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ON THE CHARACTERISTIC POLYNOMIAL OF THE 
PRODUCT OF SEVERAL MATRICES 

WILLIAM E. ROTH 

We shall prove two theorems. 

THEOREM I. If A is an n Xn matrix with elements in the field F, if 
R and Si, i = 1, 2, * , r, are l Xn matrices with elements in F, and 
D = RTSS, where RT is the transpose of R, and if the characteristic poly- 
nomial of Ai=A +Diis 

I xI - j = miO + milx + mi2x2 + * + mi,ri_xr' 

where mi,j_,, i, j = 1, 2, * * *, r, are polynomials in xr with coefficients 
in F, then the characteristic polynomial of the product P =A1A2 ... A, 
is given by (-1)(r-1)nI A(x) I, where 

MJO, Mi,r_lXr- 1, Ml,r-2Xr-2, 
M * *X m 

m21x, m20, m2,r_1xr-l, m22x2 

(1) A\(Xr) M32X2, M31x, M30, * , mx3 

Mr,r-lXr,1 m Mr,r-2X 2, Mr ,r-,S I * * * mr, J 

This proposition has been proved by the writer [I] for the case 
r =2. Recently Parker [2] generalized that result and Goddard [3] 
gave an alternate proof of it and extended his method to the product 
of three matrices. This latter result does not come under the theorem 
above. Schneider [5] proved the theorem for the case A A1=0, 
i <j, i, j=1, 2, ,r. 

Capital letters and expressions in bold faced parentheses will indi- 
cate matrices with elements in the field F or in F(co), the extension of 
F by the adjunction of X a primitive rth root of unity to it, and in 
F(x) the polynomial domain of F(w). The direct product of B and C 
is (bijC) =B(C). The product indicated by II will run from 1 to r. 

If R is not zero a nonsingular matrix Q with elements in F exists 
such that QRT=(1, 0, * , O)"; as a result 

QDiQ' - ( 0, O,* , O)TS,QI = E- , 

where Q1 is the inverse of Q and Es has nonzero elements in only the 
first row. Now let 
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(2) QAkQ' = Mk = Q(A + Dk)Q' = M + Ek, 

where Q is the matrix defined above and QAQ'= M= (mij). Conse- 
quently Mk= (rm,), where m'j? =mij+e (t and m( =mij for i> 1. 
That is, the matrices Mk differ only in the elements of their first rows. 
As a result the elements of the first columns of the adjoints [xI - Mk ]A 

and [xI-M]A of xI-Mk and xI-M respectively are identical for 
k=1, 2, . , r, since all these matrices agree in the elements of their 
last n -1 rows and for the same reason 

Nk(x) = [xI - Mk][xI - M]A, 

mk(x) * * * 

O m(x) 0 0 O 

(3) = 0 0 m(x)... 0 

0 0 0 * * * (x)) 

k=1, 2, . . *, r, where asterisks indicate nonzero elements in F(x) 
and xI-M| =m(x). 

Let 
W= (coij) = C(-)(-), 1, = 1, 2, * ,r; 

then 

(4) W(Ik) | = k 

where Ik is the identity matrix of order k. The determinantal equation 
holds because W(Ik) can be transformed by the interchange of rows 
and corresponding columns to the direct sum W+ W+ * 1- W of 
k summands. 

We shall operate in F(x) on the matrix 

M(x) -(biixI - 3i+l.jMi) (3r+,, l-I) 

xI -M1 0 0 

o xI -M2.2 0 
. . . . . . . . . . . . . . . ............ }. 

O 0 0 A*Mr- 

Mr 0 0 xI 

If we multiply this matrix on the right by one whose first row is I, 
M1x-1, MlM2X-2, *, M1M2 ... M_ix-r+l, whose second row is 

0, I, M2x' , , M2M3 .. Mr_1X-r+2, and whose last row is 
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0, 0, 0, *.., I, we find that the determinant of the product is 
XtI-MrMlM2 ... Mr_ I and is therefore equal to |xt-Pf. The 

proof of Theorem I will consist in showing that 

(5) | M(x) I = (-_ )(r-l)n I A(xr) I 
We now proceed to establish this equation. 

M(x)W(I) = (ijxI -i+l,kMi)(c(k-l)(l-i)I), 

= (( i-i)(-i)xI - ia-M.), 

= (-M1-i{ij [W!-lxI-Mi}l). 

The number w1-i is a common multiplier of the nXn matrices in the 
jth column of the nr Xnr matrix in right member above. Consequently 
the determinant of this matrix has the factor rco(1-k)n=W-r(r-l)n12 

=Wr(r-1)n/2 =(- I)(r-)n. The determinantal equation obtained from 
the matric equation above is as a result: 

(6) 1 M(x) I | WIn = (-1)(7cl) n | -i1[Xi-xi -M] M 

According to (3) the product 

(7) (Wik[W c-1xI - Mi])(Ski [wilxI - M]A) = (wijNi(w!-1x)). 

