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Block bundles: 111. 

Homotopy theory 


By C. P. ROURKEand B. J. SANDERSON 

This paper is a continuation of 'Block bundles: I and I1 (Transversality)' 
[37, 381. In these papers we established the theory of block bundles as a tool 
in the PL category, drawing strong analogies with the usage of vector bundles 
in the differential category. Our methods were geometrical wherever possible. 

In this paper our aim is to  use the theory in order to reduce geometrical 
problems to homotopy theory. This aim is achieved in several cases through 
studying the homotopy of the various semi-simplicia1 groups and complexes 
involved. Our methods will be algebraic as far  as possible, that  is to say, 
we will s tar t  from the  homotopy theory and deduce the  geometry. It is 
worth noting, however, that  all our geometrical techniques, apart from the 
triangulation theorems of Whitehead [46] and the Cairns-Hirsch smoothing 
theorem [12], belong to  the PL category, whereas we recover several known 
results and some new results for the differential category. 

The plan of the paper is the following. In 3 0we define all the complexes 
and groups tha t  we will use (including those defined in previous papers) and 
then in subsequent sections, we interpret geometrically exact sequences, 
braids, etc. derived from these complexes. 

Section 1is concerned with Levine's braid [28; 2.21 which we prove to be 
isomorphic with a homotopy braid. We deduce one of the main results of 
Haefliger's paper [5; 3.41. 

Section 2 is concerned with various types of solid torus knots and Stiefel 
manifolds (PL,C", r-cf. 8 0); we have braids displaying the obstructions to 
both types of smoothing, and we deduce results in the metastable range. 
Also in this section, there is a geometrical version of Haefliger's suspension 
sequence [5; 6.41 and two geometrical interpretations of the groups n,(G,,,, G,) 
and ;s,(F,, G,) for q > 2 (see 3 0for definitions). The first is in terms of isotopy 
classes of knotted "ribbons" (embeddings of 2" x I in In-,-') and the second 
in terms of knots of I ' q n  I "  x 22. This enables us to give a new proof that  
x,(F,, G,) = 0 for 2q > yz 2 (cf. James [20], Haefliger [5]), which is, in some 
sense, the key metastable result (cf. 2.9-2.11). 
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In 3 3 we derive an exact PL suspension sequence 

where E:(R) is the set of concordance classes of open tubes on Bm in BnrP, 
and E;(I) is the  set of concordance classes of closed tubes. This implies that  
metastably E;(R) E E;-'(I)and that  unstably there are many examples of 
non-zero groups E;(R) or E;(I). The sequence forms part of a diagram 
of suspension sequences (3.8) which reduces results of Hirsch [ l l ]  to  diagram 
chasing, and also implies tha t  E;(I) r r3,@ E,2(R). We use the main result 
of [39] to prove that  there is a differentiable framed embedding of S18in S'7 
whose normal bundle is non-standard as a topological microbundle, but such 
that ,  on suspension to SZ8, both the embedding and the framing become 
standard! 

In  5 4 we establish a theory of q-block bundles with a (never-zero) section. 
The obstructions for the existence of such a section fall into two sets, 
hornotopy and geornet~icalobstructions. The homotopy obstructions have 
coefficients in x,(Sq-') and correspond to  finding a section of the associated 
Serre fibration, while the geometric obstructions have coefficients in certain 
groups of links of spheres. This situation contrasts with the theory of sec- 
tions of a PL micro- or fibre bundle (fibre Rq, Zq-', or Iq)in which there are 
only the homotopy obstructions, and furnishes further evidence for the diver- 
gence of the theories of block bundles and microbundles. We give examples 
of block bundles with section which do not split a (corresponding) line sub- 
bundle, and we prove that  metastably the geometrical obstructions vanish and 
a section always splits. We use the theory of sections to give an  obstruction 
theory for (instantly) isotoping a PL submanifold off itself (Theorem 4.21), 
and we conclude the section with a short proof that  either E,",fl(R) or E E l ( R )  
is non-zero for s even > 3 (recall that  we showed EP,(R) + 0 in [39]). 

Section 5 on immersions of spheres in spheres is a complement to  
Haefliger's work [7], and we link our definitions with those of Haefliger. 
We give a classification of PL immersions with an (open or closed) normal 
bundle, and we derive braids which theoretically show which immerisons (of 
spheres in spheres) possess open or closed normal bundles. We give suspen-
s ion sequences for all types of immersions (framed, C", I?-, PL)  and these fit 
together with diagram (3.8) into a large "ladder" diagram (5.15), which simul- 
taneously displays the precise obstructions to compression for all types of 
immersion and differentiable embedding of spheres in spheres, and the precise 
obstructions to (both types of) smoothing of a P L  immersion, and for a P L  
immersion to  possess an open or closed normal bundle. As an example 
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of the  use of this diagram, we prove that  all non-trivial PL-immersions 
of C4 in C7 have no PL normal disc bundle (and hence a fortiori are 
unsmoothable). 

Section 6 is an appendix in which we display on one diagram (6.2) a large 
number of the results proved in the  paper. Using this diagram, the reader 
may construct diagrams of exact sequences ad libitum. 

Some of the results of this paper (notably from 3 1)have been announced 
by Haefliger [8] and Morlet [32]. 

0. Sotatioil and main tools 

We collect here all the notations, definitions, and major theorems tha t  
will be used. 

Notation. We work principally in the smooth category C of Cm-manifolds 
(abbreviated C-manifold) and C-maps, and in the  piecezoise-linear category 
P L  of PL-spaces and PL-maps. Thus a C-isomorphism is what in more con- 
ventional terminology would be termed a diffeomorphism of class Cw. Defi- 
nitions and basic properties of the categories C and P L  may be found in [33] 
and [49]. 

A PD-map f: X - M, where X i s  a PL-space and M is a C-manifold, is 
a map which is C on each simplex of some triangulation K of X. If for each 
point b E K the differential o f f  (see [33; 5 81) df, is injective, then f is a P D -  
imnzersion. If ,  in addition, f is a homeomorphism onto f ( X ) ,  then f is a 
PD-embedding. A compatible PL-structure on a C-manifold M is a PL-
structure determined by a PD-homeomorphism (PD-embedding onto M )  
h: X -M, where X is a PL-manifold. Similarly h determines a compatible 
C-structure on X. 

Let X and M be manifolds as  above. Then a PD-map g: X -  M is a 
I?-map (resp. I?-embedding, I?-immersion, I?-homeomorphism) if there 
is a PD-homeomorphism h: X- N such tha t  go h-' is a C-map (resp. 
C-embedding, C-immersion, C-homeomorphism). Note tha t  a PD-embedding 
g is a I?-embedding if and only if f(X) is a smooth submanifold of M, and 
tha t  a PD-homeomorphism is always a I?-homeomorphism, (n.b., Haefliger 
[7] calls I?-maps "lisse"). 

As standard objects in the categories C and P L ,  m-e have: Rn is the sub- 
space of Hilbert space with coordinates xi = 0 for i > n ,  R", Rn is defined 
by xn 2 0, and R"_ Rn by z,2 0. R" is also identified with the n-fold car- 
tesian product of the  real line R. D mc Rn is defined by 1 1  x 1 1  5 1 and 
Sn-'= dDn is i ts  boundary. Sn,D m ,  and Rn all have natural C-structures. 
Sn- Snn R",'. In [ - I ,  t l ] " c R n  and I;" = dln- ' .  I " , C n  and R" have f - = 
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natural PL-structures. Z; = 2;" n R;+'. I = [O, 11cR is not to  be confused 
with I' = [-1, L l ] .  The standard %-simplex A" cR" has vertices v, 
(i = 0, ...,n) where c, has coordinates x, = 1, j 2 i,  x, = 0 otherwise. 

3:: An-' -An is the order preserving simplicia1 map which fails to cover v,. 
We shall often abbreviate 8: to 8,. A,,, = cl (An- ?,An-'). 

We denote by t: S" -S" the radial projection map from the origin and 
also use t: In-'-D'" for a choice of PD-extension. t furnishes Snand D n  
with (standard) com~atiblePL-structures, and for convenience of notation, 
we will often speak of PD-,  I?-, or even PL-maps Snor D n-Sn or D n 7q ,  

meaning that  Snand D n  are to be interpreted as PL-spaces where necessary 
via t. [The reader is warned, however, that  the inclusion of 9-'or D" in 
Rn is not a PL-map under this convention.] 

From now on, when no prefix is used, al l  maps a re  assumed to be PL. 
Thus "homeomorphism" will mean PL-isomorphism. 

The inclusion Sn\ Iqc8n-qcomes directly from the  definitions, as does 
-the identification Sn Q-'- yn-' x I ~ UI" zq-'. We pick a "standard" PL-

homeomorphism s,: int In-Rn,and this gives us an  inclusion s,: Znx Rq-+Zn-q.  
We also use a standard C-isomorphism s,: int D'" Rn, and a standard 
C-inclusion s,: SnA Rq-- Sn-qsuch that  s, Sn / (0) = id. The standard cell 
structure on 2"  has i-cells 2& 0 5 i 5 n.  

A-sets and A-groups. A is the category with objects A", n = 0, 1,.. 
and morphisms generated by the d, defined above (note that  3;-'3; = a;-lo?;-, 
if i < j). A A-set (resp. pointed A-set, A-group) or simply a complex is a 
contravariant functor X from A to the category of sets (resp. pointed sets, 
groups). The function X(?:): X(An) -X(An-') is called a face map and an  
element o E X(An) is called an n-simple?; of X. A natural transformation 
f: X-- Y is called a A-map. Notice that  a A-set differs from a (complete) 
semi-simplicia1 complex in that  i t  does not have "degeneracy" functions. 
These have proved to be a nuisance in previous papers 137, 381 and, since by 
[40] they are irrelevant to our present purposes, we discard them completely. 

We now define the various (~o in ted)A-sets that  we \\-ill use. We attempt 
to  give a uniform definition for the A-sets X(Y)  and z ( Y )  where X denotes 
one of P L ,  PD,  G, or 0 and Y denotes one of Rq,Iq,D q ,Zq-I, or Sq-': 

A k-simplex of Z(Y)is an X-isomorphism o: Ak w Y- Ak ,Y which 
satisfies 

( i ) (block-preserving)for each subcomplex K c Ak, o-'(K > Y) = K x Y, 
(ii) (zero-preserving) if Y = Rq, I q ,  or Dq, then o , Ak x {0}= id. 
A k-simplex of X(Y)  is a k-simplex of X ( Y )  which satisfies the stronger 

condition 
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(i') (fibre-preserving) o commutes with projection on Ah. 
Face maps are defined by restriction. In  practise we write X,(Z) rather 

than X(Zq) (resp. X(Zq-I)) when Z = R, D or I (resp. Z = S or C). A similar 
remark applies to Z,(Z). 

A simplex of X,(;t) or Zq(;t)is a germ of an X-isomorphism Ak r Rq3 
defined in a neighbourhood of Ah x {0) and satisfying conditions analogous 
to the ones given above. 

We now have to interpret these definitions in the various cases. If 
X = P L ,  then the definitions make sense. 

If X = P D  we must then regard Y as both a C- and a PL-  object (this 
can be done for Y = I,,Dq,Sq-l,or by making use of t: In-D n ,  and 2 , - I  

interpret PD-isomorphism to mean PD-homeomorphism. If X = G, and 
Y = Sq-', or 2,-'(resp. Y = Rq,Dl,or I,) we interpret o is a G-isomorphism 
to mean o (resp: o I Ak x ( Y  - {0))) is a (topological) homotopy equivalence. 

A simplex o E O(Y) is a C-isomorphism such that  o 1 {x) x Y. {x) x Y 3 
is orthogonal, Y = I, or Xq-l, one must use t).  d ( ~ )Rq, D q  or Sq-l(if Y = is 
never used. 

We identify Zq(2) with Zq(S) ,  and Z,(D) with Z,(I) for all Z, via t. 
Subcomplexes X,( Y,) c Xq( Y)  and Zq(Y,) c Zq(Y) ( Y = 2 ,  I,or R) are 

defined by oh E Xq(Y,) or zq(Y, )  if and only if o Ak x {*) = id, where * = 

(1,0,  ...,0) if Y=Cand  * = (1/2,0, - . . , O )  if Y = I ,  or R. 
All the complexes satisfy the extension condition (Kan [21]). For Z,(Y), 

Z # 0 ,  this follows from the fact tha t  Ah = '1,x I and Whitehead's resl~lts  
[46], cf. 137; 6.11. For Z = 0,one uses an  argument similar to 137; 6.21. Since 
this has essentially been done elsewhere [27, 371 we omit details. For X = P L  
or 0 ,  the A-sets are in fact A-groups. 

We have the following standard abbreviations. 
O,(Y), Y = D, S ,  R,  or /J are all called 0, (since they may be naturally 

identified). 

%,(I)= (since this is the  natural block bundle group) and 
N hl 

PL,(I,) - P,L,. 
N N 

PD,(R) - PD, (since this is the most natural complex for comparison 
with vector bundles, see [37, 9 61). 

PL,(;t) and PD,(;t) - PL, and PD,, as this is well established usage now, 
cf. [27, 311. 

Gq+1(2S),Gq(.Z), and c,(C) - F,, G, and c , ;  F, and G, are well established 
too. 

Inclusions of the complexes. There are the following inclusions: 
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O,(Y) acts on PD,(Y) and Y) on the left by composion, and PL,(Y),  
%,(Y) act on the right. We have the composite theorem. 

THEOREM0.2. P L , ( Y ) c  PDq(Y) and %,(Y)C%(Y) a re  both homo- 
topy equivalences, al l  Y. 

(See [40] for notions of homotopy equivalence, weak homotopy equivalence, 
etc. in A-sets, and also an analogue of Whitehead's theorem). Theorem 0.2 
has been proved elsewhere in several of the cases, e.g. [37; 6.11, [12; 3.41. As 
these special cases essentially contain the  general proof, we will omit it. 

N N -

Let Zdenote any one of P L ,  PD, G, PL,  PD, G, then there are the  follow- 
ing A-maps. 

Cone: Zq(Z)-Z,(I) by inductive conical extension, cf. [37; 5.11. 
Bdry: Zq(I)--Z,(C) (Z# G, G) by restriction. 

Int: Zq(I) Zq(R) by the  identification s, when Z = PL,  G, E,or G, 

and by s, on the right and s, on the  left when Z = P D  or %. 
Collar: Z,(I)-Z,(R) (Z # G, G) by extension via suitable open PL- or 

C-collars. 
Germ: Zq(R)-Z,(p), by taking germs. 

Warning. Because the identifications s, and s, are not equal on the domain 
of s,, int and collar do not commute with the inclusions (0.1). However, i t  
is easily proved that  they commute up to  homotopy, which is all that  we 
require. 

Int and collar are easily proved to  be homotopic maps, cf. remarks in 
[37; 9 51, and the  following results indicate when these maps are known to 
be homotopy equivalences. 

N N 

THEOREM0.3. ( i )  For  Z = P L  or PD,  a l l  the above maps are  homotopy 
equivalences (cone and bdry being inverse). 

