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Inventiones math. 3, 293 —299 (1967)

An Embedding Without a Normal Microbundle

C.P. RourkE and B.J. SANDERSON (London and Warwick)

In this paper we construct a piecewise linear embedding of S1¥¥xI
in $2° with no topological normal microbundle (and hence in particular
no piecewise linear one). By restricting the normal block bundle of this
embedding to S*° x §O§ we have a p.l. embedding of a 19-sphere in a
28-manifold with no (topological) normal microbundle. Since the 28-
manifold is parallelizable we also have a p.l. immersion of S'° in 528
without a normal microbundle.

These results improve on results of HirscH [5], which showed
existence of embeddings without normal disc bundles, and together with
results of [9] justify our claim (see also [12]) that block bundles are the
correct bundle theory for the p.l. category.

The result is obtained as follows. In Theorem A we prove a result
about the linking classes (defined below) of the boundary link of a p.L.
“ribbon” (i.e. an embedding of S"x1I in S"*4) which has a normal
microbundle. In Theorem B we prove that the suspension of a p.1. link
is the boundary of a p.l. ribbon. Finally we use HAEFLIGER’S results [3]
and known homotopy groups to find a link which is a suspension but
fails to satisfy the conclusions of Theorem A and hence bounds a ribbon
without a normal microbundle.

In [11] we will use this example to prove the existence of a differen-
tiably embedded framed sphere (with ordinary differential structure)
S18 = 27 whose normal bundle is non-standard as a topological micro-
bundle.

Notation. We work in the categories of topological and piecewise
linear manifolds. Objects and maps in the latter category will be pre-
fixed “p.1.”. All embeddings and isotopies will be locally flat (in the
p.L case, since we always have codimension 23, this is no restriction at
all by ZEEMAN [I5]).

The following are standard objects in both categories: R" is the sub-
space of Hilbert space with coordinates x;=0 for i>n, S""'= %x:xe
R |x|=1 §, R = §x:xeR”, x,,;Oé, u; e R" is the point with coordinates
x,=+1 and x;=0, i%n, u, is defined similarly. The n-sphere X" is
defined inductively by Zo= fui {Utui} =2 (Gt §U fnna 9,
where * denotes geometric join, X% =2"(\R%*' and X% =" R
I is the unit interval [0, 1]=R and I'=[—1, +1]. An orientation for 2"
and S” is determined by the outward normal and the orientation of
R, Znx §0§ and 2" x %1 % are oriented by identification with Z".
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A link in 2"*? (or R"*9) is an embedding f: 2" x - Z"*4 (or R"*9).
We also refer to a pair of oriented subspheres (2%, 27)<=2"*1 as a link;
the embedding f determines the pair (£§, ) =(f(Z"x {0%), /(2" x §{1§)).
Suppose g =3, then each of X7, 21 is unknotted by StaLLINGS [/3] and
we define the linking classes of the link as follows. Z"*9—X7 has the
homotopy type of S?~! and the orientations of 2"*? and X" determine a
homotopy equivalence h: X"*9—3" — S?71, Define the first linking class
ay (25, Z1)emn,(S?71) to be the element determined by 4|27 . Define the
second linking class o, (25, 2%)=a, (2%, 23). We refer to the pair

(al (2'('), Z"1‘)3 2] (2’6’ Z'i))

simply as the linking class of (27, 2%). It is readily proved by applying
Stalling’s theorem in the next dimension that the linking class is in-
variant under isotopy of the link. Given a link f: 2"x 61— R"*9, we
define the suspension of f, Zf: Z"* 1 x6I— R"*1*2 as follows. X f| 2" x
SI=f, If(uF 2 x {0)=u¥i .4, and Zf(ud, x {1 §=uk 4, then define
Zf|2"** x {0{to be the join of Zf| 2" x {0f with Zf| (s, Uuyi ) x {0
and similarly for Zf| 2"+ x §1 §

A normal bundle of an embedding f: M"—Q"*? is a topological
(R4, §0§)-bundle & with total space E(¢)=Q"*? and zero section f(M).
We write E,(€) for E(&)—f(M). The ““Kister-Mazur theorem” [8] states
that any (topological) microbundle contains a bundle which is unique
up to isomorphism and so we prove that our embedding has no normal
bundle. We do this for convenience — the Kister-Mazur theorem is not
essential to the paper.

