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Reciprocal Geodesics

Peter Sarnak

Abstract. The closed geodesics on the modular surface which are equiva-

lent to themselves when their orientation is reversed have recently arisen in
a number of different contexts.We examine their relation to Gauss’ ambigu-

ous binary quadratic forms and to elements of order four in his composition
groups.We give a parametrization of these geodesics and use this to count them
asymptotically and to investigate their distribution.

This note is concerned with parametrizing, counting and equidistribution of
conjugacy classes of infinite maximal dihedral subgroups of Γ = PSL(2, Z) and
their connection to Gauss’ ambiguous quadratic forms. These subgroups feature in
the recent work of Connolly and Davis on invariants for the connect sum problem
for manifolds [CD]. They also come up in [PR04] (also see the references therein)
in connection with the stability of kicked dynamics of torus automorphisms as well
as in the theory of quasimorphisms of Γ. In [GS80] they arise when classifying
codimension one foliations of torus bundles over the circle. Apparently they are of
quite wide interest. As pointed out to me by Peter Doyle, these conjugacy classes
and the corresponding reciprocal geodesics, are already discussed in a couple of
places in the volumes of Fricke and Klein ([FK], Vol. I, page 269, Vol II, page
165). The discussion below essentially reproduces a (long) letter that I wrote to
Jim Davis (June, 2005).

Denote by {γ}Γ the conjugacy class in Γ of an element γ ∈ Γ. The elliptic
and parabolic classes (i.e., those with t(γ) ≤ 2 where t(γ) = |trace γ|) are well-
known through examining the standard fundamental domain for Γ as it acts on
H. We restrict our attention to hyperbolic γ’s and we call such a γ primitive (or
prime) if it is not a proper power of another element of Γ. Denote by P the set of
such elements and by Π the corresponding set of conjugacy classes. The primitive
elements generate the maximal hyperbolic cyclic subgroups of Γ. We call a p ∈ P
reciprocal if p−1 = S−1pS for some S ∈ Γ. In this case, S2 = 1 (proofs of this and
further claims are given below) and S is unique up to multiplication on the left by
γ ∈ 〈p〉. Let R denote the set of such reciprocal elements. For r ∈ R the group
Dr = 〈r, S〉, depends only on r and it is a maximal infinite dihedral subgroup of
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Γ. Moreover, all of the latter arise in this way. Thus, the determination of the
conjugacy classes of these dihedral subgroups is the same as determining ρ, the
subset of Π consisting of conjugacy classes of reciprocal elements. Geometrically,
each p ∈ P gives rise to an oriented primitive closed geodesic on Γ\H, whose length

is log N(p) where N(p) =
[(

t(p) +
√

t(p)2 − 4
)

/2
]2

. Conjugate elements give
rise to the same oriented closed geodesic. A closed geodesic is equivalent to itself
with its orientation reversed iff it corresponds to an {r} ∈ ρ.

The question as to whether a given γ is conjugate to γ−1 in Γ is reflected in

part in the corresponding local question. If p ≡ 3 (mod 4), then c =
[

1 0
1 1

]

is not conjugate to c−1 in SL(2, Fp), on the other hand, if p ≡ 1 (mod 4) then
every c ∈ SL(2, Fp) is conjugate to c−1. This difficulty of being conjugate in G(F̄ )
but not in G(F ) does not arise if G = GLn (F a field) and it is the source of a
basic general difficulty associated with conjugacy classes in G and the (adelic) trace
formula and its stabilization [Lan79]. For the case at hand when working over Z,
there is the added issue associated with the lack of a local to global principle and
in particular the class group enters. In fact, certain elements of order dividing four
in Gauss’ composition group play a critical role in the analysis of the reciprocal
classes.

In order to study ρ it is convenient to introduce some other set theoretic
involutions of Π. Let φR be the involution of Γ given by φR(γ) = γ−1. Let

φw(γ) = w−1γw where w =
(

1 0
0 −1

)
∈ PGL(2, Z) (modulo inner automor-

phism φw generates the outer automorphisms of Γ coming from PGL(2, Z)). φR

and φw commute and set φA = φR◦φw = φw ◦φR. These three involutions generate
the Klein group G of order 4. The action of G on Γ preserves P and Π. For H
a subgroup of G, let ΠH = {{p} ∈ Π : φ({p}) = {p} for φ ∈ H}. Thus Π{e} = Π
and Π〈φR〉 = ρ. We call the elements in Π〈φA〉 ambiguous classes (we will see that
they are related to Gauss’ ambiguous classes of quadratic forms) and of Π〈φw〉, inert
classes. Note that the involution γ → γt is, up to conjugacy in Γ, the same as φR,

since the contragredient satisfies tg−1 =
[

0 1
−1 0

]
g

[
0 1
−1 0

]
. Thus p ∈ P is

reciprocal iff p is conjugate to pt.
To give an explicit parametrization of ρ let

(1) C =
{
(a, b) ∈ Z2 : (a, b) = 1, a > 0, d = 4a2 + b2 is not a square

}
.

To each (a, b) ∈ C let (t0, u0) be the least solution with t0 > 0 and u0 > 0 of
the Pell equation

(2) t2 − du2 = 4 .

Define ψ : C −→ρ by

(3) (a, b) −→







t0 − bu0

2
au0

au0
t0 + bu0

2







Γ

,
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It is clear that ψ((a, b)) is reciprocal since an A ∈ Γ is symmetric iff S−1
0 AS0 = A−1

where S0 =
[

0 1
−1 0

]
. Our central assertion concerning parametrizing ρ is;

Proposition 1. ψ : C −→ρ is two-to-one and onto. ∗

There is a further stratification to the correspondence (3). Let

(4) D = {m |m > 0 , m ≡ 0, 1 (mod 4) , m not a square} .

Then
C =

⋃
d∈D

Cd

where

(5) Cd =
{
(a, b) ∈ C | 4a2 + b2 = d

}
.

