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A local signature for fibrations with a finite group action

Masatoshi Sato

Abstract

Let p be a finite regular covering on a 2-sphere with at least three branch points.

In this paper, we construct a local signature for the class of fibrations whose general

fibers are isomorphic to the covering p.

1 Introduction

Let E and B be closed oriented smooth manifolds of dimension 4 and 2, respectively. Let

Σg denote a closed oriented surface of genus g ≥ 1. Assume that a smooth surjective map

f : E → B has finitely many critical values {bl}nl=1, and the fiber f−1(b) on b ∈ B−{bl}nl=1 is

connected. Then, its restriction E − {f−1(bl)}nl=1 → B − {bl}nl=1 is an oriented fiber bundle

whose fiber is diffeomorphic to Σg. We call the triple (f, E,B) satisfying these conditions

a topological fibration of genus g. Inverse images of a regular value and a singular value

under f are called a regular fiber and a singular fiber, respectively.

For a fibration f : E → B, denote by ∆l ⊂ B a closed neighborhood of the critical value

bl. Denote by El the inverse image f−1(∆l), and the restriction f |El
by fl. On some classes

of fibrations, the signature of the fibration f : E → B is described as the sum

SignE =
n
∑

l=1

σloc(fl, El,∆l),

of local invariants σloc(fl, El,∆l) ∈ R each of which depends on a neighborhood of a singular

fiber. To be precise, these local invariants are defined as a function σloc on the set of singular

fiber germs which arise in the class of fibrations. We call this function the local signature.

One of the motivations for the study of local signatures is that it is closely related to

a cobounding function of the Meyer cocycle, an important 2-cocycle of the mapping class

group of the surface Σg. This function is related to several invariants including the eta

invariant of the signature operator (see Atiyah [3], Iida [12]) and the Casson invariant of

homology 3-spheres (see Morita [20]). In algebraic geometry, the local signature is related to

the slope equality problem. This is studied in order to describe the geography of algebraic

surfaces of general type (see Ashikaga-Konno [2]).
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For many classes of fibrations, local signatures are constructed and calculated in various

fields including topology, algebraic geometry, and complex analysis. For the fibrations of

genus 1 and 2, Matsumoto [16][17] constructed local signatures using the cobounding func-

tion of the Meyer cocycle. He also calculated the values for Lefschetz singular fiber germs.

Ueno also constructed and calculated the local signature for the genus 2 fibrations using

the even theta constant. For the fibrations of genus more than 2 whose monodromies are

in the whole mapping class group, there does not exist a local signature. But for some

restricted class, such as hyperelliptic fibrations, Endo [8] constructed it (see also Morifuji

[19]). Arakawa and Ashikaga also constructed it in the setting of algebraic geometry, and

Terasoma proved that these two local signatures coincides. Local signatures for many kinds

of restricted classes of fibrations are listed in Ashikaga-Endo [1] and Ashikaga-Konno [2].

Recently, Iida [12], Kuno [14][15] and Yoshikawa [25] constructed it for some restricted

classes.

The purpose of this paper is to construct the local signatures for the classes of topological

fibrations which have a fiber-preserving finite group action. We also assume that the quotient

space of their general fiber is a sphere with at least 3 branch points. We should mention

that Furuta [9] constructed a local signature for broader classes of fibrations than ours in

the manner of differential geometry. Furthermore, Nakata [21] calculated it on Lefschetz

fiber germs of the hyperelliptic fibration. But the local signature in this paper is easier to

compute than that one. In general, a local signature of this class is not unique. I do not

know whether the local signature in this paper coincides with Furuta’s one.

Let G be a finite group, and Σ a closed surface. We call a finite regular covering

p : Σg → Σ a G-covering if its deck transformation group is isomorphic G. For a G-

covering p, Birman-Hilden [6] defined a group called the symmetric mapping class group.

The monodromy group of fibrations of the G-covering p is considered as the subgroup of

this group. The local signature induces a cobounding function of the pullback of the Meyer

cocycle in the symmetric mapping class group. Using this cobounding function, we will

construct the local signature which can be applied to a broader class of fibrations than our

class.

This paper is organized as follows. In Section 2, we define a class of fibrations for which

we will construct the local signature later. We also define a broader class of fibrations and

review the local signature for it constructed by Furuta. For a fibration f : E → B of the

G-covering p, let Eh ⊂ E denote the fixed point set in E for h ∈ G. Since general fibers of

the fibration are isomorphic to the G-covering p, the subspace Eh∪ (E−{f−1(bl)}nl=1) of Eh

can be considered as a (not necessarily connected) covering space of B − {bl}nl=1. We call a

component S of Eh horizontal if S ∪ (E − {f−1(bl)}nl=1) is a covering space of B − {bl}nl=1.

The fixed point set Eh consists of these horizontal components and vertical components

which are included in singular fibers. For ψ ∈ [0, π], denote by I(h, ψ) the union of the

horizontal components whose normal bundles rotate ±ψ under the action of h ∈ G. Let
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J(fl, h) denote the union of vertical components included in a fiber germ f−1(bl). In Section

3, we prove the main theorem (Theorem 1.1) as below assuming that the sum of normal

euler numbers χ(N(S)) of the connected component S of I(h, ψ) for h ∈ G localizes as

∑

S⊂I(h,ψ)

χ(N(S)) =

n
∑

l=1

χh,ψloc ([fl, El,∆l]).

Here χh,ψloc ([fl, El,∆l]) is a rational number which depends on the fiber germ [fl, El,∆l] in

the fibration f : E → B.

Let f : E → ∆ be a fiber germ of the G-covering p on a closed 2-disk ∆. Let {Pj}
and {Fj} be the discrete fixed points and 2-dimensional components in J(f, h). Denote

the rotating angle of the normal bundle of Fj by ±ψj for ψj ∈ [0, π]. Identifying the

neighborhood of Pj and C2, choose ϕj, ϕ
′
j ∈ [0, 2π] so that the action of h is written as

(z, w) 7→ (e
√
−1ϕjz, e

√
−1ϕ′

jw) in a suitable coordinate. With the local normal euler number

χh,ψloc and these connected components of the fixed point set, The local signature σloc is

described as follows.

Theorem 1.1. Let p : Σg → S2 be a G-covering with at least three branch points. The

signatures of fibrations of the G-covering p localizes. Our local signature is written as

σloc([f, E,∆]) = |G| Sign(E/G)

+
∑

h 6=1∈G

(

−
∑

ψ∈[0,π]

χh,ψloc ([f, E,∆]) cosec2

(

ψ

2

)

+
∑

Pj⊂J(f,h)

cot
(ϕj

2

)

cot
(ϕj

′

2

)

−
∑

Fj⊂J(f,h)

χ(N(Fj)) cosec2

(

ψj
2

))

.

The key tools to prove this theorem are the localization of the normal euler number and

the G-signature theorem (Atiyah-Singer [4]). In Section 4, we construct a local euler number

using the multi-section on the normal bundle of I(h, ψ) made by Furuta, and complete the

proof of the main theorem (Theorem 1.1).

In the rest of paper, we will consider a cobounding function of the pullback of the Meyer

cocycle in the symmetric mapping class group of the G-covering p. In Section 5, we construct

a local signature for broader class of fibrations of the G-covering p when p satisfies some

condition. To do this, we describe the local signature using the cobounding function of the

pullback of the Meyer cocycle in the symmetric mapping class group. In Section 6, we give

a standard generating system of the symmetric mapping class group of a G-covering when

G is abelian. Let d ≥ 2 and m ≥ 3 be integers such that m is divided by d, and A a finite set

{αi}mi=1 in S2. For each i = 1, 2, · · · , m, choose a loop γαi
which rotates around a point αi

counterclockwise once. Define a surjective homomorphism k : H1(S
2−A) → Zd by mapping

each homology class [γαi
] to 1 mod d. Let p1 : Σg → S2 be the Zd-covering on S2 which has
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the branch set A in S2 and the monodromy homomorphism k. In Section 7, we calculate

the local signature of a fiber germ f : E → ∆ of the Zd-covering p1. Its monodromy is the

inverse of an element σ̂ij in the standard generating system of the symmetric mapping class

group for the Zd-covering p1. We also calculate the value of the cobounding function φ(σ̂ij).

