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ALGEBRAIC INVARIANTS OF BOUNDARY LINKS
BY
NOBUYUKI SATO

ABSTRACT. In this paper we study the homology of the universal abelian cover of
the complement of a boundary link of n-spheres in S"*2, as modules over the (free
abelian) group of covering transformations. A consequence of our results is a
characterization of the polynomial invariants p, , of boundary links for 1 < ¢ <
[n/2]. Along the way we address the following algebraic problem: given a homo-
morphism of commutative rings f: R— S and a chain complex C, over R,
determine when the complex S ® C, is acyclic. The present work is a step
toward the characterization of link modules in general.

Introduction. A link L of n-spheres in S"*? is an embedding L: 1I7., S/ — S"*2,
where 1172, S represents the disjoint union of m copies of S". The components of
the link are the submanifolds L(S;"). If the embedding L extends to an embedding
L: I, ¥, > S"*? where V, is a manifold with boundary S/, the link is called a
boundary link. It is well known that the tubular neighborhoods of the components
are trivial, and thus diffeomorphic to S" X D?2 Let p, be the circle represented by
+X0D? in S X D?, oriented so that y, links S with linking number + 1. The y;
are called the meridians.

Many of the classical link invariants come from looking at certain algebraic
invariants of the complement X = S"*2 — U™, N(L(S/)), where N(L(S/")) is an
open tubular neighborhood of L(S]) in S"*2 These include the Alexander
polynomials, the higher polynomial invariants, and the Alexander ideals. These
latter are all related to the homology of the universal abelian cover X of X. In 1977,
Levine [14] characterized the homology of X as a module over the covering
transformations (except for H l)? ) for knots, generalizing earlier works on the
characterization of knot polynomials ([19], [11] and [12]).

The present work is a step toward the characterization of H ,/\7 for links, with
applications to the link polynomials. We work with the case of boundary links,
where it will be seen that the algebra is somewhat easier than the general case.

Our main results are the finding of certain necessary conditions on H *X~
(Theorems 2.7 and 3.1 and Corollaries 4.6 and 4.8). This is followed by the finding
of sufficient conditions and the construction of boundary links with certain
specified H*/\’; (Theorem 5.1). In §6, this is re-interpreted in terms of the poly-
nomial invariants, to obtain a characterization of these invariants below the middle
dimension for a boundary link of n-spheres, n > 2.
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Since, by Alexander duality, the group H,X is free abelian of rank m, the group
of covering transformations of X is Z™. Hence, the groups H, X are modules over
A = Z[Z™], which we identify with the localized polynomial ring

Z[xy, ..., %, x; ..., x, "] by writing Z™ multiplicatively. This ring comes
equipped with a canonical augmentation e: A — Z defined by sending =, 1,8
to Z n,.

-4

The paper is organized as follows. §1 deals with the central algebraic problem of
the paper, in some generality, and may be of independent interest. §§2 through 4
develop necessary conditions on H */\7 , while sufficient conditions are found in §5.
As noted before, these theorems are interpreted as theorems concerning the
polynomial invariants in §6. In §4 we show that simple boundary links satisfy a
high-dimensional analogue of Blanchfield duality. _

Some of the ideas in this work come from my Ph.D. thesis, written at Brandeis
University. I am grateful for the guidance of Jerome Levine.

1. Modules which are f-trivial and f-acyclicity. In this section we develop the main
algebraic concept of this paper, in some generality. Let f: R —> S be a map of
commutative rings with unit, and let C, be a chain complex over R. We ask what
conditions to place on the homology of C, so that § ®, C, is acyclic, that is, so
that C, is f-acyclic. For links of n-spheres in S$"*2, the chain complex of the
universal abelian cover X of the complement X is a chain complex over A, and the
augmentation map gives a map of rings e: A — Z. The chains of X are given by
72Q, C*()?), and Hq:\’ =0 for 1 <gqg <n+ 1. We wish to see what conditions
this imposes on H,X. We will wish to place some restrictions on our general
situation. We will assume that for each g, Cq is a flat R-module, that C, = 0 for
g < 0, and that the homology of C, is finitely generated in each dimension. This
will be automatic for the case of links.

A finitely generated R-module M is called f-trivial if Torf(S, M) = 0 for all q.
In the special case of links where f: R — S is given by &: A — Z, we say that an
e-trivial A-module is a module of zype L. It turns out that, in many cases, the
condition that Torf(S, M) = 0 for all ¢ may be replaced by the seemingly weaker
condition that Tbr{;(S, M) = 0, that is, that S ® ; M = 0. The following result is
related to a result of Dwyer [5]. Justin Smith has obtained similar results in a more
general setting [23]. It is true in more generality than it is stated; I do not know
whether it is true in complete generality. Here, M is a finitely generated R-module.

THEOREM 1.1. If either of the following conditions is true, then M is f-trivial if and
only if S @, M = 0.

(1) f: R > S is onto.

(ii) R and S are noetherian rings and M has a finite free resolution over R. This
condition means that there is an exact sequence 0 > F, > F, | —»--- > F, > F,
— M — 0 where F, is a free R-module of finite rank for each i.

