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ATIYAH–PATODI–SINGER TYPE INDEX THEOREMS
FOR MANIFOLDS WITH SPLITTING OF

η-INVARIANTS

G. Salomonsen

Abstract

We construct self-adjoint extensions of Dirac operators on manifolds
with corners of codimension 2, which generalize the Atiyah–Patodi–
Singer boundary conditions. The boundary conditions are related to
geometric constructions, which convert problems on manifolds with
corners into problems on manifolds with boundary and wedge singu-
larities. In the case, where the Dirac bundle is a super-bundle, we
prove two general index theorems, which differ by the splitting for-
mula for η-invariants. Further we work out the de Rham, signature
and twisted spin complex in closer detail. Finally we give a new proof
of the splitting formula for the η-invariant.

0 Introduction

Let M be a Riemannian manifold with boundary and product structure
near the boundary. Further let E �→ M be a Dirac bundle over M (Defi-
nition 1.1.13) respecting the product structure. In [AtPS], Atiyah, Patodi
and Singer introduced global boundary conditions. If the dimension of M
is even and a superstructure on E = E+ ⊕ E− is fixed, these boundary
conditions give rise to the Atiyah–Patodi–Singer index theorem:

Index(D+) =
∫
M
aD − 1

2η(A+, 0) +
1
2tr (S+) . (0.0.1)

Here D+ is the part of the Dirac operator D associated to E mapping
sections of E+ into sections of E−. A is the induced Dirac operator on
the boundary, A+ is the part of A mapping sections of E+ to sections of
E+ and aD is the local index density defined in the interior of M . The
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η-function η(A+, s) is the analytic continuation of

η(A+, s) =
∑

λ∈spec(A+)\{0}
sign(λ)|λ|−s

from the part of C where the sum is convergent to all of C. It is regular
in 0 for all Dirac type operators on closed manifolds [Gi, section 3.8]. The
last term, 12tr (S+), depends on the augmentation of D, i.e. on the choice
of boundary conditions in ker(A). Here we have stated it for a canonical
choice given by the scattering matrix, introduced by W. Müller in [Mü2].
The Atiyah–Patodi–Singer (from now on APS) index theorem distinguishes
itself by giving the correct index formula for special cases like the signature
complex and by providing an index invariant I(E) := Index(D+)− 12tr (S+),
which is additive under gluing of manifolds along common boundaries.

For manifolds with corners much less is known. In particular nobody
has so far given boundary conditions for manifolds with corners, which
generalize the APS boundary conditions. However, for manifolds with cor-
ners of codimension 2 a number of special index theorems are known. We
mention the Gauß–Bonnét theorem for surfaces with corners [C]. Further,
for the signature complex the Wall non-additivity formula [W], which is a
gluing formula for the signature independent of analytic index theory, is
known. More recently Hassel–Mazzeo–Melrose [HMM] and Werner Müller
[Mü3] have proved index theorems for manifolds with corners. Both of the
approaches build on an extension of M to a complete Riemannian mani-
fold without boundary. The technical difficulty with that approach is that
the continuous spectrum of the involved operators close to 0 has infinite
multiplicity and is very difficult to study. The index theorems in [HMM]
and [Mü3] are equivalent to special cases of the index theorems in this pa-
per. The vanishing of a term in the splitting formula for the η-invariant for
the signature complex though only follows by combining the results of this
paper with those of [HMM].

In this paper we take a different approach to index theory for manifolds
with corners. Let in the following M be manifold with corners of codi-
mension 2 and product structure in a neighborhood of the boundary and
corners.

A study of the structure of Z close to the corners shows that Z can be
given a canonical smooth structure such that the Riemannian metrics on
the components of Z extend to a Riemannian metric on all of Z. Next we
form a cylinder Z × [0, 1] and attach Z × {0} to M using the identity map
on Z. This gives a Riemannian manifold M̃ with a smooth boundary and
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Figure 1: A manifold M with boundary Z and corner Y .

wedge singularities.
If E �→M is a Dirac bundle overM we prove in Lemma 1.1.14 that there

always exists at least one extension of E to a Dirac bundle Ẽ �→ M̃ . Let
D̃ be the Dirac operator associated to Ẽ. Self-adjoint boundary conditions
for D generalizing the APS boundary conditions can now be constructed
in two steps. First we impose APS boundary conditions at Z × {1} and
ideal boundary conditions in the wedge singularity of M̃ in order to get
a self-adjoint extension of D̃. Next we use the self-adjointness of D̃ and
an extension property of certain sections of E to construct a self-adjoint
extension of D, which coincides with the APS extension if there are in fact
no corners. The extension of D is further such that ker(D) is canonically
isomorphic to ker(D̃). We remark that this self-adjoint extension of D
is by no means the only generalization of the APS boundary conditions.
Different gluings of Ẽ and different choices of ideal boundary conditions
for D̃ give other extensions. In section 5 we give a completely different
extension based on a similar construction.

Since ker(D) ∼= ker(D̃) we can proceed with the index theory by proving
an index theorem for D̃. This can widely be done using standard methods
and results from [AtPS], [Ch], [Cho]. Working directly with D must be
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Figure 2: The extension M̃ of M

expected to be much harder since the complications from the boundary
and the corner both appear in the same point, whereas they can be treated
separately for D̃. The main results for general Dirac bundles are Theo-
rem 4.2.3, Theorem 5.1.5 and its refinement Theorem 5.1.10. In section 6.3
we further apply those theorems in order to give a new proof of the splitting
formula for η-invariants.

In section 3.3 we consider the de Rham and signature complexes. Like
it is the case for manifolds with boundary, a well understood subspace
ker0(D̃) of ker(D̃) is isomorphic to the image of the relative cohomology in
the absolute cohomology of M and the orthogonal complement of ker0(D̃)
gives a vanishing contribution to the index. In particular the right-hand
side of the index theorem is the Euler characteristic and the signature,
respectively. For those cases we can further work out some of the terms
on the left-hand side, and specializations of the index theorems give the
well-know Gauß–Bonnet theorem (Theorem 6.2.2)

χ(M) =
∫
M
e+

∑
Y

(
π − σ(Y )

2π

)
χ(Y ) , (0.0.2)

where Y runs over the corners and σ(Y ) denotes the interior angle at Y .
Also the following formula for the signature for a manifold with corners,
Theorem 6.2.1, is worked out

sign(M) =
∫
M

L− 1
2
η(AZ+, 0) . (0.0.3)
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If all angles at the corners are π/2 this formula can be compared to the
index formula of [HMM]. The only difference (except from a high number
of different conventions) is that the η-invariant is split in [HMM]. Together
these theorems imply that the integer valued term in the splitting formula
for the η-invariant vanishes in the case of the signature complex of an odd-
dimensional boundary.

Another example, which covers all Dirac bundles, is a local twisted
spin bundle. This example corresponds to the universal gluing of Ẽ to be
introduced in Lemma 1.1.14. For this example not much can be said about
the right-hand side, but the contribution to the index from the corner
vanishes, and in this way Theorem 4.2.3 can be refined. In the case of
the de Rham and signature complexes this index theorem differs from the
Gauß–Bonnet and the signature theorems by a cut and paste formula for
η-invariants.

Much of this work has appeared as preprints [S2,3]. In addition to the
correction of some mistakes a number of changes in the theory have been
done. The first and most noticeable change is that scattering theory on a
manifold with cylindrical ends has been replaced by section 2. In section 2
what corresponds to the scattering matrix at 0 for a Dirac operator on a
manifold with cylindrical ends is constructed for a manifold with bound-
ary and wedge singularities. The advantage of this construction is that
it does not use scattering theory and therefore the presentation becomes
simpler. More important is however that it treats boundaries and wedge
singularities equally. That means that we can make use of the trivial but
important observation that a boundary is the special case of a wedge sin-
gularity, where the conic part has a 0-dimensional base. Where the ideal
boundary conditions chosen in [S2,3] were somewhat arbitrary, we now have
completely canonical boundary conditions determined by that they gener-
alize the APS boundary conditions as well as ideal boundary conditions
(given by including the slowest growing local solutions of D̃2f = −f in the
domain of D̃) for a cone, and that the augmentation has to be given by the
scattering matrix. This has tremendous advantages, the first of which is
that the time-consuming process of considering different augmentations has
now been made redundant. The most important is however that it gives
a domain which is preserved by all operators, which satisfy commutation
relations with certain under-defined realizations of D̃, and that it gives a
self-adjoint extension at all in the case of odd-dimensional manifolds. In
the generalization of APS boundary conditions to manifolds with corners
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of codimension 3 and 4, this gives a considerably increased performance,
and already in this paper it gives simplifications.

When we consider a wedge with product structure as a generalization of
a boundary with product structure, it is natural to look for a generalization
of the geometric operation of attaching a cylinder. In the case of a wedge it
cannot be done geometrically, but it can still be done operator theoretically.
We do so in section 3.2. In section 3.3, where we work out the de Rham and
signature complexes, the geometric extension still plays an important role.
The significance of the operator theoretical extension will be clear when we
consider manifolds with corners of codimension 3 and 4 and theory from
this paper has to be iterated. What happens is that operator theoretical
extensions are locally conjugate to Dirac operators on spaces with simpler
singularity structure. Thus they can be used for specifying self-adjoint
extensions similar to those appearing in this paper and for proving the
corresponding index theorems. It turns out that the main approach to index
theory in this paper and the approach given in section 5 melt together in
the sense that both are in use for specifying the same boundary conditions
from a certain level of complication of corners and singularities.

Theorem 5.1.10 differs from Theorem 4.2.3 by that the η-invariant is
split in Theorem 5.1.10. Depending on whether one holds the two index the-
orems together or not, the contribution from the corner in Theorem 5.1.10
can be considered either as the m-term in the splitting formula for the
η-invariant independent of the angle or as a term depending on the angle,
which measures the dislocation of the scattering matrices from the various
boundary components. The formula corresponds to that of [HMM] modulo
Z in the case of the signature complex and angles π/2. The index term
in Theorem 5.1.10 cannot be interpreted cohomologically for the signature
complex since it is not clear, whether harmonic sections are closed. Thus
the comparison can only be carried out modulo Z.

This approach generalizes to give index theorems for manifolds with
corners of codimension 3 and 4. In codimension 4 we have though only
worked it out in the case of the universal gluing of vector-bundles. Other
gluings give rise to additional problems. The main result, which is proved
so far, is an index theorem for manifolds with corners of codimension 3 and
an associated splitting formula for η-invariants of odd-dimensional closed
manifolds or manifolds with singularities into η-invariants of manifolds with
corners. These results, both proved in [S4], go further than the results
obtained with other approaches.
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1 A Boundary Value Problem

1.1 Geometric constructions related to a manifold with corners.
First we will give our definition of a manifold with corners. The definition
has been chosen such that it fits the methods used in this paper. More
general definitions extending the definitions below to higher codimension
have been given in [S2]. Compared to [S2] we have allowed ourselves to
make more intensive use of group actions and covering spaces than it is
possible in higher codimension. This leads to some simplifications. We
will repeatedly use the fact that isometric homeomorphisms of Riemannian
manifolds are automatically smooth [He, Theorem 11.1] and in this way
reduce most proofs to proofs involving metric spaces only.

Let

R
2
× = R

2 \ {0} ,
considered as a Riemannian manifold. We denote the universal covering
by R̃

2×. Then R̃
2× is a Riemannian manifold isometrically diffeomorphic to

(0,∞) × R equipped with the Riemannian metric

g = dr2 + r2dθ2 .

There are two natural group actions on R̃
2×. The cone structure and the

lift of the group of rotations of R
2 given by

ρ(s)(r, θ) = (r, θ + s) ; s ∈ R .

Clearly ρ acts by isometries.

Definition 1.1.1. A corner of dimension 2, codimension 2 and product
structure is the completion of a subset of R̃

2× of the form

C◦ =
{
(r, θ) ∈ (0,∞)× R

∣∣ a < θ < b
}

(1.1.1)

for some a, b ∈ R with b > a. The angle of C is the number b − a ∈ R+.
The interior of C is the set C◦ defined in (1.1.1). A corner C × Y of
dimension n, codimension 2 and product structure is the completion of a
Riemannian manifold of the form

C◦ × Y ,

where C is a corner of dimension 2, codimension 2 and product structure,
and Y is a closed manifold of dimension n − 2. The angle of C × Y is the
angle of C.

The category of corners will be considered as a sub-category of the
category of metric spaces with a cone structure. In particular isomorphisms
of corners are isometric homeomorphisms.
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Example 1.1.2. An intersection of dimension 2 of two different half-planes
in R

2 is a corner of codimension 2 and angle smaller than π. One half-
plane in R

2 is also a corner of codimension 2 and angle π. Notice that
with Definition 1.1.1 there is no particular distinction between corners with
angles smaller than π, equal to π or greater than π, whereas the spaces of
smooth functions for the three cases are very different. This is our main
reason for not working with smooth or Ck functions at all.

Definition 1.1.3. The boundary components of a corner of codimension
2 are the completions of the subsets {θ = a} and {θ = b}, where a and b
are like in Definition 1.1.1.

Lemma 1.1.4. Let C1 × Y and C2 × Y be corners and let C be the
space arising by identifying the image of a boundary component of C1
with the image of a boundary component of C2 (using the unique isometric
homeomorphism). Then C × Y is a corner.

Proof. This is trivial with the definitions given. ✷

Definition 1.1.5. A closed corner of codimension 1 is a space of the form

Z × [0,∞) ,

where Z is a closed Riemannian manifold.

Definition 1.1.6. A closed cone C of dimension 2, angle σ and product
structure is the completion as a metric space of a Riemannian manifold of
the form

C◦ = R̃
2
×/ρσ ,

where ρσ is the Z-action on R̃2× given by

ρσ(k)(r, θ) = (r, θ + σk) ; k ∈ Z .

A closed wedge of codimension 2 is a space of the form

C × Y ,

where C is a closed cone of codimension 2 and Y is a closed Riemannian
manifold.

Definition 1.1.7. A compact manifold M with corners and product
structure near the boundary and corners is a compact connected metric
space, such that for each m ∈M , an open neighborhood Um of m is isomet-
rically homeomorphic to an open subset of a smooth Riemannian manifold,
a corner of codimension 1 or a corner of codimension 2.
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Remark 1.1.8. With Definition 1.1.7 the space at a corner of a mani-
fold with corners is a fortiori a bundle of corners over a closed manifold,
equipped with a local product metric. In codimension 2, however, if M is
orientable, a neighbourhood of a corner is isometric to a neighborhood of
{0} × Y in a corner C × Y .

Definition 1.1.9. Let M be a compact manifold with corners of codimen-
sion 2 and product structure near the boundary and corners. Then:

An open boundary component N◦ of M is a maximal connected subset,
such that a neighborhood of each m ∈ N◦ is isometrically homeomorphic
to a neighborhood of {0} × {z} in a corner [0,∞) × Z of codimension 1.

An intrinsic boundary component is the completion of an open boundary
component with respect to the induced Riemannian metric.

An extrinsic boundary component is the closure of an open boundary
component in M .

The boundary ∂M of M is the union in M of the extrinsic boundary
components.

Lemma 1.1.10. Let M be a compact manifold with corners and product
structure near the boundary and corners. Then the boundary Z of M has a
canonical smooth structure such that Z is a smooth Riemannian manifold
with the Riemannian metric given by the extension by continuity of the
Riemannian metric induced on the open boundary components of M .

Proof. An atlas is given on the open boundary components of M , so it
suffices to consider the corners of codimension 2. If C × Y is a corner,
∂C is the union of two half-lines with Riemannian metrics. Gluing those
half-lines together gives that ∂C × Y is homeomorphic to R × Y , where
R is considered as a Riemannian manifold. Further the homeomorphism
is uniquely determined by the demand that its restriction to each half-line
is an isometry. The smooth structure on R can now be pulled back to a
smooth structure on ∂C and the pullback of the Riemannian metric on R

is the extension by continuity of the Riemannian metrics on the boundary
components of C.

Using the above, ∂C×Y is identified with the smooth manifold R× Y .
Further these identifications extend the atlas of the open boundary com-
ponents of M to all of ∂M . ✷

Definition 1.1.11. A compact manifold with boundary, closed wedge
singularities and product structure near the boundary and the wedge sin-
gularities is a compact connected metric space such that some open neigh-
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borhood of each m ∈ M is isometrically homeomorphic to an open subset
of either a Riemannian manifold, a corner of codimension 1 or a closed
wedge.

Lemma 1.1.12. Let M be a compact manifold with corners of codimen-
sion 2. Then the space

M̃ := M ∪Z Z × [0, 1] (1.1.2)

is a compact manifold with boundary, closed wedge singularities of codi-
mension 2 and product structure. The corners of M stand in bijective
correspondence to the wedge singularities of M̃ and if a corner of M has
angle σ, the corresponding wedge singularity has angle σ + π.

Proof. Clearly Z×{1} is a smooth boundary. Further the product structure
gives that points in the open boundary components of M are mapped to
interior points of M̃ . Now consider a subset of M isometrically home-
omorphic to Cε × Y , where Cε = {(r, θ) ∈ C | r < ε} for a corner
C = {(r, θ) ∈ R̃2× | a < θ < b}. The image of {0} × Y in Z × [0, 1] has
a neighborhood of the form [0, ε) × (−ε, ε) × Y . Further, a neighborhood
of {0} × {0} × Y ⊂ [0, ε)× (−ε, ε)× Y is isometrically homeomorphic to a
neighborhood of {0} × Y in C ′ × Y , where C ′ is the corner

C ′ :=
{
(r, θ) ∈ R̃2×

∣∣ b < θ < b+ π
}
.

Further the identifications are such that {(r, θ) ∈ C | θ = b} is identified
with {(r, θ) ∈ C ′ | θ = b} and {(r, θ) ∈ C | θ = a} is identified with
{(r, θ) ∈ C ′ | θ = b + π}. This space is isometrically homeomorphic to
R̃
2×/ρb−a+π, so {0} × Y is mapped to a closed wedge singularity. The

remaining statements are clear from that. ✷

We notice that the interior of a corner of dimension 2 and codimension 2
has trivial holonomy. In particular any tangent vector in a point can be
extended to a globally defined parallel vector field on a corner. If C is a
corner defined by (1.1.1) a number of tangent vectors are canonically given:

δ1 := ∂
∂r |θ=b,r=1

; δ2 := − ∂
∂r |θ=a,r=1

,

ν1 := ∂
∂θ |θ=b,r=1

; ν2 := − ∂
∂θ |θ=a,r=1

.

All of those tangent vectors extend to globally defined parallel vector fields.
In the following we will assume that E �→M is a Dirac bundle over M .