Proposition 1.2. Let f : E → ∆1 be the representative of a fiber germ in Sp1g constructed

in the proof of Lemma 7.1. Then we have

σloc([f, E,∆1]) = −(d− 1)(d+ 1)m

3d(m− 1)
,

and

φ(σ̂ij) =
(d− 1)(d+ 1)m

3d(m− 1)

where σ̂ij is the generator of Mg(p1) defined in Section 6.

2 Fibrations of the G-covering p

Denote by Σg a closed oriented surface of genus g ≥ 1. Let G be a finite group, and

p : Σg → S2 a G-covering, that is, a finite regular covering whose deck transformation

group Deck(p) is isomorphic to G. In the sequel, we fix an isomorphism between the deck

transformation group Deck(p) and G. In this section, we define two kinds of fibrations of

the G-covering p in Definition 2.1 and Definition 2.2. Later in Section 3.2, we will construct

a local signature for the fibrations in Definition 2.2.

Let C(p) denote the centralizer of Deck(p) in the orientation-preserving diffeomorphism

group Diff+ Σg of the surface Σg.

Definition 2.1. Let E and B be compact (not necessarily closed) manifolds of dimension

4 and 2, and f : E → B a smooth surjective map. A triple (f, E,B) is called a fibration of

the G-covering p in a broad sense if it satisfies

(i) ∂E = f−1(∂B),

(ii) f : E → B has finitely many critical values {bl}nl=1 in IntB, and the restriction

E − {f−1(bl)}nl=1 → B − {bl}nl=1 is a smooth oriented Σg-bundle,

(iii) The structure group of the Σg-bundle E − {f−1(bl)}nl=1 → B − {bl}nl=1 is included in

C(p).

The fibration of the G-covering is a generalization of the hyperelliptic fibration, a fibra-

tion of a Z2-covering Σg → S2 on a sphere. The natural action of G on Σg gives rise to a

smooth fiberwise G-action on E−{f−1(bl)}nl=1, since the structure group of the fiber bundle
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E − {f−1(bl)}nl=1 is included in C(p). Note that for each regular value b ∈ B, the covering

f−1(b) → f−1(b)/G is isomorphic to the G-covering p.

On a class of fibrations of a covering which is not necessarily regular, Furuta has already

constructed a local signature. For a more detailed setting, see Furuta [9]. He constructed a

canonical multi-section on the relative tangent bundle of the fiber bundle E−{f−1(bl)}nl=1 →
B−{bl}nl=1, using the fact that any fiber has at least 3 branch points. He made a connection

on the tangent bundle TE by using the multi-section, and showed that its Pontrjagin form

vanishes outside neighborhoods of the singular fibers {f−1(bl)}nl=1. Thus, the signature

localizes.

We also use this multi-section to construct our local signature. But, in this paper, we

consider a narrower class of fibrations in order to make a local signature without using the

connection which is easy to compute. A fibration of the G-covering p (in a narrow sense) is

defined as follows.

Definition 2.2. A triple (f, E,B) is called a fibration of the G-covering p (in a narrow

sense), if it satisfies

(i) The map f : E → B is a fibration of the G-covering p in the broad sense,

(ii) The natural G-action on E − {f−1(bl)}nl=1 extends to a smooth action on E.

In this paper, we simply call it a fibration of the G-covering p. Our local signature

and local Euler number is defined as functions on the set of fiber germs which arise in these

fibrations. The set of fiber germs is defined as follows. Denote by ∆ a closed 2-disk. Consider

fibrations (f ,E,∆) of the G-covering p with unique critical values b ∈ ∆. Let (f1,E1,∆1) and

(f2,E2,∆2) be such fibrations which have unique critical values b1 and b2, respectively. We

call these fibrations are equivalent if and only if there exist closed 2-disks ∆′
1 ⊂ ∆1 and ∆′

2 ⊂
∆2 including the critical values, an orientation-preserving diffeomorphism ϕ : (∆′

1, b1) →
(∆′

2, b2), and a G-equivariant orientation-preserving diffeomorphism ϕ̃ : f−1
1 (∆1) → f−1

2 (∆2)

such that

ϕf1 = f2ϕ̃.

We call this equivalent class a fiber germ of fibrations of the G-covering p, and denote the

set of equivalent classes by Spg .

3 A local signature on the class of fibrations of the

G-covering p in the narrow sense

Let G be a finite group, and p : Σg → S2 a G-covering as in Section 2. Let (f, E,B) be a

fibration of the G-covering p. We assume E and B are without boundary. For h ∈ G and

ψ ∈ [0, π], denote by I(h, ψ) the union of all horizontal components of the fixed point set Eh
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whose normal bundles are rotated ±ψ by the action of h ∈ G. Let {[fl, El,∆l]}nl=1 be the

fiber germs in f : E → B, and denote by χ(N(S)) the normal euler number of a connected

component S in I(h, ψ). If there exists a function

χh,ψloc : Spg → Q

on the set of fiber germs such that

∑

S⊂I(h,ψ)

χ(N(S)) =
n
∑

l=1

χh,ψloc ([fl, El,∆l]),

we say that the normal euler number of the horizontal components I(h, ψ) localizes. In this

section, we prove the main theorem (Theorem 1.1) assuming that this number localizes. We

will construct a local euler number later in Definition 4.3.

3.1 The fixed point set of the G-action

To construct the local signature, we will apply the G-signature theorem on the total space

E of the fibration f : E → B of the G-covering p. Hence the fixed point set of G-action on

E plays an important role. We investigate this set in this section.

For h ∈ G, the fixed point set Eh is a pairwise disjoint collection of closed submanifolds

(See, for example, Conner [7] p.72). Since the group G preserves the orientation of E, it

consists of closed 2-manifolds {Si} and 0-manifolds {Pj}. In Introduction, we defined two

kinds of components of Eh. A component of Eh is called vertical if they are contained in

a singular fiber, and it is called horizontal otherwise. Let N(b) denote a neighborhood of a

regular value b ∈ B of f . If we endow the natural G-action on the first factor of Σg ×D2,

a local trivialization f−1(N(b)) ∼= Σg ×D2 preserving the C(p) structure is G-equivariant.

Therefore, any horizontal component S is 2-dimensional, and S ∩ f−1(B−{bl}nl=1) is a (not

necessarily connected) covering space of B − {bl}nl=1. We give an example of horizontal

components.

Example 3.1 (An elliptic surface). Let [x : y : z] and [b1 : b2] be a homogeneous coordinate

of CP2 and CP1. Consider the singular surface

E = {b2y2z = x(x− z)(b2x− b1z) | ([x : y : z], [b1 : b2]) ∈ CP2 ×CP1}.

If we blow up E at

([x : y : z], [b1 : b2]) = ([0 : 0 : 1], [0, 1]), ([1 : 0 : 1], [1, 1]), ([1 : 0 : 0], [1, 0]),

we obtain a smooth elliptic surface E ′ and a smooth map E ′ → CP1 defined by the natural

projection. Endow the action of Z2 on E by

t : ([x : y : z], [b1 : b2]) 7→ ([x : −y : z], [b1 : b2]).
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This group action extends naturally onto E ′, and its fixed point set is the disjoint sum of

the proper transforms of {x = y = 0}, {x = z, y = 0}, {b2x = b1z, y = 0}, and {x = z = 0}.
These components are horizontal.

3.2 Localizations of signature and the normal euler number

We deduce the following lemma from the G-Signature theorem.

Lemma 3.2. Let f : E → B a fibration of the G-covering p. If the normal euler number of

the horizontal components I(h, ψ) localizes for any h ∈ G and ψ ∈ [0, π], the signature of E

also localizes.

To prove this lemma, we prepare some facts about the G-signature. Let G be a finite

group which acts on a closed oriented 4-manifold X preserving the orientation. Then, the

G-signature Sign(h,X) for h ∈ G is a rational number satisfying

SignX = −
∑

h 6=1∈G
Sign(h,X) + |G| Sign(X/G). (1)

For the details, see Atiyah-Singer [4] (See also Gordon [10]).

