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Preface 

The first five chapters of this book form an introductory course in piece- 
wise-linear topology in which no assumptions are made other than basic 
topological notions. This course would be suitable as a second course 
in topology with a geometric flavour, to follow a first course in point-set 
topology, and perhaps to be given as a final year undergraduate course. 

The whole book gives an account of handle theory in a piecewise- 
linear setting and could be the basis of a first year postgraduate lecture 
or reading course. Some results from algebraic topology are needed for 
handle theory and these are collected in an appendix. In a second appen- 
dix are listed the properties of Whitehead torsion which are used in the 
S-cobordism theorem. These appendices should enable a reader with only 
basic knowledge to complete the book. 

The book is also intended to form an introduction to modern geo- 
metric topology as a research subject, a bibliography of research papers 
being included. 

We have omitted acknowledgements and references from the main 
text and have collected these in a set of "historical notes" to befound 
after the appendices. 

We are planning eventually to write a further book which will include 
the topics of embedded handle theory, normal bundles, transversality 
and p.1. bordism and cobordism theory. For present reading on these 
topics, see the bibliography. 
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Chapter 1. Polyhedra and P.L. Maps 

In this chapter we introduce the main objects of study. polyhedra and 
p.1. maps. The chapter consists mostly of definitions. examples, and 
exercises. In a final section we introduce the main results of the book : 
the Poincare conjecture and the h-cobordism theorem. This section 
may be omitted until after Chapter 5 if the reader wishes; we have 
included it here to give a taste of deeper results. 

Basic Notation 

A map is a continuous function. cl ( X )  denotes the closure of X .  !R denotes 
the real numbers and R "  (Euclidean n-space) the space of n-vectors 
(x=(x , ,  X,, ..., X,)) of real numbers. We will use the product metric on 
R "  given by d(x, y )=sup  Ixi- yil. "Linear" always means linear in the 
afine sense; thus a linear suhspace (or just subspace) V c !R" isa translated 
vector subspace, or equivalently: for each finite set { a i ) c  V and real 
numbers 1,; with E A, = 1 we have E A; a ,€  V. A map ,/: V--+ R"' is linear 
i f  f (E Ai  a;) = E Ai  f (ai). 

Joins and Cones 

Let A, BC R "  be subsets. Define their join AB to be the subset AB= 
( R a + p h l a ~ A ,  hgB)  where A,p€!R, 2 , p Z O  and R + j ~ = l .  Then AB 
consists of all points on straight-line segments "arcs" with endpoints 
in each of A and B. I f  A = @  we define AB=B. 
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If A= { a )  is a one-point set then we often abbreviate { a )  to a. We 
say that a B  is a cone with vertex a and base B (or simply that a B  is a 
cone) if each point is expressed uniquely as A a + p b  with b e B ,  A,p>=O 
and A+p= 1. Equivalently a $ B  and the arcs a b ,  and ab , ,  for each 
pair of distinct points b, ,  b , e B ,  meet only at a. 

Fig. 2 

a B ,  is a cone while a B ,  is not. The example makes it clear that 
the property of being a cone depends on the presentation of the set a B .  

Polyhedra 

1.1 A subset P c I R n  is a polyhedron if each point a e P  has a cone 
neighbourhood N = a L  in P, where L is compact; N is called a star of a 
in P and L a link and we write N = Na(P), L =  La(P) .  Note that the case 
L=% is not excluded so that a point is a polyhedron. 

Examples of Polyhedra 

Fig. 3. A house with 2 rooms, each having one entrance 



Polyhedra 

Fig. 4. A pyramid with a flag sitting on an infinite plane 

Exumples of Non-Polyhedra 

Fig. S 

A circle C X =an open disc with a tail 

In the first example a has no cone neighbourhood in C. In the second 
example a  has a cone neighbourhood a L c X  but L is non-compact. 
However X - a  is a polyhedron ! More examples are given in 1.3, below. 

1.2 Remark. In 1.1  we could take N to be the E-neighbourhood 
&(a, P )=  { x I x e P ,  d (a ,x )=<&)  and L to be ~ ( a ,  P )=  { X J X E P ,  d(a ,  X ) = & )  
for some suitably small E >  0. For given any cone neighbourhood N = a  L 
of a  in P, use compactness of L to find an E > O  such that d(a ,  L)?& 
then it is easy to see that N, (a,  P) = a  R ( a ,  P)  is a cone. 
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I 

Fig. 6 

1.3 Examples and exerc,isc~s 

( 1 )  R "  is a polyhedron. The subset R; c R", defined by x,zO, is a 
polyhedron. Subspaces of R "  are polyhedra. 

(2) An open subset of a polyhedron is a polyhedron. 

(3) The intersection of finitely many polyhedra is a polyhedron. 
(Use 1.2.) 

(4) Let 6, P, c R", R"' be polyhedra and identify R "  X R" with R"+" 
by (X, y ) ~  (X, ,  ... , X,,, y l ,  ... , y,,,) then 4 X P,c R"+" is a polyhedron. For 
i f  a ,  L , ,  a, L, are cone E-neighbourhoods then so is n, L, X U, L,. 

( 5 )  Let P = U  P, where c c  R "  are compact polyhedra and the union 
is loc~~ l ly  Jinite in the sense that each point P E P  has a neighbourhood 
meeting only finitely many of the P,. Then P is a polyhedron. (Use 1.2.) 
(6) Cubes.Letn=(n ,,..., n , , ) ~ R " . T h e n N , ( a , R " ) = [ u , - ~ , u , + c ] x . . . x  
[a, - E ,  (I, +E]  is a polyhedron by (4), called a "cube". A,f(lce of N,(n, R") 
is obtained by replacing each factor [a,-c-:, o ,+E]  either by itself or  
by (0,-c} or {a,+(-:}, and then the faces are also polyhedra by (4) and 
hence N,('I, R") which is the union of the proper faces (i.e. the faces not 
equal to the cube) is a polyhedron by (5). 

We write I" for the unit n-cube [-  1 ,  l]"= N,(O, R") and l"= ~ ~ ( 0 ,  R") 
for its houndnrv. [ ' = [ - l ,  l ] c R  should not be confused with the 
unit interolrl I = [0, l ]  c R .  

(7) A cone n P  on a compact polyhedron P is itself a compact poly- 
hedron. For let x ~ n P ,  then if x = u  we can take N x ( a P ) = n P  and if  
x + a  we can take lV,(aP)=uN,(P) where x = i a + p  y, ~ E P ;  since we 
have aN, . (P)=x(N, . (P)unL, . (P))  when x + y ,  and a T ( P ) = y ( a L , . ( P ) )  
when X =  y. See Fig. 7. 

( X )  Suppose P c  V is a polyhedron in a subspace and j ' :  V -. R"' is 
linear and injective then f ( P )  is a polyhedron. 



Piecewise-Linear Maps 

Fig. 7 

By 1.2 and examples (3) and (6) we can assume that all links and 
stars are polyhedra. This we do from now on. 

Piecewise-Linear Maps 

1.4 A map,/: P 4 Q between polyhedra is piecewise-linetrr (abbreviated 
p.1.) if each point a e P  has a star N = a  L such that /'(l- (I + p  X ) =  i , f ' ( r r )  + 
/lj '(x) where .YE L and jL, p 2 0 ,  >,+p= l .  In other words, ,f is locally 
conical, in the sense that i t  maps rays of the local cone structure 
linearly. 

1.5 Excrmples 

(1) A linear map is p.1. 
(2) The restriction of a p.1. map to a subpolyhedron is p.1. A sub- 
polyhedrorl is a subset which is itself a polyhedron. 

(3) Define,/: P + Q to be lineor if it is the restriction of a linear map 
R" + R"'. Then, combining ( l )  and (2),,/' is p.1. 

(4) Let P =  U P ,  be a locally finite decomposition of P into compact 
subpolyhedra. If,/': P + Q is a map such that is p.1. for each a, then 
j' is p.1. 

Remark. Combining examples (3) and (4), we see that a map which 
is linear in pieces is p.1. In Chapter 2 we prove that all p.1. maps are 
obtained in this way, and this explains the terminology. 

1.6 E.uercisrs 

(1) The cartesian product of two p.1. maps is p.1. 
(2) The composition of two p.1. maps is p.1. 
(3) The cone con.struction. Let G P ,  h Q  be cones and ,f: P -4 Q a map. 
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Define the cone on L j": a P -+ b Q by f '(L a + p  X) = A b + 11 j'(x) where 
X E P .  Prove that the cone on a p.1. map or homeomorphism is itself a 
p.1. map or homeomorphism. 

(4) A map f :  P + Q  is p.1. if and only if the graph off 

is a polyhedron. 
Hint: A(x, f (x))+p(y, f(y))=(z, f(z)) for some z if and only if 

f ( J ~ x + p ~ ) = A f ( x ) + p f ( y ) .  
(5) Show that the inverse of a p.1. homeomorphism is again p.1. 

P.I. homeomorphism is the principal equivalence relation of p.1. 
topology, and properties preserved under p.1. homeomorphism are 
called p.1. invariants. We will often use the symbol g for a p.1. homeo- 
morphism. 

1.7 Exercises 
(1) Give examples to show 

(a) The union of two polyhedra is not necessarily a polyhedron. 
(b) The infinite union of compact polyhedra is not necessarily a 

polyhedron. 
(c) The image of a non-compact polyhedron under an injective p.1. 

map need not be a polyhedron. What about compact polyhedra, and 
general p.1. maps? (See 2.5 for answers.) 

(2) Show by radial projection that the (topological) homeomorphism 
class of L,(P) is a p.1. invariant of the pair (a, P). 

The Standard Mistake 

The last exercise prompts the observation that projection maps are not 
necessarily p.1. For example the graph of a projection of one arc into 
another is part of a hyperbola. 
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A p.1. version of exercise (2) will be given in Chapter 2, using "pseudo- 
radial projection ". 

P. L. Embeddings 

Exercise 1.7(c) shows that we have to be careful about defining p.1. 
embeddings. We say that a p.1, map f :  P +  Q is a p.1, embedding provided 
f (P) is a subpolyhedron of Q and f :  P + f (P) a p.1, homeomorphism. 

Convention. From now on we will usually omit the prefix p.1. 

Thus map, embedding, homeomorphism will mean p.1, map etc. 
When we have need to use non p.1, maps we will use the phrase "topo- 
logical map" in order to avoid confusion. 

Manifolds 

1.8 A polyhedron M is an unbounded p.1. manifold of dimension n (or 
simply an n-manifold) if each point X E M  has a neighbourhood in M, 
which is (p.1.) homeomorphic to an open set in R"; such a neighbour- 
hood is called a coordinate neighbourhood. We often indicate the dimen- 
sion of an n-manifold M by writing M". 

M is an n-manifold with boundary if each point has a neighbourhood 
homeomorphic to an open subset of either R" or R:. Define the 
boundary of M, aM, an unbounded (n- 1)-manifold, to consist of points 
corresponding to R"-' X O c  lR:. The boundary is well-defined by 
1.7(2) and elementary algebraic topology. This also follows by an easy 
induction using p.1. invariance of links (2.21 (2)). 

Terminology. A manifold M is closed provided aM=% and M is 
compact. If M is any manifold, define the interior of M, intM, to be 
M-aM. 

1.9 Examples and exercises 

(1) R", R: and subspaces of R" are manifolds. 
(2) An open subset of a manifold is a manifold. 
(3) The product of an n-manifold with a q-manifold is an (n+q)- 
manifold. 

Hint: Define a homeomorphism of R: + = (X€ R', X, 2 0, X, 2 0) 
onto R: by using a linear homeomorphism of R:++ =(xER', 
x ,> ,x ,~O}  onto R: + . Use this on suitable coordinates to define a 
homeomorphism of X R9, onto R Y q .  
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R:+ IRZ 
Fig. 9 

(4) I t  follows from (3) that 1" is an  n-manifold with boundary. 

( 5 )  IR"gdl"+ ' -one  point. (This is difficult, see 3.20 for a proof using 
machinery.) 

Balls and Spheres 

A manifold homeomorphic with 1" is called an  n-h~111 or n-disc often 
written B" or D". A manifold homeomorphic with dl"+' is called an 
n-sphere, usually written S". 

1.10 Lemma. Let B", D" he n-bnlls nnd h: ;B" - .  dD" n homeomorphism. 
Then h extends to LI homeomorphism h, of B" with D". 

ProoJ: We can assume B" = D" = 1" and then define h, (1, S) = 1, h (X) 

for x ~ i "  and OsiLs 1. This is the cone construction applied to ln=01" .  

Fig. 10 

The Poincark Conjecture and the h-Cobordism Theorem 

We now state the main theorems for which we are heading. 
Poincore conjecture. Let M" be a closed manifold having the homotopy 

type of an n-sphere, then M is an n-sphere. 
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Theorem A. The conjecture is true ,for n 2 6. 

In fact the conjecture is true for n = 5, but the proof at the moment 
is beyond the scope of an elementary treatment. For n = 3 , 4  the 
conjecture is still, at the time or writting, unsolved. 

We will deduce Theorem A from the h-cobordism theorem (Theo- 
rem B below). A cohordisn~ (W"', M,, M,) consists o f a  compact manirold 
W with d W the disjoint union of manifolds M, and M , .  When M, and 
M, are understood, we refer to W itself as a cobordism. W is an 
h-cobordism if  both inclusions M , c  W and M , c  W are homotopy 
equivalences. 

Theorem B. Stippose W"' is n simply connected h-cohortiism and w 2 6. 
?hen W z M, X I and hence M, z M,.  

Remark. If M,, M, and W are all simply-connected, then by White- 
head's theorem (see Appendix A) it is enough to assume that all the 
relative homology groups H,(W, M,) and H,(W, M,) vanish. But by 
Lefschetz duality (see appendix and proof given in Chapter 5) i t  is 
enough to assume this for one end only. Consequently we can state 
Theorem B in the following form, which is the form in which it will 
be proved. 

Theorem B'. Suppose (W"', M,, M , )  is a cobordism and tllrrt 

( 1 )  ~ l ( M o ) = ~ , ( M , ) = ~ , ( w ) = o  
( 2 )  H,(W, M,)=O 
(3) w 2 6 .  
Then W z M , x l .  

We shall also prove a relative version of the theorem (for cobordisms 
between manifolds with boundary) and a version for non-simply 
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connected manifolds (the S-cobordism theorem). We conclude this 
chapter by showing that Theorem A follows from Theorem B': 

In M choose two disjoint standard n-cubes inside coordinate neigh- 
bourhoods. Call them D, and D,. 

Denote W, = cl(M - D,) and W=cl (W, - D,). Then W, and W are 
manifolds since cl(JRn-In) is a manifold by an exercise on the lines 
of 1.9(3). We claim that W is an h-cobordism between aD, and aD,. 
First of all T C , ( ~ D , ) = T ~ , ( ~ D , ) = O  and T C ~ ( W ) = ~ ~ ( M ) = O  since W has the 
homotopy type of M - {two points). 

Now 

H, (W, aD,) r H, (W,,  D,) (excision) 

r H, (W,) (since D, is contractible). 
But 

H, (W,)r H"-* (W,, aD,) (Lefschetz duality) 

H"-* (M, D,) (excision) 

1 * (M) 

Z * = o  
since M is a homotopy sphere. 

O otherwise 

It follows that H, (W, )=O and hence that W is an h-cobordism. 
By Theorem B' there is a homeomorphism h: W-t in X I '  and we 

extend h to a homeomorphism of M with in+' by two applications 
of 1.10. 



Chapter 2. Complexes 

In this chapter we introduce the principal tools of p.1. topology: 
simplicial complexes and simplicial maps. The connections between 
these and polyhedra and p.1. maps is the major concern of the chapter. 
The rest of the chapter deals with other useful tools: pseudo-radial 
projection, joins and collars. The results on convex cells which we need 
are given in an appendix to the chapter. 

Simplexes 

2.1 Proposition. The join operation is associative and commutative and 

Proof: Define A ,  A, . . . A, inductively to be ( A , .  . . An-  ,) A, and 
prove the identity inductively. Associativity and commutativity then 
follow. The induction step follows from the equation 

a ,  = (1 - An) ((A) a ,  + . . . + (+-) + in a n ,  
1-11,, 1 --/L, 

Now define a finite set { v , ,  v , ,  . . . , v,} c R" to be independent if it 
is not contained in any subspace of dimension < n ,  or equivalently if 
the vectors { v ,  - v,} are linearly independent. Then define an n-simplex 
A c R" to be the repeated join v ,  v ,  . . . c, of n + l independent points. 
We call the points v, the vertices of A and say that they span A.  A simplex 
spanned by a subset of the vertices is called a face of A .  If B is a face 
of A we write B <  A. B is a proper face if also B +  A.  The vertices are 

1 
also regarded as faces. The point A^=x- v, is the barycentre of A .  

n + l  
Note that a simplex is a compact polyhedron by induction since it is 
the cone on an ( n -  l)-simplex (see 1.3(7)).  The empty set is regarded 
as a ( -  l)-simplex, has no vertices, and is thus a face of all sirnplexes. 
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Exercises 
Let A be an  n-simplex in lRm. 

( 1 )  Show that A is contained in a unique minimal subspace V of R"' 
of dimension n. We write V= (A) and say A spans V Note that i f  A is a 
0-simplex A =(A).  

(2) Define A, A to be the interior and frontier of A in (A) and show 
that A+% and A = ~ { B I B < A , B + A ) .  

(3) Show that U E  A is a vertex if and only if L n  A is not a neighbour- 
hood of u in L for every line L through u in W. 

2.2 Theorem. A comptrct polyhedron is a jinite union qf simplexes. In 
generlrl a polyhedron is a loclrlly ,/inire union oj".simplexes. 

Prooj: Let P be a compact polyhedron in R"' and define the subspace 
( P ) c l R m  spanned by P to be the intersection of all suhspaces V with 
P c  l/. The proof is by induction on n=dimension (P). Wirhour loss 
of generality we may assume (cf. 1.3(8)) that P c l R n .  Let a e P  and 
suppose crL is a star of a in P,  which is also an c-:-neighbourhood (1.2). 
Now let F be a proper face of the cube N,(lr, R") (cf. 1.3(6)) then 
dim(l . -n  L) < n  and hence l. n L is a finite union of simplexes. Since 
L c  ~ ~ ( a ,  R") it follows that L is a finite union of simplexes, say L = U Ai. 

Then rrL= U aA,  is also a finite union The result now f o l l o d  by 
, 

compactness. 
In the general case the idea is to use local compactness to decompose 

P into a locally finite union of cone E-neighbourhoods, each of which 
is a finire union of simplexes by the first half. We will list the steps in 
rhe proof and leave the details to the reader: 

( I )  Find a countable base { U , )  of ):-neighbourhoods for R". 

(2) Define U,,, U,*, . .. by U, is a U,, if  U ,n  P is non-empty and compact. 

( 3 )  By taking suitable incl-easing ~lnions  of the U,* find compact 
polyhedra A, ,  A,, A,, .. . so that P =  U A ,  and A,cinterior of A , + ,  
in P for each i. I 

(4) Show that a finite cover of A ,  exrends ro one of A,+,  so that no  
new neighbourhood meets A , - ,  . 

Exercise (Dimension). Define thc dimension of an n-simplex ro be n 
and in general define the dimension of a polyhedron by d im(P)=  
max. dim(A,), where P =  U A, is the decomposition of 2.2. Check that 
dimension is well-defined. 

2.3 Corollary. Let , j": P -, Q he p.1.. thpn there is a lo~.aIIy /inifc de- 
composition qj' P into simplexrs, P =  U A,, such thtrt / l A, is lirlrrrr ,/or 
etrch i. 
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2.4 Lemma. The linerrr image ?/'a simplex is a polyhedron. 

Proof Let A c  R"' be an n-simplex and let f :  R"'-, R P  be linear. 
Then either ,f l(A) is injective, in which case {(A) is an n-simplex, or 
elsej'((A)) is a subspace of lower dimension, in which case / ' ( A ) = ~ ' ( A ) .  
[For if  x ~ j ' ( A )  then f - ' ( ~ ) n  ( A )  is a subspace of dimension >O which 
must meet the frontier of A in ( A ) ,  namely A.] In this case the result 
follows by induction since A is a union of simplexes of dimension <n. 

2.5 Corollary (cf. 1.7). The image ol 'a comp~~ct polyhedron under a p.1. 
map is LI compact pofj!hedron. 

Prool: By 2.3 and 2.4 i t  is a finite union of compact polyhedra. 

Cells 

A subset C c  R"' is conoex if for each pair of points (I, b e  C, the arc ( lbc  C. 
A compact convex polyhedron which spans a subspace of dimension 

n is called a linear n-cell or  just a cell. 

2.6 Examp1e.s and remarks 

(1) An n-simplex is an n-cell; I" is an 11-cell. A 0-cell is a point and a 
l-cell is an arc. 

(2) The linear image of a cell is a cell (convexity is obvious, polyhcdron 
by 2.5). 

(3) Let {a,, a , ,  . . . , a,) c R"' bc any finite set, then their join a, a ,  ... a, 
= { C  i.; a,  12, >= 0, C l., = 1 ) is a cell, called the cell spanned by {a,, . . . , a,). 
This follows from (2) since there is a linear map from an r-simplex 
onto thc cell. 

The converse to (3) is also true, sce 2.7 below. 

(4) The intersection or  product of two cells is a cell 

( 5 )  The intersection of a cell with a subspace or a half space is a cell. 

(6) I f  C is an n-cell then dim C =  n. For, since dim (C) = I?, C contains 
an indcpendent sct of n +  l points, and by convexity, it  contains the 
simplex spanned by this set, which could be taken to be one of the 
simplexes in the decomposition of C given by 2.2. 

(7) Define e, C to be the interior and frontier of C in (C) .  Then c+@ by the last rcmark. 

We now define the faces of a cell. Let C be a cell and X E C  an 
arbitrary point. Define (X, C )  to be the union of lines L through X 

in R"' such that L n  C (which is a l-cell or 0-cell and hence either an 
arc or a point) is an arc with X in its interior. It follows from convexity 
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that ( X ,  C )  is a subspace of R" (the proofs of this fact and of 2.7 below 
are given in an appendix to this chapter). If there are no such lines 
then define ( X ,  C )  = X  and call X a vertex of C. In general call the cell 
( X ,  C )  n C a Juce of C denoted C, and written C, < C. Thus a vertex 
is a face and, by 2.6(7), C < C.  If D < C and D $; C then say D is a proper 
face of C and then dimD<dim C since (X, C ) S ( C )  where D= C,. 
The empty set is defined to be a face of all cells. 

2.7 Proposition. Suppose C is an n-cell, then: 

(1 )  C has finitely many vertices v,, v , ,  . . . , v, which span C .  

(2) If F< C then F is spanned by a subset of the vertices and hence C 
hus only finitely muny ,fuces. 

Warning: Not all subsets of vertices span faces, for example two 
opposite corners of a square. 

(3) C = disjoint U { F  I F' < C }  , 
~ = d i s j o i n t U  { ~ I F < c ,  F $ ;  C } .  

(4) I f F ' < D < C t h e n  F < C .  
( 5 )  I f F , D < C t h e n F n D < C .  
(6) L e t x E C t h e n  C = t h e c o n e x B w h e r e  B = U { F J F < C , x $ F ' } .  

Exercise. Check that the definition of a face of a general cell is 
compatible with that for a simplex or a cube. 

Cell Complexes 

A cell complex K is a finite collection of cells in some IR" satisfying 

( 1 )  If C E  K and B< C then B E  K. 

(2) If B, C E  K then B n C is a face of both B and C.  
Define the underlying polyhedron I K )  to be the union of the cells of K. 

2.8 Examples and exercises 

( 1 )  A cell C determines two complexes { B  I B < C }  and { B  1 B < C ,  B $; C }  
(by 2.7). With abuse of notation, we denote these C and C respectively. 

(2) If K is a cell complex in R" and f :  IR" -, IR" is a linear homeo- 
morphism then j K  = { f C (  C E  K} is a cell complex. 

(3) Let G c R"' be compact then there is a cell complex K with G c l K l 
and typical m-cell of the form 

where ni are integers. In other words K is part of the cube "lattice" 
in R". 

(4) If K i s a  cell complex then IKI=disjoint U { ~ I C E K } .  
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( 5 )  I T  K and L are cell complexes then their intersection 
M = { A n B J A E K , B E L }  and their product K x L = { A x B I A E K , B E L }  
are cell complexes. 

Hint: First prove (X, A n B ) =  (X, A )n (X, E ) ,  which implies 
( A  n B), = A, n B, and a similar result with X replacing n. 

(6)  IT f: IKI -r ILI is linear on each cell of K then { A  n.f - ' ( B ) J A E K ,  
B E  L }  is a cell complex. 
(7) IT trIKI is ;I cone then u K  ={a ,  aB ,  B ~ B E  K }  is a cell complex, called 
the cone on K. 

Now define L c K  to be a subcomplex if L is also a cell complex. 
(8) The r-skeleton of K ,  K'= { C ~ C E  K ,  dim C r} ,  is a subcomplex. 
(9) If C E  K then the star of C in K, s t (C,K)={BIB<D> C, D E K }  
is a subcomplex. 

Subdivisions 

L is a subdivision of K, written L a K ,  if ILI = IK) and each cell of L is 
contained in a cell of K .  

Let a€  IK), we say K ' a  K is obtained by starring at a if K' is obtained 
from K by replacing each cell C E K  with aE C by the complex a B  where 
B= { I .  IF < C ,  a$ F }  (cf. 2.7(6)). The result of starring at points a,,  a,, . . . , 
a,EJKI in order is called a stellar subdivision of K .  

Fig. 13. A subdivision of a 
2-simplex which is not stellar 
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Simplicial Complexes 

A cell complex K is simpliciul if  each C E  K is a simplex 

2.9 Proposition. A cell complex crrn be subdivided to  a simpliciul complex 
without introducing uny new vertices. 

Proof :  Let K be the cell complex. Order the vertices of K and suppose 
inductively we have constructed a simplicial subdivision of K' - ' .  Let C 
be an r-cell of K and x its first vertex. Let B be the union of faces of C 
which d o  not contain X.  By induction, B has been subdivided to a 
simplicial complex and C is the cone X B. This shows how to subdivide C ;  
the ordering ensures compatibility with the subdivision of C .  

Exercise. The subdivision of 2.9 may be described as starring at each 
vertex of K in turn using the given ordering. 

2.10 Corollary. Given nny simplex A c R" trnd compoct set G c R", there 
is t1 simplicic~l complex K wi th  A E K c~nd G c lK l. 

