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Block bundles: 11. Transversality 

By C. P. ROURKEand B. J. SANDERSON 

Block bundles were designed to  play the  same role in the  PL category as  
vector bundles in the  smooth category. This paper is a continuation of Block 
bundles: I [6], where the  basic properties (and notation) were established. 
Here we apply the  techniques developed in [6] to  the  problem of PL transver-
sality, and a t  the  same time establish several properties in continuing analogy 
with vector bundle theory. 

Suppose M", N" cQq are proper PL submanifolds. We say N is t ransverse  
to  M in Q if locally M and N meet like perpendicular subspaces of Rq. The 
absolute problem is to  find an isotopy of Q which carries N transverse to  M 
in Q. This problem has recently been solved by Armstrong and Zeeman [2], 
and an analogous problem for polyhedra has been solved by Armstrong [I]. 
In the  relative case, they showed that ,  if N is transimplicial (see [2] for def- 
inition) t o  M in Q, then N can be isotoped transverse t o  M keeping Q fixed, 
but they left the  obvious relative problem unsolved; namely, is the  same t rue  
if N is merely transverse to  M in Q? 

We will work, usually, with a particular normal block bundle on M in Q, 
and we define transversality of N t o  M respecting this block structure. Using 
this strong definition of transversality, we prove both absolute and relative 
theorems, thus recovering Armstrong and Zeeman's main result (in the  case 
M has a normal microbundle, we also recover Williamson's transversality 
results [lo]). We extend this notion of transversality for embeddings to  
transverse regularity for maps, and we prove absolute and relative theorems 
for homotoping a map to  be transverse regular. The advantage of our ap- 
proach lies in i t s  close relationship with the  smooth category. Thus, one is 
now able to  develop analogues of the  cobordism and surgery techniques already 
extensively used in the  smooth case (see Remark 3.3 and, for example, 
D. Sullivan [8, 91 and W. Browder [2A]). 

By forgetting the  given normal block bundle, we define "block transverse", 
namely, transverse respecting some block structure, and using this definition, 
we again have absolute and relative theorems. We prove (non-trivially) by a 
characterization using the  Whitney sum bundle defined in [6] tha t ,  if N is 
block transverse to  M in Q, then M is block transverse to  N in Q. Thus 
"block transversality" has all the  properties one would want of a definition of 
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transversality, and the  relative problem would be solved if we could show 
tha t  "transversality" and "block transversality" are  identical. 

It is clear tha t  'block transverse to' implies 'transverse to' but the  con- 
verse is unknown. The problem is one of deducing a global condition from a 
local condition, and we give an obstruction theory for solving i t  with coeffi- 
cients in a subgroup of PZ,;we also give some equivalent problems. The 
problem is analogous t o  tha t  of proving the  equivalence of "transversality" 
and "transimpliciality". 

The layout of the  paper is a s  follows. In  0 1we prove the  transversality 
theorems for embeddings. In  3 2 we are concerned with the  theory of bundle 
maps which is needed for the  treatment of transverse regularity in 0 3. In  8 4 
we examine in detail the  Whitney sum bundle, giving a simple alternative 
construction, and deducing the  connection with block transversality. 3 5 
is pure block bundle theory. We define a (unique) quotient block bundle to  a 
subbundle, and deduce results on stability of Whitney sums. In  3 6 we give 
the  obstruction theory and alternative problems outlined above. Throughout 
the  paper we use a purely geometrical approach where there is any choice. 
In particular, the  existence and uniqueness of quotient bundles, which we 
prove here geometrically, is strongly related t o  the  stability theorem, PZ,,,,,-PZ,. This theorem and other semi-simplicial aspects of the  theory will be 
given in [7], where we will also give applications of the  theory t o  classifying 
generalized torus knots and various embedding groups of spheres. 

Added. Since this paper was written, there have been two developments 
of relevance. First,  W. B. R. Lickorish and one of the  authors have found 
counter-examples t o  one of t h e  problems stated in 3 6; namely, t h e  notorious 
"three-balls problem" of Armstrong. This means tha t  (see 3 6) "block trans- 
versality" is strictly stronger than "transversality". This does not necessarily 
imply the  non-existence of a relative transversality theorem. However, the  
second development is tha t  J. F. P. Hudson, working independently, has in 
fact proved tha t  relative transversality is false. The outcome of this is tha t  
a strong definition of transversality, i.e., "transimpliciality" or "block trans- 
versality" according t o  taste, is necessary for a sensible transversality theory 
in the  PL category. We have not altered the  paper in the  light of these 
counter-examples, but the  reader should note tha t  the  "unso1ved problems" 
of 3 6 are now all solved. 

1. Transversality for manifolds 

Let M be a compact proper submanifold of Q. We shall often find i t  more 
convenient to  write E/M rather than the  more cumbersome [ /K ,  I K I = M, 
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and we assume (throughout the  paper) that ,  if E is a normal block bundle on 
M in Q, then E(E)meets Q regularly, i.e., in E(EI M). 

Dejinitions. Let M, N c Q be compact proper submanifolds, and E a normal 
block bundle on M in Q. We say N is transverse to M w i t h  respect to E, and 
write N l  6, if there is a subdivision E' of 6, such tha t  N nE(E)=E(E'I Nn M )  
(see Figure 1(a)). We say N is locally transverse to  M with respect to  6, 
and write N 2 E,  if this is true near M, i.e., there exists 5'' a subdivision of 
E and aneighbourhood Uof Min  Q, such tha t  N nE(E)n U = E(t' I N nM)n U 
(see Figure 1(b)). 

We say N is block transverse to  M in Q if there exists a normal block 
bundle f on M in Q such tha t  N I E. We have analogous definitions of trans- 
versality over a subcomplex L cK ,  K = M, by substituting E j L for in 
the  above definitions. 

Remarks.  (1) If N 1 E' (N r 6') and E' is a subdivision of E, then N 1 
(N2 E); but,  because of the  non-uniqueness of subdivision, the  converse is not 
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(2) If N r f for some normal block bundle E on M in Q ,  then N is block 
transverse to  M in Q. For suppose E r ,  U are as in the  definition of local trans- 
versality; use [ l l ;  Th. 11to triangulate M ,  U , and all the  blocks of E r .  The 
second derived neighbourhood P of M in this complex has a block structure 
given by taking as blocks the  intersections of P with blocks of E'. Each block 
is the  second derived neighbourhood of the  base in a block of E r ,  thus condition 
(1)of a block bundle (see [6; 9 11) is satisfied by the  regular neighbourhood 
theorem [3], and the  other conditions are apparent. Thus we have a normal 
block bundle 7 on M in Q with N I. 7. 

