometric lattice can be obtained in this 
way  by  defining one such closure relation on the set of  its atoms. 

The fundamenta l  p roper ty  of  the MSbins funct ion of geometric lattices is the 
following: 

Theorem 4. Let tt be the MSbius /unction o / a  finite geometric lattice L. Then: 

(a) ~t (x, y) ~= 0/or  any pair x, y in L, provided x ~ y. 

(b) I / y  covers z, then # (x, y) and # (x, z) have opposite signs. 

Proo/. A n y  segment Ix, y] of  a geometric lattice is also a geometric lattice. 
I t  will therefore suffice to assume tha t  x z 0, y ~- 1 and tha t  z is a dual a tom 
of L. 

We proceed by  induction. The theorem is certainly true for lattices of height 2, 
where # (0, l) = - -  1. Assume it is t rue for all lattices of height n - -  1, and let L 
be a lattice of height n. B y  the Corollary to Proposi t ion 4 of Section 5, with b = 1, 
and a an atom of L, we have 

~ ( 0 , 1 )  = - ~ ( 0 ,  ~) .  
x V a = l  

Now from the subaddit ive inequali ty 

r (x A a) + r (x V a) __< r (x) § r (a) 

we infer t ha t  if x V a = 1, then  n ~ dim x ~- dim a, hence dim x ~ n --  1. The 
element x mus t  therefore be a dual atom. I t  follows from the induct ion assumption 
and from the fact  t h a t  15 satisfies the chain condition, t h a t  all the # (0, x) in the 
sum on the r ight  have the same sign, and none of them is zero. Therefore, # (0, l) 
is not  zero, and its sign is the opposite of  t h a t / z  (0, x) for any  dual a tom x. This 
concludes the proof. 
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Corollary. The coe/ficients o/ the characteristic polynomial o/ a geometric lattice 
alternate in sign. 

We next  derive a combinatorial interpretation of the Euler characteristic of 
a geometric lattice, which generalizes a technique first used by WI~IT~Eu in the 
study of linear graphs. 

A subset (a, b . . . .  , c} of a geometric lattice L is independent when 

r(a  ~/b V " "  ~/c) ---- r(a) + r(b) + . . .  + r(c). 

Let  Ck be the cross-cut of L of all elements of rank k > 0. A maximal independent 
subset {a, b . . . . .  c} c C~ is a basis of C~. All bases of C~ have the same number  
of elements, namely, n - -  k if the lattice has height n. A subset A c Ck is a circuit 
(WItIT~EY) when it is not independent but every proper subset is independent. 
A set is independent if and only if it contains no circuits. 

Order the elements of L of rank k in a linear order, say a l ,  a~ . . . . .  at. This 
ordering induces a lexicographic ordering of the circuits of Ck. 

I f  the subset {a,1, ai2 . . . . .  a~j} (il < is < "'" < ij) is a circuit, the subset ah,  
ai.2 . . . .  , a i j_ l  will he called a broken circuit. 

Proposition 1. Let L be a geometric lattice o/ height n + 1, and let Ck be the 
cross-cut o/ all elements o/ rank k. Then /~(0, 1 ) =  (--1)nm~, where mk is the 
number o/subsets  o] Ck whose meet is O, containing n - -  k + 1 elements each, and 
not containing all the arcs o/ any broken circuit. 

Again, the assertion implies that m l  ~ ms = ms . . . .  �9 

Proo/. Let the lexicographically ordered broken circuits be P i ,  P2 . . . . .  Pa ,  
and let Si be the family of all spanning subsets of Ck containing Pi but  not 
P1, Ps  . . . . .  or P~-i. In  particular, S~+i is the family of all those spanning sub- 
sets not containing all the arcs of any broken circuit. Let q~ be the number of 
spanning subsets o f j  elements and not belonging to Si. We shall prove that  for 
each i ~ 1 

(*) /~(0, 1) = q~ - -  q~ + q~ . . . .  

First, set i = 1. The set S1 contains all spanning subsets containing the 
broken circuit P1- Let  P i  be the cicuit obtained by completing the broken cir- 
cuit P1. - -  A spanning set contained in S1 contains either P l  or else P1 but  
not /~1;  call these two families of spanning subsets A and B, and let qA and qf  
be defined accordingly. Then q1 = ql + qA + q.B,~ and 

# (0, 1) = qs - -  qa + q4 . . . .  q~ - -  q ~ + " "  + 

+ + - - ( q g  - + . . . .  