Proof: Let L  be the simplicial subdivision of the cube [0, l]" given by 
2.9. Since complexes are preserved by linear homeomorphisms (2.8(2)) 
we may assume A E  L.  L  extends to the required K by 2.8(3) and 2.9. 

2.11 Theorem. Any compoct polyhedron is the underlying polyhedron of' 
some simplicitl l complex. 

Proof: Write P c  R" as the finite union of simplexes A , ,  . .. , A, by 2.2. 
By 2.10 rind complexes K ,  with A,E K ,  and P c  IK,( .  Then the intersection 
of the K ,  is a cell complex M which contains subcomplexes corresponding 
to each A,  and hence one corresponding to P.  Finally use 2.9 to replace 
this by a simplicial complex. 

2.12 Addendum. I f  IK 13 IL,l i = l ,  . . . , r then there trre simplicitrl sub- 

divisions K' a K ant1 L', a L  such (hot C, c K' ,  etrch i. 

Proof: By 2.9 we can assume that K and each L, are simplicial and 
then in the proof of 2.1 1 take the simplexes A,  to be the simplexes of 
K , L  , , . . . ,  L r .  

Simplicial Maps 

Let K ,  L  be cell complexes and 1 ' :  IKI -, ILI a map. We say (1; K ,  L )  is 
cellultlr or simply /' is cellular if, for each C E K ,  j'IC is linear and , / ' (C)  
is a cell of L. If K and L  are simplicial then say that ,f is simplicic~l. Note 
that a cellular map is automatically p.1. by 1.5(4). A cellular homeo- 
morphism is called a cellular isomorphism or  just an isomorphism. The 
inverse of an isomorphism is also an isomorphism. 
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Exercise. A simplicial map is determined by its values on vertices: 
i.e. if ,/': KO + L0 carries the vertices of each simplex of K into some 
simplex of L, then ,/' is the restriction of a unique simplicial map. 

2.13 Lemma. Let 1: IKI + ( L ( c  R" be U map which is linear on cells o/'K. 
Then there are simplicial subdivisions K ' a  K and L ' a  L such that 
,/: IK'I + IL'I is simplicial. 

Prooj: Each ,/'(Ai), A , e K ,  is a cell by 2.6(2) and by 2.12 we can find 
simplicial L 'a  L such that ,/(A;)= lAil for AicL ' .  Then 

is a cell complex by 2.8(6). Let K' be the simplicial subdivision of K" 
given by 2.9 then /: K ' +  L' is simplicial. 

2.14 'Theorem. Let /': \K1 + ILI be p.1. then there are simplicial subdivisions 
K'  a K, L' a L such that /': I K ' \  + IL'I is simplicitrl. 

Prool: By 2.3 we can decompose IKI into a finite union of simplexes 
A,, ..., A, such that ,/'IAi is linear. By 2.12 we can find K " a  K. Ai 'a Ai 
such that Ai 'cK".  /' is then linear on simplexes of K" and the result 
follows by 2.13. 

Concention. From now on "complex" means simplicial complex and 
letters J, K,  L, K', L' etc. denote simplicial complexes. We sometimes 
write /: K + L for ,/': K1 + I L1 is simplicial. 

Triangulations 

The last two theorems (2.1 1 and 2.14) have shown the intimate connection 
between polyhedra and simplicial complexes-every compact poly- 
hedron underlies some simplicial complex and every p.1. map between 
compact polyhedra is a simplicial map between suitable complexes. 

We now introduce a more general relation between complexes and 
polyhedra which has the advantage of being p.1. invariant: 

A triungulation of a compact polyhedron P is a pair (K,  t )  where 
t :  lKl+ P is a (p.1. as always) homeomorphism. We identify two triangula- 
tions of P if they differ by (simplicial) isomorphism, that is if 
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commutes, where i :  K , - +  K ,  is an isomorphism. Notice that ( K , t )  
corresponds to a complex K with I K I = P  if and only if t is linear on 
simplexes, and we therefore call such triangulations linear. If K ' a  K  
then we call the triangulation (K', t )  a subdivision of ( K ,  t ) .  Any two 
triangulations of P have a common subdivision by 2.14 applied to the 
homeomorphism t ;  ' t ,  : I K ,  I -+ IK, I. When considering one particular 
triangulation of P,  we will often identify J K J  with P  via r ,  and only be 
more precise when confusion is possible. For example,Theorem 2.14 can 
now be reinterpreted as a theorem about maps between triangulated 
polyhedra, and similarly for the general subdivisionTheorem 2.15 below. 

Subdividing Diagrams of Maps 

A diagram D  is a finite directed I-complex, in which each vertex is 
labelled by a space and each edge by a map between the spaces at its 
ends. A diagram is a tree if it is simply-connected (as a l-complex) and 
is a one-way tree if each space is the domain of at most one map. 

A one-way tree 
1 

A tree 
Fig. 14 

Exercise. Any tree may be constructed by starting with a vertex and 
inductively adjoining directed edges by identifying one vertex with an 
existing vertex, and any such construct is a tree. 

We will consider diagrams labelled by triangulated polyhedra and 
p.1. maps and use the convention mentioned above, so that we identify 
a triangulated polyhedron with the complex which triangulates it. Let D 
be such a diagram, a subdivision D ' a  D is obtained by relabelling each 
vertex by a subdivision of the original label. A diagram D is simplicial if 
each map in D  is simplicial. 

2.15 Theorem. Let T be a one-way tree of trianguluted polyhedrtr und 
p.1. maps then T has a simplicial subdivision T' .  l/' all the maps in T are 
injective then the one-way condition may be omitted. 
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Proof. By induction on the number of maps in T Find a map ,f: 
IKI + ILI in T such that K  is not involved in any other map of T and 
choose a simplicial subdivision f :  K'+ L'. Let T, denote T with K  and ,f 
omitted and with L' replacing L. By induction T, has a simplicial sub- 
division T; and L'IET; where L'aL'. We can find K " a  K' such that 
.f: K" + L" is simplicial by Lelnlna 2.16 below and this gives a simplicial 
subdivision of T, as required. In the injective case we use the same proof 
except that we might have .f: K  +- L  instead of ,f :  K +  L .  In this case 
use Lemma 2.17 instead of 2.16. 

2.16 Lemma. Suppose thut f :  K  - + L  is simplicial and L'Q L. Then there 
is K ' a  K  such that ,f: K'+ L' is simplicial. 

Proqf: The cell complex K"= { A  n , f  -' BIAEK, B E E }  (see 2.8(6)) 
subdivides K  and ,f: K"+ L' is cellular. Let K ' a  K" be the simplicial 
subdivision of 2.9 then f :  K'+ L' is simplicial. 

2.17 Lemma. Suppose that f :  L+ K  is a simplicial injection and L'a L.  
?hen there is K ' a  K  such that ,f: L'+ K' is simplicial. 

Proof: Identify L  with f ( L )  and choose a point a i e A i  for each A E K  
such that A$L.  Now define K' inductively over skeleta by the formulae 

Remurk. A more economical subdivision of K  extending L' is given 
later (see 3.4). 

Exumples and exercises 

(1) The "dual" of 2.16 is false. The unit interval 1 is a simplex and hence 
can be also considered as a complex. Let I+ be 1 with a new vertex at f and 
let I'a l ,  have a further vertex at 5. Then f(O)=O, f ( i ) =  l ,  , f(1)=0 
determines a simplicial map f :  I ,  + I and there is no I"a l  so that 
f :  l '+  I" is simplicial. 

(2) The one-way condition in 2.15 cannot be dropped for consider 

Here 1' is defined as in (1) and g is similar except that g(?)= 1. This tree 
cannot be triangulated. 
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(3) Let /': I1 + l j  be defined by j ( 0 )  =0 ,  , / ( l )  = 1 and ,/'(S) =+. Then 
there is no 1 ' a  l such that ,/': l '+If  is simplicial. Thus loops, even of 
homeomorphisms, cannot in general be triangulated. 

Derived Subdivisions 

If in the proof of 2.17 we have L'= Land allow L, K to be cell complexes 
then K ' a  K is called a deriuetl subdivision of K, obtained by deriuing K 
t~wtrj~ jrom L. If L = @  then K' is a ,/irst deriued, usually denoted K"), and 
an r-th derived K''' is defined inductively by K")=(K"-'')"). A derived 
is barycer~tric if each (I, = 2,. Note that K"' is always a simplicial complex. 

Exercises 

(1) Show that K( ' )= {trioail ... ~ , , . ~ A , , , < . . . < A , , E K ~  . 

(2) Show that deriving may be described as starring A ,  at U; in order of 
decreasing dimension of A;. 

Abstract isomorphism of Cell Complexes 

Cell complexes K, L are abstructly isomorphic if there is a bijection 
j :  K -, L such that A < B E K  implies j(A)< j(B). 

2.18 Lemma. If j: K -,L is un obstr~~ct  isomorphism oJ' cell comple.xes 
then there is U homeomorphism f :  IKI -, ILJ such that ,f(A)=j(A) ,fir each 
A E  K.  

ProoJ Choose deriveds K(" and L'" and define the simplicial iso- 
morphism j': K") -, L") by f (a,) = b, where ,j(Ai) = B,. 

Notice that j' may be regarded as built up by inductive use of the 
cone construction. 

Pseudo-Radial Projection 

As promised in Chapter 1 we now prove p.1. invariance of links and stars. 
Let K be a complex and let U E K  be a vertex. Define 

Ik(a, K)={AIAEK, ~ A E K ,  a$Af  

then i t  is easy to see that st(a, K) is the cone U Ik(a, K). Thus Ist(u, K)J  
and Ilk(a, K)I are an example of a link and star of U in IK(. Conversely, 
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given a compact polyhedron P with U E P  and a star N = a L  of a in P, 
triangulate P -(N -L) with L a subcomplex and extend to N by taking 
the cone on L from a. Then N =lst(a, K)I and L=(lk(a,  K)/ in this 
triangulation. Therefore p.1. invariance of links and stars is a consequence 
of the following lemma (in the non-compact case, consider a compact 
neighbourhood of a in P): 

2.19 Lemma. Suppose that J': (IKl, a)  -+ ( /L \ ,  b) is a homeomorphisrn with 
a €  K, be  L. Then there is a homeomorphism Ilk(a, K)I 4 Ilk(b, L)I. 

ProoJ: Let /; : (K', a)  4 (L', b) be a simplicial subdivision of ,l' then 
Ik(a, K') is isomorphic to Ik(a,L'). Therefore i t  suffices to show 
Ilk (a, K')\ homeomorphic to Ilk(a, K)I for K ' a  K. Let the simplexes of 
Ik (a, K') be A , ,  i = I ,  . . . , r, and let A +  be the extended cone on A ;  from a 
defined by 

Fig. 15 

Then M = {A+ n BIB€ lk (a, K)} is a simplicial subdivision of Ik (a, K). 
Moreover (topological) radial projection Ilk(a, K')J 4 IMI maps simplexes 
homeomorphically onto simplexes and hence determines a simplicial 
isomorphism by restricting to vertices. This isomorphism is referred to 
as a pseudo-radial projection. 

2.20 Corollary. A linear n-cell is an n-ball. 

ProoJ Let C be an n-cell then without loss we may suppose (C) = R". 
Choose a €  c and N = a L  a cone &-neighbourhood of a in C. Now C = a  C 
is also a star of a in C by 2.7(6); it follows that C is homeomorphic to N 
which is linearly homeomorphic to In. 
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Fig. 16 

2.21 Exercises 

(1) Suppose J is a simplicial complex then IJI is an n-manifold if and 
only if Ilk(x, J:) is an (n- l )  sphere or ball for each vertex XEJ. 

(2) Prove that l"$in+'  by induction using 2.19. Deduce that the 
boundary of a manifold is well-defined. 

Remark. By 2.20 a cell C is a manifold with int C=  and dC= C. 
This means that the two notations for interior and boundary are consist- 
ent and we will, from now on, use them interchangeably. For example 
if M is any manifold then we will write either int M or M for its interior. 

External Joins 

Let P, QcR"  be compact polyhedra then PQ is a union of joins of 
simplexes by 2.1 and hence a union of cells (2.6(3)) and thus also a compact 
polyhedron. However PQ is not a p.1. invariant of P and Q since it depends 
on the geometric relationship of P and Q as subsets of R"; but in the 
special case that P and Q are independent in R" we shall see that PQ is 
a p.1. invariant: 

Subsets A, B c IR" are independent if each point in A B  may be written 
uniquely in the form La +pb,  L, p z 0 , L  + p =  1,  a €  A,  beB. Equivalently 
A n B = @  and the interiors of the arcs a, b, and a, b2 are disjoint unless 
a, = a 2  and b, = b2 where a,, a,€ A,  b,, b , ~  B. In particular a B  is a cone 
if and only if a, B are independent. We also define g and any A to be 
independent. 

2.22 Exercises and remarks 

(1) If A and B are simplexes then they are independent if and only if 
their vertices form an independent set. Hence in this case A B  is a simplex 
of dimension dim A +dim B + 1. 
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(2) If IKJ, ILI are independent then define the simplicial join K L  to 
consist of simplexes A, B, AB for AEK, BEL. K L  is then a complex of 
dimension dim K +dim L + 1. 

(3) Let AEK.  Define lk(A, K ) =  {BJABEK, A n B=fl). Then IAl and 
Ilk(A, K)1 are independent and st(A, K ) =  A lk(A, K). 

(4) If S, g: A, B + C, D are maps between independent pairs then define 
the join t :  AB+ CD by t @ a + p b ) = J  f (a)+pg(b) .  Then the join of 
simplicial maps is simplicial and hence the join of two (p.1.) maps is a 
(p.1.) map. 

(5) Suppose given homeomorphisms Z$ r l:, Q, z Q,, where e ,  Qi are 
independent, i=0,1 ,  then by (4) we have a homeomorphism P, Q, zP, Q,. 

We now define the external join of polyhedra P c R", Q c R" denoted 
P*Q~IR"+"'+' .  Let i,: P + R n + " + '  be defined by 

i l (x)=(x1,  ..., xn,O,O, ..., 0) and i,: Q + R n + " + '  
by 

i2 (X) = (0, . . . , 0, X , ,  . . . , X,, 1). 

Then i, (P) and i, (Q) are independent and we define P * Q = i, (P)  i, (Q). 
By (5) above P * Q is homeomorphic to any independent join PQ. Given 
J g :  P , Q + & , Q ,  define f * g :  P * Q + & * Q ,  by (4)above. 

Fig. 17. The external join of I' and i' 

2.23 Proposition. Joins of balls and spheres obey the rules 

Pro05 The first part follows from the fact that the join of two cells 
a cell. For the second half consider the independent subsets ip+' X l 
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Ox lqc JRPfq+ ' .  Their join is a cell. For the last part consider the 
boundary of this example with q replaced by q+ 1. 

2.24 Exercises 

(1) The join operation * is associative and commutative up to a linear 
isomorphism. 

(2) Define independence for a finite number of subsets A,, ..., A n  by 
uniqueness of the formula of 2.1. Check that this generalises the notion 
of independence for finite sets of points (defined below 2.1) and that each 
join ( A , ,  . . . Air) (Alr+,  . . . A l q )  is independent. 

(3) Show that Ilk((x, y), P X Q)I z Ilk(x, P)I:: Ilk(y, Q)J and deduce from 
2.21(1) that X X JR1 is a manifold if and only if X is a manifold. 

(4) Show that IJI is an n-manifold implies that Ik(A, J) is a ball or a 
sphere of dimension n - dim A - 1. 

Hint: Use induction and the fact that Ik(a, Ik (B, J ) )=  lk(A, J )  where 
B is a top dimensional face of A and a is the opposite vertex. 

(5) Show that A *B = S" implies that both A and B are spheres. 

Collars 

Let P c Q  be polyhedra then a collar on P in Q is an embedding 
c: P x  I -+Q such that c(x,O)=x and such that c ( P x  [0, 1)) is an open 
neighbourhood of P in Q; we also call c (P  X I) a collar. We are interested 
in the existence of collars. An obviously necessary condition is that the 
collar should exist locally i.e. for each a e P  there exist neighbourhoods 
N(a, P), N(a, Q) with N(a, Q)= N(a, P)  X l where N(a, P)  is identified 
with N(a, P)  X 0. This condition is also sufficient; we will prove this in 
the case when P is compact: 

2.25 Theorem. Suppose P c Q  is locally collared and compact. IThen 
there is a collar on P in Q. 

Proof: Suppose QC R"  and define Q+ = Q  X l U P  X I cJRn X IR1. Then 
Q+ can be regarded as Q with a collar added to P "on the outside". 

We will construct a homeomorphism h: Q -+ Q+ by "pushing" along 
the I-lines of P X I such that hlP: P -+ P X 0 is the identity. Then h-' of 
the natural collar on P X 0 in P X I gives a collar on P in Q. We will now 
describe one local "push": Let a e P  and let N(a, Q) = N(a, P)  X [l ,  21 be the 
neighbourhoods given by local collaring, and assume without loss that 
N(a, P )=  Na(P) and Na(P) X [ l ,  21 are stars. Then we have Na(P) X [O. 21 
embedded in Q+ with Na(P) identified with Na(P) X l .  Define a self 
homeomorphism of Na(P) X [O,2] by regarding it as a cone with base 



L,(P) X [O,2] U N,(P) X d[O, 21 and vertex (a ,  1). Move the vertex from 
(a ,  l )  down to (a,  3) and extend by the cone construction. Call the resulting 
homeomorphism of Q,, given by extending by the identity, h,. 

Fig. 18 

Now, using local collarability and compactness of P, find a set 
N,,(P) of stars, i =  1,2, ..., t ,  for each of which the local push described 
above exists, and such that U (N,, ( P )  -L,, ( P ) )  = P. Then define the 

homeomorphism h':  Q +  -t Q+ to be the composition h a ~ o h a , _ I o ~ ~ ~ o h a l ,  
i.e. the result of doing each push in order. 

Notice that each push h, carries the point ( X ,  S )  to ( X ,  S ' )  where s ' i s  
ands '<s i f s+Oor2andx~N,(P)-L, (P) .Thereforeforeachx~P=Px 1  
we have h f ( x ) =  ( X ,  t )  where 0  < t  < l .  

Now let T = h l ( Q ) n P  X I, i.e. the part o f P  X I "above" h f ( P ) ;  weshow 
how to "stretch" T  onto P  X l by a homeomorphism g  which is the 
identity on P  X l  and carries h f ( P )  to P  X 0  and then, after extending g  
by the identity to Q,  we can define h = g o h f .  Consider the projection 
p :  h 1 ( P ) c  P  X I -t P  and triangulate P  by a complex K so that p is simplicial. 
Then for each A E K  we have the cell A +  = T n  A X l ;  and T  becomes 
a cell complex by taking cells A +  with their faces. T  is then abstractly 
isomorphic with K X l; so the required homeomorphism is given by 
2.18, and we observe that the proof of 2.18 allows us to assume glP X 1 = id 
and g:  h l ( P )  -t P  X 0  is the obvious map. 
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Fig. 19 

Remark. More general collaring theorems will be proved in Chapter 4. 
We leave it as an exercise to remove the compactness condition on P.  

Hint:  Define h' similarly, using a locally finite set of pushes. Then 
construct g inductively over compact pieces. 

2.26 Corollary. Let M be a manifold with 8 M  compact then 8 M  may be 
collared in M .  

Proof: Local collaring is implied by the definition of a manifold. 

2.27 Final exercises 

(1) Abstract simplicial complexes. Given a simplicial complex K  we 
can "abstract " the information 

(i) vertex set of K  
( i i )  the subsets of this set which span simplexes. 
This suggests defining an abstract simplicial complex to consist of 

( i)  a finite set KO 
(ii) a family K  of subsets of KO (the simplexes) 

such that 
(a) if  r c a ~ K  then ~ E K .  It then follows that 
(b) i f a , r ~ K  then a n r ~ K .  
Prove that K  can be realised as a simplicial complex in RIKo1-' and 

that any two realisations are isomorphic. ( H i n t :  Realise the vertices 
independently and use the exercise above 2.13 for the second half.) 

(2) Gluing. Let P, c P ,  Q ,  c Q  be polyhedra and h :  P, -+Q, a homeo- 
morphism. Define P u , Q  to be the (topological) space obtained by 
identifying P, with Q ,  by h. Prove that P  u , Q  can be embedded as a 
polyhedron in R" for some n so that the natural maps P  -+ P u ,  Q  and 
Q  -+ P u ,  Q  are p.1. embeddings. ( ~ i n t :  Triangulate everything and use 
exercise (l).) 

(3) Abstract polyhedra. Let P  be a topological space and e,: P, -+ P  
topological embeddings where P, are polyhedra and the e, are p.1. related 
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in the sense that ea-'0 es is p.1. whenever it is defined; suppose further that 
P is the identification space of {P,) under ea.  Then provided P is compact 
it embeds as a polyhedron in R" for some n so that each ea is p.1. (Hint: 
Generalise the method of (2).) 

(4) Periodic homeomorphisms. Let f :  IKJ -+ IKJ be periodic (i.e. f "= id 
for some n) then there is a subdivision K ' a  K so that f :  K'-+ K' is sim- 
plicial. (Hint : Consider the abstract polyhedron obtained by identifying 
each a €  K with f'(a)). (Compare examples below 2.17.) 

( 5 )  Ball complexes. Suppose that K is a finite collection of balls and 
write JKJ  = U {BIB€ K), then K is a ball complex if 

(i) JKI=disjoint U { B I B E K )  
(ii) if A, BEK then A n B  is a union of balls of K. 
Show that 

(iii) i . 4  is aunionof balls of K for each AE K and prove a generalisation 
of 2.18 for ball complexes. 

(6) Dual cones. Let K be a simplicial complex and let K"' be a first 
derived and AEK. Define the dual cone 

and then A* (K) = a  A-(K), where 

Show that A-(K)Z ( l k ( ~ ,  K))"' by pseudo-radial projection from a. 

(7) 7he dual complex. Let IJI be a manifold. Use (6) and 2.24(4) to 
show that J*  = {(A*(J)I, IA*(~J)IIAE J} is a ball complex. 

Appendix to Chapter 2. On Convex Cells 

Lemma A. ( X ,  C )  is a subspace. 

Proof: Let L, L' be lines through X in ( X ,  C )  and let n be the plane 
defined by L and L'. We show that n c ( x ,  C )  and the result follows. 
Now by definition x is in the interior of arcs a b ,  a'b' in L n  C ,  L'n C  
respectively. Then, by convexity, C  contains the quadrilateral aa'bb' in 
n. Any line through x in n meets this quadrilateral in an interval contain- 
ing x in its interior and hence lies in ( X ,  C ) ,  as required. 
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\ L  

Fig. 20 

Remark. Observe that the proof shows X E ~ ,  and dim(C,)= 
dim (X, C ) .  

Lemma B. Let L be any line in IR" meeting C  in the urc ab  and let X, 
be any two interior points of ab  then 

( U ,  C )  5 (X, C )  = ( y ,  C )  2 ( h ,  C ) .  

ProoJ: L c  (X, C )  and ( y ,  C )  by definition. Let L'c (X, C )  be a line 
through X;  if we show that L", the line parallel to L' through y, lies in 
( y ,  C )  then the middle equality follows easily. Now x ~ i n t  cd with 
c d c L ' n  C  and by convexity C  contains the triangle hcd which meets 
L" in an  arc with y interior. showing L"c ( y ,  C ) ,  as required. 

Fig. 2 1 

Now a similar proof shows that ( a ,  C )  c (X, C )  but L Q ( a ,  C )  which 
establishes the lemma. 
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Corollary l .  C O S  C ,  = C,.? C,. 

Corollary 2. I f F < C ,  x e k  then F=C,. 

Pro05 F= C ,  say and y e k ,  then the line ( x y )  meets F in an arc 
with both X and  y interior so  that C ,  = C ,  = F by Corollary 1. 

Corollary 3. If F, D < C, P n D +pl then F = D. 

Pro05 Let x e  P n D then F = C ,  = D by Corollary 2. 

Corollary 4. If D < C and x e D  then C,= D,. 

Pro05 D = C ,  say and we have 

( 1 )  ( X ,  D )  = ( X ,  C )  n ( Y ,  C )  
by definitions. But we also have 

(2 )  ( X ,  C ) c ( . Y ,  C )  
by Lemma B, since y e  D and x e  D, therefore 

We now prove 2.7. 

Part (4).This follows at  once from the last corollary since F = D, for 
some X .  

Part (3) .  For each x e  C we have x e  e, so C =  U ( P I  F < C )  but this 

is a disjoint union by Corollary 3. Now C =  C -  which proves the 
second half. 

Parrs ( l  ) and (2). Part (2)  follows from Part ( l ) ,  since a vertex of F 
is one of C by Part (4). We prove (1) by induction on n. First of all vertices 
are isolated since each point u e C  has a cone neighbourhood a L  and 
there are no vertices in a L - L  other than a ;  so  by compactness there 
are only finitely many vertices. Now C 3  v,, v,, . . . , v, by convexity and 
we have to prove the inclusion the other way. Let x e C  and a b  be the 
arc L n  C containing X for some line L. Then a,  be^ and hence lie in 
proper faces, for which our induction hypothesis holds. Therefore 
a, b e v ,  U ,  . . . U, since the vertices of the faces of C are vertices of C by (4). 
Then a b c v , ~ ,  ... v, by convexity of the latter and xev,v ,  ... U,, as  
required. 

Part (S). Let x e ( F  n D)" then by Corollary 4 F, = C,  = D, so  that 
C , c F n D .  But ( x , C ) x ( . u , F n D )  since C 3 F n D  and this implies 
C X 3 F n D .  
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Part (6). By convexity C x x B  so let y e C ,  y + x  and continue the 
arc x y  in C  as far as possible past y  and let the end point be z. Then 
X $  ( z ,  C )  for otherwise z  is in the interior of ( X  y )  n C .  Therefore X $  C ,  
and z e  C ,  c B. We have shown X B x  C  and it remains to show X B  is a 
cone. But if x y z  is an  arc with y, z e B  then x e B , ,  by definition, so  x e B  
which is a contradiction. 
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Full Subcomplexes 

Suppose L c K  are simplicial complexes. Define the simplicial map 
,fL: K  -t I by setting fL(v)=O for vertices V E L  and fL(v)= l for other 
vertices. We then have L c l t l ( 0 ) c K  and we say that L  is full in K  if 
L=fcl(0) .  We write L e K  if L  is a full subcomplex of K .  As immediate 
consequences of the definition we observe: 

3.1 (a) f i l ( l ) e K  
(b) L e K  implies T n  L e T  for any T c K .  

We will need the following easy criteria for fullness. 

