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CONSTRUCTING MANIFOLDS
BY HOMOTOPY EQUIVALENCES 1.
AN OBSTRUCTION
TO CONSTRUCTING PL-MANIFOLDS
FROM HOMOLOGY MANIFOLDS

by Hajime SATO

0. Introduction.

A homology manifold can be given a canonical cell complex
structure, where each cell is a contractible homology manifold. In
this paper, given a homology manifold M, we aim at constructing a
PL-manifold with a cell complex structure, where each cell is an
acyclic PL-manifold, which is cellularly equivalent to the canonical
cell complex structure of M. We obtain a theorem that, if the dimension
n of M is greater than 4 and if the boundary oM is a PL-manifold or
empty, there is a unique obstruction element in H, _,(M 3¢, where
¥e? is the group of 3-dimensional PL-homology spheres modulo those
which are the boundary of an acyclic PL-manifold. If the manifold is
compact, the constructed PL-manifold is simple homotopy equivalent
to M.

I have heard that similar results have been obtained independently
and previously by M. Cohen and D. Sullivan, refer {1] and [9].

I would like to thank Professors V. Poénaru and F. Laudenbach
for their kind support.

1. Definition of homology manifold with boundary(').

Let K be a locally finite simplicial complex and lct o be a simplex
of K. We define the subcomplexes of K as follows.

(}) We can refer the chapter 5 of the book : C.R.F. Maunder, “Algebraic topology™,
Van Nostrand, London (1970).
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St(0,K) = St(0) ={r€K,Ja>r, >0}
0St(0,K) = 3St(0) ={7€St(0), 7 P o}
Lk(0,K) = Lk(o) ={r€St(0),rNo =0Q}

We write by K’, K", the first and the second barycentric subdi-
visions of K.

Let M be a locally finite full simplicial complex of dimension n.
We say that M is a homology manifold of dimension # if the following
equivalent condition holds :

LemMa 1. — The followings are equivalent :

i) for any simplex a of dimension p,
H, (Lk(o,M)) = H,(S""?"") or O.
ii) for any simplex ¢ of dimension p,
H,(St(0,M)/3St(o,M)) = H,(S") or O.

iii) for any point x of M|, where |M| denotes the underlying
topological space of M,

H,(M|,IM|-—x) = H(S") or O.
The definition is invariant by the PL-homeomorphism in the ca-

tegory of simplicial complexes.

LemMA 2. — For any p-simplex a of M, Lk(a,M) is a compact
(n — p — 1)dimensional homology manifold.

Proof. — It is compact because M is locally finite. Let 7. be a g-
simplex of Lk(o,M). We have

Lk(7,Lk(o ,M)) = Lk(r0,M) .

Hence ﬁ,.(Lk (r,Lk(o, M) = ﬁ,.(S""”""l) or 0, which completes the
proof.

Let us define the subset 0M of M by
M ={0 €M|H,(c . M) = 0}

We call it as the boundary of M. If dM = ¢, the manifold is classical
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and the following Poincaré duality is well known (see for example

(75 (.9D.

LEMMA 3. — Let M be an orientable compact n-dimensional ho-
mology manifold without boundary. Let A, O A, be subcomplexes of
M. Then we have the isomorphism

H'(A,,A) =H, (M| —|A,|,IM—I|A,D.

Using this we will prove the followings. By lemma 2, for p-
simplex o, Lk(o,M) is a homology manifold and we can define
oLk(o,M).

LemMA 4. — If0Lk(o, M) # Q, Lk (0, M) is acyclic and 0Lk (o ,M)
is an (n — p — 2)dimensional homology manifold such that

H, (3Lk (o ,M)) = H,(8" """ %) .

PrROPOSITION 5. — If oM # @, oM is a subcomplex and is an
(n — 1)-dimensional homology manifold without boundary.

We prove that lemma 4 for n = k implies proposition 5 for
n = k and proposition 5 for n < k implies lemma 4 for n = k + 1.
Since lemma 4 holds for n» = 1, we can continue by induction.