We recall the definition:
Definition 1.1.13. A vector bundle E �→M equipped with a Hermitian
structure h and a Hermitian connection ∇ is a Dirac bundle if it is a module
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Figure 3: A corner C ⊂ R
2.

over the Clifford bundle Cliff(TM), such that if c denotes the structure of
Clifford multiplication we have for all vector-fields X,Y and all smooth
sections s1 and s2 of E

∇Y c(X)s1 = c(X)∇s1 + c(∇Y X)s1 , (1.1.3)
h
(
c(X)s1, s2

)
= −h(

s1, c(X)s2
)
. (1.1.4)

If E is a Dirac bundle the associated Dirac operator is given by the com-
position

D := c ◦ g−1 ◦ ∇ , (1.1.5)

where g ∈ C∞(End(TM,T ∗M)) is the Riemannian structure on M .
Further we will assume that E respects the structure near the boundary

and the corners. That means that the local restrictions of E to the corners
of codimension 1 and 2 are pullbacks of the restriction of E|Z and E|Y ,
respectively. In addition it means that the connection ∇ in E is of the
form du ∂

∂u +∇Z and dr ∂
∂r + dθ ∂

∂θ +∇Y , respectively.
Let TZ ′ be the smooth extension of TM|Z0 arising by identifying ν1

with ν2 and δ1 with δ2 at the corner.
Since the gluing operators for TZ ′ are unitary, they induce canonical

gluing operators for the Clifford bundle Cliff(TZ ′). We will construct gluing
operators for E|Z at the corners, and in this way construct a vector-bundle
F �→ Z, which is equal to E over each open boundary component, and which
is a bundle of Clifford modules over Cliff(TZ ′). Such gluing operators are
not necessarily uniquely determined, but there is a canonical choice.
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Lemma 1.1.14. Let V be a finite-dimensional real vector-space with an
inner product 〈 . , . 〉. Let U ⊆ V be a two-dimensional subspace, Cliff(V )
be the Clifford algebra over V , δ1 ⊆ U be a unit vector and let

W =
{
δ2 ∈ U

∣∣ |δ2| = 1 and 〈δ1, δ2〉 > −1
}
.

Then there exists a function, which we will denote by
√−δ1δ2, defined on

W and with values in Spin(V ) ⊆ Cliff(V ), such that the following holds:

1)
√−δ1δ2 is continuous with respect to δ2 and

√−δ1δ1 = 1.
2)

(√−δ1δ2)2 = −δ1δ2 for all δ2 ∈W .
3) δ1

√−δ1δ2 =
√−δ1δ2 δ2.

4) For e in the orthogonal complement of U in V we have

e
√
−δ1δ2 =

√
−δ1δ2 e .

The function
√−δ1δ2 takes its values in Spin(U) ⊆ Spin(V ) and is uniquely

determined by the properties 1), 2), 3) and 4). Further, if δ1, δ2, ν1 and ν2
are as on Figure 3,

√−δ1δ2 satisfies the following extra conditions:

5)
√−δ1δ2 commutes with δ1ν1.

6) The eigenspaces of
√−δ1δ2 coincide with the eigenspaces of δ1ν1. The

eigenvalues of
√−δ1δ2 are given by{
ei

π−σ
2 ; on the i eigenspace of δ1ν1

e−iπ−σ
2 ; on the − i eigenspace of δ1ν1

}
,

where σ denotes the angle between δ1 and −δ2.
We call

√−δ1δ2 the universal gluing operator.

Proof. If we write

δ1 = cos(π − σ)δ2 + sin(π − σ)ν2 ,

it follows that

−δ1δ2 = cos(π − σ)− sin(π − σ)ν2δ2 = e−(π−σ)ν2δ2 .

Consequently, for π−σ ∈ (−π, π) a canonical square root of −δ1δ2 is given
by √

−δ1δ2 := e−
π−σ

2
ν2δ2 = e

π−σ
2

δ1ν1 . (1.1.6)

Computations similar to above give that√
−δ1δ2 = −

{
cos

(
π−σ
2

)
δ2 + sin

(
π−σ
2

)
ν2

}
δ2 ∈ Spin(U) ⊆ Spin(V ) .

The properties 1), 2), 3) and 4) are now easily checked. It remains to
prove the uniqueness part: Assume that ω ∈ Spin(V ) is another element
satisfying 3) and 4). Then conjugation by ω−1√−δ1δ2 induces the identity
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on U⊥ ⊕ span(δ2). Since conjugation by elements of Spin(V ) gives rise
to unitary operators with determinant 1 it follows that conjugation by
ω−1√−δ1δ2 induces the identity on V . But then ω−1√−δ1δ2 is in the centre
of Cliff(V ). Since ω−1√−δ1δ2 also belongs to Spin(U), which has centre
±1, it follows that ω = ±√−δ1δ2. The uniqueness now follows from 1).

The claims 5) and 6) are satisfied by construction of
√−δ1δ2. This

proves the lemma. ✷

Remark 1.1.15. We define
√−δ1δ2 by (1.1.6) for σ ∈ (0,∞). With this

convention 1), 2), 3), 4), 5) and 6) remain valid. What is not true is that√−δ1δ2 is a globally defined function of δ1 and δ2. Instead it must be
considered as a function of σ.

Denote by R : Spin(Rn) �→ SO(Rn) the covering homomorphism. We
notice that R(

√−δ1δ2) is the identification map for TZ ′ at the corner,
which identifies δ2 with δ1 and ν2 with ν1. We can now in the same way
construct the restriction of a bundle F over Z by at each corner identifying
ω ∈ E|{(0,a)}×Y with

√−δ1δ2 ω ∈ E|{(0,b)×Y . Then the computation

R
(√−δ1δ2)(v)√−δ1δ2ω =

√
−δ1δ2 v

(√−δ1δ2)−1√−δ1δ2ω (1.1.7)

=
√
−δ1δ2vω (1.1.8)

shows that F is a bundle of Clifford modules over TZ ′. Since the con-
nection commutes with Clifford multiplication, F can also be given the
connection from E. Notice that when F is considered as a Clifford bun-
dle over Cliff(TZ), rather than over Cliff(TZ ′), the structure b of Clifford
multiplication is given by b(γ) = νγ, where ν denotes the inward pointing
normal at ∂M .

In neighborhoods of small open subsets of each open component Zi of Z,
D takes the form

D = −ν ∂
∂u +DZi = −ν

(
∂
∂u +A

)
.

Here A = νDZi is the Dirac operator on F �→ Z coming from the structure
of F as a Clifford module over TZ. There is no globally defined Dirac
operator on E|Z �→ Z, but by construction of F , the Dirac operators DZi

glue together to a Dirac operator DZ on F �→ Z. By construction of F
the operator of Clifford multiplication by ν is a smooth section in End(F ),
which anti-commutes with DZ . Thus also the operator A := νDZ is well
defined as an operator on F �→ Z.

There is an extension of E to a Clifford-bundle Ẽ on M̃ by letting
Ẽ|Z×[0,1] be the pullback of F . The connection and the Hermitian structure
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extend by the product structure. Finally, Clifford multiplication in the
direction of the last variable is provided by the operator −ν.
1.2 Analysis on a cone. In this section we will consider a number of
different Sobolev spaces over two-dimensional cones.

Let V �→ X be a Hermitian vector-bundle over a Riemannian manifold
equipped with a connection ∇. Then we define

W 2,k(X,V ) :=
{
f ∈ L2(X,V )

∣∣ ∀i = 0 ,..., k : ∇if ∈ L2(X,(T ∗M)⊗i ⊗ V )
}
,

W 2,k
0 (X,V ) := Closure of C∞

0 (X,V ) in W 2,k(X,V ) .

If V is further a Dirac bundle and D is the associated Dirac operator, we
may define

Hk(X,V ) :=
{
f ∈ L2(X,V )

∣∣ ∀i = 0, . . . , k : Dif ∈ L2(X,V )
}
,

Hk
0 (X,V ) := Closure of C∞

0 (X,V ) in Hk(X,V ) .

The following inclusions are standard:
Lemma 1.2.1. We have

W 2,k
0 (X,V ) ⊆W 2,k(X,V ) ,

Hk
0 (X,V ) ⊆ Hk(X,V ) ,

W 2,k
0 (X,V ) ⊆ Hk

0 (X,V ) ,

W 2,k(X,V ) ⊆ Hk(X,V ) .

If the curvature term R occurring in the Weizenböck formula is bounded,
we further have

W 2,1
0 (X,V ) = H1

0 (X,V ) .

Proof. The first two inclusions hold by definition. The next two by the
expression D = cg−1∇, where c is the structure of Clifford multiplication
and g is the metric. In the last equation the inclusion ⊆ is already clear.
The other follows by the Weizenböck formula in the following way: For
f, g ∈ C∞

0 (X,V ) ∣∣〈∇f,∇g〉∣∣ = ∣∣〈∇∗∇f, g〉∣∣
=

∣∣〈(D2 −R)f, g〉∣∣
≤ ∣∣〈Df,Dg〉∣∣ + ‖R‖∞∣∣〈f, g〉∣∣ .

This implies equivalence of the norms on W 2,1
0 and H1

0 . ✷

Now let R
2,σ
× = R̃

2×/ρσ, where ρσ is defined in Definition 1.1.6. Let E be
a Clifford module over Cliff(R2) and let E1 be the corresponding Clifford
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bundle over R̃2×, arising by trivializing TR̃2× by the trivial holonomy of R̃2×.
The bundle E1 is a Dirac bundle over R̃2× if it is equipped with the pullback
of the trivial connection dx ∂

∂x + dy ∂
∂y to R̃2×. Let U be a unitary operator

on E such that E1/(ρσ,U ) is a Dirac bundle over R
2×,σ. Here ρσ,U is given by

ρσ,U (k)
(
(r, θ, e)

)
= (r, θ + kσ,Uke) .

We denote the resulting Dirac bundle E1/(ρσ,U ) by E.
Lemma 1.2.2. We have

W 2,1
0 (R2,σ× , E) = W 2,1(R2,σ× , E) .

Proof. First consider E in the case σ = 2π. In this case Euclidean coordi-
nates (x, y) are globally well-defined.

First we prove that W 2,1(R2×, E)∩L∞(R2×, E) is dense in W 2,1(R2×, E).
Let v1, . . . , vm be an orthonormal basis of eigenvectors of U . Then an or-
thogonal basis of eigenvectors of the operator −i ∂

∂θ on L2(S1, E|S1) is given
by {eisk,qθvq}q=1,...,m;k∈Z for some discrete sequences {sk,q}k∈Z of eigen-
values. Every section f ∈W 2,1(R2×, E) can be split into a W 2,1-orthogonal
sum

f(r, θ) =
∑
k,q

fk,q(r)eisk,qθvq .

By orthogonality each term fk,q(r)eisk,qθvq belongs to W 2,1 and the sum
is W 2,1-convergent. It thus suffices to prove that each section of the form
fk,q(r)eisk,qθvq can be approximated by boundedW 2,1-sections with respect
to the W 2,1-norm.

The function fk,q belongs toW 2,1,loc((0,∞)) and is therefore continuous,
such that in particular it is everywhere defined. Now define for n ∈ N:

fk,q,n(r) := max
{
min{Re(fk,q(r)), n},−n

}
+ imax

{
min{Im(fk,q(r)), n},−n

}
.

Then
fk,q,n(r)eisk,qθvq

n→∞−→ fk,q(r)eisk,qθvq

with respect to ‖ · ‖W 2,1 .
Let ϕ ∈ C∞

0 (R) be a function, which is identically equal to 1 in a neigh-
borhood of 0. Further, let f ∈W 2,1(R2×, E) ∩ L∞(R2×, E). The estimate∫

R2

∣∣∣∣
(

∂

∂x
ϕ

(
n
√
x2+y2

))
f(x, y)

∣∣∣∣
2

+
∣∣∣∣
(

∂

∂y
ϕ

(
n
√
x2+y2

))
f(x, y)

∣∣∣∣
2

dx dy

= n2
∫
R2

x2 + y2

x2 + y2

∣∣∣ϕ′
(
n
√
x2 + y2

)∣∣∣2 ∣∣f(x, y)∣∣2dx dy ≤ Cf,ϕ
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and some trivial estimates shows that {ϕ(n
√
x2 + y2)f}n∈N is bounded in

W 2,1 for n→∞. Further, for g ∈W 2,1(R2×, E) ∩ L∞(R2×, E) we get∣∣∣∣
∫
R2

(
∂

∂x
ϕ(n

√
x2 + y2)

)〈
f(x, y), g(x, y)

〉
dx dy

∣∣∣∣
≤

∫
R2

∣∣∣∣∣ nx√
x2 + y2

∣∣∣∣∣
∣∣ϕ′(n

√
x2 + y2)

∣∣∣∣f(x, y)∣∣∣∣g(x, y)∣∣dx dy → 0 .

Thus
{
ϕ
(
n
√
x2 + y2

)
f
}
n∈N is a bounded sequence in W 2,1 converging

weakly towards zero with respect to a dense subset of W 2,1. It follows
that it is in fact weakly convergent towards zero. Consequently(

1− ϕ
(
n
√
x2 + y2

))
f(x, y)

converges W 2,1-weakly towards f for n → ∞. Now, sections with support
away from 0 can be approximated in W 2,1 by sections in C∞

0 (R2×, E). It
follows that the W 2,1-weak closure of C∞

0 (R2×, E) is all of W 2,1(R2×, E).
But the weak and the strong closure of a subspace always coincide. This
proves the lemma in the special case.

Now, R
2,σ
× is diffeomorphic to R

2× through a diffeomorphism, whose
differential and inverse differential are bounded. From that it follows that
the spaces W 2,1 and W 2,1

0 are preserved. Thus the lemma holds for all σ. ✷

In the special case σ = 2π, U = 1 we know that the Dirac operator is
self-adjoint on the domain W 2,1(R2,σ× , E) = W 2,1(R2,Cm). This is not so
in general. Instead we will have to introduce ideal boundary conditions in
order to get a self-adjoint extension.

Consider the restriction Er of E to the circle Nr = r · (σZ \ R). We
write N for N1. Let ν denote the operator of Clifford multiplication by
∂/∂r and let δ denote the operator of Clifford multiplication by ∂/∂θ. We
consider the operators

BN := −νδ ∂
∂θ − 1

2 (1.2.1)

and

τN := − i
rνδ (1.2.2)

defined in L2(Nr, Er). τN is the canonical involution on Nr given by a
multiple of the image of the volume form in the Clifford bundle. It is at
the same time equal to −τ

R
2,σ
×
, where the orientation on R

2,σ
× has been

taken such that (∂/∂r, ∂/∂θ) is an ordered frame of TR
2,σ
× . In particular

it is parallel with respect to the connections on both N and R
2,σ
× , and the

dimensions of the ±1 eigenspaces of τN are both equal to dim(E)/2.
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The operators BN , U and τN commute. Thus BN and τN preserve the
eigenspaces of U . Let α ∈ S1 vary over the eigenvalues of U . Then Er

splits into eigenbundles Eα to the α eigenvalues of U . Let v1, . . . , vp be an
orthonormal basis of eigenvectors of τN in the α-eigenspace of U . Then{

eνδ
2πk+i log(α)

σ
θvq

}
q=1,...,p;k∈Z (1.2.3)

is an orthonormal basis of eigenvectors of BN corresponding to the eigen-
values {

2πk + i log(α)
σ

− 1
2

}
.

This basis is independent on the branch of the logarithm used, though the
indexing depends on the branch of the logarithm. Let

sk,α =
2πk + i log(α)

σ
. (1.2.4)

Then {sk,α} are the eigenvalues of BN + 1
2 .

Remark. 1
rBN is the induced Dirac operator on the sub-manifold Nr.

It anti-commutes with ν. Since τN commutes with BN and anti-commutes
with ν we see that τN maps ker(BN ) to itself and that ν gives a symplectic
structure on ker(BN ), for which ker(τN − 1) is a Lagrangian subspace.

Definition 1.2.3. If sk,α �= 1/2 for all k and α, let σ1, . . . , σq be the
values of sk,α for which sk,α ∈ (0, 1/2), counted with multiplicity and let
ϕ1, . . . , ϕq be a corresponding orthonormal basis of eigensections. Then we
set

D2,1(R2,σ× , E) := W 2,1(R2,σ× , E) ⊕ span
{
Kσj (r)ϕj

∣∣ j = 1, . . . , q
}
, (1.2.5)

where Ks denotes the s′th K-Bessel function.
If some sk,α equals 1/2, i.e. ker(BN ) �= 0, let W be a Lagrangian

subspace of ker(BN ), which is a direct sum of subspaces of the eigenspaces
of τ . Let ϕ1, . . . , ϕq and σ1, . . . , σq be like above, let ϕq+1, . . . , ϕq′ be a
basis of W and let σq+1 = · · · = σq′ = 1/2. We set

D2,1W (R2,σ× , E) := W 2,1(R2,σ× , E) ⊕ span
{
Kσj (r)ϕj

∣∣ j = 1, . . . , q′
}
. (1.2.6)

We will use the terminology that we augment with respect to a Lagrangian
subspace if we take that subspace as W and that we augment with respect
to a self-adjoint involution ρ, if we take W = ker(ρ− 1).

It will often be convenient to write D2,1W instead of D2,1, also when
ker(BN ) = {0}. In this case W = {0}. We will prove that D is self-adjoint
on D2,1W (R2,σ× , E). In the case where σ = 2π and U = 1, BN + 1

2 has no
eigenvalues in [−1/2, 0)∪(0, 1/2], D2,1 = W 2,1 and we already know that D
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is self-adjoint on W 2,1(R2, E). The general case requires that we compute
the defect indices of (Dσ,W

2,1(R2,σ× , E)).
Assume that we have a solution f ∈ L2(R2,σ× , E) of the equation

(D∗ ± i)f = 0 .
Then it follows (

(D∗)2 + 1
)
f = (D∗ ∓ i)(D∗ ± i)f = 0 .

Thus we have the distributional equation
(∆ + 1)f = 0 ,

where ∆ = D2. In polar coordinates (r, θ), ∆ takes the form ∆ =
− ∂2

∂r2 − 1
r

∂
∂r − 1

r2
∂2

∂θ2 . Now assume f is a L2-solution of the equation

(∆ + λ2)f = 0
for some λ ∈ C \ {0}. Since ∆ commutes with U we may consider the
components fα of f , which take their values in C∞(R2,σ× , Eα), separately.
It follows by local elliptic regularity that fα ∈ C∞(R2,σ× , Eα) and thus that
fα has an expansion of the form

fα(r, θ) =
p∑

q=0

∞∑
k=−∞

gk,q(r)eνδsk,αθvq , (1.2.7)

where the sum is convergent in the C∞-topology and the coefficient func-
tions gk,q are smooth. The coefficient functions are solutions of the ordinary
differential equations(

− ∂2

∂r2 − 1
r

∂
∂r +

s2k,α

r2 + λ2
)
gk,q(r) = 0 . (1.2.8)

Let ϕs be a solution of the equation(
− ∂2

∂r2 − 1
r

∂
∂r +

s2

r2 + 1
)
ϕs(r) = 0 . (1.2.9)

Then we may compute(
− ∂2

∂r2 − 1
r

∂
∂r +

s2

r2 + λ2
)
ϕs(λr)

= λ2
(
−ϕ′′

s(λr)− 1
λrϕ

′
s(λr) +

(
s2

λ2r2 + 1
)
ϕs(λr)

)
= 0 .