3.2 Exercise. Suppose L c K  then the following are equivalent: 
(a) L e K  

(b) each simplex of K  meets L  in a face, possibly empty 

(c) no simplex of K  - L  meets L  in its whole boundary. 

3.3 Lemma. (a) If  L c K  then there is a subdivision K ' a K  such that 
L e K ' .  

(b) If L  e K  and K' a K  inducing L a L  then L' e K'. 

Proof (a) Form K' by starring each simplex A E K  - L ,  which meets L  
in its whole boundary, at any interior point. The result then follows from 
3.2(c) since if A E K ' -  L  and A C  L then A C K  implying A E K  which 
contradicts A E K '  since A  should have been starred (see Fig. 22). 

L d K  Le K' 
Fig. 22 

(b) follows easily from 3.2(b). 
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3.4 Exercise. L s K  and L'a L .  Then there is K ' a  K  with L'c K' and 
no new vertices in K' - L'. 

Remark. 3.3 and 3.4 give an alternative proof of 2.17 with a consider- 
ably more economical subdivision. 

Derived Neighbourhoods 

Suppose L c K .  Define the simplicial neighbourhood of L  in K  

N ( L ,  K ) = { A I A E K ,  A < B ,  B n I L J + @ }  

i.e. the smallest subcomplex of K  which is also a topological neigh- 
bourhood of L  in K .  Define the simplicial complement of L  in K  

C ( L ,  K ) =  { A I A E K ,  A n I L I = @ ) .  

Then C ( L ,  K)=.J;'(I) and K  = N ( L ,  K )  U C ( L ,  K) .  Define N ( L , K ) =  
N ( L ,  K )  n C ( L ,  K )  and then: 

3.5 N ( L , K ) ~ N ( L , K )  by 3.1. 
A subdivision K ' a  K  obtained by deriving K  away from L u  C ( L ,  K )  

is said to be a derived of K  near L. Then K' is obtained from K  by deriving 
simplexes which meet ILI but are not in L .  

Exercise. L s K '  where K' is derived near L .  
Now suppose L s K  and K' is a derived of K  near L. Then N ( L ,  K ' )  

is a derived neighbourhood of L  in K. Given two deriveds of K  near L, 
K ,  and K,,  then: 

3.6 the canonical isomorphism S :  K ,  -+K, carries N ( L , K , )  onto 
N ( L ,  K,) and is the identity on L u  C ( L ,  K) .  

Next define I, a 1  by introducing a vertex at e  where 0  < E  < 1. Then 
the cell complex 

N,(L, K ) = { A ~ , J F ' B I A E K ,  B<[O,E] )  

is called the E-neighbourhood of L  in K.  If we define a derived K' of K  
near L  by choosing the new vertices on f - ' ( E )  then it is easy to see that 
N  ( L ,  K ' )  a N, ( L ,  K )  (see Fig. 23). 

3.7 Lemma. Suppose L s K  and K ,  a K  inducing L ,  a L. Then there ure 
deriveds K',  K ;  o f  K ,  K ,  near L ,  L ,  so that IN(L, K')I = IN(L, ,  K ; ) ( .  

Proof: Choose e>O sufficiently small that f;'[O, E ]  contains no  
vertices of K ,  - L , .  Define K' and K ;  by choosing all the new vertices 
on ,J;'(e) and then we have 

N ( L , ,  K ; ) a  N,(L, K ) D  N ( L ,  K ' ) .  
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Fig. 23 

Regular Neighbourhoods 

Now suppose X c  Y are polyhedra, with X compact, and that K 
triangulates a neighbourhood of X in Y with ILJ = X  where L eK, and 
that K' is a derived of K near L. We then have a derived neighbourhood 
N(L, K') and the underlying polyhedron N = IN(L, K')( is said to be a 
regular neighbourhood of X in I! Existence of regular neighbourhoods 
follows from 2.2 (for finding a compact neighbourhood of X in Y) 
and 3.3(a). Uniqueness is proved in the next theorem; a stronger result 
(uniqueness up to isotopy) will be proved later. 

3.8 Theorem. If NI, NZ are regular neighbourhoods of X in Y then there 
is a homeomorphism h:  Y -, Y which carries N, onto NZ and is the identity 
on X and outside some compact subset of Y 

Prooj: By definition N,=IN(L,, Ki)J for i =  1 ,2  where LieKi  and 
K, triangulates a neighbourhood ofX in I! By 2.1 5 there is a triangulation 
K, of I K1l U lKz 1 which contains subdivisions of both K, and K,. 
Then L,eK, by 3.3(b) and N(L,, K;) is a derived neighbourhood. But 
by Lemma 3.7 and the canonical uniqueness of derived neighbourhoods 
(3.6) we have ( N ( L , , K b ) l z I N ( L , , K ; ) I = N ,  for i = 1 , 2  and it only 
remains to observe that each homeomorphism, being a composition 
of isomorphisms (3.6), keeps X and the complement of a compact 
neighbourhood of X in Y fixed and therefore extends by the identity 
to the required homeomorphism of I: 
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3.9 Corollary. Suppose X c  Y is locally collarable and X is compact 
then a regular neighbourhood o j X  in Y is a collar. 

ProoJ: By 3.8 and 2.25 i t  suffices to consider L =  K X O c K @  I 
where K @ I denotes K X l subdivided as in 2.9. But 

Regular Neighbourhoods in Manifolds 

Now suppose X c M  is a compact polyhedron in the manifold M. 

3.10 Proposition. A regular neighbourhood N o j  X in M is a compact 
manijold with boundary. I j X c i n t M  then C?N = I N ( L ,  K')(. 

ProoJ: It suffices to consider an &-neighbourhood N,(L, K). Let 
X E  N, then X E ~  for AEK and A meets L; choose a vertex v ~ A n  L and 
consider B,= 1 st(v, K) ln  N, then since x~in te r ior  of I st(v, K)J in J K (  
we have x~in te r ior  of B, in N. But B,=lst(v, N,)I is a star of v in M 
and hence a ball. It follows that there is a coordinate neighbourhood 
for N at X. 

For the last part observe that N c i n t M  and N is the frontier of N 
in M. 

Exercise. Use exercise 2.24(3) to give an alternative proof for 3.10 
after observing that j~ ' [E, 51 for 0 < E  < 5 < 1 is a cell complex abstractly 
isomorphic with N, X I.  

We now come to the crucial simplicial neighbourhood theorem (3.1 1) 
which enables one to recognise regular neighbourhoods in the absence 
of a triangulation extending beyond the neighbourhood itself. 

3.11 Theorem (S.N.T.). Suppose X is a compact polyhedron in the 
interior o j  the manijold M and that N is a neighbourhood o j X  in int M. 
Then N is a regular neighbourhood ijand only ij 

(i) N is a compact manijold with boundary 
(ii) there are triangulations (K, L, J) oj(N, X, dN) with LeK,  K = N(L, K) 
and J =  N(L, K). 

ProoJ: If N is a regular neighbourhood then conditions (i) and (ii) 
follow at once from definition and 3.10. The converse is proved by a 
short induction on n=dimM together with Corollaries 3.12 to 3.14. 
Assume S.N.T. in dimension n. 

3.12, Corollary. Suppose Bncin t  M" is a ball and x ~ i n t  B". 'Then B" 
is a regular neighbourhood o j x  in M. 

Pro05 We can take B to be an n-simplex and define K by starring at X. 
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3.13, Corollary. Suppose B n c  S" is a ball in a sphere then cl(S"- B") 
is a ball. 

Proof: We can take S"= A where A is an (n + 1)-simplex. Then int B 
meets C for some n-simplex C < A ;  choose XE C n int B then B and C 
are both regular neighbourhoods of X in A by 3.12 and so by uniqueness 
(3.8) we can take B=C. But cl(k-C)=st(a, A), where a is the vertex 
opposite C, is a ball by 2.23. 

3.14,+, Corollary. If Q c int M are (n + l)-manifolds then cl(M -Q) is 
an (n + l )-manifold. 

Proof. For p E aQ we have I k (p, cl (M - Q)) = cl (lk (p, Q) - lk (p, M)) 
which is a ball by 3.13,. 

Finally to complete the induction we show 

3.14"+, * S.N.T.,,+,: 
Let K' be a derived of K near L and N, = I N(L, K')(. Then K' is also 
derived near J and J e K  by 3.5, so that C, = IN(J, K')! is a regular 
neighbourhood of N in N and hence a collar by 3.9; moreover C,= 
C(L, K') so that C, =cl (N -NI). Let K" be K' derived near L and 
N, = I N(L, K")I, C, = cl(N, - N,) which is a collar for similar reasons. 
Finally cl(Q-N) is a manifold by 3.14 and hence there is a collar C, 
on N in cl(Q - N) by 2.25 (see Fig. 24). 

Fig. 24 

Then C = C, U C, U C, E N X [O, 33 and using a homeomorphism I 
of [O, 33 to itself such that 11{O, 3) =id and ).(1)=2 we have a homeo- 
morphism h of C such that h l a C  = id and h(C,) = C, U C,. h extends 
by the identity to a homeomorphism of M which throws N, onto N 
hence showing that N is a regular neighbourhood. 
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Exercise. Generalise the simplicial neighbourhood theorem to the 
case when M is a polyhedron. In place of condition (i), assume that N 
is a compact polyhedron with N a collarable subpolyhedron and that 
cl(M - N) is collarable at N as well. 

3.15 Corollary. Suppose By-'c dB1 are balls jor i =  1,2 (say By-' is 
a face o j  By) then any homeomorphism o j  BY-' with B;-' extends to a 
homeomorphism o j  B; with B:. 

ProoJ: By 3.13 cl(dBy-By-') is a ball and the result follows by two 
applications cf 1.10; first extend to dB; then to B; itself. 

3.16 Corollary. The union o j  two balls which meet in a common jace 
is a ball. 

ProoJ: By 3.15 applied twice, the union is homeomorphic to 
so * B"-'z B". 

3.17 Corollary. Let M be a mangold with compact boundary then a 
collar on 8M in M is a regular neighbourhood. 

ProoJ: Consider the double of M, DM which is obtained by gluing 
a copy M, of M to M along 8M. Then M, c i n t  DM and we can apply 
the S.N.T. But the collar determines a neighbourhood of M, in DM 
which can be triangulated by J U K O l where (M,, 8M)= ( I  JI, J K  x 0 l); 
by the S.N.T. this is a regular neighbourhood and restricting to M we 
see that the collar is a regular neighbourhood of 8M in M. 

3.18 Corollary (Regular neighbourhood collaring theorem). Suppose 
N,cintN2 are two regular neighbourhoods o j  X in intM. Then 
C ~ ( N , - N ~ ) Z N ~  X 1. 

ProoJ: There is a regular neighbourhood N; of X in M so that 
cl(N, - N;) is a collar, by the proof of the S.N.T. Then, by the S.N.T., 
NI and N; are both regular neighbourhoods of X in int N, and hence 
there is a homeomorphism of intN2, which is the identity outside a 
compact set, carrying NI to N;. This extends by the identity to NZ and 
hence carries cl(N, - NI) onto cl (NZ - N,'). 

3.19 Corollary (Combinatorial annulus theorem). Given n-balls A 
and B with A c i n t B  then  cl(^- A)zS"-' X l. 

ProoJ: By 3.12 A and B are both regular neighbourhoods of x ~ i n t  A 
in any manifold M with Bc in tM.  

3.20 Exercise. Use 3.19 to prove that R n r S n - o n e  point (Exercise 
1.9(5)) by writing both R" and S" -point as a union of nested n-balls. 
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Isotopy Uniqueness of Regular Neighbourhoods 

The idea of sliding Y over itself gives rise to the notion of "an isotopy 
of Y ". Composing with an embedding of X in Y we have an "ambient 
isotopy of X in Y ". An "isotopy of X in Y" corresponds to the idea 
of sliding X  about in Y without moving Y The problem of determining 
when an isotopy of X  in Y is ambient (i.e. when a given movement 
of X in Y can be realised by moving Y) is discussed in the next chapter. 

3.21 Definitions 

( 1 )  A map F :  X x l - , Y x l  is level-preserving if F ( X x t ) c Y x t  for 
each te l .  We can then define F,: X -+ Y by F(x, t)=(F;(x), t). 

(2) An isotopy of Y is a level preserving homeomorphism H:  Y X I -+ 

Y X 1  such that H, = id. We say that H, is thefinishing homeomorphism 
of the isotopy and that H, is ambient isotopic to the identity. 
(3) An isotopy ofX in Y is a level-preserving embedding F :  X X 1  -+ Y X I 
and we say that the embeddings F, and F, are isotopic. We say that 
H covers F if  F = H 0 (F, X id) in other words if  

commutes. 
(4) An ambient isotopy is an isotopy which is covered by some isotopy 
of Y and we say F,, F, are ambient isotopic. (This extends the usage 
of "ambient" in (2)) We also say that the subsets F,(X) and F,(X) are 
ambient isotopic. 
(5) An isotopy, ambient isotopy, etc., fixes a subset V c X  if 
F1 V X I  = F, X id I V X I  and we say F has support in U, or is supported 
by U, if F fixes X - U. We also say F is mod V if F fixes V. 

Remark. An isotopy between homeomorphisms is ambient if and 
only if it is itself a homeomorphism. 

Exercise. "Isotopy" and "ambient isotopy" are equivalence relations 
on the set of embeddings of X  in Y; 

3.22 Proposition. (i) Let B", C" be balls and h,, h,: B" -+ C" homeo- 
morphisms which agree on B", then h,, h, are ambient isotopic mod B". 

(ii) Suppose M is a manijold with compact boundary, then any isotopy 
of8M extends to one of M with support in a collar of aM. 

ProoJ (i) (Alexander trick). We can take B" = C" = l" and construct 
the required homeomorphism H of l" X l as follows. 
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~ l i ~ x l = ( h ~ ~ ~ ~ ) x i d  

H(x)=x w h e r e x = ( O , ~ ) ~ I " x I  

and H J I n  X I is defined by conical extension from X (see Fig. 25). 

Fig. 25 

(ii) Choose a collar c :  d M  X l -+M and extend H to im(c) by 

H; ( X ,  S )  = 
for s z t  

where s is the coordinate for the collar and t the coordinate for the 
isotopy. Extend to the rest of M by the identity. 

3.23 Corollary. Let K be a cell complex and f :  1 K 1 -+ 1 K1 a homeo- 
morphism which carries each cell o f K  into itsel/: ' l h e n f i s  ambient isotopic 
to the identity keeping fixed any subcomplex L on which f is already the 
identity. 

Pro05 Isotopefl C for CEK to the identity by induction on dimension 
of C using 3.22(i); extend each isotopy to higher dimensional cells by 
repeated use of 3.22(ii) with M a ball. 

3.24 Regular neighborhood theorem. Suppose Nl and N2 are regular 
neighbourhoods o f X  in Y then there is an isotopy H of Y f i xed  on X and 
of compact support carrying N, onto N2 (H, (NI) = N,). Moreover Y is 
a mani/bld and X c i n t  Y then we can assume further that H is fixed on 
any regular neighbourhood N c( in t  N, n int N2) and outside any open 
neighbourhood U of N, U N2 . 

Pro05 For the first part observe that the uniqueness Theorem 3.9 
provided a homeomorphism which was a composition of isomorphisms 
of deriveds and the required isotopy is provided by 3.23. For the second 
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half we have Ci=cl(Ni- N) a collar for i =  1,2 by 3.18 and hence Ci 
is a regular neighbourhood of N in U- int N by 3.17. So by the first 
part there is an isotopy of U -int N of compact support and fixed 
on N carrying C, to C,; extending by the identity gives the required 
isotopy of M. 

Exercise. Prove the stronger part of 3.24 for polyhedra in polyhedra 
using the S.N.T. for polyhedra. 

Collapsing 

We now turn to the classical treatment of regular neighbourhoods 
based on collapsing. For most applications the treatment we have 
given so far, based on the simplicial neighbourhood theorem, is all 
that is needed (for instance the final sections of this chapter); however 
collapsing is a very useful tool and has strong connections with torsion 
(see Appendix B). 

Definition. Suppose X 3 Y are polyhedra and that X = Y u  B" and 
Y n  Bn=a  face B"-'. Then we say that there is an elementary collapse 
of X on Y; and write X B l! The collapse is across B" onto B"-' from 
the complementary face C"-' = cl(aBn - B"-'), see Fig. 26. 

n-l 

Fig. 26 

We say X collapses on Y and write X 1 Y if there is a sequence 
of elementary collapses X = X o  B X, B...\ X,= l! If Y is a point we 
say X is collapsible and write X I 0. 

Remarks on Simple Homotopy Type 

If X I Y then Y c  X is a homotopy equivalence since there is a deforma- 
tion retraction r :  X -+ Y given by deforming each of the balls B" onto 
the face B"-'. Therefore a sequence of collapses and their inverses 
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determines a homotopy equivalence X, -+Xn which is called a simple 
homotopy equivalence. Simple homotopy equivalence is then an 
equivalence relation on polyhedra and the equivalence classes are called 
simple homotopy types. For example the house with two rooms (see 
Chapter 1 for a picture) has the simple homotopy type of a point -first 
thicken all the walls in ]R3 (this is the inverse of a collapse) and observe 
that the result is a 3-ball, which collapses in 3 steps. In general a homotopy 
equivalence h: X -+ Y determines a torsion element t ( h )~Wh(n , (X) )  
which is zero if and only if h is simple; see Appendix B. 

Examples of collapses 
(1) B" collapses in n steps since it collapses on B"-' which collapses 
inductively in (n - 1) steps. 
(2) Let X be compact and C(X) denote the cone on X, then C(X) \ 0. 
For write X = ( K I  and collapse C(A) from A for AEK inductively in 
order of decreasing dimension. A similar proof shows C(X) \  C(X,) 
for any X, c X .  
(3) If X \  0 then C(X) \  X for if X B Y then C(X) B C ( Y ) u X  by 
collapsing C(Bn) from C(C"-l). 
(4) I f X i s c o m p a c t a n d Y \ Y , t h e n X x Y \ X x Y , . F o r w r i t e X = J K (  
and assume without loss of generality that Y B Y, across B" from c-'. , then X X Y \ X X Y, by inductively collapsing A X B" from 

A X C"-' for AEK. 
(5) Trails. Let X \ Y and suppose P c X  is a compact polyhedron 
then there is a compact polyhedron P+ 1 P  such that X \ P+ U Y and 
dimP+ =<dimP + 1 called a trail of P under the collapse. P+ is constructed 
inductively as follows. Suppose Xi B Xi+,  across B" onto B"-' and 4 
has been constructed. Choose a homeomorphism h: (B", B"-')-+ 
(Bn-' x I ,Bn- 'xO)  by 3.15 and define I:+,=I:uh- '  (shadowh(4nBn)), 
where shadow(T) for T c B n - ' X  l is defined by (X, t )~shadow(T)  if 
and only if (X, s ) ~  T for some s z  t. Then 

d im4+ ,=<d ime+  1 and d i m t + ,  n X i + , = < d i m 4 ;  

moreover X i u ~ \ X i + l u ~ + l  since B " - ' X I \  B"- 'xOushadow(T) 
by the proof of (4). 

Shelling 

Now suppose that M, c M are n-manifolds and M %  M, across B" 
from C"-' onto B"-'. Then we must have B"- ' c  aMl and C" - ' c  aM. 
A collapse of this type is an elementary shelling and a sequence of such 
collapses is a shelling. 

3.25 Lemma. IfM shells to M, then there is a homeomorphism h: M -+ M, 
which is the identity outside an arbitrary neighbourhood of M - M,. 
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Prooj: It is sufficient to prove this for an elementary shelling. Let 
M = M ,  U B", M ,  n B" = B"-'. Choose a collar c on a M ,  in M ,  then 
c(Bn- '  X l )  is a ball D" and B" and D" meet in the common face B"-'. 
By a suitable choice of c we may suppose that D" is in the neighbourhood. 
Let D"-' be the complementary face of D". Then idIDn-' extends to 
a homeomorphism of B " u D n  with D" by 3.15. This extends by the 
identity to the required homeomorphism of M with M , .  

Fig. 27 

The connection between collapsing and regular neighbourhoods is 
contained in the next theorem. We postpone the proof until after the 
corollaries. 

3.26 Theorem. Suppose X c M is a compact polyhedron and that X L Y 
Then a regular neighbourhood o j X  in M shells to a regular neighbourhood 
o j  Y in M .  

3.27 Corollary. I j  X L 0  then a regular neighbourhood o j  X is a ball. 

Prooj: The regular neighbourhood of a point is a ball. 

3.28 Corollary. A collapsible manijbld is a ball. 

Prooj: It is a regular neighbourhood of itself in itself and is therefore 
a ball by 3.27. 

3.29 Corollary. I j  X c int M and X L Y then a regular neighbourhood 
o j  X is a regular neighbourhood o j  Y 

Prooj: They are homeomorphic mod Y by 3.25 and so the result 
follows from the S.N.T. 

3.30 Corollary (Collapsing criterion for regular neighbourhoods). Let 
N be a neighbourhood o j X  in int M .  Then N is regular $and only i j  

(i) N is a compact manqold with boundary, 
(ii) N L X .  



42 Chapter 3. Regular Neighbourhoods 

Prooj: Suppose N is regular then we have to prove (ii). Take N to 
be an &-neighbourhood and collapse each cell Anf-'CO, E] from the 
face A n f - l  (E), for A E K, in order of decreasing dimension. 

Conversely, suppose N L X and let NI be a regular neighbourhood 
of N in intM, then NI is a regular neighbourhood of X by 3.28 and 
C, =cl(N, - N) is a collar by 3.9. Choose another regular neighbourhood 
N' of X in int NI then C, =cl(N, - N') is a collar by 3.18. Then C, and 
C, are both regular neighbourhoods of N, in N, - X  and the uniqueness 
theorem gives a homeomorphism of N, modX throwing C, onto C, 
and hence N onto N' proving that N is regular, as required. 

Proof of 7heorem 3.25. Suppose the result true if the collapses are 
across balls of dimension < n. By induction on the length of the collapse 
we may assume X \ Y, and that X =  Y u  B"' X I with B"-' X I n  Y =  
B"-' X 0. Now choose triangulations J ,  K, L of M, X, Y so that L e K e J .  

Now subdivide K further so that the projection p: B"-' X l -+ l is 
simplicial with respect to some linear triangulation of I, having vertices 
O = E ~ < E ~ < E , < . . . < E ~ = ~ ;  see Fig.28. 

Fig. 28 

By 3.4 we can extend this triangulation to a subdivision of J without 
destroying the fullness properties. Now the collapse X \ Y decomposes 
into q collapses across the balls p-'rei, eicl], SO that without loss of 
generality we may assume L e K e J  and K has no vertices in 
B"-' 

X l -Bc1 X i (i.e. q= l). Now choose a lirst derived subdivision 
of J so that simplexes which meet p-li are derived along p-'(+), 
see Fig. 29. 

Now it is easy to see that N(K1, J')= N(L', J') U N(L',, J') where L, is 
the subcomplex triangulating B"-' X l .  From Corollary 3.27 and in- 
duction we see that N(L',, J') is an m-ball. We claim that W =  N(L', J')n 
N(L',, J') is a regular neighbourhood of p-'(+) in N(L',, J') and is there- 
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Fig. 29 

fore an (m - l)-ball, again by 3.27 and induction. The theorem then 
follows. 

To see the claim, consider the simplicial map f :  J +  d 2  defined 
by f(L,)=O, f (L)=  l and f (other vertices)=2. Here d 2  is a 2-simplex 
with vertices {O, 1,2}. Derive d 2  as shown in Fig. 30; then we can assume 
that J' was chosen so that f :  J' +(d2)'  is simplicial. Then W =  f -'(bc), 
and W is obtained from f -'(ac) by deriving on f -'(b). It follows that 
W is a regular neighbourhood, as required. 

Fig. 30 

Orientation 

In this section we use regular neighbourhood theory to give a geo- 
metric treatment of orientation. It is convenient to use a result from 
algebraic topology (in fact this dependence on algebraic topology 
can be eliminated, see 3.35(7)). Let r,: I n + I n  be reflection in the X,- 

direction i.e. 
rn(x,, ..., X,,)=(-xl,x2, . . . , X  ,,l. 

3.31 (See Appendix A). r,: 81" + 81" is not homotopic to the identity. 

3.32 'Theorem. Let h: 81" + 8l"be a homeomorphism. Then h is ambient 
isotopic to one of id or r,. 



44 Chapter 3. Regular Neighbourhoods 

Combining the last two results we see that there are exactly two 
ambient isotopy classes of homeomorphisms of an n-sphere. To prove 
the theorem we need to know how to move points around in a manifold: 

3.33 Lemma (homogeneity of manifolds). Let M be connected and 
p, q ~ i n t M  then there is an isotopy of M mod dM carrying p to q. 

Proof: If M = I n  then the cone construction provides a homeo- 
morphism of Mmod dM carrying p to q and the result follows from 
3.22(i). For the general case let U be the set of points in intM which 
can be reached from p by an isotopy of M mod dM. Since each point in 
intM has a ball neighbourhood, U is open in M. For similar reasons 
int M - U is open in M. Therefore U = int M. 

Proof of Theorem3.32. The proof is by induction on n. The result 
is obvious for n=  l .  Let F < I n  be the face X,= l and a e P .  Then we 
can assume h(a) = a by 3.33 and that h(F) = F by the regular neighbour- 
hood theorem. Now F is a translate of In-' and h ( d F  is ambient isotopic 
to either id or r,-, by induction. This isotopy extends to dln by two 
applications of 3.22(ii) and the result now follows by 3.22(i) applied 
to each of F, cl(dln - F). 

3.34 Disc theorem. Let M be a connected n-manifold and h,, h,: In + int M 
embeddings. Then h, is ambient isotopic to one of h, or h, 0 r,. 

Proof: By 3.33 we may assume that h,(O)=h,(O) and, by the regular 
neighbourhood theorem, that h, (ln) = h, (ln). Then h;' 0 h, 181" is ambient 
isotopic to one of id or I, by 3.32. Composing with h, gives an ambient 
isotopy of h,(dln) which extends to M by two applications of 3.22(ii). 
h, now agrees with one of h, or h, 0 I, on dln and the result follows 
from 3.22 (i). 

The disc theorem shows that in a connected manifold M there are 
either one or two ambient isotopy classes of embeddings of In in int M, 
and for n > l we define M" to be orientable if there are two classes and 
non-orientable if there is only one. For n=O, a connected 0-manifold 
(a point) is regarded by convention as having two orientations + and -. 
An orientation for an orientable manifold M is a choice of isotopy class 
and if h: In + intM is in this class then we say h orients M. An oriented 
manifold is a manifold with a choice of orientation. If g: M + M is 
a homeomorphism then g is orientation-preserving if go h is isotopic 
to h for each h: In+ M; otherwise h is orientation-reversing. 