Lemma 4, ., = Proposition 5,_, . Let ¢ be a p-simplex of dM
and let 0, < 0. Then we can write ¢ = 0,0, . We have

H, (Lk(o, ,Lk(oy,M)) = H, (Lk(0,M)) =0 ,

which shows that o, €9Lk(g,,M) and so dLk(0,,M) # Q. By the
lemma 4, Lk(0,,M) is acyclic and it follows that o, € M. Hence oM
is a well-defined subcomplex of M. A g-simplex 7 of Lk(o,M) is in
Lk(0,dM) if and only if H,(Lk(r0,M)) = 0. Since

Lk(ro ,M) = Lk(r,Lk(0o,M)) ,

it is equivalent to that 7 belongs to dLk(o,M). Hence the complex
Lk(o,0M) coincides with 0Lk(o,M). By lemma 4,, we have
H,(3Lk(o,M)) = H,(S*"?~?), which shows that oM is a (k — 1)-
dimensional homology manifold without boundary.

Proposition 5, <, = Lemma 4,.,,, Let M be ahomology ma-
nifold of dimension k + 1. Let ¢ be a p-simplex of M. By lemma 2,

19
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Lk (o ,M) is a homology manifold of dimension k — p. By proposition 5
forn =k — p, 0Lk(o,M) is a (k — p — 1)-dimensional homology ma-
nifold without boundary if it is not empty. Let 2Lk(o,M) be the
double of Lk(o,M), ie.,

2Lk(0o,M) = Lk(o,M) U Lk(o,M) .
OLk(o,M)

Let 7 be a g-simplex of 2Lk (0, M). If 7 is not a simplex of aLk (o , M),
clearly,

H, (Lk (7, 2Lk (0, M))) = H,(Lk(7, Lk (0, M))) = H(s*"?~97")
If 7 is a simplex of dLk(o,M), we have
Lk(r,2Lk(0,M))

= Lk(r,Lk(0,M)) U Lk(r,Lk(oc,M)) .
Lk(r,0Lk (6,M))

By definition ﬁi (Lk(r,Lk(0,M))) = 0 and by the proposition 5 for
n=k—- p— 1, we have

H,(Lk(r,dLk (o, M))) = H,(S¥P~92) .

Hence in any case ﬁi (Lk(r,2Lk(c,M))) = ﬁi(Sk“”‘q"l), which
shows that 2Lk(o,M) is a (k — p)-dimensional homology manifold
without boundary. Applying lemma 3, we have

H'(Lk(0,M), dLk(0,M)) = Hy_, ;(ILk(o,M)| —{oLk(o,M)D .

Notice that for any homology manifold M, H,(| M| — | aM|) = H;(M).
Hence H'(Lk(o,M), dLk(o,M)) =H,_ ,_ ,(s" Py or Hy _,_;(pt.).
But if it is isomorphic to H,_,_;(S*"7), we have

H°(Lk(o,M), 0Lk(o,M)) = Z ,

which contradicts to the definition that H oLk (o, M)) = 0. Hence
Lk(o,M) is acyclic and consequently H (aLk(o M)) = H (Sk—P-1),
which completes the proof.

2. Cell decomposition of a homology manifold.

We mean by a homology cell (resp. pscudo homology ccll) of
dimension #n or homology n-cell (resp. pscudo homology n-cell) a
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compact contractible (resp. acyclic) homology manifold of dimension
n with a boundary, the boundary being a homology sphere but not
necessarily simply connected. A (pseudo) homology cell complex is a
complex K with a locally finite family of (pseudo) homology cells
C ={Cq}, such that :

i) K=UC,

ii) Cy, C3€C implies 0Cy, Cy N Cy are unions of cells in C

iii) If a # B, then IntC, NInt Cg = Q.
If a homology manifold M has a (pseudo) homology cell complex
structure, we call it a (pseudo) cellular decomposition of M. Two
(pseudo) homology cell complexes K = U C,, K' = U, are iso-
morphic if there exists a bijection k : C = C' such that both k and

k™' are incidence preserving. In such a case we say that they are
cellularly equivalent.

Now we have the following :

PROPOSITION 1. — If two finite homology cell complexes K, K'
are cellularly equivalent, then they are simple homotopy equivalent,

We can define a simplicial map f: K - K’ inductively by the
dimension of the cells. Hence it is sufficient to prove the following
lemma.

