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§1. Introduction.

A “spinnable structure” defined by I. Tamura is a generalization of the
structure of a Milnor fibering [4] for a holomorphic function at an isolated
critical point. M. Kato [2] has shown that there is a one to one correspond-
ence of “simple spinnable structures” on S?"*! (n=3) with congruence classes
of unimodular matrices via Seifert matrices.

The purpose of this paper is to prove “Join theorem” about the Seifert
matrices of Milnor fiberings at isolated critical points. As a corollary, we
calculate the Seifert matrices of the Milnor fiberings of the Brieskorn poly-
nomials. Essentially, we make use of the facts obtained in [5].

DEFINITION 1. A spinnable structure on a closed manifold M is a triple
S={F, h, g} : F is a compact manifold, & : F— F is a diffeomorphism such that
h|0F=id, and g: T(F, h)— M is a diffeomorphism, where T(F, h) is a closed
manifold obtained from FX[0,1] by identifying (x, 1) with (A(x), 0) for all
xeF and (x,t) with (x,#) for all x€dF and ¢t ' <[0,1]. When F is a

handlebody obtained from a ball by attaching handles of index <[ -4
S is called a simple spinnable structure.

DEFINITION 2. A closed oriented (2n+1)-manifold is an Alexander mani-
fold, if HM=H,, M=0.

If S={F, h, g} is a simple spinnable structure on an Alexander manifold
M*+' then H,F is torsion free.

DEFINITION 3. Let S={F, h, g} be a simple spinnable structure on M?"*!,
For a basis a,, -, an of H,(F), a matrix I'(S)=(L(gs(a; x0), gs(a;x1/2)) is
called a Seifert matrix of S, where L(&, »)=the linking number of & and 7
in M*®***!=intersection number <2, ). (4 is a chain in M such that 01=¢.)

THEOREM 1 (M. Kato [2]). There is a one to one correspondence of iso-
morphism classes of simple spinnable structures on a 1-connected Alexander
(2n+1)-manifold M with congruence classes of unimodular matrices via Seifert
matrices, provided that n=3, ’
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Therefore, the Seifert matrices of the Milnor fiberings give a topological
characterization of isolated singularities of hypersurfaces.

§2. Statement of results.

Let g(x) and A(y) be holomorphic functions defined on neighborhoods of
the origins of C™ and C™, with g(0)=h(0)=0. Suppose that g and s have
isolated singularities at the origins.

THEOREM 2. Let f be a holomorphic function on a mneighborhood of the
origin of C™xC™, such that f(x, y)=g(x)-+h(y). Denote I'(f), I'(g) and I'(h)
be Seifert matrices of Milnor fiberings defined by f, g and h, then

r'(H==umrerm.

(“=" means “belongs to the same congruence class with”.)
COROLLARY 3. Let I' be the Seifert matrix of the Milnor fibering of a
Brieskorn polynomial f(z)=(z)"+ -+ +(2,)*n, (a;=2). Then,

nn+1)

FE(—I) 2 Aa1®"'®Aan
where, A, (a=2) is the (a—1)X(a—1) matrix given by

1
0
-1 1
A, = —1 1
0
—1 1

REMARK. Let I' be the Seifert matrix of a simple spinnable structure
S={F, h, g} on an Alexander manifold M**-!. Then the monodromy hs: H,_,(F)
—H, (F) is given by hy=(—1"I"*-I'"!, and the intersection matrix of F is
given by —I'+(—1)"I"*, where I'® is the transpose of I'. (See M. Kato [2]
for the details.) Applying these facts to Corollary 3, we can obtain well
known results about the monodromy of the Milnor fibering of a Brieskorn
polynomial, and the intersection matrix of the fiber [1].

§3. Proof.

PROOF OF COROLLARY 3. By Theorem 2, it is enough to prove only in
the case of n=1. Let f(2=2z* (a=2). In this case the Milnor fiber is
omi.
2.,={1,w, -, 0w} where w=¢ * . Hence, {l1—0, 0—0? -, 0* ?—w* '} is a
basis of I-NIO(Qa). It is easy to see that for this basis,
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I'(f)=—A4,. g.e.d.

For the proof of Theorem 2, we must prove some lemmas. Let f be a
holomorphic function defined on a neighborhood of the origin of C" with
Sf(0)=0, and assume V=/"%0) has an isolated singularity at the origin.

LEMMA 1. Assume n=2, then there exist a neighborhood N of V—{0}
and a small number ¢ >0, such that, for all z& D,. N\ N, the two vectors z and
grad f(z) are linearly independent over the complex number.

This is an easy corollary of the Curve Selection Lemma [4, Lemma 3.1].