It follows that ϕs(λr) is a solution of (1.2.8) if s2 = s2k,α. The equation
(1.2.9) is known to have the two-dimensional solution space spanned by
the Bessel functions Is(r) and Ks(r). In the following we will concentrate
on the special case where λ = 1.

For r →∞, Is(r) has the following asymptotic expansion [E]

Is(r) = e−iπ
2
sJs(ir) ∼ e−iπ

2
s
√

2
πr cos

(
ir − π

2 s− π
4

)
.
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The other solution,Ks, is known to have the asymptotic expansion [Wa, 7.23]

Ks(r) ∼
√

π
2 r

−1/2e−r ; r →∞ ,

Ks(r) ∼ 2|s|−1Γ(|s|)r−|s| ; r → 0 for s �= 0 ,
K0(r) ∼ − log(r) ; r→ 0 .

(1.2.10)

By the asymptotic behaviour for r →∞ it follows that the Is component of
gk,q must vanish in order for f to be in L2(R2,σ× , E). Further, for |s| ∈ [1,∞)
the integral

∫ 1
0 r−2|s|r dr =

∫ 1
0 r

1−2|s|dr is divergent. Thus gk,q = 0 for all k
such that |sk,α| ∈ [1,∞). In particular the sum (1.2.7) is finite.

By [Wa, 3.71] we have for all s:
d
drKs(r) = − s

rKs(r)−Ks−1(r) .
Thus we may compute

(D∗fα)(r, θ) = ν
(

∂
∂r − 1

rνδ
∂
∂θ

)( ∑
k

∑
q

ck,qKsk,α
(r)eνδsk,αθvq

)

= ν

{∑
k

∑
q

ck,q

(
∂Ksk,α

(r)
∂r

+
sk,α
r

Ksk,α
(r)

)
eνδsk,αθvq

}

= −ν
{ ∑

k

∑
q

ck,qKsk,α−1(r)e
νδsk,αθvq

}
.

By orthogonality and the identity K−s(r) = Ks(r) [Wa, 3.71] we see
that for this to be a solution to (D∗± i)fα = 0 we must have that whenever

eνδsk,αθvq

is an eigensection of BN + 1
2 to the eigenvalue sk,α then −νeνδsk,αθvq is an

eigensection of BN + 1
2 to the eigenvalue 1 − sk,α. Since ν anti-commutes

with BN this is indeed so for all vq. It follows by orthogonality that the
solutions to (D∗ ± i)g = 0 are spanned by vectors of the form

Ksk,α
(r)eνδsk,αθvq ± iK1−sk,α

(r)eνδsk,αθνvq . (1.2.11)
This excludes sk,α ∈ (−1, 0] since for sk,α ∈ (−1, 0], 1−sk,α ≥ 1, so that sk,α
cannot give rise to an L2-solution of (D∗±i)g = 0 of the type (1.2.11). Thus
we are left with sk,α ∈ (0, 1). In this case (1.2.11) is indeed a L2-solution
to (D∗± i)g = 0. Further we see that dim(ker(D∗+ i)) = dim(ker(D∗− i)),
so that D has self-adjoint extensions. Each self-adjoint extension is given
by adding a Lagrangian subspaces of the symplectic form

〈D∗f, g〉 − 〈f,D∗g〉
on ker(D∗ − i)⊕ ker(D∗ + i) to D(D). The identity

〈D∗f, g〉 = 〈f,D∗g〉 − lim
r→0

∫
Nr

〈f, νg〉
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gives that this is exactly the Lagrangian subspaces for the quadratic form
〈νf, g〉. We observe that the space

W0 := span
{
Ksk,α

(r)eνδsk,αθvq
}
sk,α∈(0,1/2)

is a Lagrangian subspace for the restriction of ν to the space
span

{
Ksk,α

(r)eνδsk,αθvq
}
sk,α∈(0,1/2)∪(1/2,1) .

If a Lagrangian subspace W of ker(BN ) is added to W0, W ⊕ W0 is a
Lagrangian subspace of ker(D∗ − i) ⊕ ker(D∗ + i). This proves that D is
self-adjoint on D2,1W .

We will end this discussion by noticing that since νδ commutes with any
superstructure on E, the domain D2,1W is compatible with any superstructure
on E if and only if W is compatible with the superstructure.

We state the main results, which are well known from [Ch], [Cho], as a
lemma:
Lemma 1.2.4. Let D be the Dirac operator on a cone over S1. Then D is
self-adjoint onD2,1W (R2,σ× , E). Further, for any superstructureE = E+ ⊕ E−
into ±1 eigenspaces of an involution ρ anti-commuting with Clifford mul-
tiplication, (D,D2,1W ) anti-commutes with ρ if and only if W splits into
W = W+ ⊕W−, where W+ ⊂ C∞(E+) and W− ⊂ C∞(E−). ✷

We remark that Lemma 1.2.4 holds with minimal modifications on a
cone over any closed manifold.

1.3 Analysis on a wedge. In the following Y will denote a closed
Riemannian manifold equipped with a Hermitian vector-bundle E|Y and a
Hermitian connection ∇Y on E|Y .

A vector bundle Ẽ is defined on R̃
2××Y by taking the pullback through

the projection on the second component of the product.
The connection, metric and Hermitian structure on R̃

2×× Y is given by
the product structure. For the structure of Clifford multiplication we will
assume that there is a structure on Ẽ as a Dirac bundle. We will denote
the associated Dirac operator by D̃.

In polar coordinates (r, θ), D̃ can be written:
D̃ = ν ∂

∂r +
1
r δ

∂
∂θ +DY = ν

(
∂
∂r +

1
rBN + 1

2r +BY

)
, (1.3.1)

where DY is a Dirac operator on E|Y defined with respect to the structure
of Clifford multiplication on Ẽ. The operators BN and BY are the induced
Dirac operators on N and Y with respect to the structure of Clifford mul-
tiplication induced on E|N×Y from the structure of Clifford multiplication
on Ẽ.
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Let U ∈ C∞(End(E|Y )) be a unitary section and let ρσ and ρU,σ be
given by

ρσ(k)(r, θ, y) = (r, θ + σk, y) ; k ∈ Z ,

ρU,σ(k)
(
(r, θ, y), e

)
=

(
(r, θ + σk, y), Uke

)
; k ∈ Z .

A vector bundle E over R
2,σ
× × Y is defined by E := ρU,σ \ Ẽ. We will

assume that U is such that E is a Dirac bundle. (If E is a Dirac bundle,
∇Y U = 0 and U commutes with Clifford multiplication. This means that
U belongs to a finite dimensional or even finite space.) Let D denote the
Dirac operator on E.

Since δ, ν and U commute with B2Y , for each µ ∈ spec(BY ), a Dirac
bundle Fµ2 over R

2,σ
× is given as the direct sum of the eigenspaces

Fµ2 := Eµ ⊕ E−µ ,

where Eµ is the eigenspace of BY to the eigenvalue µ, equipped with the
Hermitian structure induced by the inner product on L2(Y,E|Y ). Further,
BY acts by an element Bµ2 of End(Fµ2) of operator norm µ.

The restriction Dµ2 of D̃ to Fµ2 is of the form

Dµ2 = D0 +Bµ2 ,

where D0 is an operator of the form from Lemma 1.2.4. Thus D0 is self-
adjoint on D2,1W (R2,σ× , Fµ2). Since Bµ2 is bounded and symmetric, also Dµ2

is self-adjoint on D2,1W (R2,σ× , Fµ2).
For µ2 �= 0 the operator Bµ2 gives a canonical choice of augmentation

for Dµ2 . We exploit this to define self-adjoint ideal boundary conditions
for D up to the finite dimensional space ker(BN ) ∩ ker(BY ). Here BN and
BY are considered as operators on E|N×Y .
Definition 1.3.1. Let ρ be a self-adjoint involution defined on the
space ker(BN ) ∩ ker(BY ), which anti-commutes with the restriction of ν
to ker(BN ) ∩ ker(BY ). Let W0 = ker(ρ − 1). Further, for µ2 �= 0 let
Wµ2 := ker(Bµ2 − |µ|) and let

D2,1ρ (R2,σ× × Y,E)

be the closure of ⊕
µ2∈spec(B2

Y )

D2,1Wµ2
(R2,σ× , E)

in H1(R2,σ× × Y,E).
If an involution ρ is not given we let W0 = {0} and define D2,1min(R2,σ× , E)

like above.
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Proposition 1.3.2. The Dirac operator D defined on D2,1ρ (R2,σ× × Y,E)
is self-adjoint. If ρ is not given, the realization of D on the domain
D2,1min(R

2,σ
× ×Y,E) is a closed symmetric operator with finite defect indices.

Proof. (D,D2,1ρ (R2,σ× × Y,E)) is by definition the closure of an orthogo-
nal sum of self-adjoint operators, and is therefore self-adjoint. If ρ is not
given, (D,D2,1min(R

2,σ
× ×Y,E)) is the closure of the Direct sum of symmetric

operators with finite defect indices, of which only finitely many are not
self-adjoint. ✷

Definition 1.3.3. If ρ is given and D is given the domain D2,1ρ we say that
ideal Atiyah–Patodi–Singer boundary conditions augmented with respect to
ρ are imposed on D.

If ρ is not given and D is given the domain D2,1min we say that minimal
ideal Atiyah–Patodi–Singer boundary conditions are imposed on D.

Remark 1.3.4. If the dimension of Y is odd it does occur that no ρ like in
Definition 1.3.1 exists. This is part of our motivation for the construction
of the scattering matrix in section 2.

Lemma 1.3.5. Assume H is a Hilbert space, A ∈ B(H) and that A∗A is
compact. Then A and A∗ are compact.

Proof. If A∗A is compact, for every bounded net {fλ}λ∈Λ converging weakly
towards 0, ‖A∗Afλ‖ → 0 for λ→∞. Thus

‖Afλ‖ =
(〈A∗Afλ, fλ〉

)1/2 → 0

for λ→∞. This implies that A is compact. Thus also A∗ is compact, and
the proof is complete. ✷

Lemma 1.3.6. Let ϕ ∈ C∞(R2,σ× ) be a function depending only on r, such

that
√
ϕ ∈ C∞(R2,σ× ), ϕ(r, θ) = 1 for r ≤ 1 and ϕ(r, θ) = 0 for r ≥ 2. Let

Mϕ be the operator of multiplication by ϕ. Further, let D be the Dirac

operator on R
2,σ
× ×Y and let (D2−λ)−s be the analytic continuation in λ of

the operator (D2 − λ)−s defined for λ ∈ (−∞, 0) by the spectral theorem.
Then, for λ ∈ C \R+ and s > 0, the operator

Mϕ(D2 − λ)−s

is compact.

Proof. First notice that by multiplicativity, Lemma 1.3.5 and the fact that
the compact operators make up a closed ∗-ideal in the Banach algebra of
bounded operators, we may take s = 1 without exception. Next notice that
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by the first resolvent equation, we may take λ = −1. First we consider the
restriction of D to the orthogonal complement of ker(BN ). On this space
we have the following two important properties of the domain:
• D(D) is independent of BY .
• For each µ2 eigenspace of B2Y we have D((D0 +Bµ2)2) = D(D20).

Splitting D| ker(B2
N )

⊥ into the eigenspaces of B2Y gives that

D2 =
⊕
µ

D2µ =
⊕
µ2

D20 + µ2

and thus that the sum

Mϕ(D2 + 1)−1 =
⊕
µ2

Mϕ(D20 + µ2 + 1)−1 (1.3.2)

is convergent in operator norm (not necessarily absolutely convergent, but
the orthogonality of the terms makes up for that). It thus suffices to prove
that each term in (1.3.2) is compact. Again by the first resolvent equation
we may assume µ = 0 without loss of generality.

Let R
2,σ
×,2 = {[(r, θ)] ∈ R

2,σ
× | r < 2} and let D2D be the operator in

L2(R2,σ×,2, Eµ) given by imposing Dirichlet boundary conditions at r = 2.
I.e. D2σ,D is the Friedrich’s extension of D2σ restricted to the domain

D0,D =
{
f ∈ D2,1ρ

∣∣ supp(f) ⊆ R
2,σ
×,2 and Df ∈ D2,1ρ

}
.

Then since

Mϕ(D2 + 1)−1 = M√
ϕ(D2D + 1)−1

(
(D2 + 1)M√

ϕ(D2 + 1)−1
)

and the operator

(D2 + 1)M√
ϕ(D2 + 1)−1

is bounded, we may consider M√
ϕ(D2D + 1)−1 instead.

Also the operator (D2D + 1)−1 can be decomposed with respect to the
eigenspaces of B + 1

2 . The operator estimate

− ∂2

∂r2 − 1
r

∂
∂r +

s2k,α

r2 + 1 ≥ − ∂2

∂r2 − 1
r

∂
∂r +

s2k,α

22
+ 1 ,

which holds for |sk,α| > 1/2, where both operators are the Friedrich’s ex-
tensions from C∞

0 , implies∥∥∥(
− ∂2

∂r2 − 1
r

∂
∂r +

s2k,α

r2 + 1
)−1∥∥∥ ≤ ∥∥∥(

− ∂2

∂r2 − 1
r

∂
∂r +

s2k,α

22 + 1
)−1∥∥∥ .

From that it follows that the sum

M√
ϕ(D2D + 1)−1 =

⊕
k∈Z

M√
ϕ

(
− ∂2

∂r2 − 1
r

∂
∂r +

s2k,α

r2 + 1
)−1

(1.3.3)
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is convergent in norm, and thus it again suffices to consider each term
separately.

Now the domain of D2D is such that each term in (1.3.3) is a bounded
operator from L2((0,∞), rdr) toW 2,1((0,∞), rdr)⊕V , where dim(V ) <∞.
By Rellichs lemma and since dim(V ) < ∞ it follows that each term is
compact.

The restriction of D to ker(BN ) is conjugate to a Dirac operator on
(0,∞)×Y with Atiyah–Patodi–Singer boundary conditions (by the opera-
tor of multiplication by r1/2). Thus it is well known that the compactness
result also holds on this space.

This finishes the proof of the lemma. ✷

1.4 Characterization of D2;1 It will be convenient to have an ab-
stract characterization of D2,1ρ and D2,1min, respectively. If ker(BN ) = 0 or
ρ is not given, set W = {0}. Otherwise let W0 := ker(ρ − 1) and let
W ⊆ ker(BN ) be the H1/2-closure of the direct sum of W0 and the nega-
tive spectral subspace of BY in ker(BN ). Let ξ be a smooth function on
C × Y depending only on r, such that ξ(r) = 0 for r > 2 and ξ(r) = r−1/2

for 0 < r < 1. We realize that the closure in H1 of the space

D2,1
W :=

{
f ∈ H1

∣∣∣ lim sup
r→0

r

∫ 2πa

0

∣∣f(r, θ)∣∣2dθ = 0
}
⊕ ξW (1.4.1)

contains D2,1ρ , and that Dµ is symmetric on D2,1. Since every self-adjoint
operator is maximally symmetric it follows that D2,1

W = D2,1W . Next notice
that W 2,1 = W 2,1

0 = H1
0 . Thus W

2,1 is a closed subspace of H1 contained
in D2,1.

Let L = (0, R) × {θ0} × Y be a “line segment” in R
2,σ
× × Y .

Lemma 1.4.1. If ker(BN ) = {0}, D2,1min(R2,σ × Y,E) is the only extension

of W 2,1 such that D is self-adjoint on D2,1min and the restriction

D2,1min �→ L2(L,E|L)
is well defined and bounded.

If ker(BN ) �= 0, the domains D2,1W satisfy that D is self-adjoint on D2,1ρ

and that the restriction

D2,1ρ �→W 2,−ε(L,EY,a,U
|L ) (1.4.2)

is well defined and bounded for all ε > 0. For ε = 0 the restriction (1.4.2)
is not well defined for any ρ.

Proof. The space of sections in ker((D2−D2Y )
∗+1) is spanned by sections

of the form Ks(r)eνδsθv. If s �= 1/2 for all s, the restriction of a vector
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in this span to N is in L2 if and only if only basis elements with s < 1/2
occur. The norm on D2,1 restricted to H1(R2,a× , Fµ2) is given by

‖f‖2D2,1 =
〈
(D0 +Bµ)f, (D0 +Bµ)f〉+ 〈f, f

〉
.

Since D0 and Bµ anti-commute and Bµ is bounded and preserves the do-
main of D0, this can be rewritten

〈D0f,D0f〉+ 〈Bµf,Bµf〉+ 〈f, f〉 .
Thus convergence in ‖ · ‖D2,1 implies convergence in the norm ‖ · ‖⊥ given
by

‖f‖2⊥ := 〈D0f,D0f〉+ 〈f, f〉 .
Let D̄2,1ρ be the completion of D2,1ρ (R2,σ× × Y,E) with respect to ‖ · ‖⊥.
The orthogonal complement of W 2,1 in D̄2,1 is the closed span of the
functions Ksj(r)e

isjθϕµ,j in D2,1. Since there are at most finitely many
different sj, the restriction from the orthogonal complement of W 2,1 to
L2(L,E) is bounded. The completion of W 2,1 in D̄2,1 is contained in the
space W 2,1(R2,σ× , L2(Y,E|Y )). The restriction to L2(L,E|L) from this space
is bounded, as it can be seen by splitting

W 2,1(R2,a× , L2(Y,E|Y )) =
⊕
µ

W 2,1
(
R
2,a
× , L2(Y,Eµ)

)
and using the standard restriction W 2,1 �→W 2,1/2.

For the second part, if s = 1/2 occurs, we realize that the restriction
to W 2,−ε is well defined and bounded for ε > 0 but a priori not for ε = 0.
The proof is like the proof of the first part. On the other hand a section of
the form ∑

j

ajK 1
2
(r)e

1
2
νδθvj = K 1

2
(r)e

1
2
νδθ

∑
j

ajvj ,

restricts to L2(L,E|L) if and only if it vanishes. This proves that the
restriction to L2(L,E|L) is not well defined. ✷

2 Globally Defined Augmentations

IfM is a manifold with boundary and product structure near the boundary,
D is a Dirac operator on a Dirac bundle E �→ M respecting the product
structure and A is the induced Dirac operator on ∂M , a canonical choice
of augmentation for D is given by the scattering matrix at 0, denoted by S.
See [Mü1], where it is denoted by C(0). In [Mü1] the scattering matrix is
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constructed (or more precisely, its properties are deduced) using the spec-
tral resolution of a Dirac operator on a manifold with cylindrical ends. The
purpose of this section is to give an alternative construction, which works
directly on compact manifolds. This construction further gives scattering
matrices for manifolds with both wedge singularities and boundaries, such
that the scattering matrices mix the spaces, which have to be augmented.