Now, qA ---- 0, because no circuit can contain two elements; there is a one-to-one 
correspondence between the elements of A and those of B, obtained b y  com- 
pleting the broken circuit P1. Thus, all terms in parentheses cancel and the 
identi ty (*) holds for i = 1. 

To prove (*) for i > 1, remark tha t  the element ci of Ck, which is dropped 
from a circuit to obtain the broken circuit Pi ,  does not occur in any of the pre- 
vious circuits, because of the lexicographic ordering of the circuits. Hence the 
induction can be continued up to i = a + 1. 
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Any  set belonging to 8~+1 does not  contain any  circuit. Hence, it is an inde- 
pendent  set. Since it is a spanning set, it mus t  contain n - -  k + 1 elements. 

- o+1 and Thus,  all the integers q~+l vanish excep~ qn-k+l the s ta tement  follows from (*), 
q . e .d .  

Corollary l .  Let q(,~) ~ ,~n ~_ mien-1 ~_ ma)~n-2 _~ ... + m n  be the character- 
istic polynomial o / a  geometric lattice o] height n ~ 1. Then (-- 1)kink is a positive 
integer /or 1 ~ Ic ~ n, equal to the number o/ independent subsets o] k atoms not 
containing any broken circuit. 

The proo/is immediate:  take k ---- 1 in the preceding Proposition. 
The homology of  a geometric lattice is simpler than  tha t  of  a general lattice : 

Proposition 2, In  the homology relative to the cross-cut Ck o/all  elements o/ rank 
lc -~ 1, the Betti numbers bl, ba, . . . ,  bk-2 vanish. 

The proo/is not  difficult. 

Example 1. Partitions o] a set. 
Let  S be a finite set of n elements. A partition ~z of S is a family of disjoint 

subsets B1, Ba, . . . ,  Bk, called blocks, whose union is S. There is a (well-known) 
natura l  ordering of  partitions, which is defined as follows : 7~ ~ a whenever every 
block of ~ is contained in a block of par t i t ion ~. I n  particular,  0 is the part i t ion 
having n blocks, and I is the part i t ion having one block. I n  this ordering, the 
part ial ly ordered set of  part i t ions is a geometric lattice (cf. BmKHOFF). 

The MSbins funct ion for the lattice of part i t ions was first determined by  
SC~(iTZE~E~GE~ and  independent ly  by  ROBE~TO F~UCRT and the author.  We 
give a new proof  which uses a recursion. I f  7~ is a partit ion, the class of z is the 
(finite) sequence (/~1,/ca . . . .  ), where /c~ is the number  of  blocks with i elements. 

Lemma,  Let Ln be the lattice o] partitions o] a set with n elements. I] ~z ~ Ln 
is o] rank k, then the segment [7~, 1] is isomorphic to Ln-~. I / ~  is o/class (/Cl,/ca . . . .  ), 
then the segment [0, Jz] is isomorphic to the direct product o] lcl lattices isomorphic to 
L1, ]ca lattices isomorphic to L2, etc. 

The proo/is immediate.  
I t  follows f rom the Lemma t h a t  if [x, y] is a segment of  Ln, then it is iso- 

morphic  to  a product  of/el lattices isomorphic to L/ ,  i ---- l, 2 . . . . .  We call the 
sequence (kl,/c2, ...) the  class of the segment [x, y]. 

Proposition 3. Let ten = #(0,  1 ) / o r  the lattice o] partitions o / a  set with n ele- 
ments. Then ten ~- ( - - 1 ) n - l ( n -  1)!. 

Proo]. By the  Corollary to Proposi t ion 4 of  Section 5, ~ # ( x ,  1) --~ 0. Let  a 
x A a = O  

be the dual a tom consisting of  a block C1 containing n - -  1 points, and a second 
block C2 containing one point. Which non-zero part i t ions x have the proper ty  
tha t  x/~ a ~ 0 ~. Let  the blocks of  such a part i t ion x be ~ 1  . . . . .  B k. None of  the 
blocks Bi can contain two distinct points of  the block C1, otherwise the two 
points would still belong to  the same block in the intersection. Fur thermore,  
only one of  the B~ can contain the block C2. Hence, all the Bi contain one point, 
except  one, which contains C2 and an extra point.  We conclude tha t  x mus t  be an 
atom, and there are n -  1 such atoms. Hence, ten ----te (0, 1) ~ - -  ~ te (x, 1), where x 

gg 

ranges over a set of  n - -  1 atoms. By  the Lemma,  the  segment [x, 1] is isomorphic 
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to the lattice of partitions of a set with n -  1 elements, hence/~n ~ - -  ( n -  1)/~n-1. 
Since #2 ~- - -  1, the conclusion follows. 