( i i )  For  Z = P L  or  PD,  cone, bdry, and germ are  homotopy equiva- 
lences (cone and bdry being inverse). 

(iii) For  Z = G, G,  cone, int, and  germ are  homotopy equivalences as  i s  
the inclusion G,(Y) c G,(Y), Y = 2,I,R,  or p. 

PROOF. The % case is 137; Remark 5.51. The % case now follows, 
using 0.2. For the P L  case, the  result about cone and bdry is well-known 
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and easily proved by the "Alexander trick" (see e.g. Browder [2]); that  germ 
is a homotopy equivalence is proved in Kuiper-Lashof [25] (also Hirsch). The 
P D  caw follows using 0.2. The G and G cases are well-known and easy to 
prove by suitable homotopies, and will be left to the reader. G, c Gq is a 
homotopy equivalence by [37; 5.81, and the rest now follows. 

Remark. All the inclusions (0.1) and the above maps not covered by 0.2 
and 0.3 are known not to be homotopy equivalences. These are consequences 
of Browder [2], Hirsch [ I l l ,  and ourselves [39], see also $ 5 1, 3, and 4. 

Inclusions Zq( Y) c Zq+,( Y) c . . . are defined as follows. 
For Y = R or p, identify a: Ak x Rq2 with a x id: Ak x Rq x R 2. 
For Y = I and Z = PL,  E,G, or identify a:Ak x I,2 with a x id: 

Ak x I, x 1'2. 
For Y = I and Z = P D  or P?, we need to be rather more careful 

because strictly (i.e., without using the conventional identification of Inand 
Dm)  a simplex of mq(l)is a PD-homeomorphism a:Akx Iq-Akx Dq. a x id 
maps Ak x I, x I1---+ Ak x D q  x Dl, and there is a homeomorphism analogous 
to t , t,: Dq x Dl -Dq+l. Composing a x id with id x tl gives the  required 
simplex of %+,(I). 

bdry
For Y = 2 ,  the composion Z,(C) Z,(I) c Z,+,(I)-4Zq+,(2) gives 

the required inclusion (this is essentially suspension). 
These inclusions commute with (0.1), and cone, bdry, and germ by definition. 
But as  before, in the P D  and % cases, the  commutativity with int and collar 
is only up to homotopy. 

We denote the direct limit of Zq(Y) c Zq+,(Y)c . . . by Z(Y).  
Subcomplexes Z,+,,,(Y) c Zq+,(Y) are defined as follows: 
Zq+,,,(R) consists of simplexes which preserve (0) x R' c Rq x R' = Rqf' 

(i.e., a E Z,,,,,(R) if and only if a E Zq,,(R), and a I Ak x (0) x R' = id.). 
Z,,,,, (I)c Z,+, (I) consists of simplexes which preserve IT,and 

Z,+,,,(C) c Zq+,(C) consists of simplexes which preserve C'-'. 
We now have inclusions 

z,(Y) c Zq+,,( Y)  cZq+(Y) and Zq+l,l(Y)  cZq+l(Y8)c Zq+,( Y)  . 
For information about when these inclusions are homotopy equivalences or 
not, see later sections, in particular 2.2, 3.2, and $ 4. Note that  O,,, and 
O,(Y,) are all essentially 0,-,. Note also that  G is the direct limit of 
G , ~ F , ~ G , + l ~ F , + l ~.... 

Homotopy groups .  We always denote by * c Z,(Y) the subcomplex con- 
sisting of identity simplexes (thus Zq(Y) is a pointed A-set). In [40] we 
showed how to define the homotopy groups of (pairs of) pointed A-sets; 
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we recall the definition. An ordered simplicia1 complex K may be regarded 
as a A-set with typical k-simplex an order preserving simplicial embedding 
Ak-+ K. Thus we may speak of A-maps K -  X,  where X is any A-set. A 
m a p  f :  P -+ X where P is a compact PL-space is a triangulation of P by an  
ordered simplicial complex K and a A-map f :  K -+ X. f,, f ,  are homotopic if 
there is a map F: P x I- X such that  F P x {i)= fi,  i = 0, 1. We denote 
the set of homotopy classes by [P;XI. Now let Y c X be pointed A-sets. 
Then by definition r n ( X ,  Y)  = [ I n l  2:-', C14-'; X,  Y, *]. 

We will need the following result from [40]. 

PROPOSITION A n y  homotopy class in rcn(X, Y ) i s  represented by  a 0.4. 
A - m a p  K ,  K,, K- -X, Y, *, where  K,  K-, K- i s  a n y  ordered t r i a n g u l a t i o n  
o f  In,C";', CF-'. A n y  homotopy m a y  be replaced b y  a homotopy over J ,  J-,J-, 
w h e r e  J ,  J,, J- i s  a n y  ordered t r i a n g u l a t i o n  o f  Inx I, etc., ex tend ing  

K, x (0) U K1 x (1). 

R e m a r k s .  ( 1 ) 0.4 gives us great freedom in choice of representatives 
for homotopy elements. For example, let K ,  K T ,  K- be complexes which tri- 
angulate C:, 2Y1, 2"-' (linearly), (then t gives a corresponding smooth triangu- 

N 

lation of S",tc.). An element of zn(PDq, 0,) for example, will (by 0.4) be 
represented by a block and zero preserving PD-homeomorphism K x Rq3 
which is orthogonal and fibre-preserving over K, (and C over simplexes), and 
the  identity over K-. In practice we will omit the block-preserving condition 
in both representatives and homotopies. This is allowable, since the results 
of [37; 3 41 (and Whitehead [46] for the PD-case) show that  any homeomor- 
phism is isotopic to  a block-preserving one. Thus we will say that  a repre- 

N 

sentative of xn(PDq, 0,)is a zero-preserving PD-homeomorphism C"_ Rq2 
which is an orthogonal isomorphism over C", and the  identity over 2. 

( 2 )  A representative for ~ ~ ( 0 , )is an orthogonal and fibre-preserving 
homeomorphism a: S", Rq 3 (identity over Sn-')which is C over the sim- 
plexes of some smooth triangulation of S" However, by standard approxi- 
mation theorems, we may always assume that  o is in fact a C-isomorphism, 
and by uniqueness of C-collars [33], tha t  o is the identity in a neighbourhood 
of Sn-'x Rq. 

We will also use the homotopy groups of a square 

@ = A 3 C  
U U 

B I D  


of pointed A-sets. ;rn(n)is by definition the  set [ I n ,  Z";', CY', Z?-2, 2Y2;  
A, B, C, Dl *] and i ts  properties are proved in an analogous way to those of 
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a square of sFaces, cf. remarks in [401, in particular i t  is a group if n > 2, 
and abelian if n > 3. 

There are two exact sequences including 0 ;  one is, for example, 

and, together with the exact sequences of the  triples (A, B,  D) and (A, C, D), 
they form a commutative braid (a t  least up to sign). We write r,(a)as  
rn (A;  B,  C; D ) ,  and in the case D = B n C, we have the homotopy group of 
a triad and write r,(A; B,  C) .  (The exact sequences and braid of a square 
are reasonably well-known, and are derived in a similar way to  those of a 
triad, cf. [I].) 

There is an exact sequence associated with a diagram 

A 3 C 3 E  
u 0 1  u 0 u2 

B 3 D 3  F 

namely 

(0.5) rniU2)-r n i 0 3 )  ~ n - 1 ( @ 2 )+xni01) 

where 0,is the outside square. This can easily be proved directly (for an  
direct proof for triads, see Haefliger [5; 6.21). 

Main tools. We now state the  main tools tha t  we will use. By a 
concordance between embeddings f,, f,: M -Q, we mean an embedding 
F:M x I-- Q x I such tha t  F-'(Q x {i))= M x {i}, and F M u  {i)= f,, i = 0, 1. 

THEOREM0.6. Hudson and Lickorish [16A]. Concordance extension 
theorem. If q > 2 and M i s  compact, then any proper concordance F of M"  
i n  Qn-q extends to concordance of Q, i.e., there exists a homeomorphism 
H: Q x I 2  such that H-'(Q u {i)) = Q x {i),i = 0, 1,H IQ x (0) = id, and 
Ho (f, x id) = F. Furthey,  if G i s  a concordance of o'Q extending F o'M x I, 
then i t  may be assumed that H extends G. 

(By a proper embedding of manifolds f:M -+ Q, we mean, as usual, 
f -'(a&) = o'M and f -' (compact) = compact). 

An isotopy is a level-preserving concordance. It is locally unknotted if,  
for each subinterval Jc I ,  F M  x  J is locally flat. 

THEOREM0.7. Hudson and Zeeman [19j. Isotopy extension theorem. 
Any locally unknotted isotopy with M compact extends to a n  isotopy of Q. 

THEOREM0.8. Zeeman. Unknotting balls and spheres. Any proper PL 
ball or sphere p a i r  Bn  c Bn-9 or Snc S"+qlq > 2, i s  PL homeomorphic to 
the standard pai r .  
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THEOREM0.9. Hirsch [12]. Product smoothing theorem. Suppose M i s  
a PL-mani fo ld ,  and Q i s  a C-manifold,  and that  f:Mn x Rq- Qn'q i s  a 
PD-embedding such that  f  j M i s  proper and f (8M x Rq)c 8Q. Then  there 
i s  a PD-isotopy o f f  carrying f  to f ,  ( v ia  s imi lar  embeddings),  so that  f ,  1 M 
i s  a I?-embedding, and f:: f , ( M )  x Rq-Q defined by f{(  f i x ,  y)  = f , (x ,  y )  i s  
a C-embedding. I f ,  in addit ion,  K i s  a subconzplex of a t r iangz~la t ion  of M ,  
N a n  open neighbourhood of K such that f '  i f ( N )  x R q  i s  a C-embedding, 
then  the isotopy m a y  be assumed to be fixed on N '  x Rqwhere N '  c N i s  a 
closed neighbourhood. 

THEOREM0.10. Hirsch [ I l l .  A n y  orientation-preserving PL-homeomor- 
phism f:C"'q 2 such that  f  i Cn = id i s  isotopic to the ident i ty  v ia  homeo- 
morphisms  which  are the ident i ty  on Cn. 

THEOREM0.11. Hirsch [ I l l .  Knob theorem. Let  Mn c QnLq be a P L  sub- 
man i fo ld ,  and let B n c int Mn be a n  n-disc. T h e n  a n y  two orientation 
preserving embeddings f i :  B n  x Iq-+ Qn'q, i = 0 , 1 ,  such that  f i  j B n  x (0 )= id 
and f c l ( M )  = B n  are isotopic through a n  isotopy which  i s  fixed on  M". 

THEOREM0.12. Kuiper-Lashof [25]and Hirsch [13]. There i s  a homotopy 
equivalence h :  PL,._,,,(I) -PLq(R)  such that  

commutes u p  to homotopy, where q i s  the (homotopy) inverse of int composed 
w i t h  the standard inclusion.  q itself is a homotopy equivalence, see 2.2. 
The homotopy equivalence h is given in [25],and the commutativity follows 
from the geometrical interpretation given in [13]. 

We also make crucial use of the relative regular neighbourhood theorems 
of Hudson and Zeeman [17, 181. The statements are rather technical and so 
we refer to  [17] for details. [17] has a flaw in i t ,  see [43],but this will not 
affect our usage, see [I81 for the corrected theorems. See also Cohen [2B] 
for a general theory of relative regular neighbourhoods. 

1. Some results of Leviile and Haefliger 

In this section we obtain a geometric interpretation of the braid of the 
N 

triple 0,cPD, cG,(R), and we prove that  i t  is isomorphic with the braid 
described by Levine [28]. We deduce results of Haefliger [5 ] .  

We display the braid under consideration 
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For the geometric interpretation of (1.1) we will need some definitions. 
Definition of FE:(I). An orientation preserving embedding f:Cnx Iq-Xntq 

such that  f Cn x (0) is the standard inclusion is called a framing of Cn in Xn+q. 

Two such framings f,,f, are concordant if there is a concordance between the 
embeddings f,,f,; F: X" x I" 11-Xn+" I such that  Fj Xn x (0) x I is the 
standard inclusion. Concordance is an equivalence relation and the set of 
equivalence classes is FE:(I). 

Remark 1.2. A set FE:(R) is defined by replacing I q  by Rq in the above 
definition. The inclusion I q c  Rq and the standard homeomorphism s,: int I,--*Rq 
are readily seen to induce inverse bijections between FE:(R) and FE:(I). 

Now let a: X", IF3 represent an element of x,(pYq), so that  

a C n - '  x I q  = i d .  

Define T[a]  to be the element of FE;(I) represented by the embedding 
f: Xn x I+ 2%-"defined by 

( i )  f X", IF= a ,  and 
(ii) f C Y XIq= id. 

Clearly T is well-defined. 
N 

LEMMA1.3. The function T: xn(PL,)--+ FE:(I) i s  a bijection, n > 0. 
PROOF.I t  follows from 0.11 that  a class in FE:(I) has a representative 

f: Xn x I q  --* Xn+q such that  f C> IF= id, and i t  follows from the regular 
neighbourhood theorem of [I81 that  f is isotopic mod C? x I q  to an embedding 

f '  satisfying (i) and (ii) above for some representative a of 7in(Eq)(note the 
N 

remarks in 5 0 on defining the homotopy of PL,, etc.). Hence T is onto. 
Now suppose T[a,] = T[a,], and let fi be the embeddings defined by 
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replacing a by a ,  in (i) and (ii) above for i = 0, 1. Let F be a concordance 
between f,,and fl. That T is injective follows from the existence of a 
homeomorphism G: Sn-9 x 19 such that  G I n - q  x 011u 2%x (0) = id, and 
G 0 F CI".x I q  x I is standard. An application of the regular neighbourhood 
theorem of [I81 to the concordance G 0 F will then show that  [a,,] = [a1]. 
Now i t  is clear how to define G on F(CE x I, x I J C: x 10) x I )  U Cn-gx d l .  
[49; Lem. 181 provides the required extension of G. 

Definition of FllYL.Let f: Snx Rq---) Snagbe an orientation preserving 
PD-embedding such tha t  

( i ) f Snx (0) is a r-embedding 
( i i )  f ' :f(Snx (0)) x Rq-+ Sn'" defined by f(f(x, O), y) = f(x,  y), is a 

C-embedding, and 
(iii) f S" x (0) is PD-isotopic to the identity. 
Two such framed embeddings f,,, fl are concordant if there is a 

PD-embedding F. Snx Rq x I--' S n - 9  x I such that  
( i ) F Snx (0) x I-- Sn'" I is a r-embedding, 
( ii ) F' (defined as  in (ii) above) is a C-embedding, 
(iii) F Snx (0) x I is PD-isotopic to the identity, and 
(iv) F Snx R% {(i= ff,,i = 0, 1. 

The set of concordance classes is denoted FIT;$. 
It follows easily from 0.9 and 0.10 that  there is a bijection FE:(R)- Fr;. 

