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   § 1. Introduction. 

   A "spinnable structure" defined by I. Tamura is a generalization of the 
structure of a Milnor fibering [4] for a holomorphic function at an isolated 
critical point. M. Kato [2] has shown that there is a one to one correspond-
ence of "simple spinnable structures" on Stn+1 (n >_ 3) with congruence classes 
of unimodular matrices via Seifert matrices. 

   The purpose of this paper is to prove "Join theorem" about the Seifert 
matrices of Milnor fiberings at isolated critical points. As a corollary, we 
calculate the Seifert matrices of the Milnor fiberings of the Brieskorn poly-
nomials. Essentially, we make use of the facts obtained in [5]. 

   DEFINITION 1. A spinnable structure on a closed manifold M is a triple 
S= {F, h, g} : F is a compact manifold, h : F-->F is a cliffeomorphism such that 
h I &F= id, and g : T (F, h) -M M is a diff eomorphism, where T (F, h) is a closed 
manifold obtained from FX[0,1] by identifying (x, 1) with (h(x), 0) for all 
x F and (x, t) with (x, t') for all x aF and t, t' [0, 1]. When F is a 

handlebody obtained from a ball by attaching handles of index < dim M 
S is called a simple spinnable structure. 

   DEFINITION 2. A closed oriented (2n+1)-manifold is an Alexander mani-

fold, if HnM= Hn+1M= 0. 
   If S= {F, h, g} is a simple spinnable structure on an Alexander manifold 

M2n+1, then HnF is torsion free. 
   DEFINITION 3. Let S= {F, h, g} be a simple spinnable structure on M2n+1• 

N For a basis a1, • • , am of Hn(F), a matrix T (S) = (L(g# (a1 X 0), g (a; x 1 /2))) is 
called a Seifert matrix of S, where L(e, i) = the linking number of and 
in M2n+1 = intersection number <A, r~>. (A is a chain in M such that aA = .) 

   THEOREM 1 (M. Kato [2]). There is a one to one correspondence of iso-
morphism classes of simple spinnable structures on a 1-connected Alexander 

(2n+1)-manifold M with congruence classes of unimodular matrices via Seifert 
matrices, provided that n >_ 3.
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   Theref ore, the Seifert matrices of the Milnor fiberings give a topological 

characterization of isolated singularities of hypersurf aces. 

   § 2. Statement of results. 

   Let g(x) and h(y) be holomorphic functions defined on neighborhoods of 

the origins of Cm and Cn, with g(0) = h(0) = 0. Suppose that g and h have 
isolated singularities at the origins. 

   THEOREM 2. Let f be a holomorphic function on a neighborhood of the 

origin o f Cm X Cn, such that f (x, y) =g(x) sh(y). Denote 1(f), 1(g) and 1(h) 

be Seifert matrices o f Milnor fiberings defined by f, g and h, then 

                1(f) = (-1)mnr(g) ®1(h) 

("=" means "belongs to the same congruence class with".) 
   COROLLARY 3. Let T be the Seifert matrix of the Milnor fibering of a 

Brieskorn polynomial f(z)=(z1)a1+ +(zn)an, (ai >_ 2). Then, 

                                           n(n+1) 

                       I _ (-1) 2 Aa1®... Aan 

where, Aa (a >_ 2) is the (a-1) X (a-1) matrix given by

   REMARK. Let T be the Seifert matrix of a simple spinnable structure 

N S = {F, h, g} on an Alexander manifold Men-1 Then the monodromy h*: H1(F) 
->F i1(F) is given by h=(-1)TI't.I'-1 , and the intersection matrix of F is 
given by -T+(-1)Tlt, where P is the transpose of 1. (See M. Kato [2] 
for the details.) Applying these facts to Corollary 3, we can obtain well 
known results about the monodromy of the Milnor fibering of a Brieskorn 

polynomial, and the intersection matrix of the fiber [1]. 

   § 3. Proof. 