Elementary considerations concerning proper representations of integers as a sum
of two squares shows that Cd is empty unless d has only prime divisors p with p ≡ 1
(mod 4) or the prime 2 which can occur to exponent α = 0, 2 or 3. Denote this
subset of D by DR. Moreover for d ∈ DR,

(6) |Cd| = 2 ν(d)

where for any d ∈ D, ν(d) is the number of genera of binary quadratic forms of
discriminant d ((6) is not a coincidence as will be explained below). Explicitly ν(d)
is given as follows: If d = 2αD with D odd and if λ is the number of distinct prime
divisors of D then

(6′) ν(d) =




2λ−1 if α = 0

2λ−1 if α = 2 and D ≡ 1 (mod 4)

2λ if α = 2 and D ≡ 3 (mod 4)

2λ if α = 3 or 4

2λ+1 if α ≥ 5 .

Corresponding to (5) we have

(7) ρ =
⊔

d∈DR

ρd ,

with ρd = ψ(Cd). In particular, ψ : Cd −→ ρd is two-to-one and onto and hence

(8) |ρd| = ν(d) for d ∈ DR .

Local considerations show that for d ∈ D the Pell equation

(9) t2 − du2 = −4 ,

can only have a solution if d ∈ DR. When d ∈ DR it may or may not have a solution.
Let D−

R be those d’s for which (9) has a solution and D+
R the set of d ∈ DR for

which (9) has no integer solution. Then
(i) For d ∈ D+

R none of the {r} ∈ ρd, are ambiguous.
(ii) For d ∈ D−

R , every {r} ∈ ρd is ambiguous.

∗Part of this Proposition is noted in ([FK], Vol. I, pages 267-269).
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In this last case (ii) we can choose an explicit section of the two-to-one map
(3). For d ∈ D−

R let C−
d = {(a, b) : b < 0}, then ψ : C−

d −→ ρd is a bijection.†

Using these parameterizations as well as some standard techniques from the
spectral theory of Γ\H one can count the number of primitive reciprocal classes.
We order the primes {p} ∈ Π by their trace t(p) (this is equivalent to ordering the
corresponding prime geodesics by their lengths). For H a subgroup of G and x > 2
let

(10) ΠH(x) :=
∑

{p}∈ΠH
t(p) ≤ x

1 .

Theorem 2. As x −→ ∞ we have the following asymptotics:

(11) Π{1}(x) ∼ x2

2 log x
,

(12) Π〈φA〉 (x) ∼ 97
8π2

x(log x)2 ,

(13) Π〈φR〉 (x) ∼ 3
8

x ,

(14) Π〈φw〉 (x) ∼ x

2 log x

and

(15) ΠG (x) ∼ 21
8π

x1/2 log x .

(All of these are established with an exponent saving for the remainder).

In particular, roughly the square root of all the primitive classes are reciprocal
while the fourth root of them are simultaneously reciprocal ambiguous and inert.

We turn to the proofs of the above statements as well as a further discussion
connecting ρ with elements of order dividing four in Gauss’ composition groups.

We begin with the implication S−1pS = p−1 =⇒ S2 = 1. This is true already

in PSL(2, R). Indeed, in this group p is conjugate to ±
(

λ 0
0 λ−1

)
with λ > 1.

Hence Sp−1 = pS with S =
[

a b
c d

]
=⇒ a = d = 0, i.e., S = ±

[
0 β

−β−1 0

]

and so S2 = 1. If S and S1 satisfy x−1px = p−1 then SS−1
1 ∈ Γp the centralizer

of p in Γ. But Γp = 〈p〉 and hence S = βS1 with β ∈ 〈p〉. Now every element
S ∈ Γ whose order is two (i.e., an elliptic element of order 2) is conjugate in Γ to

S0 = ±
[

0 1
−1 0

]
. Hence any r ∈ R is conjugate to an element γ ∈ Γ for which

S−1
0 γS0 = γ−1. The last is equivalent to γ being symmetric. Thus each r ∈ R is

conjugate to a γ ∈ R with γ = γt. (15′)
We can be more precise:

Lemma 3. Every r ∈ R is conjugate to exactly four γ’s which are symmetric.

†For a general d ∈ D+
R it appears to be difficult to determine explicitly a one-to-one section

of ψ.
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To see this associate to each S satisfying

(16) S−1rS = r−1

the two solutions γS and γ′
S (here γ′

S = SγS) of

(17) γ−1Sγ = S0 .

Then

(18) γ−1
S rγS = ((γ′

S)−1 rγ′
S)−1 and both of these are symmetric.

Thus each S satisfying (17) affords a conjugation of r to a pair of inverse symmetric
matrices. Conversely every such conjugation of r to a symmetric matrix is induced
as above from a γS . Indeed if β−1rβ is symmetric then S−1

0 β−1 rβS0 = β−1 r−1β
and so βS−1

0 β−1 = S for an S satisfying (17). Thus to establish (16) it remains to
count the number of distinct images γ−1

S rγS and its inverse that we get as we vary
over all S satisfying (17). Suppose then that

(19) γ−1
S rγS = γ−1

S′ rγS′ .

Then

(20) γS′ γ−1
S = b ∈ Γr = 〈r〉 .

Also from (18)

(21) γ−1
S SγS = γ−1

S′ S′ γS′

or

(22) γS′ γ−1
S S γS γ−1

S′ = S′ .

Using (21) in (23) yields

(23) b−1 Sb = S′ .

But bS satisfies (17), hence bSbS = 1. Putting this relation in (24) yields

(24) S′ = b−2S .

These steps after (22) may all be reversed and we find that (20) holds iff S = b2S′ for
some b ∈ Γr. Since the solutions of (17) are parametrized by bS with b ∈ Γr(and
S a fixed solution) it follows that as S runs over solutions of (17), γ−1

S rγS and
(γ′

S)−1r(γ′
S) run over exactly four elements. This completes the proof of (16). This

argument should be compared with the one in ([Cas82], p. 342) for counting the
number of ambiguous classes of forms. Peter Doyle notes that the four primitive
symmetric elements which are related by conjugacy can be described as follows: If
A is positive, one can write A as γ′γ with γ ∈ Γ (the map γ −→ γ′γ is onto such);
then A, A−1, B, B−1, with B = γγ′, are the four such elements.

