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Preface

Topology forms a branch of geometry emphasizing connectedness
as the most fundamental aspect of a geometrical object. In topol-
ogy, therefore, one ignores virtually all geometrical traits other than
connectedness, such as any form of change in a geometrical object
that stretching or shrinking might cause. Classification in topology

1@ a eriide tonl ]r\11+ ono that noveor faile +n dotormine if a coaamotim-
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cal object is connected or not. If a geometrical object is connected

then we investigate to what degree it is connected. Just as the state

of connectedness characterizes the essence of many phenomena we
encounter in our daily lives, it is often necessary to describe to what
extent a certain object is connected or separated. Thus the terms one
employs in topology are increasingly becoming important and useful
in other branches of mathematics as well as in various fields in the
natural sciences.

There are numerous algebraic topology books and many of them
are excellent; yet we have dared to add another book on this subject.
The single most difficult thing one faces when one begins to learn
a new branch of mathematics is to get a feel for the mathematical
sense OI Bﬂlb bl.ID_]e(.I .I.O bUIIle[)U uy WIIU Ildb IIldbEeI'e(l u1e bl.IU_]e(..E
this essential common sense should be as familiar as the air around
him. It takes a long time for a beginner to get to this point. The
purpose of this book is to help an aspiring first-time reader acquire
this topological atmosphere in a short period of time.

I believe that the most efficient way to fulfill this purpose is to
investigate simple but meaningful examples in some concrete terms.
It is important that the reader grasp a mathematical object with his
or her own hands. By touching it one can feel its physical quality
and then keep this as one’s own. This book is a simple manual that
the reader can follow, and in fact the reader who follows our instruc-
tions step by step will end up with a real working model of algebraic
topology.

X1



xii PREFACE

In order to pursue this objective we have therefore sacrificed gen-
erality and limited the objects of our discussion to the simplest but
most essential cases. We did not try to expand the theory to its fullest
extent to make our book an encyclopedic reference; instead, we use
the easiest possible examples to help the reader see the backbone of
our discussion.

We will be greatly pleased if the reader enjoys reading our book
while acquiring several essential methods or approaches to discuss
algebraic topology. We must await the reaction of the reader to see
if our plan will succeed. We will appreciate it if the reader gives us
any feedback (criticisms and comments)‘.

The basic framework of the book comes from the seminar notes
“Practical Topology for Physicists” given by Akihiro Tsuchiya and
compiled by Yasuhiko Yamada at the University of Nagoya in 1986.
I am deeply indebted to Mr. Tsuchiya for permitting me to use his
seminar notes as well as for giving me much useful advice throughout
every stage of the writing. My thanks also go to Tadayoshi Mizutani,
Tetsuya Ozawa, Yoshinori Machida, and Shigeo Ichiraku, who not
only read the entire manuscript carefully, finding many mistakes, but
also suggested various ways to improve the final product. Last but
not least, I would like to thank the editors at Iwanami Shoten.

Hajime Sato
duly 1996

‘See Preface to the English Translation




Preface to the English Translation

It is a great pleasure to me that the American Mathematical
Society chose to publish my book “Algebraic Topology: An Intuitive
Approach” in their translation series.

Since the publication of the original version of this book in 1996,
several of my friends (including the translator) have complained that
the gap bhetween my claim that no previous knowledge of mathematics
is required. . . and the actual contents of the book is too big. So I have
provided the reader who has no knowledge of sets, topology, groups,
efc. with a basic minimal list of definitions and results that may prove
useful, together with readable references. This is in the Appendix at
the end of the book. This does not really change my original view
that the book is readable for anybody who wishes to find out about
algebraic topology. I think that technical terms help both the reader
and the author organize their thoughts, but they will not do much
good unless both the reader and the author have “good vibes” about
the subject. T have also used the book for my topology seminar (for
seniors) and came to see that the reading got a little rough toward
the end of the book. This is all right too, since it simply shows that
good vibes alone canmnot conquer everything; however, I have modified
some of those troublesome spots, filling in missing links and so on.

I am grateful to the translator, Kiki Hudson, for conveying my
writing style and philosophy as faithfully as possible in her transla-
tion. We discussed all the changes verbally, and consequently she
had to do more writing than translating. This is especially so with
the Appendix. I would aiso like to thank Martin Guest for valuable
suggestions, Yoshinori Machida for spotting numerous typos, and the
AMS editors for presenting the book in splendid style.