   PROOF OF COROLLARY 3. By Theorem 2, it is enough to prove only in 

the case of n = 1. Let f (z) = za (a >_ 2). In this case the Milnor fiber is 
                                             2iri 

Spa= {1, co, ..., wa-1} where w=e a . Hence, {1-co, G~-&, ..., is a 

basis of Ho(Qa). It is easy to see that for this basis,
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                               r(f) = --AQ . q. e. d. 

   For the proof of Theorem 2, we must prove some lemmas. Let f be a 
:holomorphic function defined on a neighborhood of the origin of C" with 

f(0)=0, and assume V=f-1(0) has an isolated singularity at the origin. 
   LEMMA 1. Assume n>_2, then there exist a neighborhood N of V--{0} 

and a small number > 0, such that, for all z D2En N, the two vectors z and 

grad f(z) are linearly independent over the complex number. 
   This is an easy corollary of the Curve Selection Lemma [4, Lemma 3.1]. 

   By [4, Lemma 4.3] and the above lemma, there is a smooth vector field 
' on D2E-- {0} so that 

                   <v(z), grad f(z)>= f(z) 
and 

                      Re <v(z), z)>0, 
and that, if z Nn D2E 

                       <v(z),z>=1zi2 

where N is a neighborhood of V-- {0}. Let p(t) be any integral curve of v, 
then 

                  dtd f(p(t)) =f(p(t)) 
and 

                  d I p(t) I >0
,                      dt 

and if p(t) E Nn D2E 
                  d IP(t)I =IP(t)I                     dt 

Therefore, f (p(t)) = et f (p(0)), and I p(t) i is strictly increasing. Let p(t ; z) be 
the integral curve of v with p(0; z) = z, and define r o z= p(log r ; z), and 
Oo z=0. Then the map (r, z)Hro z is defined on [0, 1] X (D2E-- {0}), 

   Now assume n =1. There is a holomorphic function g defined on a neigh-
borhood of the origin such that f (z) = (g(z))k (k is a positive integer), g(0)=0 
and g'(0) *0. Then for a small number > 0, the inverse function g-1 of g 

is defined on D2E. Define ro z=g-1(r a g(z)) for (r, z) E [0, 1] X D2E. Note that 
the absolute value of g-1(rz) isTa strictly increasing function of r (Or < 1) 
if I z) is sufficiently small. In fact, let h be a holomorphic function such 
that g-1(z) = zh(z) and let F(r, z) = I g'1(rz) 12. Then h(0) * 0 and 

              1 
Z aF (1, z) = 2hh+zh'h+hzh' 

           I z ~ ar 

                           =Ih12+Ih+zh'I2--Izh'i2>0 

for any small z, hence
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                1 aF (r , z)= -

             Iz2 
for L 1 aF (1~ rz) > 0 

              ~ ar ~ z ~ r ar for 0<r<1. 
   LEMMA 2. The map [0, 1] x (D2E- {0})--+D2E; (r, z) - ro z is continuous and 

satisfies the following properties. 
    i) loz=z and (rs)oz=ro(soz), 

   ii) f(roz)=rf(z), 
   iii) ~rozi is a strictly increasing function of r. 

   LEMMA 3. Let 0<p<_2r, then the map 

                        c*Sp---Dp; [r, z]-roz 

is a homeomorphism, where c * Sp = [0, 1] x Sp/0 x Sp is the cone over Sp. 
   The proof is easy. 

   PROOF OF THEOREM 2. Let f, g and h be as in Theorem 2. 
   LEMMA 4. The map 

                 c*S~t+2n-1 _~ DBE +2n ; [r, x, y]'-~ (ro x, roy) 

is a homeomorphism. 