To continue we make use of the explicit correspondence between Π and classes
of binary quadratic forms (see [Sar] and also ([Hej83], pp. 514-518). ‡ An integral
binary quadratic form f = [a, b, c] (i.e. ax2 + bxy + xy2) is primitive if (a, b, c) = 1.
Let F denote the set of such forms whose discriminant d = b2 − 4ac is in D. Thus

(25) F =
⊔

d∈D
Fd .

with Fd consisting of the forms of discriminant d. The symmetric square represen-
tation of PGL2 gives an action σ(γ) on F for each γ ∈ Γ. It is given by σ(γ)f = f ′

‡This seems to have been first observed in ([FK], Vol., page 268)
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where f ′(x, y) = f((x, y)γ). Following Gauss we decompose F into equivalence
classes under this action σ(Γ). The class of f is denoted by f̄ or Φ and the set of
classes by F . Equivalent forms have a common discriminant and so

(26) F =
⊔

d∈D
Fd .

Each Fd is finite and its cardinality is denoted by h(d) - the class number. Define
a map n from P to F by

(27) p =
[

a b
c d

]
n−→ f(p) =

1
δ

sgn (a + d) [b, d − a,−c] .

where δ = gcd(a, d − a, c) ≥ 1 and n satisfies the following

(i) n is a bijection from Π to F .
(ii) n(γpγ−1) = (det γ) σ(γ) n(p) for γ ∈ PGL(2, Z).
(iii) n(p−1) = −n(p)
(iv) n(w−1pw) = n(p)∗

(v) n(w−1p−1w) = n(p)′

where

(28) [a, b, c]∗ = [−a, b,−c]

and

(29) [a, b, c]′ = [a,−b, c] .

The proof is a straight-forward verification except for n being onto, which relies on
the theory of Pell’s equation (2). If f = [a, b, c] ∈ F and has discriminant d and if
(td, ud) is the fundamental positive solution to (2) (we also let εd := td+

√
d ud

2 ) and
if

(30) p =




td−udb
2 aud

−cud
td+udb

2




then p ∈ P and n(p) = f . That p is primitive follows from the well-known fact (see
[Cas82], p. 291) that the group of automorphs of f , AutΓ(f) satisfies
(31)

AutΓ(f) := {γ ∈ Γ : σ(γ)f = f} =






t−bu
2 au

−cu t+bu
2


 : t2 − du2 = 4



/

± 1

More generally
Z(f) := {γ ∈ PGL(2, Z)|σ(γ)f = (det γ)f}

(32) =






t−bu
2 au

−cu t+bu
2


 : t2 − du2 = ±4



/

± 1 .

Z(f) is cyclic with a generator ηf corresponding to the fundamental solution ηd =
(t1 +

√
d u1)/2, t1 > 0, u1 > 0 of

(33) t2 − du2 = ±4 .
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If (9) has a solution, i.e. d ∈ D−
R then ηd corresponds to a solution of (9) and

εd = η2
d. If (9) doesn’t have a solution then ηd = εd. Note that Z(f) has elements

with det γ = −1 iff df ∈ D−
R . (35)

From (ii) of the properties of the correspondence n we see that Z(f) is the
centralizer of p in PGL(2, Z), where n(p) = f . (36)

Also from (ii) it follows that n preserves classes and gives a bijection be-
tween Π and F . Moreover, from (iii), (iv) and (v) we see that the action of
G = {1, φw, φA, φR)} corresponds to that of G̃ = {1, ∗, ′,−} on F , G̃ preserves
the decomposition (27) and we therefore examine the fixed points of g ∈ G̃ on Fd.

Gauss [Gau] determined the number of fixed points of ′ in Fd. He discovered
that Fd forms an abelian group under his law of composition. In terms of the
group law, Φ′ = Φ−1 for Φ ∈ Fd. Hence the number of fixed points of ′ (which
he calls ambiguous forms) in Fd is the number of elements of order (dividing) 2.
Furthermore Fd/F2

d is isomorphic to the group of genera (the genera are classes
of forms with equivalence being local integral equivalence at all places). Thus the
number of fixed points of ′ in Fd is equal to the number of genera, which in turn
he showed is equal to the number ν(d) defined earlier. For an excellent modern
treatment of all of this see [Cas82].

Consider next the involution ∗ on Fd. If b ∈ Z and b ≡ d (mod 2) then
the forms [−1, b, d−b2

4 ] are all equivalent and this defines a class J ∈ Fd. Using
composition one sees immediately that J2 = 1, that is J is ambiguous. Also,
applying composition one finds that

(37) J [a, b, c] = [−a, b,−c] = [a, b, c]
∗
.

That is, the action of ∗ on Fd is given by translation in the composition group;
Φ → ΦJ . Thus ∗ has a fixed point in Fd iff J = 1, in which case all of Fd is fixed
by ∗. To analyze when J = 1 we first determine when J and 1 are in the same
genus (i.e. the principal genus). Since [1, b, b2−d

4 ] and [1,−b, b2−d
4 ] are in the same

genus (they are even equivalent) it follows that J and 1 are in the same genus iff
f = [1, b, b2−d

4 ] and −f are in the same genus. An examination of the local genera
(see [Cas82], p. 33) shows that there is an f of discriminant d which is in the same
genus as −f iff d ∈ DR. Thus J is in the principal genus iff d ∈ DR. (38)

To complete the analysis of when J = 1, note that this happens iff [1, b, b2−d
4 ] ∼

[−1, b d−b2

4 ]. That is, [1, b, b2−d
4 ] ∼ (detw) σ(w)[1, b, b2−d

4 ]. Alternatively, J = 1
iff f = (det γ) σ(γ)f with f = [1, b, b2−d

4 ] and det γ = −1. According to (35) this
is equivalent to d ∈ D−

R . Thus ∗ fixes Fd iff J = 1 iff d ∈ D−
R and otherwise ∗ has

no fixed points in Fd. (39)
We turn to the case of interest, that is, the fixed points of − on Fd. Since −

is the (mapping) composite of ∗ and ′ we see from the discussion above that the
action Φ −→ −Φ on Fd when expressed in terms of (Gauss) composition on Fd is
given by

(40) Φ −→ J Φ−1 .

Thus the reciprocal forms in Fd are those Φ’s satisfying

(41) Φ2 = J .