3.35 Examples and remarks 

(1) To show that M is non-orientable it is sufficient to find one 
embedding h: In + int M" such that h is ambient isotopic to h 0 r,, for 
by the disc theorem any embedding is isotopic to one of h or h or,. 
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(2) Spheres are orientable for if the identity on F < i n  is ambient 
isotopic to rnlF then by 3.22(i) applied to cl(in- F )  we have id ldl" 
isotopic to rnldIn contradicting 3.31. The inclusion F c i "  defines a 
standard orientation for in.  
(3) A homeomorphism of d l n  is isotopic to the identity if and only 
if i t  preserves orientation. For r, clearly reverses it. 

(4) If M" is orientable and M ; l c  M" then M ,  is orientable, moreover 
any orientation of M restricts to one of M ,  by considering those 
embeddings whose images lie in int M , .  For example, In has a standard 
orientation by (2). 

(5) If M = U U l.: where U and V are open with U n V =l g, and U 
and V are oriented so that the restricted orientations agree on U n l.: 
then M is oriented by the orientations of U and V We leave the proof 
as an exercise, to show that no embedding is isotopic to its reflection, 
split the isotopy into parts each of which takes place in either U or K 
(6) If M is orientable then so is d M  for consider h :  In- '  + d M .  Then 
using a collar of d M  we can define h: In + int M by 

In other words, h is h pushed in along c .  

Fig. 3 1 

Then if h is ambient isotopic to h o rn- ,  then h is ambient isotopic 
to h 0 rn by taking the product isotopy on im(c) and extending to M 
by 3.22(ii). 

If u is an orientation for M then one of h or boy,- ,€U and the class 
of h such that h ~ u  is the induced orientation for d M .  For n = l  there 
is only one choice for h and induced orientation on d M  is given by the 
convention that orientation is + if and only if h EU. 

(7) We have used 3.31 essentially only once in our treatment of orienta- 
tion (to show that spheres and balls are orientable). However there is a 
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direct proof of this fact provided by remark (5) above and exercise (6) 
below. Thus orientation makes sense without any appeal to algebraic 
results. 

Exercises 
(1) Prove that if M is a manifold with boundary and h,, h,: (In-' X I, 
In-' X 0) +(M, aM) are two embeddings, then h, is ambient isotopic to 
one of h, or h,+,,-, X id). 

Hint: Examine the proof of 3.32 and relativise each step (see Chapter 4 
for more general methods). 
(2) Deduce from (1) that the induced orientation for aM is independent 
of the collar used, since h is determined by h: In-' X I + M defined by 
L(x, t)=c(hx,t). 
(3) Define a local orientation at X E M  to be an orientation for a co- 
ordinate neighbourhood of x. Use the proof of 3.33 to show how to 
"transport" a local orientation along an arc cr in M. 
(4) Prove that the end result of (3) depends only on the homotopy 
class of a re1 endpoints. Then define a homomorphism W :  n,(M) -+Z, 
by transporting an orientation around a loop and comparing the result 
with the original orientation. Deduce that a simply-connected manifold 
is orientable. 
(5) Show that M is orientable if and only if M X IR1 is orientable. 

Hint: Cover M by balls so that orientations agree on overlaps. 
(6) Give a proof that IRn is orientable as follows: 
(a) GL@, IR) has at least two path components detected by sign of 
determinant. 
(b) Let f :  I" + IR" be an embedding and suppose that In is triangulated 
so that f is linear on simplexes. Consider the differential o f f  on each 
n-simplex of In and show that the sign of det(df) does not alter at an 
(n - l)-simplex. 
(C) Deduce the result by considering an isotopy In X l -+Rn X l as an 
embedding of In+' in IRn+'. 

Connected Sums 

Suppose M,, M, are connected oriented n-manifolds. We form an oriented 
n-manifold M, # M, called the connected sum of M, and M, as follows. 

Choose embeddings hi: In + Mi i= l ,  2 in the given orientation classes. 
Then M, #M, is formed by identifying M, - h, (int I") with M, - h,(int I") 
along h, (p)  and h,(p) by the homeomorphism h = h,~r ,~h; ' :  h,i"+h,p. 
It is easy to see that M, #M, is a manifold which could also have been 
obtained by identifying collars on hi(in) with one of the directions reversed. 
Then the orientations of M, and M, agree on the overlap, since h reverses 
orientation, and we have a well defined orientation on M, #M, by 
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3.35(5). The disc theorem shows that this construction is independent 
of the choice of the embeddings hi. 

3.36 Exercises 
(1) Show that if one of M ,  or M, is not orientable then there is a well 
defined connected sum M ,  # M 2  which is not orientable. 
(2) Show that # is associative and commutative up to homeomorphism 
and that S" is a unit. 

We now give an application of connected sums. 

Schonflies Conjecture 

Suppose S"-'CS" are spheres, then the closures of the components of 
S" - S"-' are n-balls. 

Remark. It follows from duality (see Appendix A) that S"-S"-' has 
precisely two components. However, an elementary proof can be given. 
We leave this to the reader. 

Now let T be the closure of a component; then we have two problems: 
(1) Is T a manifold? 
(2) Given that T is a manifold, is T a ball? 

From 3.14, T is a manifold if and only if the other closure is a manifold 
and looking at the link of a point in S"-' we see that (1) is equivalent 
to the Schonflies conjecture in dimension n - l .  To avoid this inductive 
dependence we define S"-'CS" to be locally flat if the closures of the 
components are manifolds (we have more general notions of local flatness 
in Chapter 4) and restate the problem as follows. 

3.37 Problem. Suppose S"-'CS" is locally flat then are the closures of 
the components of S"-S"-' n-balls? 

In this form the answer is known to be "yes" for n+4. For n s 3  
there is a direct geometrical argument (see bibliography) and for n 2 5 
it follows from the Poincark theorem, since T y  B" is a homotopy sphere 

(in fact a topological sphere by 3.39 below). This leaves the case n = 4  
still unsolved at the time of writing. This shows, by the inductive proof 
sketched above, that the Schonflies conjecture is true for n s 3  but un- 
solved for n>,4 and that the only obstruction to the solution of the con- 
jecture lies in dimension 4. 

We give a partial solution to 3.37 : 

3.38 Weak Schonflies theorem. Let T be the closure of a component 
of the complement of a locally flat S"-' in S" and let p ~ i n t  T. men 
T-pgS"-' X R+. 

3.39 Corollary. T is topologically an n-ball. 
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Proof: Identify S"-' X R+ with I"-0 and define the topological 
homeomorphism h :  T + I n  to be the given homeomorphism on T-p 
and define h (p) = 0. 

Prooj'oj'3.38. Choose q € S n - T  then by 3.20 we can identify S"-q 
with IR" and we have TcIR". Now let E T  be T shrunk linearly towards 
p by a factor E>O chosen so small that ~ T c i n t  T. We will show that 
cl(T-ET) is a collar and then 

T - p = c l ( T - ~ T ) ~ c l ( ~ T - ~ 2 T ) ~ . . .  

,S"-, - X [O, l ]  us"-' X [ l ,  21 v . .  
-S"-' - xIR+ 

as required. 

Fig. 32 

Now define manifolds M, = By U ?; M, = T'u B;, and W = B; U 

C ~ ( T - E T ) U B ; , ,  where dB, is identified with a?; dB, with dT' and 
dB, with a& T. Then clearly 

Now W#M,  can be thought of as removing B",nd replacing by T. 
But T and E T  are canonically homeomorphic. So W #M,  can also 
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be thought of as replacing B",y E T  this yields By u T i.e. M,.  We have 
proved 

W # M , = M , .  

Add M ,  to both sides: 

Then by exercise 3.36 we have W  #Sn=S", which implies W  =S". It 
follows that cl(T- E T)  is obtained from S" by removing disjoint balls 
and hence is a collar by 3.13 and 3.19. 



Chapter 4. Pairs of Polyhedra and Isotopies 

In this chapter we recast the last two chapters for pairs of polyhedra 
and manifolds. The proofs of the extended results will often be essentially 
the same as those of the original results and in this case we will refer 
back and merely sketch the changes; if the changes are obvious the 
proof will be omitted. We give two applications to isotopies. The first 
concerns "cellular moves" and will be used in the next chapter to prove 
basic unknotting theorems. The second application is to the general 
isotopy extension theorem, and is given in the final section of the chapter; 
this theorem will not be used again in the book and this section may 
be omitted or read at any later stage if the reader wishes. 

Definitions 
A pair of polyhedra (P,P,) is a polyhedron P with a subpolyhedron 
P, c P. A map of pairs f :  (P, P,) -, (Q, Q,) is a (p.1.) map f :  P -, Q such 
that f ( & ) c  Q,. If P and P, are manifolds of dimension q and n respectively 
then (P, P,) is a (q, n)-manifold pair denoted (Q, M), (Qq, Q"), Qq," etc. 
The codimension of Qq3" is q-n. If Qq and Q" are both spheres then 
Qqvn is a sphere pair and if both are balls then it is a ball pair. A manifold 
pair Q4." is proper if Q" n dQq = dQn, and then the boundary (dQq, dQn) 
or dQq7" is a (q - l ,  n - l)-manifold pair. A proper manifold pair is 
locally flat if each point peQn has a neighbourhood in Qq." homeo- 
morphic as a pair with an open set in R:", where R:" is the pair 
R", O c  R:, and then it is clear that dQq." is also locally flat. The 

is the standard standard (q, n)-ball pair is Iq"'=(Iq, In X 0) and dIq+l .n+l  ' 
(q, n)-sphere pair. A ball or sphere pair is unknotted if it is homeomorphic 
with the appropriate standard pair. 

Links and Stars 

Joins and cones of pairs are defined in the obvious way. A star pair 
of aeP ,  is a pair (N, No) of stars in (P, P,) such that (N, No) is a cone 
pair (a L, a L,) and then (L, L,) is a link pair. Existence of star and link 
pairs follows from 1.2 (choose the smaller E )  and p.1. invariance from 
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the proof of 2.19 which provides a homeomorphism of pairs. As 
coroilaries we have 

4.1 Corollary (cf. 2.20). A proper cell pair is an unknotted ball pair. 

Proof: Let Cq-" be the cell pair and a ~ c " .  Without loss assume 
Cq." C IRq9". Choose a cone &-neighbourhood ( N ,  N,)=(a L, a L,) then 
C47" and ( N ,  No) are both star pairs of a in Cq7", while the latter pair 
is linearly homeomorphic to the standard pair. 

4.2 Corollary (cf. 2.21 ( l ) ) .  Suppose J 3 J, are simplicial complexes then 
(IJI, IJol) is a proper locally unknotted manifold pair i f  and only i f  
( I  Ik(x, J)I, ( Ik(x, J,)() is an unknotted ball or sphere pair for each vertex 
X €  J. 

4.3 Proposition (cf. 2.23). Joins of sphere and ball pairs obey the rules 
BP.4 * B P ' . ~ ' = B P + P ' + ~ , ~ + ~ ' + I  

BP.4 * ~ ~ ' . 4 ' = ~ ~ + ~ ' + 1 . 4 + 4 ' + 1  

(where q= - 1 or qf= - 1 means the pair (BP, $3) etc.). Moreover i f  both 
pairs on the left hand side are unknotted then so is the pair on the right 
hand side. 

Proof: The first half follows by a double application of 2.23. For 
the second half use the proof of 2.23 and 4.1. 

Exercise. Prove the converse to the second half of 4.3 by looking 
at a link and using induction. 

4.4 Proposition (cf. 1.10). A homeomorphism between the boundaries 
of unknotted ball pairs extends to the interiors. Moreover we can choose 
the extension to agree with any given extension on the subball. 

Proof: The first half follows from the cone construction. For the 
second half let h: BP.q+ DP.q be the extension given by the first half 
and g: Bq+Dq the given extension on the subballs. Consider 
t ,  =go h;': Dq + 0 4 ,  where h, = hlD4 then since g and h, agree on ~4 

we have t ,  1~q=id .  Now write DP=Dq * SP-q-l by 4.3 and use the join 
construction with id (SP-q- l  to extend t ,  to t :  DP.q 4 DPvq with t J D P =  id. 
Then to  h:  BP.4 + DP.4 is the required extension. 

Remark. For the rest of this section we will deal only with proper 
locally flat manifold pairs and "manifold pair" will mean proper locally Jat 
manifold pair. From 4.2 we see that the problem of whether an arbitrary 
proper pair is locally flat depends on whether ball and sphere pairs 
unknot. This in turn depends on codimension. For codimension 1 this 
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is the unsolved Schonflies conjecture (cf. 3.38). In codimension 2 knots 
are easily constructed by suspending a knotted arc in B3. However in 
codimension 2 3  all pairs unknot by a general unknotting theorem 
(which we will prove in Chapter 7) hence all proper pairs of co- 
dimension 2 3  are automatically locally flat. 

Collars 

We generalise the treatment of Chapter 2 to pairs. Let 

Q I Q O  

U U 
P I P ,  

be a pair (Q ,  Q,) with subpair ( P ,  P,). Then the latter pair is locally 
collared in the former, if for each ~ E P  there are neighbourhood pairs 
satisfying 

( N ( a ,  Q),  N (a ,  Qo) )=(N(a ,  P), N ( a ,  P,)) X I .  

In other words the natural generalisation of the absolute definition 
holds. The proof of 2.25 using these neighbourhoods provides a collar 
on ( P ,  P,) in (Q,  Q,); that is to say 

4.5 Theorem. Let (P ,  P , ) c ( Q ,  Q,) be locally collared with (P ,  P,) compact. 
7hen ( P ,  P,) is collared in (Q,  Q,). 

4.6 Corollary. Let Mq." be a man$old pair with compact boundary. 
7hen i3Mq." is collared in Mq*". 

Regular Neighbourhoods 

Now let ( X ,  X , ) c ( P ,  P,) where both X and X ,  are compact P, is a 
closed subset of P, and X ,  = X  n P,. Then derived neighbourhoods of X 
in (P ,  P,) are constructed by triangulating a neighbourhood of X in P 
by the complex J so that X and P, n JJI both correspond to subcomplexes 
K and J,  with K e J .  Then both N ( K ,  J') and N ( K , ,  JA) are derived 
neighbourhoods where K O =  K n Jo and the pairN(K,, J h ) c  N ( K ,  J ' )  is a 
derived neighbourhood of X in (P ,  P,). 

E-neighbourhoods are similarly constructed and the underlying 
polyhedron pair corresponding to a derived or E-neighbourhood is a 
regular neighbourhood. The proof of 3.8, unchanged, shows that regular 
neighbourhoods are unique up to a homeomorphism of ( P ,  P,) with 
compact support and fixed on X .  
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Simplicial Neighbourhood Theorem for Pairs 

4.7 Theorem. Let ( N ,  No) be a neighbourhood o f ( X ,  X,) in the interior 
of the manijold pair Mq"'. Then ( N ,  No) is a regular neighbourhood fund  
only i j  

( 1 )  ( N ,  No) is a manqold pair 

(2 )  there is a triangulation ( K ,  K,) o f ( N ,  No) with subcomplexes ( L ,  L,), 
( J ,  J,) corresponding to ( X ,  X,), ( N ,  No) such that L e  K ,  K = N ( L ,  K) ,  
J=  N ( L ,  K )  and similar formulae with J,, K,, L ,  replacing J ,  K ,  L. 

Pro05 "Only i f "  follows from definitions and a similar proof to 3.10, 
using 4.2. " I f "  is proved by induction together with the following 
corollaries (the induction starts with n= - 1 ,  i.e. the absolute case). 

4.8,,, Corollary (cf .  3.12). Let B q . " c  Mq." be an unknotted ball pair, 
then Bq." is a regular neighbourhood of any point X € @ '  in Mq.". 

Pro05 W e  have (Bqpn,  x)=(Iq.",O) by the cone construction and we 
may triangulate Iqp" as the cone from 0 on a triangulation o f  iqp". T h e  
result now follows from 4.7, , .  

4.9,,, Corollary (c f .  3.13). Let B q ~ " ~ S q ~ "  be an unknotted ball pair in 
an unknotted sphere pair. Then cI(Sq~"-Bq,") is an unknotted ball pair. 

Pro05 W e  can take ~ ~ . " = i ~ + ' ~ " + '  and Bq." to  be a face pair by 
the argument o f  3.13. Then cl(Sq,"- Bq"7 is the opposite face pair with 
a collar on  the boundary. 

4.10,+,, ,+, Corollary (c f .  3.14). Let ~ ~ + ' 3 " + '  C Q ~ + ' . " + '  be manijold 
pairs. Then cl(Q - M )  is a manijold pair. 

T h e  induction step now follows from 4.10 by the same proof as 
3.1 1 but using collars for pairs, 4.6. 

T h e  other corollaries to 3.1 1 all have analogues for pairs, which we 
leave the reader to state; the proofs are directly analogous to the original 
ones. Isotopies o f  pairs are defined in the obvious way and the proof 
o f  the absolute regular neighbourhood theorem gives: 

4.11 Regular neighbourhood theorem for pairs. Let (N;., Ni. ,) be regular 
neighbourhoods o f X  in (P ,  &)for i= l ,  2. Then there is an ambient isotopy 
of ( P ,  P,) fixed on X and with compact support carrying ( N I ,  NI,,) to 
(N,, N,,,). Moreover i j  ( P ,  P,) is a manijold pair and X is in the interior 
then we can assume the isotopy is fixed on any smaller neighbourhood 
and outside any larger one. 
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Collapsing and Shelling for Pairs 

Let (X, X,)I(Y; Y,) with Y, = Yn X, and suppose X \ Y across B" 
from B"-'. Then we say that the collapse respects X, if either X,= Y, 
(so that X, does not meet B" or h"-') or B n c X 0  (so that X, \ Y,). In 
other words, the collapse either misses X, completely or else takes 
place in X,. A sequence of elementary collapses which respect the sub- 
polyhedron is referred to as a collapse of pairs written (X, X,)\ (Y, Y,). 
Now suppose Mq."3M$" and Mq shells elementarily to M; across Bq 
from Bq-l, then the shelling respects M" if  either M; = M" or else B q n  M" 
and Bq- 'naMn are unknotted subballs, so that M" shells to M; and 
we are removing an unknotted ball pair from Mq," by an unknotted 
face. A sequence of elementary shellings which respect the submanifold 
is a shelling 01 pairs. 

Exercise. Mq"' shells to M$" implies Mq"'\ M49". o 

4.12 Lemma (cf. 3.25). 11 Mq7" shells to M:" then there is a homeo- 
morphism h:  Mq*" -+ Mtnfixed outside any neighbourhood ofthe shelling. 

4.13 Theorem (cf. 3.26). Suppose Mq." is a manijiold pair and (X, X,), 
(Y, Y,)c Mq"' with X,=X n M" and Yo= Yn M". Then iji(X, X,)\ (Y, Y,) 
then a regular neighbourhood 01 X in Mq." shells to one of Y in Mq9". 

4.14 Corollary (cf. 3.27). 11 (X, X,) \ 0 then a regular neighbourhood 
of(X, X,) in M49" is an unknotted ball pair. 

Proof of 4.13. Examine the proof of 3.26. There are two cases: 

(1) Y,=X,, in which case the proof of 3.26 gives a shelling of Nq9" 
to NP." without change. 

(2) (X, X,) \ (Y, Y,) by a collapse in X,. In this case the proof of 
3.26 generalised to pairs shows that Nq'" differs from Nf." by the addition 
of ball pairs by face pairs and then by a similar inductive application 
of 4.14 we see that both pairs are unknotted. Hence Nq." shells to Nf.", 
as required. 

We leave the reader to formulate and prove analogues of the other 
corollaries to 3.26. 

Application to Cellular Moves 

Two locally flat submanifolds of dimension n, M,, M, c Q ,  are said to 
differ by a cellular move provided there is an embedded (n+  l)-disc 
Dn+*cQ,  which meets M, and M, in complementary faces, and M, 
agrees with M, away from D"+': 



Application to Cellular Moves 

More precisely, 
 cl((^, U M,)-(M, n M,))= aDn+' 

and 
D n + l n M i = a D n + l n M i = D ;  for i=1 ,2 .  

Notice that we do not assume that D"+' is locally flat in Q. The 
usefulness of cellular moves is the following result. 

4.15 Proposition. Let M,, M, c Q difler by a cellular move. 7hen there 
is an isotopy of Q carrying M, to M, with support in an arbitrary neigh- 
bourhood of D"+ '. 

Proof: Triangulate a smaller neighbourhood of D in Q, M, and M, 
so that D is a full subcomplex and let N, N, be the resulting &-neighbour- 
hoods of D in Q, M,, i =  l ,  2. Then (N, N,) is a regular neighbourhood 
pair of (D, Di) in (Q, M,) and hence an unknotted ball pair by 4.14 since 
(D, Di) l (D,, D,) l 0. Now (N, 4) =(N, N,) and by 4.4 there is a homeo- 
morphism h: (N, N,) + (N, NZ) extending the identity on boundaries. 
Then by 3.22(i) h is isotopic to id mod boundaries and the required 
isotopy of Q is defined by extending this isotopy by the identity. 

4.16 Corollary. Let Sq." be a locally jlat sphere pair. IThen Sq." is un- 
knotted if and only ifs" bounds an (n + l)-ball B"+' in Sq. 

Proof: If Sq." is unknotted then S" bounds an (n+l)-ball since 
SncS" * Sq-l bounds S" * point (cf. 4.3). The result now follows from: 

Sublemma. If S",S4, Sqc  Sq both bound (n + l)-balls then there is 
a homeomorphism h: Sq + Sq such that h(S", = S;. 

Proof of sublemma. Triangulate Sq with B"+' (a ball spanning S:) 
a subcomplex and, after further subdivision if necessary, find an (n+ 1)- 
simplex AeBn+' which meets S" in a top dimensional face. Then 
D = cl (B - A) is a ball by 3.25 and S", A differ by a cellular move across D. 
So we may assume that S",s the boundary of a simplex which in turn 
is the face of a q-simplex. This is also true of S; and the result follows 
since any two q-simplexes are ambient isotopic by the disc theorem (3.34). 
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Exercise. Define S"cIRq to be unknotted, i f  S" is ambient homeo- 
morphic to i "+ ' c IRq .  Prove an analogous statement to 4.16. 

Disc Theorem for Pairs 

Finally we generalise parts of the last section of Chapter 3. 

4.17 Proposition (cf. 3.33). Let Mq"' be a manijold pair with M" connected 
and X, y~ M". Then there is an ambient isotopy o j  Mqp" jixed on aMq." 
o j  compact support carrying X to y. 

4.18 Proposition (cf. 3.32). Let Sq." be an unknotted sphere pair and 
h: Sq." + Sq." a sey  homeomorphism which preserves orientation o j  both 
jactors. Then h is ambient isotopic to id. 

ProoJ By induction on q. Let B q ~ " c S q ~ "  be an unknotted pair and 
Cq." the complementary pair and X E  B". We may assume h(x)=x by 
4.17 and that h(Bq+")= Bq." by 4.9 and 4.1 1. Then hJaBqp" is isotopic 
to the identity by induction and we extend this isotopy to Sq." by two 
applications of 4.19(a) (below); finally use 4.19(b) twice to complete 
the proof. 

4.19 Lemma (cf. 3.22). 

(a) Any isotopy of aMq7" extends to Mq.". 

(b) Let h,: Bq9" + Cq*", i =  1,2, be homeomorphisms which agree on dBq.". 
IThen h, is ambient isotopic to h,. 

4.20 Theorem (Disc theorem for pairs). Let Mq9" be a connected oriented 
pair (i.e. both are connected and oriented), and let hi: l q ~ " +  M ~ * "  be 
embeddings, i =  1,2, which preserve orientation on both Jzctors. Then there 
is an ambient isotopy o j  Mqp" jixed on aMqp" and carrying h, to h,. 

ProoJ By 4.17, 4.9 and 4.1 1 we can assume h,(lq.")= h2(lq.") (as in 
proof of 4.18). Then by 4.18 and 4.19(a) we can assume h,ldlq,"= h,lalq*". 
Now use 4.19(b). 

Remark. Stronger forms of 4.18 and 4.20 are true, in which we assume 
h=id on S" (or h, =h, on I") and obtain an isotopy fixed on the sub- 
manifold. These are proved by using relative regular neighbourhoods, 
which are a more complicated and more general tool than regular 
neighbourhoods for pairs (see bibliography). 

Isotopy Extension 

In this final section we study the question mentioned in the last chapter 
of when a given isotopy F: X X I + Y X I is ambient. The spirit of our 
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result is similar to the spirit of the collaring theorem- F is ambient if 
and only if it is locally ambient (i.e. for each (X, t ) e X  X I we can find a 
"short" isotopy of a neighbourhood of F,(x) in Y which covers the 
restriction of F to a neighbourhood of (X, c)). In fact we will get away 
with a rather weaker condition (see below). A useful corollary is that 
an isotopy of a manifold M in a manifold Q is ambient provided 
F ( M  X J )  is locally flat in Q X J for each subinterval J =  [S, t] c I. This 
is always true in codimension 2 3  by the unknotting theorem mentioned 
earlier. The main theorem will follow from existence of collars for pairs 
and a procedure for making a map level-preserving. 

We first prove an extension of 4.5 (the collaring theorem for pairs) 
to the case where P,c Q, has a given collar and we wish to extend it 
to a collar on P in Q. 

Defiitions 

(1) We extend the meaning of a collar on P in Q to include an embedding 
c: P X J + Q  onto a neighbourhood such that c identifies P X l with P 
where l is one endpoint of J .  Throughout this section J denotes an 
interval [S, t] c I.  

(2) A collar c': P X J f + Q  is a reduction of c if c'(x X J ' ) c c ( x  X J )  for 
each x e P .  I.e. near P ,c  and c' determine the same collar lines, but the 
parametrisation might well be different. 

(3) Let (P, P , )c(Q,  Q,) be a compact locally collarable subpair and 
c,: P, X l + Q, a given collar. Then c, is locally extendible if for each 
xeP,  there is a collar pair defined locally whose restriction to P, is a 
reduction of c,. 

4.21 Addendum to 4.5 (Extending collars). Let (P, P , )c(Q,  Q,) be a 
compact locally collarable subpair and c,: P, X I +Q, a locally extendible 
collar. 7hen there is an E > O  and a collar c: P X [0, E] +Q which agrees 
with c, where they are both defied. 

Prooj: The proof of 2.25 using the local extensions gives a collar c, 
which restricts to a reduction of c,. But we can correct c, to agree with 
c, on P, X [0, E], by the following sublemma, where E is chosen so small 
that c,(& X [O, & ] ) c c , ( &  X [O, 1)). 