Corollary, I / t h e  segment Ix, y] is o/ class (kl, k2 . . . .  , kn), then 

# (x, y) = #~1#~,... # ~  _-- ( _  1)~,+k~+..-+~.-n (2 !)~ (a !)k, ... ((n - 1)!)k~. 

The M6bius inversion formula on the partitions of a set has several com- 
binatorial applications; see the author 's  expository paper on the subject. 

8. Representations 

There is, as is well known, a close analogy between combinatorial results 
relating to Boolean algebras and those relating to the lattice of subspaces of 
a vector space. This analogy is displayed for example in the theory of q-difference 
equations developed by  F. I t .  J•cxsoN, and can be noticed in many  number- 
theoretic investigations. In  view of it, we are led to surmise that  a result analogous 
to Proposition 1 of Section 5 exists, in which the Boolean algebra of subsets of R 
is replaced by a lattice of subspaces of a vector space over a finite field. Such a 
result does indeed exist; in order to establish it a preliminary definition is needed. 

Let  L be a finite lattice, and let V be a finite-dimensional vector space over 
a finite field with q elements. A representation of L over V is a monotonic map 19 
of L into the lattice M of subspaees of V, having the following properties : 

(1) 19 (0) = 0. 

(2) 19 (a V b) = 19 (a) V 19 (b). 
(3) Each a tom of L is mapped to a line of the vector space V, and the set of 

lines thus obtained spans the entire space V. 
A representation is /a i th /ul  when the mapping 19 is one-to-one. We shall see 

in Section 9 tha t  a great many  ordered structures arising in combinatorial pro- 
blems admit  faithful representations. Given a representation 19 : L --> M, one 
defines the conjugate map q : M--~ L as follows. 

Let K be the set of atoms of M (namely, lines of V), and let A be the image 
under 19 of the set of atoms of L. For s e M,  let K (s) be the set of atoms of M 
dominated by s, and let B (s) be a minimal subset of A which spans (in the vector 
space sense) every element of K(s) .  Let A (s) be the subset of A which is spanned 
by  B (s). A simple vector-space argument, which is here omitted, shows that  the 
set A (s) is well defined, that  is, tha t  it does not depend upon the choice of B (s), 
but  only upon the choice of s. 

Let  C(s) be the set of atoms of L which are mapped by 19 onto A(s) .  Set 
q(s) ~-- ~ /C(s)  in the lattice L;  this defines the map q. I t  is obviously a mono- 
tonic function. 

Lemma. Let 19 : L --> M be a /aith/ul representation and let q : M -> L be the 
conjugate map. Assume that every element o / L  is a jo in  o/atoms. Then 19 (q (s) ) ~ .v 

and q (19 (x) ) • x. 

Proo/. By definition, q(s) -~ ~/ C(s), where C(s) is the inverse image of A (s) 
under 19- By property (2) of a representation, 

19(q(s)) :--19(V C(s)) = V p (C(s ) )  ~-- V A ( s ) .  
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But  this join of the set of  lines A (s) in the lattice M is the same as their span in 
the vector  space V. Hence V A (s) ~ s, and we conclude tha t  p (q(s)) ~= s. 

To prove t h a t  q (p (x)) ~ x, i t  suffices to show tha t  A (p (x)) ~- B, where B 
is the  set of a toms in A dominated by  p(x) .  Clearly B c A ( p ( x ) ) ,  and  it will 
suffice to establish the converse implication. By  (2), and by  the fact  t ha t  x is 
a join of atoms, we have p (x) ~ V B. Therefore every line l domina ted  by  p (x) 
is spanned by  a subset of  B. I f  in addit ion 1 E A ,  then l ~ V C for some subset 
C c B, hence l ~ B. This shows B ~ A (p (x)), q. e. d. 