The fixed point set of h ∈ G is the disjoint sum of closed 2-manifolds {Si} and 0-

manifolds {Pj}. Denote the rotation angle of the normal bundle of Si by ±ψi, where

ψ ∈ [0, π]. Identifying neighborhoods of Pj and the origin in C2, choose ϕj, ϕ
′
j ∈ [0, 2π]

so that the action of h is written as (z, w) 7→ (e
√
−1ϕjz, e

√
−1ϕ′

jw) in a suitable coordinate.

Then, the G-signature Sign(h,X) is written in terms of these rotation angles and the normal

euler number of Si as follows.

Theorem 3.3 (Atiyah-Singer [4]).

Sign(h,X) =
∑

i

χ(N(Si)) cosec2(
ψi
2

) −
∑

j

cot(
ϕj
2

) cot(
ϕ′
j

2
). (2)

proof of lemma 3.2. Choose representatives {fl, El,∆l}nl=1 of all fiber germs in the fibration

f : E → B. Note that the complement of the fiber germs
⋃n
l=1El/G in the quotient space

E/G is a S2-bundle. Since the signature of a S2-bundle on a compact 2-manifold vanishes,

we have

Sign(E/G) = Sign((E −∐n
l=1 IntEl)/G) +

n
∑

l=1

Sign(El/G)

=
n
∑

l=1

Sign(El/G) (3)
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by the Novikov additivity. Substituting (2) and (3) to (1), we see that the signature of E

localizes if and only if the right hand side of (2) localizes. By the definition, any vertical

component F is included in a singular fiber. Hence, the normal Euler number χ(N(F ))

depends only on the singular fiber germ. Thus, if the normal euler numbers of I(h, ψ)

localizes, the signature of E also localizes.

By the equations (1),(2), and (3), we can write the local signature as Theorem 1.1.

Remark 3.4. In the proof, we do not consider the localization of the normal euler number

of each horizontal component but the sum of the normal euler numbers of the horizontal

components I(h, ψ).

4 The local normal euler number of the set of horizon-

tal components

Recall that G is a finite group, and p : Σg → S2 is a G-covering. Denote by m the order of

the branch set of the G-covering p. In this section, we assume that the order m is at least

3. Let f0 : E0 → B0 be a Σg-bundle on a manifold B0 with structure group in C(p). The

group G acts on the total space E0 fiberwise as stated after Definition 2.1. In Section 4.1, we

review a canonical multi-section of the normal bundles of Eh
0 for h 6= 1 ∈ G constructed by

Furuta. As in Section 3, let f : E → B be a fibration of the G-covering p, and {fl, El,∆l}nl=1

representatives of the fiber germs in the fibration. Applying Section 4.1 to the Σg-bundle

E−∐n
l=1 IntEl → B−∐n

l=1 Int ∆l, we have the canonical multi-section of the normal bundle

of S ∩ (E − ∐n
l=1 IntEl) for each horizontal component S. We show that the normal euler

number of I(h, ψ) in the fibration f : E → B localizes in Section 4.2 by means of this

multi-section.

4.1 Multi-sections of the normal bundles of the fixed point sets

We review a canonical multi-section of the normal bundle of the fixed point set Eh
0 for

h 6= 1 ∈ G constructed by Furuta. Let J0 denote the union ∪h 6=1∈GE
h
0 of all fixed point sets.

Denote by Ē0 and J̄0 the quotient spaces of E0 and J0 under the G-action, respectively.

Note that the smooth map f̄0 : Ē0 → B0 induced by f0 : E0 → B0 is a S2-bundle. Denote

by q : E0 → Ē0 the quotient map of the G-action. Fix a fiberwise complex structure on

the S2-bundle f̄0 : Ē0 → B0. Since the restriction of q to each fiber f−1(b) → f̄−1(b) is

isomorphic to the G-covering p, it induces the fiberwise complex structure on the Σg-bundle

f0 : E0 → B0.

Lemma 4.1 (Furuta [9] Lemma 2). When the order m of the branch set in S2 of the

G-covering p is at least 3, there exists a canonical section s̄ of the complex line bundle

T (Ē0/B0)|⊗(m−1)(m−2)

J̄0

→ J̄0.
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In fact, he also constructed a canonical multi-section of T (Ē0/B0)|Ē0−J̄0
, which we do

not need in this paper.

Proof. For b ∈ B0, the intersection of J̄0 and the fiber f̄−1(b) is a point set. Number it as

{αi(b)}mi=1 = J̄0 ∩ f̄−1(b). We will construct a tangent vector at αi(b) by choosing other two

branched points αj(b) and αk(b). Define an isomorphism

tijkb : CP1 → f̄−1(b)

by mapping 0, 1, and ∞, to αi(b), αj(b), and αk(b), respectively. Since f̄−1(b) has the

complex structure, this isomorphism is unique. In this way, we obtain the tangent vector

tb
ijk
∗ ( d

dz
) at αi(b), where z is the inhomogeneous coordinate in CP1. If we move j, k ∈

{1, 2, · · · , m}, we have

⊗

j,k

tb
ijk
∗

(

d

dz

)

∈ Tαi(b)(Ē0/B0)
⊗(m−1)(m−2).

Thus, we obtain the non-zero section s̄ of the bundle T (Ē0/B0)
⊗(m−1)(m−2)|J̄0

.

By means of the section s̄ above, Furuta constructed a multi-section of the normal bundle

of Eh
0 for h 6= 1 ∈ G as in the following theorem (See the proof of Theorem 1 in Furuta

[9]). For a connected component S0 of the fixed point set Eh, denote by rS0
the order of the

subgroup of G which fixes S0 in E0 pointwise.

Theorem 4.2 (Furuta). Let S0 be a connected component of the fixed point set Eh
0 for

h 6= 1 ∈ G. When the order m of the branch set of the G-covering p is at least 3, there

exists a canonical section s : S0 → T (E0/B0)
⊗rS0

(m−1)(m−2)|S0
. Moreover, the homotopy

class of the section sS0
does not depend on the choice of the complex structure.

Proof. Let S̄0 denote the image of S0 under the map q. The restriction S̄0 → T (Ē0/B0)
⊗(m−1)(m−2)|S̄0

of the section s̄ induces s′S0
: S0 → q∗T (Ē0/B0)

⊗(m−1)(m−2)|S0
. The map q induces the iso-

morphism

L : T (E0/B0)
⊗rS0 |S0

→ q∗T (Ē0/B0)|S0
.

Hence we have obtained the desired nonzero section s = (L−1)⊗(m−1)(m−2)s′S0
of the bundle

T (E0/B0)
⊗rS0

(m−1)(m−2)|S0
. Denote it by sS0

. Since the set of fiberwise complex structure

on the S2-bundle f̄0 is contractible, the homotopy class of s does not depend on the choice

of the complex structure.

Choose a G-equivariant Riemannian metric on T (E0/B0)|J0
which is compatible with the

almost complex structure. Let S0 be a connected component of Eh for arbitrary h ∈ G−{1}.
The Riemannian metric induces a metric on T (E0/B0)

⊗rS0 |S0
. This bundle is isomorphic to

the pullback of T (Ē0/B0)|S̄0
by the map q|S0

: S0 → S̄0. Hence we obtain the Riemannian
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metric on T (Ē0/B0)|J̄0
which is compatible with the almost complex structure. Let gJ0

and

gJ̄0
be arbitrary Riemannian metrics on TJ0 and T J̄0, respectively. The bundles TE0|J0

and

TĒ0|J̄0
have splittings TE0|J0

= T (E0/B0)|J0
⊕ TJ0 and TĒ0|J̄0

= T (Ē0/B0)|J̄0
⊕ T J̄0. We

can choose Riemannian metrics gr on E0 and ḡr on Ē0 whose restrictions to TE0|J0
and

TĒ0|J̄0
are equal to gE0/B0

|J0
⊕ gJ0

and gĒ0/B0
|J̄0

⊕ gJ̄0
, respectively. Since the bundles TJ0

and T (E0/B0)|J0
are orthogonal, T (E0/B0)|S0

and N(S0) are canonically isomorphic. Thus,

the section s : S0 → T (E0/B0)|⊗rS0
(m−1)(m−2)

S0
induces a section of N(S0)

⊗rS0
(m−1)(m−2).