The main results of this section are: 

THEOREM1.1. (a) Suppose N ,  M c  Q are proper submanifolds,  and E i s  
a normal block bundle o n  M in Q. T h e n  there i s  a n  &-isotopy of Q carrying 
N locally transverse to M w i t h  respect to  E .  

(b) Suppose that  N i s  locally transverse to M w i t h  respect to  E I M, then  
the isotopy of (a) m a y  be taken  mod Q. 

THEOREM1.2. (a) Let  N ,  M ,  Q ,  and E be as in Theorem 1.1. There i s  
a n  ambient isotopy of Q carrying N transverse to M w i t h  respect to E .  

(b) Suppose fur ther  that  N i s  transverse w i t h  respect to  E I A&, T h e n  
the isotopy m a y  be taken  mod Q. 

COROLLARY1.3. Suppose N ,  M c Q are p120per submani folds. T h e n  
there i s  a n  &-isotopy o f  Q carry ing  N block transverse to M in Q and ,  i f  N 
i s  block transverse to M in Q ,  t hen  the isotopy m a y  be taken  mod Q. 

PROOF. The first part  follows easily from Theorem 1.1 and Remark (2) 
above. For the  second part, one needs t o  know in addition tha t  any normal 
block bundle on M in Q is extensible [6; Th. 4.3 (b)]. 

The proof of the  following corollary is postponed (for convenience) until 
af ter  the  proofs of the  theorems (cf. Williamson [lo]). 

COROLLARY Let  E be a normal plane, disc or micro-bundle on  M in1.4. 
Q. 	 T h e n  the analogues of Theorems 1.1and 1.2 are t rue  for E .  

Remark .  The condition tha t  N is a proper submanifold is largely irrele- 
vant, since the  theorems can be generalized to  the  case when N is a compact 
polyhedron (see [5] for details and compare with [I]). 

The  proofs of the theorems. We first show tha t  Theorem 1.1 implies 
Theorem 1.2, and we use the  following definition and result. 

Definition. Let E/K be a block bundle, and K' a subdivision of K. A 
block bundle 7/K' is called a min id i v i s ion  of E ,  if each block of 7 is contained 
in a block of E (see Figure 2). 
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7 is a strict minidivision if their associated (boundary) sphere bundles are 
disjoint. We write j for the  boundary sphere bundle of 7. 

PROPOSITION1.5. Suppose 7/K i s  a strict minidivision of E/K, then there 
i s  a homeomorphism 

h: E(j)x I-- cl (E(E)- E(7)) 

such that h ( E(j)x (0) = identity, and such that h preserves blocks, i.e., for 
each oi E K,  

PROOF.We prove the result by induction on the  skeleton of K. For the 
induction step, suppose / K / G I",K has one n-cell a,, and L is i ts  boundary. 
Suppose h: E(j / L)  x I-+c1 (E(EI L)  - E(7  1 L))  satisfies the  conclusions of 
the proposition; we have to  extend h over E ( j / K )  x I. 

Now by a similar argument to  the  regular neighbourhood collaring theorem 
[3], there is a homeomorphism h': E(j)x I- cl (E(E)- E(v)), and since h and 
h' both give (half) collars of E(jI L)  in a cl (E(E)- E(?)), we may assume by 
isotopy uniqueness of collars [4] tha t  h' extends h, completing the  induction 
step. 

Proof that Theorem 1.1- Theorem 1.2. Since Theorem 1.2 (a) follows 
by a double application of 1.2 (b), we need only prove 1.2 (b). For brevity, 
use the  notation N c4 E if E 1 N n M is defined (without subdivision) and N Is'. 
Using Remark (1)above, we may assume tha t  fic4 E 1 M. 

Let K be the  base complex of s' and a K  the  subcomplex corresponding to  
M. Pick a collar h: M x I-+M of M in M, and subdivide K to  K '  such tha t  
each h(o x I ) ,  a E a K  is a subcomplex of K'. Pick a subdivision s''/K' of E. 
Extend h t o  a collar of E(E I a K )  in E(s'), such tha t  h(P, x I)= E(E' / h(a, x I)) 
for each oi  E a K  (use a similar argument t o  the  proof of Proposition 1.5 above). 
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Extend h again to  a collar of Q in Q. Now pick a collar h, of (Q, N) in (Q, N )  
[ l l ] .  By 14; Th. 41, there is an  isotopy of Q mod Q carrying h t o  h,, so we 
may assume that  h = h,. Note tha t  this implies h(& x I)A t' I x I ) .h ( ~  

We now work with Q, = cl (Q - x I ) ) ,  MI = cl ( M  - x I)),h ( ~  h ( ~  
N, = c l ( N- h ( f i  x I)).By Theorem 1.1there is an  isotopy of Q, mod Q, carry- 
ing N, 2 's' 1 MI. By Remark (2) above, there is a strict minidivision 7 of 
E' I MI (over the  same base complex) such tha t  N, 17. 

Now by Proposition 1.5, we can expand 7 blockwise to  E' / M, keeping a 
smaller minidivision and the outside of a collar of E(4' I M,) in Q, - E(E' 1 MI) 
pointwise fixed. Extend this isotopy by the  identity to  an  isotopy of Q, and 
then use the collar to extend to  an  isotopy of Q mod Q, to complete the  proof. 

We need the  following result for the  proof of Theorem 1.1. 

PROPOSITION1.6. Let S"c8,be a n  unknotted sphere and s' a normal 
block bundle on I"'' i n  I,", such that S" 2 s' 18". Then theye is a n  unknot- 
ted disc Dn" c Iq+' spanning S"and such that Dm+'  1E. 

We prove the implications 1.6,-, -1.1, and 1.2, -1.6,. The theorem 
then follows by induction since we have 1.1,-- 1.2, (above). 

1.6,_, -- 1.1,. Since (b) implies (a),we only have to  prove (b), and as  in 
the  proof of 1.2, we may assume fi E 1 M. Let K be the  base complex of E. 

By Proposition 1.5, we can extend any strict minidivision 7 of s' to  a 
subdivision s'' of 2. Thus if we have N t 7, then by Remark ( I ) ,  we also have 
N r s'. We will prove the  theorem for a particular choice of 7 constructed 
below. 

Triangulate N ,  M, Q, all the  blocks of E, and cells of K [ l l ;  Th. 11 by a 
complex of mesh less than ~ / 2 ,  and construct the  dual complexes as in [6; proofs 
of 4.3 and 4.41, call them N * ,  M*, etc. The dual complexes M *  c Q* give 
rise to a normal block bundle v on M in Q (see the  proof of [6; 4.31). Now let 
K '  consist of cells a n z for o E K, z E M*;  o n z is thus a cell of o*. And let 
7/K' consist of blocks P n P, for P E s' and P, E v; P n P, is a disc, since i t  is a 
cell of P*. It is immediate tha t  7 is a block bundle, a subdivision of v, and a 
strict minidivision of s'. 