The nr Xnr matrix of the right member of this equation can be trans- 
formed by the interchange of corresponding rows and columns to a 
similar one having the form 

(@,,mi(i-l)), * ,* .. * 

0, (w01m(wf'x)), 0 

O, 0 , * * *, (wi1m(W`-'x)) 

where asterisks represent r Xr matrices with elements in F(x) and 
the zeros are r Xr zero matrices. The determinant of this matrix is 

(8) W In-1 [ tm(oi-lX) ]n-1 I (cjm,( oblx)) I 

for each of the matrices (wij-mn(wi-lx)) has m(wi-lx) as a divisor of all 
elements in the jth column. The determinant of the direct sum 
(6ij[COi-1xI-M]A) in equation (7) is [ lIm(W i-1x) ]n-1; consequently 
the determinantal equation which follows from (7) and (8) is 

| wij [W 1xI- A] i [ fIm(j-o1x) ]n- 

I WI n-1 [ 1JM(ci-1X) ]n-1 I (Wijmi(ci1X)) I 
or 

(9) i wi;[W ilxI- M] I = I W In-1 I (woijtmi(wi'x)) I 
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where the determinant of the left member is that of an nr Xnr matrix 
and those in the right members are of order r. From (6) and (9) we 
have |M(X)| =W(-l)(r-1)nI(ojMi(oi-lx))I/l W. It remains to be 
shown that the right member here is (- 1) (r-1)n JA(xr) ; this is easily 
accomplished by multiplying A(xr) in (1) on the right by W. Here- 
with equation (5) is established and the proof of Theorem I is com- 
pleted. 

COROLLARY. Under the hypotheses of Theorem I and if B is an n Xn 
matrix with elements in F and if Bi = B +STR and 

xl -Bi I = nio + nilx + ni2X2 + * * * + ni,r_lXr-1; 

then the characteristic polynomial of B1B2 Br is given by 
(-1)(r-l)n| /A'(x) I where 

nr?, 0,r,r-lXr 1, * ,nr,1X 

n = lr-l,lX, nr-1, *, n,r1,2X2 

Al,r-lXr-1, nl,r-2Xr-2, . . . n1 0 

This case can be made to come under Theorem I for BT BT+RTSi, 

where BT now satisfies the conditions imposed upon Ai. Moreover 

|xI-Bij = xI-BTI. Since (B1B2 . . . Br )T=BTBT 1 . . BT, it fol- 
lows that in A(xr) of (1) we must replace the elements mi,j-ixi-1 by 
nri?+l,j;lx'-' in forming the matrix A'(xr) above. This proves the 
corollary. 

THEOREM II. If Di, i= 1, 2, * , r, are n Xn matrices with elements 
in F, each of which is nilpotent and commutative with the others and 
with A, which also has elements in F, then the characteristic polynomials 
of A,=A+Di, i=1, 2, * * , r, are given by 

(10) |xl - A = m+ M1X + M2X2 + ... + MrXr-1, 

where mi-1, i = 1, 2, I * , r, are polynomials in Xr with coefficients in F, 

and the characteristic polynomial of the product P =A1A2 . . . Ar is 
(-)( r-1)n (x) |Awhere 

MO, Mr-lxr1, Mr-2Xr2, I , m1x 

m1x, MOn, MriXr-l, I , 2 

(Xr)= m2x2, mx, MO, , , m3x3 

Accor o . .t . . .F.n.i. . 4. . h. . e.t.r. s 

Mr_lXr 1, mr-2Xr-2, Mr-WX-3, I **mO 

According to a theorem by Frobenius [4], the determinant of the 
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matrix B + C is equal to that of B if B and C are commutative 
matrices and C is nilpotent. This establishes equation (10) as giving 
the characteristic polynomial of Ai, i = 1, 2, , r. By Theorem I 
the determinant 

xl- = (r1)(rI)n IA(x) Ia 

We shall proceed by induction. Let Pi=A1A2 . . . Ai, then 

I xlI- PAr-1 I = I xlI- (A + D,)Ar-1 I = I xlI-Ar - DjAr- 1 

Now the matrix D1Ar-1 is nilpotent and commutative with xI-Ar 
consequently the determinants above are equal to |xI-Arl. We 
assume that 

xl x-PiAr-i =ixI -Ar l 

then 

xl - = xl - PiAr-i -PDi+jAr-i-i 

Here PiDi+,Ar-i-l is commutative with xI-P,Ar-i and is nilpotent 
because Di+1 is nilpotent and commutative with both Pi and A; hence 
by Frobenius' theorem 

I l X- Pj+jAr-i-1 xI - |IPiAr-i xl - |IAr|. 

Consequently 

xl - PI = |x - Ar| = (_)(r-l)nl a(x) 

and the theorem is proved. 
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