2.1 The general construction. In the following E �→ X will denote
a Dirac bundle over an open Riemannian manifold X◦ with completion X.
Let D0 be the associated Dirac operator, defined on some domain D(D0)
satisfying the following:
Assumption 2.1.1. a) D0 is densely defined, closed and symmetric
on D(D0).

b) D(D∗
0)/D(D0) is of finite dimension and the restriction of the pro-

jection map ker(D∗
0D

∗
0) �→ D(D∗

0)/D(D0) is surjective.
c) There exists an exhaustion {Xε}0<ε<ε0 of X

◦ such that each Xε has
a smooth boundary, Xε ⊆ Xε′ for ε ≥ ε′ and for every f ∈ D(D∗

0), the limit

〈f, f〉∂ := lim
ε→0

∫
∂Xε

〈
f(x), f(x)

〉
dx

exists and satisfies that if 〈f, f〉∂ = 0 then f ∈ D(D0).
Remark 2.1.2. Often Xε will be a manifold with corners rather than a
manifold with smooth boundary. What matters is that (2.1.2) below is
satisfied.

Let L be the orthogonal complement of ker(D∗
0D0) in ker(D∗

0D
∗
0) with

respect to the inner product on L2(X,E). The restriction of 〈 · , · 〉∂ to
L is an inner product by the assumptions above. We define an operator
c∂ : L �→ L by

〈c∂f, g〉∂ := lim
ε→0

∫
∂Xε

〈
c(νε)f(x), g(x)

〉
dx , (2.1.1)

where c(νε) denotes the inward pointing normal at ∂Xε. The formula∫
Xε

〈D∗
0f, g〉|x − 〈f,D∗

0g〉|xdx =
∫
∂Xε

〈
c(νε)f(x), g(x)

〉
|xdx (2.1.2)

proves that c∂ is well defined and that
〈c∂f, g〉∂ = 〈D∗

0f, g〉 − 〈f,D∗
0g〉 .

Using (2.1.1) it follows that c∗∂ = −c∂ . Further, if {ej} is an orthonormal
basis for L with respect to 〈·, ·〉∂ we may compute

〈c∂f, c∂f〉∂ =
∑
j

〈
c∂f, 〈c∂f, ej〉∂ej

〉
∂



Vol. 11, 2001 APS TYPE INDEX THEOREMS FOR MANIFOLDS 1057

=
∑
j

〈c∂f, ej〉∂〈c∂f, ej〉∂

=
∑
j

lim
ε→0

〈
c(νε)f, ej

〉
L2(∂Xε,E)

〈
c(νε)f, ej

〉
L2(∂Xε,E)

=
∑
j

lim
ε→0

〈
c(νε)f, 〈c(νε)f, ej〉L2(∂Xε,E)ej

〉
L2(∂Xε,E)

.

Because 〈 · , · 〉L2(∂Xε,E) → 〈 · , · 〉∂ as a family of quadratic forms on L this
gives

= lim
ε→0

〈
c(νε)f, c(νε)f + o(1)

〉
L2(∂Xε,E)

= lim
ε→0

{〈f, f〉L2(∂Xε,E) + o(1)
}

= 〈f, f〉∂ .
This proves that c∂ is an isometry. We immediately conclude that in fact
c∂ is unitary and anti-self-adjoint.

Lemma 2.1.3. Let ker(D∗
0)/ ker(D0)

ı�→ ker(D∗
0D

∗
0)/ ker(D0) be the canon-

ical inclusion. Then we have

i) If Assumption 2.1.1 holds, the sequence

0 ı�→ ker(D∗
0)

ker(D0)
�→ ker(D∗

0D
∗
0)

ker(D0)
D∗

0�→ ker(D∗
0)

ker(D0)
�→ 0 (2.1.3)

is exact.
ii) Let

L0 := {f ∈ L | D∗
0f = 0} .

Then L0 is a Lagrangian subspace of L with respect to c∂ and 〈 · , · 〉.
Proof. We identify ker(D∗

0D
∗
0)/ ker(D0) with L and ker(D∗

0)/ ker(D0)
with L0. Since for g ∈ ker(D0), f ∈ ker(D∗

0D
∗
0) we have

〈D∗
0f, g〉 = 〈f,D0g〉 = 0 ,

we also have that D∗
0 maps L to L0, so the sequence (2.1.3) is isomorphic

to the sequence

0 �→ L0 ı�→ L D∗
0�→ L0 �→ 0 .

That ı is injective and that Im(ı) = L0 = ker((D∗
0)|L) are both obvious.

We need to show that D∗
0 : L �→ L0 is surjective. We will use a dimension

argument. First notice that the exactness of

0 �→ L0 ı�→ L D∗
0�→ L0
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implies that we have the inequality

dim(L) ≤ 2 dim(L0) . (2.1.4)

Next we notice that for f, g ∈ L0,
〈c∂f, g〉 = 〈D∗

0f, g〉 − 〈f,D∗
0g〉 = 0 .

Thus c∂ is an injective operator mapping L0 to its orthogonal complement.
It follows that

dim(L0) ≤ 1
2 dim(L) .

Together with (2.1.4) this proves that dim(L0) = 1
2 dim(L), so D∗

0 : L �→ L0
is surjective.

The same arguments also prove ii). ✷

Corollary 2.1.4. Let D be the restriction of D∗
0 to D(D0)⊕ L0. Then

D is self-adjoint.

Proof. Let f1, f2 ∈ D(D0) and let g1, g2 ∈ L0. Then〈
D(f1 + g1), f2 + g2

〉
= 〈D0f1, f2 + g2〉 =

〈
f1,D

∗
0(f2 + g2)

〉
= 〈f1,D0f2〉 .

In the same way it follows〈
f1 + g1,D(f2 + g2)

〉
= 〈D0f1, f2〉 = 〈f1,D0f2〉 .

Consequently D is symmetric. Since D0 ⊆ D and D is symmetric we have
D ⊆ D∗ ⊆ D∗

0. Now assume that there exists f ∈ D(D∗) \ D(D). Then f
is of the form f3 + f4, where f3 ∈ D(D) and f4 belongs to the orthogonal
complement of L0 in L. Consequently D∗

0f4 ∈ L0 \ {0} ⊆ D(D). We check〈
D∗
0f4,D

∗(f3 + f4)
〉
= 〈D∗

0f4,Df3〉+ 〈D∗
0f4,D

∗
0f4〉

= 〈D∗
0D

∗
0f4, f3〉+ 〈D∗

0f4,D
∗
0f4〉

= 〈D∗
0f4,D

∗
0f4〉 �= 0 .

On the other hand〈
D(D∗

0f4), f3 + f4
〉
= 〈D∗

0D
∗
0f4, f3 + f4〉 = 0 .

This is a contradiction against f3 + f4 ∈ D(D∗), so D is self-adjoint. ✷

Definition 2.1.5. We consider L as a Hilbert space with the inner
product 〈 · , · 〉∂ . The scattering matrix S : L �→ L is the operator 2P − 1,
where P is the orthogonal projection on L0. We say that the operator D
defined in Corollary 2.1.4 is augmented with respect to S.

Lemma 2.1.6. Let T be a bounded normal operator on L2(X,E) such
that

1) T ∗ preserves D(D0).
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2) T ∗D0 = D0T
∗ or T ∗D0 = −D0T ∗.

Then T preserves L and L0 and in particular, T commutes with S.

Proof. Assume f ∈ D(D∗
0). Then for g ∈ D(D0)∣∣〈D0g, Tf〉∣∣ = ∣∣〈T ∗D0g, f〉

∣∣ = ∣∣± 〈D0T ∗g, f〉∣∣ .
Since D∗

0f is well defined and T ∗g ∈ D(D0) this is equal to∣∣± 〈T ∗g,D∗
0f〉

∣∣ ≤ ‖T ∗‖ · ‖g‖ · ‖D∗
0f‖ .

Thus Tf ∈ D(D∗
0). Further TD∗

0 = ±D∗
0T by calculations like above,

so in particular T preserves ker(D∗
0). Further, for f ∈ D(D∗

0D
∗
0) it follows

D∗
0D

∗
0Tf = ±D∗

0(TD
∗
0f) = TD∗

0D
∗
0f , so T also preserves ker(D∗

0D
∗
0). Since

ker(D∗
0D

∗
0) is finite dimensional, T is normal and T ∗ preserves ker(D0) it

follows that T preserves L, L0 and the orthogonal complement of L0 in L.
This proves the lemma. ✷

Corollary 2.1.7. We have

• S respects every superstructure on E respected by D0.
• Assume that E is the restriction of a Clifford bundle Ẽ �→ N ×X to
{a}×X, where N×X is equipped with a product metric and product
connection. If Clifford multiplication by any tangent vector γ ∈ TaN
preserves D(D0), then γ sends L into L and γS = Sγ.

2.2 Manifolds with boundaries and wedge singularities. We will
now apply the above to the Dirac operator D̃ on the extended manifold M̃ ,
where M is an oriented manifold with corners of codimension 2 and prod-
uct structure near the corners. M̃ is a manifold with wedge singularities
and a boundary. Let X be the sub-manifold of interior points of M̃0. At
the boundary Atiyah–Patodi–Singer boundary conditions can be imposed
on the orthogonal complement of ker(A), where A is the induced Dirac
operator at the boundary. Thus we require sections to have restrictions to
the boundary in the strictly positive spectral subspace for A. Similarly,
in the wedge singularities minimal ideal Atiyah–Patodi–Singer boundary
conditions can be imposed. This gives a closed symmetric realization D̃0
of D̃.

Lemma 2.2.1. Assumption 2.1.1 is satisfied for D̃0.

Proof. a) is obvious. Further, D(D̃∗
0)/D(D̃0) is finite dimensional since,

by the local analysis of the defect indices of D0 near the boundary and
singularity,

D(D̃∗
0)/D(D̃0) ∼= ker(A)⊕

⊕
ker(BN ) ∩ ker(BY ) =: V ,
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where the direct sum is over the wedge singularities. Now consider the
operator D̃∗

0D̃0. Essentially by the proof of Lemma 1.3.6 it follows
that D̃∗

0D̃0 is a Fredholm operator. To each ϕ ∈ ker(A) and to each
ψ ∈ ker(BN ) ∩ ker(BY ), where N and Y are associated to a wedge sin-
gularity, we may associate an element h ∈ D(D̃∗

0) \ D(D̃0) with support in
a small neighborhood of the boundary or singularity. Further h may be
taken such that D̃∗

0h ∈ D(D̃∗
0). On the other hand each f ∈ D(D̃∗

0)\D(D̃0)
is asymptotic to a sum of such elements up to D(D̃0). Further, D̃∗

0D̃
∗
0h is

orthogonal to ker(D̃0) = ker(D̃∗
0D̃0), so h − (D̃∗

0D̃0)
−1(D̃∗

0D̃
∗
0h) is an ele-

ment of ker(D̃∗
0D̃

∗
0), which differs from h by an element in D(D̃0). This

gives that the map ker(D̃∗
0D̃

∗
0)/ ker(D̃0) �→ D(D̃∗

0)/D(D̃0) is surjective. In
order to prove c) take

Xε :=
{
x ∈ M̃ | dist(x, ∂M̃ ) ≥ ε

}
.

For small ε this is a manifold with boundary and the family Xε exhausts X .
Further, by the asymptotics of elements of D(D̃∗

0), it follows that 〈 · , · 〉∂ is
well defined and that it does not vanish on elements of D(D̃∗

0) \ D(D̃0).
This proves the lemma. ✷

By Lemma 2.2.1 and Corollary 2.1.4 there is a canonical self-adjoint
extension of D̃0, which we (with a slight abuse of notation) denote by D̃.
Definition 2.2.2. When D̃ is given the domain defined above we say
that D̃ is given Atiyah–Patodi–Singer boundary conditions augmented with
respect to the scattering matrix.

The significance of the ideal Atiyah–Patodi–Singer boundary conditions
is that
• They are always well-defined, also for odd dimensional manifolds, and
they are canonical inside the class of all generalized compatible Dirac
operators on manifolds with boundary and closed wedge singularities
of codimension 2.

• They satisfy Lemma 2.1.6 and Corollary 2.1.7. This is crucial for the
iteration of the theory to more complicated singularities. In section 5
a simple example of this is given.

• As soon as we relate D̃ back to a self-adjoint realization of D in
section 3, the mixing of boundary conditions in the various boundaries
occurs anyway. Consequently this mixing is not a particular draw-
back by the boundary conditions, as it could appear by a first sight.

• They give rise to a canonical joint generalization of the Atiyah–
Patodi–Singer boundary conditions on manifolds with boundary and
ideal boundary conditions on manifolds with cones.
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We will end up by remarking that if augmentations are given in some
singularities or boundary pieces of M̃ , D̃0 can be replaced by a correspond-
ing symmetric extension of D̃0 and we get a scattering matrix involving the
remaining singularities. The extension of this theory to wedge singularities
of higher codimension is also completely straightforward.

3 A Self-adjoint Extension of D

In this section we return to the original manifold M . The theory developed
for M̃ turns out to be suitable for defining global boundary conditions
on M , generalizing the Atiyah–Patodi–Singer boundary conditions. In all
of this section M will thus be a manifold with corners of codimension 2 and
product structure near the corners, M̃ will be the extension of M defined
by (1.1.2) and Z will be the smoothened boundary of M . If E �→ M is a
Dirac bundle respecting the product structure, Ẽ �→ M̃ will be an extension
of E respecting the product structure. The bundle Ẽ need not be glued
using the canonical gluing operator. In section 3.3 the gluing will in fact
be the gluing associated to the signature complex, which does not coincide
with the canonical gluing operator.

Let D̃ be the Dirac operator associated to Ẽ �→ M̃ . The operator
D̃ �→ M̃ will be given Atiyah–Patodi–Singer boundary conditions augmen-
ted with respect to the scattering matrix, where the scattering matrix can
possibly be defined relative to an augmentation of some of the wedge sin-
gularities and boundary components.

3.1 Self-adjoint boundary conditions. Let D̃ be the Dirac opera-
tor on M̃ . A first naive attempt of constructing a Sobolev space on M
associated to D̃ is to define:
Definition 3.1.1. Let

D2,1(M,E) =
{
f|M

∣∣ f ∈ D(D̃)
}
.

The space D2,1(M,E) is not a Hilbert space under the H1-norm. Let
D̄2,1(M,E) denote the completion of D2,1(M,E) with respect to the H1-
norm. For each ε > 0 there is an unbounded trace operator defined on all
of D2,1(M,E), which we denote by R:

R : D2,1(M,E) �→W 2,−ε(Z,F ) ⊕
⊕

ker(BN ) ∩ ker(BY ) ,

where the direct sum is over the wedge singularities. The first compo-
nent of R is restriction to ∂M . See Lemma 1.4.1. The second component
is obtained by first taking the projection onto ker(BY ), then taking the
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leading term with asymptotics like r−1/2, where r is the distance to the
corner, and finally exploiting that an element of ker(BN ) is uniquely de-
termined by its restriction to M . The image of the trace R is not dense
unless ker(BN )∩ ker(BY ) = 0 for all N,Y since the second component is a
function of the first.

We recall that on Z × (0, 1], D̃ has the decomposition

D̃ = −ν (
∂
∂u +A

)
,

where A is a self-adjoint Dirac operator on Z with a discrete point spectrum
with eigenvalues of finite multiplicity. Let Π+, Π− and Π0 denote the
projections on the positive, negative and zero spectral subspaces for A. All
of those operators are defined on L2(Z,F ) and extend by continuity to
W 2,−ε(Z,F ).

Definition 3.1.2. The domain of the Dirac operator D on M is given
by

D(D) =
{
f ∈ D2,1(M,E)

∣∣ Π−f|Z = 0 and (Π0f|Z ,R2f) ∈ ker(S − 1)
}
.

Here R2 denotes the second component of R.
Lemma 3.1.3. If f ∈ H1(M̃, Ẽ) vanishes identically on M then ϕf ∈
W 2,1
0 (M̃, Ẽ) for every smooth function ϕ, which is constant in a neighbor-

hood of each wedge singularity and vanishes on Z × (1 − ε, 1] for some
ε > 0.

Proof. The orthogonal complement H of W 2,1
0 (M̃, Ẽ) in H1(M̃, Ẽ) con-

sists of the distributional solutions of the equation D̃2f = −f , which are
in L2. Let {ϕµ,α} be an orthogonal basis of common eigenvectors for B2Y
to the eigenvalues µ2 and the identification operator U at the corner to
the eigenvalue α. Developing the restriction of f to a neighborhood of Y
with respect to this basis, we get a sum, which is orthogonal on the level
of L2(Y,E|Y )

f(r, θ, y) =
∑
µ,α

fµ,α(r, θ)ϕµ,α(y) ,

where fµ,α is a L2-solution to the equation

(D2α + µ2)fµ,α = −fµ,α .
This gives that each fµ,α is of the form

fµ,α(r, θ) = f0,µ,α(r, θ) +
∑

sk,α∈(−1,1)
aµ,α,kKsk,α

(√
µ2 + 1 r

)
eνδsk,αθ ,
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where f0,µ,α is the restriction of a section in W 2,1
0 (M̃ , Ẽ). From that it is

not difficult to see that all terms, which are not restrictions of sections in
W 2,1
0 , have to vanish identically if f|M = 0. ✷

Lemma 3.1.4. Every ϕ ∈ D(D) has an extension ϕ̃ ∈ D(D̃) such that D̃ϕ̃
vanishes on Z × (0, 1].

The restriction of ϕ̃ to Z×(0, 1] only depends on the restriction of ϕ to Z.
Further, for all ε > 0 the operator Rcyl∼: W 2,−ε(Z,F ) �→ H1(Z × (0, 1], Ẽ)
is a compact operator. Here Rcyl denotes the operator of restriction to
Z × (0, 1] and ∼ is the operator ϕ �→ ϕ̃.