Since J2 = 1, these Φ’s have order dividing 4. Clearly, the number of solutions
to (41) is either 0 or #{B|B2 = 1}, that is, it is either 0 or the number of
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ambiguous classes, which we know is ν(d). According to (38) if d /∈ DR then
J is not in the principal genus and since Φ2 is in the principal genus for every
Φ ∈ Fd, it follows that if d /∈ DR then (41) has no solutions. On the other hand,
if d ∈ DR then we remarked earlier that d = 4a2 + b2 with (a, b) = 1. In fact
there are 2ν(d) such representations with a > 0. Each of these yields a form
f = [a, b,−a] in Fd and each of these is reciprocal by S0. Hence for each such
f, Φ = f̄ satisfies (41), which of course can also be checked by a direct calculation
with composition. Thus for d ∈ DR, (41) has exactly ν(d) solutions. In fact,
the 2ν(d) forms f = [a, b,−a] above project onto the ν(d) solutions in a two-to-one
manner. To see this, recall (15′), which via the correspondence n, asserts that every
reciprocal g is equivalent to an f = [a, b, c] with a = c. Moreover, since [a, b,−a] is
equivalent to [−a,−b, a] it follows that every reciprocal class has a representative
form f = [a, b,−a] with (a, b) ∈ Cd. That is (a, b) −→ [a, b,−a] from Cd to Fd maps
onto the ν(d) reciprocal forms. That this map is two-to-one follows immediately
from (16) and the correspondence n. This completes our proof of (3) and (8). In
fact (15′) and (16) give a direct counting argument proof of (3) and (8) which
does not appeal to the composition group or Gauss’ determination of the number
of ambiguous classes. The statements (i) and (ii) follow from (41) and (39). If
d ∈ D−

R then J = 1 and from (41) the reciprocal and ambiguous classes coincide. If
d ∈ D+

R then J �= 1 and according to (14) the reciprocal classes constitute a fixed
(non-identity) coset of the group A of ambiguous classes in Fd.

To summarize we have the following: The primitive hyperbolic conjugacy
classes are in 1-1 correspondence with classes of forms of discriminants d ∈ D.
To each such d, there are h(d) = |Fd| such classes all of which have a common trace
td and norm ε2d. The number of ambiguous classes for any d ∈ D is ν(d). Unless
d ∈ DR there are no reciprocal classes in Fd while if d ∈ DR then there are ν(d)
such classes and they are parametrized by Cd in a two-to-one manner. If d /∈ D−

R ,
there are no inert classes. If d ∈ D−

R every class is inert and every ambiguous class
is reciprocal and vice-versa. For d ∈ D−

R , C−
d parametrizes the G fixed classes.

Here are some examples:

(i) If d ∈ DR and Fd has no elements of order four, then d ∈ D−
R (this fact

seems to be first noted in [Re1]). For if d ∈ D+
R then J �= 1 and hence

any one of our ν(d) reciprocal classes is of order four. In particular, if

d = p ≡ 1 (mod 4), then h(d) is odd (from the definition of ambiguous

forms it is clear that h(d) ≡ ν(d) (mod 2)) and hence d ∈ D−
R . That is,

t2 − pu2 = −4 has a solution (this is a well-known result of Legendre).

(ii) d = 85 = 17 × 5. η85 = 9+
√

85
2 , ε85 = 83+9

√
85

2 , 85 ∈ D−
R and ν(85) =

h(85) = 2. The distinct classes are [1, 9,−1] and [3, 7,−3]. Both are

ambiguous reciprocal and inert. The corresponding classes in ρ are




 1 9

9 82






Γ

and




 10 27

27 73






Γ

.
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(iii) d = 221 = 13 × 17. η221 = ε221 = 15+
√

221
2 so that 221 ∈ D+

R . ν(221) =

2 while h(221) = 4. The distinct classes are [1, 13,−13], [−1, 13, 13],

[5, 11,−5] = [7, 5,−7], [−5, 11, 5] = [−7, 5, 7]. The first two classes 1 and

J are the ambiguous ones while the last two are the reciprocal ones. There

are no inert classes. The composition group is cyclic of order four with

generator either of the reciprocal classes. The two genera consist of the

ambiguous classes in one genus and the reciprocal classes in the other.

The corresponding classes in ρ221 are


 2 5

5 13






Γ

and




 13 5

5 2






Γ

.

The two-to-one correspondence from C221 to ρ221 has (5, 11) and (7, 5)

going to the first class and (5, 11) and (7,−5) going to the second class.

(iv)§ d = 1885 = 5 × 13 × 29. η1885 = ε1885 = (1042 + 24
√

1885/2) so that

1885 ∈ D+
R . ν(1885) = 4 and h(1885) = 8. The 8 distinct classes are

1 = [1, 43,−9], [−1, 43, 9] = J, [7, 31,−33], [−7, 31, 33],

[21, 11,−21] = [−19, 21, 19], [−21, 11, 21] = [19, 21,−19],

[3, 43,−3] = [17, 27,−17], [−3, 43, 3] = [−17, 27, 17].

The first four are ambiguous and the last four reciprocal. The com-

position group F1885
∼= Z/2Z × Z/4 and the group of genera is equal to

F1885/{1, J}. The corresponding classes in ρ1885 are


 389 504

504 653






Γ

,




 653 504

504 389






Γ

,




 5 72

72 1037






Γ

,




 1037 72

72 5






Γ

.

The two-to-one correspondence from C1885 to ρ1885 has the pairs (21, 11)

and (19,−21), (21,−11) and (19, 21), (3, 43) and (17, 27), (3,−43) and

(17,−27) going to each of the reciprocal classes.

§The classes of forms of this discriminant as well as all others for d < 2000 were computed

using Gauss reduced forms, in Kwon [Kwo].
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(v) Markov discovered an infinite set of elements of II all of which project

entirely into the set G3/2, where for a > 1Ga = {z ∈ G; y < a} and G

is the standard fundamental domain for Γ. These primitive geodesics are

parametrized by positive integral solutions m = (m0, m1, m2) of

(41′) m2
0 + m2

1 + m2
2 = 3 m0m1m2 .