Let a: be a simplex in the  first derived ( N  n M)"). Corresponding t o  a:, 
there are three dual cells, ,B:-t E Q*, (a block of v ) , r?-$E M*, and E N * ,  
and by local flatness (Pi, yi) and (Pi, 6,) are unknotted ball pairs (see e.g. 16; 
proof of 4.31). If we assume inductively tha t  there is a subdivision 7' of 7 
such tha t  ii;I;7' 1 Ti, then by Proposition 1.6, there is a further subdivision 
7" of 7' and a disc Di spanning bi in Pi ,  such tha t  Di & 7" 1 ri. Now there is 
a n  isotopy of Pi mod bicarrying ai t o  Di, since they are both unknotted discs 
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111;Remark a t  end of chapter 41, and this isotopy extends conewise to  neigh- 
bouring cells of Q* (each cell has a natural cone structure) by induction on the 
skeleton of Q*. If Piis an  interior cell of Q*, the final isotopy keeps Q fixed. 
Thus working inductively up the  skeleton of int M*,  we find an  isotopy of 
Q mod Q carrying N & 7 ,  for a subdivision 7, of 7 constructed during the  
induction. 

1.2, -- 1.6,. By passing to  a minidivision if necessary, we may assume 
that  S"A E / Zm, and by [6; Th. 4.41 that  [ / K  is the trivial bundle K x I,-"(&) 
for some E. (Where I,(&) +&Iq.)= [- E ,  

The following lemma is an easy consequence of the  regular neighbourhood 
theorem and the  uniqueness of collars. 

LEMMAThere i s  a homeomorphism of which keeps 1""x 1,-"(&/2) 
pointwise fixed and which throws Zmx I,-"(&) I,-".fibrewise onto 8" x 

Thus we may assume tha t  Sn n (2" x = (Snn 2") x I,-". DenoteI q - " )  

this manifold by Pn. By Theorem 1.2 applied to N = cl (Sn- P")in (M, Q) 
= (cl (Zm+' - 2" x 11), c1 (Zq - Zm x I q - " ) ) ,  and the  trivial normal bundle on 
M in Q, together with isotopy uniqueness of subdivision [6; Th. 4.11, we may 
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assume tha t  S"n (I;"+'x Iq-"-I) = (S"n I;"+') x Iq-"-I, see Figure 3. 

Define 

I:+' = I" x {+1) c8"" 
Bq+l = I m + l  X [-112, + I ]  x Iq-"-'(1/2) 

and 

Mn-I = (Snn I?+')  x [-112, +1] x 19-m-1(1/2) 

(the dotted part on the figure). Note tha t  Mn+'  2 [ in BqT1. 

Now in the boundary of the  (q + 1)-ball, Dq+'  = cl ( Is - '  - Bq-l) we have 
the  unknotted n-sphere S; = Dq+' n (Snu Mn-I). Choose an ( n  + 1)-ball Bn" 
spanning S; in Dg-', and define Dn+'  = M"-' u Bn+' .  

PROOFOF COROLLARY1.4. We prove the analogue of Theorem 1.1, and 
leave the  reader t o  deduce the  analogue of Theorem 1.2 by a similar argument. 

(a) Let / K I = M. As in [6; 5 51 % gives rise to  a unique (open, closed or 
micro-) normal block bundle c /K on M in Q. Use Theorem 1.1(a) (or the  nat- 
ural extension to  open or micro-block bundles obtained by applying the results 
of [6; 3 51) to  E-shift N 2 <, and let L'lK' be the resulting subdivision (as in 
the definition of 2) . Let <:/K' be the  subdivision given by E .  1' and C: are 
isotopic by [6; Th. 4.11, and this isotopy may be taken arbitrarily small by 
making all blocks sufficiently small. 

(b) Use the same method as tha t  in the proof of Theorem 1.2 to  first 
make N 2 E over some (small) collar of M in M, and write, as before, Q, = Q 
minus collar, etc. Apply the  proof of (a) above to  N, in (MI, Q,), first choosing 
K so tha t  N' n M,is a subcomplex, and using 1.1(b) instead of 1.1(a). Note 
tha t  the  resulting isotopy keeps a neighbourhood of N' n M, in setwise 
fixed (by the  statement of [6; 4.1]), and therefore extends over the  collar to  
a n  isotopy of Q mod Q, giving the  required result. 

2. The theory of bundle maps 

In [6] we defined the  A-group I??L~and observed tha t  i t  does not admit 
degeneracy homomorphisms. This fact complicated the proof of the  main 
result of [6; 3 31 (the uniqueness of the associated principal bundle) and also 
the theory of induced bundles; we were forced to  define them geometrically 
rather than use a ready made semi-simplicial definition. However, as we show 
below, i t  is possible to define "admissible" degeneracy functions which are 
homotopy unique. The existence of these degeneracies explains why block 
bundles behave like bundles, and using them we can give a sensible account 
of bundle maps. 
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Definition. Let a E p%hk),and let X : A1-Ak, 1 > k, be a monotone 

simplicial map. We say T E PL:~)is an  admissible degeneracy of a ,  associated 
with k, if the following diagram commutes 

The existence of admissible degeneracies follows (by induction) from 

PROPOSITION2.1. Let X : A1-Ak, 1 > k,  be a mo?zoto.ize simplicial map, 

and let o E P ~ A ~ ' .Suppose h: A~ x I 9  -f A2 x I q  i s  a block and zero preserv- 
ing homeomorphism which satisfies a (X x 1)= ( X  x 1) h. Then h i s  the 0 0 


restriction of a n  admissible degeneracy of o. 
PROOF.Let L, K be triangulations of A 9 I 9  which are linear regarding 

A">: I q  a s  a subspace of Rk+q, and so tha t  A h  {O) and A" Iq(each face A" 
of A" are subcomplexes, and a: L 3K is simplicial. Linear cell subdivisions 
L,, K, of A1 x I q  are obtained by taking inverse images of simplexes of L ,  K 
under x 1 ,  together with their intersections with A' x I q  for each face A' 
of A1. The proposition is now proved by inductively extending h over the 
skeletons of L, first defining h I A1 x (0) = 1. For the  induction step, let cu 
be a cell in L,, and ,B the  corresponding cell in K,. Suppose h defined on & 
but not on int  a. Then h can be extended over cu by conical extension using 
linear cone structures on a, ,B with vertices A, B respectively, chosen so tha t  
o o  (h s l ) A  = (X x 1)B. 