Hajime Sato
September 1998
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Objectives

As T stated in the Preface, in topology we investigate one aspect of
geometrical objects almost exclusively of the others: that is, whether
a given geometrical object is connected or not connected. We classify
objects according to the nature of their connectedness. One focuses on
the connectivity, ignoring changes caused by stretching or shrinking.

One can measure the lenoth of a ceometrical ohiect in meters

A EIT LRL: pRICRADUAA T UAAT Llai el vl HUVILICUMIVQRL VR UL L1l L1ITUCL

and the weight in kilograms. How do we measure the extent to which
a geometrical object is connected ! Can we develop a system with
suitable units and numbered scales?

For example, we can use the number of holes in a geometrical
object. But then what is a hole and how do we count the number of
holes? In this book, you will find a mathematical interpretation of
these concepts, termed “homotopy groups”, “homology groups”, and
“cohomology groups”. These are some of the major concerns in alge-
braic topology. We actually go beyond counting the number of holes
and develop “characteristic classes” to describe how a geometrical ob-
ject bends globally. Intuitively the “i-th homotopy group” describes
the “i-dimensional round holes” and “i-th homology group” reveals
the number of “i-dimensional rooms” in a geometrical object.

In the problem described above, which may appear to be too slip-
pery to grasp, it would be nice if the reader would come to understand
and appreciate how contemporary mathematics has constructed the
theory of algebraic topology, translating geometrical concepts into al-
gebraic terms. It has managed to express these problems cleanly and
algebraically in group-theoretical terms (involving almost only the
additive group of integers or cyclic groups of integers modulo prime
numbers). I want the reader to spend a few minutes before beginning
the book imagining the problem of classifying geometrical objects
only with a yardstick that measures their connectedness. Then after
finishing the book the reader should compare its contents with this
original concept. If the concept and reality are far apart you will have
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opened a door to abrave new world, and if they are rather close your
mathematical intuition will have proved to be excellent (and you will
continue to go on the right track with conviction).

If you already have any familiarity with algebraic topology, you
might rightly guess from the table of contents that the following are
the key words in the book:

homeomorphisms, homotopy equivalences, torus, Mobius strip, closed
surfaces, Klein bottle, cell complexes, fundamental groups, homotopy
groups, homology groups, cohomology groups, fiber bundles, vector
bundles, spectral sequences, characteristic classes, etc.

If you have seen some (or all) of these words somewhere before
and they have vaguely interested you, then you wil find upon finishing
the book that they are not difficult at all but that they form some
of the basic concepts in contemporary mathematics. If you have had
nothing to do with them so far, I hope that the strange sound they
make intrigues you enough to start the book.

Topology has developed (perhaps unmintentionally) on the strength
of several attractive geometrical figures which serve as characteristic
examples for the theory. This pattern may not be unique in topology;
we may see it repeated in other branches of mathematics and possibly
in every other academic discipline.

I emphasize again that the purpose of this book is to familiarize
the reader with the way to think about algebraic topology. I use the
axiomatic approach to introduce homology and cohomology theories,
and will later construct concrete examples such as simpliciall homology
groups, as I feel that this order might work better to sharpen the
reader’s intuitive understanding.

Needless to say, algebraic topology evolved from general topology
(the theory of topological spaces). If you have already studied general
topology (especially its geometrical aspects), for instance if you have
read Chapters from I to XIin Topology of James Dugundji?, you will
be ideally prepared; however, I have tried to keep my explanation
basically intuitive so that even readers with no previous knowledge of
general topology will be able to follow the book.

The reader might feel a need for the theory of groups, but es-
sentially all you need in order to read this book is to understand the
following two concepts:

2 Topology by James Dugundji, William C. Brown. 1989
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(1) The addition or subtraction of two integers gives another
integer (we say that the set 7, of the integers is an additive group).