All such solutions can be gotten from the solution (1, 1, 1) by repeated

application of the transformation (m0, m1, m2) → (3m1m2 −m0, m1, m2)

and permutations of the coordinates. The set of solutions to (41′) is very

sparse [Zag82]. For a solution m of (41′) with m0 ≥ m1 ≥ m2 let u0 be

the (unique) integer in (0, m0/2] which is congruent to εm̄1m2 (mod m0)

where ε = ±1 and m̄1m1 ≡ 1 (mod m0). Let v0 be defined by u2
0 + 1 =

m0v0, it is an integer since (m̄1m2)2 ≡ −1 mod m0, from (41′). Set fm

to be [m0, 3m0−2u0, v0−3u0] if m0 is odd and 1
2 [m0, 3m0−2u0, v0−3u0]

if m0 is even. Then fm ∈ F and let Φm = f̄m ∈ F . Its discriminant dm

is 9m2
0 − 4 if m0 is odd and (9m2

0 − 4)/4 if m0 is even. The fundamental

unit is given by εdm
= (3m +

√
dm)/2 and the corresponding class in Π is

{pm}Γ with

(41′′) pm =


 u0 m0

3u0 − v0 3m0 − u0


 .

The basic fact about these geodesics is that they are the only complete

geodesics which project entirely into G3/2 and what is of interest to us here,

these {pm}Γ are all reciprocal (see [CF89] p. 20 for proofs).

m = (1, 1, 1) gives Φ(1,1,1) = [1, 1,−1], d(1,1,1) = 5, ε5 = (3 +
√

5)/2

while η5 = (1 +
√

5)/2. Hence d5 ∈ D−
R and Φ(1,1,1) is ambiguous and

reciprocal. The same is true for m = (2, 1, 1) and Φ(2,1,1) = [1, 2,−1].

m = (5, 2, 1) gives Φ(5,2,1) = [5, 11,−5] and d(5,2,1) = 221. This is

the case considered in (iv) above. Φ(5,2,1) is one of the two reciprocal

classes of discriminant 221. It is not ambiguous.

For m �= (1, 1, 1) or (2, 1, 1), ηdm
= εdm

and since Φm is reciprocal we

have that dm ∈ D+
R and since Φm is not ambiguous, it has order 4 in Fdm

.
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We turn to counting the primes {p} ∈ ΠH , for the subgroups H of G. The cases
H = {e} and 〈φw〉 are similar in that they are connected with the prime geodesic
theorems for Γ = PSL(2, Z) and PGL(2, Z) [Hej83].

Since t(p) ∼ (N(p))1/2 as t(p) −→ ∞,

(42) Π{e} (x) =
∑

t(p) ≤ x
{p}∈ Π

1 ∼
∑

N(p) ≤ x2
{p}∈Π

1 .

According to our parametrization we have

(43)
∑

N(p) ≤ x2
{p}∈Π

1 =
∑
d ∈D

εd ≤ x

h(d) .

The prime geodesic theorem for a general lattice in PSL(2, R) is proved using
the trace formula, however for Γ = PSL(2, Z) the derivation of sharpest known
remainder makes use of the Petersson-Kuznetzov formula and is established in
[LS95]. It reads

(44)
∑

N(p) ≤ x
{p}∈Π

1 = Li(x) + O(x7/10) .

Hence

(45) Π{e}(x) ∼
∑
d ∈D

εd ≤ x

h(d) ∼ x2

2 log x
, as x −→ ∞ .

We examine H = 〈φw〉 next. As x −→ ∞,

(46) Π〈φw〉(x) =
∑

t(p) ≤ x
{p}∈Π〈φw〉

1 ∼
∑

N(p) ≤ x2
{p}∈Π〈φw〉

1 .

Again according to our parametrization,

(47)
∑

N(p) ≤ x2
{p}∈Π〈φw〉

1 =
∑

d ∈D−
R

εd ≤ x

h(d) .

Note that if p ∈ P and φw({p}) = {p} then w−1p w = δ−1pδ for some δ ∈ Γ.
Hence w δ−1 is in the centralizer of p in PGL(2, Z) and det(wδ−1) = −1. From
(36) it follows that there is a unique primitive h ∈ PGL(2, Z), deth = −1, such
that h2 = p. Moreover, every primitive h with det h = −1 arises this way and if p1

is conjugate to p2 in Γ then h1 is Γ conjugate to h2. That is,

(48)
∑

N(p) ≤ x2
{p}∈Π〈φw〉

1 =
∑

N(h) ≤ x
{h}Γ

det h = −1

1 ,

where the last sum is over all primitive hyperbolic elements in PGL(2, Z) with
det h = −1, {h}Γ denotes Γ conjugacy and N(h) =

√
N(h2). The right hand

side of (48) can be studied via the trace formula for the even and odd part of the
spectrum of Γ\H ( [Ven82], pp. 138-143). Specifically, it follows from ([Efr93],
p. 210) and an analysis of the zeros and poles of the corresponding Selberg zeta
functions Z+(s) and Z−(s) that
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(49) B(s) := Π
{h}Γ, det h= −1

h primitive

(
1 − N(h)−s

1 + N(h)−s

)

has a simple zero at s = 1 and is homomorphic and otherwise non-vanishing in
�(s) > 1/2.

Using this and standard techniques it follows that

(50)
∑

N(h) ≤ x
det h= −1

{γ}Γ

1 ∼ 1
2

x

log x
as x −→ ∞ .

Thus

(51) Π〈φw〉(x) ∼
∑

d ∈D−
R

εd ≤ x

h(d) ∼ x

2 log x
as x −→ ∞ .

The asymptotics for Π〈φR〉, Π〈φA〉 and ΠG all reduce to counting integer points
lying on a quadric and inside a large region. These problems can be handled for
quite general homogeneous varieties ([DRS93], [EM93]), though two of the three
cases at hand are singular so we deal with the counting directly.

(52) Π〈φR〉(x) =
∑

{γ}∈Π〈φR〉
t(γ) ≤ x

1 =
∑

td ≤ x

d ∈DR

ν(d) .

According to (16) every γ ∈ R is conjugate to exactly 4 primitive symmetric
γ ∈ Γ. So

(53)

Π〈φR〉 (x) = 1
4

∑
t(γ) ≤ x

γ ∈ P
γ = γt

1

∼ 1
4

∑
N(γ) ≤ x2

γ ∈P

γ = γt

1 .