Combining this with the bijections of Remark 1.2 and Lemma 1.3, and the 
N N 

isomorphism r,(PL,) z,(PD,) (given by 0.2) we have -+ 

PROPOSITION Theye i s  n 
N 

Fr;, n > 0.1.4. bijection T,: x,(PD,) -
We now redefine the set r: which was defined in [37; 3 61 (as the set of 

concordance classes of smoothings of 2"  c 2"-"uch that  Cn+q is smoothed by 
a C-structure concordant to the standard one). We prove that  the two sets 
are isomorphic by showing that  the new set is also isomorphic with 

z n ( Z q ,0,). 
Definition of r;. Let f: Sn-- S"-,  be a r-embedding such that  f is 

PD-isotopic to  the identity. Two such embeddings are concordant if there 
is a r-concordance F :  Snx I-- x I connecting them, such that  F isSn+q 

PD-isotopic to the identity. The set of concordance classes is denoted r&. 
N 

Now let a: S" Rq9 represent an element of n,(PD,, 0,), (cf. remarks 
1in 0, we may assume that  a Sn-'x R"s a C-homeomorphism). Define the 

PD-embedding a,: S: x Rq-SFqto be .s4 0 Q. By uniqueness of PD-collars 
(which follows from [46] and [19]) a, is PD-isotopic to a, where a, preserves 
a standard C-collar of Sn-q-'in SYq. By applying 0.9, we have a, PD-isotopic, 
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keeping a smaller collar fixed, to  a ,  where a, 1 S", {O) is a F-embedding. 
a,: Sn-Sn-qdefined by a, S> a3and a, SI1.= id is now a representative of 
an element T2[a] E r;. A similar construction shows that  T, is well-defined. 

N 

PROPOSITION1.5. The function T,: rn(PDq,  0,) -FP, i s  a bijection. 

The proof of this (which follows from considerations similar to those in 
the proof of Lemma 1.3) will be left to the  reader. 

Definition of P,", n > 0 (not to be confused with the Pi defined in 
[5; p. 4241). We consider framed submanifolds (M", f )  where M n  is an  ori- 
ented (PL-) submanifold of Cn-9-' such tha t  dM is homeomorphic to 2"-', and 
f is an orientation preserving embedding f: M n  x 19- ' - C"-q-l such that  
f (x, 0) = x and f 8 M  x {0} is isotopic to  standard position. 

Two such framed submanifolds (M,,, f,)and (M,, f,) are framed cobordant 
if there is submanifold Nn+'c C"-9-' x I and an embedding F: N x Iq-'--+ 
Cn-q-' x I such that  

( i )  F ( x ,  0) = x, 
( i i )  F (Nn CnTG-l x {i})= fi,  i = 0, 1,and1 

(iii) F(cl(dN - N n XnLq-I x 31)) is isotopic to 2"-' x Iz .Zn+q-Ix I. 
P," denotes the set of framed cobordism classes. 

Now let a: Inx Xq-' 3 represent an element of 7rn(Gq, P ~ ~ ( . Z ) )  so that  
a 1 2-'x Xq-' is a (PL-) homeomorphism, and a 2"' x Cq-' = id (a itself 
being a topological map). By [48] we may assume tha t  a is PL,  and by 
[38; Th. 3.11 that  a is block transverse regular (see for definition) to M'  = 

Inx ((1, 0, . . . , 0)). Then M = a-'(M') is a submanifold of Inx 2 9 - '  and M 
receives a framing via a and a standard framing of M' in Inx Cq-'. Regard- 
ing M as  a framed submanifold of Inx Xq-' C: Cn-' x I q  = Cn-q-', we have an 
element @[a] of P:. 

By further applications of [48] and [38; Th. 3.11 cD is seen to be 
well-defined. 

LEMMA1.6. The function a:an(Gq,Zq(r))-- P: i s  a bijection, n > 0. 
PROOF. We first show that  cD is onto. Let (MI, f,) represent an  element 

of P:. Let c: dMl x I-M, be a collar of MI. By definition of P: and 0.7, 
we may assume tha t  c(o'M, x (112)) = 2"-'. As in the proof of 1.3, we may 
assume that  the induced framing on 2-' is standard, and tha t  

We may replace (M,, f,) by (M, f )  where M = Ml minus the collar and 
f = f, 1 M, then we have f ( M  x Iq-l)c I "  x Zq-l. 

We now define a map a: Inx Zq-I 3 representing an element 
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[a] E nn(Gq,pTq(C)),and such that  @[a] = [(M,f)] ,  which will prove what 
we want. Define a I 2"--'x Cp- '-Cn-I x Cp-' to be the inverse of f,1, so that  
a 1 CE-' x 19-'  = id, and a-'(dM1) = o7M. Extend a in stages as  follows: 

Stage 1. Extend a to M such tha t  o(M) = M' by mapping a collar of 
aM in M pseudo-radially to M' = Inx {(I,0, - .- ,O ) ) ,  see [49], and the rest 
of M to {0} x {(I, 0, - - . ,0):. 

Stage 2. Extend fibrewise to f ( M  x I,-')using the framing f and the 
framing Inx I:-' of M'  in Inx Cq-l. (Where I:-' = Iq-'x {(O, . - ,0, 1))c 29-I) .  

Stage 3. Extend to the rest by the same construction as  Stage 1 
(note that  cl ( I n  x Cv-' - I*x I:-') is a ball). 

a now satisfies the requirements, and an analogous proof shows that  Q 
is 1:1. 

N 

Now by 0.3 and the 5-lemma, there is an isomorphism nn(e,, PL,(C)) -
N 

nn(e,(R),PD,); combining this with Lemma 1.6 we have. 
N 

PROPOSITION1.7. There is a bijection T,: ~,(G,(R),PD,) -P:. 

The sets P:, FP:, r: inherit abelian group structures from the bijections 
of Propositions 1.4,1.5, and 1.7 (the sum operations are easily described geomet-
rically by various connected sum operations). Using these bijections together 
with the isomorphisms n,(G,) --+ X,(~,(R))and x,(G,, 0,) -n,(G,(R), 0,) from 
0.3, we have 

THEOREM1.8. There i s  a braid, 

Remarks 1.9. ( 1) By Smale [41], I?: coincides with 8'"q~'for n > 4, q >2 
(see Levine for definition); and in this range (1.8) coincides with Levine's 
braid (it is quite easy to verify that  the homomorphisms are the same). 

( 2 ) Stably (1.8) is the Kervaire-Milnor braid [23; 111, and in that  case 
has been shown to be isomorpic with (1.1) by Williamson (unpublished). 
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( 3 ) By the  product smoothing theorem we see tha t  Pi can be defined in 
the  smooth category-cave-aM may be an  exotic sphere. 

( 4 )  The homomorphisms in (1.8) can be described geometrically; e.g., 
( i )  &[(My f ) ]  is the  framed sphere obtained by restricting f to 

aM x (collar). 
( ii ) p, ignores framing, and 
(iii) a,[f ] is the  classifying element for the normal bundle. (For more 

detail see Levine [28]). 
The standard framing of the  inclusion Zn-,-' c Cn+q+r-'induces a function 

s,: P: -- P:+' which coincides (using the isomorphism of 1.6) with the homo- 
N N 

morphism i,: n,(G,, PL,(Z)) -- n,(G,+,, PL,+,(c)) induced by inclusion. From 
the  work of Levine, s, is an  isomorphism for q > 2 so tha t  we have 

THEOREM1.10. -nn(Gq+,,%+,(x)) i s  a n  For  q > 2, i,: nn(Gq,Z,(Z)) 
isomorphism. 

From the  exact sequences of the triad (Gq-.; Z q - , ( x ) ,  G,) and Theorem 
1.10 we have. 

N h/ -
THEOREM1.11. i,: n,(PL,,,(C), PL,(C))-- n,(G,-,, G,) i s  a n  isomorphism 

for q > 2. 

Remarks. ( 1) Levine's work was only for the range n 2 5; for n < 5 
one needs special arguments: Surjectivity of Pi -P, for n < 5, q > 2 
follows from the fact tha t  the generators of P,, n < 5, can be constructed in 
a similar way to the higher dimensional ones, see the next remark. For 
injectivity, regard a cobordism between Mo and MI as a cobordism between 
Mou MI u EL-' x I and X";.' x I. Use surgery to remove index 4 and 5 handles 
if n = 4 or index 4 handles if n = 3, then Levine's methods work to compress 
the cobordism into codimension 2. For n < 3 injectivity is trivial. See also 
Haefliger [8], Sullivan [42A] and Remark (1)a t  the end of 9 2. 

( 2 ) The groups P, have been computed (for n > 5 see Kervaire-Milnor 
[23], for n 5 use the stable version of (1.8) and known homotopy groups) 
so that  for q > 2 we have 

P,"zZ n - 0 (4) (classified by index) 
zZz n = 2 (4) (classified by Kervaire-Arf invariant) 

E 0 n odd . 
N.B. The generator of Pj has index 16 (Rohlin [35A]), whereas tha t  of 
Pjk,k > 1 ,  has index 8, cf. Milnor [31A] for construction. Note also tha t  
r, = 0 (Cerf [2A]) is used to prove P,= 0. 

( 3 ) 1.10 and 1.11are false for q = 2 since Ez(.Z) IGz is a homotopy 
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equivalence (cf. Wall [45]). 

Definition of C;. Consider C-embeddings f:Sn-Snfqsuch tha t  f is 
PD-isotopic to the  identity. f,, f, are concordant if there is a C-concordance 
F: Snx I- S n f q  x I between them, and such tha t  F is PD-isotopic to  the  
identity. C; denotes the  set of concordance classes. 

N N 

Now let f:SF+'x R'2 represent an element of nn+,(PD; 0 ,  PD,) i.e., 
(see 0) f is a zero-preserving PD-homeomorphism such tha t  f 1 S", RR"is 
orthogonal, f 1 S: x R" = f, x id, where f,: Sli. x Rq2 is a PD-homeomor-
phism, and f l = id. We may assume tha t  f 1 S", RR"ST' x Rv is a C-homeo- 
morphism which preserves a standard C-collar of Sn-'x R" in S", Rv.As 
in the proof of 1.5 we may assume tha t  f, preserves a standard C-collar 

of Sn-' x Rq in S"_ Rq, and then (as in 1.5) an application of 0.9 yields a 
PD-isotopy of f,0 s, in Sli.+qending with f,0 s,(S"_ {O))u S", C-submanifold 
Mnc Sn+q.A further application of 0.9 (after fixing, as usual, a collar of the  
boundary) shows that  Mn bounds a C-submanifold Mn+' of SFf"+'which is 
PD-homeomorphic with Dn+' (and hence C-homeomorphic by Munkres [34]). 
So up to  isotopy there is a well-defined C-homeomorphism f,:Sn-Mn which 
extends to  a C-homeomorphism of Dn+'  with Mn+'. This determines an ele- 
ment 8[f] E C;. A similar argument shows that  8 is well-defined. Again, 
considerations analogous to Lemma 1.3 show tha t  8 is a bijection. We have 
proved 

PROPOSITION There i s  a bijection1..12. 

Combining this with Theorem 1.11,0.3, and the 5-lemma applied to 

we have the theorem of Haefliger [5; 3.41. 

THEOREM1.13. F o r  q > 2, CP, nnYl(G;0,Gq). 

Definition of FC:, n > 0. Consider orientation preserving C-embeddings 
fi Snx Rq- Snfqsuch tha t  f 1 Snx (0) is PD-isotopic to the identity. f,,fl 

are concordant if there is a C-concordance F: Snx Rqx I-+ Sn+qx I between 
them, such that  F 1 Snx (0) x I is PD-isotopic to the identity. The set of 
concordance classes is denoted FC:. 

By a very similar argument to that  given above, one can prove 
PROPOSITION1.14. There i s  a bijection 
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N 

e,: n,+l(Plj; 0, PD,; *) -FC: . 

Then by 0.3 and 5-lemma applied to 


n,+.(Plj; 0,E;*) -n, (0) rn(PD, PDQ) 


n,:,(G(R); 0,GAR); *) -nn (0 )-n,(G(R), GAR)) , 
we have 

THEOREM1.15. Haefliger 15; 5.71. For  q > 2 
FC", nnYl(G;0,G,; *) . 

Remarks. (1) Using results of this section, one can recover homotopically 
all the exact sequences given in Haefliger 151. 

( 2 ) The suspension functions r: -- I?:+', etc. induced by inclusion of Snfq 
in Sn+q7'are easily seen to correspond to the obvious homotopy maps. We 
denote the stable limit by r , ,  etc., and, for example, we recover the result 
of Hirsch 114; § 01, r, g sr,(P?j, O), and that  of Haefliger-Wall [lo; 9 31, 

N N

Fr, g n,(% (one also needs to know that  P L  and P D  are homotopy equiva- 
lent to  P L  and PD, see 8 5). 

2. Stiefel manifolds and solid torus knots 

This section is devoted to interpretations (2.13) and (2.14) of the braid 
N N 

(2.1) of the square j?;- (PD,:,; PD,, O,+,; 0,). The interpretations are in 
terms of various types of solid torus knots and also groups defined in 9 1. 

The I? and ordinary (C) Stiefel manifolds come naturally into this program. 
We use a result of 3 1to prove that ,  for q > 2, n,(n',) r nn(F,, G,), and from 
this and a result of James, we deduce some well-known results and some rela- 
tions between the Stiefel manifolds. The geometric interpretations promised 
in the introduction come easily from these results. 



448 ROURKE AND SANDERSON 

Our first aim is to prove tha t  the pair (p"Zi4,,, E,)is hornotopy equiva- 

lent to the %-~tiefel  manifold vq-,,,defined in [38; 9 51 (and redefined below). 
This is achieved in 2.2-2.4. 

N N 

THEOREM2.2. PL, c PL,:,,, i s  a homotopy equivalence. 

PROOF. First identify n,,(%,) as isomorphism classes of q-block bundles 
over aAn-': Let Eq/dAny2 be a block bundle. Trivialise t I A,:, by [37; 1.11and 
extend the  trivialisation of A,+, over An+' by [37; 1.31. This determines another 
trivialisation of 6 1 A" which agrees with the first on /dam, and hence determines 

N 

an element of n,(PL,) which is easily seen to  depend only on the  isomorphism 
class of tq. The function so defined is clearly surjective, and is proved to be 
injective by an application of [37; 1.111. 

N 

The group n,(PL,+,,,) may be identified with isomorphism classes of pairs 
(cf. [38; 9 41) c Y  tq+%f block bundles over aAn-2, where c q s  the trivial s-block 
bundle and the isomorphisms involved are required to restrict to the identity 
on aAnTz x I". The proof of this is a generalisation of the above proof using 
the analogues of [37; 1.1, 1.6, 1.111for pairs (see [38; $5 4, 51). 

N N 

Now i,: nn(PLq)-- n,(PLqy,,,) can be interpreted as  the function which 
assigns to each isomorphism class tq//dAn-' the isomorphism class of the  pair 
c8c 6, x P ,  where Eq x P denotes the block bundle over /dAm+' total space 
E(E)x P and typical block Pi([) x 18. It follows from [38; 4.5, 5.11 tha t  i, 
is an isomorphism. 