Denote it as sS0
. In the same way, by the isomorphism T (Ē0/B0)|S̄0

∼= N(S̄0), the section

s̄|S̄0
: S̄0 → T (Ē0/B0)|⊗(m−1)(m−2)

S̄0

induces a section sS̄0
of N(S̄0)

⊗(m−1)(m−2).

4.2 The local euler number

We prove that the normal euler number of the horizontal components I(h, ψ) localizes.

Let S be a compact connected surface with nonempty boundary, and V (S) → S a vector

bundle. Assume that V (S) is oriented as a manifold, and that we are given a nonzero section

s : ∂S → V (S)|∂S. We introduce an integer n(s, V (S)) for the section s in order to localize

the euler number of I(h, ψ).

In the following, all homology groups are with integral coefficients if not specified. Let

s0 : S → V (S) be the zero section. If we extend the section s to the section s̃ of V (S) → S,

the exact sequence

0 = H2(V (S)) → H2(V (S), V (S) − s0(S)) → H1(V (S) − s0(S)) → H1(V (S))

shows the homology class [s̃] ∈ H2(V (S), V (S) − s0(S)) is independent of the choice of s̃.

Denote by [s0] the homology class of the zero section in H2(V (S), V (S)|∂S). Let D(S) be a

unit disk bundle in V (S), and S(S) its sphere bundle. Then, we have natural isomorphisms

H2(V (S), V (S)|∂S) ∼= H2(D(S), D(S)|∂S) and H2(V (S), V (S) − s0(S)) ∼= H2(D(S), S(S))

induced by the inclusions. Define a number n(s, V (S)) := [s̃] · [s0] ∈ Z in terms of the

intersection form H2(D(S), D(S)|∂S) ×H2(D(S), S(S)) → Z.

Let f : E → ∆ be a representative of a fiber germ [f, E,∆] ∈ Spg . Endow a Riemannian

structure gr on E whose restriction on TE|∂J is equal to g∂E/∂∆|∂J⊕gJ |∂J for some Rieman-

nian metric gJ on TJ as in the last paragraph of Section 4.1. By applying Theorem 4.2 to

∂E → ∂∆, we have a canonical section s∂S : ∂S → N(S)⊗rS(m−1)(m−2)|∂S for each horizontal

component S ⊂ I(h, ψ). The local euler number is described in terms of this section s∂S as

follows.

Definition 4.3. Define a map χh,ψloc : Spg → Q by

Spg → Q

[f, E,∆] 7→
∑

S⊂I(h,ψ)

1

rS(m− 1)(m− 2)
n(s∂S, N(S)⊗rS(m−1)(m−2)),

10



where rS is the order of the subgroup of G which fixes S in E pointwise.

This map is well-defined as shown in the following. We need to show that the number

χh,ψloc ([f, E,B]) ∈ Q is independent of the choice of the metric gr. If we choose another

extension g′r on TE of g0 such that gr = g′r on TE|∂E, the corresponding section s∂S of

the normal bundle N(S) does not change. Since the space of Riemannian metrics on TJ

is contractible, the number χh,ψloc ([f, E,B]) ∈ Q is also independent of the choice of the

Riemannian metric gJ . Hence the local euler number χh,ψloc : Spg → Q is well-defined.

Theorem 4.4. For any fibration f : E → B of the G-covering p with singular fiber germs

{[fl, El,∆l]}nl=1, we have

∑

S⊂I(h,ψ)

χ(N(S)) =
n
∑

l=1

χh,ψloc ([fl, El,∆l]).

In short, the map χh,ψloc : Spg → Q is a local normal euler number.

Proof. Let {fl, El,∆l}nl=1 be representatives of the fiber germs in the fibration f : E → B.

We may assume that ∆l are mutually disjoint in B. Choose a Riemannian metric g0 on

E−∐n
l=1 IntEl as in the last paragraph of Section 4.1. We can extend the Riemannian metric

g0 on E − ∐n
l=1 IntEl to a Riemannian metric gr on TE. Denote by S0 the intersection of

S and the complement of ∐n
l=1 IntEl. Let Ñ denote the tensor product N(S)⊗rS0

(m−1)(m−2)

of the normal bundle of S in E. By Theorem 4.2, we have the canonical section sS0
of

Ñ → S over S0. Extend the section sS0
to a section s̃ of Ñ → S over S transversely to

the zero section s0 : S → Ñ . With the number n(sS0
|S0∩∂El

, Ñ |S∩El
), the intersection of

[s̃] ∈ H2(Ñ, Ñ − S) and [s0] ∈ H2(Ñ) is described as

s̃ · s0 =
n
∑

l=1

n(sS0
|S0∩∂El

, Ñ |S∩El
) =

n
∑

l=1

rS(m− 1)(m− 2)χh,ψloc (fl).

Since the euler number of Ñ is equal to the self-intersection number of a section of Ñ → S,

this is equal to χ(Ñ) = rS(m− 1)(m− 2)χ(N(S)). Hence we have

∑

S⊂I(h,ψ)

χ(N(S)) =

n
∑

l=1

χh,ψloc ([fl, El, Bl]).

5 The Meyer cocycle and symmetric mapping class

groups

Let Diff+ Σg denote the orientation-preserving diffeomorphism group of the closed surface Σg

of genus g. The mapping class group Mg of the surface Σg is defined by the path-connected

11



component π0 Diff+ Σg of this topological group with C∞ topology. For a finite regular

covering p : Σg → Σ on a compact surface Σ, Birman-Hilden [6] defined a group Mg(p)

called the symmetric mapping class group. We restrict ourselves to the case Σ = S2. Recall

that we denote by C(p) the centralizer of the deck transformation group of the G-covering

p.

Definition 5.1. The symmetric mapping class group of the G-covering p : Σg → S2 is

defined by

Mg(p) := π0C(p).

Let T be a finite set in Σg. Denote by Diff+(Σg, T ) the group of orientation-preserving

diffeomorphisms on the surface Σg which fixes the set T pointwise. Denote by A =

{α1, α2, · · · , αm} ⊂ S2 the branch set of p. Pick a point ∗ in S2 − A. In the same

way, the symmetric mapping class group of the pointed surface (Σg, p
−1(∗)) is defined by

M(∗)
g (p) := π0(Diff+(Σg, p

−1(∗)) ∩ C(p)).

Mapping a path-connected component ofC(p) to the corresponding component of Diff+ Σg,

we obtain the natural homomorphism

Φ : Mg(p) → Mg.

Assume that the G-covering p : Σg → S2 has at least 3 branch points as in Section 4. Meyer

[18] introduced a 2-cocycle of the mapping class group Mg, called the Meyer cocycle. We

construct a cobounding function of the pullback of the Meyer cocycle by Φ in a subgroup

Mmon(p) ⊂ Mg(p) in Theorem 5.5, when p : Σg → S2 has at least 3 branch points. When

this subgroup coincides with the symmetric mapping class group Mg(p), we can construct

a local signature for fibrations of the G-covering p in the broad sense, using this cobounding

function (Proposition 5.6).

The symmetric mapping class group Mg(p) arises as the monodromy group of the Σg-

bundles whose structure groups are included in C(p). Let us recall the monodromy ho-

momorphisms of Σg-bundles. Let f : E → B be a Σg-bundle on a manifold B. Fix a

base point b in B, and an identification Ψ0 : Σg → f−1(b), which is called the reference

fiber. For a homotopy class γ ∈ π1(B, b), choose a based loop l : [0, 1] → B which rep-

resents γ. Since the pullback q : l∗E → [0, 1] is the trivial Σg-bundle, we can choose a

trivialization Ψ̃ : Σg × [0, 1] → l∗E such that Ψ̃(x, 0) = Ψ0(x). Define the diffeomorphism

Ψ1 : Σg → f−1(b) by Ψ1(x) = Ψ̃(x, 1). The isotopy class of the diffeomorphism Ψ−1
1 Ψ0 is

called the monodromy of the Σg-bundle f : E → B along the loop l. It does not depend

on the choice of Ψ̃ and l. Thus, we can define a homomorphism π1(B, b) → Mg, called the

monodromy homomorphism. If the structure group of the Σg-bundle f : E → B is in C(p),

the diffeomorphism Ψ−1
1 Ψ0 is also included in C(p). Similarly, we have the homomorphism

π1(B, b) → Mg(p). We also call it the monodromy homomorphism.