Sublemma. Suppose given an embedding q: P, X [0, E] + P, X [0, l ) ,  
O < E <  1, which is a reduction o j  the idendity. 7hen there is a homeo- 
morphism q, : P X I + P X I which extends q and such that q,(x X I ) = x  X I 
jor each X E P .  

Prooj: The construction of q, is similar to the construction of g in 
the proof of 2.26. Use the method of construction of g to define q, on 
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P, X I  then extend to P X I  using a cylindrical cell subdivision and induc- 
tive conical extension. 

4.22 Corollary. Let Mq." be a manifold pair with compact boundary 
and c,: dMn X I  + M" a collar, then there is a collar c :  dMq X [0, E] + Mq 
which agrees with c, where they are both defined. 

Proof: Local extendibility follows easily from local flatness. 

4.23 Level-preserving lemma. Suppose X is compact and c :  X X I  + X  X I  
i s a c o l l a r o n X x O i n X x I . I T h e n t h e r e i s a n ~ > O a n d a c o l l a r c , : X x I +  
X X I  such that c,  lX X [O, E] is level-preserving. Moreover 

(1) c and c,  agree outside an arbitrary neighbourhood of X X 0 and are 
ambient isotopic fixing X X 0 and the complement of this neighbourhood. 

(2) If clX, X [0, G] is already level-preserving then we can assume 
c ,  JX, X I  = c lX, X I  and the isotopy fixes X, X I .  

Proof: Let c :  K + L  be a triangulation of c and choose an E>O SO 

that no vertices of K or L lie in X X (0, E]. Form deriveds K', L: of K ,  L 
near X X 0 be starring each simplex on the &-level. Then let c,: Kf+L:  
be the canonical simplicial embedding. It remains to check the prop- 
erties listed: 

(1) The first half is assured by choosing fine enough triangulations 
for K and L and the second half follows from 3.23. 

(2) Star c ( A )  at c(a)  where A E K  is starred at a. 

Now let F :  X X I +  Y X I  be an isotopy of compact polyhedra. We 
say that F is locally trivial i f  for each subinterval J c l ,  the natural 
collar on F(X X j )  in F(X X J) is locally extendible to a collar on Y X j in 
Y x J .  
Remarks 

(1) A priori a locally trivial isotopy need not be locally ambient (see 
the beginning of this section) since a local extension need not 

(a) be level-preserving 
(b) agree precisely with the natural collar on F(X X I ) .  

However the conditions are in fact equivalent by Theorem 4.26 below. 

(2) Local triviality can be reformulated in an intrinsic way without 
reference to collars, using a notion of "intrinsic dimension" (see bibli- 
ography and historical notes). 

4.24 Isotopy extension theorem. Let F :  X X I  + Y X l be an isotopy of 
compact polyhedra. Then F is ambient i f  and only i f  it is locally trivial. 

4.25 Corollary. An isotopy F :  M X l + Q X l of compact manifolds is 
ambient provided F ( M  X J) c Q X J is locally flat for each subinterval J c I .  



Isotopy Extension 59 

Proo/: Local triviality follows easily from local flatness. 

Prooj o j  the theorem. "Only if"  is obvious. To prove "if", consider 
t ~ l  and J=[s ,  t] a subinterval. Then by local triviality and 4.21 there 
is a collar c: Y X [t-E, c]+ Y X J which extends the natural collar on 
F(X X t) in F(X X J) in other words so that C O ( &  X id)=F. By 4.23 we 
can assume that c is level preserving for perhaps a smaller E. I.e. we have 
a "short" isotopy covering F for times "before" t. Similar remarks 
apply "after" t and we have a short isotopy covering F for all times 
near t. Therefore, using compactness of I, we can find a finite number 
of intervals [ci-,, ti] which cover I, O =  t o  < t ,  < ... < t j= 1 and such that 
for each i there is a short isotopy (i.e. level-preserving homeomorphism): 

H(i): Y X [ t ip , ,  ti]+ Y X [ti-,, ti] 
such that 

H(')o(FSi X id)=FIX X [c,-,, l;] 

for some (fixed) ~ ~ € 1 .  We form the required isotopy H by piecing together 
the H(')'s: Define 

H J Y  X [0, t l ] = H ( 0 ) ~ ( ( H ~ O ) ) - ' ~  id) 
then 

H 0 (F, X id) = H''). ( (H~O' ) -  ' X id). (F, X id) 

= H(O). (F,~ X id) 

= F ,  as required. 

In general define HI Y X [ci-,, ti] inductively by 

H J Y  X [ t i - l , t i ]=H( i )~ ( (H~f '_ l ) - l  x i d ) ~ ( H , , _ ~ x  id) 

and the covering property is proved similarly. 

Exercises 

(1) Examine the compactness requirements of 4.24. 

(2) By examining the proof of 4.24 show that we can assume H is 
fixed outside an arbitrary neighbourhood of the track of F (= U F,(X)). 

l 

(3) Prove also that if F is a proper isotopy of manifolds and is fixed 
on LJM (i.e. F, I LJM = F,) then we can assume H is fixed on LJQ. 

(4) Use 4.23 to prove uniqueness of collars up to isotopy by "shrinking" 
the time parameter and using the obvious isotopy which matches level- 
preserving collars. Use 4.24 to deduce a uniqueness theorem up to 
ambient isotopy in the case when Q-im(c) is locally collarable at 
c (P  X 1). Deduce that collars of manifolds are unique up to ambient 
isotopy. 
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We give general position theorems for polyhedra in manifolds and 
applications to unknotting in the stable range, piping and the Whitney 
lemma. The last two applications will be used in the proof of the 
h-cobordism theorem in the next chapter. 

General Position 

We consider two situations 

(i)  P,  Q c  M are polyhedra. We wish to minimise the dimension of 
P n Q  by a small ambient isotopy of P in M. 

(ii) f :  P +  M is a map. We wish to minimise the dimension of the 
singular set off  by a small homotopy off .  

The program is: first, prove relative theorems for M=IRm by trian- 
gulating and shifting vertices; second, cover P or f (P) by charts in M 
and inductively apply results for IRm to each chart in turn. 

5.1. Definitions 

(1) For this section only, map means continuous map rather than 
p.1. map. 

(2) Let Y  be a metric space. A homotopy f :  X  X I + Y  is an E-homotopy 
if for each (X,  EX X I, d (  f (X, O), f (X, c))<&. In other words, each point 
stays in an &-neighbourhood of its initial position during the homotopy. 

(3) An isotopy F :  X  X l + Y  X l is an &-isotopy if the composition 
nloF:  X x l + Y x l + Y  is an E-homotopy. 

(4) A map f :  X  + Y  is closed if f ( C )  is closed in Y  for each closed set 
C c X .  Thus an embedding is closed if and only if its image is a closed 
subset. 

(5) The singular set of a map f :  X  + Y, denoted S (  f )c X, is defined by 

Thus f IX - S(  f )  is injective. 
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(6) Let 1 :  P + Q be p. 1. then 1 is non-degenerate i f i - ' (y)  is 0-dimensional 
for each y E ~ ( P ) .  

5.2 Exercises 

(1) Suppose that 1 :  P + Q  is p.1. and P is compact. Then S ( f )  is a 
subpolyhedron of P. 

(2) Is S ( i )  a subpolyhedron if P is non-compact? What if P is non- 
compact and 1 is closed? 

(3) Let P be compact then 1 :  P + Q  is non-degenerate if and only if 
SIA is injective for each simplex A of P in any triangulation of 1. 
(4) Let 1 be non-degenerate and suppose that (P, P,) is a compact 
pair. Define PISIP, by identifying XEP, with ~ E P ,  if  i ( x )= i (y ) .  Then 
PISIP, can be given the structure of an abstract polyhedron, so that 
the quotient map X: P +  PISIP, is p.1. (see 2.27(3)). 

Deiinition. Suppose PP, Q q c  M m  are subpolyhedra of the unbounded 
m-manifold M  and that p + q = m, where p = dim (P), q = dim (Q). We say 
P is transverse to Q in M  if 

(i) P n  Q consists of a finite set of points, 

(ii) for each P E  P n Q there are neighbourhoods U,, U,, U, of p in 
P, Q, M  such that (U,, U,, U,) is p.1. homeomorphic to a neighbourhood 
of 0 in (RP  X 0,O X IRq, IRP X IRq). 

Remark. There are more general definitions of transversality. See 
bibliography for references. 

5.3 General position theorem for embeddings. Let Qq, P , c P P  be closed 
subpolyhedra 01 the unbounded manijold M m  with cl(P-P,) compact. 
Let E>O be given. 7%en there is an &-isotopy 01 M  with compact support, 
iixed on P, and iinishing with h: M  + M  such that 

d im{h(P-P , )nQ}sp+q-m.  

Addendum. 11 p + q =m then we can also arrange that h (P  - P,) meets 
Q transversely. 

We describe the application of 5.3 as "shifting P into general position 
with respect to Q, keeping P, fixed". 

5.4 General position theorem for maps. P, c P is a closed subpolyhedron 
with cl(P - P,) compact. 1 :  PP + M m  is a closed map with p s m ,  such 
that SIP, is p. l. and non-degenerate. E>O is given. Then there is an 
E-homotopy 01 1 re1 P, to 1' which is p.1. and non-degenerate and such 
that dim(S(ir)-P,)s2p-m. 

Addendum. If m = 2p then we can also arrange that the singularities 
o f i l ( P - P ,  are transverse double points. 
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We describe 5.4 as "shiftingf into general position relP,". 

Proofof5.3. Special case M = lRm. Let N be a compact neighbourhood 
of cl (P  - P,) in lRm which meets P, Q in compact polyhedra P,, Q, say. 
Choose linear triangulations (J, K, L, K,) of (N, P,, Q,, P, n P,). Order the 
vertices of K - K,. Suppose there are t of them. For each vertex in turn 
define an &It-homeomorphism of J by shifting the vertex a distance 
less than &/t and extending conewise to the star. This "linear move" 
is supported by a ball and hence the end of an &/c-isotopy of compact 
support by 3.22. Choose the moves in turn to make the set K(0)ufiO) 
maximally affine independent and then the required properties are 
easily checked. 

General case. Let Bi, i = l, . . . , t, be a cover of cl (P - P,) by m-balls 
in M. Define r 

e = P , u  u ( P n B i )  
i =  l 

then 4 = P. 

Induction hypothesis. The theorem is true with P replaced by 8 .  
The hypothesis is trivially true for r=O. Suppose i t  is true for r- l .  

Let U be an open neighbourhood of B, homeomorphic with lRm 
(U = B  U open collar) and let A,  = P n B,. Choose, by induction, a 
6-isotopy of M carrying P to h(P) with h(e- , -P , )nQ of minimal 
dimension and 6 < ~ / 2  sufficiently small that h(A,)c U. 

Now define 
Ao=h(e- , )n  U 

then apply the case M= R" to A, A, in U to get an &/2-isotopy of U 
of compact support moving h(A,) into general position with respect to 
Qn U. Extend to M by the identity. Combining the two isotopies 
establishes the induction step. 

Proofofthe addendum. The case M = lRm is easy since by independence 
the only intersections must lie in the interiors of top dimensional 
simplexes. The general case follows. 

Proof of 5.4. M =  R". By 5.2(4) we can assume that SIP, is an 
embedding (first without loss of generality restrict to a compact neigh- 
bourhood of P in P,). Now triangulate P,P, by complexes K, K, of 
sufficiently small mesh that f(st(v, K))ce/2-ball for each vertex VEK. 
Choose imagesfl(v) for each VEK - K, within ,512 off(v) so thatfl(K(O') 
is maximally independent. Definef' by extending linearly to simplexes 
and use the linear homotopy fzf ' .  The required properties are easily 
checked. The general case and addendum follow as in 5.3. 
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Exercises. Remove the compactness condition on cl(P- P,) by using 
locally finite covers and a countable induction. Prove theorems for 
bounded M by first working in M and then considering the double of M. 

Embedding and Unknotting 

5.5 Theorem (Embedding in double dimension). Let Mm be a compact 
m-mani$old. Then there is an  embedding Mm -+ JRZm, provided m > 2. 

Proof: It suffices to consider one component, so without loss we may 
assume M is connected. Let f :  M -+ JRZm be a map in general position. 
Then f has only double points X , ,  ..., X , ,  y , ,  ..., y, say, i.e. f(xi)= f(yi) 
and f is an embedding off X = { x i }  U { y i } .  By connectivity and general 
position we can assume that the cone on X, CX is embedded in M 
extending the inclusion of X, see Fig. 34. Again by general position we 
have C f(CX) embedded in JR2" extending the inclusion off (CX) and 
meeting f (M)in f(CX).Now choose triangulations so that X, CX, C f (CX) 
are subcomplexes and f is simplicial. Take second deriveds so that f is 
still simplicial and let No be the second derived neighbourhood of CX 
in M and N the second derived neighbourhood of C f(CX) in IRZm. 
Then f aNo c a N  and f No c N .  Now N o ,  N are balls by 3.27 since CX, 
C f (CX) are collapsible, and further f lcl(M - No) is an embedding. Now 
redefine f on No as follows. By the cone construction choose an 
embedding No -+ N extending f on dNo.  We now have the required 
embedding. 

f ( x , )= f ( y , )  @ _C /  f c x@ C(/ ICXII 

I R ~ ~  
Fig. 34 

Remarks 
( l )  The embedding constructed in 5.5 is locally flat. This follows 
from 5.7 below. 

(2) If m =  2, the result is still true since a closed 2-manifold is known to 
be a connected sum of tori and projective planes, each of which embeds 
in JR4. 

(3) In Chapter7 we will improve 5.5 considerably in the case that M 
is more highly connected. 
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5.6 Theorem (Unknotting spheres). 

(i) S' unknots in Sqfor q z 4 .  
(ii) S" unknots in Sq for q 2 2 n + l and n 2 2. 

5.7 Corollary. A  proper manifold pair Mq." is locally ga t  provided 
n=1, q z 1  or n=2, q z 5  or n>2,  q 2 2 n .  

Proof. The case n=  l is trivial; the other cases follow from 5.6 on 
looking at link pairs. 

Proof of 5.6. (i) By 3.20 we can assume S ' c  IRq and notice that S' is 
locally flat since So unknots in Sq-l. 

Now choose a point xeIRq in "general position" with respect to S'. 
More precisely choose I L1 = S' and 

Recall that (P) is the minimal subspace spanned by P. Then x S 1  is 
a cone, hence a ball, and the result follows from 4.16. 

(ii) By (i) any M 2  c Mq is locally flat for q z  5. This is the start of 
an induction. Assume inductively that m 2 2  and any M m c M q  is locally 
flat for q 2 2 m + l .  Let S" c Sq be the given pair. By 3.20 we can assume 
S" c IRq. We claim that a point X E IRq  can be chosen in "general position" 
with respect to S" so that no line through X meets S" in more than two 
points and that each such line is isolated. This is seen as follows: 

Choose 1 L (  = S" and define 

T = U  { ( A B ) J A ,  B E L ,  ( A B )  + R q )  

Then I R q -  T  is open and dense and if x # T  and A, B E L  then there is 
at most one line through X meeting both A  and B, for otherwise X E ( A B )  
and d i m ( A B )  5 2 m  which implies X E  7: It follows that only finitely 
many lines through X meet S" in more than one point, and further each 
such line pierces only m-dimensional simplexes in their interiors. Now 
suppose A, B, C are m-simplexes of L  and l is a line which pierces each 
of A, B, C at an interior point. Call l a transversal and let T ( A ,  B, C) be 
the union of the transversals of A, B  and C. Then T ( A ,  B, C) is part 
of an algebraic variety of dimension <q and since L  is finite we may 
suppose that X #  T ( A ,  B, C) for any choice of A, B, C. The required prop- 
erties of X are now clear. 

Now consider the singular cone xSm. A typical singular ray l, meets 
S" in two points ni,fi and we choose the labels so that n,, the near point, 
is nearer to X than fi .  Define N  = U {n,) the near set and F  = U { I ; )  
thefar set. Since m 2 2  we can find an arc a c S m  with N c a  and F  n a = g ;  
then by taking a suitable regular neighbourhood of a  we have a ball 
B m c S m  with ~c B", F c  S"- B". 
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Fig. 35 

Define S;" = S" - B" V X B". Then S: differs from S" by the cellular 
move across xBm (which is a cqne since B" contains only near points). 
But S; bounds the ball x(Sm - B") (see Fig. 36). 

Fig. 36 X 

5.8 Corollary. Suppose F :  M X l -+ intQ is an embedding and q>,2m, 
then &(M) and &(M) are ambient isotopic by an isotopy supported by a 
compact set in int Q. 

Proof: By 3.26 M X [- l, l] shells to M X [- l ,  01. Use this shelling 
to define a series of cellular moves from Fo(M) to F,(M). The result then 
follows from 4.15 since any embedding of M in Q is locally flat by 5.7. 

Remark. We show later (7.1) that the hypothesis of 5.6 and hence 
of 5.8 can be weakened to q - m 2 3. 

5.9 Corollary. Suppose fo , f , :  M -+ int Q are homotopic embeddings, M is 
closed and q 2 2 m + 2. Then fo (M) and f, (M) are ambient isotopic by an 
isotopy supported by a compact set in int Q. 
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Proof: Let f :  M X I -+ IntQ be the homotopy which we can assume 
to be in general position. Then S ( f ) c M  X (0, l )  consists of points 
x l ,  ..., X,,, y1 ,..., y,, and f(xi)= f(yi), i = l ,  ..., n are n distinct points 
off (M X I). As in the proof of 5.6 choose arcs a(,? in each component 
of M X I which contain the xi but not the yi and each of which meets 
M X 1 in one point x ( ~ )  and does not meet M X 0, see Fig. 37. 

Mx 0 

Fig. 37 

Take B,,) to be a regular neighbourhood of a(j) which misses the yi. 
Then B,j, is a ball and B,j,n M X 1 is a face. Then there is a series of 
cellular moves across the B(,) and cl(M X I - U B,,,)z M X I is embedded 
by f: The result now follows from 5.8. 

Example. M =SI;uS';, Q=S2"+'  then there are homotopic em- 
bedding~ which are not isotopic. They are constructed by winding S;" 
with degree r around S'; using the fact that Q-S'; has the homotopy 
type of an m-sphere by 5.6. See final exercises of this chapter for more 
details. 

Fig. 38 

Exercise. The conclusion of 5.9 still holds if M is not closed provided 
the homotopy is fixed outside a compact m-manifold M, c Int M. 
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Suppose M;", M; c Qq are two locally flat submanifolds of the connected 
manifold Q and that q - m 1 2 .  We will explain how to form a new 
submanifold M? by "piping" M ,  and M ,  together. This is done by 
removing the interiors of small m-discs in each of M ,  and M ,  and 
running a "tube" between the two "holes" thus formed. The tube is 
an embedded S"'-' X l hence M ,  is homeomorphic with M,# M,. We 
can arrange that M ,  is oriented correctly in the case that M ,  and M ,  
are both oriented. 

Fig. 39 

The tube is found in a neighbourhood of an arc cr from a , e M ,  to 
a,€ M 2 ;  a exists by connectedness and general position. 

5.10 Proposition. Let ( N ,  N,, N,) be a regular neighbourhood of a in 
(Q, M , ,  M,). Then there is a homeomorphism 

h :  (N ,Nl ,N2) -+(1~-1~[ -2 ,2 ] ,1"x( -1 ) , I"x l )  

and h can be chosen, provided q - m 2 2, to preserve any given orientations. 
Using 5.10 we can define the tube to be h - ' ( 1 " ~  C -  1 ,  l ] )  and the 

required properties of M ,  are obvious. 
Proofof5.10. Let J triangulate Q so that M i ,  i= 1,2 appears as a 

subcomplex 8 and a appears as a full subcomplex K. Let L c  K be the 
simplicial complement of a,. Now let J' be a derived of J near L u  a,. 
Without loss we may assume that N = IN(K, J ')( ,  Ni = JN(a i ,  8')(. Now 
by the proof of 3.26 IN(L, J 1 ) ( n l N ( a 2 ,  J')( is a (g -  l)-ball, Bq-' say, 
and by 4.14 ( ( N ( a 2 ,  J1)J ,  N,) and ( J N ( L ,  J')I, N,) are both unknotted ball 
pairs. Choose homeomorphisms 

h,: ( J N ( L , J ~ ) I , N , ) - + ( I ~ - ~ X  C-2,0], I ~ x ( - ~ ) ) ,  

h,: ( N ( a 2 ,  J'), N,) -+ (Iq-' X CO, 21, I" X (+ l ) ) .  

By composing with suitable reflections we can assume that the hi preserve 
orientations. Finally we have only to ensure that hiJBq-' is a homeo- 
morphism onto Iq-' X 0 and that h,  JBq-'  =h ,  JBq-' and then we can 
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define h = h, u h,. But this follows easily from the disc theorem, applied 
to give an isotopy of a(Iq- '  X [-2, 01)-im X ( -  1) with compact support 
carrying h,(Bq-l) onto Iq-' x 0  (and similarly Tor h,). Notice that 
q - m 2  2 is used here to conclude that this manifold is connected. 

Exercise. The piping tube defined using 5.10 is unique up to ambient 
isotopy provided M,, M, are both connected, q - m>, 3 and Q is simply- 
connected. 

Hint. By general position and connectivity a is unique. Now use 
regular neighbourhoods and induction to match two tubes. 

Whitney Lemma and Unlinking Spheres 

The Whitney lemma enables us to cancel double points. The situation 
is this. We are given a pair of connected locally flat submanifolds 
PP, Q q c  Mm which are transverse, so that p + q =  m. 

If each of P, Q and M are oriented, then we can attach a sign to an 
intersection point P E P  n Q (see below), and the idea is to give conditions 
under which we can "cancel" a pair of intersections of opposite sign; 
in other words find an ambient isotopy of P which removes this pair 
from the set of intersections of' P and Q. 

Let p e P n Q ,  then by transversality we can find an embedding 
h: Im-+M such that h(O)=p, h- ' (P)=IPxO and hkl(Q)=Ox Iq. 

5.11 Lemma. The orientation class ofh is determined by the orientation 
classes of hlIP X 0 and h10 X Iq. 

Proof: Suppose h, and h, are two such charts and that hillP X 0 and 
0 X Iq are in the same class. Then by the S.N.T. (for triples) we can 
assume im(hl) = im(h,) and we have g = h;' h, lim a self-homeomorphism 
of I" which preserves ip X 0 and 0 X iq, and orientation of both of these. 
Now g is isotopic either to the identity or to rm. In the first case h, is 
easily seen to be isotopic to h,. 

So assume g is isotopic to rm. Then g: (im, 0 X iq) -+ (im, 0 X iq) is 
isotopic to rm as a homeomorphism of pairs by 4.18 and hence 
g lip X 0: ip -+ im -0 X iq is isotopic to rp. This contradicts the assumption 
that g lip X 0 is orientation preserving since im -0 X i q  deformation 
retracts on ip X 0 and we get a self-homotopy of ip reserving orientation 
(which is impossible by 3.31). 

Using 5.11 we can define the sign of p, &(p)= f l ,  as follows. Choose 
h so that h (lP X 0 and h 10 X Iq are in the given orientation classes for P 
and Q. Then &(p)= + l  if  h is in the given class for M and - 1 if not. 
We also define the intersection number of P and Q, &(P, Q), to be 
C { & ( p ) l p ~ P n Q } .  
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5.12 Whitney lemma (simply-connected version). Suppose P, Q, M are 
given as above and that p, q~ P n Q satisfy &(p) = -&(g). ?hen there is an 
isotopy of M carrying P to P' with P' transverse to Q in M and with 
P'n Q = P n Q -p - q; provided either 

(1) p 2 3 , q 2 3 a n d a l ( M ) = O o r  
(2) p=2, 4 2 3  and a,(M-Q)=O. 
Moreover the isotopy has support in a compact set which does not meet 
any other intersection points. (See appendix for definition of n,( ).) 

5.13 Corollary. If &(P, Q)=O and the hypotheses of 5.12 are satisfied 
then we can ambient isotope P of Q, by an isotopy which has compact 
support. 

Remarks 

(1) If p 2 3  then a , ( M ) r  a , (M - Q) by general position; therefore we 
can restate the lemma with the single hypothesis n l (M -Q)=O. 

(2) The Whitney lemma fails for p = q = 2, see bibliography. 
We will prove 5.12 by induction on m=dimM together with a 

theorem on unlinking spheres. By a link we mean a triple S;, S4,cS' 
of spheres where (S, Si) is an unknotted pair for i =  l ,  2. The standard 
link is ip+' X ( -  l), i4+' X 1 c a ( l r  X [-2,211 and a link is unlinked if it  
is homeomorphic with the standard link. 

5.14 Exercise. A link is unlinked if and only if there is a ball B r c S '  
with S1cL?, S ,cS-B.  

Hint. Use the disc theorem (as in the proof of 5.10). 

We are interested in links in the critical dimension r = p + q + l. If 
r >  p + q  + l then all links are unlinked by general position (suppose 
p s q  and find a disc spanning SF in the complement of Sq, then take 
a suitable regular neighbourhood to be the B' of 5.14). We say that a 
link is homologically trivial if S, is homologous to zero in S-S, (or 
more precisely if i,: H,(s,) -+ H,(s-S,) is the zero map). We shall see 
in the next lemma that this is a symmetric condition. 

5.15 Lemma. The following are equivalent: 

(1) (S, S,, S,) is homologically trivial; 
(2) for each locally flat disc D, c S with aD, = S, and D, transverse to 
S, we have &(D,,S,)=O; 
(3) for each disc triple (D, D,,D,) with boundary the given link such 
that (D,D,) is unknotted i=1 ,2  and D, transverse to D, we have 
&(D1, D2)=0. 
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Proof: (1) is equivalent to (2): Notice that S-S, deformation retracts 
on a p-sphere and that a generator of H,(S- S,) can be described 
as the restriction h lip+' X 0 4 S- S, where h: (IP+'+q, 0 X IP) 4 (S, S,) 
is an embedding preserving orientation of both factors (since any two 
such are ambient isotopic by 4.20). Now let D, be the given disc and 
p€ D, n S,. Then by transversality we can find a p-sphere S, = L,(Dl), 
which represents &(p) times the generator of H,(S-S,) by definition. 
Then D, - U {D, l D, n S,} represents a homology between S, and 
U S, and hence S, represents &(Dl, S,) times the generator which implies 
the result (for more details on the interpretation of homology used 
here see Appendix A). 

(3) We have S- S, homotopy equivalent to D- D, by inclusion. We 
can then interpret a generator of H,(D-D,) in a similar way to part (1) 
and the argument is now similar. 