Theorem 5. Let L be a finite lattice, where every element is a jo in  o /a toms,  let 
p : L --> M be a /a i th /u l  representation o / L  into the lattice M o/subspaces o / a  vector 
space V over a finite field with q_ elements, and let q : M --~ L be the conjugate map. 
For every k ~ 2, let ms  be the number o] k-dimensional subspaces s o/ V such that 
q (s) -~ I .  Then 

(*) #(0 ,  1) = q('~)m~ --  _q(~)m3 + q(~)m~ . . . .  , 

where # is the M6bius lunction o/ L. 

Proo/. Let  Q = L*,  let c : L -~ Q and c* : Q -~ L be the canonical isomor- 
phisms between L and Q. Define z : Q -> M as z ---- pc*,  and ~ : M -+ Q as p ~- cq. 
We verify tha t  z and ~ give a Galois connection between Q and M satisfying the 
hypothesis  of  Theorem 1. I f  7~(x) = 0, then there is a y E L such tha t  y = c* (x) 
and p (y) = 0. I t  follows f rom the definition of a representat ion tha t  y ~ 0. Hence 
x ~ c ( y ) ~  1. Fur thermore,  ~ ( 0 ) =  c ( q ( O ) ) ~  1. I t  follows from the preceding 
Lemma t h a t  ~ and ~ are a Galois connection. Applying Theorem 1 and the 
result of  Example  2 of  Section 5, formula (*) follows at  once. 

Remark.  I t  is easy to  see tha t  every lattice having a faithful representat ion 
is a geometric lattice. The converse is however not true, as an example of T. LA- 

ZAI~SON shows.  

A reduct ion similar to t ha t  of Proposit ion 1 of Section 7 can be carried out  
with Theorem 5 and  representations, and another  combinatorial  proper ty  of the 
Euler  characteristic is obtained. 

9. The coloring of graphs 

B y  way  of il lustration of the preceding theory,  we give some applications to 
the classic problem of coloring of graphs, and to the problem of construct ing 
flows in networks with specified properties. Our results extend previous work of 
G. D. BIRKHOFF, D. C. LEwis, W. T. TUTTE and H. WHITNEY. 

A linear graph G : (V, E) is a s t ructure  consisting of  a finite set V, whose 
elements are called vertices, together  with a family E of two-element subsets of  V, 
called edges. Two vertices a and b are adjacent  when the set (a, b) is an  edge; 
the  vertices a and b are called the endpoints of (a, b). Alternately,  one calls the 
vertices regions and calls the graph a map, and we use the two terms interchange- 
ably, considering them as two words for the same object. I f  S is a set of  edges, 
the  vertex set V (S) consists of  all vertices which are incident to some edge in S. 

A set of edges S is connected when in any  par t i t ion S ---- A w B into disjoint 
non-empty  sets A and B, the ver tex sets V (A) and V (B) are not  disjoint. E v e r y  set 
of  edges is the union of  disjoint connected blocks. 
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The bond closure on a graph G = (V, E) is a closure relation defined on the 
set E of edges as follows. I f  S c E, let ~ be the set of all edges both of whose end- 
points belong to one and the same block of S. Every  set consisting of a single 
edge is closed, and these are the only minimal non-empty closed sets. 

Lemma 1, The bond closure S -> S has the exchange property. 

Proo/. Suppose e and f are edges, S c E, and e ~ ~ but e ~ S. Then every 
endpoint of e which is not in V (S) is an endpoint of /; on the other hand, S and f 
have a t  least one point in common, otherwise e e S. Thus both e and j either 
connect the same two blocks of S, or else they have one endpoint in S and one 
common endpoint; hence / e S-O-e, q. e. d. 

The lattice L ---- L(G) of bond-closed subsets of E is called the bond lattice of 
the graph G. Suppose tha t  E has n blocks and p (4) is the characteristic poly- 
nomial of L, then the polynomial lnp  (2) is the chromatic polynomial of the graph G, 
first studied by  G. D. BmX~OFF. From Theorem 4 we infer at  once the theorem 
of WBITZCEY tha t  the coefficients of the chromatic polynomial alternate in sign. 