LemMMA 2. — Let A]’:(j =1,2,...,r) be subcomplex of simpli-
cial complexes B’ for i = 1,2 respectively such that B' = U A'j, and
i

let f: B' - B? be a simplicial map. For any subset sof{1,2,...,r},
let Ag= N A’ and let f, be the restriction of f on A,. If f, is a
jes

mapping from As1 to As2 which is a simple homotopy equivalence for
any s, then f itself is a simple homotopy equivalence.
Proof. — First suppose that r = 2. We have the exact sequence
0 > C,(A)) = C,(B) = C (A" NAY) ~ 0

of the chain complexes. Let g: AL/(A] NA)) = AJ/(A2 N A3) be
the map induced by fand let us denote by w( ) the Whitehead torsion.
Then by theorem 10 of [8], we have
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w(f) =wfp +w@).
Remark here that f and g can easily be seen to be homotopy equiva-
lences. Further we have the exact sequence
0 - C, (A} NAY) - C (AY) > C (AL/(AL NAY) - 0
which shows that

Since w(f{l}) = w(f{z}) = w(f{l,z}) =0, we have w(f)=0. If
r =2 3, we can repeat this argument, which shows that f is a simple
homotopy equivalence for any r.

Now let o be a simplex of a locally finite simplicial complex K.
We denote by b, €K' its barycenter. We define dualcomplex D(o)
and its subcomplex 8D (o) which are subcomplexes of K' by

D(o) = D(0,K) Z{boo“‘bar|0<00 <...<o,€K}

8D(0) = 8D(0,K) ={b, ... b, 10 $0,< ---<0,EK}
The followings are easy to see.

i) if 0 < o' = D(0)D D(o)

ii) D(g) = b, * 6D(0)

iii) 6D(0) = LTJ D(7) where r> 0 and 7 # ¢

iv) 8D(o) is isomorphic to Lk(o,K)'.

Let M be a homology manifold. For each simplex

o= baoba1 e b"r

of M’', where ozo < or;‘ <. < o:" are a set of simplexes of M, we
have the duall cell D(¢,M’). It is a compact homology manifold by
lemma 2 of § 1. Further we have
8D(0,M") = Lk(o,M)
> |k(0,0,) * Lk(o, ,M)

—-r-1

= g™ * Lk(o,,M)
n,—r n,--r—1
=~ Lk(g,,M) x D" U (Lk(o,,M) * (pt.)) x S "
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where = denotes that both sides are PL-homeomorphic and let

d, : 8D(o,M") > Lk(5,,M) x D" U (Lk(o,,M) * (pr.) x 8" '

be the PL-homeomorphism, which we call the trivialization of
8D(o,M"). If o is not in oM, 8D(o,M’) is a homology manifold
whose homology groups are isomorphic to those of S" !, boundary
being empty. If 0 €9M, 6D(0o,M’) is an acyclic homology manifold
with the boundary Lk(o,dM’) which is PL-homeomorphic to
dLk(o,,M) x D" U (3Lk(o,,M) * (pt.)) x S "', The union
St(g,0M"YU §(o,M") = 0D(0,M") is a homology manifold without
boundary whose homology groups are isomorphic to those of S"~'.
Hence in any case D(o,M") is a homology cell. The union U D(g,M"),
o moving all simplexes of M', gives the cellular decomposition of M,
which we call the canonical one.

We define the handle M; of index i by the disjoint union
M,=UD® ,_)
[

where o changes all (n — i)-simplexes of M. We have 6D(b,) = U D(7),
where ¢ <7€M’, and it gives a cellular decomposition of M; . We
can devide the boundary as 6D(b,) = LD(b,) U HD(d,), which con-
sists of unions of celles attached to the handles of lower indexes and
higher indexes. We define them as

LD(b,) = 6D(b,) N (jLéi M,.)
HD(,) = 6D(bo)ﬂ(igi M,.) )
Letr=b, b, ...b, 0 bea simplex of M’, where

m m m
<7 '--<r,TEM.

Then D(r) € LD(b,) if and only if 7, > o and D(7) €HD(d,) if and
only if 7, <o. It is easy to see that

LD(b,) = Lk(o, M) x D"~
HD(,) = (Lk(0,M) * (pt.)) x gn-i-1 ’

and these isomorphism together give the trivialization d,,(J of 8D(b,).
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Let A" * be the standard (n — i)simplex and let

aAn~i — Sn—i—l — g Ca

be the cell decomposition defined as above, which we call the
standard decomposition of S”" ~/~!. The decomposition

HD@®,) =UD(7) .
is equal to the standard product decomposition

{Lk(o,M) * (pt)} x (g C,,,) .

All the cells of HD(b,) which is not contained inLD(b,) N HD(b,) is
written as

(Lk(o,M) = (pt.)) x Cg .

Finally we define M;, the subcomplex of M composed of handles
whose indexes are inferior or equal to i, that is,

M;,=Y MCM.

i<i
Then we have
Mgy = Mg, UM,

i) (i-1

attached on U LD(d,), o being (n — i)-simplexes.