Let p,:,,, be the  A-set whose k-simplexes are isomorphisms of c8/Ak onto 
a subbundle of &g+"Ak. It is easily shown that  pq+,,, satisfies the extension 

N -
condition. Let n: PL,-, - be the function induced by restriction. V,,,,, 


N 

THEOREM2.3. n i s  a jibration with fibre PL,,,,,. 
PROOF. We first show that  n is a fibration. Let f:A, x I,+" be a 

block and zero preserving homeomorphism which extends the restriction of 
z: An x P -An x IqTsE v,+,,,. Im (z) is a subbundle of cqys/An, and so by 
[38; 5.11, there is a block bundle Eq/K, 1 K 1 = im (T), such that  blocks of 
EQ+~/A"are unions of blocks of T. Moreover, by the uniqueness part of this 
result, we may assume that  E z(h, x P) is the block bundle given by f (with 
block f(f -'(a,) x 1 4 )  over the cell oi E K).  t and [37; 1.61 allow us to extend 

N 

f u z to an n-simplex in PL,,,. 
It is clear that  the fibre is as stated. 

N N N N 

COROLLARY2.4. n,(pq+,,,)E n,(PL,+,, PL,) E n,(PD ,-,, PD,). 

PROOF. The first isomorphism follows from 2.2 and 2.3, the second from 


0.2. 
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N 

We now give a similar interpretation of the pair (PD,,,, 0,). V,',, . is the 
A-set of which a typical k-simplex is a proper block-preserving I'-embedding 
o: Ak x R8-- Ak x Rqys,  such that  o / Ak x {0) is PD-isotopic (through block- 
preserving embeddings) to the identity. 

rc/

THEOREM2.5. There i s  an isomorphism p: n,(V:+, ,) -- n,(PDq,,, 0,). 
PROOF. Let o: An x R8-- An x RqT8represent an element of n,(V:+, ,). 

Since a(An x Rs) is a smooth submanifold, and An x Rs  deformation retracts 
to Am x (0) u A x R; which is contractible, i t  follows from the smooth tubular 
neighbourhood theorem that  o extends to a PD-embedding o,: An x Rqy8+J 
such that  a, I A, x Rq7" id, and o, / An-' x Rq x RS= P x id, where P: 
Am-1 x Rq 2 represents an element of n,-,(Or). By definition of Vf,, ,, we 
may PD-isotope o, mod A" x RqT8SO that  o, 1 Amx {O) = id. We now show 
that  we may further PD-isotope o, mod A" x Rq+W Am x {O) until i t  is a 

N 

homeomorphism and thus represents an element of nn(PDq,,, 0,). First, by 
uniqueness of PD-collars, we may assume that  o, is a homeomorphism on 
Q x Rq+s where Q is a collar of A" in An. Next by [46], we may assume that  
o, (An- Q) x Rq+" is P L  (use the collar Q x Rq+"o keep 6. x Rqy8 fixed). 
By the regular neighbourhood theorem [17], we may assume that  a, preserves 
(An - Q) x I,-,. NOW RqtS - is an (open) collar or 1,:; so we can complete 
the isotopy by "combing" the collar to infinity (cf. [12]). 

A similar construction shows that  this gives a well-defined function 
N 

p: n,(V,'_, ,) -- n,(PD,-,, O,), and two applications of 0.9 show that  p is a 
bijection. Finally i t  is easy to check that  the group structures are the same. 

THEOREM2.6. For  q > 2 there i s  an isomorphism a:nn([7;) -nm(Fq,G,). 
PROOF. First we show that,  when s = 1, the sequence 2 of (2.1) falls 

into split short exact sequences. To see this consider the homomorphism 
P: n n ( ~ q i l , l )  n,(Sq), where P[o] is the class obtained by composing-f 

o I An x {t-1) with the projection onto 2 9 .  Let i,:n,(Sq) )-- n,(O,+,, 0,)be the 
N N 

standard isomorphism and i,: n,(PD,+,, PD,) -n , (~ ,+ , , , )  be the isomorphism 
of Corollary 2.4. One easily checks that  Pi,ail = 1,where a: nn(OqT,,0,)--+ 

n,(%,+,,PZ)is the map in (2.1), and this gives the result. 
From the fibration F,cG,,, -S(Sq),where S(S9)denotes the singular com- 

plex, we have an isomorphism n,(Sq) = n,(G,+,, F,). Using this together with 
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1.11, 0.2, and the exact sequence of the  triple G, cF,c G,+,, we have for q>2; 
Here a' = ail and P' = Pi,. It is easily verified tha t  the  left hand square 
commutes and hence the lower sequence splits (a well-known fact). The 
splitting induces the isomorphism a. 

COROLLARY F o r  q > 2,- 2.8. 

( i )  nn( V,+l,l) = 7 r n ( S P )  @ nn(F,, G,) 
(ii) 7rn(V[+l E 7rn(Sq)@ I?:+'. 
PROOF. ( i )  follows directly from 2.4 and 2.7, for (ii) notice tha t  the  

splitting of sequence 2 of (2.1) implies the splitting of sequence 1. 

COROLLARY ( i )  7rn([1;) = 0, for 2q > n + 2.2.9. 
(ii) CL1r nn(O;) for 2(q + s) > n + 3. 
PROOF. Par t  (i) follows from the result of James [20], (cf. also Remark (2) 

below 2.18) tha t  nn(Fq, G,) = 0 for 2q > n + 2, and an induction on s using 
the exact sequence 

nn(Oi) -rn(O:) -~ n ( O ~ ~ ~ )nn-l(Oi) .-
For part (ii) notice that ,  by part (i), nn(Oq+,) = nn+,(O,+,)= 0, and so the  
result follows from the exact sequence below and 1.12. 

We deduce the well-known result: 

COROLLARY F o r  2q > n + 3,2.10. 
( i )  I': E I?%, and 
(ii) Cg = 0. 
PROOF. Par t  (i) follows from 1.5 and 2.9 (i) applied to sequence 3 of (2.1). 

Par t  (ii) follows from 2.9. 
Now using the standard isomorphism nn(Vq+,,,) r nn(Oq+,, 0,) (where 

V,,,,, denotes the  classical Stiefel manifold), we have homomorphisms 

a1: zn(Vq+a,s)-* r n (  v q + 8 , 8 )  and a,: nn(Vq+s,s)+nn(VAa,s). 

COROLLARY F o r  2q > n + 3, a, i s  a n  isomorphism and a, i s  the 

inclusion of ~ , (Vq+, , , )  i n  nn(VA,,.) nn(Vq+,,,)@ rn. 
2.11. 

PROOF. This follows from diagram (2.1), 1.5, 2.9, and 2.10. 
Geometrical interpretations of (2.1). We first interpret the  Stiefel mani- 

folds. Define T;,,(C) and Ti,, to be the set of equivalence classes of C-
(resp. PL-) embeddings f: Snx D 8-Sn+q+" 1such tha t  f Snx (0) is standard, 
under the equivalence of C- (resp. PL-) concordance which is standard on 
Snx {0}x I. Define T;,,(I') to  be the  set of equivalence classes of I'-embeddings 
f: Snx D" Sn+q+", such that  f 1 Snx (0) is PD-isotopic to the identity, 
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under the equivalence of P-concordance whose restriction to  S" x {0} x I i s  
PD-isotopic to the identity. 

Note that ,  if q > 2, by Zeeman 0.8, Hudson [16], and 0.10, the  sets Ti,,  
and T:,,(r) are simply PL- and r-isotopy classes of PL- and P-embeddings. 

Now given a representative f:S", D8-- S", Dq+"of nn(Vq+,,,),one 
defines a,[f ] E T$,,(C) to be represented by the embedding f,:S"x D" SS"+q+" 

given by fl / Slf.x D k  s, / and flI S", DD"= s, I 0f. a, is clearly well-defined, 
and there are similar functions a,, and a,. 

PROPOSITION2.12. a , ,  a,,, and a, are  bijections n,(Vq+,,,),n,(Pq+,,,), 
nn(VT+s,s)+Ti,a(c), Tips,Tips(r). 

PROOF.The C-case, which is well-known, follows from the smooth tubular 
neighbourhood theorem and the  fact  that  the  action of n,(Vq-,,,) on n,(V,+,,,) 
is always trivial. The PL- and I?-cases follow from the block neighbourhood 
theory [37, 5 41 and arguments similar to 1.3. 

Combining results from this section and 1.5 we have 

THEOREM2.13. F o r  2(q + s) > n + 3, there i s  a braid 

We now give direct descriptions of some of the homomorphisms in 2.13. 
The reader may easily verify that  they agree with the homotopy definitions. 

Sequence 3 is essentially Haefliger [5; 1.91 where the homomorphisms 
were defined directly (w3[f ] = [f ] and 9, is induced by SnfqcS"+q+lc . .). 

w,: Let f:S" -Snfqbe a P-embedding, then s, o (f x id): S" x D" SS"+q+s 
represents w,[ f 1. 

w1: w1[f I = [ f  I. 
91: 9 l [ f  I = [ f  I 5'" x {O)]. 
9,: Let [f,] E T:,,(I'); f, is PD-isotopic to a PL-embedding by White-
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head [46]. 94[fol = [f,]. 
w,: Same formula as o,. 
8,: Let [f ] E Ti,,; the obstuction to trivialising the  normal block bundle 

N 

of f is an element of n,-,(PL,) E Fr:-,, which determines a,[ f ] E r:-,. 
We have neglected to describe a,: Ti,, -C:-, since i t  is complicated; but 

the reader may do so by studying the composition - N N 

Tl,, E n"( T/TP+s,a)  5 r,(pDq,a, PDq) --) ~ , ( [ 7 q )E ' 2 - 1  . 
Remarks. ( 1) In 8 5 for q + s > n + 1, we will give another interpre- 

tation of (2.1). 
( 2 ) From 2.13 and 2.10, we have Ti,, E Tl,,(C) and T,P,s(r) r T:,$ @ rX 

for 2q > n + 3. 
The case s = 1. Let A: c Ti,, denote the  subgroup whose elements are 

represented by (PL-) embeddings f: S" x Dl -- Sn+"+'such tha t  

f 1 :  Snx {+I)-sn+r++'  - f(snx {-I)) 

is null-homotopic (i.e., the second linking class of f 1 Snx Sois zero cf. [39]). 

THEOREM2.14. There i s  a braid 

T;,l(17) A", 

PROOF. It suffices to show tha t  A: r x,(n',). But clearly A: = ker P, 
where PI: Ti,, -n,(Sq) is the  homomorphism given by P (in the proof of 2.6) 
and 2.12, so the  result follows from 2.6 and 2.7. (Notice tha t  sequence 2 is 
isomorphic with the top sequence of 2.7.) 

We now give a direct description of the  homomorphisms of 2.14. 
o,, q,, and a, were described in 2.13, and y, has the same formula 

(SO o3= qlolis 'suspension' induced by the inclusion Sm+qcSniq+'). Using 
the isomorphisms xn(Sq) E x,(Vqil,,) r Ti,l(C),o1and o, were described also 
in 2.13. q, is the projection of Ti,, G x,(Sq) @ A: on A:. This is described 
by altering a representative f: Snx Dl- S"+qfl by introducing a 'local twist' 
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by an element a E ?r,(Sq)(i.e., replace [f ] by [f ] + w,(a))so tha t  the  second 
linking class of flI S" x S V s  zero. 

Since A", T:,,, a, defines a,. Also, since sequences 1and 2 split, 3, = d, = 0. 
So i t  remains to describe q,.Notice that ,  by the  above discussion, A: can also 
be defined as equivalence classes [f I/- of [f ] E Ti,, where [f,] - [f,] if they 
differ by a local twist. Now since the normal bundle of h ([h] E I?:+') is easily 
seen to be fibre homotopy trivial (cf. [3]), i t  admits a never-zero section, and 
this determines a line subbundle and hence, on triangulating, an equivalence 
class in A", Moreover any two sections differ, up to homotopy of sections, by 
a local twist, and hence this is well-defined. 

Remark. Sequence 3 is a geometrical version of Haefliger's suspension 
sequence I?: -- rq+'-- n,(F,, G,) --, defined in [5] for q > 2. 

Geometrical interpretations of rc,(G,+,, G,) and nn(Fq,G,) for q > 2. By 
combining several results of this section we have 

COROLLARY2.15. F o r  q > 2, there a re  isomorplzisms 

nn(Gq+l,Gq) Ti,, 
rcn(Fq,G,) = A: . 

We now give another geometrical interpretation of these groups. Denote 
by Ernb (I", Inx Cq) the set of equivalence classes of proper embeddings 
f:In-I"x 2 9  such that  f 1 in= identification: f"  -- f n  x {(I ,0, ..., 0)) 
under the equivalence of isotopy mod in.Now let a: I "  x I' -- Inx Iqil 
represent an element of nn(vq-,,,),o, = a I "  x ((1, 0, .. , 0)) determines an 
element @[a]E Emb(In,I "  x 2 g ) .  Moreover, if .r represents the same homotopy 
element, then a, and .rl are concordant mod i n ,  and hence isotopic mod f"  by 
Hudson [16]. So @ is well-defined. 

PROPOSITION2.16. @: rc,(v,+,,,)--+ Ernb ( I n ,I "  x Cq) i s  a bijection for 
q > 2. 

PROOF.Consider the set Ernb (Inx Cn,Inx Cq) of isotopy classes of 
proper embeddings mod f n  x C" Restriction again gives a well-defined 
function a,:?r,(vq+,,,)-+Ernb ( I "  x CO,I" x C" which is a bijection by the 
Lickorish cone unknotting theorem [29]. Restriction gives a function 
a,:Ernb ( I "  x CO,I "  x C" -+ Ernb ( I n ,I"x C" and, since @ = @,al,we have 
to prove tha t  @, is a bijection. This follows a t  once from the  following 
lemma and Zeeman's unknotting theorem 0.8. 

LEMMA2.17. Let f:In-+ I "  x 2, represent a n  element of Ernb ( I n ,I"x Cq), 
and let N be a regular neighbourhood of f(I")i n  Inx Cq which meets the 
boundary regularly. Then cl ( I"  x C" N )  i s  a n  (n  + q)-ball. 
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PROOF. It is easily proved that  Q = (NU En-' x Iq+')is a regular neigh- 
bourhood of f (I")  in C"+q, and hence is an ( n  + q)-ball by 149; Th. 51. But 
cl (Inx Cq- N) = c1 (En+, - Q), and so the result is just [49; Th. 21. 

COROLLARY For  q > 2, there are  bijections 2.18. 

TI:Emb ( I n ,  I" x Cq)-n,(G,,,, G,) 

T,: SEmb ( I n ,  I" x Cq)-n,(F,, G,) , 

where SEmb ( ) denotes the subset of embeddings, homotopic mod f" to the 
standard errzbedding. 

PROOF.Tl is the composition of 2.16, 2.4 and 1.11. T, is the restriction 
of TIon noticing that  SEmb ( ) is precisely the subset corresponding to the 
kernel of ,El' in (2.7). 

