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ON THE CHARACTERISTIC POLYNOMIAL OF THE
PRODUCT OF TWO MATRICES

WILLIAM E. ROTH
The following theorem will be proved:

THEOREM. If A and B are n Xn matrices with elements in the field F,
whose characteristic polynomials are

ao(x?) —xa;(x?) and bo(x?) —xby(x2)

respectively, where a(x), a1(x), bo(x) and bi(x) are elements in the poly-
nomial domain, Flx), of F; and if the rank of A —B does not exceed
unity; then the characteristic polynomial of AB is (—1)[ao(x)be(x)
—xa:(%)b1(x) ].

The proof will be facilitated by two lemmas.

LemMA 1. If the rank of an nXn maitrix, D, with elements in F does
not exceed unity, then there exist 1 Xn matrices R and S with elements
ri and s;, 1=1, 2, - - -, n, in F such that D=RTS, where RT 1is the
transpose of R.

LemMA I1. If M = (m;) is an n Xn matrix with elements in F[x] and
if D is an n Xn matrix as defined by Lemma 1, then the determinant of
M+D is given by

| M+ D| =| M|+ SM4R?,
where M4 1s the adjoint of the matrix M and D =RTS.

The validity of Lemma I is obvious. The rank of D does not exceed
unity, hence every two of its rows (columns) are proportional and
D=(r;5;)=RTS, where R=(r1, 79, - - +, 7s) and S=(sy, Sz, + * *, Sn)
and r;and s;, 7=1,2, - - -, , arein F.

To prove Lemma II, let D=RT"S, where R and S are matrices
established by Lemma I. The determinant of M+D may be ex-
pressed as the sum of 2" determinants. Of these | M| is one;  others
are lMi|, 1=1, 2, - - -, n, where the matrix M, is obtained from M
by replacing its 7th row by Sr; of D; and the remaining 2"—1 —# are
zeros for their matrices are obtained by replacing two or more of the
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rows of M by corresponding rows of D. Upon expanding | M| in
terms of its sth row, we find

| M

= 2 siM ji) ri,

j=1
where Mj;, 1, j=1, 2, - - -, u, is the cofactor of m;; of M. Conse-
quently

|3 = D[ = u|+ S| ae| = | 2| + sy,

1=1

where M4 is the adjoint of M. The lemma is proved.
We now take up the main theorem. By hypotheses

€)) | xl — A' = ao(x?) — xa:1(x?), ‘ xI — B] = bo(2?) — xbi(x?).

Let (xI—A)4=Ao(x?) —xA:(x?), where A¢(x?) and A,(x?) are poly-
nomials in 4 and x2I and are therefore commutative with 4. Then

(2 — A)[Ado(x?) — 24:(2?)] = [a0(2?) — zar(a?)]1,
and consequently
(2) (Io[ = — AAo - szl, 01[ = — AAl - Ao.l

Since the rank of 4 —B does not exceed unity, we may, according
to Lemma I, let A —B=D=R”S and as a result of Lemma II
| sI — B| =|«f — 4+ D|
| I — A| + S(xI — A)ART
= a9 — xa; + S(4o — x4,)R7,

and by equation (1) it follows that
(3) bo = Q9 + SA()RT, b1 = + SA1RT.

According to (2) and (3) and because 4, 4y, and 4, are commuta-
tive, we find that

Gobo — % asby = ao(ao + SAR") — & ar(ay + SAR),
= aﬁ - xzaf + S(aedo — x2alA1)RT,
@) = a0 — 501 — S[(Ado + ' 47) 4,
— &'(44, + 404, )R,
= a0 — 501 — S(As — x ADAR".
! Here and in the following discussion we suppress the argument #? of polynomials
until the final step in the proof.
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Moreover since B=4 —D
x2] — AB = % — A?* + AD = x*] — A% + ARTS.

The rank of AD=(ART)S does not exceed that of D, consequently
by Lemma II we conclude that

| %27 — AB| = | 2T — A?| + S(a21 — A2)AAR?.
It can be shown that
|7 — 4°| = (=1)"(as — &a),
&' — A" = (=140 — 24D
Hence we have
| €T — AB| = (=1)"[ao — #"a1 — S(4g — 4 ADAR" ]
= (=1)"(acbo — x a1by),

according to equation (4). If in this equation we replace x? by x,
the proof of the theorem is complete.
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