We now give the unlinking theorem which uses the Whitney lemma 
and which will be used inductively in the proof of the Whitney lemma: 

5.16 Theorem (unlinking spheres). Let (S',Sf,S4,) be a link in the 
critical dimension and r 2 4. Then (S, S,,  S,) is unlinked if and only if it 
is homologically trivial. 

Example. The link of l-spheres in S3 (Fig. 40) is homologically trivial 
but not trivial. 

Fig. 40 

Proof of 5.16. The "only i f "  part is obvious. We prove the converse. 
Without loss of generality we can assume pgq .  We have two cases: 

p$ l .  The case p=O is easy so assume p = l ,  q h 2 .  Then S-S, is 
homotopy equivalent to S' and S, is homologically trivial, and hence 
homotopically trivial, in S- S,. The result follows from 5.9. 

p 2 2  assuming 5.12. Choose a locally flat disc D, with aD,=S,, 
transverse to S, by general position. Then &(D1, S,) = 0 by 5.1 5 and, 
by Corollary 5.1 3 applied to D,, S, c S - S,, we can assume D, n S, =p. 
Now let B be a regular neighbourhood of D, in S-S, then S , c  B, 
S , c S -  B and the link is unlinked by 5.14. 
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Proof of 5.12 (assuming 5.16 in dimensions <m). Join p and q by 
arcs a,  g,  in P and Q respectively, which do not run through any other 
intersections. 

Claim. There is a 2-disc D2 C M with aD2 =a U and D2 n ( P  U Q)= 
dD2. For if p 1 3  then by hypothesis there is a map f :  D2-+ M with 
f ( a D 2 ) = a u g  and the result follows by general position. If p = 2  then 
take a regular neighbourhood of in M ,  P, Q  say N ,  No,  N I .  Then there 
is a homeomorphism 

by a similar argument to the one used in the proof of 5.10. Without loss 
we may assume that 

h ( a n N o ) = [ O ,  l ] x O x ( - l u + l ) .  

Let a l = c l ( a - a n N o ) ,  

F = h - ' ( l x O x [ - l , [ ] ) ,  D ~ = h - l ( [ O , I ] ~ O ~ [ - l , l ] ) .  

The a ' u / Y c  M -Q and by hypothesis there is a map f :  D2 -+ M -Q 
which by general position we can take embedded with interior disjoint 
from D:.  Then f  ( D 2 ) u  D: is the required disc. 

Fig. 41 

Now let ( N ,  B , ,  B,) be a regular neighbourhood of D2 in ( M ,  P, Q). 
Then ( N ,  B,) is an unknotted ball pair for i =  1,2 by 4.14. Consider the 
link ( S ,  S , ,  S 2 ) = a ( N ,  B , ,  B,). Then we have & ( B 1 ,  B2)=0  by hypothesis 
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and hence (S, S,, S,) is unlinked by 5.15 and 5.16. Therefore there is an 
unknotted subball B; with dB; = S, and B; n B, =g (this follows from 
the definition of the standard link and 4.4). Then by 4.4 and 3.22 there 
is an isotopy of N fixing N carrying B, to B; and extending to M by the 
identity gives the required isotopy of M. 

NonSimply-Connected Whitney Lemma 

Now suppose that n,(M)+O and assume P and Q are simply connected 
and oriented. Choose a basepoint *EM, a local orientation for M at * 
and basepaths ep,eQ from * to basepoints in P and Q respectively. Let 
p€ P n  Q then define ~ ( p ) =  f g, where gexl(M) is the element determined 
by the loop epp r eQ where p is a path in P from the basepoint to p and r 
a path in Q from p to the basepoint of Q. The sign of ~ ( p )  is determined 
by comparing the local orientation of M at p, which comes from 
transporting the local orientation at * along e,p, with the orientation 
given by 5.1 1. Then we can again define E(P, Q)eZ(x1 (M)) to be 
E{E(p)(p€PnQ},  where Z(n) denotes the integral group ring of x. 

The statement of the lemma now makes sense and the hypotheses 
read either 

(1) pL3,  9 2 3 ,  or 
(2) p=2, 9 2 3 ,  and n l ( M ) ~ n l ( M - Q ) .  

The proof is then virtually unaltered since E@)= - e ( q )  ensures 
that cc u p is a trivial loop and hence that cc'u /Y is trivial in M -Q if 
p=  2, and that E ( B ~ ,  B2)=0 as before. 

Final exercises 

(1) Define the homological linking number of an oriented link as the 
image of the generator of A,(s,) in H,(S-S,) and check symmetry 
using an analogue of 5.1 5. 

(2) Show that (lp+' X 0, 0 X is+' c i p + q + ' )  has linking number 1. 
(3) Show by piping, using (2), how to construct links with arbitrary 
linking numbers. 

(4) Show that two oriented links (in the critical dimension) are homeo- 
morphic if and only if they have the same linking number, provided 
r 2 4 .  And hence combining (3) and (4) that these links are classified 
by their linking numbers. 

(5) Give an alternative proof of the Whitney lemma, without using 
links, as follows: 

(a) construct a standard picture for a neighbourhood of D in M;  
(b) identify the neighbourhood of D in M with the standard picture 

in three steps: 
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(i) identify a neighbourhood of (exactly as in the given proof), 
(ii) identify a neighbourhood of D - D,, 

(iii) match these two identifications on observing that they meet in a 
"piping tube" (use uniqueness of piping tubes and model the proof 
on 5.10); 

(C) find, in the standard picture, an unknotted disc B; with aB; =aB, 
and B; n B, =v. Complete the proof as before. 

(6) Hard. Notice that there is an element of choice in the arc /?' 
in the case p = 2  of the Whitney lemma, namely we can alter it by 
"twisting the I 2  factor on its axis" see Fig.42. Exploit this element 
of choice to show that it is not necessary to assume ~ c , ( M ) E ~ c , ( M  - Q), 
which implies y -0 in M -Q where y is the 1oop"once round a transverse 
disc to Q", but merely that y is in the centre of x,(M -Q). The idea is to 
span mu/?' by a disc which meets Q in a finite number of points and 
deduce that mug' -n  y. Then kill this "obstruction" by twisting /?' 
around Q n times. 
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Let W" be a manifold and H a W-ball such that W n  HcaW,  and 
suppose that there is a homeomorphism h: IP  X Iq + H, such that 
h(ip X Iq) = H n W Then we say that (H, h) is a handle of index p on W, 
or simply that " H  is a p-handle". 

Notice that W'= W U H is also a W-manifold, since a point has a 
neighbourhood which is the union of two balls meeting in a common 
face. If we write f = h lip X Iq then we can identify W u  H with W u,.Ih' 
see 2.27(2); thus we say that W' is formed from W by attaching a handle 
by,/: Conversely, given any embedding/: ip X I q +  aW, then W'= Wu,.IW 
can be regarded as W with an attached p-handle in the obvious way. We 
write variously W'= W U H = W U H(P'= W U, H. 

Terminology. Let (H, h) be a p-handle. Then we call h(lP X 0) the core 
of H and h(0 X Iq) the cocore. h(ip X 0) is the attaching sphere (a-sphere) 
and h(0x 1'7) the belt sphere (b-sphere). We also have the a-tube 
h(ip X Iq) and the b-tube h(lP X iq). Finally h is the characteristic map 
of H, and f =  h lip X Iq the attaching map. 

-a- tube --- - 

Fig. 43 

Fig.43 shows a l-handle on a 3-manifold. Note that a 0-handle 
on W is a W-disc disjoint from W and that, at the other extreme, a W-handle 
is a disc with its whole boundary equal to a component of aW. 
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The idea of a handle is that it gives an elementary way of enlarging 
a manifold. We shall see below that any manifold can be regarded as 
constructed from a ball by attaching handles; such a recipe is called 
a handle decomposition. However, before examining complete de- 
compositions, we first examine the geometry of two handles added 
consecutively and we introduce the "handle moves"-reordering, 
cancelling, adding. The h-cobordism theorem will follow from these 
moves together with the Whitney lemma and a recipe for computing 
homology from a handle decomposition. After the proof of the h- 
cobordism theorem, we will state and prove the two extensions mentioned 
in Chapter 1. 

Handles on a Cobordism 

Let (W; M , ,  M , )  be a cobordism and H a handle on W then if 
H n  WC M ,  we say H is a handle on the cobordism. There is a new 
cobordism (W', M , ,  a W' - M , )  which we say is obtained from the 
original cobordism by attaching a handle. For most of the applications 
of handles we will be concerned with handles on a cobordism; notice 
that when M ,  =g the concept reduces to that of a handle on a manifold. 

Fig. 44 

Our first lemma shows that the result of attaching a handle depends 
only on the isotopy class of the attaching map: 

6.1 Lemma. Let ,j; g :  i p  X I q  + M ,  be ambient isotopic embeddings then 
there is a homeomorphism 

h :  Wu,H + W u , H  

which is the identity outside a collar on M ,  in W 
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Pro05 Let H,: M, -+ M, be the covering isotopy and c a collar on M,. 
Then H, extends to W by 3.22 so that it is the identity outside c. Let H, 
be the finishing homeomorphism and define 

Reordering Handles 

For the next few sections we will be concerned with the result of 
attaching two handles consecutively. The notation W u  H"'u H'" means 
that H"' is a r-handle on the cobordism W and H'"' is an S-handle on 
the cobordism W U H'". 

6.2 Reordering lemma. Let W' = W U H"' U H'" with s 5 r. Then W'= 
W U H'"' U H'" with H"' and H'"' disjoint. 

Proof: Let f :  1% I"'-" M, be the attaching map for H'" where 
M, = d(W U H"') - M,. We will show how to ambient isotope f so as 
to make its image disjoint from H"'. Then we can clearly attach the 
handles in reverse order and the result follows from 6.1. Denote by 
ss+ 1 the a-sphere of H'" and by S"'-'-' the b-sphere of H"'. Then by 

general position in M;'-', we can assume S"-'n S W - ' - ' = @  Now choose 
regular neighbourhoods No of Ss-' and N, of S"'-'-' which are disjoint. 
Then observe that, by the S.N.T., the a-tube N; of H'"' is also a regular 
neighbourhood of S"-' in M, so that we can assume N;= Nu. Similarly, 
the b-tube Nd of H"' is a regular neighbourhood of S"-'-' in M, and 
we have an ambient isotopy or M, carrying N, onto N;. This isotopy 
carries Nu off Nd and hence carries imf off H(" as required. See Fig. 45. 

Fig. 45 

Handles of Adjacent Index 

Suppose W'= W u  H"'u H('+" and let M, = d(Wu H('))- M, (as in the 
last proof). Then the b-sphere S, of H''' and the a-sphere S, of H('+') 
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are in complementary dimension in M,. So by a small general position 
shift of the attaching map of H''+') we can assume that S ,  meets S ,  
transversally in a finite number of points. 

Fig. 46 

We can then define the incidence number &(H('+') ,  H(')) to be the 
intersection number & ( S l ,  S,), as defined in the last chapter, since the 
characteristic maps give standard orientations to S , ,  S ,  and the b-tube 
of H"'. The next result gives an important homology interpretation of 
this incidence number and shows that it depends only on the homotopy 
class of the attaching map of H"+". 

6.3 Lemma. Let g :  W U H"' 4 S' be the (topological) map which sends 
W to a basepoint * € S r ,  collapses H'" onto its core D' and ident$es Dr/aDr 
with S'/*. Let g :  S ,  4 S' be the restriction oJ g, then g has homological 
degree c(H"+ l ) ,  H(')). 

Proof Let ,f be the attaching map of H"+". The degree of g is 
unaffected by an isotopy of ,f Consider a point p e S , n S , .  Then the 
characteristic map h for H'" defines a standard transverse disc D,= 
h ( l r  X p) to S ,  at p. By the definition of transversality and the disc theorem 
for pairs we can isotope S ,  re1 S ,  to make it agree with D, near p. Do 
this for each intersection then after a further isotopy which carries a 
standard neighbourhood of S ,  onto the b-tube we have S 2 n H t r ) =  
U { D p l p ~ S ,  n S,).  Now q ( D ,  is the standard identification of Dp/o'D, 
with S'/* and the result now follows easily from the definition of degree. 
See Appendix A. (Notice that the orientation of S ,  agrees with D, if 
and only if &(p)  = + 1 .) 
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Complementary Handles 

With the same notation as above, suppose that S ,  and S ,  intersect 
transversally in just one point p. H'" and H('+'' are then said to be 
complementary handles. The importance of such pairs is: 

6.4 Cancellation lemma. Suppose W ' =  W u  H " ) u  H"+') with H(') and 
H"+') complementary. Then there is a homeomorphism h :  W'+ W which 
is the identity outside a neighbourhood of H ' " u  H"+'). 

Proof: As in the last proof we can assume S ,  n(b-tube of H''))= D, 
where S ,  n S , = p .  Then, by the disc theorem for pairs again, we can 
assume that h ,  (lr X B') = h,  (Dr X 1') where h,  is the characteristic map 
for H"', h ,  that for H('+'' and B', D' are neighbourhoods of p in S , ,  S ,  
respectively. Then by expanding a standard neighbourhood of S ,  onto 
the b-tube of H") we can assume that these are the only intersections 
of H'" and H"+". W' now shells to W in two steps: 
(1) shell H") from h , ( l r  x ( S ,  -B)) ,  
( 2 )  shell H('+') onto h,((S, - D) X 1'). 
The result now follows from 3.25. 

Fig. 47 

The next corollary says that handles which are algebraically com- 
plementary can be cancelled under extra conditions. This comes from 
a combination of the cancellation lemma and the Whitney lemma. Here 
we see why the theory only works well if w 2 6 :  
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6.5 Corollary. Suppose W'= W u  H("u H"+ l )  and M, is simply- 
connected, W - r 1 4 ,  r 2 2  and w16 .  Then if&(H('+I), H('))= f 1, W ' r  W 

Proof: Use the terminology of the last proof. Then &(S,,S,)= + l  
and we wish to use the Whitney lemma to find an ambient isotopy 
of S, which car r i~s  S, to S; with S, nS;=one point. The result will 
then follow from 6.1 and 6.4. Now S, is in codimension 2 2 ,  S, in co- 
dimension 1 3 .  Moreover there are deformation retractions of M, -S, 
and M, -(a-sphere of H"') onto M, -(a-tube of H"') given by using the 
product structure of I' X l"-". It follows from general position that 
M,-(a-sphere of H"') is simply-connected and hence the Whitney 
lemma applies. 

In the proof of 6.4 we had H"'n H('+'' a ( W -  l)-ball so that 
H"'uH"+" was a W-ball which, the reader can check, was attached 
to W by a face. (I.e. we could have done the shelling in one step instead 
of two.) We now reverse the argument and show how to regard a ball 
attached to W as a complementary pair of handles of any index: 

6.6 Introduction lemma. Suppose W' = W U B"' where B"' n W = B n M, 
=face B, of B. Then we can write W'= W u  H"'uH('+l) with H(') and 
H"+" complementary. 

Moreover if B r c B l  is any locally ,flat disc then we can assume that 
the a-sphere of H"' is dB'  and that (a-sphere of H"+") n W c  B'. 

ProoJ: Consider the "standard" complementary pair: 

H, = I' X ([l,  33 X I"'-'-') 
H ,- -l'+' X lW- l - l  

with 
H 1 u H 2 = I r x  [- l ,3]  XI"'-'-' 
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where the core of H, is I' X 2 X 0 and the core of H, is I r+ '  X 0. Then 
H, U H, is a ball with face 

and if we identify the pair H, U H,, Q with B, B, we have the required 
result. For the last part of the lemma use the following exercise to 
identify B' with ir X [ -  l ,  21 U I' X ( -  l). 

Exercise. Any two locally flat embeddings B'CB" are ambient 
isotopic by an isotopy of compact support. 

Hint. Identify B with IRm and use the proof of 4.16 to show B' is 
ambient isotopic to a simplex. 

Adding Handles 

We now show how to isotope the attaching map of an r-handle by 
"sliding" it over an adjacent r-handle. This has the result of adding 
(or subtracting) the incidence numbers of the r-handles with (r- 1)- 
handles and is a key step in the algebraic simplification of handle 
decompositions. 

Suppose W'= W U/ H"' and that M, is simply-connected and r 1 2 .  
Thenfli '  determines a class in n,(Ml) which we will denote [f]. 

6.7 Adding lemma. Suppose W' = W U,, H, U/, H, with im(,A) and 
im(f2) disjoint and index H, = index H, = r. Suppose that W - r 2 2, r 2 2 
and M, is simply-connected. Then there is an f, isotopic to ,f, such that 
C.f31 = C.f21 + Cfll, and im(fl) n im(f,)=P. 

Alternatively we can find f, so that [f,] = [f2] - [f,]. 

Prooj: Let h, be the characteristic map of H, and c: ir X in'-' X I + 

cl(M, - H, - H,) a collar on the boundary of the a-tube of H,, where 
M, = d(W U H,) - M, as usual (see Fig. 49). 

Let S, =c( i r  X X X 1) for some x€in'-'. Then S, bounds the embedded 
r-disc D, = c(ir X X X I)  U h, (ir X X). Define S, =a-sphere of H,. Form S, 
by piping S, and S, together in M, (see Chapter 4) and define 
D=h- ' (Ir- '  X [ - l ,  l ] )  with the notation of 5.10 (the "solid" piping 
tube). Then S, is ambient isotopic to S, by two cellular moves. 

Move 1. Across the piping tube D. 
Move 2. Across D, (see Fig. 50). 

Finally by a regular neighbourhood argument we can assume that 
f, =(finishing homeomorphism of this isotopy) of2 is disjoint from f , .  
The properties are clear- the sign in the formula comes from the two 
possible choices of orientation for S,.  
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Fig. 49 

Fig. 50 

6.8 Remark. Suppose W =  W ,  U H(' - ' )  then by 6.3 we have 

& ( H 3 ,  H ( ' - ' ) ) = & ( H 2 ,  H( ' - , ) )  + & ( H , ,  H( ' - ' ) ) .  

Handle Decompositions 

Let W  be a closed manifold. Then a handle decomposition of W  is a 
presentation W = H , U H , U . . . U H ,  

where H ,  is a W-ball and H i  is a handle on W , - , = U { H , l j s i - l } .  
More generally, let (W, M , ,  M , )  be a cobordism. Then a handle 

decomposition of W  on M ,  is a presentation 

where C ,  is a collar on M ,  in W  (which is regarded as a cobordism in 
the natural way) and H ,  is a handle on the cobordism 

v.-,= C o u  U { H , l j ~ i - l } .  
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The idea behind a handle decomposition is that it gives an inductive 
procedure for constructing W from the trivial cobordism. 

Now by the collaring theorem we can add a collar C, to M, without 
altering W and we have the symmetrical decomposition 

W=C,UH,U. . .UH,UC,  . 

In this case, if we define, K, = C, U U {H, lj>= i + l )  then we see that 
H, can be regarded as a handle H,? on W,:, with characteristic map 
h* = h, 0 t. Where t is the automorphism of IP  X I q  which interchanges 
the first p coordinates with the last q. So we have the dual decomposition 

W= C,UH:U...UH:U C, 

of W on M,. Notice that index (H,?)= W - index H, and that the a-tube 
of H, is the b-tube of H*. 

A decomposition is nice if the index of H,+,>=index H ,  for each i 
and if handles of the same index are disjoint. It follows from the reordering 
lemma, applied to successive pairs of handles, that any decomposition 
gives rise to a nice decomposition which has the same number of handles 
of each index. 

We next prove existence of handle decompositions. Let (K, K,) 
be a triangulation of (M/; M,) and let A , ,  . . . , A, be the simplexes of 
K - K, taken in order of increasing dimension. Let K" be a second 
derived and define 

Co=IN(K,, K")!, A:*=Ist(a,, K")\. 

6.9 Proposition. 
W = C, U AT* u. . .u  A:* 

is a handle decomposition of W on M, with index (AT*)=dim(A,). 
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Proof: C, is a collar by 3.9. We have to find a characteristic map 
h, for A:* as a handle on ~ - l = C o u ~ { A : * J j ~ i - l } .  Now there is 
a simplicial isomorphism 1;: A:* -* st (a,, K')' defined by pseudo-radial 
projection from a, (as in Exercise 7 at the end of Chapter 2) and this 
carries AT* n kV-, onto N = IN(A, ,  lk (a,, Kf)'I which is a derived neigh- 
bourhood and hence regular. Also A, c st(A,, K) is an unknotted ball 
pair by 4.3 since it is the join of (A,, A,) with (Ik(Ai, K), $3). 

It follows that we can choose a homeomorphism g,: IP  X lq -* st (A,, K) 
so that gi(lP X 0)= A, where dim Ai=p and p + q =  W ;  and by the S.N.T. 
we can assume gi(ip X lq)= N. Therefore hi=l;-' 0 g, is a suitable 
characteristic map for A** (see Fig. 51). 

The CW Complex Associated with a Decomposition 

Notice that, in the last proof, if we shrink all the handles back onto 
their cores we recover the complex K. More generally given any 
decomposition of W on M, we can construct a CW complex K attached 
to M, of the same homotopy type as W and with one p-cell for each 
p-handle as follows: 

Suppose inductively that we have defined K,-, and a homotopy 
equivalence l :  . K re1 M,. 

Let r,: H, -* core(H,) U a-tube(H,) be the obvious deformation retraction. 
Then W,-, ufi H, is homotopy equivalent with K,-,  ug, H,, where 
g . = / .  , ,-, 0 1 ,  which deformation retracts (by l , - ,  o r,) on K,-,  ugiI IP 
(index H, = p). Then K,  = K,-, ugil IP is a cell complex K,-, U attached 
p-cell, and we have constructed li: W.-* K, .  

If the decomposition was nice, the cells will be attached in order 
of increasing dimension and K will be a CW complex. 

Now let H(", H'"') be handles in the decomposition and er, er+ '  the 
corresponding cells of K. Then by niceness we can assume H(", H"+') 
are consecutive and we have the incidence number &(H('+'), H(')) defined. 
It follows at once from 6.3 and the definition of incidence numbers in 
a CW complex (Appendix A) that &(H('+'), H('))=&(er+ l ,  er). This ob- 
servation is very important because it means that we can compute 
H, (W, M,) from the list of incidence numbers of a handle decomposition 
or conversely, as we shall use it in the proof of the h-cobordism theorem, 
deduce facts about incidence numbers from homological hypotheses. 

6.10 Exercise. Let W = C, U H, U . . .U H, be a nice decomposition and 
W'"= C, U U {HjP'l p Ss}.  Then we have 
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ni(W, M(")=O for i s s ,  n-S- l 

where M("=aWW'"-M 0. 

Hint. Use the CW complexes associated to the decomposition and 
its dual. Or alternatively use a direct argument and general position. 

The Duality Theorems 

Let W = C, U H, u.. .u H, U C, be a nice symmetrical decomposition 
and let K be the associated CW complex. Then the dual decomposition 
is also nice and we obtain the dual complex K* attached to M,. Now 
let H'", H('+" be successive handles and H'"-'), H("-'-" their duals and 
,r, e ' + ~ ,  ew-r, e w - r - ~  the corresponding cells of K and K*. Then since 

the a-sphere of H'"-')= b-sphere of H'" and similarly for H('+') we have 

which implies 
eW-'-' ) m0d2. 

It follows that (cf. Appendix A) there is an isomorphism between the 
chain complex of K and the cochain complex of K* with Z2-coefficients 
and we have 

6.11 Theorem. H,(W, M,; Z , ) r  H"-*(W, M,; Z,). 

Now suppose W is orientable. Then each "level" manifold M,= 
aWi-M, is orientable and we have (with the notation of 6.3) 
E ( S , , S ~ ) =  +&(S,,S,) and hence &(erC1,er)= +~(e"-',e"-'-' ). But since 
E(S,, S2) = ( -  l)r(W-r-l) &(S2, S,) in M,, and orientation of H =(- l)""-" 
orientation of H*, the signs are in fact all positive, and we have 

6.12 Theorem. If W is orientable then 

H,(W, M,; Z)zHw-*(W, M,; Z) 

The case M, = M, =g of these theorems is usually called "Poincare 
duality" and the case M, =g, " Lefschetz duality". 

Simplifying Handle Decompositions 

Now we come to the heart of the proof of the h-cobordism theorem, 
namely using algebraic hypotheses to modify a decomposition. 
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6.13 Lemma (elimination of 0-handles). Suppose given a handle de- 
composition of W on M, with i, t-handles for each t. Suppose that each 
component of W meets M,. Then there is another decomposition with no 
0-handles, (i, - i,) l-handles and i, t-handles for t > 1. 

Proof: By the reordering lemma we can assume that indices of 
handles increase. Now attaching a handle of index 2 does not affect 
connectivity. It follows that each 0-handle is connected to either another 
0-handle or else to C, by a l-handle. But a 0-handle with a l-handle 
attached to it by one end only is a complementary pair which can be 
cancelled. It follows that each 0-handle can be cancelled with a suitable 
l -handle. 

Fig. 52 

6.14 Corollary. Suppose W is connected then W has a handle decom- 
position on M, with 

(i) no 0- or W-handles if M,, M, =+g 
(ii) one 0-handle and no W-handles if M, =g, M, =+g 

(iii) no 0-handles and one W-handle if M, =+g, M, =g  
(iv) one 0-handle and one W-handle if M, = M, =g. 

Proof: For (i) apply 6.13 to a decomposition and the dual decom- 
position. For (ii) let H, u H, u . . . u H, be a decomposition. Then H, is 
a 0-handle and we can apply (i) to C, u H, u...u H, where C, is a 
collar on aH, in H,. Parts (iii) and (iv) follow similarly. 

6.15 Lemma (elimination of l-handles). Suppose W is connected and 
we are given a handle decomposition of W on M, with no 0-handles and i, 
t-handles for t>O. Suppose that n,(W, M,)=O, and w16.  Then there is 
another decomposition with i, t-handles for t=+ 1,3, no l-handles and 
(i, + i,) 3-handles. 