Proof. The restriction of ϕ to Z is a W 2,−ε-convergent sum

ϕ(z, 0) =
dim(ker(A)∩ker(τ−1))∑

i=1

aiϕi(z) +
∑
λ>0

aλϕλ(z)

for some orthonormal basis {ϕλ}λ∈σ(A) of eigensections for A, eigenvalues
counted with multiplicity. It follows that ϕ can be continued to a solution
ϕ̃ of Dϕ̃ = 0 on Z × [0, 1] by

ϕ̃(z, u) =
dim(ker(A)∩ker(τ−1))∑

i=1

aiϕi(z) +
∑
λ>0

aλe
−λuϕλ(z) . (3.1.1)

For u > 0 this sum is convergent in W 2,1(Z,F ). Further, the condition
ϕ(z, 0) ∈W 2,−ε(Z,F ) suffices to ensure that ϕ̃ ∈ L2.

By definition of D2,1(M,E), ϕ also has an extension f ∈ D(D̃) and
by Lemma 3.1.3, f − ϕ̃ is locally in W 2,1

0 close to at wedge singularities.
This proves that ϕ̃ ∈ D2,1W (M̃ , Ẽ). That Rcyl∼ only depends on ϕ|Z and is
compact follows immediately by construction. ✷

Lemma 3.1.5. D is closed and symmetric on D(D).

Proof. By Lemma 1.4.1 there exists a constant C depending on ε > 0 such
that for all f ∈ D(D),

‖f|Z‖W 2,−ε(Z,E) ≤ C
(‖f‖H1(M,E) + ‖f̃‖H1(Z×(0,1],Ẽ)

)
.

This follows since there is a continuous restriction D2,1(M̃,Ẽ)�→W 2,−ε(Z,F ).
Since Rcyl∼ is compact, for f|Z in some subspace with finite dimensional
complement, there is an estimate

‖f̃‖H1(Z×(0,1],Ẽ) ≤ 1
2C ‖f|Z‖W 2,−ε(Z,F ) .

These two estimates together give

‖f|Z‖W 2,−ε(Z,F ) ≤ 2C‖f‖H1(M,E) . (3.1.2)
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This proves that restriction to Z is continuous. Thus also ϕ �→ ϕ̃ is H1−H1

continuous, and it follows from the closedness of D̃ that D is closed.
That D is symmetric follows by applying Greens formula to the exten-

sions of sections defined in Lemma 3.1.4 on M ∪Z (Z × [0, δ]) and letting
δ → 0. ✷

Theorem 3.1.6. There are maps, given by extension and restriction,
respectively

Φ1 : ker(D) �→ ker(D̃) , (3.1.3)

Φ2 : ker(D̃) �→ ker(D) . (3.1.4)
The maps Φ1 and Φ2 are inverse of each other.

Proof. Like in the start of the proof of Lemma 3.1.4 we see that elements
of ker(D) can be extended as claimed.

On the other hand, if ϕ ∈ ker(D̃), expanding it on Z × (0, 1] gives that
it has an expansion like (3.1.1). Further the restriction of every element of
ker(D̃) satisfies the condition (Π0f|Z ,R2f) ∈ ker(S− 1). Consequently the
restriction belongs to D(D) and thus to ker(D).

That Φ1 and Φ2 are inverse of each other is clear. ✷

Lemma 3.1.7. The operator D is self-adjoint on the domain given in
Definition 3.1.2. D has a discrete point spectrum with eigenvalues of finite
multiplicity.

Proof. By Lemma 3.1.5 we have that D is closed and symmetric.
Let P be the projection on the kernel of D and let R be the operator

of restriction of sections in Ẽ to sections in E. Then the adjoint R∗ of R is
the operator of extension by 0. The operator D + P has an inverse, given
by

(D + P )−1f = Pf + (1− P )RD̃−1R∗(1− P )f .
Since ker(D̃) consists of extensions of elements of ker(D) it follows that
R∗(1 − P )f is orthogonal to ker(D̃). Thus D̃−1R∗(1 − P )f exists and
belongs to L2(M̃, Ẽ). Further, since it satisfies the equation

D̃D̃−1R∗(1− P )f = R∗(1− P )f ,
it follows like in the proof of Theorem 3.1.6 that the restriction of
D̃−1R∗(1− P )f to Z belongs to the non-negative eigenspace of A and that
the component in ker(A) is constant on the cylinder. Since it further be-
longs to D(D̃) it follows that RD̃−1R∗(1 − P )f ∈ D(D). It follows that
(D + P )−1 is a right inverse of D + P . Further, (D + P )−1 is by construc-
tion everywhere defined. Since its graph is contained in the transpose of



Vol. 11, 2001 APS TYPE INDEX THEOREMS FOR MANIFOLDS 1065

the graph of the injective symmetric operator D+P , it is closeable. But an
everywhere defined closeable operator is closed, so (D + P )−1 is bounded
by the closed graph theorem. A symmetric operator with a bounded right
inverse is always self-adjoint. This proves that D + P is self-adjoint and
thus also that D is self-adjoint.

That D has a discrete point spectrum with eigenvalues of finite mul-
tiplicity follows since P has finite rank and (D + P )−1 is compact by the
compactness of D̃−1. ✷

Remark 3.1.8. All the main results of this section hold with only minor
changes if S is replaced by another augmentation. In particular
Lemma 3.1.7 holds in the case where some of the wedge singularities are
augmented using local augmentations and the scattering matrix is changed
to the corresponding relative scattering matrix.

3.2 Extensions of Hilbert spaces. The Atiyah–Patodi–Singer bound-
ary conditions are closely related to the extension of a manifold with bound-
ary and product structure in a neighborhood of the boundary to a manifold
with cylindrical ends. This was observed and used already in [AtPS] and
has since then been an important starting point for generalizations of the
Atiyah–Patodi–Singer boundary conditions. See for example [HMM] and
[Mü2]. Also the approach of this paper is based on an extension, though we
have chosen consistently to make use of boundary conditions rather than
of open ends.

When we imposed ideal Atiyah–Patodi–Singer boundary conditions on
a wedge singularity we used that the restriction of the Dirac operator on
R
2,σ
× × Y to ker(BN ) is conjugate to a boundary value problem and im-

posed Atiyah–Patodi–Singer boundary conditions. There is however no
natural geometric extension of R

2,σ
× × Y corresponding to those boundary

conditions.
What we can do is to extend the Hilbert space L2(R2,σ× ×Y,E) together

with some spaces of sections and functions. This kind of extensions will turn
out to play a crucial role in the generalization of this theory to manifolds
with corners of codimension 3 and arbitrary gluings or to manifolds with
corners of codimension 4 and the canonical gluing. In this paper we will
use it as a technique for studying the signature complex in section 3.3. In
the relevant cases in this paper only geometric cylinders are attached.

Let

H := L2(M̃ , Ẽ) . (3.2.1)
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Definition 3.2.1. Let D̃slow,max be the realization of D̃ defined on the
domain
D(D̃slow,max) :=

{
f ∈ H1(M̃, Ẽ)

∣∣ ∀N : lim
r→0

‖f(r)‖L2(N×Y,Ẽ) = O(r−1/2)
}
.

(3.2.2)

Definition 3.2.2. We say that an element f ∈ L2(M̃ , Ẽ) is smooth if for
all k ∈ N, f ∈ D(D̃k

slow,max).
Then we may define

HR := H⊕ L2
(
Z×[1, R+1], F )⊕

⊕
L2(Y×[−R, 0], ker(BN )

)
, (3.2.3)

H∞ := H⊕ L2
(
Z × [1,∞), F ) ⊕

⊕
L2(Y × (−∞, 0], ker(BN )

)
. (3.2.4)

The Hilbert space H∞ is related to the non-smooth space
M̃∞ := M̃ ∪Z

(
Z × [1,∞)

) ∪Y1�···�Yk

(
(Y1 ' · · · ' Yk)× (−∞, 0]

)
,

where Y1, . . . , Yk runs over the spaces Y at the various corners. M̃∞ is in
a natural way a σ-compact Hausdorff space with a Borel measure. Further
the pointwise squared norm,

| · |2 : H∞ �→ L1(M̃∞)
is well defined. The space H∞ is however not in any natural way the space
of L2-sections in a bundle over M̃∞.
Definition 3.2.3. Let f ∈ H∞. The support of f , supp(f) is given by

supp(f) := M̃∞ \
⋃ {

U ∈ M̃∞
∣∣∣ U is open and

∫
U
|f |2(x)dx = 0

}
.

We say that f has compact support if supp(f) is compact.

Definition 3.2.4. The space C∞(H∞) of smooth sections in H∞ is the
subspace of f ∈ H∞ such that each of the components of f in (3.2.4)
are smooth, such that f extends to a smooth section in the extension
of Ẽ to M̃ ∪Z (Z × [1,∞)) and such that for each wedge singularity,
if we let Pker(BN ) be the projection on ker(BN ), defined in a neighbor-
hood of the singularity, the sections r1/2Pker(BN )f(r, ·) and the restriction
of f to L2(Y × (−∞, 0], ker(BN )) glue together to a smooth section in
L2(Y × (−∞, ε), ker(BN )) for some ε > 0.

Definition 3.2.5. Let PR be the orthogonal projection on HR in H∞.
The space C∞(HR) of smooth sections in HR is given by

C∞(HR) := PRC
∞(H∞) .

Definition 3.2.6. The space C∞
0 (H∞) is the subspace of C∞(H∞) of

elements with compact support. It can be equipped with an inductive
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limit topology using Hk-norms of sections with fixed support. The space
D′(H∞) of currents with values in H∞ is the dual space of C∞

0 (H∞).

Definition 3.2.7. The Dirac operator D∞,0 defined on C∞
0 (H∞) is the

Direct sum of the operators D̃slow,max,

γ
(

∂
∂u +A

)
; defined on L2

(
Z × [1,∞), F

)
,

and the operators

ν
(

∂
∂r +BY

)
; defined on L2

(
Y × (−∞, 0], ker(BN )

)
.

The operator DR,0 is the restriction of D∞,0 to C∞(HR).

Lemma 3.2.8. The operator D∞,0 is essentially self-adjoint.

Proof. This follows by constructing the resolvent using the resolvent of
D̃ and of Dirac operators on the cylinders, cut-off operators and analytic
perturbation theory. ✷

Let D∞ be the unique self-adjoint extension of D∞,0. We denote the
domain of D∞ by D(D∞). Further we let ker∞(D∞) be the space of smooth
sections of H∞, such that the restriction to each cylinder (but not to M̃)
is bounded and such that D∞f = 0. Finally we let

D∞(D∞) := D(D∞) + ker∞(D∞) , (3.2.5)

D∞(D2∞) := D(D2∞) + ker∞(D∞) . (3.2.6)

It now follows exactly like for a manifold with boundary that

D(D̃) =
{
f|M̃

∣∣ f ∈ D∞(D∞) and D∞f ∈ H}
.

A section f ∈ D(D̃) can be extended uniquely to a section f̃ ∈ D∞(D∞)
satisfying that D∞f̃ ∈ H. This holds because D̃ is augmented with respect
to the scattering matrix.
Lemma 3.2.9. Let f ∈ H∞ be a section with compact support, which is or-
thogonal to ker∞(D∞). Then there exists g ∈ D(D∞) such that D∞g = f .

Proof. Let R be such that f ∈ HR. We may impose APS boundary condi-
tions augmented with respect to the scattering matrix on DR,0. The result-
ing self-adjoint operator DR has a discrete point spectrum and ker(DR) ∼=
ker∞(D∞), where the isomorphism is by unique extension and restriction.
Consequently f is contained in ker(DR)⊥. Thus there exists gR ∈ D(DR)
with DRgR = f . Now, gR may be extended to g∞ ∈ D∞(D∞) such that
D∞g∞ ∈ HR. Thus D∞g∞ = f .

Finally, the limit value of g∞ corresponds to the limit value of a har-
monic section ω. Thus g := g∞ − ω satisfies the claims of the lemma. ✷
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3.3 The de Rham and signature complexes. In this section E will
be the bundle Λ∗(T ∗M ⊗C) equipped with the Levi-Civita connection and
the canonical Hermitian structure induced by the Riemannian metric on M .

The vector-bundle Ẽ will be the bundle of differential forms on M̃ .
Notice that since functions are glued trivially in the corners, this bundle is
not glued using the gluing from Lemma 1.1.14. This follows from point 6)
of Lemma 1.1.14. In all of this section we will assume:
Assumption 3.3.1. Each angle σj at the corners belongs to the interval
(0, 3π).

Lemma 3.3.2. The projection on p-forms preserves D(D̃slow,max) for
p = 0, . . . , n. Further, for each N we have ker(BN ) = {0}.
Proof. Locally, in a neighborhood of a wedge singularity, Ẽ may be decom-
posed
E =

{
Λ∗(Y )⊕ νδΛ∗(Y )

}⊕ {
(δ − iν)Λ∗(Y )

}⊕ {
(δ + iν)Λ∗(Y )

}
. (3.3.1)

Clearly the projection on p-forms preserves this decomposition. The gluing
operator U is of the form Λ(V ), where V is a rotation with angle π − σ in
the plane spanned by ν and δ. Explicitly,

Uν = cos(π − σ)ν + sin(π − σ)δ ,
Uδ = cos(π − σ)δ − sin(π − σ)ν .

Explicit computation now shows that (3.3.1) is a decomposition into eigen-
spaces of U , with eigenvalues 1, e−i(π−σ) and ei(π−σ), respectively. The
operators BN and B2Y send each of the terms in (3.3.1) into itself. In
particular (3.3.1) respects D(D̃).

For the 1-eigenspace we see that for k ∈ Z:

sk,1 =
2πk + i log(1)

σ + π
∈ 2π

σ + π
Z .

Since σ < 3π it follows that |sk,1| ∈ (0, 1/2] does not occur. Thus on this
space, D(D̃slow,max) = W 2,1. It immediately follows that it can be split into
p-forms.

For the other eigenspaces we notice that a local complement ofW 2,1 in a
neighborhood of the singularity is given by solutions of ν

(
∂
∂r +

1
rBN

)
ϕ = 0.

Explicit computation shows that the restriction to (p − 1)-forms in Λ∗(Y )
of ϕ is of the same form and grows as most as much as ϕ. It thus follows
that the projection on p-forms preserves D(D̃slow,max).

Finally we notice that for σ ∈ (0, 3π) also sk,e−i(π−σ) �= 1/2 and sk,ei(π−σ)

�= 1/2 for any k. Thus ker(BN ) = {0} and there is no augmentation in the
wedge singularities. ✷
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Let in the following M∞ be like in section 3.2. Then, since ker(BN ) =
{0} for all wedge singularities, M∞ is a manifold with cylindrical ends and
wedge singularities. In addition to the objects defined in section 3.2 we let
d∞ and d∗∞ denote the exterior differential and its adjoint on M∞.
Lemma 3.3.3. Each of the operators d∞ and d∗∞ are defined on D∞(D∞).
Further, d∞D∞(D∞) is orthogonal to d∗∞D∞(D∞).

Proof. By Lemma 3.3.2 it is enough to check that if ω ∈ D∞(D∞) is a form
of pure degree, then d∞ω and d∗∞ω both belong to H∞. But this is clear
since D∞ω ∈ H∞ and d∞ and d∗∞ map ω to forms of different degrees. In
order to check that the images of d∞ and d∗∞ are orthogonal to each other
it is enough to check that the images of D∞(D2∞) are orthogonal. This
follows since D(D2∞) is a core for D∞. For ω ∈ D∞(D2∞), ω′ ∈ D∞(D2∞)

〈d∞ω, d∗∞ω′〉 =
n−2∑
p=0

〈d∞ωp, d
∗
∞ω′

p+2〉

=
n−2∑
p=0

〈D∞ωp,D∞ω′
p+2〉

=
n−2∑
p=0

〈D2∞ωp, ω
′
p+2〉

= 0 .

The last equation holds since D2∞ preserves the degree of forms. The inte-
gration by parts did not course a contribution from ∞ because D∞ maps
D∞(D̃∞) into H∞. ✷

Let in the following D(M̃, Ẽ) = C∞
0 (M̃◦, Ẽ) and let D′(M̃, Ẽ) be the

dual space of D(M̃ , Ẽ).
Lemma 3.3.4. For every closed form h ∈ D(D̃slow,max) there exists ξ ∈
W 2,1(M̃, Ẽ) and η ∈ D′(M̃, Ẽ) such that η vanishes on [1/2, 1] × Z and

h = ξ + d̃η .

Further, for every co-closed form h′ ∈ D(D̃slow,max) there exists ξ′ ∈
W 2,1(M̃, Ẽ) and η′ ∈ D′(M̃ , Ẽ) such that η′ vanishes on [1/2, 1] × Z and

h′ = ξ′ + d̃∗η′ .
Proof. Let a = σ + π. We decompose

H∗(R
2,a
× × Y,C) = H0(R

2,a
× ,C)⊗H∗(Y,C)⊕H1(R

2,a
× ,C)⊗H∗(Y,C) ,

H∗(R2,a× × Y,C) = H0(R2,a× ,C)⊗H∗(Y,C)⊕H1(R2,a× ,C)⊗H∗(Y,C) .
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By the de Rham isomorphism, the elements of H0(R2,a× ,C) ⊗ H∗(Y ) are
exactly the cohomology classes [ω] such that

〈σ, ω〉 = 0

for all σ ∈ H1(R
2,a
× ,C) ⊗ H∗(Y ). By the growth condition ϕ(r, θ) =

O(r−1/2), holding for all ϕ ∈ D(D̃slow,max) it follows that all closed ele-
ments of D(D̃slow,max) are locally cohomologous to elements of the form
1 ∧ hY , where hY is a harmonic form on Y .

The first part of the lemma now follows by using suitable cutoff func-
tions.

The second part of the lemma follows by the first and Hodge duality. ✷

Theorem 3.3.5. There is a direct sum decomposition

H∞ = ker(D2∞)⊕ Im(d∞)⊕ Im(d∗∞) . (3.3.2)

All harmonic forms in D∞(D∞), D(D) and D(D̃) are closed and co-closed.

Proof. By self-adjointness of D∞ it follows that

H∞ = ker(D2∞)⊕ Im(D∞) . (3.3.3)

Combining this with Lemma 3.3.3 gives (3.3.2). Now assume ω ∈ D∞(D∞)
is a harmonic p-form. If f ∈ C∞

0 (H∞)

〈ω, d∞f〉 = 〈ω, d∞fp−1〉 = 〈ω,D∞fp−1〉 = 0 .

Since all harmonic forms can be split into harmonic forms of pure degree
it follows that for ω an arbitrary harmonic form

〈ω, d∞f〉 = 0 and 〈ω, d∗∞f〉 = 0 .

This implies that dω = d∗ω = 0. By the extension properties, also harmonic
forms in D(D̃) and D(D) are closed and co-closed. ✷

Lemma 3.3.6. Let f be a closed form in H∞. Then there is a decompo-
sition

f = f0 + d̃η ,

where f0 ∈ ker(D∞) and η ∈ D′(H∞).