Remarks. ( 1) There is a cobordism interpretation of n,(Gq+,, G,) proved 
in an analogous way to 1.6; namely, as the set of framed cobordism classes of 
framed proper n-submanifolds of Inx Cq with boundary in C"-' x Cq-'. NOW a 
representative f:In- In x Cq of an element of Emb ( In ,  I "  x C" gives an 
essentially unique framed submanifold (f(I"), F) of Inx Cq such that  the 
framing F I C";' is standard. This determines a function Emb (I", I"x Cq) -* 
nn(Gq,,, G,) which can be verified to coincide with TI. In fact, using this 
interpretation of T I ,  one can prove directly that  i t  is a bijection using framed 
surgery, d la  Levine [28], Haefliger [5]. This proves directly Theorem 1.11 
for r = 1(from which the general case follows), implying the stability of P i ,  
and thus gives a different approach to 99  1and 2. 

( 2 ) Using 2.18, i t  is a direct corollary of Zeeman's unknotting theorem 
149, Ch. 81 that  n,(F,, G,) = 0 for 2q > n + 2. This gives an alternative 
geometric proof of the result of James used in 2.9. 

( 3 ) Composition of the isomorphism of 2.15 with the boundary map 
Ti,' -* nn(Gqil, G,) -* T~-~(G, )measures the precise obstruction to fibre 
homotopy trivialization of the normal block bundle of an element of T:,, 
(cf. [3] and 137; 5.81 for the associated fibre space to a block bundle). This 
follows from the naturality of the isomorphism 1.11, [37; 5.81 and the inter- 
pretation of (2.14) 3,. A similar remark applies to T:,,. 

3. The suspension sequences 

In  this section we study a P L  analogue of (2.1) when s = 1, namely the 
N N 

braid of the square (*,) - (PL,,,; PL,-,,,, PL,+,(I); PL,+,,,(I)). 

PROPOSITION The sequence 2 of (3.1) is isomorphic with sequence 2 3.2. 
of (2.1), and hence with sequence 2 of (2.14). 



BLOCK BUNDLES: I11 

PROOF. Consider the commutative diagram 

where (*:) denotes the PD analogue of (*,), and the vertical maps are all 
induced by inclusion. I t  follows from 0.2 that  the top sequence of (3.3) is 
isomorphic with 2 of (3.1) in a natural way. By 2.2 and 0.2, j, is an iso-
morphism. Now let a:PL,+,(I)-S(6)be defined by restricting okE PLq+,(I) 
to Ak x ((1,0, . -,O)), and projecting on S,; (S(S9)denotes the (PL-) singular 
complex of Sq). One easily checks that  a is a fibration with fibre homotopy 
equivalent to PL,-,,,(I) (use the homotopy equivalences 'cone7 and 'bdry7 
of 0.3). Hence there is an isomorphism rn(PLq+,(I) ,PL,+,,,(I))- rn(Sq),and 
one can check that  the composition 

is the identity, and consequently j, is an isomorphism. The proposition now 
follows by the 5-lemma. 

COROLLARY3.4. There are isomorphisms 
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PROOF. ( i ) From the homotopy equivalence h: PL,-,,,(I) -PL,(R) 
N N 

(see 0.12) we have n,(PL,+,(R), PL,(R)) = x,(PLq+,, PL,+,,,(I)), and the result 
now follows from the fact that  sequence 1 in (3.1) splits (since sequence 2 
does by 3.2). Then (ii) and (iii) both follow from h, the isomorphism j, (in 3.3) 
and the braid of the square (PD,-,(I); PD,+,,,(I), 0, .,; 0,). 

Remark. From 3.4 (ii) one can recover easily part of Browder's result [2] 
namely that  ?r,(PL,(R), PLq(I))  # 0 for some n,  q. (PL,(I) is identified as a sub- 
complex of PL,(R) by either 'int' or 'collar', see § 0). For, suppose that  this 
group is always zero, then the exact sequence of the triple 0,cPD, cPD,(R) 
and 0.2 implies that  ?r,(PD,(R), 0,)= ?r,(PD,(I), 0,); but, by 3.4 (ii), this is 
r x,(PD,+,(I), O,,,). Hence all these groups must be zero, which is well- 
known to be false (e.g., by Hirsch [14] n,(PD(R), 0)= I?,). 

This implies either the existence of an R"-bundle containing no Dn-bundle, 
or an Rn-bundle containing two inequivalent Dn-bundles, both occur, see 
Browder [2] and Varadarajan [44]. Varadarajan's work is only for the 
topological case; Lashof has similar results in the P L  case. 

Definitions. Denote by E:(I) the set of concordance classes of closed 
tubes on 2" in Cn+q (i.e., a representative is an embedding f: E ( f )- C"-q 
where tq/Cn is an Iq-bundle with zero section 2" and f 1 C" = id, f, - f, if 
there is F:E(7)-Cn+qx I where 7°C" ,: I is an (F,0)-bundle, F 1 C" ,: I = id, 
and f, = (F1 E ( 7  1 Cn x {i}))0 g,, i = 0, 1, where g, is an (I,, 0)-bundle isomor- 
phism). Similarly denote by E;(R) the set of concordance classes of open 
tubes on C" in En+,, (Compare also [37, 9 51). 

Let T:,,(R) denote the set of concordance classes of embeddings of 
C" x I" in Cn+qTWith an open normal tube. More precisely, a representative 
is an embedding f:E(t)-2%-q+"here s'q/Cn x 1"s an (Rq, ,)-bundle and 
f 2 "  x (0) = id; f, - f, if there is an embedding F: E(7)-Cn+"-"x I where 
7q/C" x IS x I is an (Rq, 0)-bundle, F Cn x I" x {i) = f, 1 i = 0, 1, F Cn x 
{0) x I = id, and f, = (Fi E ( 7  2" x I, x {i))) g, where g, is an (Rq, 0)-bundle 0 


isomorphism, i = 0, 1. 

PROPOSITION There are bijections 3.5. 

( i - PL,(R))E~(R)n n ( m ~ ) ,  
N 

( i i )  E:(I) r n,(PL,, PLq(I))  
N 

(iii) T:JR) T ~ ( P L ~ - ~ ( R ) ,PLq(R)). 
PROOF. (i) and (ii) follow from [37; 5.61, or can easily be proved directly 

as in 1.3, etc. 
For (iii), define the simplicia1 set ~,+,,,(Rq) to be the quotient set of 

N 

PL,+,(R) under the equivalence o,k - a: if 
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( i )  a , lAk x R" ao,IAkx Rs, and 
(ii) a;'. a,: (Ak x R" x Rq3 is an Rq-bundle isomorphism (i.e., is fibre 

preserving). 
Now a variant on the usual argument (1.3, etc.) shows that  T:,,(R) r 

N -
r,(pq+,,,(Rq)), but there is an obvious fibration PLq+,(R) --,V,+,,, (Rq), with 
fibre F having typical k-simplex a self isomorphism of the trivial (Rq, 0)-bundle 
(Akx R" x Rq. Since Ak is a deformation retract of Ak x R; F is homotopy 
equivalent to PLq(R). The result follows. 

Combining (3.1), 3.2, and 3.5, we have 

THEOREM3.6. There i s  a braid 

( in  which P, i s  the splitting i n  2.14). 

COROLLARY3.7. ( i ) there i s  a n  isomorphism T:,,(R) rE:+'(I)@ n,(Sq). 
( i i )  For  2q > n + 3, there i s  a n  isomorphism E:(R) r E;+'(I). 
(iii) For  2q = n + 3, o,:E:(R) -EXL'(I)i s  a n  epimorphism. 
PROOF. (i) follows from the splitting of sequence 1 in 3.6; (ii) and (iii) 

follow from exactness of sequence 3 and 2.9 (i). 
We now give direct descriptions of those homomorphisms in 3.6 which 

have not already been described (in 2.14). 
a,:Let f: E(l)-Xn+"epresent an element of E:(R), and let 

c: x n t "  1 1  -X"fq+l 

be the standard collar, then the embedding f,: E ( E )  x I' -Znfqt' defined by 

f,(x, Y) = c(f  ( 4 ,  Y) represents a4[fI T:,l(R). 
y,: simply forgets the normal tube. 
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w,: is given by local twisting (cf. remarks in 2.14). 
y,: Let f:E(E)-I;"+"1represent an element of T;,,(R). Then s" is equiva- 

lent to (E I I;") x I' hence 5 is contained fibrewise in 7 = (5 1 Cn)@ E'. But by 
the results of Kuiper-Lashof and Hirsch quoted in 0.12, 7 contains a well- 
defined disc bundle p (essentially cone on (E + "..")). q,[f] = [p]. 

q,: This is very similar to y, in 2.14. Let E be a disc bundle on 2"  in 
I;"+,+'.E is easily proved to be fibre homotopy trivial, and hence possesses 
a never-zero section. By 0.3 (the homotopy equivalences 'cone' and 'bdry'), 
this determines a line subbundle and hence an equivalence class in A:. As 
before, since two sections differ up to homotopy by a local twist, this is well- 
defined. (Compare also § 4). 

a,: Since A: c T;,,, we only have to define a,. This is very similar to 3, 
in 2.13. The normal block bundle determines an element of FE;-,(R) by 1.3. 
Forgetting structure gives the required element of E;_,(R). 

Remark. By exactness of sequence 4, a ,  and d ,  measure the obstruction 
to an element of Ti,, or AP, possessing a normal plane (or micro-) bundle. 

THEOREM3.8. There i s  a diagram, commutative up to sign, 

1

T;+,,, - FC; FC;-' -T;,, --

811I" 
0 1  

Iu 2
A;+, - c; - C;+l - AP, -

I1 
W2 

1 1  3 
A:+, - r: rP,+,- AP, --

I I a31 

W3 

p a l  1 

A",;, -E;(R) -E;+'(I)- AP, -

i n  which the rows are  exact. 

PROOF. Sequence 2 is isomorphic with the exact sequence of the diagram 

P D  3PD,+, 3PD, 
U U U 
0 3 o,,, 3 0, 

using 1.12 and 2.14. Sequence 1comes from the diagram obtained from the 
above by replacing O,,, and 0, by * and using 1.14 and 2.12. Sequence 3 is 3 
of 2.14 and sequence 4 is 3 of 3.6. Vertical maps are all induced on homotopy 
level by inclusion. Commutativity follows from definition. 

The new horizontal homomorphisms in 3.8 have similar interpretations 
to the old ones (e.g., w, and w, are 'suspension'). The vertical ones are inter- 
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preted as follows: a,, a,, PI, P, all forget structure. a,, P, forget structure 
in the normal bundle (after triangulating and isotoping the zero-section to 
standard position). 

COROLLARY E;(I) E I'3, @ E,2(R)3.9. 
PROOF. This follows from sequences 3 and 4 of 3.8, when q = 2, using 

the fact that  I?", 0 (Wall [45]). 
Remarks. ( 1) rj r Z,, (cf. Haefliger [5]), so that  E,3(I)has non-zero 

torsion. 
( 2 ) The case q = 1of diagram 3.8 is uninteresting since E$(R) and I?', 

are both zero by uniqueness of collars, so that  E,'(I)E I?", 0. 

COROLLARY3.10. Let f :  S"-S"-9 represent a n  element of C:" o r  I?:-', 
and suppose that f i s  not compressible (i.e., [f ] G im o, or im o,).Then the 
normal bundle off i s  non-standard a s  a P L  disc bundle. 

PROOF. By exactness of 2 (or 3) the image of [f ] in A: is non-zero and 
by commutativity the image in EiT1(I)is non-zero. The result follows from 
the interpretation of the homomorphisms. 

Remark. Corollary 3.10 recovers a result of Hirsch [ I l l .  In fact, we 
can easily interpret mapping to zero in A: as  'having an engulfable section' 
(compare interpretation of y ~ ,in 3.6), and hence we recover the main result 
of [ l l ] ,  namely an embedding is compressible if and only if its normal bundle 
possesses an engulfable section. By chasing diagram 3.8, we also have, (cf. 
Kervaire [22]). 

COROLLARY Suppose f:Sn-Satqrepresents a n  element of or3.11. C: 
I?: whose suspension i s  trivial (i.e., w, or o, [ f ]  = 0). Tlzen f has trivial 
normal bundle, i n  particular,  by 2.10, any element of C: has trivial normal 
bundleif 29 > n + 1. 

Remarks. ( 1) From Corollary 3.9 and 3.11, the generator a of C,"r I?; z Z 
(cf. Haefliger [4]) has trivial normal bundle which is non-standard as a (PL) 
disc bundle, and hence by the usual construction (Hirsch [ I l l ) ,  there is a P L  
embedding 2' c M7 with no normal P L  disc bundle. ( I t  is unknown whether 
the image of a in E,3(R)is nontrivial)'. See Theorem 5.20 for an immersion 
Z 4c E7 with no normal (PL) disc bundle. 

( 2 ) Any two of the sequences 2 ,3 ,  and 4 in 3.8 may be embedded in a 
braid. Sequences 2 and 3 fit in a braid with sixth term r,. Sequences 3 and 

M. W. Hirsch has recently proved tha t  u survives in E,"(R),thus C 4c C7 and C4 E C7 

(Theorem 5.20) have no normal plane or micro-bundles; i t  is unknown whether these 
embeddings have topological normal microbundles. Note t h a t  the  double of M7 can be 
identified with the boundary of a regular neighbourhood of C4 x I in C6, and hence is 
homeomorphic to C4 x C3. 
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4 fit in a braid with sixth term ( P D q ( R ) ,0 E ( P D q + ( I )  O  1  and 
sequences 2 and 4 fit in a braid with sixth term n,(PD(I); 0 ,  PD,+,(I)) S' 

nn(PD(R); 0 ,  PDq(R)). We leave the reader to make geometric interpretations. -In [39] we gave an example of an embedding f: 219x I1 ZZ9 having no 
open normal bundle. Thus by exactness of sequence 4 of 3.6, we see that  a,, 
and hence a,, is non-zero for n = 19, q = 9; and from commutativity of 3.8, 
we have an element a E FC; with zero image in FC,l,o and non-zero image in 
EQ,(R). In fact, using the topological thesis of [39], we can do better than 
this. Denote by E:(R, Top) the set of topological concordance classes of 
topological open tubes on Zn in 2"+q (defined in a similar way to E:(R)). -
There is an obvious function E:(R) E:(R, Top). 

THEOREM3.12. There i s  a n  element a E FC,", which maps trivially to 
FC;, but non-trivially to E;(R, Top). (Hence using the 'Kister-Mazur' 
theorem [24], we have the result stated i n  the introduction.) 

PROOF.Let [f ] E A:, be the element given by [39]. Let a be the image 
of [f ] in PCP,. We have to show that the image of [f ] in EP,(R, Top) is non- 
trivial. Now let f,:218x R9-2" represent the image of [f ] in FEP,(R); (f, 
is obtained from the normal block bundle off by 1.3 and 1.2). We may assume 
that  f1(Zls x R9)= 218x R9 (which, throughout the proof, we identify as  a 
subset of 2" via the standard inclusion), and then Mfs = Z? x R9U f,Z!!x Rg 
may be identified with the total space of an (open) normal block bundle on f 
restricted to f (Z19x (0)). 