3. PL-homology spheres.

We call an n-dimensional homology manifold whose homology
groups are isomorphic to those of S" a homology n-sphere or homo-
logy sphere of dimension n. If it is a PL-manifold, it is called a PL-
homology n-sphere.

If dimension is smaller than 3, a homology sphere is the natural
sphere. And so any 3-dimensional homology manifold is a PL-manifold.
In order to study higher dimensional cases we define the group €’.

Let X* be the set of oriented 3-dimensional PL-homology
spheres. Note that any homology sphere is orientable. We say that
H} € X? is equivalent to H} € X?® if H} # (— Hj) is the boundary of
an acyclic PL-manifold, where # denotes the connected sum and
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— Hg is Hg with the orientation inversed. Let #€3 = X3/~ be the set
of equivalence classes. By the connected sum operation, #€* is an
abelian group. Let G be the binary dodecahedral group. The quotient
space S3/G is a PL-homology sphere whose class in #€> is non trivial.

On the contrary, for higher dimensions the following is known

(2] [6] [4].

ProrosiTiON | (Hsiang-Hsiang, Tamura, Kervaire). — Any PL-
homology sphere is the boundary of a contractible PL-manifold, if the
dimension is greater than 3.

We will prove the followings, where x is a point in S iz 1.

ProposiTION 2. — Let H*€ X3, then H? x S! is the boundary
of a PL-manifold X* such that H, (K) = H, (S") and the inclusion

jiS'eo{x}xS'—> H'xS'— K

induce an isomorphism of the fundamental groups.

PrOPOSITION 3. — Let H® € X% and let i = 2. Then H® x §' is the
boundary of a PL-manifold K**! such that the inclusion

j:So{x}xS—>HxS =K

induces a homotopy equivalence.

Proof of Proposition 2. — Since any orientable closed 3-dimen-
sional PL-manifold is a boundary of a 4-dimensional parallelizable
PL-manifold (See by example [3]), we have a parallelizable PL-
manifold L* such that 9L = H. By doing surgery we can assume that
m,(L) = 0. By the Poincaré duality theorem, H,(L) is free abelian.
Let p: L x S' - S' be the projection. Then it induces an isomor-
phism of the fundamental groups. Remark that if we have a manifold
K with boundary H? x S' such that H,(K) = 0 and the inclusion
j: 8" < K induces the isomorphism of the fundamental groups, then,
by the Poincaré duality, we have H;(K) = 0 for i = 2. Hence it is
sufficient to kill H,(L x SY). Since H, (L) is free, so is H,(L x shH.
We can follow the method of lemma 5.7 of Kervaire-Milnor [5]. Since
m, (L) = 0, the Hurewicz map of L, n,(L) = H,(L), is isomorphic,
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and so is the Hurewicz map of L x S'
h:m,(LxS"Y) - Hy(LxS".

Hence we can represent any element of H, (L x S') by an embedded
sphere. In our case the boundary d(L x S') is H® x S' and it does not
satisfy the hypothesis of that lemma. But since we have

H,(d(L xS')) =0,
the result is the same.

Proof of Proposition 3. — Let K’ be the S5-dimensional PL-
manifold of proposition 2. Attach K with H® x D? by the identity
map on H? x S'. The constructed manifold W* is a simply connected
PL-homology sphere, and by the generalized Poincaré conjecture, it
is the natural sphere S°. It shows that we can embed H® in S® with a
trivial normal bundle. By composing with the natural embedding
S* <> $**! we have an embedding of H> in S**’ with the trivial
normal bundle. The manifold N which is the complement of the open
regular neighbourhood of H? in S**! has H® x §' as the boundary
and the inclusion j : ‘<> N induces an isomorphism of homology
groups, hence homotopy equivalence, which completes the proof.

4. An obstruction to constructing PL-manifold.

Let M be a homology manifold of dimension greater than 4. We
assume that the boundary oM is a PL-manifold if it is not empty. As
in § 2, it has the handle decomposition

H = = U .
M =M, 0<P<n M;
which has also the canonical homology cell complex structure. We
want to construct a PL-manifold with a pseudo homology cell complex
structure which is cellularly equivalent to M. Since M(3) is a PL-
manifold, a problem first arises when we attach handles of index 4.

Let o be an (n — 4)-simplex in the interior of M. Then Lk(o,M)
is a 3-dimensional PL-homology sphere. Connecting o by a path from
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a fixed base point of M, we can give the orientation for the neigh-
bourhood of o, and hence for Lk(o, M).