Now if γ ∈ P and γ = γt, then for k ≥ 1, γk = (γk)t and conversely if β ∈ Γ
with β = βt, β hyperbolic and β = γk

1 with γ1 ∈ P and k ≥ 1, then γ1 = γt
1. Thus

we have the disjoint union
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∞⊔
k=1

{γk : γ ∈ P, γ = γt}

=




γ =




a b

c d


 ∈ Γ : t(γ) > 2 , γ = γt




=




 a b

b d


 : ad − b2 = 1 , 2 < a + d, a, b, d ∈ Z


 .(54)

Hence as y −→ ∞ we have,

ψ(y) := #


γ =


 a b

b d


 ∈ Γ : 2 < t(γ) ≤ y




∼ #


γ =


 a b

b d


 ∈ Γ : 1 < N(γ) ≤ y2




=
∞∑

k=1

#
{
γ ∈ P : γ = γt , N(γ) ≤ y2/k

}

= #{γ ∈ P : γ = γt , N(γ) ≤ y2} + O(ψ(y) log y)) .(55)

Now γ −→ γtγ maps Γ onto the set of
[

a b
b d

]
, ad − b2 = 1 and a + d ≥ 2, in a

two-to-one manner. Hence

(56) ψ(y) =
1
2

∣∣ {γ ∈ Γ : trace (γtγ) ≤ y
} ∣∣ − 1 .

This last is just the hyperbolic lattice point counting problem (for Γ and z0 = i)
see ([Iwa95], p. 192) from which we conclude that as y −→ ∞,

(57) ψ(y) =
3
2

y + O(y2/3) .

Combining this with (55) and (53) we get that as x −→ ∞

(58) Π〈φR〉(x) ∼
∑

d ∈DR
εd ≤ x

ν(d) ∼ 3
8

x .

The case H = 〈φA〉 is similar but singular. Firstly one shows as in (16) (this is
done in ([Cas82], p. 341) where he determines the number of ambiguous forms and
classes) that every p ∈ P which is ambiguous is conjugate to precisely 4 primitive
p’s which are either of the form

(59) w−1p w = p−1
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or

(60) w−1
1 p w1 = p−1 with w1 =

[
1 0
1 −1

]
,

called of the first and second kind respectively.
Correspondingly we have

(61)
∑
d ∈D
εd ≤ x

ν(d) ∼ Π〈φA〉(x) = Π(1)
〈φA〉(x) + Π(2)

〈φA〉(x) .

An analysis as above leads to

(62) Π(1)
〈φA〉 (x) ∼ 1

4
#
{
a2 − bc = 1 ; 1 < a <

x

2

}
=

1
2

∑
1<a< x

2

τ(a2 − 1)

where τ(m) = # of divisors of m.
The asymptotics on the r.h.s. of (62) may be derived elementarily as in Ingham

[Ing27] (for a power saving in the remainder see [DFI94]) and one finds that

(63) Π(1)
〈φA〉(x) ∼ 3

2π2
x(log x)2 as x −→ ∞ .

Π(2)
〈φA〉(x) is a bit messier and reduces to counting

(64)
1
4

#
{
(m, n, c) : m2 − 4 = n(n − 4c) , 2 < m ≤ x

}
.

This is handled in the same way though it is a bit tedious, yielding

(65) Π(2)
〈φA〉(x) ∼ 85

8π2
x(log x)2 .

Putting these together gives

(66)
∑
d ∈D

εd ≤ x

ν(d) ∼ Π〈φA〉 (x) ∼ 97
8π2

x(log x)2 as x −→ ∞ .

Finally we consider H = G. According to the parametrization we have

(67) ΠG(x) =
∑

{p}∈ΠG
t(p) ≤ x

1 =
∑

d ∈D−
R

td ≤ x

ν(d) ∼
∑

d ∈D−
R

εd ≤ x

ν(d) .

As in the analysis of Π〈φR〉 and Π〈φA〉 we conclude that
(68)

ΠG(x) ∼ 1
4

#
{

γ =
[

a b
b c

]
∈ PGL(2, Z); det γ = −1 , 2 < a + c ≤

√
x

}
.

Or, what is equivalent, after a change of variables:

(69) ΠG(x) ∼ 1
4

∑
m≤

√
x

rf (m2 + 4)

where rf (t) is the number of representations of t by f(x1, x2) = x2
1 + 4x2

2. This
asymptotics can be handled as before and gives

(70)
∑

d ∈D−
R

εd ≤ x

ν(d) ∼ ΠG(x) ∼ 21
8π

√
x log x .

This completes the proof of Theorem 2.



RECIPROCAL GEODESICS 231

Returning to our enumeration of geodesics, note that one could order the ele-
ments of Π according to the discriminant d in their parametrization and ask about
the corresponding asymptotics. This is certainly a natural question and one that
was raised in Gauss (see [Gau], §304).

For H a subgroup of G define the counting functions ψH corresponding to ΠH

by

(71) ψH(x) =
∑
d ∈D
d ≤ x

# {Φ ∈ Fd : h(Φ) = Φ , h ∈ H} .

Thus according to our analysis

(72) ψ{e}(x) =
∑
d ∈D
d ≤ x

h(d)

(73) ψ〈φA〉 (x) =
∑
d ∈D
d ≤ x

ν(d)

(74) ψ〈φR〉 (x) =
∑

d ∈DR
d ≤ x

ν(d)

(75) ψ〈φw〉 (x) =
∑

d ∈D−
R

d ≤ x

h(d)

(76) ψG(x) =
∑

d∈D−
R , d≤x

ν(d) .

The asymptotics here for the ambiguous classes was determined by Gauss
([Gau], §301), though note that he only deals with forms [a, 2b, c] and so his count
is smaller than (73). One finds that

(77) ψ〈φA〉 (x) ∼ 3
2π2

x log x , as x −→ ∞ .

As far as (74) goes, it is immediate from (1) that

(78) ψ〈φR〉 (x) ∼ 3
4π

x , as x −→ ∞ .

The asymptotics for (72) and (75) are notoriously difficult problems. They are
connected with the phenomenon that the normal order of h(d) in this ordering ap-
pears to be not much larger than ν(d). There are Diophantine heuristic arguments
that explain why this is so [Hoo84], [Sar85]; however as far as I am aware, all that
is known are the immediate bounds

(79) (1 + o(1))
3

2π2
x log x ≤ ψ{e}(x) � x3/2

log x
.