Define the subgroup Mmon(p) of the symmetric mapping class group Mg(p) as follows.

12



Definition 5.2. Denote by Mmon(p) the subgroup of the symmetric mapping class group

Mg(p) normally generated by the monodromies which arise in the set of fiber germs Spg along

the boundary circles.

Let us review the definition of the Meyer cocycle. For i = 1, 2, 3, let Di be disjoint closed

disks in a 2-sphere. Denote by P a pair of pants S2 − ∐3
i=1 IntDi. Let Eϕ,ψ

g be the total

space of a Σg-bundle on P whose monodromies around the boundary circles ∂Di are given

by ϕ, ψ, (ϕψ)−1 ∈ Mg. This Σg-bundle is unique up to isomorphism.

Definition 5.3 (Meyer [18]). The map

τg : Mg × Mg → Z,

(ϕ , ψ) 7→ SignEϕ,ψ
g

is called the Meyer cocycle.

Meyer proved that the map τ is a 2-cocycle on the mapping class group. Moreover, he

showed that this cocycle represents a nontrivial 2-cohomology class of Mg when g ≥ 3.

Later, it is rediscovered by Turaev [24].

Birman-Hilden (Theorem 1 in [6]) shows that if the deck transformation group fixes the

branch set pointwise, then Φ is injective. Let p′ : Σg → S2 be a Z2-covering on S2 for g ≥ 2.

Especially, the symmetric mapping class group for p′ is isomorphic to a subgroup of the

mapping class group called the hyperelliptic mapping class group.

To construct a cobounding function of Φ∗τg, we need a following lemma.

Lemma 5.4. For a mapping class ϕ̂ ∈ Mmon(p), there exists a fibration f : E → D2 of the

G-covering p whose monodromy along the boundary circle ∂D2 is ϕ̂.

Proof. Let f : E → ∆ be a representative of a fiber germ. Let t be a point in ∂∆, and

Ψ0 : Σg → f−1(t) a reference fiber. Assume that the monodromy of f along the boundary

circle is given by ϕ̂0 ∈ Mmon(p). First, we construct fiber germs whose monodromies are

ψ̂ϕ̂0ψ̂
−1 and ϕ̂−1

0 for ψ̂ ∈ Mg(p).

Let ĥ be a diffeomorphism of Σg which represents ϕ̂ ∈ Mg(p). If we change the reference

fiber by Ψ0ĥ
−1 : Σg → f−1(t), the monodromy is given by ψ̂ϕ̂0ψ̂

−1. Choose an orientation-

reversing diffeomorphism ι : ∆ → ∆. If we endow the other orientation on E, the smooth

map ιf : E → ∆ is also a fibration of the G-covering p. this fibration has ϕ̂−1
0 as its

monodromy along the boundary circle.

Let fi : Ei → ∆i be representatives of fiber germs for i = 1, 2, · · · , n. Choose a point ti
in each boundary, and a reference fiber Ψi : Σg → f−1

i (ti). Assume that the monodromies

of fi along the boundary circles are ϕ̂i for i = 1, 2, · · · , n. It suffices to construct a fibration

whose monodromy along the boundary circle is given by
∏n

i=1 ϕ̂i. If we glue each reference

fiber f−1
i (ti) in Ei together by Ψi′Ψ

−1
i : f−1

i (ti) → f−1
i′ (ti′) for 1 ≤ i, i′ ≤ n, we obtain the

13



b1b2 bnti
�1�2 �n

Figure 1: the wedge sum
∨n
i=1 ∆i in D2

space
⋃n
i=1Ei. Denote by

∨n
i=1 ∆i the wedge sum obtained by identifying each ti ∈ ∆i.

The maps fi induce the map F :
⋃n
i=1Ei →

∨n
i=1 ∆i. Embed the wedge sum

∨n
i=1 ∆i in

D2 as in Figure 1. Then, there exists a deformation retraction r : D2 → ∨n
i=1 ∆i. Denote

by bi ∈ ∆i the critical value of fi. By taking the pullback of the Σg-bundle
⋃n
i=1(Ei −

f−1
i (bi)) →

∨n
i=1(∆i − bi) by r, we obtain the fibration on D2 whose monodromy along the

boundary circle is
∏n

i=1 ϕ̂i. There exists a (smooth) fibration topologically isomorphic to

this fibration.

Theorem 5.5. Let G be a finite group, and p : Σg → S2 a G-covering with at least 3 branch

points. For a mapping class ϕ̂ ∈ Mmon(p), there exists a fibration f : X → D2 of the G-

covering p on a closed 2-disk whose monodromy along the boundary circle ∂D2 is ϕ̂. Denote

by {[fl, El,∆l]}nl=1 the fiber germs arise in the fibration. Define a map φ : Mmon(p) → Q by

φ(ϕ̂) :=

n
∑

l=1

σloc([fl, El,∆l]) − SignX,

where σloc is the local signature described in Theorem 1.1. This is well-defined, and cobounds

the 2-cocycle Φ∗τg in Mmon(p). That is to say, it satisfies

φ(ϕ̂) + φ(ψ̂) + φ((ϕ̂ψ̂)−1) = Φ∗τg(ϕ̂, ψ̂),

for ϕ̂, ψ̂ ∈ Mmon(p).

Proof. Choose a Σg-bundle E → P on the pair of pants whose monodromies along the

boundary circles are ϕ̂, ψ̂, and (ϕ̂ψ̂)−1, respectively. Since these mapping classes lie in

Mmon(p), there exist fibrationsXi → D2 (i = 1, 2, 3) of theG-covering p whose monodromies
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along the boundary circles are ϕ̂, ψ̂, and (ϕ̂ψ̂)−1, respectively. Let {f il , Ei
l ,∆

i
l}ni

l=1 denote

representatives of the fiber germs arise in the fibration Xi. By the definition of the Meyer

cocycle, we have

Φ∗τg(ϕ̂, ψ̂) = SignE.

By the definition of the local signature, we have

SignE =
3
∑

i=1

(

ni
∑

l=1

σloc([f
i
l , E

i
l ,∆

i
l]) − SignXi

)

= φ(ϕ̂) + φ(ψ̂) + φ((ϕ̂ψ̂)−1).

If we substitute another fibration X ′
1 → D2 whose monodromy along the boundary circle is

ϕ̂ for X1 → D2, the left-hand side of the equation does not change. Hence the value φ(ϕ̂)

does not also depend on the choice of X1. Moreover, the equation shows that the map φ

cobounds the Meyer cocycle.

In terms of the cobounding function, we obtain a local signature for fibrations of the

G-covering p in the broad sense, if the subgroup Mmon(p) coincides with the whole group

Mg(p). This local signature is defined as a function on another kind of fiber germs. Denote

by ∆ a closed 2-disk. Consider fibrations (f ,E,∆) of the G-covering p in the broad sense

with unique critical values b ∈ ∆. Let (f1,E1,∆1) and (f2,E2,∆2) be such fibrations which

have unique critical values b1 and b2, respectively. These fibrations are equivalent if and

only if there exist

(i) closed 2-disks ∆′
1 ⊂ ∆1 and ∆′

2 ⊂ ∆2 including the critical values,

(ii) an orientation-preserving diffeomorphism ϕ : (∆′
1, b1) → (∆′

2, b2),

(iii) an orientation-preserving diffeomorphism ϕ̃ : f−1
1 (∆1) → f−1

2 (∆2) such that ϕf1 = f2ϕ̃

and it restricts to a G-equivariant diffeomorphism f−1
1 (∆1 − b1) → f−1

2 (∆2 − b2).