By [4, Lemma 4.3] and the above lemma, there is a smooth vector field
v on D,.—{0} so that

{v(2), grad f(2)) = f(2)
and
Re <v(z), z) >0,
and that, if ze NN\ D,
w(z), 2>=|z|*

where N is a neighborhood of V—{0}. Let p(f) be any integral curve of v,
then

d
o) =£pt)

and

d
S 1p(B)1>0,
and if p(t)e NN\ D,.

d
1)1 =101,

Therefore, f(p(t))=e'f(p(0)), and |p(t)| is strictly increasing. Let p(t; 2) be
the integral curve of v with p(0; z)=2z2 and define roz=p(logr; z), and
Qoz=0. Then the map (r, 2)—roz is defined on [0, 11X (D,—{0}).

Now assume n=1. There is a holomorphic function g defined on a neigh-
borhood of the origin such that f(z)=(g(2))* (kis a positive integer), g(0)=0
and g’(0)#0. Then for a small numllaer €¢>0, the inverse function g* of g
is defined on D,.. Define roz=g(r* g(2)) for (r, 2) [0, 11X D,.. Note that
the absolute value of g7'(rz) is a strictly increasing function of » (0=r=<1)
if |z| is sufficiently small. In fact, let 2 be a holomorphic function such
that g *(2) =zh(z) and let F(r, z)=|g~'(rz)|%. Then A(0)#0 and

!—2112——%5—@, 2)=2hFi+2h R+ hal
=|h|*+|h+zh'|*—|2h'|*>0
for any small z, hence
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1

| z|*

1

| 2|

1 %’: (1, 72)>0

F
2, =1

for 0<r<1.
LEMMA 2. The map [0, 11X (Dy.—{0})— D, ; (v, 2)—>roz is continuous and
satisfies the following properties.
i) loz=2zand (rs)oz=ro(soz),
ii) froz)=rf(2),
iii) |roz| is a strictly increasing function of r.
LEMMA 3. Let 0< p=2¢, then the map

xS, —> D, ; [r, zZ]——r02

is a homeomorphism, where c*S,=[0, 11X S,/0XS, is the cone over S,.
The proof is easy.
PRrROOF OF THEOREM 2. Let f, g and % be as in Theorem 2.
LEMMA 4. The map

cxSiptin=l —s Dimtin s [y x, y]——> (rox, roy)
is a homeomorphism.
The proof is easy.
By Lemma 4, there is a homeomorphism
¢ : (0, 11X St —> Dip+n— {0}
defined by ¢(r, x, y)=(rox,roy). Then
(foo)(r, x, »)=rf(x, ).

Define a map
o (D3"—{0}) * (D¥—{0)) —> Dip+— {0}

by a([x, s, y])=(sox, (1—s)oy) and let

pe: (0, 11X S, —> S,
be the natural projection. Then,

p=p,007tog|S.xS,: ST xSt — Smiin-t
is an orientation preserving homeomorphism, and
(r-F)P(Lx, s, y1) =s8(x)+(1—)h(y)

where r=7r(z) (=p,0¢p togo¢p™!(2)) is a positive real-valued continuous func-
tion on S~ Let g*h be a continuous function on S™*%S¥! defined by
the right hand side of the above equality. We have obtained,

LEMMA 5. There is a homeomorphism ¢ from S 1+Sk-1 onto Sim+in-i
with (r-flop=gxh.

Therefore, we can identify the spinnable structures defined by f and
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gxh via ¢.

Let X={g>0 NS, Y={h>0 NS, Z={f>0} NSt and Z'=
{gxh>0} N (ST 1%ST ), where {g>0}={x=C™; g(x) >0} etc.

LEMMA 6. The map j=¢|X+xY; X«Y—Z is a homotopy equivalence.
Therefore, the natural inclusion (=¢~oj) XxY G Z' is a homotopy equivalence.

PrROOF. By Lemmas 2, 3 and 4, the following inclusion maps are homo-
topy equivalences.

XC{g>0nD™ D X,,
YS{h>0nDrOY,,
ZGA{f>0nDmm D Z,

where ¢ is a small positive number, and X,=g () " D™, Y, =h"'(t) D and
Z,=f () D¥**, Hence, the following diagram is homotopy commutative

J
X+Y ——— Z

n= n=
({g>0nD)*({h>0} N D) » {F>0}N D,
U= U=

g
XxY, — GY()) G Z,

where the map G: Z,—C is defined by G(x, y)=g(x) and J is a line segment
from 0 to ¢&. By Step 2 in §2 of [5], the inclusion G*(J)G Z, is a homotopy
equivalence. Therefore, it is enough to show that the map

ol X, xY,: XY, —> G7(J])

is a homotopy equivalence. Let

&, (I={0) X X, —> g }(J—{0}) N D™
and

¢ I—{0}) XY, —> A (J—{0H) N D
(I=[0,1], J=I[0, 1) be the homeomorphisms used in Step 4 in §2 of [5]. If
(s, x) € I—{0}) X X;, st=g(Py(s, x))=g(sox). Therefore ¢; and the map (s, x)
—sox are fiber homotopic to each other with respect to g, that is, there is a
homotopy