Proof: We can assume the decomposition is nice. Let (H,, h,) be a 
typical l-handle. We will show how to "replace" H, by a 3-handle 
and the result then follows by induction. Let cr=h,(ll X X) be an arc 
in the b-tube of H, "parallel" to the core. By general position and 
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regular neighbourhoods (as in 6.2) we can assume a misses the 2-handles 
and hence lies in M(')= d W") - M,. NOW by 6.10 n,(W('), Co)=O and 
we can find a map f :  D2 -+ W(') with f (dD2) = a U f l  where f l  lies in C,. 
(The use of 6.10 simply involves pushing f off the cocores of the higher 
dimensional handles by general position.) Then we can again assume 
(as in 6.2) that f l  is embedded in M") disjoint from all 1- and 2-handles. 
Finally homotop f re1 dD2 into M'" by 6.10 (i.e. push off the cores of 
the 1- and 2-handles by general position) and, by a final application 
of general position, replace f by a locally flat embedded disc D'. NOW 
use 6.6 to introduce a complementary 2 and 3 handle pair (H,, H,) 
along a neighbourhood of D' SO that the a-sphere of H, is dD2. Then 
(H,, H,) are complementary and can be cancelled, and we have "re- 
placed" H, by H,, as required, see Fig. 53. 

Fig. 53 Fig. 54 

Remark. Lemma 6.15 works if W = 5. The only part of our proof 
which fails is the final appeal to general position.-We would merely 
get a locally flat embedding off a finite set which then has to be "piped" 
over the edge (as in 5.9). The proof of the lemma generalises to "replace" 
S-handles by (S+ 2)-handles when ns(W, M,)=O, M, is connected and 
W>= 2s + 3. This result will not be needed. 

6.16 Lemma (elimination of S-handles, 2 2 S 2 W - 4). Suppose given a 
handle decomposition of W on M, with no handles of index < S  and i, 
handles of index t for t 2 S. Then, if M, is simply-connected 2 2 S 2 W - 4, 
w z 6  and Hs(W, M,)=O, we canjnd  a new decomposition with the same 
number of t-handles for t =#S, S +  1, with no S-handles and with (is+, - is) 
(S + l)-handles. 

Proof: We can assume that the decomposition is nice and then we 
can compute H,(W, M,) from the incidence numbers. Let H'" be a 
typical S-handle. We show how to eliminate H'" and the result follows 



The Relative Case 87 

by induction. Let H,?+') be the (S+ l)-handles and ni=&(H?+'), H(')). 
Use 6.7 to add the (S+ l)-handles so as to reduce Clnil  as far as 
possible. For example suppose n, , n2 + 0, In, l 2 l n2 1, then replace by 
n,, n, _+n2 and reduce C ( n i J  Finally only n, say is non-zero and since 
H, (W, M,) = O  we must have n, = + 1. H'" and H p  "+' are then algebra- 
ically complementary and the result follows from 6.5. 

Proof of the h-Cobordism Theorem 

6.17 h-cobordism theorem. Let (W, M,, M,) be a simply-connected 
h-cobordism (i.e. M, c W and M, c W are both homotopy equivalences). 
n e n ,  i fwL6,  W r M ,  XI .  

Proof. Choose a decomposition W = C, U H, u . . . u  H, U C,. We will 
show how to eliminate all the H, and then W 2 C 0 u  C, and the result 
is proved. Now by 6.13 and 6.15 we can assume there are no 0- or 
l-handles, and, applying these results to the dual decomposition, that 
there are no W- or (W-  l)-handles. Now use 6.16 to eliminate all the 
S-handles for 2 5 s 5 W - 4 and then we have only (W - 3) and (W - 2)- 
handles. Now apply 6.16 to the dual decomposition to eliminate 
the (W - 2)-handles and we then have only (W - 3)-handles. But 
H,,-,(W, M,)=O, which implies that there are no (W-3)-handles left. 

Remark. We actually only used the hypotheses 

(1) n , ( Y  M,)=n,(W, M,)=O, 
(2) W is simply-connected, 

(3) H*(W,M,)=O, 
(4) H* (W, M,) = 0. 
But (4) follows from (3) and duality (see appendix A.4) so that we have 
proved the stronger form of the theorem (see end of Chapter 1). 

The Relative Case 

By a cobordism with boundary we mean a compact W-manifold Wtogether 
with two disjoint (W - l)-dimensional submanifolds, M,, M, c d W Then 
V =cl (a W- M, -M,) is a cobordism between dM, and dM, (see Fig. 54): 
W is an h-cobordism if M a c  W, M , c  W, d M o c  V, dM, c V are all 
homotopy equivalences. 

6.18 Relative h-cobordism theorem. Let (W, M,, M,) be a simply- 
connected h-cobordism with boundary and suppose V 2 M, X l and W 2 6. 
n e n  (W, V)z(M,, dM,) X I. 
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Remarks 

(1) By assuming that V is a product we avoid having to put conditions 
on V: Combining 6.18 with the absolute theorem yields a theorem 
when V is not known already to be a product. 

(2) By uniqueness of collars (see end of Chapter 4) we can assume 
that the product structure on W extends the given structure on V: 

Proof: Let (K, K,) be a triangulation of (M! M,). Then by 3.17 and 
hypothesis we can assume 

V= IN(aKg, (aK - Ko)")l. 

Then if we let A,, .. . , A, be the simplexes of K not in K, we have 

where C, =JN(K,, K")J. Then C, is a collar which restricts on M, to 
V and we have a "handle decomposition" of W on M, re1 V. 

Fig. 55 

By the collaring theorem we can assume that this decomposition 
is symmetrical and it only remains to observe that each of the lemmas 
used in the proof of the h-cobordism theorem can be applied in this 
situation and that the resulting homeomorphisms can all be assumed 
to be fixed on V: Therefore W r  C, U C, re1 V which implies the result. 

Remark. As with the absolute theorem we have only used the simple 
connectivity of W, M, and M,,  H, (W, Mo)=O, and duality (which has a 
similar statement and proof). 

The Non-Simply-Connected Case 

Let W be a connected h-cobordism; then there is defined a torsion 
element 7(W, MO)€ Wh(x,(W)), see Appendix B. 

6.19 S-cobordism theorem. Let (W, M,, M,) be a connected h-cobordism 
and w 2 6 .  7'hen W z M , x I  ifand only ifz(W, M,)=O. 

Remarks 

(1) The "only if" part follows from the properties of torsion, so we 
prove the " i f "  part. 
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(2) h-cobordisms may be constructed with any given torsion (see the 
end of the chapter). 

(3) 6.18 and 6.19 can be combined to give a relative S-cobordism 
theorem which is proved by combining the proofs. 

The geometry of the proof of 6.19 is the same as that for the simply- 
connected case, the main difference being the need to take care with 
base-points. A "handle" will now mean a based handle i.e. we have 
a specific base-path from the base point of the a-sphere to the base- 
point of M,. (This allows us to regard a b-sphere as based by using a 
standard path between the two spheres.) 

The reordering lemma and the notion ofcomplementary handles are 
unchanged as are the cancellation and introduction lemmas. However 
we need a non-simply-connected version of Corollary 6.5. Incidence 
numbers are defined in Zn, where n=n,(W), as in the last chapter. 

6.20 Corollary to 6.4. Suppose W' = W U H"' U H('+ l) and n, (M,) r 
n I ( M 2 ) ~ n I ( W )  where M,=a(WuH(")-M, and that 2_IrSw-4. 
Then if E (H"+ l', H"') = +g, where g€ n, W' z W 

The proof is similar to 6.5 using the non-simply-connected Whitney 
lemma. 

The adding lemma, 6.7, needs to be generalised by allowing 
[f3] = [f,] _+[f,]5 where g€ n, (M,) acts in the usual way. This is proved 
by choosing the piping tube in a neighbourhood of an arc cl which 
represents g. 

Existence of decompositions follows as before and, by a generalisation 
of 6.3, proved by lifting to the universal cover, we can compute H, (R M,) 
as a Z n module from the incidence numbers when nI (W)znI(MO).  
Here denotes the universal cover of X. 

Proof of 6.19. The idea is the same-start with a decomposition 
and eliminate all the handles, but the method is rather different. We 
start as before by eliminating 0-, 1-, W-, and (W-  l)-handles using 
Lemmas 6.13 and 6.1 5. Then the idea is to "move" all the handles into 
two adjacent dimensions. Suppose H") is the first handle with 1-22  and 
W - r  2 4 .  We show how to replace H(" by an (r +2)-handle H"+". 
Denote the incidence numbers &(HIr+'), H(')) by t i ,  t i e Z  n, where H,!'+') 
are the (r+l)-handles. Since H,(R M ) = O  we must have some linear 
combination 2 niti= l ,  n,eZ n. Introduce a complementary pair 
(H"+", H('+')). Then by adding suitable combinations of the HIr+" to 
H('+') we can make &(H('+'), H"') = 2 ni ti = l .  We can then cancel 
H"+" with H"' by Corollary 6.20. This "replaces" H"' by H('+''. 

Finally there are handles left of indices (W - 3) and (W -2) only, 
or dually of indices 2 and 3 only. Let A be the matrix over Z n determined 
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by the incidence numbers of H!3) with Hj2). Since H,(@ M)=o, A is 
an invertible p x p  matrix for some p. A determines an element 
T-T(W M)€Wh(n)  (see Appendix B) which measures the obstruction 
to changing A to the empty matrix by a sequence of the following 

moves: (1) Replace A by (: y )  or vice versa. (2) ~ d d  a multiple of 

one row to another. (3) Reorder rows or columns. (4) Multiply a row 
by an element of n or by - 1. 

However each of these moves can be realised by a handle operation: 
(1) Introduce or cancel a pair of (algebraically) complementary handles. 
(2) Add handles. (3) Renumber handles. (4) Change the base-path or 
orientation of a handle. 

Hence if T = O  we can cancel all the 2- and 3-handles and W is a 
product, as required. 

Constructing h-Cobordisms 
Finally, to end the chapter, we show how to construct h-cobordisms 
of any given torsion. Let M" be a given manifold with n>,3 and 
~ € W h ( n ) ,  n=n,(M),  a given element. Then T is determined by an 
invertible p X p matrix A with entries in Z(n). Construct a cobordism 
W with handles of indices 2 and 3 only and matrix (of the last proof) 
equal to A as follows: 
(1) Start with the trivial cobordism M X I and attach p complementary 
(2,3) pairs, (H!2', i = l ,  2, . . . , p. 
(2) Attach also p complementary (3,4) pairs by balls disjoint from 
the (2,3) pairs. Forget the 4-handles and call the new 3-handles Hi ,  
i = l , 2  ,..., p. 
(3) Use the adding lemma to add to each H!3' a suitable linear com- 
bination of the HJ3) SO as to realise the i-th row of A. In other words 
make HJ2') = A,, . 
(4) Now forget the Hj3). Then W= M X l U {H!~)} U {Hj3)} is the 
required cobordism. 

Notice that the construction actually embeds W in the trivial co- 
bordism M x l r M x l U all the attached handles. 

Exercise. If n>=4 then W is an h-cobordism. 
Hint. Invertibility of A implies H, (R M)=o. Use 6.10 to check 

the n,(  ) hypotheses. 

6.21 Exercise (classification of h-cobordisms). Prove that there is a 
one-one correspondence between Wh (n) and homeomorphism classes 
(re1 M) of h-cobordisms (W, M, M') for n 2 5 ,  by observing: (1) Any 
h-cobordism embeds in an S-cobordism and hence in any other h- 
cobordism. (2) If W, c W and T(W, M )  = T(W,, M) then cl(W- W,) is an 
S-cobordism. 



Chapter 7. Applications 

We give five applications of handle theory: 

(1) Unknotting balls and spheres in codimension 2 3 .  

(2 )  A criterion for unknotting in codimension 2. 

(3)  A weak 5-dimensional h-cobordism and Poincari: theorem. 

(4)  Engulfing. 
( 5 )  Embedding manifolds. 

Unknotting Balls and Spheres in Codimension 2 3 

7.1 Theorem. Any proper (q ,  n)-ball or sphere pair is unknotted i fq - n>= 3. 

For the following corollaries, see Chapter 4. 

7.2 Corollary. Any proper (q ,  n)-manifold pair is locally pat provided 
q - n z 3 .  

7.3 Corollary. Any proper isotopy of manifolds is ambient in codimen- 
sion 2 3 .  

We will deduce the theorem from two lemmas: 

7.4 Lemma. 7he theorem is true,for locallyJlat (q, n)-ball pairs with q 2 6. 
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ProoJ: Let N be a regular neighbourhood of B" in B4, then (N, B") 
is an unknotted ball pair by 4.14. Define W= cl(B4 - N), M, = W n  N;  
choose a collar C on M, in cl (a W- M,) and define M, =cl (a W- (M, u C)). 
Then (W, M,, M,) is a cobordism with boundary C and we claim that 
it is a simply-connected h-cobordism. First W, M,, M, are all simply- 
connected by general position, since W - B4 - B", M, - aN - aBn, 
M, - aB4 - aBn, and B", aBn are in codimension 2 3. Secondly 

H, (B4, N ) r  H, (B4, B")= 0 by homotopy 

zH,(W,M,) by excision. 

It then follows from 6.18 that W r M ,  X I and hence (B4, B") is obtained 
from the unknotted pair (N, B") by gluing a collar on M, and is therefore 
unknotted by 2.25. 

7.5 Lemma. Let (q-n) be Jixed then (q,n)-ball pairs unknot jor 
q t o (q, n)-sphere pairs unknot jor q j t. 

ProoJ: Assume spheres unknot, then given a (q,n)-ball pair, by 
hypothesis its boundary is unknotted and we can glue on an unknotted 
ball pair to form a sphere pair, which is unknotted by hypothesis. So 
the original pair is obtained from an unknotted sphere pair by removing 
an unknotted ball pair and so the result follows from 4.9. 

Conversely, suppose balls unknot and a sphere pair is given; remove 
a small ball pair, to form a ball pair. Then by hypothesis the original 
pair is obtained by gluing two unknotted ball pairs along their bound- 
aries and the result is unknotted by 4.3. 

Prooj o j  7.1. By induction on q. By 5.6 sphere pairs unknot for q j 5 
and hence, by 7.5, ball pairs unknot for q_I 5. Now suppose the theorem 
is true for q j t - 1 and (B', B") a given pair with t 2 6, t - m? 3. Then 
looking at links we see that B" is locally flat in B' and hence the pair 
is unknotted by 7.4. It follows from 7.5 that any (t, m)-sphere pair is 
unknotted and the induction step is established. 

A Criterion for Unknotting in Codimension 2 

We will need to assume that Wh(Z)=O (see bibliography) so that any 
h-cobordism between manifolds with fundamental group Z is simple. 

7.6 Theorem. Let Sq." be a proper locallyflat sphere pair with q-n=2, 
q 2 6 .  Then the pair is unknotted ijand only ijS4-S" has the homotopy 
type o j  a circle. 

Remarks 

(1) The "only i f "  part is obvious. 
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(2) The theorem is also known for q = 3  when it follows from the 
notorious Dehn lemma and for q=5  by "surgery" (see bibliography). 

ProoJ Let B4," be the result of removing an unknotted ball pair 
then by 4.3 it suffices to show B4." is unknotted. Define N, W, M,, C, M, 
as in the proof of 7.4. Then W- S' by hypothesis, M,, M, - S' since 
(dN, dBn) and (dB4, dBn) are unknotted. Therefore W is an h-cobordism, 
hence an S-cobordism, hence (by the relative S-cobordism theorem) 
a product. Therefore B4pn is unknotted as in 7.4. 

Weak 5-Dimensional Theorems 

7.7 Weak S-dimensional h-cobordism theorem. Let ( W5, M,, M,) be a 
simply-connected h-cobordism between manijolds without boundary. 7hen 
(W- M , ) r  M, X [0, 1). 

We say W is invertible if there is a cobordism (F M,, M,) such that 
WU,, WZM, X I. 

7.8 Lemma. W is invertible with inverse W =  W with ends reversed. 

ProoJ Consider W X l as a cobordism between the manifolds with 
boundary M, X I and W f = ( W  X Ou M, X I U W X 1)-collar. 

Fig. 57 

By the relative 6-dimensional h-cobordism theorem we have 
W'Z M, X l so that W X 0 is invertible with inverse M, X I U W X l z 
as required. 

Proof of 7.7. By collaring W z  W u  M, X I and hence 

W - M , z W U M , X  [O,l). 
Now consider 

W =  wu, ,  W u M o  wu,, W... 
then this is 
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But by symmetry W is the inverse to W hence muMo W = M ,  X I  and so 
- - 
WZ W u  M, X [O,1) (by pairing the other way) 

r W-M, by the first remark. 

Remark. Lemma 7.8 (and hence Theorem 7.7) is also true without 
the hypothesis of simple connectivity (and for any dimension > 5  as 
well). The proof is similar to our proof but before starting one has to 
add a cobordism to W to kill torsion (by existence of cobordisms with 
arbitrary torsion). This of course does not affect invertibility. 

7.9 Corollary (weak Poincare theorem). Let M 5  be a closed manijold 
of the homotopy type o j 'SS .  Then M 5  is topologically homeomorphic 
with S5. 

Proof Let D: c D: c M 5  be concentric discs and let D: c M -D, be 
another. Then M -(D, U D , ) z ~ D ,  X [0, 1) by 7.7, and the argument in 
Chapter 1. Hence M is covered by two discs D, and D, = D, U dD, X [0, t] 
for suitable t. Now dD4 is a locally flat S4 embedded in b, and hence 
bounds a topological ball D; in D, by 3.39. Therefore M 5 = D 4 u  D; is 
the union of two topological balls sewn along their boundaries and 
hence is a topological sphere as required. 

Engulfing 

Let M be an i-connected manifold (i.e. each map f :  K -+ M can be 
homotoped to zero if dim K s i )  and X c M a polyhedron of dimen- 
sion si. We want to conclude that X is contained in a ball in M and 
then we say X can be engulfed in M .  

More generally suppose (W, M,, M,) is a cobordism and (W, M,) is 
i-connected (i.e. each map f :  K -+ W can be homotoped into M, where 
dimension K s i ) .  Then we wish to conclude that X ' c  W is contained 
in a collar on M,, and then say X can be engulfed ,from M,. 

7.10 Engulfing theorem. Let W be U cobordism (without boundary) and 
Xi c W Then X can be engulfed jiom M, provided (W, M,) is i-connected 
and 
(1) w 1 6 ,  W - i s 3  or 
(2) w=4,5,  i = l  or 

(3) W = 5, i = 2 and M, is simply-connected. 

Remarks 

(1) The extra hypothesis on M, in Part (3) is unnecessary. This is 
seen by using the non-simply-connected weak h-cobordism theorem (see 
the proof below). 
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(2) There are counter-examples to extending the theorem to the case 
W - i=2, W 24 .  The case W = 3, i=  l is unsolved and equivalent to the 
PoincarC conjecture in dimension 3 (see bibliography). 

We first prove an easy lemma: 

7.11 Lemma. Suppose (W, M,) has a handle decomposition with no 
handles of index i then Xi can be engulfed from M,. 

Proof We use induction on the number of handles. So let W =  W, U H. 

Fig. 58 

Let D be the cocore of H. Then by general position we may assume 
that X n D =P(. Then by the usual regular neighbourhood argument we 
can ambient isotope X off H. Then X c  W, and the result now follows 
by induction. 

Proof of 7.10 

(1) This follows from 7.11 and Lemmas 6.13, 6.15, 6.16; to eliminate 
(W - 3)-handles apply 6.5 (or 6.20) to the duals of an algebraically com- 
plementary (W - 2, W - 3)-pair. 

(2) This follows by changing a homotopy into an ambient isotopy as 
in 5.9 (we are essentially in the manifold case since in a triangulation 
of X we can easily engulf the vertices first). 
(3) We use the weak h-cobordism theorem. Choose a handle de- 
composition and eliminate l-handles by the remark below 6.15. Next 
ambient isotope X off the 3-, 4- and 5-handles by 7.1 1 .  Now use 2-con- 
nectivity to find 3-handles which are algebraically complementary 
to the 2-handles HI2' (see proof of 6.19). Then C, U U {H!2')  U U 
is a 5-dimensional h-cobordism and hence a "weak" product by 7.7. I t  is 
now easy to engulf X. 

Exercise. Generalise the engulfing theorem for cobordisms with 
boundary. 
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Embedding Manifolds 

7.12 Theorem. Let f :  M" -+ Qq be a map of unbounded manifolds with M 
compact. IThen f is homotopic to an embedding provided 
(1) q - n z 3  

(2) M is d-connected where d =2n-q 

(3) Q is (d + l)-connected. 

7.13 Corollary. A closed k-connected n-manifold embeds in 
provided n - k 2 3. 

Proof of 7.12. We can suppose that f is in general position. We then 
generalise the method of 5.5 using engulfing. The idea is to find col- 
lapsible subsets C c M ,  D c Q  such that f - ' (D)=C and S ( f ) c C .  We 
can then complete the proof as in 5.5, namely choose regular neigh- 
bourhoods No, N of C, D in M, Q so that f - '(N)=N0 and f - '(N)= No 
and then replace f INo by an embedding into N using the cone con- 
struction. 

C and D are found by a repeated engulfing argument: 
First engulf S (  f )  in a ball B in M and define C, =(singular) cone 

on S([) in B. Then S ( f ) c C , ,  d im(C , )Sd+ l  and C I I O .  
Next engulf f (C,)  in a ball B' in Q and let D,=singular cone 

on f (C,) in B' which we can suppose shifted into general position with 
respect to f (M)(rel f (C,)). Then D, I 0 and f - l  (D,) = C, U E, where 
dim(E,) S d - l by general position and codimension 2 3. 

Now engulf E, from a regular neighbourhood B of C, in M and 
define C, = C, U (trail of E, under a collapse B I C,). 

Then S(  f )c C, c C, I 0 and dim (C, - C,) S d .  
Next engulf f(C,) from a regular neighbourhood of D, and define 

D, =D, U (trail off (C,) under a collapse). 

Then f (C,) c D, I 0 and dim (D, - f (C,)) d + l so that by general 
position we can assume f -' (D,) = C, U E, where dim E, 5 d - 2. 

The process continues with the dimension of the "error term" Ei 
decreasing at each stage. Eventually E n = g  and C =  C,, D=D, and the 
theorem is proved. 

7.14 Exercise. Prove a version of 7.12 for bounded manifolds where 
the map is already an embedding on the boundaries by using a collar 
to replace the problem by an "interior" one. Deduce that the embedding 
constructed in 7.12 is unique up to concordance provided M is (d+ 1)- 
connected and Q (d + 2)-connected, where fo, f, are concordant if they are 
restrictions of an embedding F: M X l -+ Q X l which respects the top 
and bottom levels only. (See also the historical notes.) 



Appendix A. Algebraic Results 

Here we give definitions and results used in the book. Proofs can be 
found in CJ.11, CJ.23 or CJ.33 (see bibliography), for a geometrical treat- 
ment see below and CJ.43. 

A. l  Homology 

We will assume that abelian homology groups H,(X, A) are defined for 
n = 0, 1, . . . , where A c  X is a pair of topological spaces. These groups 
have the following properties: 

(1) If f :  (X, A) + ( Y ;  B) is a map of pairs then there is an induced natural 
homomorphism f, : H,(X, A) -+ H,(Y, B). Naturality means 

(a) id,=id: H,(X, A)+ H,(X, A), 
(b) (f g)* =f* g*. 

(2) There is a natural boundary homomorphism 

Here naturality means that if f: (X, A) -+ (Y, B) is a map then the square 

commutes. 
(3) Exactness. The sequence 

is exact where the unamed homomorphisms are induced by inclusion. 

(4) Homotopy. Supposef, g :  (X, A) -+ (Y, B) are two maps and that there 
i s a m a p h : ( X x I , A x I ) - + ( Y , B ) s u c h  that h J X x O = f a n d  h I X x l = g .  
Then f, =g,. 
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Remark. h is said to be a homotopy between f and g. Homotopy is 
an equivalence relation on the set of maps (X, A) + (Y,  B). A map f is 
a homotopy equivalence i f  there is a map g:  (Y,  B) + X, A)  so that J'o g 
and g 0 f a r e  both homotopic to the relevant identity maps. I t  follows 
from (1) and (4) that i f  f is a homotopy equivalence then f, is an iso- 
morphism. I f  the inclusion A c X is a homotopy equivalence then from 
exactness H,(X, A)=O for all n. (Write H,(X, A)=O.)  A special sort of 
homotopy equivalence often used is a (strong) deformation retraction. 
A c X  is a dejormation retract i f  there is a homotopy of idJX to a 
retraction r :  X + A and the homotopy is fixed on A (i.e. h(a, [ )=a,  aeA). 

( 5 )  Excision. Suppose that U c A and cl(U)cint(A) then the homo- 
morphism H,(X - U, A- U)+ H,(X, A) induced by inclusion is an iso- 
morphism. 

Remark. If P, Q, c Q  are polyhedra with Q, 3 Q  - P  and we write 
4 for P n Q ,  then H,(Q,, & ) +  H,(Q, P) is an isomorphism. This follows 
from excision and homotopy by a simple argument. 

Remark. I f  X deformation retracts on a point (say X is contructihle) 
then H , ( X ) r  H,(pt.); or equivalently H , ( x ) = K ~ ~ ( H , ( x ) + H , ( ~ ~ . ) ) = o .  

A.2 Geometric Interpretation of Homology 

The interpretation given here can be taken as the definition of homology 
if the reader desires. The properties listed above are easily proved - the 
excision axiom uses regular neighbourhoods, the dimension axiom 
follows from the cone construction, for details see CJ.4; 3.11. 

An n-cycle is a polyhedron P which possesses a triangulation K so 
that each principal simplex of K has dimension n (a simplex is principal 
if it is the face of no other) and each (n - l)-simplex is the face of exactly 
two n-simplexes. Equivalently (and more intrinsically) there is a poly- 
hedron of dimension n -2, S ( P ) c  P such that 
(1) P=c l (P-S(P) )  

(2) P-S(P)  is an n-manifold without boundary. 
In other words P is a "manifold with a codimension 2 singularity" and 
we call S(P)  the singulurity of P. P is oriented if P-S(P)  is oriented 
(use the geometrical definition given in Chapter 3 following the treat- 
ment which avoids algebraic topology). 

An n-cycle with boundary is a pair (P. dP) such that there is an 
(n -2)-dimensional polyhedron S(P) c P so that 
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( 1 )  P=cl(P-S(P))  

(2) P-S(P)  is an n-manifold with boundary r3P -S(P) 

(3) dP  is an (n - l)-cycle with singularity S ( P ) n  dP. 
A singulur n-cycle in X is a pair (P, / )  where P is an oriented n-cycle 

and j': P + X a map. (P,, ,f,) and ( F : ,  /,) are homologous (or bordunr) i f  
there is an oriented n-cycle with boundary Q and a map g:  Q + X so that 
r3Qr P, U 4 and, i f  we identify Q with P, U 4 by this isomorphism, then 
we havej, = g  16,  ,/, = g  14. (Q, g) is called the homology between (P,,.f,) 
and (49.h). 