The chromatic polynomial has the following combinatorial interpretation. Let  
C be a set of n elements, called colors. A function / : V -+ C is a proper coloring 
of the graph, when no two adjacent vertices are assigned the same color. To every 
coloring / - -  not necessarily proper - -  there corresponds a subset of E,  the bond 
o f / ,  defined as the set of all edges whose endpoints are assigned the same color 
by  ]. The bond of / is a closed set of edges. For every closed set S, let p (A, S) 
be the number  of colorings whose bond is S. Then we shall prove that  p (4, S) 
= Anq(A, S), where q(A~ S) is the characteristic polynomial of the segment [S, I ]  
in the lattice L. Since every coloring has a bond Z P (4, T) equals the total  

T > S  

number of colorings having some bond T >_-- S. But  this number is evidently A ~-~(s), 
where k is the number of vertices of the graph and r (S) is the rank of S in L. 
Applying the M6bius inversion formula on the bond-lattice, we get 

(*) p (4) = p (4, 0) = ~ ~k-~(~)/~ (0, T).  
T e L  

But  the number  of colorings whose bond is the null set 0 is exactly the number  
of proper colorings. 

W~ITN~Y'S evaluation (cf. A logical expansion in Mathematics) of the chro- 
matic polynomials of a graph in terms of the number of subgraphs of s edges 
and p connected components is an immediate consequence of the cross-cut theorem 
applied to the atoms of the bond-lattice of G. This result of WHITI~EY'8 can now 
be sharpened in two directions: first, a cross-cut other than  that  of the atoms 
can be taken;  secondly, the computation of the coefficients of the chromatic poly- 
nomial can be simplified by Proposition 1 of Section 8. The cross-cut of all elements 
of rank 2 is particularly suited for computation, and can be programmed. The 
interested reader may  wish to explicitly translate the cross-cut theorem and the 
results of Section 8 into the geometric language of graphs. 

Example 1. For a complete graph on n vertices, where every two-element sub- 
set is an edge, the bond-lattice is isomorphic to the lattice of partitions of a set 
with n elements. The chromatic polynomial is evidently ('~)n = A ( ~ -  1) . . .  
(4 - -  n + 1), and the coefficients s(n, k) are the Stifling numbers o/the first kind. 
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Thus, ~. # (0, zr) = s (n,/c). This gives a combinatorial interpretation to the Stirling 
r(~)=k 

numbers of the first kind. 
For a map m embedded in the plane, where regions and boundaries have their 

natural meaning and no region bounds with itself, one obtains an interesting 
geometric result by applying the cross-cut theorem to the dual atoms of the bond 
lattice L (m). 

Let m be a connected map in the plane; without loss of generality we can 
assume: (a) that  all the regions of m, except one which is unbounded, lie inside 
a convex polygon, the outer boundary of m; (b) that  all boundaries are segments 
of straight lines. The dual graph of m is the linear graph made up of the boundaries 
of m. A circuit in a linear graph is defined as a simple closed curve contained in 
the graph. We give an expression of the polynomial P(~, m) in terms of the 
circuits of the dual graph. The outer boundary is always a circuit. 

A set of circuits of a map m in the plane spans, when their union -- in the 
set-theoretic sense --  is the entire boundary of m. 

Proposition 1, For every integer k ~ 1, let C~ be the number o] spanning sets o] k 
distinct circuits o] a map m in the plane. Then 

#m (0, 1) = -- C1 + C2 --  C~ + C4 . . . .  

Proo/. I f  the map has two regions, then C1 = 1 and all other Cc = 0, so the 
result, is trivial. Assume now that  m has at least 3 regions. Then C1 = 0. All we 
have to prove is that  the integers Ck are the integers g~ of Theorem 3, relative to 
the cross-cut of L(m) consisting of all the dual atoms. 

By the Jordan curve theorem, every circuit divides the plane into two regions ; 
this gives a one-to-one correspondence of the circuits with the dual atoms e l L  (m). 
Conversely, because we can assume that  the map is of the special type described 
above, every dual atom in L (m) is a map with two connected regions, and so must 
have as a boundary a simple closed curve, q.e.d. 

I t  has been shown by RICI~ARD I~ADO (p. 312) that  the bond-lattice L(G) of 
any linear graph G has a faithful representation. Accordingly, Theorem 5 can also 
be applied to obtain expression for tt (0,1). These expressions usually give sharper 
bounds than similar expressions based upon the cross-cut of atoms. 

Farther-reaching techniques for the computation of the M6bius function of L (G) 
are obtained by applying Theorem 1 to situations where P and Q are both bond- 
lattices of graphs. This we shall now do. A monomorphism of a graph G into a 
graph H is a one-to-one function / of the vertices of G onto the vertices of H, 
which induces a map f o f  the edges of G into the edges of H. Every monomorphism 
] : G --> H induces a monotonic map p : L(G) -->L(H), where p(S) is defined as 
the closure of the image f (S)  in H. I t  also induces a monotonic map q : L (H) --> 
--~ L(G), where q (T) i s  defined as the set of edges of G whose image is in T. 