Py (I—={0}) X X, —> g7 *(J—{0}) n D™
(0=u=1) such that Py=¢,, Pi(s, x)=sox and (goP,)(s, x)=st, for all u, s
and x. Similarly, there is a homotopy

Qu: UI—={0H) XY, — 7} (J—{0H)n D

(0=u=<1) such that Q,=¢,, Q.(s,y»)=s0y and (hoQ,)(s, y)=st, for all u, s
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and y. Consider the identification map n: UXV—U/g *(0)x V/h™*(0) and let
[x, vJ=n(x, y). Define a homotopy
Hy,: X,xY,=X,XIXY,/~ —> 2(G(]))
0=u=1) by
Hu([xy S, y:l): [Pu<s, x), Qu(l——'sy y)] .
(Define P,(0, x)=0 and Q,(0, »)=0.) This is well defined and continuous. By
the definition
HO(I:xy S) y]) == [¢1(Si x)l ¢2(1_S: y):l

Hi(lx, s, y)) =[sox, (1=s)oyl=(moa)(lx, s, y])"

H,
XxY, /) z(G()))
\ ~/
G

H, is a homeomorphism constructured in Step 4 in §2 of [5]. Therefore, H,
is a homotopy equivalence. Hence o|X,*Y,: X;*Y,—G *(J) is a homotopy
equivalence, since so is 7: G (J)—=(G™*(J)) (Step 3 in §2 of [5]). This
proves Lemma 6.
By Lemma 5, we have only to show that
I'(gxh)=(—=1"I'(g)RQI(h).
Let {e;} and {f;} be bases of H,(X) and H,_,(Y) respectively. Then
{e;®f;} is a basis of Hpyp (Z)=H,ppp (XxYV)2H, (X)QH, (Y) (Lemma 6).
Let
ag: X —> St 1—g7}(0)
and
Ba: Y —> ST—h(0)

be continuous one-parameter families of embeddings such that @, and B, are
the natural inclusions, and that

arg g(as(x)) =arg h(Bs(y)) =0
for all x, y and 6. Then,
ap*fBy: XxY —> S xS —(gxh)71(0)

is a continuous one-parameter family of embeddings such that a,*pS, is the
natural inclusion, and that

arg ((gxh)o(ae*Be))([x, s, y1) =0
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for all [x,s,y]€ X+Y and §. Therefore, for the bases {e;}, {f;} and {e;Qf;},
I'(g)=(L(e;, (az)se;))
I'(h)y=(L(fr, (B 1)

and
I'(g+h)y=(L(e;Qfs, (az*Br)s(e; R 1))
=(L(e; R fr, (a)se; Q(B)s [1) .

Therefore, we have only to prove
LEMMA 7. Let

Sm, Sn C Sm+n+1’ Smﬂsn: ¢ ,

SZJ’ Sq C SP'HH'I, S”f\Sq :¢
be embeddings, then,

Lgmintragprqe1(S™*SP, S"%S59)

= (—1)(n+n(p+l)Lsm+n+1(Sm, Sn)Lsp+q+1<Spy S9).

PrOOF. The following diagram is commutative up to sign.
H,(S™@H(S?) = Hpipii(S™5 S7)
(inclusion)x (in)x

ﬁm(sm+ﬂ+l_s)®ﬁp(sp+q+1___sq) ﬁm+p+l(sm+n+1 *Sp+q+1__sn*Sq)

Alexander Dual

IR

A.D.

I

|
H(S™ @ H1(S9) =

ﬁn+q+1(sn*5q)
Therefore the lemma is true up to sign.

Hence we may assume S™*S"
=SmnH SPxS1=SP+** We can see Lgag(S% S?)=(—1*" In fact, let

o=(xy, -+, %4) and 7=(¥, -+, ¥») be top dimensional simplices of S* and S°
with the compatible orientations. Then,

Lga.55(S% S? =Intersection number. {y,*S% S%
=Intersection number {y,*a, )

=Signature of the permutation
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<yo Xo Xyt Xg Y1t Wy >
Xo X1 * Xg Yo Y1 Db
=(—1)+,
S Lesmasnoncsposy(S™* SP, S™xS9)

— (n+1(P+1)
= (=1 L(.sm‘sp),(sn.sq)(sm*sp, S™*S9)

= (__ 1)(n+1)(p+1)(_ 1)m+p+2

= (=D PP Lysn(S™, ™) Lgpase(S?, S9) . g.e.d.

This completes the proof of Theorem 2.
REMARK. Using the “good stratification” [3], we can prove Lemmas 2~6
without any assumption about the isolatedness of singularities.
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