1

ReMARK. For the case of ¢: A — Z, both conditions are satisfied. Clearly, (i) is
satisfied. To see (it), we note that A has finite global dimension and every
projective A-module is free [22].
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PROOF OF 1.1. (i) We use an argument similar to one given in [5]. Let I = ker f.
Then the condition that S ® M = 0 is equivalent to the statement that M = IM.
By Nakayama’s lemma [15 p. 11] there exists an element r € R of the form 1 + i,
where i € I, such that rM = 0. We will show that multiplication by r is both the
identity map and the zero map on Torf(S, M), g > 0. This will prove that these
modules are trivial.

Multiplication by r is induced by multiplication by r on S; since f(r) = 1, this
induces the identity map. On the other hand, it is also induced by multiplication by
r on M, which is the zero map. Hence, on Torf;(S, M), multiplication by r is both
the identity and zero, making Tory(S, M) = 0.

For 1.1 part (ii) we need the Buchsbaum-Eisenbud theory of finite free resolu-
tions (see [2] and [3]; see also [17] for a different approach). For the convenience of
the reader and because we will use some of this material later, we will summarize
the portions of the theory we will need. We now assume that R and S are
noetherian rings.

Let g: F — G be a map where F is a free R-module of rank m and G is a free
R-module of rank n. Choosing bases for F and G, we may represent g by an
(m X n) matrix over R. Fori > 0, let I,(g) be the ideal generated by the (n — i) X
(n — i) minor determinants of this matrix. If n > m, then I, = 0for0 <i <n —m
and if i is larger than m or n, take I, = (1). By the process of expansion by minors,
I, C I, for all k. It is not difficult to see that these ideals are independent of the
choice of bases for F and G; in fact, they are the Fitting invariants of cok g (see [9,
p. 145)).

The rank of g, denoted rk(g), is the largest k for which there exists a nonzero
k X k minor determinant. The ideal /(g) of k X k minor determinants, where
k = rk(g), is the first nonvanishing Fitting invariant of cok g.

The depth of an ideal A4 is the length of the longest R-sequence in A. This makes
sense because R is noetherian. If 4 = R, then depth(4) = 0. The radical of an
ideal 4, denoted Rad(A), is the set of all » € R such that some power of r is in 4.

THEOREM 1.2. Suppose we are given a complex ¥ where F, is a free module of finite
rank for each k:
F:0-5F,>F,_ , > - >F>F,
Pn Pn—1 P
(1) If F is exact, then for each k, Rad({(¢g,)) C Rad(I(¢y 1))

(ii) F is exact if and only if for each k, tk(q.) + rk(g,,) = rtk(F,) and
depth(1(@,)) > k.

Part (i) is [3, Theorem 2.1] and part (ii) is [2, Corollary 1].

Proor of 1.1. (ii) Suppose that M has a finite free resolution F, and that
S ®r M = 0. It follows from [2, Lemma 1] that the ideal generated by f({(¢,)) is
S. We wish to show that § ® ; F is exact. This will be accomplished, for example,
if we can show that rk(1 ® ¢,) = rk(q,) and /(1 ® ¢,) = S for all k. Then we
apply Theorem 1.2 part (ii). Since the rank of 1 ® ¢, can never exceed the rank of
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@, (a matrix representative for 1 ® ¢, is obtained by mapping a matrix representa-
tive for ¢, via f to S), both statements will follow from 1.2(i) and the following
lemma.

LEMMA 1.3. Suppose I and J are ideals of R, with Rad(I) C Rad(J). If the ideal of
S generated by f(I) is S, then so is the ideal generated by f(J).

PrOOF. For any subset K of S, let {K} denote the ideal of S generated by K.
Clearly, if the radical of an ideal is the whole ring, then the ideal itself must be the
whole ring. Therefore, it suffices to prove that Rad({ f(J)}) = S. On the other
hand, f(Rad(J)) C Rad{ f(/)}. Thus, it suffices to show that { f(Rad(/))} = S. But
I C Rad(/) C Rad(J), so that {f(I)} C { f(Rad(J))}. Since {f(I)} = S, we are
done.

This completes the proof of Theorem 1.1. We now turn to the main result of this
section. It is, as is 1.1, true in greater generality.

THEOREM 1.4. C, is f-acyclic if and only if for each q, H,(C,) is f-trivial, as long
as one of the conditions below holds.

1) f: R > S is onto.

(ii) R and S are neotherian rings and for each q, H,(C,) has a finite free resolution
over R.

The proof depends on the following universal coefficient spectral sequence for
homology. A special case of it is the Cartan-Leray-Serre spectral sequence of a
covering projection. See, for example, [8].

THEOREM 1.5. Let C, be a chain complex of flat R-modules, and let M be any
R-module. There is a spectral sequence (E’,d") converging to the homology
H, (M ®g C,), with Epz,q = Torp(M, H,(C,)) and differential d” of degree (—r,
r—1).

PROOF OF THEOREM 1.4. Suppose that either (i) or (ii) holds. If H,(C,) is f-trivial,
we apply the spectral sequence with M = S. Ep%q =0 for all p, ¢ so that
H,(S ®x C,) =0 in all dimensions. Hence C, is f-acyclic. If, conversely, C, is
J-acyclic, we know that E% =0 for all p, g. Since Eoz,0 = Ego we see that
S ®g Hy(C,) = 0. Hence, by Theorem 1.1, EZ, = 0 for all p. Then EJ, = Eg5.
Repeating the argument, we see that H,(C,) is f-trivial. But we can keep applying
this argument to show that H,(C,) is f-trivial for every q.