Proof. For R > 0, let PR be the orthogonal projection on HR and let QR

be the orthogonal projection on ker(DR)⊥ in HR. By Lemma 3.2.9 there
exists g∞(R) ∈ D(D∞) such that D∞g∞(R) = QRPRf .

Let V be the annihilator of ker∞(D∞) in C∞
0 (H∞). For ϕ ∈ V , pick

R′ < R big enough such that ϕ ∈ HR′ ⊆ HR. By Lemma 3.2.9 there exists
ψ ∈ D(D∞) with D∞ψ = ϕ. Thus〈

ϕ, g∞(R)
〉
=

〈
D∞ψ, g∞(R)

〉
.
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Using symmetry of D∞ gives

=
〈
ψ,D∞g∞(R)

〉
=

〈
ψ,QRPRf

〉
.

Now, QRPRf ∈ PRf + PR ker∞(D∞) and ‖QRPRf‖H∞ ≤ ‖f‖H∞ . In
particular the HR-norm of the error term in PR ker∞(D∞) is bounded for
fixed R′ and R → ∞. Since ker∞(D∞) is finite dimensional this proves
that PR′QRPRf has an accumulation point for R →∞. Thus there exists
a sequence Rm such that for all ψ ∈ H∞, 〈ψ,QRmPRmf〉 is convergent. It
follows that also the sequence {〈ϕ, g∞(Rm)〉} is convergent. Consequently
the sequence {g∞(Rm)} is convergent in the dual space V ∗ of V . We notice
that a complement of V in C∞

0 (H∞) can be given and is a finite dimensional
space of dimension dim(ker∞(D∞)).

The split exact sequence

0 �→ V �→ C∞
0 (H∞) �→ C∞

0 (H∞)/V �→ 0

gives rise to a split exact sequence

0 �→ (
C∞
0 (H∞)/V

)∗ �→ D′(H∞) �→ V ∗ �→ 0 .

Thus the dual of C∞
0 (H∞)/V is canonically identified with the annihilator

of V in D′(H∞). Since a complement of V is finite dimensional and has
ker∞(D∞) as dual, the annihilator of V in D′(H∞) can be canonically
identified with ker∞(D∞). Consequently the limit

lim
m→∞ g∞(Rm)

is well defined in D′(H∞) up to an element of ker∞(D∞). Let η ∈ D′(H∞)
be such an element. Then D∞η = Q∞f . Further, since f is closed we get

〈f, d∗η〉 = lim
m→∞

〈
f, d∗g∞(Rm)

〉
= 0 .

Thus in fact f = f0 + dη, as claimed. ✷

As in [AtPS] an important step is to find the relation between harmonic
forms in the domain of D̃2 and the cohomology of M .

Let σ > 0 be given. The diffeomorphism κ : R
2,σ+π
× �→ R

2 \ {0} given
by

κ
(
[r, θ]

)
=

(
r cos 2πθσ+π

r sin 2πθ
σ+π

)

extends by continuity to a homeomorphism κ̄ from the completion of R
2,σ+π
×

to R
2. Using κ̄ we may thus give M̃ a canonical differentiable structure. Let

M1 denote the smoothened version of M̃ . Let g1 be an arbitrary smooth
Riemannian metric on M1 such that the inclusion M̃ �→M1 is an isometry
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on [1/2, 1] × Z. Then (M1, g1) is a smooth Riemannian manifold with
boundary and product structure in a neighborhood of the boundary.

Now let M̄ be the extension of M1 to a manifold with cylindrical ends
and let Ē �→ M̄ be the bundle of differential forms on M̄ . Finally let d̄, d̄∗

and D̄ be the operators of exterior differentiation, its adjoint and the Dirac
operator D̄ = d̄+ d̄∗, defined on M̄ .

Let

ker(D̃)0 :=
{
f ∈ ker(D̃)

∣∣ f|Z ∈ ker(A)⊥
}
.

There are maps

ı∗ : H∗(M̄) �→ H∗(M̃ ) ,

[·] : ker(D̃)0 �→ H∗(M̃◦) .
Here the first map is pullback and the second is the association of a coho-
mology class to a harmonic form. All cohomology spaces are taken to have
complex coefficients.
Lemma 3.3.7. The image of [·] coincides with ı∗H∗

comp(M̄ ). Here
H∗
comp(M̄ ) is the cohomology with compact support.

Proof. Since M̄ is a manifold with cylindrical ends homotopy equivalent
to M , by [AtPS, Proposition 4.9], it suffices to prove that the image of the
space ker(D̃)0 in H∗(M̃) is isomorphic to the image of the space ker(D̄) in
H∗(M̃ ). Here D̄ is the Dirac operator on M̄ .

First assume that ω̃ ∈ ker(D̃)0. Then d̃ω̃ = 0 by Lemma 3.3.5 and
by Lemma 3.3.4, ω̃ is cohomologous to a form ξ ∈ W 2,1(M̃, Ẽ), which is
equal to ω̃ on [1/2, 1]. The inclusion ı : M̃ �→ M̄ induces an isomorphism
ı∗ : W 2,1(M1, Ē) �→ W 2,1(M̃ , Ẽ). Thus (ı∗)−1(ξ) is a closed L2-form in
W 2,1(M1, Ē). Further this form extends harmonically to a form 0(ω̃) on M̄ .
Let h be the harmonic component of 0(ω̃). By a theorem of de Rham and
Kodeira [R, Theorem 25], there exists a current ζ, such that 0(ω̃) = h+ d̃ζ.
Pulling back and using that the cohomology can be computed from the
space of currents, we get that ı∗(h) induces the same cohomology class
as ω̃.

On the other hand any harmonic L2-form ω̄ on M̄ can be pulled back
to a closed W 2,1-form ω̃ on M̃ . The harmonic component of ω̃ then induces
the same cohomology class as the pullback of ω̄ by Lemma 3.3.6.

This completes the proof of the lemma. ✷

Theorem 3.3.8. The space ker(D̃)0 is canonically isomorphic to the
image of H∗

comp(M) in H∗(M ).
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Proof. By Lemma 3.3.7 it suffices to prove that the restriction of the pull-
back ı∗ : H∗(M) �→ H∗(M̃◦) to H∗

comp(M) is injective. That means that it
suffices to prove that if some f ∈ C∞

0 (Λ∗(M)) satisfies that ı∗(f) = dg for
some g ∈ C∞(Λ∗(M̃◦)), then for some g′ ∈ C∞(Λ∗(M)), f = dg′.

To this end notice that there exists a diffeomorphism φ of M homotopic
to the identity such that the support of φ∗(f) is contained in the interior
of M . Further there exists a diffeomorphism φ′ between the interior M◦ of
M and M such that φ = φ′ on the support of f ′. Thus f is cohomologous
to some f ′ with support in M◦. If ı∗(f ′) = d̃g′, also f = ((φ′)−1)∗(f ′) =
d̄((φ′)−1)∗(g′), so f is cohomologous to zero. ✷

Corollary 3.3.9. For the signature complex we have

Index0(D̃) = sign(M) (3.3.4)

and for the de Rham complex we have

Index0(D̃) = χ(M) . (3.3.5)

Proof. The identity (3.3.4) holds because the signature is by definition
the signature of 〈τ ·, ·〉 on the image of H∗(M,Z) in H∗(M), which is iso-
morphic to the image of H∗

comp(M̄ ) in H∗(M̄ ). For (3.3.5) we notice that
since Z is a closed manifold of odd dimension, χ(Z) = 0. Thus χ(M) =
χ((M,Z)) + χ(Z) = χ((M,Z)). Now the long exact sequence

H∗(M,Z) �→ H∗(M) �→ H∗(Z)

gives that

0 = χ(Z) = χ
(
Im(H∗(M) �→ H∗(Z))

)
+ χ

(
Im(H∗(Z)) �→ H∗(M,Z)

)
.

By averaging over two ways to compute Index(D)0 we get

Index(D)0 = 1
2

(
χ(H∗(M)) − χ(Im(H∗(M) �→ H∗(Z)))

)
+ 1
2

(
χ(H∗(M,Z))− χ(Im(H∗(Z) �→ H∗(M,Z)

)
= 1
2

(
χ(M) + χ(M,Z)− χ(Z)

)
= χ(M) . �

The signature and de Rham complexes allow the same analysis as in
[AtPS] to be carried out.

Lemma 3.3.10. For the signature and de Rham complexes we have

dim
(
ker(S± − 1)

)
= 1
2 dimH∗(Y ) .

Proof. In this proof we use ± for the signature complex and ev/odd for
the de Rham complex. Since the involutions corresponding to the two
complexes commute, any combitation can be taken.
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The Lefschetz duality theorem [GH, section 28] gives that the diagram

�→ Hq−1(M)
j�→ Hq−1(Z) δ�→ Hq(M,Z) �→ Hq(Z) �→

(−1)q−1ζ∩ ↓ (δζ)∩ ↓ ζ∩ ↓ ζ∩ ↓
�→ Hn−q+1(M,Z) ∂�→ Hn−q(Z)

j∗�→ Hn−q(M) �→ Hn−q(M,Z) �→
(3.3.6)

is commutative and that the vertical arrows are isomorphisms. The hor-
izontal maps make up exact sequences. Here ζ is the fundamental class
of M , the horizontal maps are induced by inclusions and restrictions, and
δ and ∂ are the connecting homomorphisms. The integer q runs from 0 to
dim(M). A diagram chase shows that (δζ)∩ is an isomorphism between
Im(j) and its orthogonal complement. In particular

dim(Im(j)) ≤ 1
2 dim(H∗(Z)) . (3.3.7)

Every ϕ ∈ ker(A±) is of the form ϕ = ω ± τω, where ω ∈ Λ∗(Z). Thus
the pullback ω of ϕ vanishes if and only if ϕ vanishes. Since restrictions of
harmonic sections on M̃ to Z factors through j it follows

dim
(
ker(S+ − 1)

) ≤ 1
2 dim(H∗(Z)) , (3.3.8)

dim
(
ker(S− − 1)

) ≤ 1
2 dim(H∗(Z)) . (3.3.9)

On the other hand ker(S+−1)⊕ker(S−−1) is a Lagrangian subspace for ν,
so

dim
(
ker(S+ − 1)⊕ ker(S− − 1)

)
= dim

(
ker(S+ − 1)⊕ ν ker(S+ + 1)

)
= dim(ker(A+))
= dim(H∗(Z)) .

Combining this with (3.3.8) and (3.3.9) immediately gives

dimker(S+ − 1) = dimker(S+ + 1) = 1
2 dim(H∗(Z)) . (3.3.10)

This proves the lemma for the signature complex. In order to handle the
de Rham complex, notice that we may split Λ∗(M) into the direct sum of
two Clifford bundles

Λ∗(M) =
(
Λ+ev(M)⊕ Λ−odd(M)

) ⊕ (
Λ−ev(M)⊕ Λ+odd(M)

)
. (3.3.11)

Now, j is injective on each of the ±-spaces and maps the odd/ev spaces to
complementary subspaces of H∗(Y ). It thus follows like above

dimker(S+ev − 1) + dimker(S−odd − 1) = 1
2 dim(H

∗(Z)) , (3.3.12)
dimker(S+odd − 1) + dimker(S−ev − 1) = 1

2 dim(H
∗(Z)) . (3.3.13)

Now since (Im(S+ − 1)) = (Im(S− − 1)) it follows that Im(S+ev − 1) =
Im(S−ev−1). Further, since  is injective on each of those spaces it follows
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that
dimker(S+ev − 1) = dimker(S−ev − 1) .

Thus dim(ker(Sodd − 1)) = 1
2 dimker(H∗(Z)), and the lemma follows for

the de Rham complex also. ✷

From Lemma 3.3.10 we conclude
Corollary 3.3.11. For the de Rham and signature complexes we have

tr (S+) = 0 . �

4 Computation of the Index

Let in the following Ẽ �→ M̃ be a Dirac bundle over an even-dimensional
Riemannian manifold M̃ with boundary, product structure near the bound-
ary and wedge singularities of codimension 2. Let D̃ be the self-adjoint re-
alization of the associated Dirac operator with ideal Atiyah–Patodi–Singer
boundary conditions augmented with respect to the scattering matrix.

We will assume that Ẽ is a super bundle, i.e. that a parallel self-adjoint
involution τ ∈ C∞(End(Ẽ)), which anti-commutes with Clifford multi-
plication and which preserves D(D̃), is given. With respect to the ±1
eigenspaces of τ , D̃ has the following decomposition

D̃ =
(

0 D̃−
D̃+ 0

)
. (4.0.1)

The index, we will compute, is that of D̃+.

4.1 Heat kernel estimates.
Lemma 4.1.1. The operator e−tD̃2

is of trace class. For each t > 0 we
have

Index(D̃+) = tr (τe−tD̃2
) =

∫
M̃
tr

(
τe−tD̃2

(x, x)
)
dx . (4.1.1)

In particular

Index(D̃+) = lim
t→0

∫
M̃
tr

(
τe−tD̃2

(x, x)
)
dx . (4.1.2)

Proof. By the semi-group property of e−tD̃2
it suffices to prove that e−tD̃2

is a Hilbert–Schmidt operator for each t > 0. Let, for some small ε > 0,
Uε :=

{
x ∈ M̃

∣∣ ∃ a wedge Y : dist(x, Y ) < ε or dist(x,Z) < ε
}
.

For x ∈ M̃ \Uε and v∗ ∈ Ẽ∗
|x, let δx ⊗ v∗ be the distribution with values in

Ẽ∗ given by
(δx ⊗ v∗)(ϕ) =

〈
ϕ(x), v∗

〉
.
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By elliptic regularity and self-adjointness of e−tD̃2
, e−tD̃2

maps distributions
of the form δx ⊗ v into L2(M̃, Ẽ), and there is an estimate∥∥e−tD̃2

(δx ⊗ v∗)
∥∥
L2(M̃,Ẽ)

≤ C(ε, t)‖v‖Ẽ∗
|x
.

This immediately gives that the component of e−tD̃2
mapping L2(M̃ \Uε, Ẽ)

into L2(M̃, Ẽ) is a Hilbert Schmidt operator. By symmetry of the heat
kernel, also the component mapping L2(M̃ , Ẽ) into L2(M̃ \ Uε, Ẽ) is a
Hilbert Schmidt operator. Like above it also follows that for any differential
operator P with smooth coefficients, the component of Pe−tD̃2

mapping
L2(M̃ \ Uε, Ẽ) to L2(M̃ , Ẽ) is a Hilbert Schmidt operator.

It remains to prove that the component of e−tD̃2
mapping Uε into Uε

is a Hilbert Schmidt operator. Take ε small enough such that U4ε can be
identified with a disjoint union of neighborhoods of 0 in closed wedges and
neighborhoods of the boundary of half-cylinders. Let X be the union of
those closed wedges and half-cylinders and let EX be the extension by the
product structure to X of Ẽ|U|4ε

. Let DX be the associated Dirac operator
on X.

Now let ϕ ∈ C∞
0 (R) be a function such that ϕ(r) = 1 for r ∈ [0, ε],

ϕ(r) = 0 for r > 2ε and let ψ ∈ C∞(R) be a function such that ψ(r) = 1
for r ∈ supp(ϕ) and such that ψ(r) = 0 for r ≥ 3ε. LetMϕ andMψ denote
the operators of multiplication by ϕ and ψ, respectively, (either in M̃ or
in X). By Duhamels principle it follows

Mϕe
−tD̃2

Mϕ−Mϕe
−tD2

XMϕ=
∫ t

0
Mϕ

∂

∂s
e−sD̃2

Mψe
−(t−s)D2

XMϕds (4.1.3)

= −
∫ t

0
Mϕe

−sD̃2
(D̃2Mψ −MψD

2
X)e

−(t−s)D2
XMϕds . (4.1.4)

Since D̃2Mψ −MψD
2
X is a differential operator with compact support

away from the boundary it follows that (4.1.3) is a Hilbert Schmidt op-
erator. Thus it suffices to prove that Mϕe

−tD2
XMϕ is a Hilbert Schmidt

operator. This can be done by splitting D2X into a direct sum of operators
on the eigenspaces of B2Y and exploiting that the gluing operator has only
finitely many eigenvalues. This gives that e−tD2

X is a direct sum of the type⊕
e−tµ2

e−tD2
j , where j runs over a finite index set and

∑
µ e

−tµ2
is conver-

gent. Further each Dj is a Dirac operator on a cone, so that Mϕe
−tD2

jMϕ

is a Hilbert Schmidt operator.
Since D̃ has a discrete point spectrum with eigenvalues of finite multi-

plicity and because D̃ commutes with D̃2 and anti-commutes with τ , the
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restriction of D̃ to each eigenspace of D̃2 anti-commutes with the restric-
tion of τ , and except for in ker(D̃) this gives that each eigenvalue of D̃2

contributes with a zero to (4.1.1). Finally ker(D̃2) contributes to (4.1.1)
with Index(D̃+). ✷

4.2 Localized index contributions. Using finite propagation speed
or Duhamels principle it follows that the limit (4.1.2) can be split into two
contributions:

a) The interior contribution Iint given by

Iint :=
∫
M̃
aD(x)dx , (4.2.1)

where aD(x) is the zero order term in the local heat trace expansion

e−tD̃2
(x, x) ∼

dim(M̃)∑
k=−∞

ak(x)t−
k
2 .

The term aD(x) is the same as in the local index formula for closed
manifolds. See for example [BGV].

b) A joint contribution coming from the various boundaries and wedge
singularities. This contribution is further the same as the boundary
contribution coming from a Dirac operator on the disjoint union of the
corresponding spaces. Notice that since the scattering matrix S mixes
contributions from the various boundary components, each boundary
component or wedge singularity cannot be treated separately.

We will consider each boundary component as a wedge with Y = Z,
N = {0} and BN = 0. We notice that on the space 'R+×N×Y , the Dirac
operator splits into a sum of Dirac operators on

⊕
ker(BN )∩ker(BY ), and

(
⊕

ker(BN )∩ker(BY ))⊥. Further the mixing of boundary conditions from
various boundary components only takes place in

⊕
ker(BN ) ∩ ker(BY ).

On
⊕

ker(BN )∩ ker(BY ) the index contribution from the boundary is the
same as for an operator of the form γ ∂

∂u defined on L2((−∞, 0],
⊕

ker(BN )∩
ker(BY )) with the restriction of τ as involution and the scattering matrix
as boundary condition. This contribution is well known [Mü2] and is given
by

Iscat := 1
2 tr (S+) , (4.2.2)

where S+ is the restriction of S to ker(τ − 1).
On the space (

⊕
ker(BN )∩ ker(BY ))⊥ the boundary conditions do not

mix the various components, so we can consider each N × Y separately. If
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Y = Z is a boundary component, the boundary contribution to the index
is known from [AtPS] and is given by

Ibd := −12η(AZ+, 0) , (4.2.3)
where AZ is the induced Dirac operator on Z, AZ+ denotes the restriction
of AZ+ to ker(τ − 1) and η(AZ+ , 0) denotes the η-invariant of AZ+ .