Lemma 2, q(p(S)) ~- S /or  S in L(G) and p(q(T))  <= T ]or T in L(H). 

Proo/. Intuitively, p(S) is obtained by "adding edges" to S, and q(p(S)) 
simply removes the added edges. Thus, the first statement is graphically clear. 
The second one can be seen as follows, q (T) is obtained from T by removing a 
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number of edges. Taking p (q(T)), some of the edges may be replaced, but in 
general not all. Thus, p(q(T) )  ~ T. 

Taking M----L(H)* and e :L (H) - -*  M to be the canonical order-inverting 
map, we see that  7~ -~ cp and ~ = qc give a Galois connection between L(G) 
and M. Now, ~(x) --~ 0 is equivalent to p (x) ---- 1 for x ~ L(G). This can happen 
only ff x has only one component, that  is --  since x is closed --  only if x =- 1 
in L(G). Thus ~(x) = 0 ff and only if x -~ 1. Secondly, @(0) ~ q(1) --~ 1, evi- 
dently. We have verified all the hypotheses of Theorem ], and we therefore 
obtain: 

Proposition 2. Let ] : G --~ H be a monomorphism o] a linear graph G into a linear 
graph H, and let #~ and #H be the M6bius ]unctions o/the bond-lattices. Then 

~ ( o ,  1) = ~ . t~ (a ,  1), 
[a e L ( t t )  ; q(a) = 0] 

where q is the map o / L ( H )  into L(G) naturally associated wi th/ ,  as above. 

Proposition 1 can be used to derive a great many of the reductions of 
G. D. BI~K~OF~ and D. C. LEwis, and provides a systematic way of investigating 
the changes of M6bins functions --  and hence of the chromatic polynomial --  
when edges of a graph are removed. I t  has a simple geometric interpretation. 

An interesting application is obtained by taking H to be the complete lattice 
on n elements. We then obtain a formula for # which completes the statements 
of Theorems 3 and 5. Let G be a linear graph on n vertices. Let C be the family 
of two-element subsets of G which are not edges of G. Let F be the family of all 
subsets of C which are closed sets in the bond-lattice of the complete graph on n 
vertices built on the vertices of G. Then, 

Corollary. # G (0, 1) = ~ # (a, 1), 
a c e  

where # is the MSbius function of the lattice of partitions (cf. Example 5) of a 
set of n elements. 

Stronger results can be obtained by considering "epimorphisms" rather than 
"monomorphisms" of graphs, relating #a to the M6bius function obtained from 
G by "coalescing" points. In  this way, one makes contact with G. A. DIl~Ac's 
theory of critical graphs. We leave the development of this topic to a later work. 

10. Flows in networks 

A network N ---- (V, E) is a finite set V of vertices, together with a set of 
ordered pairs of vertices, called edges. 

We shall adopt for networks the same language as for linear graphs. 
A circuit is a sequence of edges S such that  every vertex in V (S) belongs to 

exactly two edges of S. Every edge has a positive and a negative endpoint. Given 
a function ~b from E to the integers from 0 to ~ -- 1, let for each vertex v, q)(v) 
be defined as 

Y) (v) = ~ v (e, v) r (e), 

where the sum ranges over all edges incident to v, and the function U (e, v) takes 
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the value + 1 or - -  1 according as the positive or negative end of the edge e abuts  
at  the vertex v, and the  value zero otherwise. The function ~b is a ]low (rood. ~) 
when ~5 (v) ~ 0 (rood. 2) for every vertex v. The value # (e) for an edge e is called 
the capacity of the  ]low th rough  e. The mod. ~ restriction is inessential, but  will 
be kept  throughout .  

A proper ]low is one in which no edge is assigned zero capacity.  TIy~TE was 
the first to  point  out  the importance of the problem of counting proper  flows (cf. 
A contr ibut ion to  the theory  of chromatic  polynomials) in combinatorial  theory.  

We shall reduce the solution of  the problem to a M6bius inversion on a lattice 
associated with the network.  This will give an  expression for the number  of  
proper  flows as a polynomial  in 4, whose coefficients are the values of a MSbius 
function. 