The lower bound coming from (77) and the upper bound from the asymptotics in
[Sie44],

∑
d ∈D
d ≤ x

h(d) log εd =
π2

18ζ(3)
x3/2 + O(x log x) .
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In [Ho] a more precise conjecture is made:

(80) ψ{e} (x) ∼ c2 x(log x)2 .

Kwon [Kwo] has recently investigated this numerically. To do so she makes
an ansatz for the lower order terms in (80) in the form: ψ{e}(x) = x[c2(log x)2 +
c1(log x) + c0] + O(xα) with α < 1. The computations were carried out for x < 107

and she finds that for x > 104 the ansatz is accurate with c0 � 0.06, c1 � −0.89
and c2 � 4.96. It would be interesting to extend these computations and also to
extend Hooley’s heuristics to see if they lead to the ansatz.

The difficulty with (76) lies in the delicate issue of the relative density of D−
R

in DR. See the discussions in [Lag80] and [Mor90] concerning the solvability of
(9). In [R3́6], the two-component of Fd is studied and used to get lower bounds of
the form: Fix t a large integer, then

(81)
∑

d ∈D+
R

d ≤ x

1 and
∑

d ∈D−
R

d ≤ x

1 �
t

x(log log x)t

log x
.

On the other hand each of these is bounded above by
∑

d ∈DR
d ≤ x

1, which by Lan-

dau’s thesis or the half-dimensional sieve is asymptotic to c3 x
/√

log x. (81) leads to
a corresponding lower bound for ψG(x). The result [R3́6] leading to (81) suggests
strongly that the proportion of d ∈ DR which lie in D−

R is in
(

1
2 , 1
)

(In [Ste93] a con-
jecture for the exact proportion is put forth together with some sound reasoning).
It seems therefore quite likely that

(82)
ψG(x)

ψ〈φR〉 (x)
−→ c4 as x −→ ∞ , with

1
2

< c4 < 1 .

It follows from (78) and (79) that it is still the case that zero percent of the
classes in Π are reciprocal when ordered by discriminant, though this probability
goes to zero much slower than when ordering by trace. On the other hand, according
to (82) a positive proportion, even perhaps more than 1/2, of the reciprocal classes
are ambiguous in this ordering, unlike when ordering by trace.

We end with some comments about the question of the equidistribution of
closed geodesics as well as some comments about higher dimensions. To each prim-
itive closed p ∈ Π we associate the measure µp on X = Γ\H (or better still, the
corresponding measure on the unit tangent bundle Γ\SL(2, R)) which is arc length
supported on the closed geodesic. For a positive finite measure µ let µ̄ denote the
corresponding normalized probability measure. For many p’s (almost all of them
in the sense of density, when ordered by length) µ̄p becomes equidistributed with
respect to dA = 3

π
dxdy
y2 as �(p) → ∞. However, there are at the same time many

closed geodesics which don’t equidistribute w.r.t. dA as their length goes to infin-
ity. The Markov geodesics (41′′) are supported in G3/2 and so cannot equidistribute
with respect to dA. Another example of singularly distributed closed geodesics is
that of the principal class 1d (∈ Π), for d ∈ D of the form m2 − 4, m ∈ Z. In this
case εd = (m +

√
d)/2 and it is easily seen that µ̄1d

→ 0 as d → ∞ (that is, all the
mass of the measure corresponding to the principal class escapes in the cusp of X).
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On renormalizing one finds that for K and L compact geodesic balls in X,

lim
d→∞

µ1d
(L)

µ1d
(K)

→ Length(g ∩ L)
Length(g ∩ K)

,

where g is the infinite geodesics from i to i∞.
Equidistribution is often restored when one averages over naturally defined sets

of geodesics. If S is a finite set of (primitive) closed geodesics, set

µ̄S =
1

�(S)

∑
p∈S

µp

where �(S) =
∑
p∈S

�(p).

We say that an infinite set S of closed geodesics is equidistributed with respect
to µ when ordered by length (and similarly for ordering by discriminant) if µ̄Sx

→ µ
as x → ∞ where Sx = {p ∈ S : �(p) ≤ x}. A fundamental theorem of Duke [Duk88]
asserts that the measures µFd

for d ∈ D become equidistributed with respect to dA
as d → ∞. From this, it follows that the measures

∑
t(p) = t

p∈Π

µp =
∑
td = t
d∈D

µFd

become equidistributed with respect to dA as t → ∞. In particular the set Π
of all primitive closed geodesics as well as the set of all inert closed geodesics
become equidistributed as the length goes to infinity. However, the set of ambiguous
geodesics as well as the G-fixed closed geodesics don’t become equidistributed in
Γ\PSL(2, R) as their length go to infinity. The extra logs in the asymptotics (63)
and (70) are responsible for this singular behaviour. Specifically, in both cases a
fixed positive proportion of their mass escapes in the cusp. One can see this in the
ambiguous case by considering the closed geodesics corresponding to [a, 0,−c] with
4ac = t2 − 4 and t ≤ T . Fix y0 > 1 then such a closed geodesic with

√
c/a ≥ y0

spends at least log (
√

c/a/y0) if its length in Gy0 = {z ∈ G;�(z) > y0}. An
elementary count of the number of such geodesics with t ≤ T , yields a mass of at
least c0T (log T )3 as T −→ ∞, with c0 > 0 and independent of y0. This is a positive
proportion of the total mass

∑
t({γ}) ≤ T
γ∈π〈φA〉

�({γ}), and, since it is independent of y0, the

claim follows. The argument for the case of G-fixed geodesics is similar.
We expect that the reciprocal geodesics are equidistributed with respect to dg

in Γ\PSL(2, R), when ordered by length. One can show that there is c1 > 0 such
that for any compact set Ω ⊂ Γ PSL(2, R)

(83) lim inf
x−→∞

µρx
(Ω) ≥ c1Vol(Ω) .

This establishes a substantial part of the expected equidistribution. To prove (83)
consider the contribution from the reciprocal geodesics corresponding to [a, b,−a]
with 4a2 + b2 = t2−4, t ≤ T . Each such geodesic has length 2 log((t+

√
t2 − 4)/2).