On the wedges we again split the contribution to the index into
contributions from ker(BN ) ∩ ker(BY )⊥, ker(BN )⊥ ∩ ker(BY )⊥ and
ker(BN )⊥ ∩ ker(BY ).

Lemma 4.2.1 and Lemma 4.2.2 have been stated separately because
Lemma 4.2.1 holds in high generality, whereas Lemma 4.2.2 relies on the
fact that dim(Y ) is even.
Lemma 4.2.1. The index contribution from ker(BN )⊥ ∩ ker(BY )⊥ van-
ishes.

Proof. We notice that the Dirac operator is locally of the form
D = ν

(
∂
∂r +

1
rBN + 1

2r +BY

)
.

Further, D can be decomposed into eigenspaces of τ :

D =
(

0 D−
D+ 0

)
.

This operator decomposes into a Direct sum of operators on the eigenspaces
of B2Y . On each of those eigenspaces a small computation shows that the
operator νBY conjugates D+D− into D−D+. Further, on an eigenspace
of B2Y , νBY commutes with BN and preserves the growth rate of sec-
tions. Consequently the operator νBY |BY |−1 preserves the domain of D
and D2 and interchanges D+D− and D−D+. Let P be the projection on
ker(BN )⊥ ∩ ker(BY )⊥. It follows that∫

N

∫
Y
tr (τe−tD2

)
(
(r, n, y), (r, n, y)

)
dy dn

=
∫
N

∫
Y
tr (e−tD−D+)

(
(r, n, y), (r, n, y)

)
− tr (e−tD+D−)

(
(r, n, y), (r, n, y)

)
dy dn = 0 .

This proves the lemma. ✷

Lemma 4.2.2. The contribution to the index from ker(BN ) ∩ ker(BY )⊥

vanishes.

Proof. Let BY+ and BY − be the restrictions of BY to the ±1 eigenspaces
of τ . Let τY be the canonical involution on Y with respect to some ori-
entation of Y and the structure of Clifford multiplication from Ẽ. Then
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τY commutes with τ and anti-commutes with BY . Thus the spectra of
BY+ and BY− are symmetric. On the other hand the operator ν of Clif-
ford multiplication in the radial direction at the singularity conjugates BY+

into −BY−. This gives that BY+ and BY− are conjugate. Consequently,
after having locally conjugated the restriction of D̃ to ker(BN ) into a Dirac
operator on a piece of a cylinder, we get(

ν
(

∂
∂u +BY

))2
= − ∂2

∂u2 +B2Y .

On the non-zero spectrum of BY , the restrictions of this operator to the ±1
eigenspaces of τ are thus conjugate and further have conjugate boundary
conditions. This gives that the difference of the heat kernels vanishes to all
orders for t→ 0, so the contribution to the index vanishes. ✷

Finally we consider the contribution Iwedge from the space
ker(BN )⊥ ∩ ker(BY ). Here we notice that ker(BY ) is a Clifford module
over R+×N with respect to the Clifford module structure on R+×N ×Y .
We will fix some orientation on R+ × N and let τN be the image of the
volume form in the Clifford algebra with respect to that orientation.

The action of the gluing operator Uker(BY ) on ker(BY ) �→ R+×N is fur-
ther the restriction of the gluing operator on Ẽ, considered as an operator in
L2(Y,E|Y ), to ker(BY ). Uker(BY ) commutes with τ , τN and ν. Now let ϕ be
a joint eigensection of BN , τ and τN . Then V := span {ϕ, νϕ} is preserved
by BN , τ , τN and ν. Thus this is a subspace of ker(BY ) invariant un-
der ν, τN , and thereby under Clifford multiplication, and Uker(BY ). Parallel
transport of V in the radial direction gives a Dirac sub-bundle of ker(BY ).
Thus also V ⊥ is a Dirac sub-bundle of ker(BY ). In this way the Dirac op-
erator D decomposes to a Direct sum of Dirac operators in 2-dimensional
vector bundles V1, . . . , Vk over R+×N . We decompose Vi = Vi+⊕Vi− into
the ±1 eigenspaces of τN .

Since τ and τN are commuting self-adjoint involutions in two dimen-
sional bundles and both anti-commute with ν it follows that on each Vi,
either τ = τN or τ = −τN .

We write this as τ = tr (τ|Vi+
)τN . Let Di be the Dirac operator on Vi.

Then it follows
tr (τe−tD2

i )
(
(r, n), (r, n)

)
= tr (τ|Vi+

)tr (τNe−tD2
i )

(
(r, n), (r, n)

)
. (4.2.4)

Now, except from that ker(BN )∩ker(BY ) has been removed and BN is not
necessarily a spin operator, the last term is exactly as in [Cho], and the
same computation goes through. See also [S1]. It follows

Iwedge = −12
∑
i

tr (τ|Vi+
)η(BN,i,+, 0) . (4.2.5)
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Here BN,i,+ is the restriction of BN to Vi ∩ ker(τN − 1).
Another way to write (4.2.5) is to label BN,i,+ according to the eigen-

values of Uker(BY ). If we fix Vi, U| ker(BY ) has complex eigenvalues α+ and
α− in the +1 and −1 eigenspaces of τN , respectively. We notice that BN,i,+

depends only on α+ and write BN,i,+ = Bα+ . In the following we denote
by Vα+ the bundle ker(BY ) ∩ ker(U − α+) ∩ ker(τN − 1). It follows

Iwedge = −12
∑

α+∈spec(Uker(BY )|ker(τN−1))
tr (τ|Vα+

)η(Bα+ , 0) . (4.2.6)

We have proved
Theorem 4.2.3. Let M̃ be a Riemannian manifold with boundary and
isolated wedge singularities of codimension 2 such that M̃ has product
structure in a neighborhood of the boundary and of the wedge singulari-
ties. Further let Ẽ be a Dirac bundle over M̃ respecting the product struc-
ture and let D̃ be the realization of the associated Dirac operator given
by imposing ideal Atiyah–Patodi–Singer boundary conditions. If τ is a
parallel self-adjoint involution in C∞(M̃, Ẽ) anti-commuting with Clifford
multiplication and D̃+ is the restriction of D̃ to ker(τ − 1) then

Index(D̃+) =
∫
M̃
aD(x)dx− 1

2η(A+, 0) +
1
2tr (S+)

− 1
2

∑
α+∈spec(Uker(BY )|ker(τN−1))

tr (τ|Vα+
)η(Bα+, 0) . (4.2.7)

The terms are defined near (4.2.1), (4.2.2), (4.2.3) and (4.2.6), respectively.
In the case where M̃ is the extension of a manifold M with corners we

use the extension and restriction properties of elements of ker(D̃) to prove
an index theorem for manifolds with corners of codimension 2.
Corollary 4.2.4. Let M be a manifold with corners of codimension 2
and product structure in a neighborhood of the boundary and corners.
Further let E �→ M be a Dirac bundle respecting the product structure
and let D be the realization of the associated Dirac operator with the
generalized Atiyah–Patodi–Singer boundary conditions defined by (3.1.2).
If τ is a parallel self-adjoint involution in C∞(M,End(E)) anti-commuting
with Clifford multiplication we have:

Index(D+) =
∫
M
aD(x)dx− 1

2η(A+, 0) +
1
2tr (S+)

− 1
2

∑
α+∈spec(Uker(BY )|ker(τN−1))

tr (τ|Vα+
)η(Bα+ , 0) . (4.2.8)
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Proof. This follows by Theorem 4.2.3 since ker(D) ∼= ker(D̃). Because
M̃ \M has product structure, aD vanishes identically on M̃ \M . ✷

5 Another Approach to Index Theory

The way we have proceeded in order to construct boundary conditions on
a manifold with corners, which give rise to a good index theorem, is by
no means unique. It is just the simplest one to handle. In this section we
present another construction, which is just as natural.

5.1 Boundary conditions on M̃ 0. In the proof of the self-adjointness
of D we made essential use of the self-adjointness of D̃ and the extension
property of harmonic sections. Further the extension property of harmonic
sections on M to M̃ was important for proving the index theorem. These
two important properties can however be obtained in other ways. Below
we will define another extension M̃ ′ of M by gluing on a piece of a cylinder
over each boundary component. This extension also allows an extension
Ẽ′ of E. A self-adjoint Dirac operator D̃′ on M̃ ′ can be constructed using
boundary conditions, which are not local, but more local than the boundary
conditions on M .

We will restrict attention to the case, where the boundary has a decom-
position into two manifolds Z1 and Z2 with boundary, which intersect in
their boundaries only, such that none of Z1 and Z2 have self-intersections
at the boundary. This was an irrelevant assumption in the other case, but
here it will simplify things. In the end of this section we explain how to
proceed without this assumption.

In the following let

M̃ ′ = M ∪Z1

(
Z1 × [0, 1]

) ∪Z2

(
Z2 × [0, 1]

)
(5.1.1)

and let Ẽ′ be the obvious extension of E to a vector-bundle on M̃ ′, equipped
with the product connection, Hermitian structure and structure of Clifford
multiplication. To each Zj there is an associated Dirac operator Aj = νjDj ,
which is a self-adjoint operator with Atiyah–Patodi–Singer boundary condi-
tions augmented with respect to the scattering matrix. This augmentation
has the crusial property that it commutes both with τ and νj. This fol-
lows from Lemma 2.1.6. Consequently τ and ν preserve the domain of Aj

since they commute with the induced Dirac operators at the boundaries
of each Zj , and therefore also preserve the positive and negative spectral
subspaces for the induced Dirac operators.
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For most other augmentations the finer details of the analysis of D̃ break
down because νj does not preserve the domain of Aj . Let in the following
Qj+ be the projection on the strictly positive spectral subspace for Aj .
Further let Ej be the restriction of Ẽ′ to Zj × [0, 1]. We also write Ej for
the extension of Ej by the product structure to Zj × R.

We may define a domain D0(D̃′) by imposing spectral boundary condi-
tions for each Aj

D0(D̃′) :=
{
f ∈W 2,1(M̃ ′, Ẽ′)

∣∣ ∀j, u > 0 : f|Zj×{u} ∈ D(Aj)

and (1−Qj+)f|Zj×{1} = 0
}
.

Lemma 5.1.1. D̃′ is symmetric on D0.
Proof. It suffices to prove that the domain

D00(D̃′) :=
{
f ∈W 2,1(M̃ ′, Ẽ′)

∣∣ ∀j, u > 0 :
f|Zj×{u} ∈ D(Aj) (1−Qj+)f|Zj×{1} = 0

and ∃ a neighborhood U of the corners of M : f|U = 0
}
.

is dense in D0. This can be proved by decomposing into the eigenspaces of
B2Y in a neighborhood of the corners and proceeding like in Lemma 1.2.2. ✷

Lemma 5.1.2. On Zj × R the norms ‖ · ‖H2,1 and ‖ · ‖W 2,1 are equivalent
on the domain

D :=
{
f ∈W 2,1(Zj × R, Ej)

∣∣ ∀u ∈ R : f(u, ·) ∈ D(Aj)
}
.

Proof. Let D0 be the domain
D0 :=

{
f ∈W 2,2(Zj × R, Ej)

∣∣ ∀u ∈ R : f(u, ·) ∈ D(A2j)
}
.

Then D0 is dense in D with respect to the H1-norm. This can be seen
by decomposing sections into eigenspaces of A2j and approximating the
components with smooth functions. Consequently it suffices to show that
the norms dominate each other on D0. By Lemma 1.2.1 we have that
‖ · ‖H2,1 ≤ C‖ · ‖W 2,1, so it suffices to prove the opposite inequality.

Let Dj be the Dirac operator in Ej. Then Dj is of the form Dj =
γ
(

∂
∂u +Aj

)
. If f ∈ ker(γ ± i) this gives for some c > 0

‖Djf‖2 =
∥∥ ∂
∂uf

∥∥2 + ‖Ajf‖2 ≥ c‖∇f‖2 − ‖f‖2 . (5.1.2)
If now f ∈ D0 we may decompose f = f+ + f− into the components of
f ∈ ker(γ ± i). Then

‖Djf‖2 = 〈D2j f, f〉 = 〈D2j f−, f−〉+ 〈D2j f+, f+〉
= ‖Djf−‖2 + ‖Djf+‖2 .

Together with (5.1.2) this proves the lemma. ✷
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Again we can use polar coordinates near the corners. We get the opera-
tors

⊕
BN and

⊕
BY , defined on

⊔
(Y × [0, σ+ π]). BN is given the same

Atiyah–Patodi–Singer boundary conditions as
⊕

j Aj . First we notice that
on the orthogonal complement of

⊕
ker(BY ) each corner can be handled

separately and the analysis goes through exactly like for the operator D̃.
A lemma, which requires some care is though:
Lemma 5.1.3. Let F be a Dirac bundle respecting the product structure
on a corner C × Y . On the domain

D0 =
{
f ∈W 2,1(C × Y, F )

∣∣ (1−Q+)f|∂C = 0
}
,

the W 2,1 and H2,1-norms are equivalent. Here Q+ is the projection on
the positive spectral subspace for −δDY , where δ is the outward-pointing
normal at the boundary.

Proof. It is enough to prove the lemma for sections inW 2,2(C×Y, F ), which
in addition vanish in the corner and have vanishing normal derivatives at
the boundary. If f is such a section we may compute

‖∇f‖2 = ‖∇Cf‖2 + ‖∇Y f‖2
≤ 〈

(∇C)∗∇Cf, f
〉
+ C

(‖BY f‖2 + ‖f‖2
)

≤ (1 + C)
(〈D2f, f〉+ ‖f‖2)

= (1 + C)
(‖Df‖2 − 〈(−δDY )f, f〉∂C×Y + ‖f‖2) .

Since 〈(−δDY )f, f〉∂(C×Y ) ≥ 0 this term can be dropped and the desired
Sobolev inequality holds. ✷

Like for D̃, D̃′ is given ideal Atiyah–Patodi–Singer boundary conditions
augmented with respect to the scattering matrix. In

⊕
ker(BY ) the scat-

tering matrices Sj mix the boundary conditions at different corners. This
does not affect the self-adjointness of the restriction of the operator

⊕
BN

to
⊕

ker(BY ), nor does it affect that
⊕

BN has a discrete point spectrum
with eigenvalues of finite multiplicity. It however means that when we im-
pose ideal boundary conditions, asymptotics of sections in D(D̃′) at the
various corners are not independent.

Finally the space
⊕

ker(Aj) ⊕ ker(
⊕

BN ) ∩ ker(
⊕

BY ) is augmented
with respect to the scattering matrix S defined exactly like in section 2.
This gives a self-adjoint realization D̃′.
Definition 5.1.4. We say that D̃′ is given Atiyah–Patodi–Singer boundary
conditions of level 2 augmented with respect to the scattering matrices.

It follows like for D̃ that D̃′ has a discrete point spectrum, that e−t(D̃′)2

is a trace class operator for all t > 0, that if dim(M) is even, D̃′ has
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a decomposition like (4.0.1) and that Index(D̃′
+) can be computed using

(4.1.2).
Theorem 5.1.5. Let M be an even dimensional manifold with corners of
codimension 2 and product structure near the boundary and corners and
let E �→M be a Dirac bundle over M respecting the product structure. Let
Ẽ′ �→ M̃ ′ be the the extension of E �→M given by (5.1.1) and the product
structure. Finally let D̃′ be the self-adjoint realization of the Dirac operator
associated to Ẽ′, given Atiyah–Patodi–Singer boundary conditions of level
2 augmented with respect to the scattering matrices. Let τ be a parallel
self-adjoint involution in Ẽ′ anti-commuting with Clifford multiplication
and let D̃′

+ be the restriction of D̃′ to ker(τ − 1). Further let τN = −iνδ
and let τY = τNτ . Then we have the following index theorem:

Index(D̃′
+) =

∫
M
aD(x)dx− 1

2

∑
j

η(AZj+, 0) +
1
2tr (S+)

− 1
2η(τY BN+|⊕ker(BY ), 0) . (5.1.3)

Proof. By (4.1.2) we get that the index can be split into an interior con-
tribution, a contribution from the boundary and a contribution from the
corners (except from the augmentation, which mixes corners and bound-
aries). Because of the product structure, on the cylinders the interior con-
tribution as well as the contribution from boundary components of the
form ∂Zj × [0, 1] vanish. Further the boundary components of the form
Zj ×{1} can be treated exactly like an Atiyah–Patodi–Singer boundary in
[AtPS]. This gives that the contribution from the non-zero spectrum of Aj

is −12η(Aj+, 0) as claimed. Lemma 4.2.1 and Lemma 4.2.2 hold with the
same proofs as for D̃. Consequently the contribution from the corners of
M comes from ker(BY ) alone. The contribution from ker(BY )∩ ker(BN )⊥

is the same as from a cone except from that the super-structure is dif-
ferent. Thus the results of [Cho] gives the claimed contribution. Finally
ker(

⊕
BY ) ∩ ker(

⊕
BN ) ⊕

⊕
ker(Aj) gives the contribution 1

2tr (S+) be-
cause the restriction to D̃′ and τ to this space is conjugate to the corre-
sponding contribution for an Atiyah–Patodi–Singer boundary. This proves
the theorem. ✷

We proceed by computing the contribution from the corners explicitly.
For each corner C × Y with associated Dirac operator BY we define an
operator TY on ker(BY ) by letting TY be multiplication by σ + π, where
σ is the angle of C. Let T be the direct sum of the TY . Then T is self-
adjoint and commutes with the operator νδ, but in general T need not
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satisfy commutation relations with S1 and S2.
The operator BN is given by BN = −νδ ∂

∂θ − 1
2 . Consequently solutions

of BNu = λu are locally of the form

u = e(λ+
1
2
)θνδϕ

for some ϕ ∈ ker(BY ). Further the boundary conditions give that

S1ϕ = ϕ, (5.1.4)

S2e
(λ+ 1

2
)Tνδϕ = e(λ+

1
2
)Tνδϕ . (5.1.5)

In particular

S1e
−(λ+ 1

2
)TνδS2e

(λ+ 1
2
)Tνδϕ = ϕ . (5.1.6)

On the other hand, if (5.1.6) is satisfied we notice that the solution space
for ϕ for fixed λ has the solution space of (5.1.4) and (5.1.5) as a Lagrangian
subspace for νδ. This follows by the following general lemma.
Lemma 5.1.6. Assume that U and V are unitary and self-adjoint operators
on a Hilbert space H and that Γ is unitary, anti-self-adjoint and anti-
commutes with both U and V . Then ker(U−1)∩ker(V −1) is a Lagrangian
subspace of ker(UV − 1).