Then H,(X) is the set of homology classes of singular n-cycles in X. 
Group structure is given by disjoint union; to see existence of inverses 
consider J ' o  : P X I + X. 

More generally a singular n-cycle in (X, A) is a pair (P, j') where P 
is an oriented n-cycle with boundary andfa  map of pairs (P, r3P) + (X, A). 
Homology is defined using bordisms with boundary (cf. Chapter 6) and 
we have the relative homology group Hn(X, A). 

A.3 Homology Groups of Spheres 

Theorem 
(1 )  H,(Sn)=O,i+O,n 

Hn(Sn)r  Z r H, (S"), n > 0 
H, (S0) r Z @ Z. 

(2) id: Sn+S"  is tr generutor o/' Hn(Sn) (under the geometric inter- 
pretution). 

(3) (3.31) rn: S" +Sn is not honlotopic to id. 

(1) By induction on n. For n=O the result is easy. Suppose the theorem 
true for n - 1 and consider S" = in+' =D", DD"_ where 

and D"as x,sO. Then D; n D: =Sn- '  and since balls are contractible 
we have 

H, (S") 2 H, (S", D" by homotopy and exactness 

r H, (D;, S"-') by excision. 

Now use the long exact sequence and induction. 

(2) By induction again using the last proof. Consider a =[id: D", DD;] 
then o'a= [id: S"-' +S"- ']  and so by induction cr is a generator of 
Hn(D;, S"-'). But /l = [id: S" + S"] corresponds under excision to r .  
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(3) Observe that n,: S" X l -+ S" is a homology between [ i d l u  [r,] 
and [m which represents zero. So if id-r,, then 2[id]=O contradicting 
Part (1). 

A.4 Cohomology 

There is a dual theory which we mention briefly (for a geometrical 
treatment see CJ.41). Cohomology groups H*(X, A) are defined so that 
the direction of the induced homomorphisms is reversed. I.e. 
S :  (X, A) -+ (Y, B) induces S * :  H* (Y, B) -+ H*(X, A). Cohomology satis- 
fies axioms similar to those for homology. There are cap products 

n :  H,(x, A)  o HP(X, A )  -+ H,-~(X,  A) 

and if M is an oriented manifold then 0 [id]: HP(M) -+ H,-,(M) gives 
the Poincare duality isomorphism of Chapter 6. The intersection 
number of two cycles (defined in Chapter 5) is the same as the cap 
product of one with the Poincare dual of the other (cf. CJ.4; II,3]). 
There is an Alexander duality theorem which relates the homology of 
a polyhedron P c R n  with the cohomology of R"-P. There is also a 
universal coefficient theorem which relates cohomology to homology. 
We used only a weak form of the theorem namely, 

Theorem. H* (X, A) = 0 if and only if H, (X, A) = 0. 

This weak form is easily deduced from the recipe given in A.7 for 
computing homology and cohomology from incidence numbers in a 
C W complex. 

A.5 Coefficients 

If G is an abelian group then there are defined homology and cohomology 
groups with coefficients G denoted H,(X, A; G) and H*(X, A; G). The 
ordinary homology groups are the same as those with coefficients Z. 
Coefficients Z, have a simple geometric interpretation as bordism of 
unoriented cycles. (Co)homology groups with coefficients satisfy the 
same axioms as those for coefficients Z except for the dimension axiom 
which reads Hn(pt.; G) = Hn(pt.; G)=O, n +O, r G, n =O. 

A.6 Homotopy Groups 

Let X be a space and * E X  a fixed point, the basepoint. Then the 
n-th homotopy group n,(X) is the set of homotopy classes of maps 
(In, in) -+ (X, *); group structure is given for n z  1 by track addition: 
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( f+g) (x , ,x2 ,  . . . , X  , )=/(2x,+1,x2,  . . . , X  ,) X'SO 

=g(2x1 - 1, x2 ,  ..., X,) X'  2 0 .  

nI  (X) is the fundamental group of X and nn(X) is abelian for n 2 2 .  
If *E  A c  X then the relative groups nn(X, A) are defined to be homotopy 
classes of maps 

( ln ,  in ,  J"-') + (X, A, *) 

where J ~ - ' = c I ( I ~ - F ~ - ' )  and F"-' is the face x , = l .  The boundary 
map a :  nn(X, A)+ nnWI(A)  is defined by restricting to F"- '  and identify- 
ing F"-' with In-'. The homotopy groups satisfy the axioms for the 
homology groups (the induced homomorphism is defined by com- 
position) with the exception of the excision axiom and the dimension 
axiom (nn(pt.)=O all n). 

The pair (X, A) is r-connected if every map f :  (P ,  Q)+ (X, A) is 
homotopic to a map into A, where P is a polyhedron of dimension S r .  
I f  A is path connected then (X, A) is r-connected if and only if nj(X, A)=O 
for i s r  (for the if part use a skeletal induction over some triangulation 
of (P, Q)). l-connected is usually called simply-connected. X is r-con- 
nected if  (X, *) is r-connected. It is easy to  see that X is simply-connected 
if and only if X is path connected and every loop in X (i.e. map of S' 
in X )  extends to a map of D2 in X.  

An action of nI  on nn is defined by adding a collar to In and mapping 
the collar lines around the given loop. A similar construction gives a 
change of basepoint isomorphism and if nI=O then nn is independent 
of basepoint and is isomorphic with [Sn, X] (notice that S n ~ l n / i n ) .  
Here [ , l  denotes the set of homotopy classes of maps. 

A.7 C W Complexes 

If A is a space and ,j": S ' - '+  A a map then the identification space 
A u J  I '  is said to be obtained from A by a t t~~ching an i-cell. The natural 
map 4 :  l '+ A uJ I' is the characteristic mLip for the i-cell and we write 
A u J  I ' = ~ u e ' .  

A finite CW complex X attached to A is obtained by repeatedly 
attaching cells in order of increasing dimension with cells of the same 
dimension having disjoint interiors. Observe the similarity with nice 
handle decompositions. Infinite CW complexes are defined by attaching 
all the i-cells simultaneously. 

Let e', e i+ '  be cells in X then the restriction of the characteristic 
map for e i+ '  composed with the collapsing map c:  A U e' + ( A  U e ' ) / ~  S 

l'li' determines a map 
j , :  S; + ];/ii E S;. 
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The homological degree of f defined by deg(j ')  [id] = [j'] (cf. A.3) is 
called the incidence number of e i+ '  on e' denoted c(ei+', ei). 

Now let C,(X, A)  be the free abelian group with basis the n-cells 
of X and a,: C,(X, A) -+ C,-, (X, A) the homomorphism determined by 

2 (en )=x{~(en ,  em-') en- 'Jen- 'EX}.  
Theorem 

Sketch of' pro05 By excision and A.3 we can identify C, with 
H,,(X,, X,- , )  where X, = A U {j-celIs 1;s i}. Moreover H,(X,, X,- ,)= 0 
for i+n. Then 8, is the composition 

and part ( l )  follows from diagram chasing using exactness. Now con- 
sidcr the long exact sequences of the triples X n + , 3 X , 3 X , - ,  and 
X,,, 3 X,-, 3 X,-, (exactness for a triple follows from exactness for 
a pair and diagram chasing). From the first sequence we deduce that 
H,(X,+,, X,- , )g C,/Im(d,+,) and from the second that 

Finally aneasy induction argument shows that Hn(X, A)= H,(X,+, , X,- ,). 

Addendu. (a) If we define 6,: C, + C,, , by 6,(en)=E c(en+', en) en+'. 
Then Hn(X, A)  = Ker(Gn)/Im(6,-,). 

(b) Define Cn(X, A; G)= C,(X, A) 8 G then H, (X, A ;  G) and 
/!*(X, A; G) are computed in a similar way. 

Whitehead's theorem (quoted in Chapter 1 but not used in the book) 
states that a map f :  X -+ Y of l-connected CW compIexes is a homotopy 
equivalence if and only if ,f* : H, (X) + H, ( Y )  is an isomorphism. 

A.8 The Universal Cover 

Let X be a path-connected topological space. The universal cover 
X of X is defined as a set to be the set of homotopy classes of maps 
,J: (I, 0) + (X, *) where the homotopies are fixed on 1. There is a natural 
map p: 2 4 X by p [,/'l =j ' ( l ) ,  and we give the weakest topology 
which makes p continuous (i.e. U open i f  and only i f  p(U) open in X). 
n=n , (X)  acts on 2 over X by track addition i.e. ,["=g+ [,/'l and it 
easy to see that p- '(yo)=)~" where yep-'(yo). 

Now suppose that (X, A )  is a C W  complex on A in which all the 
cells are based (i.e. each cell e' has a path from 1 = (1,0, . . . , O)eei to 
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* € A )  and suppose that n ,  ( A ) r  n ,  ( X )  by inclusion. Let e' be a cell with 
base point y,  and base path cc. Consider the characteristic map for 
e', 4 :  ( l ' ,  l )  -, ( X ,  y,), then, since l' is simply-connected. each point x ~ l '  
determines a unique point ~ € 2 ,  namely the class of a + / ] ,  where is 
a path in 1' lrom 1 to X .  This derines a map 4 :  ] ' - ,X  which is the 
characteristic map of a cell P'. ( P ' ) K  is obtained by operating pointwise 
(or equivalently by changing the base path by adding g). 

Thus ( 8 ,  A)  becomes a C W  complex with cells (P')" for e i € X  and 
g€ n. Now rc acts cellwise on X and hence acts on ~ " ( 8 ,  A) which thus 
becomes a Zn-module, where Zrc is the integral group ring of n. This 
action carries over to H , ( X ,  1) which is thus also a Zn-module. 

Now let e l+ ' ,   EX be cells. Define their Zrc-incidence number to be 
C { t . ( ( ~ ' + ' ) K , d ' ) g I g ~ n } .  Then c , ( X ,  A)z C , ( X ,  A )  @ Zrc with boundary 
on the right given by the Zn-incidence numbers. Hence H , ( 8 ,  A )  can 
be computed from cells of X and Zn-incidence numbers. 



Appendix B. Torsion 

Here we give definitions and results with sketches of proofs. Details 
are to be found in Cohen CK.31 and Milnor CK.21 (see bibliography). 

B.l Geometrical Definition of Torsion 

Let A be a space and A' obtained from A by attaching two cells ei and 
e i+ ' ,  and suppose that there are characteristic maps hi and h '+'  for e' 
and e i+ '  such that h i=h '+ '  0 e where e: I i +  l '+' is the inclusion of the 
face F'. Thus A' may be regarded as obtained from A by attaching the 
disc l'+' by the map hi+'l: J i+  A (where ~ ' = c l ( i ' + ' -  F')). Then A' is 
said to be a cellulur expunsion of A and we say that A' collapses cellulurly 
on A. Notice that there is strong deformation retraction of A' on A 
given by retracting I i + '  on J' .  

Now consider pairs (X ,  A) where X is a finite C W  complex on A 
and A c  X is a homotopy equivalence, and write X ' \  X or X /" X' re1 A 
i f  X' is obtained from X by a sequence of cellular expansions. Write 
X '  A X relA if there is a sequence of complexes on A such that 
X ' =  X,\ X, /" X , \ . . . \  X,= X relA. n is then an equivalence re- 
lation on the set of complexes X attached to A such that A c X  is a 
homotopy equivalence, and we define the Whitehead group of A, Wh(A), 
to be the set of equivalence classes. The torsiotl r ( X ,  A) of a pair (X,  A )  
is the element o f  Wh(A) which it determines. 

Remurk. Wh(A) is a abelian semi-group with unit the equivalence 
class of the pair (A, A) and addition given by union identified over A. 
The fact that it is a group follows from the equivalent algebraic 
definition (see B.3). 

B.2 Geometrical Properties of Torsion 

Suppose that X, is a subcomplex of X and that X , \  X ; .  Then there 
is a complex X' obtained by attaching the cells of X -X,  to X; by 
composing their attaching maps with the natural retraction of X ,  on X; .  
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X' is said to be obtained from X by an internal collapse written X \1 X'. 
An internal expansion is the reverse of an internal collapse. 

Lemma l .  The torsion o j  a pair (X, A) is unajfected by internal 
expansions and collapses. 

Sketch of proof: Consider W =  X X I with A X I identified to A and 
X, X 0 collapsed to X; X 0. Then W X'  X 0 by cylindrical collapsing 
(cf. remarks above 3.25) and W I X X 1 by collapsing cells in (X -X,) X 1 
cylindrically, collapsing from the side for X, X l -X; X l and finishing 
with a cylindrical collapse. Therefore X; X OF W I X, X 1. 

Lemma 2. The torsion of a pair (X, A) is unaflected by a homotopy 
of the attaching maps of cells in X - A. 

Sketch of proof Let X' differ from X by a homotopy of attaching 
maps. Define W by attaching (cells in X - A) X 1 by the homotopy. Then 
we have cylindrical collapses X X 0 W X' X 1. 

Lemma 3. Wh(A) = 0 if A is l -connected. 

Sketch of proof: The idea is to follow the proof of the h-cobordism 
theorem given in Chapter 6. The analogues of the handle moves are: 
Introduction of complementary handles-internal expansion. Can- 
cellation of complementary handles - internal collapse. Adding han- 
dles-adding cells by homotoping the attaching map of one cell "over" 
the other. 

Then one proceeds to simplify C,(X, A) exactly as in 6.17 until 
there are no cells left. 

Now suppose that X , c X  is a subcomplex and that cl(X-X,) is 
homeomorphic to a ball B" attached to X, by a face B"-'. Then we 
say X poly-collapses on X, .  

Lemma 4. The torsion o j a  pair (X, A) is unylfected by poly-expansions 
and collapses. 

Proof X - X ,  determines a CW complex L on B"-'. Since B"-' is 
l-connected L A B"-' re1 B"-' by Lemma 3 and this induces X A X,, 
as required. 

A CW complex X' on A is a subdivision of X if  IX'I=IXI and each 
cell of X' is contained in a cell of X.  We write X ' a X .  

Lemma 5 .1 j  X ' a  X then T(X',  A) = T (X, A). 

Proof Consider W = X X l with A X l identified to A and X X 0 
subdivided to X' X 0. Then W poly-collapses on both X' X 0 and X X 1 
and the result follows from Lemma 4. 
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B.3 Algebraic Definition of Torsion 

Let n be a group and Z n  the integral group ring of n. Consider the 
set of invertible p X p matrices with entries in Z n ,  for p=O, 1, ... . An 
equivalence relation on this set is generated by the following operations: 

(1 )  Replace A by ( y )  or  vice versa. 

(2) Add a multiple of one row to another 
(3) Reorder rows or  columns. 

(4) Multiply a row by an element of n or  by - 1. 
The set of equivalence classes is the Whitehead group of n denoted 
W h (n). 

Remark. The multiplication in Wh(n)  is given by block addition i.e. 
A 0 

A + B =  ( 0  B ) .  T o  see that Wh(n)  is a group observe that this 

multiplication coincides with matrix multiplication since B-  
using operations (1 )  and (3). 3 

NO& let A be a space and n = n,  (A). Let a p X p matrix A over Z n 
and an integer i >  l be given. Construct a C W  complex X attached 
to A by first attaching p i-cells to the basepoint to form X'  and then 
further attaching p ( i +  l)-cells so  that c(ej+', e ; ) = ~ , ,  for each ( , j ,  k). 
(This is done by attaching the cells in X' using the fact that n j ( g l ,  A )  
is a free Zn-module on  p generators.) Now notice that i f  A is varied 
by one of the operations (1 )  to (4) then T(X,  A) is unaltered since (1 )  
corresponds to an expansion or collapse, (2) to adding cells, (3) to 
renumbering cells and (4) to changing a basepath or characteristic map. 

Thus we have a function qh:  Wh (n) -* Wh (A). 

Theorem. qh is cin isomorphism. 

Sketch of' proof: That qh is a homomorphism is clear using block 
addition. T o  see that qh is onto use a proof like the proof of the 
S-cobordism theorem to move cells into two adjacent dimensions. T o  
see that qh is 1 : l  construct a function $: Wh(A)-* Wh(n)  so  that 
$ 0 qh = id. This is done by associating a matrix to each "boundary map" 
C , / B i z B i - ,  using stable bases for the B,. One then sums the torsion 
of these matrices using alternating signs. For details here see Milnor 
[K.2; tj 33. 

B.4 Torsion and Polyhedra 

Let P c Q  be a compact polyhedral pair with P a deformation retract 
of Q. Then by considering any triangulation of (Q, P) we get a definition 
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of r(Q, P). Now any two triangulations have a common subdivision 
and it follows from Lemma 5 that r(Q, P) is well-defined and a p.1. 
invariant of (Q, P). We have the following p.1. interpretation of torsion: 

Theorem. r (Q, P) =O ifand onlv $'there is U sequence ofp.1. expansions 
and collapses ( i n  the sense of Chapter 3) Q h P re1 P. 

Sketch of prooj: I f  Q A P by p.1. expansions and collapses then 
r(Q, P)=O by Lemma 4. Now suppose that r(Q, P)=O then an argument 
similar to the proof of the S-cobordism theorem shows that Q A P 
p.l., handle moves being replaced by p.1. approximations of the corre- 
sponding cell moves. 

Now suppose that (W, M , ,  M , )  is an h-cobordism and that we have 
a handle decomposition of W on M , .  We used the following result in 
the proof of the S-cobordism theorem: 

Theorem. r (W, M,)  = r ( K ,  M , )  where K  is the C W complex ussociuted 
to the given hondle decomposition. 

Sketch ol'prool: This follows from invariance under subdivision and 
internal collapse on noticing that K  is essentially the result of collapsing 
each handle onto its core. More precisely let J be a triangulation of 
(W, M,) so that the handles and their cores are all subcomplexes. Then 
internal poly-collapses replace each handle by its core and we obtain 
a subdivision of K .  

B.5 Torsion and Homotopy Equivalences 

Let h: X -, Y be a homotopy equivalence of CW complexes, such that 
h ( X , ) c  Y. for each i. Form the mupping cylinder M ,  by attaching X X I 
to Y by hIX X l .  M ,  is then a CW complex and we define the torsion 
of h, r (h) to be r ( M , ,  X X 0). If h: P -, Q is a p.1. homotopy equivalence 
of compact polyhedra then M,, can be given the structure of an abstract 
polyhedron (see [B.l]) and thus r(h) is again defined. We then have 
the following interpretation of r(h) (compare Chapter 3). 

Theorem. r (h) = 0 if and only tf h is homotopic to a simple homotopy 
equivalence. The result is also true./or CW complexes where "simple" is 
interpreted using cellular collapses. 

Sketch oJ' prooJ If r (h)=O then M,, h P x 0 and P X 0 A M,,\ Q 
determines a map homotopic to h. Now if h-h' then M ,  A M,. by 
considering the mapping cylinder of the homotopy. Consequently if  
h-simple homotopy equivalence then following Q A P gives 
M,, n M,,\ P X 0. A similar argument establishes the CW case. 



Historical Notes 

(Reference numbers refer to the bibliography) 

General notes 

Polyhedra and p.1. maps have usually been defined using simplicial 
complexes and simplicial maps. These definitions appear as Theorems 2.1 1 
and 2.14 in our approach. More suitable names for our definitions would 
be locally-conical sets and maps. The subject arose as a branch of 
geometric topology in the 1920's, Newman and Alexander being the 
principal early authors. Geometric topology itselfarose out of Poincare's 
work on differential equations in the 1890's. The subject was developed 
by Whitehead in his work on simplicial neighbourhoods in the 1940's. 
Zeeman's notes [A.7] have been the most important modern influence 
on the subject. 

P.I. topology is now of central importance in geometric topology 
since Kirby and Siebenmann [R.4] have shown that (in dimensions 1 5 )  
p.1. notions essentially coincide with topological ones, except for a 
curious 3-dimensional obstruction. Also smoothing theory (Section Q 
of bibliography) which links p.1. topology to differential topology, is a 
well developed subject in which the main problems are now essentially 
homotopy-theoretic. 

Notes on Chapter l 

p. 2: "The house with two rooms" was constructed by Bing [H.3] as 
an example of a contractible polyhedron which is not collapsible (see 
also Chapter 3). 

p. 6: The "standard mistake" is so called because it has been made 
in print so often. 

p. 7: Our remarks on the definition of a polyhedron apply also to 
our definition of a p.1. manifold. Notice that a complex which triangu- 
lates a p.1. manifold is usually referred to as a combinatorial manifold 
(see 2.2 1 ). 

p. 8 :  The Poincare conjecture is named in honour of Poincare, 
who investigated the 3-dimensional case. He falsely conjectured that a 
homology 3-sphere is a genuine sphere and discovered counterexamples. 
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The h-cobordism theorem was proved by Smale [H.4] in the 
differentiable case, who introduced the idea of a handle and gave 
essentially the same proof as our Chapter 6. However, for technical 
reasons, handles work best in the p.1. case and authors in differentiable 
topology prefer the equivalent notion of a Morse function. This is the 
attitude taken by Milnor CH.61. The extension to the p.1. case was 
realised by several authors, particularly Stallings and Zeeman. 

Smale used his h-cobordism theorem to prove the PoincarC con- 
jecture in dimensions 2 5. In the p.1. case dimension 5 presents a little 
more difficulty since Smale used the vanishing of n4(0)  to show that a 
5-dimensional homotopy sphere bounds a contractible 6-manifold (and 
hence by the argument given in Chapter 1, is h-cobordant to a 5-sphere). 
In the p.1. case we need to know that n4(PL)=0 which uses in addition 
Cerf's theorem CQ.83. 

A weak form of the Poincare conjecture for dimension 2 5 (a homo- 
topy sphere is a topological sphere) was proved by Stallings [H.lO] 
and Zeeman [H.l l ]  independently of Smale's work, using engulfing 
theory (see our Chapter 7, where an engulfing theorem is deduced from 
handle theory). 

The S-cobordism theorem was proved independently by Barden 
[H.7], Mazur [H.8], and Stallings CA.81. See also Kervaire [H.9]. 

Notes on Chapter 2 
p. 15: The foundations of p.1. topology (particularly Alexander's work) 
originally rested heavily on "stellar movesv-the science of stellar 
subdivision. 

p. 18 and p.20: The subdivision theorem and the treatment of 
pseudo-radial projection are taken from Zeeman's notes CA.73. 

p.24: The collaring theorem was first proved by Whitehead CB.11 
and extended by Zeeman CB.21. Our treatment is based on Conelly CB.33. 

Notes on Chapter 3 
Our treatment of regular neighbourhoods is based on Cohen's ideas 
CC.41; the earliest result in the chapter is Newman's theorem which 
appears as our 3.13. Our proof differs little from Cohen's proof [A.6] 
and is considerably shorter than previous proofs CA.23, Alexander [A.4] 
(based on stellar moves), Z,eeman CA.71 (using a long induction together 
with the collapsing approach to regular neighbourhoods). Whitehead's 
paper [B.l] initiated the theory of regular neighbourhoods which was 
then intimately linked with "simplicial collapsing" which does not 
appear at all in our treatment. Hudson and zeeman [C.l] and Cohen 
[C.4] have extended the theory to "relative regular neighbourhoods". 
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p. 39: Collapsing and simple homotopy type were invented by 
Whitehead [B.l] and [K.l], see also Appendix B. 

p.40: The notion of trail is due to Hirsch. 
p. 43: 3.32 is due to Gugenheim [G.l]. 
p.47: The 3-dimensional case of the Schonflies theorem is due to 

Alexander [D.l]. The topological theorem was proved by Brown CD.21, 
Mazur [D.3] and Morse [D.4]. Our 3.38 also follows from the methods 
of [D.2]. Cohen and Sullivan [D.5] have shown, independently of the 
unsolved Schonflies conjecture, that any MncQn+ '  (i.e. not necessarily 
locally flat) has a regular neighbourhood z M X l .  

Notes on Chapter 4 
p. 52: The unknotting theorem for balls and spheres in codimension 2 3 
is due to Zeeman CB.21. 

p. 54: The idea of cellular moves is also due to Zeeman [CS]. (He 
invented it for precisely the same purpose as our 4.16.) 

p. 56: 4.1 8 and 4.20 (the strong versions mentioned in the remark 
on p. 56) are due to Hirsch CL.51. 

p. 57: The isotopy extension theorem Tor manifolds (4.25) is due to 
Hudson and Zeeman [E.l]. Extensions to polyhedra were given by 
Rourke [E.3] (a weak theorem), Hudson and Lickorish-Siebenmann 
[E.43 (codimension 2 3 ) ,  and the general theorem by Akin [E.5]. 

p. 58: Akin's hypotheses are constant ambient intrinsic dimension 
and a weaker local collaring condition. 

Notes on Chopter 5 
General position is part of p.1. "folklore"; the first systematic treatment 
appears in Zeeman CA.71, more general theorems are given in Stal- 
lings [A.8]. 

p. 63: Theorem 5.5 is due to Penrose-Whitehead-Zeeman [G.4]. 
p. 64: Theorem 5.6 and the proof are taken from Zeeman [CS]. 
p. 67: Piping is also part of the folklore. 
p. 68: The Whitney lemma is due to Whitney! [G.8] in the smooth 

case. A proof of the p.1. case is given by Weber [G.9] using Zeeman's 
classification of links [G.7]. (Notice that the exercises at the end of 
Chapter 5 provide a proof without using links.) 

Notes on Chopter 6 

The main reference for this chapter is Smale [H.4] (see the notes on 
Chapter I ) .  

p. 84: The duality theorem is due to Lefschetz. See also Appendix A. 
p. 00: Construction of h-cobordisms is due to Stallings [A.8]. 
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Notes on Chapter 7 
p. 91 : Unknotting balls and spheres is due to Zeeman [B.2] (by a 

direct geometrical argument independent of the h-cobordism theorem). 
p. 92: The criterion for unknotting in codimension 2 is due to 

Levine [G.2] for q 1 5  and Papakiriakopoulos [G.3] for q=3. See CK.53 
for a proof that Wh(Z)=O. 

p. 93: The weak 5-dimensional theorems also follow from engulfing 
theory (which was invented by Stallings CI.21 and Zeeman CA.73 
independently of handle theory). 

p. 96: The embedding theorem is taken from Irwin CG.61. 
p. 96: There is an unknotting theorem due to Zeeman [G.5] which 

shows that any two embedding are ambient isotopic under the con- 
ditions of 7.14. However Hudson [0.9] has shown that concordance 
implies isotopy in codimension 2 3  (see Rourke [0.10] for a proof 
using "embedded handle theory"), so that Zeeman's theorem follows 
from Irwin's theorem and 7.14. However Hudson C0.61, and Casson- 
Sullivan CN.7; R.9; 0.141 have improved both theorems to replace 
conditions on M and Q by a single condition on the map. 
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