We are now able to  define block bundle maps and prove several useful 
properties. 

Definition. f: E(E/K)-E(v/L) is a bundle map if 
(1)f 1 K :  K -L is simplicial, and 
(2) for each a E K ,  there exist charts (see [6; 3 11)9,:a x I 9  -+ E(g),and 

92:fa x I 9  3E(q), such tha t  the  following diagram commutes 

Rema& 2.2. I t  follows from the  existence of admissible degeneracies 
that  the  chart p, in the  above definition may be chosen arbitrarily. Hence if 
f: E(E)-E(q), g: E(7) --E(1) are bundle maps, then g.S: E(Z)-E(1) is a 
bundle map. (See also the  Remark 2.5 a t  the  end.) 
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The next result shows t h a t  the  domain of a bundle map is isomorphic 
with the induced bundle from the  restriction to  the  base. 

THEOREM2.3. (a) Let E/L be a subbu?zdle of &"/L (see [6; 8 11)and f: K -+ 

L a simplicial map. Then f x 1: E(f#E) E(&)i s  a bundle map. -+ 

(b) Let fi: E( t i /K) --+ E(v/L) i = 1, 2 be bundle maps such that f, 1 K = 

f, 1 K. Then there exists a n  isomorphism h: E(6,) E(E,)such that f,h = f,.-+ 

PROOF. (a) Let a E K ,  fa E L ,  and choose a chart 9,:fa x Iq-E(E I fa)  
4for 6. We will show how to  define 9,:a x Iq E(f V 1 I) so tha t  

I F l  1 9 2  

E(f's' 1 E(f fa)a)-LXL1 
commutes. 

Triangulate 9, so tha t  p,: J-P is simplicial, and the  simplexes of J,P 
are linear in the  (natural) linear structures on f o  x Iq, fa x Rm. NOW we 
have cell subdivisions of a x Iq, E(f # E  / I) by taking (f x I)-' of simplexes 
of J ,  Pintersected with blocks (as in the  proof of Proposition 2.1 above), and 
the  existence of p, therefore follows as in 2.1. 

(b) This follows directly from Proposition 2.1 and the  first part of 
Remark 2.2. 

We now show how to  "subdivide" a bundle map. 

THEOREM2.4. Let f: E(E/K)-E(;1/L) be a bu?zdle map. Suppose K' ,  L' 
a re  subdivisions of K, L so that f 1 K i s  st i l l  simplicial, and 7'/L' i s  a sub-
division of 7/L. Then there exists a subdivision E'/K ' of s'/Kso that f:E(i')-+ 

E(7') is st i l l  a bundle map. 
PROOF. It follows from Theorem 2.3 tha t  we need only consider the case 

E = f". But this is trivial. 

Remark 2.5. If f: E(E)-+ E(7) and g: E(7')-E(1) are bundle maps, 
where 7' is a subdivision of 7, then by [ l l ;  Lem. 51 and Theorem 2.4, there 

-
4 )  4 1 

embed project 
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exists a subdivision E' of E so tha t  gf i  E(E')-E([)is a bundle map. However 
there is no hope of composing bundle maps f :  E(E)-E(7') and g: E(7) -+ E([), 
7' a subdivision of 7,  a s  the  example pictured in Figure 4 shows. 

3. Transverse regularity 

Let Mmc Qq be a compact proper submanifold, and E a normal block 
bundle on M in Q. Let N" be a compact manifold. A proper map f :  N -Q 
(i.e., f -'Q = N )  is said to  be tra?zsverse regular w i t h  respect to s', written 
f I E l  if the  following are true. 

(1) f -'M is a (proper) submanifold N,"+m-qof N. 
(2) There is a normal block bundle 7 on Noin N and a subdivision E' of E 

such tha t  f I E(7): E(7) -E(s'')is a bundle map. 

Remarks .  (1) This definition is the  direct analogue of smooth transverse 
regularity. 

(2) If f is an  embedding, then f I s' is equivalent to fNIs', thus t rans-
verse regulari ty  w i t h  respect to s' extends the  notion of tra?zsversality w i t h  
respect to E given in 9 1. There are  similar extensions of local tra?zsversality 
w i t h  respect to E and block transversal i ty .  

THEOREM3.1. (a) Let M, N ,  Q and E be as above, and let f,: N -+ Q be a 
proper map.  T h e n  there i s  a homotopy ( through proper maps )  f ,  o f  N i?z Q 
such that  f ,  i s  transverse regular w i t h  respect to  E .  

(b) Suppose fur ther  that  f o  1 N i s  transverse regular w i t h  respect to 
E I M, then  we  can  choose the homotopy so that  f ,  I I\j = f, 1 i'?. 

Remark  3.2. Theorem 3.1 is the  analogue for transverse regularity of 
Theorem 1.2. There are  similar analogues of Theorem 1.1 and Corollaries 1.3 
and 1.4. The proofs, similar to  tha t  for Theorem 3.1, are left to  the  reader. 

Remark  3.3. Our definitions and results on transverse regularity allow 
a repetition for the  PL category of Thom's classical results on smooth cobordism 

theory. Suppose A, cFL, is a subgroup and let Q;(A) denote cobordism 
classes of closed PL n-submanifolds of B"+' with an  A, normal bundle. Then, 
in analogy with the  smooth results, we have CLP,(A) z n,_,(TA,), where TA, 
is the  Thom space of the  classifying bundle (constructed as  in [6; 5 21). The 
proof is analogous to  the  smooth proof af ter  replacing BA, by a manifold 
(embed some skeleton in euclidean space and take a regular neighbourhood). 
i n  particular, we recover Williamson's classification [lo]. 

PROOFOF THEOREM 3.1. (a) The idea of the  proof is simple. Take the  
product of Q with a high dimensional cube P, and lift fb to  an  embedding q 
in Q x IT.Using transversality for manifolds shift N transverse to  < x I' 
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in Q x I', and then, by the  results on bundle maps in the  last section, ensure 
tha t  q followed by projection on Q is a bundle map. 

Choose r so tha t  there exists an  embedding e:  N"-int I'. q =fox e :  N-
Q x I' is thus a proper embedding. Choose a complex J with / J I = I T ,  and 
let 7 = E x J (see [6; 9 11). Then 7 is a normal block bundle on M x I' in 
Q x 1'. Denote by p the  projection Q x IT-Q, and let g = p I M x 1'. 
Choose subdivisions ( K  x J ) ' ,  K '  of K x J ,  K ( K  is the  base complex of E) so 
that  g: ( K  x J)'-K '  is simplicial. Choose a subdivision d'/K' of E. We wish 
to  subdivide 7 to  7'/(K x J)' so tha t  p / E(7') is a bundle map. But this is 
easy since, by embedding E(E')in the  infinite trivial bundle (see [6; 9 2 ] ) ,  we 
may identify p 1 E(7) with g x 1:E(gY') -E(E'). 