Proof. If ϕ ∈ H satifies the equation UV ϕ = ϕ it follows that Uϕ =
V ϕ since U is unitary and self-adjoint. Consequently the space W :=
span{ϕ, V ϕ} is closed under application of U and V . Further UV V ϕ =
Uϕ = V ϕ, so W is contained in ker(UV − 1). So is W + ΓW since Γ
commutes with UV . Since Γ interchanges the ±1 eigenspaces for U it
follows that ker(U −1)∩ (W +ΓW ) is a Lagrangian subspace for W +ΓW .
But ker(U−1)∩ker(UV −1) = ker(U−1)∩ker(V −1). The lemma follows
since ϕ can be an arbitrary element of ker(UV − 1). ✷

The above immediately gives the general result
Corollary 5.1.7. The spectrum of BN is given by

spec(BN ) =
{
λ ∈ R

∣∣ ∃ϕ �= 0 : S1e−(λ+
1
2
)TνδS2e

(λ+ 1
2
)Tνδϕ = ϕ

}
.

Further the multiplicity of λ ∈ spec(BN ) is given by

mult(λ) = 1
2 dim ker(S1e−(λ+

1
2
)TνδS2e

(λ+ 1
2
)Tνδ − 1) . �

If T commutes with S2, Corollary 5.1.7 can be refined to give

spec(BN ) = {λ ∈ R | ∃ϕ �= 0 : S1S2e(2λ+1)Tνδϕ = ϕ} . (5.1.7)

If T further commutes with S1, (5.1.7) decomposes into the eigenspaces for
S1S2. For each eigenspace of S1S2 it further decomposes into eigenspaces
for T such that we get a union of spectra corresponding to the elementary
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case that S1S2 = eiβI and T = aI are multiples of the identity. In this case
we get

spec
(
(BN )| ker(S1S2−eiβ)∩ker(T−a)∩ker(νδ±i)

)
=

{
λ

∣∣ (2λ+ 1)a ∈ ∓β + 2πZ
}
.

Explicitly

spec((BN )| ker(S1S2−eiβ)∩ker(T−a)∩ker(νδ±i)) = ∓ β
2a − 1

2 +
π
aZ . (5.1.8)

The operator τY commutes with S1S2 and T , so (5.1.8) suffices to compute
the contribution from the corner. We will however not do so before we have
reached a deeper understanding of the corner term, such that we can write
it up in a senseful way.

The condition that T commutes with S1 and S2 is satisfied in the appli-
cations in this paper, but is still completely unreasonable. We here give a
lemma that reduces the general case to the case, where T commutes with S1
and S2. First we notice that the operator of application of e−

θ
2
νδ conjugates

BN into the operator B′
N := −νδ ∂

∂θ with boundary Lagrangians ker(S1−1)
and ker(e−

1
2
TνδS2e

1
2
Tνδ−1). In a neighborhood of the boundary θ = 0 this

is a Dirac type operator. Further this conjugation of S2 corresponds to that
we identify the copies of ker(BY ) seen from each boundary component at
the corner using the universal gluing operator defined in Lemma 1.1.14.

Lemma 5.1.8. The η-invariant η(τY BN+, 0) is equal to the η-invariant
of the Dirac type operator −τY νδ ∂

∂θ defined in ker(BY ) �→ [0, 2π] and
augmented with respect to S1 and S′

2 := e−
1
2
TνδS2e

1
2
Tνδ.

Proof. Let B′
N = B′

N (T
′) be the Dirac type operator −νδ ∂

∂θ defined on
sections of the bundle

⊕
ker(BY ) �→ [0, T ′(Y )], where T ′ is defined like T ,

and is the operator of multiplication by T ′(Y ) on each ker(BY ).
In a neighborhood of θ = 0, B′

N is locally like a Dirac type operator on
a piece of a cylinder over a point. By the same proof as in [Mü1, section 2],
it follows that the η-invariant does not depend on the length of the at-
tached cylinder modulo Z for fixed boundary conditions. Further the di-
mension of the kernel of B′

N remains constant under variation of the length
of the cylinder, since by Corollary 5.1.7, it is simply half the dimension of
ker(S1e−

1
2
TνδS2e

1
2
Tνδ − 1). Thus the η-invariant remains constant under

variation of the length of the attached cylinder. Further the η-invariant is
invariant under scaling of all angles simultaneously, (with fixed boundary
conditions, which do not depend on the scaling), since this just changes the
spectrum by a factor. Thus the η-invariant is constant under any combina-
tion of scalings and prolongnations of the cylindrical piece. Consequently
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we may compute

η(τY BN+, 0) = η
(
τYB

′
N (T ), 0

)
= lim

s→∞ η

(
τY B

′
N+

(
T + 2πs

s

)
, 0

)
= η

(
τYB

′
N+(2πI), 0

)
.

This proves the lemma. ✷

Remark 5.1.9. The question, whether one should consider the contri-
bution from the corner as a function of S2 or of e−

1
2
TνδS2e

1
2
Tνδ depends

on, whether one has glued E|Z at the corners or not. If E|Z is glued us-
ing the canonical gluing. The correct identification of the spaces in which
S1 and S2 live has already been made, and the contribution morally does
not depend on the angles. If however we consider the corner from the in-
side of M , the spaces where S1 and S2 live are differently identified, and
the corner contribution depends on the angles through the eigenvalues of
S1e

− 1
2
TνδS2e

1
2
Tνδ.

In what follows we will use the notation

[β] =
{

β − 2πk ; β − 2πk ∈ (−π, π) ,
0 ; β ∈ π + 2πZ ,

(5.1.9)

The η-invariant of an operator with periodic spectrum is well known [LeW]
and [Gi, Example 1.13.1]. If an operator Q has spectrum

p (β + πZ)

then

η(Q, 0) = − 1π [2β + π] . (5.1.10)

In the case of the operator τY BN+, Lemma 5.1.8 gives that we may replace
T by 2π and S2 by S′

2 and still get the same η-invariant. Further in this
case (5.1.7) gives

spec(BN ) =
{
λ ∈ R

∣∣ ∃ϕ �= 0 : S1S′
2e
2π(2λ+1)νδϕ = ϕ

}
. (5.1.11)

On ker(τN − 1) ∩ ker(τ − 1) we have that νδ = i. Thus this simplifies to

{λ ∈ R | ∃ϕ �= 0 : S1S′
2e
4πλiϕ = ϕ} .

Thus λ is in the spectrum if and only if e4πiλ = e−iγ , where eiγ is an
eigenvalue of S1S′

2. Expressed differently, 4πλ is of the form −(β−π)+2πZ,
where eiβ is an eigenvalue of −S1S′

2. It follows that the spectrum of BN

on ker(τN − 1) ∩ ker(τ − 1) is the union over eiβ ∈ spec(−S1S2) of
− 1
4π (β − π) + 1

2Z = 1
2π

(−12(β − π) + πZ
)
. (5.1.12)
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Now, S1 anti-commutes with τN and τY and ν anti-commutes with τN but
commutes with τY . Finally ν commutes with S1S

′
2, so it follows that

νS1(−S1S′
2)S1(−ν) = −S′

2S1 = −(S1S′
2)

∗ . (5.1.13)

Thus the spectrum of −S1S′
2 on ker(τN−1)∩ker(τY +1) is the adjoint of the

spectrum of −S1S′
2 on ker(τN − 1)∩ ker(τY − 1). This courses −(β − π) to

change sign, so it follows that the spectrum of BN on ker(τN−1)∩ker(τY +1)
is the negative of (5.1.12). Thus the η-invariant has the opposite sign. The
factor of τY in τYBN makes up for that, so it follows

η(τY BN+, 0) = 2η(BN++, 0) ,

where BN++ is the restriction of BN to ker(τ − 1) ∩ ker(τN − 1). Further,
by (5.1.12) and (5.1.10) we get

η(BN++, 0) = − 1
2π

∑
eiβ∈spec(−S1++S′

2++)

[β] . (5.1.14)

The last factor of 1/2 is because of the multiplicity part of Corollary 5.1.7.
Now we may refine the index theorem for D̃′

+:

Theorem 5.1.10. Let M be an even dimensional manifold with corners
of codimension 2 and product structure near the boundary and corners and
let E �→M be a Dirac bundle over M respecting the product structure. Let
Ẽ′ �→ M̃ ′ be the the extension of E �→M given by (5.1.1) and the product
structure. Finally let D̃′ be the self-adjoint realization of the Dirac operator
associated to Ẽ′, given Atiyah–Patodi–Singer boundary conditions of level 2
augmented with respect to the scattering matrices. Let τ be a parallel self-
adjoint involution in Ẽ′ anti-commuting with Clifford multiplication and
let D̃′

+ be the restriction of D̃′ to ker(τ − 1). Then we have the following
index theorem:

Index(D̃′
+) =

∫
M
aD(x)dx− 1

2

∑
j

η(AZj+, 0) +
1
2tr (S+)

+ 1
2π

∑
β∈spec((−S1++e−

1
2 TνδS2++e

1
2 Tνδ)| ker(τ−1)∩ker(τN−1))

[β] . (5.1.15)

Remark 5.1.11. If the boundary components ofM have self-intersections,
we can still prove self-adjointness of D̃′ and prove an index formula. In this
case there is (morally) only one scattering matrix S1. We can however
get an additional one by imposing boundary conditions in the middle of
each angle interval corresponding to the condition that sections should be
continuous. In this way the construction of boundary conditions and com-
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putation of the index contribution becomes equivalent to what we have
done above, just on a space of twice the dimension.

Remark 5.1.12. The class of operators BN on ker(BY ) is unitarily equiva-
lent to the class of operators Q ∂

∂t on L2([−π, π], ker(BY )), where Q is anti-
symmetric and the boundary conditions are arbitrary self-adjoint boundary
conditions. The spectrum of Q ∂

∂t can be computed directly and is a union
of shifted periodic spectra. Consequently this conjugation gives a more
direct way to compute the η-invariant of parts of BN .

6 Special Cases and Applications

In this section we work out the corner contribution in Theorem 4.2.3 in
some special cases. The methods are the same as in section 5 and we
maintain a lot of notation from section 5. The cases are however simpler
and instead of scattering matrices we have gluing operators.

6.1 The twisted spin complex. We recall that the corner contribu-
tion from Theorem 4.2.3 is given by

−12
∑

α+∈spec(Uker(BY )|ker(τN−1))
tr (τα+)η(Bα+, 0) . (6.1.1)

Further we have from (1.2.4) that the spectrum of the operator Bα+ in
question is given by

spec(Bα+) =
2

σ + π

(
i log(α+)

2
− σ + π

4
+ πZ

)
. (6.1.2)

Thus (5.1.10) gives that, with notation from (5.1.9), we have

η(Bα+ , 0) = −
1
π

[
i log(α+)− σ + π

2
+ π

]
. (6.1.3)

By (6) of Lemma 1.1.14 we see that for the universal gluing operator, the
only value of α+ is α+ = ei

π−σ
2 . Thus

η(Bα+ , 0) = −
1
π

[
σ − π

2
− σ + π

2
+ π

]
= 0. (6.1.4)

We have proved

Lemma 6.1.1. If Ẽ �→ M̃ is glued using the universal gluing operator, the
contribution from (ker(BN ) ∩ ker(BY )⊥) from the corner vanishes.

The universal gluing operator corresponds to the twisted spin bundle,
where the twisting bundle is glued trivially near the singularities.
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6.2 The de Rham and signature complex. Also the deRham and
signature complexes are relevant examples to work out. We only consider
the case σ ∈ (0, 3π), for which the results from section 3.3 are valid.
Lemma 6.2.1. The contribution from the corner for the signature complex
vanishes. In particular we have for a manifold with corners of codimension 2

sign(M) =
∫
M

L− 1
2η(AZ+, 0) ,

where AZ+ is the induced Dirac operator on the boundary.

Proof. Let (r, θ) be polar coordinates on C, let δ be Clifford multiplication
by 1

r
∂
∂θ and let ν be Clifford multiplication by ∂

∂r .
By the proof of Lemma 3.3.2 we know that the decomposition

Λ∗(C × Y ) = (i+ νδ)Λ∗(Y )⊕ (−i⊕ νδ)Λ∗(Y )
⊕ (δ − iν)Λ∗(Y )⊕ (δ + iν)Λ∗(Y ) (6.2.1)

is a decomposition of Λ∗(C ×Y ) into joint eigenspaces of the gluing opera-
tor U and νδ to the eigenvalues 1, 1, e−i(π−σ), ei(π−σ) and i,−i,−i, i, respec-
tively. This gives that the restriction U+ of U to ker(τN − 1) = ker(νδ − i)
has two eigenvalues, 1 and ei(π−σ), each occurring with the same multiplic-
ity. We compute using (1.2.4) and (5.1.10)

η(B[1], 0) = −
1
π

[
−σ + π

2
+ π

]
, (6.2.2)

η(B[ei(π−σ)], 0) = −
1
π

[
σ − π

2

]
. (6.2.3)

Since −σ+π
2 + π = −σ

2 +
π
2 = − (

σ−π
2

)
it follows that the sum of those

η-invariants vanishes. Further τY acts identically on each of those spaces
since it commutes with ν and δ. Consequently the corner contribution
vanishes.

By Corollary 3.3.9 and the fact that the Scattering matrix anti-commutes
with ν, the index theorem for the signature complex can be rewritten

sign(M) + tr (S+) =
∫
M
L− 1

2η(AZ+, 0) + 1
2tr (S+) . (6.2.4)

Since by Corollary 3.3.11 the scattering term vanishes, we are done. ✷

Theorem 6.2.2 (The Gauß–Bonnet theorem). Assume σ ∈ (0, 3π) for
all angles at the corners. Then the corner contribution from the de Rham
complex is given by

1
π
χ(Y )

[
−σ + π

2
+ π

]
,
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where χ denotes the Euler characteristic and σ runs over the angles. Further
η(AZ+, 0) = 0 in this case and the scattering term vanishes. Thus we have

χ(M) =
∫
M
e+

( ∑
N×Y

π − σ(N)
2π

)
χ(Y ) . (6.2.5)

In particular, if dim(M) = 2 and all angles are in the interval (0, 2π) we
recover the Gauss–Bonnet theorem [C]:

χ(M) =
∫
M
e+

∑
σ

π − σ

2π
. (6.2.6)

Proof. The de Rham complex is handled like the signature complex. The
gluing operator U is the same, τ is replaced by the parity involution ρ,
τN = −iνδ is preserved and τY is given by the convention τY := τNρ. In
this case, however, ρ is the parity operator on Λ∗(Y ) on (i+ νδ)Λ∗(Y ) and
minus the parity operator on Λ∗(Y ) on (δ+iν)Λ∗(Y ). Consequently (6.2.2)
and (6.2.3) must be subtracted rather than added so

−12
∑

α+∈spec(Uker(BY )|ker(τN−1))
tr (τ|Vα+

)η(Bα+, 0) = −12 × 2χ(Y )η(B1, 0)

=
1
π
χ(Y )

[
−σ + π

2
+ π

]
.

This is the claimed contribution from the corner.
That the η-invariant of Z vanishes in this case follows since the the

parity operator on Λ∗(Z) commutes with the parity operator and anti-
commutes with AZ . Thus AZ+ has a symmetric spectrum and a vanishing
η-invariant.

The scattering term vanishes by Corollary 3.3.11. Thus Index(D̃) =
Index0(D̃) and the scattering term on the right-hand side vanishes. ✷

Remark 6.2.3. The same trick as in [Gi, section 2.7.7] can be applied to
extend the Gauß–Bonnet theorem to the case where there is no product
structure on the boundaries away from the corners. Passing to the limit of
such problems gives the Gauß–Bonnet theorem for manifolds with corners
with the restriction on the structure close to the corners that the angles
along the corners must be constant.

6.3 The splitting formula for η-invariants. The splitting formula
for η-invariants of closed manifolds into η-invariants of manifolds with
boundary and product structure near the boundary is well-known. Dif-
ferent proofs have been given by Bunke [Bu1], Brüning & Lesch [BrL], Wo-
jciechowski [DW], [Wo1,2], Mazzeo & Melrose [MM1,2] and Müller [Mü2].
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It is also well known how the η-invariant behaves under variation of the
boundary conditions. The case, where only the augmentation is varied, is
handled in [LeW] and [Mü1]. A case of very general pseudo-differential
boundary conditions is handled in [Wo3].

Subtracting Theorem 4.2.3 from Theorem 5.1.10 gives a new proof of the
splitting formula. Like for all other proofs, an integer valued term, given
in terms of indices and scattering matrices, which is not very accessible,
remains. We here give another construction, which is a rather direct proof
of the splitting formula for the η-invariant, here given in a setup compatible
with the index theorem.

Let Z be a closed odd-dimensional manifold and let E �→ Z× (−∞,∞)
be a Dirac bundle over an infinite cylinder over Z respecting the product
structure. Let D be the Dirac operator associated to E. Then D has the
usual product decomposition:

D = ν
(

∂
∂u +A

)
.

If further E is a super-bundle we may define A+ as usual. Now assume
that Z has a decomposition Z = Z1 ∪Y Z2 into manifolds with product
structure in a neighborhood of the boundary. We set

M̃ ′ = Z × [−2, 0] ∪Z1�Z2

(
(Z1 ' Z2)× [0, 1]

)
.

The pullback of E to M̃ ′ is a Dirac bundle on M̃ ′ respecting the local
product structure. Further M̃ ′ is a special case of the manifold M̃ ′ from
section 5. Therefore we also denote the Dirac operator on M̃ ′ by D̃′. The
induced Dirac operators on Zi we denote by Ai and the corresponding
scattering matrices we denote by Si. The scattering matrix of D̃′ we denote
by S. With this notation we have
Theorem 6.3.1. We have

η(A+, 0)− η(A1+, 0)− η(A2+, 0)

= 2Index(D̃′
+)− tr (S+(0))− 1

π

∑
eiβ∈spec(−S1++S2++)

[β] .

Proof. This is an immediate consequence of Theorem 5.1.10. The local
formulas vanish because of the local product structure everywhere and the
η-invariants appear with different signs because of the different orientations
at the boundaries. ✷

This splitting formula corresponds to the known splitting formulae mod-
ulo Z. The integer-valued terms we are not able to compare. It would be
desirable to find another way to compute the index in order to get more in-
formation about the integer-valued term. This however seems to be difficult
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since the ideal boundary conditions in the corner are not compatible with
relevant algebraic operations. The most troublesome part of the problems
comes from the space ker(BN )∩ker(BY )⊥, which gives rise to an infinite di-
mensional space of possible singularities not accounted for in the scattering
matrix.
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