Let Lk(o,M) be the class in the group ¥e3. To each (n — 4)-
simplex ¢ of M, we define a function A(M) : {(n — 4)-simplex} - ¥¢°
by

AM) (o) = ‘ {Lk(o,M)} if o€Int M

} 0 otherwise.

Then A(M) is an element of the chain group C,_,(M, %€3). The coef-
ficient may be twisted if the manifold is not orientable.

LemMa 1. — A(M) is a cycle.

Proof. — Let u be an (n — 5)-simplex. In the homology 4-sphere

Lk (u), the complex U Lk(0;) * (x;), where x; denotes the barycenter

of the l-simplex b,b, and the sum extends to all the (n — 4)-
1

simplexes such that o; > u, is a subcomplex whose complement in
Lk(u) is a PL-manifold. So the connected-summed PL-manifold
Z Lk(o0;) bounds an acyclic PL-manifold.

Hence A(M) represents an element {A(M)} of H,_,(\M, 363). Now
we have the theorem :

THEOREM. — Let M" be a homology manifold with the dimension
n > 4. Assume that oM is a PL-manifold if oM #+ . If the obstruction
class
{(AM)} €H, _,(M, 5%

is zero, then there exists a PL-manifold N with a pseudo homology
cell decomposition which is cellularly equivalent to M.

Proof. — Since {A(M)} = 0, there exists a correspondance

g : {(n — 3)-simplex} - 73
such that

Y gr,) ={Lk(a, M)} .
1,->a

We will inductively construct PL-manifolds N, and N, = . L<Jp N,

with a pseudo homology cell decomposition Np = UE, where all
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pseudo cells are PL-manifolds such that N(p) is cellularly equivalent
to M(p).

(a) p < 2. In this case, the manifolds Np, N(p) and their cells
are just equal to M,, M( p) and their cells. That is, for any j-simplex o,
j = n — 2, we define the PL-manifolds as

E(b,) = D(b,)
N, = U{E(,)|dime =n — p} = U{D(b,)|dim o =n-pl=M,

For any simplex 4 € M’ such that u > b,, we put

E(u) = D(n) .

Hence JE(b,) = 0D(b,) = UD(u) = U E(u), and N M(p).

® =

(b) p = 3. Let 7; be an (n — 3)-simplex. Let Hf be the 3-dimen-
sional PL-homology sphere which represents g(7;) and let K; be the
PL-manifold whose boundary is H; x 8"~ * such that the inclusion
j: St e K; induces the isomorphisms of the fundamental groups
and the homology groups, whose existence is shown by propositions
2 and 3 of § 3. Let D* C H; be a disc. Then D° x "~ % C 8K, . We
have the PL-homeomorphism BD(bTi) =82 xD"3uUD3>x "% We

define the PL-manifolds E(b, ) and N, by
1
= U .
E(bri) D(bTi) s K,

N, =V E@,)

where D(b,) is attaced to K; by the identity map on D3 x S" 4.
It is easy to see that E(b,) is a homology cell. We will give the pseudo
cell decomposition for alé(bTi). First we devide aE(le_) as the union
aE(bTi) = LE(bTi) U HE(b,i), where

LE(d,) =3D(b,) — D* x D"7?
HE(®,) = 0K, — D’ x "% = (1} - D) x "% .

Since LE(d,) = LD(b,), we give the cell decomposition by that of
) 1

LD(b,). We give the pseudo cell decomposition in the interior of
1
HE(le_) as
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(H - D) x 8% =(H - D% x(U ca) =U (H) - D) x Cg,
« «

where S"7% = U C, is the standard decomposition. These decompo-
sitions of LE(b,) and HE(b, ) fit together on their intersection and
] ]

give the decomposition of dE(b, ), which is clearly cellular equivalent
to that of aD(bTi). For each sinllplex u> bTi , L EM', we denote by
E(u) the pseudo cell of dE(b, ) which corresponds by the equivalence
to D(w) € BD(bTi). We have alE(bTi) = UE(u). We define N(s) by

N, = N, UN,

3 2)

attached by the identity on LE(b,). N(3) is cellularly equivalent to
M
Q)"

(c)p =4. Let 0 be a (n — 4)simplex. Let UE(u) C aNm be
the union of pseudo cells such that b, <pEM', u # b, . Then by
the definition, it is PL-homeomorphic to the PL-manifold

(Lk(0) # £(— H})) x D"~*
where H;' represents g(r;) and the sum extends to all 7; > o.
Since {Lk(0)} = Z g(r;) in ¥e?, the PL-homology 3-sphere
H] = Lk(o) # Z(— H})
is the boundary of an acyclic PL-manifold Wi. The union
Wé x 8" SUH) x D"*

is a PL-homology (n — 1)-sphere. By the proposition 1 of § 3, it is
the boundary of a contractible PL-manifold Y . We define the PL-
manifolds E(b,) and N, as

E®,) =Y,
N, = UE(®,) .

