

On the Characteristic Polynomial of the Product of Two Matrices Author(s): William E. Roth Source: *Proceedings of the American Mathematical Society*, Vol. 5, No. 1 (Feb., 1954), pp. 1-3 Published by: American Mathematical Society Stable URL: <u>http://www.jstor.org/stable/2032093</u> Accessed: 10/05/2010 08:44

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=ams.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to Proceedings of the American Mathematical Society.

ON THE CHARACTERISTIC POLYNOMIAL OF THE PRODUCT OF TWO MATRICES

WILLIAM E. ROTH

The following theorem will be proved:

THEOREM. If A and B are $n \times n$ matrices with elements in the field F, whose characteristic polynomials are

$$a_0(x^2) - xa_1(x^2)$$
 and $b_0(x^2) - xb_1(x^2)$

respectively, where $a_0(x)$, $a_1(x)$, $b_0(x)$ and $b_1(x)$ are elements in the polynomial domain, F[x], of F; and if the rank of A-B does not exceed unity; then the characteristic polynomial of AB is $(-1)^n [a_0(x)b_0(x) - xa_1(x)b_1(x)]$.

The proof will be facilitated by two lemmas.

LEMMA I. If the rank of an $n \times n$ matrix, D, with elements in F does not exceed unity, then there exist $1 \times n$ matrices R and S with elements r_i and s_i , $i=1, 2, \cdots, n$, in F such that $D=R^TS$, where R^T is the transpose of R.

LEMMA II. If $M = (m_{ij})$ is an $n \times n$ matrix with elements in F[x] and if D is an $n \times n$ matrix as defined by Lemma I, then the determinant of M+D is given by

$$|M + D| = |M| + SM^A R^T,$$

where M^{A} is the adjoint of the matrix M and $D = R^{T}S$.

The validity of Lemma I is obvious. The rank of D does not exceed unity, hence every two of its rows (columns) are proportional and $D = (r_i s_j) = R^T S$, where $R = (r_1, r_2, \dots, r_n)$ and $S = (s_1, s_2, \dots, s_n)$ and r_i and s_i , $i = 1, 2, \dots, n$, are in F.

To prove Lemma II, let $D = R^T S$, where R and S are matrices established by Lemma I. The determinant of M+D may be expressed as the sum of 2^n determinants. Of these |M| is one; n others are $|M_i|$, $i = 1, 2, \dots, n$, where the matrix M_i is obtained from Mby replacing its *i*th row by Sr_i of D; and the remaining $2^n - 1 - n$ are zeros for their matrices are obtained by replacing two or more of the

Presented to the Society, November 29, 1952; received by the editors April 16, 1953.

[February

rows of M by corresponding rows of D. Upon expanding $|M_i|$ in terms of its *i*th row, we find

$$|M_i| = \left(\sum_{j=1}^n s_j M_{ji}\right) r_i,$$

where M_{ji} , $i, j=1, 2, \cdots, n$, is the cofactor of m_{ij} of M. Consequently

$$|M - D| = |M| + \sum_{i=1}^{n} |M_i| = |M| + SM^A R^T,$$

where M^{A} is the adjoint of M. The lemma is proved.

We now take up the main theorem. By hypotheses

(1) $|xI - A| = a_0(x^2) - xa_1(x^2), |xI - B| = b_0(x^2) - xb_1(x^2).$ Let $(xI - A)^A = A_0(x^2) - xA_1(x^2)$, where $A_0(x^2)$ and $A_1(x^2)$ are polynomials in A and x^2I and are therefore commutative with A. Then

$$(xI - A) [A_0(x^2) - xA_1(x^2)] = [a_0(x^2) - xa_1(x^2)]I,$$

and consequently

(2)
$$a_0I = -AA_0 - x^2A_1, \quad a_1I = -AA_1 - A_0^{1}$$

Since the rank of A - B does not exceed unity, we may, according to Lemma I, let $A - B = D = R^{T}S$ and as a result of Lemma II

$$|xI - B| = |xI - A + D|$$

= $|xI - A| + S(xI - A)^{A}R^{T}$
= $a_{0} - xa_{1} + S(A_{0} - xA_{1})R^{T}$,

and by equation (1) it follows that

(3)
$$b_0 = a_0 + SA_0R^T, \quad b_1 = a_1 + SA_1R^T.$$

According to (2) and (3) and because A, A_0 , and A_1 are commutative, we find that

¹ Here and in the following discussion we suppress the argument x^2 of polynomials until the final step in the proof.

Moreover since B = A - D

$$x^{2}I - AB = x^{2}I - A^{2} + AD = x^{2}I - A^{2} + AR^{T}S.$$

The rank of $AD = (AR^T)S$ does not exceed that of D, consequently by Lemma II we conclude that

$$|x^{2}I - AB| = |x^{2}I - A^{2}| + S(x^{2}I - A^{2})^{A}AR^{T}.$$

It can be shown that

$$|x^{2}I - A^{2}| = (-1)^{n}(a_{0}^{2} - x^{2}a_{1}^{2}),$$

 $(x^{2}I - A^{2})^{A} = (-1)^{n-1}(A_{0}^{2} - x^{2}A_{1}^{2}).$

Hence we have

$$|x^{2}I - AB| = (-1)^{n} [a_{0}^{2} - x^{2}a_{1}^{2} - S(A_{0}^{2} - x^{2}A_{1}^{2})AR^{T}]$$
$$= (-1)^{n} (a_{0}b_{0} - x^{2}a_{1}b_{1}),$$

according to equation (4). If in this equation we replace x^2 by x, the proof of the theorem is complete.

UNIVERSITY OF TULSA

1954]