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ON THE CHARACTERISTIC POLYNOMIAL OF THE 
PRODUCT OF TWO MATRICES 

WILLIAM E. ROTH 

The following theorem will be proved: 

THEOREM. If A and B are n Xn matrices with elements in the field F, 
whose characteristic polynomials are 

ao(x2) -xal(x2) and bo(x2) -xbl(x2) 

respectively, where ao(x), al(x), bo(x) and bi(x) are elements in the poly- 
nomial domain, F[x], of F; and if the rank of A -B does not exceed 
unity; then the characteristic polynomial of AB is (-1)n [ao(x)bo(x) 
-xal(x)bi(x) ]. 

The proof will be facilitated by two lemmas. 

LEMMA I. If the rank of an n Xn matrix, D, with elements in F does 
not exceed unity, then there exist 1 Xn matrices R and S with elements 
ri and si, i= 1, 2, , n, in F such that D=RTS, where RT is the 
transpose of R. 

LEMMA II. If M= (mij) is an n Xn matrix with elements in F[x] and 
if D is an n Xn matrix as defined by Lemma I, then the determinant of 
M+D is given by 

M +D =D M| + SMART, 

where MA is the adjoint of the matrix M and D = RTS. 

The validity of Lemma I is obvious. The rank of D does not exceed 
unity, hence every two of its rows (columns) are proportional and 
D=(risj) =RTS, where R=(ri, r2, * * , rn) and S=(5si, S2, Sn) 
and ri and si, i= 1, 2, * *. n, are in F. 

To prove Lemma II, let D = RTS, where R and S are matrices 
established by Lemma I. The determinant of M+D may be ex- 
pressed as the sum of 2n determinants. Of these I MI is one; n others 
are I Mil, i= 1, 2, ... n, where the matrix Mi is obtained from M 
by replacing its ith row by Sri of D; and the remaining 2n -1 - n are 
zeros for their matrices are obtained by replacing two or more of the 
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rows of M by corresponding rows of D. Upon expanding IMif in 
terms of its ith row, we find 

E= ( siMji3 ri, 

where Mji, i, j= 1, 2, * *, n, is the cofactor of mij of M. Conse- 
quently 

A n 

I M-DI M(I + >IM I = I MI +SMART, 
i=l1 

where MA is the adjoint of M. The lemma is proved. 
We now take up the main theorem. By hypotheses 

(1) I xI - A I = ao(x2) - xal(x2), xI - B I = bo(x2) - xbl(x2). 
Let (xI-A)A=Ao(x2)-xA,(x2), where Ao(x2) and A,(x2) are poly- 
nomials in A and x21 and are therefore commutative with A. Then 

(xl - A) [A o(x2) -xA (X2)] = [ao(X2) - xal(X2)I, 

and consequently 

(2) aol = - AAo -x2Ai, a,I = -AA, - Ao.1 

Since the rank of A -B does not exceed unity, we may, according 
to Lemma I, let A-B=D=RTS and as a result of Lemma II 

xI - B x= I - A + D I 
=xl - A I + S(xI - A)ART 

= aO - xa, + S(Ao - xA,)RT, 

and by equation (1) it follows that 

(3) bo = ao + SAoRT, bi = a, + SAiRT. 

According to (2) and (3) and because A, Ao, and A, are commuta- 
tive, we find that 

aobo - x alb, = ao(ao + SAoRT) - Xal(al + SAjRT), 
2 2 2 2 T 

= aO -x a, + S(aoAo - x aA,)R, 

(4) = aO -x a, - S[(AAo + x A,)Ao 

- x2(AA, + Ao)Ai R 

= aO - x2a, - S(Ao- x2AD)ART. 
1 Here and in the following discussion we suppress the argument x2 of polynomials 

until the final step in the proof. 
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Moreover since B =A -D 

x21 - AB = x2l - A2 + AD = x21 - A2 + ARTS. 

The rank of AD= (ART)S does not exceed that of D, consequently 
by Lemma II we conclude that 

x2I - ABI = I x21 - A21 + S(x2 -A 2)AART. 

It can be shown that 

1 2I 2 | = 1)n( 2 2 2) 

2x I-A 2)A = 1 n-I 2 22 
(xl - A) =()'(Ao - x Al). 

Hence we have 

x I - AB = (-)n[ao - x2a, 
_ 

S(A 
_ 

x A)ART] 

= (-1)n(aobo-X alb-), 

according to equation (4). If in this equation we replace x2 by x, 
the proof of the theorem is complete. 
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