We have to prove that  f, is not topologically concordant (fixing 2" x I) 
to an embedding f, such that  f,(218x R9)= Zls x Rg and f, is fibre-preserving. 
(Note that  M18 = Z:9 x Rg u f2 219 x R9 is the total space of an (Rq, 0)-bundle 
over XI9). Suppose that  F:218x R9x I- 2" x I is such a concordance, then 
we may assume that  F(21sx R9 x I)c 218x R9 x I. By the formula below, 
there is a topological embedding e: M18 -Mf8 such that  e 1 Z19= id, thus e 
gives a topological normal (Rq, 0)-bundle on 2l9in Mf8, contradicting [39]. To 
define e, choose a collar 2" x I of C.? and define e = id on 

(2: x R9)U (2: - collar) x R9 

and e = (f;' x id). F o n  21s x R9 x I. 

4. Sections of a block bundle and links of spheres 

A never-zero section, or just "section", of a q-block bundle tq /K (where 
K is a locally finite P L  cell complex, see [37; notation]) is an embedding 
s: K -+ E(E)satisfying 

( i )  s (K)  n K =  0,and 
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( i i )  s respects blocks, i.e., for each cell oi  E K, sxl(Pi(E))= oi.  

Sections so, s, are homotopic if there is a section S of 5 x I (see [37; $11) 
such tha t  S 1 K x {i} = si, i = 0, 1. There are very similar definitions of sec- 
tions of block bundles with fibres Rq and Cq-I (see [37; $ 51 for definitions) 
except tha t  condition (i) is vacuous for sphere bloc? bundles. 

A proper section also satisfies 
(iii) s (K)  n E(6)= 0, 

where 6 denotes, a s  usual, the boundary sphere block bundle. At  the other 
extreme, a spherical section is a section of 6 .  

Note that  there is nothing to prevent a section from being "knotted" if 
q = 2, so in order to give a sensible theory of sections we will insist throughout 
this section that  q > 2 (and for spherical sections that  q > 3). 

We now give a "theoryy' of proper and spherical sections of a block bundle 
analogous to [37; $ I]. Block bundles with section (to, so), (El, sl) are isomorphic 
if there is an isomorphism 1%:E(Eo)-E(5,) such that  hs, = s,. The standard 
proper section of @/K, where &"denotes as usual the trivial block bundle, is 
given by id: K -  K x {*) where * E F is the point (112, 0, . - e l  O), and the 
standard spherical section is given by id: K -  K x *(E) where *(2)= 

(1, 0, ...,0). The trivial block bundle with standard sections are denoted 
(~9 ,*), (EP,*(z))respectively. A block bundle with proper (resp. spherical) 
section is tr ivial  if is isomorphic with (cq, *) (resp. ( ~ q ,  *(E))). 

We have the analogue of [37; Prop. 1.3*]; 

PROPOSITION Suppose K 1 E Inand K has just one n-cell on.  Let 4.1. I 
an-' be any (n  - 1)-cell i n  K,  and let L be the subcomplex of K consisting 
of all cells except on and an-'. Suppose given a proper (resp. spherical) 
section s of t q /K  and a trivialixation t: E((Eq, s) / L)  -E((cq, *)/L) (resp. 
E ( ( E ~ ,*(E))/L)), then t extends to a trivialixation of (Eq, s) provided that q >2 

(resp. q > 3). 
PROOF. This follows from the concordance extension Theorem 0.6. To 

see this for the case of a proper section, notice that  there is a homeomorphism 
g: on-' x I- on  such that  g / on-' x {I)  = id. Using t and [37; 1.31, g extends 
to a homeomorphism g': E(E / on-') x I- E(5) such that  g' I E(5 I an-')x {l)= id, 
g'(E(5 / 6%-') x I U E(5  / on-') x {0)) = E(E / L), and (9')-'sg is a section of 
(6 I on-') x I. (g')-'sg is now a concordance in E(t I on-') x I. For the case 
of a spherical section, one uses a similar argument restricting attention to 

E(i). 
Remark 4.2. Using the methods of [37, $ I], we can now prove that  any 

block bundle with proper or spherical section admits charts, that  homotopic 
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proper (or spherical) sections are isomorphic, and that  we can subdivide or 
amalgamate block bundles with proper or spherical sections. We also deduce 
that  there is a well-defined bijection between homotopy classes of sections 
(or spherical sections) of equivalent block bundles. (Note that  (as is trivially 
proved) any section is homotopic to a proper section). 

Now let L, (resp. L,(;)) denote the A-set of which a typical k-simplex is a 
proper (resp. spherical) section of &,/Ak. L, and L,(B) are pointed by the standard 

N 

sections. There are projections n: PL, -L, (resp. ~ ( 2 ) :~ 7 , ( 2 )-- L,(2)) got by 
restricting to Ak x {*) (resp. Ak x *(2)), which may be proved to be fibrations 

using 0.6, by a similar proof to 4.1. The fibres are clearly P~L,and ~ 7 , ( 2 , )  
respectively. We record for future reference 

PROPOSITION There a re  isomorphisms 4.3. 

Now let 5°K be a block bundle and K k  an  ordered simplicia1 complex. 
We form the associated L,k (resp. Lt(2))-bundle, denoted S(6) (resp. S(i)) ,  with 
base K in an analogous way to [37; § 31. For example, an r-simplex of S(5) is 
a proper section s: or -E(5 1 a'), where o r  is an r-simplex of K. It is immediate 
that  there is a bijection between proper (resp. spherical) sections of Eq/K and 
cross-sections of S(5) (resp. S(i)) ,  and hence we have obstruction theories for 
a block bundle to admit a section or spherical section with coefficients in n,(L,), 
n,(L,(2)) respectively. 

Remark 4.4. L,(R) is defined in an analogous way to L,, and there is an  

analogous fibration E ( R , )  c %(R) -L,(R) (q > 2 as  usual). There is 
an obvious inclusion L, c L,(R) induced by Iqc Rq,and this is easily seen to 
be a homotopy equivalence. It follows that  the theories of block bundles 
with section and open block bundles with section coincide, and that  there is 

N N 

a homotopy eqivalence P,  L, r PL,(R,) for q > 2. 
We now seek a criterion for a block bundle with section to "split" a line 

subbundle. A proper (resp. spherical) section s of 5°K is said to split if there 
is an isomorphism onto a subbundle (see [38, 9 41) h: E(cl/K) -E(iq/K) such 
that  h I K x {1/2) (resp. h 1 K x {I)) = s. 

Next note that  there are projections p: vq,,-L,, p(Z): P,,,--tL,(B) defined 
by restriction to Ak x {1/2) and Ak x (1) c Ak x I' respectively. That p and 
p(2) are fibrations for q > 2, q > 3 respectively, follows as usual from 0.6. 

PROPOSITION p(2) i s  a homotopy equivalence for q > 3.4.5. 

PROOF. This is just a restatement of 2.16. 
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N 

COROLLARY z q ( 8 , )  i s  homotopy equivalent to PLqp1 for q > 3.4.6. 
PROOF.This follows from 4.3, 4.5, 2.4, and 5-lemma. 
Now let t q / K  be a q-block bundle and K an ordered simplicia1 complex. 

Let ~ ' ( 6 )  denote the associated p:,-bundle (see [38; $5]), then there are pro- 
jections p*: ~ ' ( i )-S(i)and p@)*: &'(:) -s(&induced by p and p@). It is 
immediate that  a proper (resp. spherical) section of s' splits if and only if the 
corresponding cross-section of S(f ) (resp. S(i))lifts to a cross-section of ~ ' ( c ) .  
Hence we have an obstruction theory for a proper (resp. spherical) section 
to split, with coefficients in the fibre of p (resp. ~ ( 2 ) ) .We deduce a t  once 
from 4.5 

COROLLARY A spherical section splits a lirte subbundle which i s  4.7. 
unique u p  to concordance (q > 3). 

We also have 

COROLLARY A proper section splits a line subbundle if and  only if4.8. 
i t  i s  homotopic to a spherical section (q > 3). 

PROOF. If a section splits, then i t  is homotopic to a spherical section by 
sliding along the line subbundle. Conversely, if a proper section is homotopic 
to a spherical section, then, sliding down the line subbundle given by 4.7, i t  
is homotopic to a proper section which splits. Hence by Remark 4.2, i t  is iso- 
morphic to a proper section which splits, and hence splits itself. 

The rest of the section is devoted to a study of the fibration p: pq,,-L,, 
which, by the above, is crucial to the theory of sections and splittings. We 
first examine p, in the metastable range. 

THEOREM4.9. --.7cn(Lq) is p,: 7cn(pq,,) 
( i ) a n  epimorphism if 29 > n + 3, and 
(ii) a n  isomorphism if 29 > n + 4. 

COROLLARY4.10. If 29 > n + 3, then any proper section of 6q/K, 
dim K = n ,  splits a line subbundle, and if 29 > n + 4, this subbundle i s  
unique u p  to a concordance which keeps the section fixed. 

PROOFOF 4.9. ( i ) Let s: An x (112)-A" x F represent an  element of 
zn(Lq) ,  and t: An x 11-An x IQbe the  standard line subbundle. We can 
extend s u t to an embedding t, of An x [O, 1/21 such tha t  t, / An x {0}= id by 
,[36; Th. 21 and (cf. [36; 4(c)]) we may assume tha t  

tl(int (A. x [0, 1/21)) c int (A" x Iq). 
Now let N be a regular neighbourhood of 

t,(An x [O, 1/21) mod tl(An x ({O) u (112)) 
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in An x Iqwhich meets a(An x Iq)in some standard neighbourhood. By 
existence and uniqueness of PL-collars [47, 191, we can prove as in [38; 1.51 
that  cl (An x Iq- N) E An x jqx I in a block respecting fashion (and standard 
over A"). This collar enables t, to be extended to the required line subbundle. 
Par t  (ii) is proved in an  analogous way. 

Remark 4.11. Using the full strength of [36; Th. 21 one can prove in a 
similar way that  any section (not necessarily proper) "splits" for 2q > n + 3, 
in the sense that  i t  is a section of a line subbundle (and also a similar 
uniqueness result using [36; Th. 31). 

Now let STq-, denote the A-set of which a k-simpIex is a block-respecting 
embedding o:A" x [O, 1/21 -A" x Iqsuch that  o 1 A" x ({0)U {1/2))= id, and 
o is disjoint from A" x 1,. By the argument in the second half of the proof 
of 4.9 (i), the fibre of p is homotopy equivalent to ST,-,, consequently there 
is an exact sequence 

We seek to interpret (4.12) geometrically, and we remark that  by 4.3,2.4, 
and the naturality of all the maps, this sequence is isomorphic with the exact 

N N N 

sequence of the triple PL,-, c P,  L, c PL,. A general position argument easily 
proves that  n,(L,) = 0 (recall that  q > 2), hence L, is n-simple. But n,(L,) r 
[En; L,] may be identified with homotopy classes of sections of the trivial block 
bundle &"Z", where En has the standard cell structure (see 0). Given a 
section s ,  define an embedding f:E" x 31- En+, by f(x, 0) = i(x, O), and 
f(x, 1)= i 0 s(x) where i: Z" x Iq-Znfq is the standard inclusion. Denote 
the set of concordance classes of links (PL-embeddings C" x o'I- Z"+q by 
L", then we have a well-defined function q:n,(L,) -- L:. 

THEOREM4.13. !I?i s  a bijection (q > 2). 
PROOF.?V. i s  onto. Let f:En x o'I--En+"e a link. By Zeeman [47], we 

may assume that  f 12" x {0) is standard. Since any two embeddings of a disc 
are isotopic, we may further assume using 0.7 that  f I EI1. x {I} coincides with 
the standard section over C . 5  It remains to modify f12: x {I) by isotoping 
into i(C> IF) .But the complement C of i(Z", I q )  is a regular neighbour- 
hood of X = f(2" 31) u i(x, x [O, 1/21) mod f(Em-' x a I ) ,  where x, is an  
interior point of E?,  and by general position f ( int (2: x {I)) may be assumed 
not to meet X ,  and hence i t  may be assumed not to meet the regular neigh- 
bourhood C of X [17]. 

T i s  1-1. We are given a concordance F:Z" x o'Ix I- En+qx I such 
tha t  F I En x {0}x {i} is standard, i = 0 , 1 ,  and such that  F I E "  x {I} x {i}, 
i = 0 , 1 ,  are sections of &4/En x {i), which are standard over C h  {i). We 
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have to show that  these sections are homotopic. By 0.6 we can find a homeo- 
morphism H: En+qx I 3  such that  HFI En x (0) x I is standard, and by 0.10 
we may assume tha t  H I Cntqx I= id. Thus we may assume that  F / 8"x {0)x I 
is standard. In  Entq x I span the circle 

i(x, x [O, 1/21 x I)U x, x I u ~ ( x ,x {I)  x I) 

by a 2-disc Q with int  Q c int Cn-9 x I ,  and disjoint from the image of F 
(by general position). Define P, = regular neighbourhood of 

Q u 2 9  I 	u F ( C x  {I} x I)u i ( C 3  Iqx a I )  mod (C: x I) 
u F ( C ~{I} x I)u (CI (zmfq- 2 3  xq) x ar) , 

then this will be an ( n  + q)-ball (see [17]) and will form one block of a block 
bundle of which F defines a section, namely the block over 2" I. Now in 
cl (b,- a ( X n f q  x I))we can define a block bundle over C"-' x I of which F 
defines a section by induction on n ,  since this is (PL) homeomorphic to  
Cn'q-' x I. Finally we define the block ,B, over Cnr x 1 by excluding a suitable 
relative regular neighbourhood, much as in the first part. 

Now by [37; 4.41 we may assume that  this block bundle over Cn x I is 
standard, and then the required sections are homotopic, completing the 
proof. 

By general position argument, we again have that  x,(STq) = 0 for q > 2, 
hence nn(STq) may be identified (using our previous discussion) with the set 
of (concordance classes of) splittings of (sq, *)/Cn. Define ST:,, to be the set 
of concordance classes of ribbons f:C" x I-Cn-9-l such that  f lEn x {0}= id, 
and f 1 Cn x {1}= *, where a concordance is required to preserve the boundary. 
The above remarks define (after identifying I with [O, 1/21) a function 

@: nn(STq)-ST:,, . 
PROPOSITION cD i s  a bijection (q > 2).4.14. 
PROOF.@ is onto. Given a ribbon f: Cn x I- 2"'-q+' with standard 

boundary, we will prove that  f is isotopic keeping the boundary fixed to a 
ribbon contained in a block-wise manner in sq+'/An, and hence is in the image 
of a). f ({x,} x I)is isotopic to standard position with interior disjoint from 
f (Cn x 81) throughout, by general position, and since this may be taken to  
be an isotopy by moves (see [19]), i t  can be covered by an ambient isotopy 
keeping f(Cn x 8 I )  fixed. Thus we may assume that  f 1 {x,} x I is also 
standard. Define P, = a regular neighbourhood of f (2: x I)mod f (C", I) 
in Cn+q+l, and since 6,is also a regular neighbourhood of 

f ( 2 9  31 u {x,} x I)mod f (C", 81) 
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i t  is isotopic mod f (En x d I )  to i (X?  x Iq-l).Thus we have f ( Z 2  I) con-
tained in i ( E 2  Iq+l)and f(Z: x I) in the closure of the complement. By 
induction on n ,  we may assume that  f (En-' x I) is contained block-wise in 
~q+'/Z"-l, and then if we define 0,to  be the complement of P1U a suitable 
regular neighbourhood (as in 4.13), then we may assume that  ,B, = Z"_ 19" 

by uniqueness [17], completing the proof. 
@ i s  1-1. A very similar argument, the  crucial point being tha t  

F({x,} x I x I) is isotopic to standard position by general position (with 
interior disjoint from F ( E n  x d I  x I))which requires q > 2. 