REMARK. A slight variation of this argument will be used in §3 to prove Theorem
3.1

We finish with a “matrix-theoretic” characterization of A-modules of type L, and
construct examples.

THEOREM 1.6. A finitely generated A-module M is of type L if and only if
e(Io(M)) = (1) = Z, where ¢: A — Z is the augmentation. In other words, M is of
type L if and only if it has a presentation matrix A such that the minors of largest size
of the integral matrix €(A) are relatively prime.
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EXAMPLE. Let A = (a;) be a square matrix over A such that e(det 4) = + 1. The
module presented by A is of type L. In fact, all modules of type L of projective
dimension one arise in this fashion. Typical examples would be the module
presented by the 1 X 1 matrix (g) where &(g) = + 1 (say g = 2x, — 1), or the
module presented by a diagonal matrix whose diagonal entries satisfied the
condition on g above.

2. Necessary conditions on H 1X~ . In this section, we derive necessary conditions
on a finitely generated A-module M to be H,X. We will see that H ,/\7 always has a
special form.

Let ¥ = \/I_, S', with vertex v,. Choose a base point x, in the interior of the
link complement X. We have the following result of Smythe [21] and Gutierrez [6].
Let X be the complement of a boundary link.

LEMMA 2.1. There are base-point preserving maps e: V — X and r: X — V such
that e carries the loops of V to the meridians of X and r carries the meridians of X to
the loops of V. The composition r © e: V — V is homotopic, rel vy, to id,. In fact, the
existence of such maps implies that the link is a boundary link.

An immediate corollary, also due to the aforementioned authors, is:

COROLLARY 2.2. If m = m\(X, Xo), then there is a splitting F,, — © — F, where F,,
is the free group on m letters.

We can define a functor § from groups to Abelian groups by letting ¥(G) be
G’/G"” (the commutator subgroup modulo its commutator) and if #: G — H is any
homomorphism, %(h) is the induced map G'/G” — H’'/H”. We have the im-
mediate result:

COROLLARY 2.3. There is an induced splitting F,,/F, — «'/n" — F. / F/.

It can easily be checked that these maps respect the action via conjugation by
elements of 7 /7" = F,, / F, = Z™. Therefore, 7’ /7" splits as a A-module. We now
have the following result:

COROLLARY 2.4. H X = F.,/F. ® T for some A-module T.

We will see that 7 is the torsion submodule of H,X, and that T is in fact of type
L. First, however, we will get a description of F, /F..

LEMMA 2.5. F,, / F,, is the kernel of the map which sends the basis elements e; of \™
to x;, — 1 €A. Thus, F, /F, is torsion-free of rank m — 1 and has projective
dimension m — 2. In particular, it is free if and only if m < 2.

Proor. The first statement follows from examining the chains of the universal
abelian cover of V. The rest follows from the fact that the map sending the basis
elements e, of A™ to x; — 1 € A is the first map in the Koszul complex of the
A-regular sequence (x; — 1, x, — 1, ..., x,, — 1), which is exact and of minimal
length (see [15]). The complex is of length m. Therefore, F, /F,, has a minimal
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projective resolution of length m — 2 (note we are using the fact that all projective

A-modules are free [22]). The rank follows from a Euler characteristic argument

using the exact sequence 0 > F, /F,, > A" > A->A/(x,— 1,...,x, — 1)>0.
We now prove the following, which gives a description of T.

LEMMA 2.6. T is of type L. Hence T is the torsion submodule of H 1/\7 .

ProOF. We use the Cartan-Leray-Serre spectral sequence of the covering X X.
E}, = TorNZ, H, X), which is isomorphic to H (Z™; H, X). Let (%) represent the
b1nom1al coeff1c1ent (a!)/b!(a — b)!. For small p, g we plcture the E2-term:

g=1 ZQ,(F,/F.®T)

4o

g=0 z(3) z(7 ) z( )
p=0 p=1 p=2
Since H X = Z", we see that dj, must be onto. But Z® , (F,/F; ® T) = (Z
®,(F./EN)®(Z®, T) and it is easy to see that Z ® ,(F,/F.) = Z% (for
example, all the differentials in the Koszul complex of the A-sequence (x, —
1,...,x, — 1) become zero upon tensoring with Z, so that Z ® ,(F, /F,)=Z
®, AD = Z9). We have d7y: Z 29 & (Z®, T) onto so that Z®,T = 0.
By Theorem 1.1, the lemma follows.
To summarize,

THEOREM 2.7. Suppose X is the universal abelian cover of the complement of a
boundary link. Then

HX=F,/F.®T
where T is the A-torsion submodule of H lz\7 and is of type L.

It turns out that it will be useful to have the splitting of Theorem 2.7 be
geometrically induced. First, we prove a result about covering spaces.