By Theorem 1.2 (a), there is an  isotopy H, of Q x I' such tha t  H,qN _L 7'. 
Let 7"/L be the  subdivision given by the  definition of 1.Now by Theorem 
2.4, there are subdivisions 7,/Ll, E,/K, of 7' and E such tha t  p I E(El)is a bundle 
map and L,  is a subdivision of L. Let 7,/L, be a subdivision of 7"lL; by [6; 
Th. 4.11 there is a further isotopy Hi of Q x I' carrying 7 , to  7,. Thus by 
Remark 2.5, pH{H,qIt. 

Define f,= pH:H,q, to  complete the proof. 

(b) We use a similar argument to (a) using Theorem 1.2 (b) instead of 
1.2 (a), and we use collars (much as  in 1.2 and 1.4) to  keep f,1 fi fixed 
throughout. 

Let  [/A be the  bundle in fi given by hypothesis. By subdividing E if 
necessary, we may assume tha t  f / E([):E(C/A)-E(E/B) is a bundle map. 
Let p,  J be as in (a). Our first aim is to  find q ,  7 as  in (a) so tha t  q I E(g)is a 
bundle map. 

Choose an  embedding s: I A / - int I T ,  and choose simplicial complexes A,, 
B,, L subdivisions of A, B,  B x J,respectively, so tha t  the  following diagram 
is simplicial 

Choose a subdivision E'IB, of 6, and subdivisions ['/A, of [ and 7/L of 
E x J I B  x J so tha t  f,( E(<')and p / E(v)are  bur;dle maps (by Theorem 2.4 
and the  argument lxed in the  proof of (a) respectively:~. Extend f,I A x e t o  
a bundle map q,: E([')-E(7), by Theorem 2.3 (b) so tha t  the  following dia- 
gram commutes. 
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Now by general position q, extends to an  embedding q: N -Q x I' such tha t  
pq = f,. By the  same argument as used in the  proof of Theorem 1.2 (b), we 
may assume tha t  q is transverse regular to  7 over a collar of M x I' in M x I' 
(compatible with collars of Q x I r ,  4 q N )  in Q x 1', qN) ,  and by choosing the  
collar of Q x I' to  be the  product of a collar of Q in Q with I r ,  we have pq 1i 
over the  collar. Now apply the  same argument as (a) to  (Q x IT),= (Q x I' 
minus collar) etc., using the  collar to  extend the  isotopies to  Q x I' mod Q x I'. 
We have just to check tha t  pq remains transverse regular over the  collar, but  
this follows since Ht keeps o'(Q x I?),pointwise fixed, and (by the statement 
of [6; 4.11) HI keeps o'(qN), n E([')setwise fixed. 

4. '6 hitimey sums and block transversalitj 

In  this section we prove that ,  if N is block transverse to  M, then M is 
block transverse to  AT. This follo\i~s from the  fact tha t  the  components 6, 7 
of the  Whitney sum bundle defined in [6] are mutually block transverse in 
their sum t $ 7 .  We star t  by setting up a theory of decompositions. 

Dejini t ions .  (1) t q / K  is said to be a subbundle of q'/K if, for each cell 
0: € K,  

(o:, P,(f) ,  P&)) = (It,It-q,It+'). 
We write E c 7. 

(2) Subbundles Eq, C r  c yqJr  give a decomposition of 7 ,  if their blocks 
meet like transverse cubes, i.e., 

for each a:E K. 
We say tha t  decompositions E,, [, c ;;I, and i , ,  [, c ;;I, are i s o m o ~ p h i cif 

there is an  isomorphism of ;;I, with ;;I, which restricts to isomorphisms of to 
with i, ,  and 5, with [,. We now develop a theory of decompositions along the 
lines of [6; 5 I]; i t  is first necessary to prove the following analogue of Propo- 
sition 1.3*, under the  assumption that  a decomposition with base K,  / K I r 
In-'is trivial. 

PROPOSITION Suppose  I K 1 E I"and  K has  just  one n-cell o?. L e t4.1*. 
a,"-'be a n y  (n- 1)-cell in K,  and  let L be the  subcomplex consis t ing o f  all 
cells except oi and  oj. Suppose g iven  a decomposition iq, cTc ;;I~'"/Kand  a n  
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isomorphism t: E(&;:;/L) -E(7  I L )  of decompositions. Then t extends to a n  
isomorphism (of decompositions) t': E(&;Y/K) -+ E(7). 

(&;Y/Kdenotes the tr ivial  decomposition, K x I T ,K x IqcK x ITx 1 9 ) .  

PROOF. The method of extending t is so close to  the  method used in the 
proof of [6; 1.3*] tha t  we content ourselves with sketching the  more sub- 
stantial modifications. In  place of the  result of 16; Lem. 1.21, we need to 
extend a homeomorphism of a ( I 2  I q  x IT)u (I"x (0) x (0)) with itself, 
which preserves a ( I 9  {O) x d I T )u a ( I 9  Iqx (0)) setwise, to  a homeomor- 
phism of I"x Iqx ITwhich preserves I"x (0) x I' u I"x Iqx (0) setwise. 
The proof of this is an  easy adaptation of the proof of [6; Lem. 1.21, see 
Zeeman [ l l ;  Lem. 181. 

In  place of [3; Cor. 81, we need to  know tha t  the complement of an  un- 
knotted ball triple (a homeomorph of (I" Iq x I T ,I" I q  x (01, 18x (0) x IT)) 
in an  unknotted sphere triple is unknotted. We sketch the  proof. Let (B, B,, 
B,) denote the  ball triple and (S,  S,, S,)the sphere triple. The method is to  
find an  isotopy of S which preserves S,, S,, and S, n S, setwise, and which 
throws the  ball triple onto the  standard hemisphere triple. First there is an  
isotopy of S, n S, which moves B, n B, into standard position. Extend this 
isotopy to  the  large sphere S by suspension. Now by a double application of 
[3; Cor. 81, we find isotopies of S, and S, keeping S,n S, fixed and moving B, 
and Bqinto standard position. Taking the  suspension of these isotopies and 
composing, we have B,, B,, and B, n B, in standard position. Now B is a 
regular neighbourhood of B, u B, mod cl (S,- B,) u cl (S, - B,) in S ,  and so 
we can get B into standard position by a n  application of the  relative regular 
neighbourhood theorem [3]. 