Combining (4.12), 4.13, and 4.14, together with 2.12, we have 

THEOREM4.15. There i s  a n  exact sequence for q > 2 

The maps in 4.15 may be easily interpreted geometrically as  follows. 

o: forgets structure, 
y: restricts to the boundary, 
d: is defined by matching trivialisations of either half of the link (cf. 

proof of 4.13). 
We now observe that  both T:,, L:-' contain the direct summand rc,(Sq), 

on which e, is an isomorphism. The fact tha t  T:,, zA", nn,(S" was proved 
in fj 2. Let p: L:+' -n,(S" give the second linking class (see [39]) then P9i 
is the identity on nn(Sq), where i is the inclusion of n,(Sq) in T:,,, and con- 
sequently L:+' = N:+' @ n,(Sq), say, where N:+' denotes the kernel of p. 
N:-' can be described either as  the subgroup of Lit', whose second linking 
class is zero, or a s  the equivalence classes of L"," under 'local twisting.' 

As a consequence the obstructions for a (q + 1)-block bundle to admit a 
section (resp. spherical section or equivalently a line subbundle) split into 
two sets of obstructions. The first have coefficients in ni(Sq), and the second 
in N:+l (resp. A:). We will show tha t  the first set of obstructions are the 
obstructions for the associated fibre space (see [37; fj 51) to admit a cross-
section. Thus we may call the  obstructions respectively 'homotopy' obstruc- 
tions and 'geometrical' obstructions. 

Remarks. ( 1) Metastably the geometric obstructions are all zero (by 
4.9 and 2.9). Compare also Zeeman [49; Ch. 81 and Haefliger [6] for N: = 0 
metastably. 

( 2 ) N: and A: are not always zero (cf. fj 2 and Haefliger [6]) so that  the 
theory of sections of a block bundle differs from the theory of sections of a 
fibre bundle or fibre space (see below for more details), in which there are 
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only homotopy obstructions. 
Before connecting the homotopy obstructions with the associated Serre 

fibration, we give an example of a block bundle with section which does not 
split. 

Example 4.16. There is a section of E~+'/Z~"-' which does not split for s 
even and >1. 

PROOF. Using Theorem 4.15, and the isomorphism of 4.13, we have to 
show that  9:T,",_,,,-Liz ,  is not an epimorphism or equivalently, using the 
remarks below 4.15, that  9 I: A:,-, -N;,-fl is not epimorphic. But using 
results of Haefliger [5, 61 and Paechter [35] A,",_, E 2, if s - 2 (4) and is 
zero if s - 0 (4), whereas N;;., 2. 2 ,  and the result follows. 

Remark. The dimensions of these examples are critical for Theorem 4.9. 
Thus this result is best possible dimensionally. 

Sections of the associated Serre Jibration. Let Eq/K be a block bundle; 
denote by T:E(E)-- K the 'projection' given by collapsing (cf. 137; 5 4]), and 
let E,(E)= E(E)- K. In [37; § 51 we showed that  there was a fibre space 
p: G(E)-+K with fibre a homotopy (q - 1)-sphere and a homotopy equivalence 
g: E,(E)-- G(E) such that  

commutes up to homotopy. Now let s: K-- E,(E)be a map such that  s respects 
blocks, then i t  is easily seen that  rcs 2:1. Diagram (4.17) then shows that  
pgs 2: 1 and, by the homotopy lifting property of p, gs is homotopic to a 
cross-section of G(E). Conversely, given a cross-section of G(E) then the 
interpretation of G(E) given in [37; Remark a t  end of $51 gives us a block- 
respecting map s: K -E,(E). Thus we see that  the obstructions to finding a 
cross-section of G(E) coincide with the obstructions to finding such a block- 
respecting map. But these latter are trivially verified to coincide with the 
'homotopy' obstructions to a section or spherical section of E l  which gives us 
the required connection. 

Now let 7°K be a (PL) bundle with fibre Zq-I, Rq or Iq ,  and let Eq/K be 
the block bundle obtained from 7 via [37; 5.1 or 5.41. Then one has a diagram 
similar to (4.17) in which p is the projection of 7. The above discussion then 
holds in this case also, and we have an isomorphism between the obstruc- 
tions to finding a (never-zero) section of 7 and the homotopy obstructions to 
a section of E. 



468 ROURKE AND SANDERSON 

Summarising this discussion, we have 

THEOREM4.18. ( i )  T h e  homotopy obstructions to  a section of a block 
bundle  E q  coincide w i t h  the  obstructions to  a cross-section o f  the  associated 
S e r r e  jibration. 

(ii) If E comes f r o m  a PL-jibre bundle 7,  t h e n  t h e y  also coincide w i t h  
the  obstructions to  a never-zero section of  7. 

Now by the proofs of [37;5.1, 5.41, E(7) may be taken to be contained in 
a block-respecting fashion in E(E), thus a never-zero section of 7 gives a 
section of E .  Moreover if 7 is a Cq-'-bundle, then this section will be spherical, 
and if 7 is an Iq-bundle, then the Alexander trick (cf. 0.3) shows that  the 
section is homotopic to a spherical section. This proves 

COROLLARY4.19. ( i )  I f  E q  contains  a P L  bundle ,  t h e n  the geometric 
obstructions to  a section o f  E are  al l  zero; 

(ii) i f  E q  contains  a Cq-' or Iqbundle ,  t h e n  the geometric obstructions to  
a spherical section also van ish .  

Now let M" c QaLq be an embedding, and E a normal block bundle. 
Combining 4.19 with the discussion in [37,  $ 51 we have 

COROLLARY4.20. ( i )  If E has  non-zero geometric obstructions to a 
spherical section, t h e n  M h a s  n o  n o r m a l  disc  bundle in Q. 

(ii) If E has  non-zero geometric obstructions to  a section, t h e n  M has  
n o  n o r m a l  plane (or  micro- )  bundle  in Q. 

An in terpre ta t ion  of  sections. Let M" c Qa+q have normal block bundle E .  
We will interpret the existence of a section or spherical section of E or a cross- 
section of G(E). 

Dejini t ions .  We can homotope M o f  i t se l f  in Q if there is a homotopy 
H . M x  I - Q  such tha t  H I M  x { O ) = i d , a n d H ( M x  { t } ) n M = 0 , t f O .  
If H is also an isotopy, i.e., H 1 M x { t }is an embedding each t E I, then we 
can isotope M o f  i t se l f  in Q. If H is also an embedding, then we can 
th icken  M in Q. 

THEOREM4.21. ( i ) W e  c a n  homotope M o f  i t se l f  in Q i f  and  o n l y  i f  
G(E) has a cross-section. 

( i i )  W e  c a n  isotope M o f  i t se l f  in Q i f  a n d  o n l y  i f  E has  a section. 
(iii) W e  c a n  t h i c k e n  M in Q i f  a n d  on ly  i f  E has a spherical section. 
PROOF. Since a spherical section splits, (iii) is an easy consequence of the 

block bundle theorems [37,  $ 41 and the interpretation of Whitney sums given 
in [38, $41. Let K be the base complex of E ,  and suppose s: K -E,(E) is a 
block-respecting map. We will construct a map H: K x I-- E(E)x I such 
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tha t  H respects blocks of E x I ,  HI K x {0}= id, HI K x (1) = s and 
H(K x {t})c E(E) x I - K x I. If s is an  embedding, then H will be too. 
This will prove the 'if' parts of ( i )  and (ii) simultaneously. H is constructed 
by induction up the skeleton of K. Let atE K be a cell, and suppose H defined 
on 3 x I ,  we define H on o x I. Since we may choose a chart for E 1 a [37,1.4] 
we may suppose tha t  a = At and E / a G At x Iq.Let b E int At denote the 
barycentre. H is already defined on a(A x I)extend to the interior conewise 
using b x {0) as  vertex. 

If we can homotope M off itself in Q, then (4.17) gives a cross-section of 
G(E), so (i) is proved, and i t  remains to prove the 'only if' part of (ii). Let  
H: M x I- Q x I be an isotopy which carries M off itself, and let K be the 
base complex of E .  We show tha t  E x 10) can be extended to  a block bundle 
7/K x I on M x I in Q x I such that  H is a section of 7. [37, 1.101 will then 
prove that  E has a section. By Remark 4.2, E admits a section if and only if 
any block bundle equivalent to E admits a section. We may therefore suppose 
that  K comes from a handle decomposition of M (as in [37, 4.4]), and by a 
similar induction, to that  used in [37, 4.41, we only have to construct a block 
of 7 over a top dimensional cell of K x I ,  and this is easy by choosing a 
suitable relative regular neighbourhood. 

COROLLARY ( i ) itself in Q and M has4.22. if zue can hornotope M of 
a normal plane (or micro-) bundle i n  Q, then we can isotope M of itself 
i n  Q; 

(ii) if we can homotope M of itself i n  Q, and M has a normal disc 
bundle i n  Q, then we can thicken M i n  Q. 

Remark. Theorem 4.21 gives an obstruction theory for thickening a sub- 
manifold M of Q with coefficients in T C ~ ( ~ * , , ) .  Of course this generalises by a 
similar proof to give an obstruction theory for extending M to M x I' in Q 
with coefficients in T C ~ ( ~ * , ~ ) .  

Obstructions to normal plane (or micro-) bundles. To conclude this sec- 
tion, we give a short proof (additional to [39]) that  E:(R) # 0 for some n ,  q. 

This means that  the obstruction theory given in [37, 9 51 for the existence of 
normal plane and micro-bundles has non-zero coefficients. Let Eq/Cn be a normal 
plane bundle on Xn  in Cniq. There are no homotopy obstruction to a section of 
E, so by 4.18 (ii), E has a section (alternatively E is fibre-homotopy trivial, cf. 
[3], and so has a section). Now any two sections differ up to homotopy of 
sections by local twisting (since the obstructions lie in n,(Sq-I)). Thus the 
section and the zero-section give a link whose class in N: is well-defined. 
This gives a function p:E,P(R)-N:. p fits into a commutative diagram 
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in which the top sequence is sequence 3 of 3.6, 9 is the map in 4.15, and 
int is obtained by forgetting the boundary. Commutativity is easy by 
the interpretation of 9,.Now suppose that  E:-,(R) = Egt'(R) = 0; then 
(4.23) implies that  9 = 0. But [39, Th. B] showed that  the suspension 
C: N:-' -N:+' factors through 9 (cf. [39]), and using results of Haefliger [6] 
we can easily show that  2 # 0. By [6, 10.71 and the construction of [5, 8.121 
2 is isomorphic with i,: n,-,,,(O, 0,-,)-n,_,+,(O, 0,)for 39 - 6 2 n ,  and by 
calculations of Paechter [35], we have 

Example 4.24. E&+'(R) or E;Z1(R) is not zero if s is even and >3. 
Remark 4.25. p can be interpreted homotopically as  a homomorphism in 

the exact sequence 

N N 

since x,(PL,(R); PL,(R,), PL,(R)) sN: by 4.13, 4.4, and an argument 
similar to 2.6 or 3.2 (notice that  n,(PL,(R), PL,(R,)) z n,(Sq-') by the 
obstruction theory for sections of plane bundles, see also Kuiper-Lashof [26]). 

~ , ( Z , ( R , ) ,  PL,(R.)) can be interpreted as  E:(R,) the set of concordance 
classes of open tubes with a standard fixed section. Thus there is an exact 
sequence which fits in (4.23) to form a commuting diagram. The remaining 
map E:(R) --E;+'(R,) being interpreted as  adding a trivial line bundle. See 
5.15 for the complete diagram. 

5. Immersions of spheres in spheres 

In this section we interpret the braid of the triple (=R), Z q ( ~ ) ,PLq(R)) 
for q > 1. Before doing this, we prove in Theorem 5.1 a homotopy equivalence 

N 

between PL, and Haefliger's group lim,,, (PL,,,,,). This implies (see Remark 
5.6) that  the theory of block bundles is equivalent to Haefliger's theory of 
microbundle pairs. 

N 

THEOREM5.1. i,: n,(PL,+,,,) -~ , ( P L,,,,, (p)) i s  a n  isomorphism for 
s 2 n. 

PROOF. We use the differential (cf. Haefliger-Poenaru [9]) to construct 
a function d, in (5.2) below, which we will prove commutes. 
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j ,  is induced by the standard inclusion and is an isomorphism by 2.2 and 
an analogous proof to 0.3 (i). 

We define the differential in the form in which we will use it. Let 
N 

o E PLq(p) represent an element of n.(=,(p)), and suppose that  o is the 
identity in some neighbourhood of A". Define a,: R" x R" (in some neigh- 
bourhood of Rn  x (0)) to be a on A" x Rql and id elsewhere. Define 
a,: Rn  x Rq x R" 2 (in some neighbourhood of R" x (0) x R" to be a, x id. 
Define e: A" x R" R" -- R" x R" R" to be the embedding given by 
e(x, y, x) = (x + x, y, x). Then do = a: (i.e., do = e-'o,e, where all the maps 
are restricted to suitable neighbourhoods). 

Now any element of n , ( Z q ( p ) )  has a representative o which is the 
identity in a neighbourhood of A"; moreover given a concordance F between 
representatives a ,  T ,  we may easily replace F by a concordance which is the 
identity in a neighbourhood of A" x I, and by the trick of Haefliger [7, 8.11 
line 51 modified slightly, we may replace F by an isotopy having this property. 
Applying the differential to each level of this isotopy, we have an isotopy 
between da  and d ~ .  Thus we have a well-defined function d as  in (5.2) 

Commutativity of (5.2). We now prove that  (5.2) commutes. We will show 
that  e is isotopic via embeddings e, to the embedding el: A" x Rqx R" 9defined 
by el(%, y, x) = (x, y, -x); and e, satisfies e , ( ~ "  x (0) x R") c R" x (0) x R", and 
e, I A" x (0) x {0} is a proper embedding in A" x (0) x A". This means that  (oJet 
defines a homotopy in PLq+,,,(p) between do and o x id - (a,)", which proves 
what we want. 

We will write down formulas for e, which are not P L  (since they contain 
quadratic terms), but may easily be modified to be P L  (e.g., by applying 
Whitehead [46]). 

0 5 t 5 112 , e,(x, y, x) = (x + x ( l  - 2t), y, x - x(2t)) 
1 / 2 5 t 5 1 ,  e,(x, y, x) = (x, y, x(2 - 2t) - x) . 