Suppose that f: (X, x,) = (Y, y,) is a map of CW-complexes with base point. Let
Cz = (X, xo) and H = 7 (Y, y,), and let K <1__G, L < H such that f(K) C L. Let
X be the covering of X associated to K and Y the covering of Y associated to L.
Let f,: G/K— H/L be the induced map from f;: G — H. Note that G/K is the
group of covering transformations of X, and H / L is the group of covering
transformations of ¥. Choose base pomts %y € p~'(x) and ¥, € p~'(y,). Then
there is a unique lift of f to f: (X Xg) — (Y Yo)-

PROPOSITION 2.8. For any covering transformation gf( g - Xo) = f(8) - Vo. Thus, the
unique lift is “equivariant” with respect to the covering transformations.

PROOF. Let y be a path from %, to g- X, in X. Then f o v is a path from y, to
g’ -y, for some covering transformation g’. Projecting y to x gives a loop at x, € X
representing a class [y] which represents g in G/ K. But projecting foytoYgivesa
loop which represents f, g in H/L. Hence, g’ = f,g and the result is proved.
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Now, let ¥ and X be the universal abelian covers of ¥ and X, respectively.
Choose base points %, € X and ¢, € V. Let é be the unique lift of e and let 7 be
the unique lift of r. Since e and r induce canonical identifications of H,X, which is
the group of covering transformations, é and 7 are equivariant maps. Since
r o e=1id, rel v, we have that 7 o & is homotopic to a covering transformation
rel . Hence F o é = idy. This induces spllttmgs on all homology In particular,
we have é, is a monomorphlsm and so H, X = é H, V @ T for some module 7.
But H,V = F. /F].

3. A necessary condition on the higher homology of X. The results of the previous
section are valid for all n. We now restrict our attention to higher dimensional
boundary links, where n > 1. The main result of this section is the following:

THEOREM 3.1. Hq)? is of type L for 2 < q < n.

The proof will proceed by steps. We first figure out the d? differentials in the
Cartan-Leray-Serre spectral sequence of the covering X — X. The E*term is given
by E2, = H,(Z"; H, X) with differential d?: E, - E} , . For details, see for
example [8, p. 464].

By Proposition 2.8, the maps é: VoXand 7: X >V give rise to equivariant
chain maps and hence maps of spectral sequences of the covers V> Vand X - X.
We will use this information to determine the differentials. First, we calculate the
groups E’ for g.=0and g = 1.

PROPOSITION 3.2. (i) E2 =2 for 0 < p <m,and E};= 0 forp > m.

(i) EZ, ~Z(P+2)for0 <m-—2and E}, =0 forp >m—2.

PrROOF. E; 2 = Tor (Z, H, X ) so what we need is an explicit resolution of HOX
and H, X. However since H X =F ~/FE, @ T where T is of type L, we need only
resolve F./F!. We resolve HX =Z=A/(x,— 1,..., x,, — 1) by the Koszul
complex, which is exact:

O%A(:)Z)A(""Zl)—)‘ o AG ):;)A( )7A—>Z—>O
'm 1
The maps dj, have the property that 1 ®, d,: Z*» — Z4" are all zero. This proves
part (i). To see part (ii), note that by Lemma 2.5, F, /F,, = ker d, = im d,. This
completes the argument.

Thus, the maps dlf0 for p > 2 are maps of groups which are abstractly isomor-
phic. We need to see something more specific, namely, the content of the next
proposition.

PROPOSITION 3.3. The maps d}fo are isomorphisms for p > 2.

PrOOF. The map é: V — X induces a map of E>-terms of the corresponding
spectral sequence of coverings. By the discussion at the end of §2, &, induces
isomorphisms of the bottom two rows. Thus, for p > 2, there are commuting
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diagrams

€x

Tor® ,(Z, H\V) 3 Tor} ,(Z, H,X)
poz,O poZO
TorM(Z, Hy?) —  Tor’(Z, HoX)

€x

where the two horizontal maps are isomorphisms. Since H,V = 0 in dimensions
greater than one, the left-hand maps are isomorphisms for trivial dimensional
reasons. Hence, the right-hand vertical maps are isomorphisms. This completes the
proof of 3.3.

We can now prove the theorem. Proposition 3.3 implies that E}, = Egy = H,X.
But H,X = 0and Ej, = Z®, H, X. Hence, H,X is of type L, and so E22 = 0 for
all p. As long as H, X = 0, that is, for kK < n, we may repeat the argument, showing
that Z ® ,H, X = 0. This completes the proof of Theorem 3.1. We have also
proved

COROLLARY 34. Z®, H,, X = 2" and TorXZ,

n+1

H,, ,X) =0 for all ¢ > 0.

ReEMARK. Theorem 3.1 is actually true for links in general, and not just for
boundary links. This follows from a different argument, which will appear in a
future paper.

4. Simple odd-dimensional boundary links. A boundary link of dimension n = 2¢q
— 1, g > 2, is called simple if m, X = =, V for k < g and 7, X is freely generated by
the meridians (recall ¥ = \/7_, S 1. In this section, we will show that simplicity
imposes some severe additional restrictions on H, X. Specifically, we will show that,
as a A-module, H, X has a presentatlon matrlx which is square and whose
determinant A satlsfles e(d) = , and that H, X supports a skew-Hermitian
pairing into A,/A (A, is the quotlent field of A) Wthh is the higher dimensional
analogue of the Blanchfield pairing [1].