NOW*as in the  proof of [6; 1.3*], t may be extended to  a homeomorphism 
t,: E(E;;',K )  -b,(v) such tha t  t,aE(;q/K) = b,(E), and similarly 5. There is 
an  isotopy F of ,h,(E) mod E(E 1 L)  u o;-' and similarly G for C, so that  F, 
composed with the restriction of t, preserves blocks of [ over aK, and similarly 

for G, (double application of the  proof of [6; 1.3*]). Now (E(vI L),E(E I L) ,  
E(C 1 L))  is a n  unknotted ball triple, and we find an  isotopy H of the  comple- 
mentary triple, which extends F and G on the  factors and the  identity on the  
boundary, by composing the  suspensions of F and G. 

Define t, to  be t, on E(&qLT/ L)  and HI0 t, on the  complementary triple. 
Now t,P,(zq-') + /3,(~), but this can be put right by one application of the  
relative regular neighbourhood theorem [3]. (Similar to  the  application in the 
proof of [6; 1.3*], note tha t  a t  this point the induction hypothesis is used to  
ensure tha t  7 / a,  is a trivial decomposition.) The resulting t, defined on 
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,k,(&q+') can be extended to  the  required t' using the  analogue of [6; Lem. 1.21 
described above. 

We can now repeat [6; § 11 for decompositions; and, in particular, we 
have (by completely analogous proofs) 

THEOREM4.2. (a) An.y decomposition over a disc  i s  t r i v i a l .  
(b) G i v e n  a decomposition E, 5 c rj/K and  a subdivis ion K '  o f  K,  t h e n  

there exis t  subdivis ions  E', C' c rj'/Kf w h i c h  f o r m  a decomposition. 
(c) I f  t l ,  Cl c rjl, i z ,  C, c rj2 are  t w o  such,  t h e n  there i s  a n  i s o m o r p h i s m  

o f  decompositions rj, a rj2. 

(More delicate isotopy uniqueness results may be obtained using the  cellular 
shelling techniques of [6; $41). 

It will be useful to  have the  following result (which cannot be deduced 
by analogy to a result in [6]). 

PROPOSITION L e t  i ,  5 c rj/K be a decomposition and  TI, <,/K' t w o4.3. 
subdivis ions  o f  C. T h e n  there exis ts  a n  i s o m o r p h i s m  ( o f  decompositions) 
h: E(rj)-E(rj) such  t h a t  h I E(E)= 1,  and  h I E(5,): E(5,) -E(CJ i s  a n  iso- 
m o r p h i s m .  

PROOF. We use the  proof of [6; 4.11 (which shows tha t  [,, C2 are isotopic), 
and extend the  isotopy to an  isotopy of E(rj)mod E(i). In  [6; 4.11 the  isotopy 
was constructed by induction on the  skeleton of K. The induction step gave 
an isotopy of E(5 I o,) mod K U E(C I 6,) for some cell oi E K. Using local triv- 
iality (Theorem 4.2 (a)), we can extend this isotopy to  an  isotopy of E(rj / o,) 
mod E(E)U E(5 ( 6,) by taking cross-product with the  identity. A similar 
remark to that  made in [6; proof of 4.11 allows us to  extend this isotopy to  
E(rj)mod E(i). 

R e m a r k .  It follows from 4.3 and 4.2 (b) tha t  given a decomposition 
6, C c rj/K and subdivisions E', C'IK' of E, 5, then we can find a subdivision rj' 
of rj  such that  s", C' c rj' is a decomposition. 

We now define an  important subclass of decompositions, block decomposi- 
tio,ns; i t  is known tha t  there are decompositions which are not block decom- 
positions (see the added remark a t  the  end of the  introduction and also 8 6). 

Defini t ion.  Subbundles E" 5' c rjq+'/K give a block decomposition of rj 

if, given any complex J with I J 1 = E(i)such tha t  the  blocks of E and cells of 
K are  subcomplexes, then there is a bundle v / J  such tha t  

(1) E ( y )  = E(rj), 
(2) 5 is the  amalgamation of the  restriction of Y to 1 K 1 ,  
(3) the  blocks of rj  are unions of blocks of v. 
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R e m a r k s .  (1) The definition of block decomposition is not apparently 
symmetric in E ,  C, but  in fact this  will be proved below, where we also show 
tha t  the definition characterizes the  Whitney sum bundle. 

(2) Block decompositions also form a theorg analogous to  [6; $11. How-
ever since a block decomposition is essentially just two block bundles, C/K and 
v/J, the analogue of the  key proposition [6; 1.3*] is trivial by a double ap- 
plication of [6; 1.3*]. In  particular, we deduce 

PROPOSITION (a) A n g  block decomposition over a disc  i s  t r i v i a l .  4.4. 
(b) G i v e n  a block decomposition E, 5 c rj/K and  a subdivis ion K t  o f  K,  

t h e n  there exis t  subdivis ions  i t ,  C' c ?'/Kt f o r m i n g  a block decomposition. 

(Note tha t  the  proposition can also be deduced by double applications of 
[6; 1.1,1.51 respectively.) 

R e m a r k s .  (1) By (a), a block decomposition i s  a decomposition. 
(2) By (b) and 4.2 (c), any subdivision as  a decomposition of a block de- 

composition is a block decomposition. 
The most useful property of a block decomposition E, i: c rj, is tha t  rj  is 

determined by 6 and i: (see the next theorem). It is precisely this which is 
not true for decompositions. 

THEOREM4.5. Suppose El, c rjl/K and  i,, C, c rj,/K are  block deconzpo- 
s i t ions ,  and h: E(E,)-E(E2),g: E(C1)--) E(C2)a r e  i somorphisms .  T h e n  h U g 
extends t o  a n  i s o m o r p h i s m  o f  decompositions.  

PROOF. Choose J, ,  J, with I Ji 1 = E( t i )  such tha t  hJ, = J, and the  cells 
of K and blocks of Ei are subcomplexes. Let vi/Ji be the  bundles given by the  
definition of block decomposition. By Proposition 4.3 we may assume tha t  
g: E(vl 1 1 K 1 )  --) E(v, I I K j )  is an  isomorphism. This isomorphism extends by 
[6; Th. 1.61 to an isomorphism of v, with v,, which, on considering unions 
of blocks, is the  required isomorphism of decompositions. 

We now proceed to  the connection with Whitney sum. Recall tha t  the  
class of E @ v/K is (6 x v/K x K )  I A,. 

PROPOSITION E x K,  K x y c  E x 9 ,  a n d  K x y, s' x K c  s' x y are4.6. 
block decompositions. 