Further we define LE(b,) and HE(b,) by

LE(b,) = H) x D"7*
HE(b,) = W2 x §"~°.

The pseudo cellular decomposition for LE(b,) is already defined and
we give for HE(b,) by the product with the standard decomposition



284 HAJIME SATO

of $"7°. They give a pseudo cellular decomposition of
0E(b,) = LE(b,) UHE(b,) ,

which is cellularly equivalent to that of dD(b,). For each simplex
u>b,, n €M, we define E(u) by the pseudo cell which corresponds
to D(u) by this equivalence. We define N,y by Ny UN, attached
by the identity of LE(d,), which is cellularly equivalent to M

(d) p=5. Leto beaj-simplexj<n— 5. Let UE(u) CON(,,_;_,,

be the union of pseudo cells such that u > b, , u # b, . Then by our
definition, it is a PL-manifold

(4) -

H? ™' x D*°

where H{"_' is a PL-homology (p — 1)-sphere, where p = n — j. By
the proposition 1 of § 3, H? ™! is the boundary of a contractible PL-
manifold W?. We define E(b,) by

E®,) =Wl xD"7P .
The other definitions are just similar to the case when p = 4.

Continuing this process, we obtain a PL-manifold N = N(n) which

is cellularly equivalent to M = M(n). Q.E.D.

5. Simple homotopy equivalence.

By the theorem of § 4, for the same M, if the obstruction class
is 0, we can construct a PL-manifold N. In this section, we prove the
following.

THEOREM. — [f M is compact, the constructed manifold N is
simple homotopy equivalent to M.

Let M%) denote the k-skelton of M. Let L be a subcomplex of
M(k), we define the PL-submanifold N of N by
N = U{E(b,)|0 EL}.
We put
N® = NMO) — Byl o e B} |

By the induction of k, we prove the stronger
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LeEMMA 1. — There exists a simple homotopy equivalence
f: M) Nk
such that, for any (k + 1)-simplex p, f(8u) C NO® gnd
flow : 3w > NO»

is a simple homotopy equivalence.

Proof. — If k = 0, it holds obviously. Now we will prove the
lemma for k + 1 assuming the lemma for k. Let u be a (k + 1)-
simplex. Since the collar of ou is PL-homeomorphic to Sk x 1, we
can write

p="S"x1Us =@,
where S§ = S x{0}=0u and S¥ =8 x {1} =8 xINS* + (B,).
Recall that

NMOUR) _ N YRR )
m

N(k) N E(bn) — N(a#) N E(b“) — HE(bu) — Wz‘k—l X sk
where W":_k_1 is an acyclic (or contractible) PL-manifold. Let x
be a point in the interior of W, and let d: sk - W, x S* be the
embedding defined by d(S*¥) ={x}x S*. We define a map
frskusk - N®

by

fisg=r

fi1sk=d.
Since fl 0M gives a simple homotopy equivalence du - N(a“) N

is homotopy equivalent to S*, and so f | S" and f| Sk are homotopic.
Hence we can extend f on S" x I. Further since E(b ) is contractible,

we can extend f to a map_ frompu =S¥ x TU S* * (b,) to N(M( W y)
By the definition, f and f coincide on ou, and so we have a map

g=fUf:MPupu > NMOUR)
Repeating this for all (k + 1)simplexes of M, we obtain a map
g: ME*D » NE*D we have the exact sequences of chain groups,

0 > C,(M®) - C,(M¥**) > T C,(w/op) = 0
0 > C,(N*¥)) > C,(N¥"™) > £ C (E(b,)HE(®,)) ~ 0,

where we regard them as an(M(kH)) = Zﬂl(N(k“))—modules.
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The map g induces f, on the first elements and id.* on the third
elements. Since they are chain equivalences with trivial Whitehead
torsion, so is g, by [8]. Hence g is a simple homotopy equivalence.
It is easy to see that, for any (k + 2)-simplex 7, g induce a simple
homotopy equivalence

glar: ar > NO»
Q.E.D.
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