It is useful, in the case of a simple boundary link, to consider a certain closed
manifold M which is closely related to X. Let f,, ..., f,: S"— S"*? be embed-
dings whose images are the components of the link. These extend to embeddings
@ - e s P S" X D? - S"*2 by the triviality of the normal bundles. Surgery on
these embeddings produces a closed (n + 2)-dimensional manifold M and embed-
dings V¥, ...,¢,: D"*'x S' > M with disjoint images. Since M = X U
(U™, im y,), the pair (M, X) is n-connected. Thus, it suffices to study HqM,
where M is the universal abelian cover of M. The following lemma, essentially due
to Kervaire (see [10, Lemma I1.9]), shows why we use M.

LEMMA 4.1. There is a handle decomposition of M which consists of one handle of
index 0, m handles of index 1, m handles of index (n + 1), one handle of index
(n + 2), and no handles of index k for 2 < k <qandq+ 1<k <n

This is proved using standard “handle-trading” arguments. One might prove this,
for example, by making the necessary adjustments to the proof of [10, Lemma I1.9],
which is the same statement except that m = 1.
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To analyze H *A7I and H */\7 , we will need to use the universal coefficient spectral
sequence (see [14] for a construction of this spectral sequence). We will copy the
statement of existence from [14, §2], for the convenience of the reader.

Let R, S be rings with 1, C, a free left chain complex over R and G an
(R — S)-bimodule. Then H*(C,; G) = H, (Homg(C,, G)) is a graded right S-
module, as are Homz(H,(C,), G) and, in general, Ext4,(H,(C,), G).

These are related by a spectral sequence.

THEOREM 4.2. Given R, S, C,, G as above, there exists a spectral sequence
converging to H*(C,; G) with ES? = Ext}(H,(C,), G) and differential d, of bide-
gree (1 — r, r). More specifically, there is a filtration:

H™(Cy;G) =JpoD 11D " DD J sy =0
with J, ./ J,_1 41 = ERA. All objects and isomorphisms are as right S-modules.

We will apply this spectral sequence with C, = C*(A:? ), R=S=G=A, in
order to obtain information about H,M. The E,-term is given by E} =
Ext{(H,M, A). Now, HM = A/(x, — 1,...,x, — 1)=1Z, and H M = F,,/ F,.
We analyze the spectral sequence for small p.

LemMma 4.3. (i) ExtX(Z, A) = 0 unless k = m, and Ext¥(Z, A) = Z.

(i) Ext{(F.,/F., A) = O unless k = 0 or m — 2.
If m > 2, then Ext] *(F,/F},A) =1Z and if m =2, then F./F. = A so that
ExtQ(F./F., A) = A.

(iii) The differential d,™~*: E;"™~% — EX™ is an isomorphism if m > 2 and onto if
m=2.

Proor. The first statement follows from using the Koszul complex of (x, —
l,...,x, — 1) as a free resolution of Z. It is well known and easy to prove that
the Koszul complex is self-dual up to sign. The second follows from the exact
sequence:

0> F,/F,>A">A—>Z-0.

The last statement is proved using the same kind of argument as that used in
proving Proposition 3.3. We map V into M and note that the situation wanted
occurs in the spectral sequence for V for trivial dimensional reasons.

We will need to use an equivariant form of Poincaré duality, due to Milnor (see
[16, Lemma 1]). Let Y>Y bea regular covering of a compact triangulated
manifold Y“ with boundary. If 7 is the group of covering transformations, let
A A be the anti-automorphism of Z[#] which extends the map g+> g~ ! forg € .
We can use this to convert any right Z[«#]-module K to a left module and vice-versa
by using the same underlying abelian group and the formula g-x = x-g~!' for
x € K, g € m. We denote the new module by K.

LEMMA 4.4. There are isomorphisms of left Z|w]-modules

H, Y= HX(Y, oY; Z[w])
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where
HK(Y,87; Z[n]) = H*(Homy,(C,(¥, 8Y), Z[7])).

We now return to the study of H, M, where M is the universal abelian cover of
the closed manifold M obtained from S"*?2 by surgery on the link. Recall that we
have a simple link, and that n = 2g — 1 with g > 2. The first result says that H qlq
has a particularly nice presentation as a A-module.

THEOREM 4.5. HqM has projective dimension one. Since Hq/\? is of type L, and
hence a A-torsion module, this is equivalent to the statement that H,M is presented by
a square matrix over A with determinant A and ¢(A) = *1.

ProOOF. First, assume ¢ > 2. Then by Lemma 4.1, a presentation of H qﬂ is given
by

Cq+1M—> CM—)HM—)O
q+l

To prove the theorem for ¢ > 2, it will suffice to show that H, +1M = 0. But by the
previous lemma, H, +lM HZ(M; A). The terms in the E -term of the universal
coefficient spectral sequence which would filter H, "(M A) are already zero in E;,
by Lemma 4.3. Hence, Hj(M, A) = 0 and so HqHM 0.

Forgq = 2~, we clairr}~ that, b): the same argument, I{_q + 11\71 = 0. We need to prove
that in C M, d,: C,M — C3M and d,: C,M — C|M are both the zero map. We
will accomphsh this using a series of rank-counting arguments.