Theorem A. Let g: 2"xI' >R g odd =3, be a p.l. embedding
such that

a) g has a normal bundle

b) g|: Z"x {0§—>R"*9* is the standard inclusion

c) the second linking class o, (2", g(Z" x §1§)) is zero.

Then the first linking class o, (2", g(Z" x ilﬁ)) is of order 2.

Proof. By collaring a regular neighbourhood of g(2" x I*)mod g (2" x
S1') (see [6], [15]) one has a p.1. embedding g,: 2" x [—2, +2] —» R"*T4*+1
which extends g. It follows easily from the p.l. isotopy extension theorem

[6] that g, has a noymal bundle, say 5. Hence X" has a normal bundle &
such that é2n ® ¢ (Where ¢ is the trivial line bundle) and

E(E[§xY)=E(n|g.(§x§x(—2, +2)))  for each xeZ".

Lemma. There exists a map t: E(£) - 2" x R+ ! satisfying
i) t| E(E|2%) is a homeomorphism,
i) 1g(x)=x for xeZ" xI' UZ" x {0§,
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iii) to=t| Eo(§) » 2" x (RI*"1 — §O %) is a fibre homotopy equivalence,

iv) Let p: Z"x (R*+ — §0§) - Rt §0§ be the projection, and suppose
given a never-zero section s of £. Then potos determines an element of
n,(S?) which coincides with the first linking class of (s(Z"), 2").

Proof of Lemma. 1t follows from local triviality that the image of a
section of a bundle over a manifold is locally flat and hence, as is implicit
in the lemma, s(Z")cR"*4*! is locally flat. By similar considerations,
it is easily checked that the links and isotopies defined in what follows
are all locally flat.

An inclusion of 2"x R2*! in R"*9%! which is standard on X" x §0§
provides X" with a trivial normal bundle. Now using results of [/] (in
particular Proposition 4.8) one can find a homotopy H of the inclusion
E(f)c R4+ such that H 1 (Z")=2" and H,|Eo(&)—»>Z"x (R**!— {09
is a fibre homotopy equivalence. t=H,|E(£) now satisfies conditions
(iii) and (iv). It is a simple matter to modify ¢ so that in addition con-
ditions (i) and (ii) are satisfied.

Proof of Theorem A (continued). Now let s*, s~ be the sections of &
given by g|Z"x {+1{ and let S*=s5%(2"). Let pem,(ST) be the first
linking class of (S~, 2") and let b: 2% »R*** — {0{ with b(327%)= fut §
represent fi. Define new sections s, and s, by:

PN Rl 6)) if xeXl
Sk (x)_{t'l(x,b(x)) if xeZ"
o [T if xe2™
Sx (x)_{t"(x, —b(x)) if xeZ.

The links (S*, Z") and (2", S”) are isotopic (slide along g(Z" xI"))
and thus have linking class (0, f). Similarly (S;,Z") and (2", S)) are
isotopic and have linking class (B, 2) (to see that (2", Sy) has second
linking class 2, use the fact that the antipodal map on S is of degree
+1 since g is odd).

We assert that s} and s~ are homotopic sections (where the homotopy
is via never-zero sections). For let ¢’ be a fibre homotopy inverse of f.
Then s} ot'ts}~t'ts”~s~ and the middle homotopy exists since
(ts} (2", Z" (¢s~(Z"), Z") both have first linking class f§ by (iv) and
construction.

So the links (S, Z") (S~, 2") are isotopic, and it follows that 2f=0,
as required.

For Theorem B we will need the following

Proposition. Given any p.l. link f: Z"x 61— R**9, g=3, there exists
a p.1. embedding g: 2" x [ - R"*%*! extending f.
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Proof. Choose a small p.l. disc D"=X" and pipe Zo=f(2"x §0§) to
2=f(2"x 21%) by a p.l. (n+1)-pipe P"*'<=R"*% which meets X% in
D} =f(D" x %O%) and 27 in Dj. Choose P"*! to respect the orientations
of Dj and D7. This implies that f extends to a p.1. embedding g,: 2" x 1
VD"xI—R" such that g,(D"xI)=P"*!. Now cl(Z"—D") is a p.l.
n-disc B" say [16; Theorem 3]. Choose a cone structure on B" x I with
vertex peint(B"xI) and choose a point geR"*4*!_R"*4 Define
82(p)=q and extend g,|8(B"xI) conewise to give an embedding g,:
B"xI—R*1*!, Finally define g=g, ug,.