   The proof is easy. 
   By Lemma 4, there is a homeomorphism 

                                        n D2m+2n_ 2e {0}                       (0, 11] x S22em+2 -* 

defined by cp(r, x, y) _ (ro x, ro y). Then 

                     (focp)(r, x, y)=rf(x, y) 
Define a map 

              a: (Dm_ {0}) * (Dr- {0}) -> D2e +2n- {0} 

by a([x, s, y])=(sox, (1-s)oy) and let 

                         P2: (0, 1] x S2E -- S2E 

be the natural projection. Then, 

                  b=p2oc_1o6I SE*SE: Sem-1*S~n-1 _~ S2e+2n-1 

is an orientation preserving homeomorphism, and 

               (r.f)(~O([x, s, y])) = sg(x)+(1-s)h(y) 

where r = r(z) (= p1 o cp-1 o a o ~l'-1(z)) is a positive real-valued continuous func-
tion on SE +2n-1. Let g* h be a continuous function on SEm-1 * SEn-1 defined by 
the right hand side of the above equality. We have obtained, 

    LEMMA 5. There is a homeomorphism ~b from SEm-i * Sen-1 onto SEm+2n-1 
with (r.f)ocb=g*h. 

    Therefore, we can identify the spinnable structures defined by f and
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g*h via cJ~. 
   Let X = {g> O} n SEm-', Y= {h> O} n SEn-1Z= {f> O} n Sts +2n-1 and Z'= 

{g*h> O} n(SEm-1*SEn-1), where {g> 0} _ {x~Cm; g(x)>O} etc. 
   LEMMA 6. The map j = 0 X * Y ; X * Y- Z is a homotopy equivalence 

Therefore, the natural inclusion (=gY'oj) X YcZ' is a homotopy equivalence.. 
   PROOF. By Lemmas 2, 3 and 4, the following inclusion maps are homo 

Copy equivalences. 
                 Xc {g>O}nDEm~Xt, 

                  Yc {h>O}nDEn D Yt, 

                  Z C{f> 0} n DEm+2n D Zt 

where t is a small positive number, and Xt =g-1(t) n Dm, Yt = h-1(t) n DEn and 
Zt = f-1(t) n DEm+2n. Hence, the following diagram is homotopy commutative 

                           X*Y Z 

                                          

I yN d. ~~ 

        ({g> 0} n DE) *({h > O} n D~) j { f > 0} n D2~ 
                               TN 

~ ~N 
                         Xt Yt G-1(J) c Zt 

N where the map G : Zt-~C is defined by G(x, y) =g(x) and J is a line segment 
from 0 to t. By Step 2 in § 2 of [5], the inclusion G-1(J) Zt is a homotopy 
equivalence. Therefore, it is enough to show that the map 

                         o Xt*Yt : Xt*Yt --> G-1(J) 

is a homotopy equivalence. Let 

               c1: (I-{O})xXt _g-1(J-{O})nDEm 
and 

               02. (I- {O}) x Yt -- > h-1(J_ {0}) n DEm 

(1= [0, 1], J= [0, t]) be the homeomorphisms used in Step 4 in § 2 of [5]. If 

(s, x) E (I-{O})xXt, st=g(~51(s, x))=g(sox). Therefore O1 and the map (s, x) 
Hso x are fiber homotopic to each other with respect to g , that is, there is a 
homotopy 
               Pu : (I-{O})xXt -~g-1(1-{0})nDEm 

(0 <_ u <_ 1) such that Po = ~i51, P1(s, x) =sox and (go Pu)(s, x) = st, for all u, s 
and x. Similarly, there is a homotopy 

               Qu : (I- {0}) x Yt -~ h-1(J_ {0}) n DEm 

(0 < u -1) such that Qo = 02, Q1(s, y) = soy and (h o Qu)(s, y) = st, for all u, s
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and y. Consider the identification map ~r : UX V -* U/g-1(0) x V/h-1(0) and let 

[x, y] =7r(x, y). Define a homotopy 

                 Hu : Xt Yt = Xt x I x Yt/~ ---> 2r(G-1(J)) 

(0<u<1) by 
                Hu([x, s, y]) = [Pu(s, x), Q(1-s, y)]. 