First, C, M= A", COM A, HM =F./F, and HM = Z. If rank d, is
greater than 0, then H, M would have rank less than m — 1. This would be because
rank d; = 1, so that ker d; would have rank m — 1. This, however, would con-
tradict Lemma 2.5. Hence, d, is the zero map. By duality, H4A2 has rank m — 1.
Since H;M = 0, we have:

CM - C.M > C:M
iz ig
A A

where d is injective. If rank d, > 0, then rank HM <m—1 by a similar
argument to the above. Hence, d, and d, are zero maps. This means that the
argument for the case ¢ > 2 works for this case, also. We rephrase all this in terms
of X.

COROLLARY 4.6. If X is the complement of a simple boundary link of dimension
n=2q — 1, then H, X has projective dimension one. In other words, combining this
with Theorem 3.1, H X is presented as a A-module by a square matrix with entries in
A whose determmant A satisfies e(A) = * 1.

We now show that the Blanchfield pairing on Hq/\7 is nonsingular. Since X is

(2g + 1)-dimensional, one can define the (equivariant) linking pairing of g-dimen-
sional cycles (see [16]) '

H,X < H(X, 8%) > A/ A
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where A, is the quotient field of A. This pairing is linear in the first variable,
conjugate linear in the second (using the conjugatlon A > A defined earlier) and
e-Hermitian where ¢ = (—1)?*! (meaning {a, 8> =¢{B, a> a>) However, since H, X
=H (X X ), we may consider this to be a pairing on H, X. One can define thls
pairing (or rather, its adjoint) algebraically by the followmg composition:

x o 2y N ~ &* ~ ~
H,X — H/(X,0X) = HIYY(X; A) < HA(X; AO/A)—‘P)HomA(HqX, Ao/ A).

The first map is inclusion, the second is the duality of Lemma 4.4, the third map &*
is the coboundary in the exact sequence of coefficient sequence 05A> A >
Ao/A — 0, and  is the evaluation map. All maps are easily seen to be isomor-
phisms except y. For this we use the spectral sequence of Theorem 4.2 with
C,=CX,R=5=A,G=A,/A.

LEMMA 4.7. The evaluation map ¢: HI(X; AO/A)aHomA(Hth', Ay/A) is an
isomorphism.

ProoF. The edge homomorphism He"()? 5 Ag/A) — EZ0 is the evaluation map.
From arguments similar to those used to prove Lemma 4.3, we see that all the other
terms E’ with r + s = g are zero. Hence, ¢ is an isomorphism.

We have proved an analogue of Blanchfield duality.

COROLLARY 4.8. The linking pairing induces a nonsingular e- Hermitian pairing on
HX taking values in Ay/A. The nonsingularity refers to the fact that the adjoint

H,X— Hom,(H, X, Ao/ A) is an isomorphism.

5. Realization below the middle dimension. In this section, we show how to realize
certain modules of type L as H, X, q < [n/2]. The main result of this section is:

THEOREM 5.1. Let A,, . . ., A, be any sequence of A-modules such that:

(1) A4, is of type L.

(i) For each i, A; has projective dimension one.
Then, for any n > max{2q, 3}, there exists a boundary link of n-spheres in S"*? with
HX=F,/F,® A4, and H X = A, for2 <k < q.

The proof will consist of two main parts. First, we construct a CW-complex P
with all the desired homological properties, and then we use P to construct our
link. The technique is an adaptation of a technique due to Wall and outlined by
Levine in [14] for constructing knots. The proof is similar to that in [18].

LEMMA 5.2. Let k be an integer between 2 and q, inclusive. There exists a finite
CW-complex P of dimension k + 1 such that

GmP=F,

(it) The 1-skeleton of P is V (see §2).

(1ii) H,-I; = Qunlessi = 0, 1 or k, and HkI; = A,, where P is the universal abelian
cover of P.

(vyHP=H,V.
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Proor. We will build P by realizing a presentation of A4, in the chains of P.
Thus, let us choose a presentation 0 — F, —,Fy — A, — 0. The F; are free modules
over A of the same rank r. Let {e,, . . ., ¢} be a basis for F,.

Begin with ¥ as the l-skeleton. To ¥, wedge on a bouquet of r k-spheres,
forming W. We have C, W = F,. Since 7, W is free and m, W = 0 for 1 <i <k, itis
not difficult to see that the Hurewicz map m, W — H W = C, W is onto. Choose
maps f;, ..., f: S k _ W corresponding to d(e,), . . . , d(e,) under the composition:

kakaWa Hkl/f/ = F,.

Attach (g + 1)-cells to W via these maps to form P. It is easy to see that (i)—(iii)
are satisfied. To see (iv), we merely note that, since A, is of type L, the map
1®,d:2Z®, C,,, >Z ®, C, is an isomorphism. This completes the proof.

LEMMA 5.3. There exists a finite CW-complex P of dimension q + 1 such that.
(@) m P =F,.

(ii) The 1-skeleton of P is V.

(iii) HkP A, for2 < k < qand Hk = 0 for k > q.

vy H P=H,V.

Proofr. For each k, let W, be the complex constructed in Lemma 5.2 of
dimension k + 1. P is formed from the disjoint union of the W, by identifying
their 1-skeletons. One may easily check that P has all the desired properties.