We denote this set of equivalent classes by S̃pg .

Proposition 5.6. Let G be a finite group, and p : Σg → S2 a G-covering with at least

3 branch points. Assume that the group Mmon(p) coincides with the whole group Mg(p).

Let φ : Mg(p) → Q be the cobounding function of the pullback Φ∗τg of the Meyer cocycle

in Theorem 5.5. For a fiber germ [f, E,∆] ∈ S̃pg , denote by ϕ̂ the monodromy along the

boundary curve ∂∆. The map σ′
loc : S̃pg → Q defined by

σ′
loc([f, E,∆]) := φ(ϕ̂) + SignE

is a local signature for fibrations of the G-covering p in the broad sense.

The proof is the same as that of Theorem 4.4 in Endo [8].

Remark 5.7. In general, a cobounding function of the pullback Φ∗τg of the Meyer cocycle

in Mmon(p) is not unique.
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6 Generators of symmetric mapping class groups

In this section, we describe a generating set of the symmetric mapping class group Mg(p)

of the G-covering p, assuming that the finite group G is abelian. Let d ≥ 2 be an integer.

In Section 7, we will construct fiber germs whose monodromies are inverses of the standard

generator system {σij}, and prove Mg(p1) = Mmon(p1).

Let f̂ be in the centralizer C(p). The diffeomorphism f̂ induces a diffeomorphism f of

S2 satisfying a commutative diagram

Σg
f̂−−−→ Σg

p





y

p





y

S2 f−−−→ S2.

We call the diffeomorphism f the projection of f̂ . Recall that A is the branch set in S2 of the

G-covering p. Let k : π1(S
2 −A) → G be the monodromy homomorphism of the G-covering

p. Since G is abelian, this induces the homomorphism k̄ : H1(S
2 −A) → G. Choose a base

point ∗ in S2 − A. Denote by γαi
: [0, 1] → S2 a based loop which rotates around a point

αi counterclockwise once. For h ∈ G − {1}, define a subset Ah of the branch set A in S2

by Ah = {α ∈ A | k̄∗[γα] = h}, where [γα] is the homology class of γα. Let MA
0 denote the

mapping class group which preserves the set Ah setwise for any h ∈ G−{1}. We also denote

by MA,∗
0 the mapping class group which preserves the base point ∗ and each Ah setwise.

The projection f of f̂ ∈ C(p) preserves each branch set Ah. For the details, see Proposition

1.2 in [23]. Thus, we have homomorphisms Φ′ : M(∗)
g (p) → MA,∗

0 and Φ : Mg(p) → MA
0

defined by [f̂ ] 7→ [f ].

Lemma 6.1. Assume that the finite group G is abelian.

(i) The homomorphism Φ′ : M(∗)
g (p) → MA,∗

0 is isomorphic.

(ii) The homomorphism Φ : Mg(p) → MA
0 is surjective, and the kernel is generated by

Deck(p).

Proof. The surjectivity of Φ is a special case of Proposition 1.2 in [23]. We can show that

the homomorphism Φ′ is surjective in the same way.

We compute the kernels of Φ and Φ′. Let f be the projection of f̂ ∈ C(p). If the

mapping class [f̂ ] ∈ Mg(p) is in the kernel of Φ, there exists an isotopy {fs}0≤s≤1 satisfying

f0 = f and f1 = id. Choose the lift of this isotopy {f̂s}0≤s≤1 such that f̂0 = f̂ . Since f̂1

is a lift of the identity map, it is a deck transformation. Hence, the kernel is generated by

Deck(p). By the same argument, we can show that the kernel of Φ′ is also generated by

Deck(p) ∩ Diff+(Σg, p
−1(∗)), which is the trivial group.
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For mutually distinct integers i, j, choose a simple closed curve Cij as in Figure 2. When

there exist mutually distinct h, h′ ∈ G − {1} which satisfy αi ∈ Ah and αj ∈ Ah′, Denote

by τij ∈ MA,∗
0 the full Dehn twist along Cij. When there exists h ∈ G− {1} which satisfies

αi, αj ∈ Ah, denote by σij ∈ MA,∗
0 the half Dehn twist along Cij. This is the mapping

class which exchanges the points αi and αj and whose square is the full Dehn twist along

Cij. We denote by σ̂ij and τ̂ij in M(∗)
g (p) the lifts of σij and τij which preserve the fiber

�i �j �m� � � � � � � � �Cij�1
Figure 2: the simple closed curve Cij

p−1(∗) pointwise, respectively. The inclusion Diff+(Σg, p
−1(∗)) ∩ C(p) → C(p) induces a

homomorphism M(∗)
g (p) → Mg(p). We also denote by the same symbol the images of σ̂ij

and τ̂ij under this homomorphism.

Lemma 6.2. If the finite group G is abelian, then both of the groups M(∗)
g (p) and Mg(p)

are generated by σ̂ij and τ̂ij for 1 ≤ i ≤ m and 1 ≤ j ≤ m.

Proof. Since we have the isomorphism Φ′ : M(∗)
g (p) ∼= MA,∗

0 , it suffices to show that

(i) the mapping classes σij , τij generates MA,∗
0 ,

(ii) the homomorphism M(∗)
g (p) → Mg(p) is surjective.

First, we show (i). Let Diff+(S2, A, ∗) be the diffeomorphism group which preserves the

base point ∗ and the set A pointwise. Denote by n(h) the order of Ah, and by Sn(h) the

symmetric group of degree n(h). Since MA,∗
0 permutes the elements of each set Ah, we

have the homomorphism η : MA,∗
0 → ∏

h∈G−{1} Sn(h). Since the group
∏

h∈G−{1} Sn(h) is

generated by the images of σ̂ij under η, we have the exact sequence

1 −−−→ π0 Diff+(S2, A, ∗) −−−→ MA,∗
0

η−−−→ ∏

h∈G−{1} Sn(h) −−−→ 1.

It is known that π0 Diff+(S2, A, ∗) is generated by σ2
ij and τij . For example, see Section 1.5

in Birman [5]. Thus, we have proved (i).

Next, we show (ii). Let ∗̂ be a point in p−1(∗). Let f̂ ∈ C(p) be a diffeomorphism, and

let f ∈ Diff+ S
2 denote the projection of f̂ . The map ρ : Diff+(S2, A) → S2 − A defined

by h 7→ h(∗) is a fiber bundle with fiber Diff+(S2, A, ∗) as in Theorem 4.1 in Birman [5].
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Pick a path γ̂ : [0, 1] → Σg − p−1(A) such that γ̂(0) = ∗̂ and γ̂(1) = f̂(∗̂). Denote by

Ψ : [0, 1] → Diff+(S2, A) a lift of pγ̂ : [0, 1] → S2 − A with respect to the fiber bundle

ρ : Diff+(S2, A) → S2−A such that Ψ(0) is the identity map. By the lifting property of the

G-covering p : Σg → S2, this can be lifted to the map Ψ̂ : [0, 1] → C(p) such that Ψ̂(0) is the

identity map. Then, the composite Ψ̂(1)−1f̂ preserves the point ∗̂. Moreover, since Ψ̂(1)−1f̂

commutes with the deck transformations, it preserves each point of p−1(∗). Hence Ψ̂(1)−1f̂

represents a mapping class in M(∗)
g (p). By the isotopy Ψ̂, we have [Ψ̂(1)−1f̂ ] = [f̂ ] ∈ Mg(p).

This shows that M(∗)
g (p) → Mg(p) is surjective.

7 The construction of fiber germs

Let d ≥ 2 and m ≥ 3 be integers such that m is divided by d, and A a finite set {αi}mi=1 in S2.

For each i = 1, 2, · · · , m, choose a loop γαi
which rotates around a point αi counterclockwise

once. Define a surjective homomorphism k : H1(S
2 − A) → Zd by mapping each homology

class [γαi
] to 1 mod d. Since m ≡ 0 mod d, this is well-defined. Let p1 : Σg → S2 be the

Zd-covering on S2 which has the branch set A in S2 and the monodromy homomorphism

k. In this section, we will construct a fiber germ of Zd-covering p1 whose monodromy is the

inverseσ̂−1
12 of the generator of Mg(p1) intruduced in Section 6. We will also calculate the

local signature of this fiber germ and the value φ(σ̂12) of the cobounding function of the

pullback of the Meyer cocycle τg by the homomorphism Φ : Mg(p) → Mg.