PROOF. Let Q be any complex with I Q I = E(%), and such tha t  the  cells 
of K and blocks of E are  subcomplexes, and let J = Q x K. We show tha t  
conditions ( I ) ,  (2), and (3) hold for J (and hence for any other complex by 
subdivision and amalgamation). Define Bij(v) = oi x Bj(v) where oi E Q, 
o j  E K ,  and the conditions are easily checked. K x rj, i x K c  % x 17 is a 
block decomposition by a similar argument. 
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THEOREM4.7. T h e r e  exis ts  a block decomposition El, el c s' $ 5  such tha t  
(1) El z s', 5, r C, and  
(2) 5,, El c i$ I: i s  also a block decomposition. 
PROOF. Let ( K  x K ) '  be a subdivision of K x K such tha t  A, is a sub-

complex and a subdivision of K. Choose decomposition subdivisions (E x K)',  
( K  x rj)'c(E x rj)'/(K x K ) '  by Theorem 4.2 (b), and note that  this, and 
( K  x rj)', (s' x K) '  c (s' x 7)' are both block decompositions by Proposition 4.6 
and Remark (2) below Proposition 4.4. 

Since the property of being a block decomposition is evidently invariant 
under restriction and amalgamation, the theorem follows by taking El to  be the 
amalgamation of (6 x K ) '  A, and C, similarly. 

THEOREM4.8. I f  E, 5 c rj i s  a block decomposition, t h c ~  
(1) 5, s' c rj i s  a block decomposition, and  
(2) rj  E E @ c. 

PROOF. Let El, 5, c s' @ 5 be the  block decomposition provided by Theorem 


4.7. Then, from Theorem 4.5, we have an  isomorphism s',, Clci$I: -s', i:crj, 

and the  first result follows since el, E, c s' @ 5 is also a block-decomposition. 

R e m a r k .  We now have an alternative construction for E $ c. Choose a 
complex J with / J = E(E)and the cells and blocks of K,  E being subcomplexes. 
Subdivide I: over K '  (the subcomplex corresponding to  K ) ,  and take theLJ 


induced bundle over J by the  collapse i J I \ I K . Now take unions of blocks 
of Y over blocks of s' to  give s' @ c. 

COROLLARY Suppose Pc M c Q are  proper compact subma?ti  folds,  4.9. 
and  let  E be a n o r m a l  block bundle  o n  P in M, I: o n  M in Q, and  rj  o n  P i?tQ. 
T h e n  ( a s  classes) E @I: P -- rj. 

PROOF. Let K be the base complex of i. By subdividing if necessary, 
we may assume that  the base complex of contains J as  a subcomplex where 
I J I = E( i ) ,  and the cells of K and blocks of s' are subcomplexes of J. Unions 
of blocks of i: over blocks of s' give a normal bundle on P i n  Q, which, by 
uniqueness, we may take to be rj [6; Cor. 4.61. The result now follows by 
Theorem 4.8. 

For the  promised connection with block transversality, we need 

PROPOSITION4.10. L e t  N, M c Q be compact proper s u b m a n i  folds,  and  
suppose N n M = P i s  also a proper s u b m a n i  fold. T h e n  N i s  block transverse  
to  M in Q i f  and  o n l y  i f  there  exis t  n o r m a l  block bundles s', c, rj  o n  P in N, 
M, Q, such t h a t  i ,  5 c rj i s  a block decomposition. 

PROOF. If N is block transverse to  M, then s', c, rj  exist a s  in the  proof 
of Corollary 4.9. The converse is obvious. Therefore, using Theorem 4.8, we 



BLOCK BUNDLES: I1 

have; 

COROLLARY4.11. Block t ransversa l i t y  i s  s y m m e t r i c .  

5. Quotient bundles and the stability of $ 

This section is concerned with results on block bundles, which, while not 
strictly relevant to the main theme of the paper, fit well with the  preceding 
discussion of Whitney sums. We define quotient block bundles and the Stiefel 
manifold, and deduce results on splitting and cancelling trivial bundles. 

THEOREM5.1. L e t  %/Kbe a subbundle o f  rj/K. 
(a) There  i s  a subbundle 5 c 7 such t h a t  E, 5 give a block decompositio.7a 

o f  7 .  
(b) G i v e n  an.y t w o  choices C,, 5, for  C, t h e n  there i s  a n  isotopy o f  E(rj) 

mod E(E) c a r r y i n g  5, t o  C, and  preserving the  blocks o f  rj  setwise.  

R e m a r k s .  (1)We do not have a relative version of (b), i.e., we cannot 
keep blocks fixed where C,, C, agree. This again follows from the  new counter- 
examples mentioned in the  introduction. 

(2) From Theorem 5.1 and the  fact tha t  decompositions form a theory, 
i t  follows tha t  we can subdivide pairs i c rj (and indeed by Proposition 4.3 we 
can extend a subdivision of E over rj), and tha t  any pair over a disc is trivial 
(and hence we may amalgamate pairs). 
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PROOF. (a) Choose a complex J with I J I = E(E)as for the  definition of 
a block decomposition. We define Y/Jinductively over the  skeleton of K to 
satisfy the  conditions of a block decomposition, and then Y I I KI amalgamated 
over K gives [. 

Let a, E K ,  and suppose Y defined over 6,. By [6; Th. 4.3 (b)] we can 
extend Y I / -E(7  16,)) E(t16,)to a normal block bundle a / L  on E(&cri) in cl (ap,(v) 
see Figure 5, where L is the subcomplex of J corresponding to E(6 I oi). 

Let L, be the  subcomplex of Jcorresponding to  P,(i). Y = a + Y I E(iI G,), 
together with the block Pi(rj) over Pi(E), is a block bundle over T = JL, + the  
cell P,(E). Y subdivides over L, by the subdivision theorem [6; Th. 1.51, and 
this defines Y over o, to complete the  induction step. 

(b) Let  Y,, Y,/J be as in the  definitjon of block decomposition. We define 
an isotopy inductively over the  skeleton of K,  which carries Y, to  Y, (and hence 
[, to c,) and keeps E(E)pointwise fixed, a s  follows. 

Let oi E K ,  and suppose Y,, Y, agree over Gi, define a , ,  a,/L as in (a). By 
[6; Th. 4.4 (c)] a , ,  a, are isotopic mod E(v I Gi)u E(E ( cr,), and then Y,, Y, ( Pi(<) 
are isotopic by [6; Th. 4.11, the  isotopies extend as in [6; proof of 4.11. 

The Stiefel manifold. v,,,,, is the A-set of which a k-simplex is an  
isomorphism onto a subbundle 

Ak x I"'-Ak x Intq. 
Given a block bundle En+4/K" where K is an  ordered simplicia1 complex, 

we define the  associated p;+,,,-bundle to consist of isomorphisms onto sub- 
bundles 

At x In-E(E I ot) , c r t c K .  