The next step is to construct a group = with the necessary properties. First, we
prove a lemma which will justify one of the conditions we wish to place on 7.

LEMMA 5.4. Let G be a group such that G/ G’ is free abelian of rank r and G has a
presentation with r more generators than relations. Then there exists a finite 2-com-
plex T with mT =G and H,T =0 for k > 1. Furthermore, if T is the universal
abelian cover of T, then H, T I =0 for k > 1.

ProoF. This is all done by counting ranks. Begin with a wedge of circles to
represent the generators of G, and attach 2-cells to represent the relations. The

chain complex of T is as follows:
c,T e C\T — CoT
2

dy=
l = i = l =
VA zrr Z
Since H,T = Z’ and ker d; = C,T, d, must be injective. This shows that H, T = 0
for k > 1. In T, the chains are given by the following, where A = Z[Z']:
C27~' - C l'f - Cof
d; d
i = i = l =
As A.r+r A
We need to show that d2 is injective, or equlvalently, that d, has rank s. But d, has
rank s, and d, = 1 ® , d,: Z®,, CZT—>Z ®, C, T, so the rank of d, must be at
least as great as the rank of d,. Hence, d, is injective. This shows that H, T = 0 for

k> 1
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We will want to pass back and forth between the free group on m generators F,,
and the free abelian group Z™, so we will choose specific inverse images in F,, of

elements of Z™. Let x,, ..., x,, be the generators of F,; elements of the form
x{'- x32 ... xm will be called the lexic elements of F,,. They may be specified by an

m-tuple of integers, and there is exactly one lexic element of F,, for any element of
7z

It is clear from the discussion in §1 that if 4 is any A-module of type L with
projective dimension one, then A4 is presented by a square matrix over A whose
determinant augments to 1 (that is, there exists a matrix (A;) over A such that the
integral matrix (e(A;)) has determinant 1). In fact, we can prove the following:

LEMMA 5.5. (\;) may be chosen so that e(\;) = §;.

Proor. This is because any integral matrix with determinant 1 can be trans-
formed to the identity via row and column operations. Doing the same operations
to the original matrix (A;) does not change the isomorphism class of the module it
presents, and clearly gives us the matrix we desire.

We are now in a position to state the main result concerning the group .

THEOREM 5.6. Let A, be any module of type L with projective dimension one. Then
there exists a group T satisfying:

(i) 7 has a finite presentation with m more generators than relations.

(i) m has weight m, i.e. there exist m elements w,, ..., m, € 7 such that the
normal subgroup generated by the p, is all of m, and there exists no set having this
property with fewer elements.

(i) w/7a" = Z".

(iv)y7' /7" = F, /F, ® A, as a A-module.

(v) There exists a surjection of 7 onto F,, which sends the elements p, of (ii) onto the
free generators of F,,.

ReMARKS. The group 7 will be the fundamental group of the complement of our
link. An application of Lemma 5.4 tells us that # has no undesirable homological
properties. By a result of Kervaire [10] conditions (i), (ii) and (iii) imply that 7 is
the group of a link of n-spheres in S”*2 for any n > 3. Condition (v) will insure
that the link we construct will be a boundary link, by Lemma 2.1, as the y; will be
the elements represented by the meridians.

PrOOF OF THEOREM 5.6. Choose a presentation matrix (a;) for 4, of the type
given by Lemma 5.5. A presentation for 7 is given by:

T = (xl,xz,...,xm,tl, 12,...,t,lH (gtjg_l)}\'”’= 1fori= 1,...,r)
)8

where (a;) is an r X r matrix, @; = 2, A\, g € A, and g varies over the lexic
elements of the free group F,, generated by the x;. The elements in the product are
in lexical order determined by the (m + 1)-tuple (J, /,, lygs -+ -5 Lg) Where g =
x{xys . .. x/s. Condition (i) is clearly satisfied. We obtain the following abelian
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presentation for 7 /7', where we write the relations additively:

77/77’=(xl,...,x tlz}\yg =0, i=1,...,r).
But 3, A, 4 =Z,(Z, Nt = Z; e(ay)t; = Z; 8,4, = 1, so we can simplify the
presentation for w/7": w /7" = (X}, . . . s X by - - -5 L|t; = 0,i=1,...,r). Hence,
/@’ = Z™, proving (iii). It is easy to see that the weight of 7 must therefore be at
least m. If we adjoin the relations x, = x,=--- = x, =1 to 7, the group
becomes (¢, ..., 4|11, tj"w =1i=1, ,r). But Il tf"fs =1 ,j}:&,, by virtue of
the fact that elements in the product are in lexical order. Since 2 A, = &(a;) = §,
the group is given by (¢, ..., 4|, =1,i=1,...,r) = (e). Hence, 7 has weight
m. To see (v), adjoin the relations ¢t, = t, = - - - = ¢, = 1 to 7. This gives the free

group generated by the x;.