Eve ry  flow through  N is a proper flow of  a suitable subnetwork of N,  obtained 
by  removing those edges which are assigned capaci ty  0. However,  the converse 
o f  this assertion is no t  t rue : given a subnetwork S of  N,  it m a y  not  be possible 
to find a flow which is proper on the  complement  of N.  This happens because 
every flow which assigns capaci ty  zero to each edge of  S m a y  assign capaci ty  zero 
to some fur ther  edges. We are therefore led to define a closure relation on the set 
of  all subgraphs as follows : S shall be the set of all edges which necessarily are 
assigned capaci ty  zero, in any  flow of N which assigns capaci ty  zero to every edge 
of  S. I n  other  words, if e 6 ~q, then there is a flow in N which assigns capaci ty  . 0 
to the edge e, but  which assigns capaci ty  zero to all the edges of S. I t  is immediate ly  
verified tha t  S -> S is a closure relation. We call it the circuit closure of S. The 
circuit closure has the exchange property: i f  e ~ S w p but  e 6 S, then p ~ S u e. 
Before verifying it, we first derive a geometric characterization of the circuit 
closure. A set S is circuit closed (S = S) if and only if th rough  every edge e not  
in S there passes a circuit which is disjoint f rom S. For  if S is closed and e 6 S, 
then  there is a flow th rough  e and disjoint f rom S. Bu t  this can happen only if  
there is a circuit th rough  e. 

I f  there is a circuit th rough  the edge p disjoint f rom S w e, and a circuit 
th rough  e disjoint f rom S and containing p,  then  there is - -  as has been ob- 
served by  WHITNEY - -  also a circuit through e not  containing S u p.  This im- 
plies t h a t  e is not  in the  closure of S u p,  and verifies the exchange property.  

The lattice C (N) of  closed subsets of  edges of  the network N is the circuit 
lattice o /2( .  An a tom in this lattice is not  necessarily a single edge. 

Proposition 1. The number of proper ]lows, (mod. ~,) on a network N with v ver- 
tices, e edges and p connected components is a polynomial p (~) of degree e - -  v + p. 
This  polynomial is the characteristic polynomial o / the  circuit lattice o] iv. The co- 
e]ficients alternate in sign. 

Pro@ The last s ta tement  is an immediate  consequence of  Theorem 4 of 
Section 8. 

The tota l  number  of  flows on iv (not necessarily proper) is determined as 
follows. Assume for simplicity t ha t  N is connected, l~emove a set D of  v - -  1 
edges f rom iv, one adjacent  to each but  one of the vertices. 

E v e r y  flow on iV can be obtained by  first assigning to each of the edges no t  
in D an arb i t rary  capacity,  between 0 and X - -  l,  and then filling in capacities 
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for the  edges in D to m a t c h  the  requ i rement  of  zero capac i ty  t h rough  each ver tex .  
There  are  ~e-v+l ways  of doing this,  a n d  this  is therefore  the  t o t a l  number  of 
flows mod.  ~. I f  the  ne twork  is in p connected  components ,  the  same a r g u m e n t  
gives 2e-v+P. Now, every  flow on G is a p roper  flow on a unique closed subset  ~q, 
ob ta ined  b y  removing  all  edges having  capac i ty  zero. 

t I enee  
~-~+~ = ~ p  (s, ~), 

~ee(a) 

where p (~q, 2) is the  character is t ic  po lynomia l  of  the  closed subgraph  S. Se t t ing  
n (s) = e (s) - -  v (s) ~-29 (s), the  number  of  edges, ver t ices  and  components  of  s, 
and  app ly ing  the  invers ion formula ,  we get  

p(G, 2)=~n(s)#(S,G),  q . e . d .  
se_c(a) 

I n  the  course of  the  p roof  we have  also shown t h a t  n (s) is the  rank of S in 
the  circuit  la t t ice  of  G. The  r ank  of  the  null  subgraph  is one. 

The  four-color  p rob lem is equiva len t  to  the  s t a t emen t  t h a t  every  p l ana r  net-  
work  wi thou t  an  i s thmus  has a p roper  flow mod  5. (An i s thmus  is an edge t h a t  
disconnects  a componen t  of the  ne twork  when removed. )  

Most  of the  resul ts  of the  preceding sect ion ex tend  to  circuit  la t t ices  of  a net-  
work, and  give techniques  for compu ta t ion  of the  flow polynomia ls  of  ne tworks .  
We shall  no t  wri te  down the i r  t r ans la t ion  into the  geometr ic  language  of ne tworks .  
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