(Define P(0, x) = 0 and Q(0, y) = 0.) This is well defined and continuous. By 
the definition 

             H0([x, 5, y])=[~51(S, x), O2(1-s, y)] 

             H1([x, s, y]) = [Sox, (1-S) oy] = (7'o 6)([x, s, y])''.

Ho is a homeomorphism constructured in Step 4 in § 2 of [5]. Therefore, H1 
is a homotopy equivalence. Hence c X1 * Yt : Xt * Yt -~ G-1(J) is a homotopy 

equivalence, since so is ~r : G-1(J) - ~r(G-1(J)) (Step 3 in § 2 of [5]). This 

proves Lemma 6. 
   By Lemma 5, we have only to show that 

                  r(g* h) ̀ - (-1)mn~'(g) ~1 (h) 
                           N fl 

1(Y) {e~} and {f;} be bases of Hm_1(X) and Hn_1(Y) respectively. Then 
                N N N N 

{e1® f,} is a basis of Hm+n-1(Z') Hm+n-1(X*Y) ̂ ' Hm-1(X) ®Hn-1(1') (Lemma 6). 
   Let 

                             ae : X --~ Sem_l _g-1(O) 
and 

  pe : Y-->S1-h(O) 

be continuous one-parameter families of embeddings such that ao and jo are 
the natural inclusions, and that 

                arg g(ae(x)) = arg h(j3e(y)) = 6 

for all x, y and 0. Then, 

                 ae*Qe : X* Y -~ SEm-1*Sen-1_(g*h)-1(0) 

is a continuous one-parameter family of embeddings such that ao * j3o is the 
natural inclusion, and that 

                arg ((g * h) o (ae * /3e))([x, s, y])=0
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for all [x, s, y] E X* Y and 8. Therefore, for the bases {ei}, {f;} 

                     1'(g)=(L(e1, (an)#e,)) 

                  r(h) = (L(fk, (j~)f~)) 
and 
              r(g+h) = (L(eZ ®fk, (an* ~rc)#(ej ®ft))) 

                     =(L(e~®fk, (ar)#e,®(j9~)#ft)) 

Therefore, we have only to prove 
   LEMMA 7. Let 

                           Sm, Sn ~ Sm+n+1' Sm - Sn = Y' , 

                       Sp, Sq ` sp+q+i, SpnSq-Y' 
be embeddings, then, 

               LSm+n+1*Sp+q+1(Sm Sp, Sn Sq) 

                = 1) q)                     (^(n+1)(p+1>L (cm Sn)L (Sp S 
                                              Sm+n+i , Sp+q+1 , 

   PROOF. The following diagram is commutative up to sign.

and {e1®f,},

Therefore the lemma is true up to sign. Hence we may assume Sm*Sn 
=Sm+n+1' Sp*Sq=,Sp+q+1 we can see LSa*Sb(Sa, Sb)=(_1)a+i. In fact, let 
6 = (xo, • • • , xa) and z = (yo, , yb) be top dimensional simplices of Sa and Sb 

with the compatible orientations. Then, 

             LSa:Sb(Sa, Sb) = Intersection number, <yo * Sa, Sb> 

                         =Intersection number <yo * o, r> 

                       = Signature of the permutation
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                           (YoXoX1"XaYl"Yb 

                                                          

. . 

x~ x1 ... xa y0 .y1 ... •yb 

                    =(_1y'-1 

                  L(Sm:Sn)*(Sp+Sq)(Sm * Sp, Sn * S q) 

                     = (_ 1)(n+1)(p+1)L(Sm~Sp).(Sn«Sq)(Sm * Sp, Sn * Sq) 

                    = (_ 1)(n+1)(p+1)(_ 1)m+p+2 

                    _ (_ 1)(n+1)cp+1)Lsm.sn(Sm, Sn). Lsp,sq(SP, Sq) . q. e. d. 

This completes the proof of Theorem 2. 

   REMARK. Using the "good stratification" [3], we can prove Lemmas 2r,6 

without any assumption about the isolatedness of singularities. 
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