Now by the Haefliger-Poenaru theorem [9], any homotopy class in 
N 

n,(PLq,,,,) contains a representative of the form do for some a E PLq(p) 
consequently d is surjective and, by the commutativity of (5.2), i t  follows 
a t  once that  d and i, are both isomorphisms. This proves the theorem in the 
case s =n. The general case follows by a very similar argument applied to (5.3) 
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We deduce a t  once 

COROLLARY5.4. n,(PL,+,,,) E nn(PL,ln+,,nl,) (This result is also proved 
in Haefliger [7, 8.61). 

COROLLARY There  are  homotopy equivalences 5.5. 
N 

( i ) PL, 2: limn,, (PL,,,,,) 
( i i )  E'=PL. 

There  are  i somorphisms  for  q > 1 
N 

(iii) xn(PLn+,)F nn(PLnlq) 
N N 

(iv) nn(PLn+,,  PL,,,,,) F nn(PL,  limn+, (PLn+,,,)) nn(PLn+,,  PL,) 
N N  

n n (PLY PL,). 
PROOF. (i) is a direct consequence of 5.1 and 0.3. (ii) now follows, since 

i t  is easy to prove that  lim,,,,, (PL,,,,,) = PL. (iii) follows from (ii), the 

stability theorem for PL, [ lo,  Th. 21, and the stability theorem for PZ 
[38, 5.31. (iv) now follows from (i), (ii), 5.4, and the stability theorems, by a 
5-lemma argument. 

N 

R e m a r k  5.6. Corollary 5.5 (i) gives a homotopy equivalence between PL, 
and the group for stable microbundle pairs E~ c E".T (where c y  denotes the 
trivial N-microbundle). This does not immediately prove that  the theories 
are the same-one also needs to know that  the notions of 'induced bundle' 
are compatible. However, using the definition of induced block bundle given 
in [37, 9 11, (namely as  the restriction of the cartesian product to the graph 
of the map), one only needs to check that  the notions of 'cartesian product' 
and 'restriction' are compatible and this is easy. 

From 5.5 and the classification given in 19, 5 41, we deduce 
N N  

COROLLARY There i s  a bijection for  q > 1,  xn(PL,  PL,) - where5.7. I:, 
I: denotes the  set of  regular  homotopy classes of  i m m e r s i o n s  of  Cn in Cnfq. 

N 

R e m a r k s .  ( 1) There is also a bijection for q > 1,nn(PD,0,)- I;(I'), 
where I:(r) denotes the set of I?-regular homotopy classes of I?-immersions 
of Snin Sn+q, this is proved by a similar argument to 5.11 below. This means 
tha t  (together with Smale [42]) the braid (2.1) possesses the further geo- 
metric interpretation (5.8) below for q + s > n + 1 and q > 1. As this is 
proved in detail in Haefliger [7], we omit further proof. 
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( 2 ) for q > 1,I: may be equivalently defined using regular concordance, 
a s  may the other types of immersion used in this section. This is an easy 
consequence of stability of the various Stiefel manifolds involved, see 
Haefliger [7; 9.21. 

N N 

We now seek to interpret the  braid (5.9) of the triple (PL(R), PL,(R), 
N N  

PL,(R)), a precisely similar interpretation holds for the braid of (PL,  PL,, - , 

PL,(I)) as the reader may construct from results of this section. 

N 

Our first aim is to interpret n,(PL(R), (PL,(R)) as  immersions of C" in 
8 " + w i t h  an open normal bundle. This is achieved in 5.10-5.12. 

ClassiJication of immersions with a n  open (or closed) normal bundle. 
An R-immersion (resp. I-immersion) of M" in Q"+q is an immersion f: M -+ Q 

http:5.10-5.12
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together with an open (resp. closed) normal tube on M in Q. More precisely, 
we consider immersions f:E(Eq)-Q where P / M  is an (Rq, 0)-bundle (resp. 

= f10(19, 0)-bundle), under the equivalence f o  -- f, if f o  M = f, 1 M and f o  g, 
where g is an (Rq, 0)- (resp. (Iq,O)-) bundle isomorphism. There is an obvious 
notion of regular homotopy of R- and I-immersions, and more generally of 
simplexes of such immersions. Thus we have 4-sets denoted Imm, (M, Q) and 
Imm, (M, Q). 

Now denote by z(M), z(Q) the tangent microbundles of M and Q (see 
Milnor [30]). An R-monomorphism of t-(M) in t-(Q) is an equivalence class 
of bundle maps f: t-(E(;"q)) 1 M -+t-(Q), where P / M  is an (Rq, 0)-bundle, and 
f o  - f, if f o  = f1 1 -+ E(E1)is an (Rq, 0)-bundle isomor- 0 (dg M )  where g: E(;SO) 
phism (over the identity on M). There is a 4-set Mono, (t-(M), z(Q)) of 
R-monomorphisms formed in the obvious way, and there is a precisely an- 
alogous 4-set Mono, (t-(M), t-(&)). 

The following result follows from the main theorem of [9]. 

THEOREM5.10. The diferential induces homotopy equivalences 

d: Imm, (M, Q) -Mono, (t-(M), z(Q)) 
d: Imm, (M, Q) -Mono, ( t - (M) ,t-(Q)) 

In analogy to [9, 3 41, Theorem 5.10 gives rise to an obstruction theory 
for the existence of R- and I-immersions with coefficients in x,(PL,+,, PL,(R)) 
and n,(PL,+,, PL,(I)) respectively (where these homotopy groups must be 
interpreted as  the homotopy groups of the maps of PLq(R) and PLq(I )  in 
PL,,, defined in 3 0). This implies. 

COROLLARY There are bijections 5.11. 

C(R)-x,(PL,+q, PL,(R)) 
131)-G(PLm+q, PLq(I)) 1 

where C(R) denotes the set of R-regular homotopy classes of R-immersions of 
8"in Bntq, and I:(I)is defined similarly. 

Combining 5.11, 5.5, and 0.3 we have 

COROLLARY For q > 1, there are bijections 5.12. 

Now denote by FI: the set of framed regular homotopy classes of framed 
immersions of 8%in V + q .  From [9] and 5.5, we have 

PROPOSITION For  q > 1, there are  bijections 5.13. 
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h/ N 

FI: -n,(PL) n,(PL(R)) . 

Combining results of this section, together with 3.5 and 1.2-3 we have 


THEOREM5.14. T h e  braid (5.9) i s  i somorphic  w i t h  the  fol lowing braid 


for  9 > 1,  

A A 
FQ' I; E:-l(R) 

\ A h F /9 ' 4  

43R) FEZ- (R) 

We now interpret the homomorphisms in 5.14 geometrically. o , ,  o, ,  and 
all the gpi forget structure. 

a,: Any immersion f: 2"-X"+q is regularly homotopic to f,, where 
f, 1 Z? = id, and f,(Z", c ZSi\ A trivialisation of the normal block bundle 
on f l  / Z g e t e r m i n e s  a,[ f 1. 

3, gives the obstruction to trivialising the normal plane bundle. 
o, is the construction of 1.3 applied to PL,(R), and the remaining 

homomorphisms are given by commutativity. 
R e m a r k .  ( 1) By the interpretation of q l ,  3, measures the  precise ob- 

struction for an immersion to possess a normal (plane) bundle. 
( 2 ) Metastably, i.e. for 2q > n + 3, I:(C) -+I:is an  isomorphism (from 

5.8 and 2.10), hence any immersion has a preferred normal vector bundle and 
(on triangulating) a P L  normal plane bundle. Consequently sequence 1splits 
and (in this range) 

I:(R) = I: @ E:(R) . 
T h e  i m m e r s i o n  suspension sequences. 

THEOREM5.15. For q > 1 there i s  a commuta t ive  d i a g r a m  w i t h  exact 
r o w s  in w h i c h  the co lumns  are  "multi-exact" a t  I:,,, and  I:::, i.e., a n  element  
surv ives  precisely t homomorphisms  i f  and  o n l y  if i t  comes f r o m  4 - t 
spaces above. 
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1 I 1 1 9
AiL1 - El(R) E;+l(I) - AP, --


PROOF.The lower half of the diagram was described in 3.8 and 4.25. 
FI:(C) z,(O), and sequence 2 is the exact sequence of 0,c OqLlc0 (cf. 

N 

Smale [42] and Hirsch [151). Sequence 3 is the exact sequence of 0,cO q L l cP D  
(cf. Remark (1) below 5.7). Sequence 4 is the exact sequence of 

N 

PLq-L1,l(I)c PLqtl(I)c P L  using the homotopy equivalence of 0.12 and 5.12. 
N N N 

Sequence 5 is the exact sequence of PL, c PLqLlc P L  using 2.12 and 5.7. 
The vertical maps are all obtained from obvious homotopy maps and 0.2. 
This proves commutativity and exactness of the rows, i t  remains to prove 
"exactness" a t  IlL1and I::: in the columns. This follows from the fact that  the 
vertical maps (and compositions of them) fit into various exact sequences. For 
example -FI:Ll(C) -I:+,-FC: -
which is one of the exact sequences of the square 

N N 

P D  3PD, 
U U 
o x * ,  

The other exact sequences are sequences 2 and 4 of 5.8, sequence 1 of 5.14 
and the analogous sequence for I-immersions. (These five exact sequences, 
which all contain the term I: can also be displayed in the form of a ladder 
diagram like 5.15, which we leave the reader to construct.) 
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Remark. Any two of sequences 2 , 3 , 4 ,  sequences 5 and 6, and any two 
of sequences 7 , 8 , 9  of 5.15 can be imbedded in a braid (cf. Remark (2) below 
3.11); sequences 2 and 3 have sixth term I?,; also any two of the five exact 
sequences mentioned in the proof of 5.15 can be imbedded in a braid (e.g., 5.8). 
We leave the reader to construct and interpret these. 

Interpretation of 5.15. Vertical homomorphisms. The central vertical 
homomorphisms between sequences 1 to 3 and 4, 5 all forget structure. 
Between sequences 3 and 4, one first triangulates the normal bundle. 
n,(Sq)--T;,, was described in 2.14. I;,, -FC; has a complicated interpre- 
tation (cf. 3, in 2.13) but the composition I;,, -r: is obtained from the 
obstruction to trivializing the normal block bundle of the immersion (cf. d, 
in 2.13). 

Horizontal homomorphisms. The central horizontal homomorphisms are 
all 'suspension' of various types. (I;+,(R) - I;I:(I) has a similar interpre- 
tation to o,of 3.6.) Ti,,-I,"was described in [39; remark below Th. B]. 
The right hand homomorphism in sequences 2 to 5 are all obstructions to 
splitting a line subbundle of the normal bundle (normal block bundle in the 
case of sequence 5). 

Remarks. ( 1) By the interpretation given above, the right hand hori- 
zontal homomorphisms give the precise obstruction to "compression" of the 
various types of immersion and imbedding. 

( 2 ) By "multi-exactness" and the interpretations of the columns, the 
(compositions) of vertical homomorphisms from I;,, and I::: measure the 
precise obstruction to (respectively), C-smoothing with trivial normal bundle, 
C-smoothing, F-smoothing, having a normal plane bundle (I;;,) or disc bundle 

(I;::). 
Diagram 5.15 contains a vast amount of information (some of which 

has already been given in $5 3 and 4). We now give a few more corollaries, 
which are proved by easy diagram chasing. 

COROLLARY An element a e C; (resp. F;) with tr ivial  suspension 5.16. 
gives rise to a n  element a,e I;,, with tr ivial  suspension, but which is not 
C-smoothable (resp. r-smoothable). 

COROLLARY An element a e A:,, with non-trivial image i n  E:(R) 5.17. 
gives r ise to a n  immersion a, E I,";,with tr ivial  suspension but no normal 
plane (or micro-) bundle. 

Remark. The first half of the last corollary was proved directly in [39], 
where we deduced the existence of an immersion I;19 2 ZZ8with no normal 
(topological) plane bundle. Corollary 5.17 shows tha t  this immersion also has 
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trivial suspension. 
Now remember that  Ti, ,r n,(S" @ A: (cf. 3 2), thus the obstruction to 

compression of a PL-immersion splits into two obstructions; the first in n,(Sq) 
(the "homotopy" obstruction) being the obstruction to a section of the Serre 
fibration associated with the normal block bundle. This is interpreted (cf. 
4.21 (i)) as the obstruction to locally homotoping the immersion off itself. 
The second obstruction in A: (the geometric obstruction) i s  the obstruction 
to PL-immersing this homotopy (cf. 4.21 (iii)). Similarly 1::: -N:+' gives 
the geometric obstruction to a section of the normal block bundle (or equiva- 
lently to replacing the homotopy mentioned above by a regular homotopy 
(cf. 4.21 (ii)). 

The next corollary (still proved by easy diagarm chasing) is a version of 
Theorem 4.20 for immersions. 

COROLLARY ( i )  An i m m e r s i o n  w i t h  n o n - t r i v i a l  geometr ic  obstruc- 5.18. 
t i o n  to  compress ion  (inA:) h a s  n o  n o r m a l  d i sc  bundle .  

(ii) If i t  a lso  h a s  non-zero i m a g e  in N:+', t h e n  i t  h a s  n o  n o r m a l  p lane 
bundle .  

COROLLARY If a n  i m m e r s i o n  w i t h  n o  n o r m a l  d i s c  bund le  i s  com- 5.19. 
pressible,  t h e n  i t s  compress ion  h a s  n o  n o r m a l  p lane bundle .  

Finally we recall from $ 3  that  the generator of C," comes from A," and 
maps non-trivially to E,"(I), hence there is an element in I: which comes from 
A: and maps non-trivially to E,3(I).We have 

THEOREM5.20. T h e r e  i s  a P L - i m m e r s i o n  Z4cZ7 w i t h  t r i v i a l  suspen-  
s i o n  bu t  n o  n o r m a l  (PL) d i sc  bundle .  

R e m a r k .  From 5.8, one easily proves that  I,"r C,", and so every  non-
trivial immersion of Z4in Z7 has no normal disc bundle. 

6. Appendix 

Here we present on one diagram (6.2) a large number of the results proved 
in the paper. Each arrow is induced by a combination of the A-maps described 
in 3 0. The notation 

N 

for example, implies the existence of an isomorphism r; n,(PL,, O,), and 
the reference (in this case (1.5)) is indicated on (6.3). Here, a s  elsewhere in 

N 

this appendix, we shall not worry about writing PL, when strictly we should 
N 

write PD,, etc. 
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Notice tha t  each triangle of arrows determines a braid of four exact 
sequences, which may be written, for example 

The notation below implies an isomorphism 

and the reference is again indicated on (6.3). 

rV 4.,(PL,+ 1) I 
* 

.*(0,+1) 
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The dotted arrows correspond to homomorphisms in the exact sequences of 
the square. (See 9 0). Note that a square determines three braids, two of 
which are braids of the triangles obtained by filling in the diagonal (in this 

rV 

case, r*(O,) --z*(PL,+1)).
T;, I ( V

The exact sequence (0.5) justifies a process of 'adding' squares. Thus for 
example adding the two zero squares adjacent to the A!+square, we deduce an 
isomorphism 

Less obvious is the isomorphism 

which is obtained by 'adding a triangle' to a zero square 
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Collecting these results together we have 

N 

P, G nn(G,PL)  (q > 2 throughout) . 
Remark. The reader may construct further isomorphisms by utilising 

the isomorphism 
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