Similarly, we have the  associated pn+,,,-bundle base K (cf. [6; 3 31). 
One verifies a t  once tha t  isomorphisms onto subbundles K x I "  -E(EnPq) 

correspond bijectively with cross-sections of the  associated p,,,,,-bundle and 
thus, by Theorem 5.1, we have an  obstruction theory for splitting off trivial 
bundles. From the fact that  ~ ~ ( p , + ~ , , )= 0 for i < q, see [7; 2.111, we deduce 

COROLLARY Any Zq/Kk splits into vk@ ~ q - ~ .5.2. 

COROLLARY5.3. If Ekt '  @ ct/KkE rjk+' @ et /Kk,  then Ek+' r 7"'. 

Now by a general position argument (see [ I l l )  any Sc/Kk embeds as a 
subbundle of &'/Kk for large r ,  thus by Theorem 5.1 and the  above corollaries, 
we have 

COROLLARY Given i q / K k ,  then there exists vk/Kk such that E@T rE.5.4. 

Tangent Bundles. Define the  tangent class of a manifold M, t (M),  ta 
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be the  class determined by a regular neighbourhood of A ,  in M x M, (recall 
[6; Cor. 4.61). 

Let i / K  be a block bundle, u i ts  equivalence class, where 1 K 1 = M. 


PROPOSITION5.5. t (E( i ) )I M = u $ t (M) . 

PROOF. Write N = E(5)and consider the  diagram of embeddings 


M x  M c N x N  

TAM T A X  


The block bundle classes given by these embeddings are (reading round 
clockwise start ing a t  the  top) u x u, t (N) ,  u ,  t(M). Therefore by Corollary 
4.9, we have on restricting to  M, 

The result follows by stability (Corollaries 5.2-5.5). 

COROLLARY Let M c  Q be a compact submanifold, and  u the class 5.6. 
of any nomnal block bundle on M i n  Q, then t(M) @ u = t(Q) I M. 

PROOF. We show tha t  if Nq c Qq is a submanifold, then t ( N )  = t(Q) 1 N ,  
the  result then follows from Proposition 5.5, on taking N = E(u). But to  
prove this, we only have to  note tha t  a regular neighbourhood of N in N x N 
is a regular neighbourhood of N mod N in Q x Q, and the  result therefore 
follows by the  relative regular neighbourhood theorem [3]. 

6. Uiisolved problems and obstructions 

The connection between transversality and decompositions is given by 
the  following result, analogous to  Proposition 4.10, the  proof (similar to  tha t  
of [6; 4.31) is omitted. 

PROPOSITION6.1. Suppose M", Nnc Qq are  proper submanifolds and 
M n N = P i s  also a proper submanifold. Then M i s  transverse to N i n  Q, 
if and only if there exist normal block bundles i ,  v ,ion P i n  N ,  M, Q, such 
that %,7 c < i s  a decomposition. 

Thus the  following two problems posed earlier are equivalent. 


Problem 1. Does transversality imply block transversality ? 


Problem 2. Is  a decomposition a block decomposition? 

However, Problem 2 may be attacked semi-simplicially. Let FL;;',be the 

A-group of a decomposition, a k-simplex is an  isomorphism 
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where E;Ydenotes the trivial decomposition Ak x I,, Ak x I r  c Ak Y Iq x 1'. 
By forgetting EP-' we have a homomorphism -

9:PL;fT+FLq x FL". . 
Let FL,+,,,,,denote the kernel of 9.A splitting-

a:  FL, x FL,--PL;:, 

is given by 

- - a(0,7 )  = (0 X l ) o ( l  X 7 )  . 
Thus PL;;', E PL, x TL,x ~z,+,,,,,. 

Now by the results of § 4, the subgroup of FL;: corresponding to block 
decompositions is the summand P%, x TL,,and so we have 

THEOREM6.2. There is an obstruction theory for a decomposition to be-
a block decomposition, with coeficients i n  nt(PLq+,,,,,). 

Thus the following problem is equivalent to Problems 1 and 2.-
Problem 3. Is PL,_,,,,, contractible? 

The problem of whether n,(~%,_,,,,,)= 0 is readily seen to be equivalent 
to the following geometrical problem. 

Problem 4. Let Sp+q-I= SP* Sq (* denotes geometric join), and let h be 
a homeomorphism of SP-9-I keeping SPu Sq pointwise fixed. Is h concordant 
to the identity keeping SPu Sq pointwise fixed? (S' denotes a homeomorph 
of Y ) .  
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We could answer Problems 1and 2 a t  once if we had a relative form for 
Theorem 5.1 (b) (uniqueness of quotient bundles) and the  crucial problem 
here was posed by Armstrong. 

Problem 5. (Three balls problem). Let @/Ak c &"'/Ak be the  standard 
inclusion; suppose ,",,5, are quotient bundles which agree over Ak. Then can 
we ambient isotope 5, to  ,",mod Ak x u Ak x I c - ~ ?  (See Figure 6). I 4  

We can re-express these problems in terms of transverse neighbourhoods. 
Let  Pc M c  Q be compact proper submanifolds. A block transverse neigh- 
bourhood on P in (M, Q) is the (total space of) the restriction to  P of some 
normal block bundle on M in Q. A transverse (regular) neighbourhood is de- 
fined similarly relaxing block transverse to  transverse, By [6; Th. 4.4 (b)], 
block transverse neighbourhoods are unique up to ambient isotopy, but be- 
cause of the lack of a relative version of Theorem 5.1 (b), we do not know 

Problem 6. Given two block transverse neighbourhoods on P in (M, Q) 
which agree over P,are they ambient isotopic mod Q u M? 

And, we also do not know 

Problem 7. Given two transverse regular neighbourhoods on P in (M, Q), 
a re  they ambient isotopic mod M? 

Finally, i t  is not hard to show tha t  Problems 1to 7 (excluding 4) are all 
equivalent. In our treatment of transversality, we have by-passed these 
problems by sticking to  the strong definition, block transversality. It may be 
tha t  the answer to the  problems is, no, and block ts.ansversality is strictly 
stronger than tra?zsversality. If this is the case, i t  is still possible that  the 
unsolved relative transversality theorem stated in the introduction is true. 

Added. As noted a t  the end of the  introduction, Problems 1to 7 (exclud-
ing 4) all have counter-examples. The remaining problem (number 4) has also 
been solved. Lickorish has shown that ,  in a wide range of dimensions, the  
answer is in fact yes. See W. B. R. Lickorish, "Homeomorphisms of S P * S q  
keeping SPU Sq pointwise fixed", J. Lon. Math. Soc. (to appear). More gener- 

ally the authors have since shown tha t  for q and r > 2 f?~~,,,,,,2: B(G/PL). 
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