Theorem B. If f: 2" x 81— R"*? is any p.l. link, then there is a p.l
ribbon g: X" x I > R*"*1*2 5 ¢, g|Z"* 1 x §[=5F.

Proof. Define the half space 77" ** ' c R"*9*2 by x,, = —Xnig42s
Xn+q+120. Extend f to an embedding g,: 2" x I»7%*1*1 by the Propo-
sition. Extend g; conewise in four steps to form g;

1) Note that X"*!=3"su;,,. Define g(u;s,x {0)=uy\,4, and
extend g, | %, x §0§ conewise to X"+ 1 x §O§

2) Similarly define g(u,},, x §1 §)= Uyia+2 and extend comewise to
DIASES I

3) Note that Z"*+!'xJI=(u;,,x gl §)*(Z" xTuZrtlx EOE). Define
gy, X gl §)=u,,‘+q+2 and extend conewise to X"+1x [,

4) Finally define g(u;}, , x §0§)=u,,++q+1 and extend conewise as in
3)to 2"t ix 1.

(See Fig. 1.)
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Remark. The restriction of g to Z"*'x{0§UX"xTUZy!x {1{
followed by projection onto the hyperplane 7"+7+1 < R"*2*2 containing
T7+9*1 determines an immersion of 2"*! in 7"*4*1,

Now let L? denote the set of p.l. isotopy classes of p.l. links f: 2" x
61— R"*? and denote by N7 the subset of links whose second linking
class is zero. We need the following result (see [3; Corollary 10.3]).

Theorem C. (HAEFLIGER). There is an exact sequence
qu"'i_)nn(sq—— 1)—}_‘)”"_1”’ ! —>qu— 1

where 1 gives the first linking class (up to sign) and o is repeated sus-
pension. The sequence is valid for 3q=n+6 and 7" denotes the stable
r-stem of the homotopy groups of spheres.

Now let X: LI— L2t} be the function given by suspension and E
denote Freudenthal suspension. It is readily verified that X(Nf)c N}
and that the following diagram commutes up to sign.

Ni—25m,(s171)
| ¢
z E \ n—g+1
4 .
P

qu-:ll i—>77:n+ 1 (Sq)

We now results of Topa [14]. A cyclic group of order n is abbreviated

n
Nig —2om g 88 =2442442

I E X 10=6.

N11;~£—->1I19 SQ=24+2

Consider the element aen, .S which is six times the generator of 24.
o’a=0. On the other hand E lies in an exact sequence (see JAMES [7])

E
Mg Ss'——)ﬂlg Sg-——>71:10 S8=2

and so a=Ef say, Bemn,gS®. It follows that there is an element o, of N}J
which is in the image of X and has first linking class a, not of order 2.

Choose a representative f, = Xf: 2 x § I - R*® for a, . By Theorem B
f1 spans a ribbon g,: Z'®xI— R?*°, Extend g, to an embedding g:
219 % [' > R* and p.l. isotope g by ZEEMAN [15] so that g| Z*° x 0% is
standard. g now satisfies all the conditions of Theorem A except con-
dition (a), but fails to satisfy the conclusion, thus we have;
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Example 1. There is a p.l. embedding X*° x I' — 229 with no normal
bundle.

Let # be a normal block bundle on g(Z'°x I') in R?° and let ,=
n|Z*°, see [9, § 1,4], then 5 and 5, x I' are equivalent by [9, § 1]. Now
suppose X'° has a normal bundle in E(n,)=M?2, then the last equiva-
lence furnishes Z'° x I' with a normal bundle in R?°, and we have;

Example 2. There is a p.l. 28-manifold M?® and a p.l. embedding
X9 < M?8 with no normal bundle.

Now by remarks above M2 x I' is a p.l. submanifold of R?°, con-
sequently, by [4], M?® p.l. immerses in 3?8, Let f: 2'° - X?® be the
restriction of this immersion. In [4] “induced neighbourhoods” of a p.1.
immersion are defined in a topologically invariant way, so it makes sense
to talk about a ““normal bundle” to this immersion. But since an induced
neighbourhood has the same germ as £'° < M?%, we have;

Example 3. There is a p.l. immersion f: 2'° — 2?8 with no normal
bundle.

Finally we remark that an explicit geometrical construction for
Example 1 is obtained from Haefliger’s construction in [2; 8.12] and our
construction in Theorem B. The remark following Theorem B gives an
explicit construction for Example 3.
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