The equidistribution in question may be rephrased in terms of the Γ action on the
space of geodesics as follows. Let V be the one-sheeted hyperboloid {(α, β, γ) :
β2−4αγ = 1}. Then ρ(PSL(2, R)) acts on the right on V by the symmetric square
representation and it preserves a Haar measure dv on V . For ξ ∈ V let Γξ be the
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stabilizer in Γ of ξ. If the orbit {ξρ(γ) : γ ∈ Γξ\Γ} is discrete in V then
∑

γ∈Γξ\Γ
δξρ(γ)

defines a locally finite ρ(Γ)-invariant measure on V . The equidistribution question
is that of showing that νT becomes equidistributed with respect to dv, locally in
V , where

(84) νT :=
∑

4 < t≤T

∑
4a2 + b2 = t2 −4

∑
γ∈Γξ(a,b)\Γ

δξ(a,b) ρ(γ)

and ξ(a, b) =
(

a√
t2−4

, b√
t2−4

, −a√
t2−4

)
.

Let Ω be a nice compact subset of V (say a ball) and fix γ ∈ Γ, then using the
spectral method [DRS93] for counting integral points in regions on the two-sheeted
hyperboloid 4a2 + b2 − t2 = −4 one can show that

(85)
∑

4 < t≤T

∑
4a2 + b2 = t2 −4

γ /∈i Γξ(a,b)

δξ(a,b) ρ(γ) (Ω) = c(γ, Ω)T + 0
(
T 1−δ ‖ γ ‖A

)

where δ > 0 and A < ∞ are fixed, c(γ, Ω) ≥ 0 and ‖ γ ‖=
√

tr(γ′γ). The c’s satisfy

(86)
∑

‖γ‖≤ ξ

c(γ, Ω) � Vol(Ω) log ξ as ξ −→ ∞ .

Hence, summing (85) over γ with ‖ γ ‖≤ T ε0 for ε0 > 0 small enough but fixed, we
get that

(87) νT (Ω) � Vol(Ω) T log T .

On the other hand for any compact B ⊂ V , νT (B) = O(T log T ) and hence (83)
follows.

In this connection we mention the recent work [ELMV] in which they revisit
Linnik’s methods and give a proof along those lines of Duke’s theorem mentioned
on the previous page. They show further that for a subset of Fd of size dε0 with
ε0 > 0 and fixed, any probability measure which is a weak-star limit of the measures
associated with such closed geodesics has positive entropy.

The distribution of these sets of geodesics is somewhat different when we order
them by discriminant. Indeed, at least conjecturally they should be equidistributed
with respect to dĀ. We assume the following normal order conjecture for h(d)
which is predicted by various heuristics [Sar85], [Hoo84]; For α > 0 there is ε > 0
such that

(88) #{d ∈ D : d ≤ x and h(d) ≥ dα} = O
(
x1−ε

)
.

According to the recent results of [Pop] and [HM], if h(d) ≤ dα0 with α0 = 1/5297
then every closed geodesic of discriminant d becomes equidistributed with respect
to dĀ as d −→ ∞. From this and Conjecture (88) it follows that each of our sets of
closed geodesics, including the set of principal ones, becomes equidistributed with
respect to dĀ, when ordered by discriminant.

An interesting question is whether the set of Markov geodesics is equidistributed
with respect to some measure ν when ordered by length (or equivalently by dis-
criminant). The support of such a ν would be one-dimensional (Hausdorff). One
can also ask about arithmetic equidistribution (e.g. congruences) for Markov forms
and triples.
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The dihedral subgroups of PSL(2, Z) are the maximal elementary noncyclic
subgroups of this group (an elementary subgroup is one whose limit set in R ∪ {∞}
consists of at most 2 points). In this form one can examine the problem more gen-
erally. Consider for example the case of the Bianchi groups Γd = PSL(2, Od) where
Od is the ring of integers in Q(

√
d), d < 0. In this case, besides the issue of the con-

jugacy classes of maximal elementary subgroups, one can investigate the conjugacy
classes of the maximal Fuchsian subgroups (that is, subgroups whose limit sets are
circles or lines in C ∪ {∞} = boundary of hyperbolic 3-space H3). Such classes cor-
respond precisely to the primitive totally geodesic hyperbolic surfaces of finite area
immersed in Γd\H3. As in the case of PSL(2, Z), these are parametrized by orbits
of integral orthogonal groups acting on corresponding quadrics (see Maclachlan and
Reid [MR91]). In this case one is dealing with an indefinite integral quadratic form
f in four variables and their arithmetic is much more regular than that of ternary
forms. The parametrization is given by orbits of the orthogonal group Of (Z) act-
ing on Vt = {x : f(x) = t} where the sign of t is such that the stabilizer of an
x(∈ Vt(R)) in Of (R) is not compact. As is shown in [MR91] using Siegel’s mass
formula (or using suitable local to global principles for spin groups in four variables
(see [JM96]) the number of such orbits is bounded independently of t (for d = −1,
there are 1,2 or 3 orbits depending on congruences satisfied by t). The mass formula
also gives a simple formula in terms of t for the areas of the corresponding hyper-
bolic surface. Using this, it is straight-forward to give an asymptotic count for the
number of such totally geodesic surfaces of area at most x, as x → ∞ (i.e., a “prime
geodesic surface theorem”). It takes the form of this number being asymptotic to
c.x with c positive constant depending on Γd. Among these, those surfaces which
are noncompact are fewer in number, being asymptotic to c1x/

√
log x.

Another regularizing feature which comes with more variables is that each
such immersed geodesic surface becomes equidistributed in the hyperbolic manifold
Xd = Γd\H3 with respect to dṼol, as its area goes to infinity. There are two ways
to see this. The first is to use Maass’ theta correspondence together with bounds
towards the Ramanujan Conjectures for Maass forms on the upper half plane,
coupled with the fact that there is basically only one orbit of Of (Z) on Vt(Z) for
each t (see the paper of Cohen [Coh05] for an analysis of a similar problem). The
second method is to use Ratner’s Theorem about equidistribution of unipotent
orbits and that these geodesic hyperbolic surfaces are orbits of an SOR(2, 1) action
in Γd\SL(2, C) (see the analysis in Eskin-Oh [EO]).
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