Lemma 7.1. The subgroup Mmon(p1) coincides with the whole symmetric mapping class

group Mg(p1).

Proof. We need to show that the generating set {σ̂ij}i,j∈A of the symmetric mapping class

group Mg(p1) is contained in the subgroup Mmon(p1). Since {σ̂ij}i,j∈A are in the same

conjugacy class in Mg(p1), it suffices to construct a fiber germ in Sp1g whose monodromy is

σ̂12.

Let Ē be the product space ∆1×CP1, where ∆1 = {b ∈ C | |b| ≤ 1/2} is a closed 2-disk.

Let [x1 : x2] be the homogeneous coordinate of CP1, and m′ = m − 2. Denote by J̄ a

submanifold of Ē defined by the equation (xm
′

1 − xm
′

2 )(x2
1 − bx2

2) = 0. For b = re
√
−1φ ∈ ∆1

where r ≥ 0 and 0 ≤ φ < 2π, define the root by
√
b =

√
re

√
−1φ/2. Pick a diffeomorphism

T : S2 → {1/2} ×CP1 which maps α1, α2, and αi, to (1/2, [
√

1/2 : 1]), (1/2, [−
√

1/2 : 1]),

and (1/2, [1 : e2π
√
−1(i−2)/m′

]), for i = 3, 4, · · · , m. Then, we have

H1(Ē − J̄) =

m
⊕

j=1

Zej/(Z(e1 − e2) ⊕ Z(e1 + e2 + · · ·+ em)),

where ej is the homology class represented by the loop T ◦ γαj
. Define a homomorphism

l : H1(Ē− J̄) → Zd by mapping each ej to 1. This is well-defined since m ≡ 0 mod d. Hence
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there exists a Zd-covering q : E → Ē branched along J̄ whose monodromy homomorphism

is l.

Denote by f̄ : Ē → ∆1 the projection to the second factor, and by f : E → ∆1 the

composite of q : E → Ē and f̄ . The map f is a fibration of Zd-covering p1 in the narrow

sense with the unique singular value b = 0. We only have to check that it has the monodromy

σ̂12. The restriction of f̄

(Ē − ({0} × CP1), J̄ − {(0, [0 : 1])}) → ∆1 − 0

can be considered as a m-pointed sphere bundle. Consider T : S2 → {1/2} × CP1 as a

reference fiber of this bundle. Then, the monodromy of this bundle along ∂∆1 is σ−1
12 ∈ MA

0 .

Moreover, since there is a section s : ∆1 → Ē defined by s(b) = (b, [1 : 0]), the monodromy

can be considered as σ12 ∈ MA,∗
0 . Since the isomorphism Φ′ : M(∗)

g (p) ∼= MA,∗
0 maps σ̂12 to

σ12, the fibration f : E → ∆1 has the monodromy σ̂−1
12 ∈ Mg(p).

Lemma 7.2. In the symmetric mapping class group Mg(p1), the cobounding function of

the pullback Φ∗τg of the Meyer cocycle under Φ : Mg(p1) → Mg is unique.

Proof. If there exist two cobounding functions φ and φ′, the map φ− φ′ : Mg(p1) → Q is a

1-cocycle. Hence it suffices to show that H1(Mg(p1);Q) = 0. By Lemma 6.1, we have the

exact sequence

Deck(p1) −−−→ Mg(p1) −−−→ MA
0 −−−→ 1.

Since the deck transformation group Deck(p1) is finite, we have the isomorphism

H1(Mm
0 ;Q) ∼= H1(Mg(p1);Q).

It is known that H1(Mm
0 ;Q) = 0, for example, this follows from the presentation of Mm

0

obtained by Birman (Theorem 4.5 in [5]). Hence we have H1(Mg(p1);Q) = 0.

By computing the local euler number of the fixed point set in E of the Zd-action, we can

calculate the cobounding function of the pullback of the Meyer cocycle. As in Proposition

1.2, if d = 2 i.e. m = 2g + 2, the value φ(σ̂ij) for σ̂ij ∈ Mg(p1) coincides with that of the

Meyer function on the hyperelliptic mapping class group obtained by Endo ([8] Lemma 3.2).

To prove Proposition 1.2, we need Lemma 7.3. LetD(∆) → ∆ be aD2-bundle on a closed

2-disk ∆, and S(∆) its sphere bundle. The manifold S(∆) induces the orientation on the

boundary S(∆)|∂∆. Let s : ∆ → S(∆) be a section. For a section s′ : ∂∆ → S(∆)|∂∆, take

an extension s̃′ : ∆ → D(∆). Then we can consider the following two intersection numbers

H2(D(∆), S(∆)) × H2(D(∆), D(∆)|∂∆) → Z and H1(S(∆)|∂∆) × H1(S(∆)|∂∆) → Z. We

denote by s̃′ · s the former one, by s′ · s|∂∆ the latter one. Then

Lemma 7.3.

s̃′ · s = −s′ · s|∂∆.
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Proof. We may identify the disk ∆ with the embedded 2-disk D2 = {b ∈ C | |b| ≤ 1} in C.

The section s gives a trivialization D(∆) ∼= D2 ×D2.

For some integer k, the section s′ represents the same class as the curve {(z, zk)|z ∈ S1}
in D2 × D2 in H1(S(D2)|∂D2). Then, we have s′ · s|∂D2 = −k. Since the homomorphism

H2(D(D2), S(D2)) → H1(S(D2)|∂D2) is injective, the homology class in H2(D(D2), S(D2))

of s̃′ is represented by the surface {(z, zk)|z ∈ D2}. Hence we have s̃′ ·s = k = −s′ ·s|∂D2.

proof of Proposition 1.2. Let E → ∆1 denote the fibration of the Zd-covering p1 in Lemma

7.1. Let S̄12 and S̄i be the submanifolds defined by x2
1 = bx2

2 and by e2π
√
−1(i−2)/m′

x1 = x2

for i = 3, · · · , m, respectively. Denote by S12 and {Si}mi=3 their inverse images q−1(S̄12) and

{q−1(S̄i)}mi=3 under the map q : E → Ē.

Let rSi
: TE|Si

→ N(Si), rS12
: TE|S12

→ N(S12), rS̄i
: TĒ|S̄i

→ N(S̄i), and rS̄12
:

TĒ|S̄12
→ N(S̄12) be the natural projections. As in the last paragraph of Section 4.1, these

projections induces the canonical isomorphisms

N(Si)|∂Si
∼= T (∂E/∂∆1)|∂Si

, N(S12)|∂S12

∼= T (∂E/∂∆1)|∂S12
,

N(S̄i)|∂S̄i

∼= T (∂Ē/∂∆1)|∂S̄i
, and N(S̄12)|∂S̄12

∼= T (∂Ē/∂∆1)|∂S̄12
.

Endow complex structures on N(Si), N(S12), N(S̄i), and N(S̄12) which are compatible with

the inner products of the normal bundles.

In Section 4.1, we constructed the sections of N(Si)|⊗d(m−1)(m−2)
∂Si

, N(S12)|⊗d(m−1)(m−2)
∂S12

,

N(S̄i)|⊗(m−1)(m−2)

∂S̄i
, and N(S̄12)|⊗(m−1)(m−2)

∂S̄12

, named s∂S12
, s∂Si

, s∂S̄12
and s∂S̄i

, respectively.