Since 7 /7’ is the free abelian group on the x;, it follows that 7’ is the normal
subgroup of 7 generated by the commutator subgroup of F,, and the #. In fact, a
presentation of 7’ is given by

7 = (), FallL (5 = 1 h ™" = 1)

where we set ;, = gt.,g”', g and h vary over all of F,, and we understand that
Ajg = 0 if g is not lexic. Using the equation g- T, = ¢, via the action of F, on
m'/m” to define the T, we obtain the following presentation for «'/z” as a

A-module:
w/a = ((Th FAS e T, = 0, 7).
)8
Since 2, a,8 T, =2, (2, a;8) T, =2, a;T, we get the isomorphism of A-
modules 7' /7" = F v/ F,j,’ @ A4, wh1ch completes the proof.
Now let T be a 2-complex realizing o as in Lemma 5.4. Let f: V' — T be the map
which sends the loops of ¥ to loops in T representing the x; € # = 7, T, and form

the complex K from the disjoint union of P (from Lemma 5.3) and 7 via the map f.
It is easy to verify the following lemma.

LEMMA 5.7. K is a finite (q + 1)-dimensional CW-complex satisfying:
O)H K=H_V.

(i) 7, K =

(iii) H,K = F,/F. ® A,, H K = A, for 2 <k < q and H,K = 0 for k > q.

We now go to the second part of the proof of Theorem 5.1. We use a result of
Levine [14, Lemma 10.1].

LEMMA 5.8. K embeds in R"*3 where n is any integer greater than or equal to
max{2q, 3}. Let M be the boundary of a regular neighborhood N(K). Then M has
nonzero homology only in dimensions 0, 1, (n + 1) and (n + 2). The following com-
posite map is (n + 1 — q)-connected:

M — N(K) - P

inclusion retraction
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We now prove Theorem 5.1. Choose embeddings ¢, ..., q,: S D"*' 5> M
with disjoint images representing the elements x, . . ., x,, € 7 = 7, M. Surgery on
these maps yields a manifold £"*2 and embeddings y,, . . ., y,,: D? X §" — ="*2

with disjoint images. The manifold = is easily seen to be a simply-connected
homology sphere, hence a homotopy sphere. Since n + 2 > 5, we can change the
differentiable structure of X in the neighborhood of a point to obtain $"*2 by
arguments of Smale [20]. The link we want is given by the embeddings ,(0 X S™).
The complement of the link is equal to the space X =M — U, im ¢, and the pair
(M, X) is n-connected by general position. Hence, X has all the homological
properties as specified.

6. Polynomial invariants. We now relate the material of the preceding sections to
the polynomial invariants of a link. Our definition will differ slightly from Levine’s
definition (see [12]) for knots. First, in a more general setting, the elementary
divisors will be defined.

As in §1, if M is an R-module, one has the Fitting ideals I,(M). If R is a unique
factorization domain, then any ideal of R is contained in a unique minimal
principal ideal (generated by the greatest common divisor). Let A,(M) be a
generator of the smallest principal ideal containing I(M). Then A, ,|A, for each i,
and A (M) = 1 for i sufficiently large.

Now suppose we have a link L of n-spheres in S”*2 Since A is a unique
factorization domain and Hk)f' is finitely generated for each k, we may define the
polynomial invariants of L to be the elements defined by Pix = Aj(HkX~ ) where
0 <jand I <k < n. We justify the terminology as follows. The A, are defined
only up to multiplication by units of A. Every element of A can be written as the
product of a polynomial and a unit of A. Therefore, up to the indeterminacy in the
definition of the A,, all elements of A are polynomials.

We now interpret some of the results we have proved in the language of
polynomial invariants.

THEOREM 6.1. Suppose that L is a boundary link of n-spheres in S"*2, and Pix(L)
are its polynomial invariants. Then

() p;y = 0 for j < m — 1, where m is the number of components of L.

@ pi (L, 1L,...,1)=*1foralljifk > l,and forallj > m — 1 ifk = 1.

(iii)pj+l,k|pj,kf0r all j, k.

(iv) p;x = 1 for j sufficiently large.
Conversely, suppose {p;,}, j >0 and 1 <k < gq, is a collection of polynomials
satisfying (i)—(iv) above. Then for any n > max{2q, 3}, there exists a boundary link
L of n-spheres in S"*? with (L) =p;; forj > 0,1 <k <gq.

If L is a simple boundary link of dimensionn = 2q — 1, q > 2, then

M p,(1/x, 1/ x5 o, 1/x,) = u-p(x,, ..., x,) where u = + x/ixk2
some integers I, . . ., |

m*

. X for

PROOF. (i) is a consequence of Corollary 2.4, Lemma 2.5 and [1, Lemma 4.10]. (ii)
follows from Lemma 2.6 and Theorem 3.1. Properties (iii) and (iv) are just
consequences of the definition of elementary divisors.
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The converse is proved by constructing modules of type L of projective dimen-
sion one having the desired elementary divisors and using Theorem 5.1 to construct
the link.

We make use of Theorem 1.6. For each j, k let MV* = Pix/ P14 Forj >N, all
the A% = 1. For each k =1,...,q let 4, be the module presented by the
diagonal matrix diagA\%*, A, ..., AM*). Since the determinant of this matrix is
Pos Ax 1s Of type L.

In the case of a simple boundary link, we use Corollary 4.8 to deduce that
E)?z HomA(qu , Ao/ ). Application of results of Blanchfield [1, Theorems 4.4
and 4.5] yields (v).
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