We review the definitions of the sections s∂S̄12
and s∂S̄i

. Define a map αi : ∆1 → Ē by α1(b) =

(b, [1 :
√
b]), α2(b) = (b, [1 : −

√
b]), and αi(b) = (b, [1, e2π

√
−1(i−2)/m′

]) for i = 3, · · · , m. Let

j and k be integers such that 1 ≤ j ≤ m, 1 ≤ k ≤ m, and i, j, k are mutually distinct. For

such j and k, define a not necessarily continuous section si(j, k) : ∂S̄i → T (Ē/∆1)|∂S̄i
by

si(j, k)(αi(b)) = (tijkb )∗

(

d

dz

)

as in Section 4.1. Note that, if {j, k}∩{1, 2} 6= ∅, the section si(j, k) is not continuous since

the root of b is not continuous. The (continuous) section s∂S̄i
is defined by

s∂S̄i
= rS̄i

(
⊗

j,k

si(j, k)),

where j and k run through integers such that 1 ≤ j ≤ m, 1 ≤ k ≤ m, and i, j, k are

distinct. In the same way, for integers j and k such that 3 ≤ j ≤ m, 3 ≤ k ≤ m, and i, j, k

are distinct, define sections of the bundle T (Ē/∆1)|∂S̄12
→ S̄12 by

s12(j, k)(αi(b)) = (tijkb )∗

(

d

dz

)

, for i = 1, 2,

s+
12(j)(αi(b)) =

{

(t12jb )∗
(

d
dz

)

, if i = 1,

(t21jb )∗
(

d
dz

)

, if i = 2,
s−12(j)(αi(b)) =

{

(t1j2b )∗
(

d
dz

)

, if i = 1,

(t2j1b )∗
(

d
dz

)

, if i = 2.
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The section s∂S̄12
is defined by

s∂S̄12
= rS̄12

(

⊗

j,k

s12(j, k) ⊗
m
⊗

j=3

(s+
12(j) ⊗ s−12(j))

)

.

Since any h ∈ Zd fixes S12 and {Si}mi=3 pointwise, q : E → Ē induces an isomorphisms

N(S12)
⊗d(m−1)(m−2) ∼= N(S̄12)

⊗(m−1)(m−2), and N(Si)
⊗d(m−1)(m−2) ∼= N(S̄i)

⊗(m−1)(m−2).

By the definition of the sections s∂Si
and s∂S12

, we have

n(s∂Si
, N(Si)

⊗d(m−1)(m−2)) = n(s∂S̄i
, N(S̄i)

⊗(m−1)(m−2)),

n(s∂S12
, N(S12)

⊗d(m−1)(m−2)) = n(s∂S̄12
, N(S̄12)

⊗(m−1)(m−2)).

First, we will compute the number n(s∂S̄i
, N(S̄i)

⊗(m−1)(m−2)) for 3 ≤ i ≤ m. Since rS̄i

induces an isomorphism T (Ē/∆1)|S̄i

∼= N(S̄i), we have

n(s∂S̄i
, N(S̄i)

⊗(m−1)(m−2)) = n(
⊗

j,k

si(j, k), T (Ē/∆1)|⊗(m−1)(m−2)

S̄i
).

Let w = x2/x1 be the inhomogeneous coordinate of the second factor of Ē = ∆1 × CP1.

Since the map tijkb : CP1 → f̄−1(b) is written as

tijkb (z) =
αk(b)(αi(b) − αj(b))z + αi(b)(αj(b) − αk(b))

(αi(b) − αj(b))z + (αj(b) − αk(b))
,

the vector (tijkb )∗(d/dz) is described as

(tijkb )∗

(

d

dz

)

=
(αi(b) − αj(b))(αk(b) − αi(b))

αj(b) − αk(b)

(

d

dw

)

. (4)

Suppose j ≥ 3 and k ≥ 3. Let j′, k′ also be integers such that 3 ≤ j′ ≤ m, 3 ≤ k′ ≤ m,

and i, j′, k′ are mutually distinct. Let s0 : ∂S̄i → T (Ē/∆i)|∂S̄i
be the zero section. The

intersection form on the first homology group of the sphere bundle of T (Ē/∆1)|∂S̄i
induces

that of the (R2 − 0)-bundle T (Ē/∆1)|∂S̄i
− s0(∂S̄i). By the explicit description (4), we can

calculate the intersection numbers

si(j, k) · si(j′, k′) = 0, (5)

(si(1, k) ⊗ si(2, k)) · si(j′, k′)⊗2 = (si(k, 1) ⊗ si(k, 2)) · si(j′, k′)⊗2 = 0, (6)

(si(1, 2) ⊗ si(2, 1)) · si(j′, k′)⊗2 = 1. (7)

The section si(j
′, k′) of T (Ē/∆1)|∂S̄i

can be extended to the nonzero section s̃i(j
′, k′) of

T (Ē/∆1)|S̄i
defined by s̃i(j

′, k′)(αi(b)) = (tij
′k′

b )∗
(

d
dz

)

for 3 ≤ i ≤ m. Hence a trivialization

of the bundle T (Ē/∆1)|S̄i
is given by si(j

′, k′). By Lemma 7.3, we have

n(s∂S̄i
, N(S̄i)

⊗(m−1)(m−2)) = −
(

⊗

j,k

si(j, k)

)

· si(j′, k′)⊗(m−1)(m−2).
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The calculations (5), (6), and (7) show that this is equal to −1.

Next, we will compute n(s∂S̄12
, N(S̄12)

⊗(m−1)(m−2)). Suppose j ≥ 3 and k ≥ 3. The sec-

tion s12(j, k) of T (Ē/∆1)|∂S̄12
can be extended to a nonzero section s̃12(j, k) of T (Ē/∆1)|S̄12

defined by s̃12(j, k)(αi(b)) = (tijkb )∗
(

d
dz

)

for i = 1, 2. The section rS̄12
s̃12(j, k) of N(S̄12)

intersects the zero section s′0 : S̄12 → N(S̄12) transversely in one point (0, [0 : 1]) ∈ S̄12.

Hence we have n(rS̄12
s12(j, k), N(S̄12)) = 1. By the explicit description (4), We also have

rS̄12
sǫ12(j) · rS̄12

s12(j, k) = sǫ12(j) · s12(j, k) = −1

on H1(N(S̄12) − s′0(S̄12)) for ǫ = +,−. Lemma 7.3 shows

n(rS̄12
sǫ12(j), N(S̄12)) = −rS̄12

sǫ12(j) · rS̄12
s12(j, k) + n(rS̄12

s12(j, k), N(S̄12)) = 2. (8)

Thus we have

n(s∂S̄12
, N(S̄12)

⊗(m−1)(m−2))

=
∑

3≤j≤m
3≤k≤m
j 6=k

n(rS̄12
s12(j, k), N(S̄12)) +

m
∑

j=3

n(rS̄12
s+
12(j), N(S̄12)) +

m
∑

j=3

n(rS̄12
s−12(j), N(S̄12))

=(m+ 1)(m− 2).

For any h ∈ Zd−{0}, the fixed point set Eh is the disjoint union of S12 and {Si}mi=3. By the

above computations of n(s∂S̄i
, N(S̄i)

⊗(m−1)(m−2)) and n(s∂S̄12
, N(S̄12)

⊗(m−1)(m−2)), we have

n(s∂Eh, N(Eh)⊗d(m−1)(m−2))

=
m
∑

i=3

n(s∂Si
, N(Si)

⊗d(m−1)(m−2)) + n(s∂S12
, N(S12)

⊗d(m−1)(m−2))

=m(m− 2).

Thus the local euler number is

χ
2hπ

d
,h

loc ([f, E,∆1]) =
m

d(m− 1)
.

Since there are no vertical components, by Theorem 1.1, we have

σloc([f, E,∆1]) = −
d−1
∑

h=1

χ
2hπ

d
,h

loc ([f, E,∆1]) cosec2

(

hπ

d

)

+ Sign Ē.

It is known that (for example, see Hirzebruch-Zagier [11] p.178)

d−1
∑

h=1

cosec2

(

hπ

d

)

=
d2 − 1

3
.
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There is a deformation retraction of Ē onto {0} × CP1 and its self-intersection number is

0. Hence we have Sign Ē = 0. Thus the local signature and the cobounding function of the

pullback of the Meyer cocycle is

σloc([f, E,∆1]) = −φ(σ̂ij) = −(d− 1)(d+ 1)m

3d(m− 1)
.
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