(2) In certain situations, we regard two integers which differ by
a fixed prime number p to be equal (we say that we consider integers
modp). We write Z, for the set of the integers modp. The addition
and subtraction of integers carry over to those operations modp (we
say that modp is a cyclic group of order p),

The only talent this book demands of the reader is a flexible and

resiient  mind.
LisT o SYMBOLS

Symbol Meaning Page
fo~ fi homotopic b
(X, Y] homotopy set 4
X~Y X and Y have the same homotopy type 4
ik n-dimensional ball 9
gn-1 (n - 1)-dimensional sphere 9
I closed unit interval [0, 1] 10
P (R) n-dimensional real projective plane 11
e’ (open) i-cell 13
€ closed i-cell 13
T (X, o) n-th homotopy group of X 25
Tn(X) n-th homotopy group of X 25
h,(X) pth homology group of X 31
h.(X) direct sum Y "o Ay (X) of hy(X) 31
pt singleton set 32
H,(X;G) h,(X) for hoX) 2 G 32
H(X;G) | directsum Y~ of Hy(X; G) 32
CA cone over A 36
ﬁ*(X) reduced homology of group X 38
c chain complex 45
Z,(C) group of p-cycles 45
B,(C) group of p-boundaries 45
ol < g" simplex ¢’ belongs to the boundary of ¢"

(07 is a face of o™ that is different from o™) | 48
C,(8;Z) g-th chain group of 8 over Z 52
H,(8; Z) q-th homology group of 8 over 7, 53
P™{C) n-dimensional complex projective space 56
hP(X) p-th cohomology group of X 59
s simplicial complex 49
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Symbol Meaning Page
h*(X) direct sum Z;i:—_() hP{X) of hP(X) 59
or, b coboundary homomorphism 60
CQ(S; G) q-th cohomology chain of S over G 60
C*(8; G) cochain complex of S over G 61
HIS8:; &) q-th cohomology group of S over G 61
Z9(8; @ group of g-cochains of S over G 61
BY(8; G) group of g-coboundaries of S over G 61
G, ® Gy tensor product
Hom(G,, Gy) | abelian group of homomorphisms from (7,

to G2 66
Aor(Gl, Gz} torsion 66
Ext(G,, Gy) | abelian group of the extensions of (G5 by

Gl 67
X cross product 68
A diagonal map 69
u cup product 69
(E,w, B, F) | fiber bundle 74
F — E 5 B | fiber bundle 74
E total space 74
B base space 74
F fiber 74
i projection 74
G*(m,n) real Grassmannian manifold 80
Gt (m, n complex Grassmannian manifold 80
BO(n) classifying space of real n-vector bundles 83
BU(n) classifying space of complex n-vector bun-

dles 83
Lk(o, 8) link complex of o in S 106




CHAPTER 1

Homeomorphisms and
Homotopy Equivalences

Throughout this book a map means a continuous map.’

In topology we essentially discuss the connectedness of geomet-
rical objects called topological spaces; however, strictly speaking, we
consider topological spaces and two types of continuous maps be-
tween them, which are called “homeomorphisms” and “homotopy
equivalences” respectively. We might classify topological spaces up to
homeomorphism, or we might do so up to homotopy equivalence. Our
choice depends on how strong we want our classification to be. The
classification according to homotopy equivalences is weaker (there are
many spaces not “homeomorphic” to each other that are of the same
“homotopy type”), but it is the one that plays the more important
role in algebraic topology, because geometrical properties of homo-
topy equivalences translate themselves most successfully into modern
algebra.

The classification of the capital letters A, B, C, . . . , Z by homeo-
morphisms results in the following nine classes (this also depends on
the choice of font, and here we use the sans-serif style; for example
we write I and not D).

[AR},{B},{C,G,I, J,LLM,N,S, U, V. W, Z},
{D, O}, {E,F, T. Y}, {H.K}. {P}.{@}. {X}.
The letters in any one of these classes are homeomorphic but no two
belonging to distinct classes are.

On the other hand, homotopy classification breaks the alphabet
into three distinct classes according to their “homotopy types”:

{A,R,D,O.P}, {B.Q},
{CLLMN,SUV,W,ZF J T,Y,GHKX}.

‘See the Appendix for the definition
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Two letters have the same homotopy type if and only if they belong
to the same class.

We count the number of holes in each letter in the set containing
the letter A as one, that of each letter in the set containing B as two,
and that of each letter in the last set as zero. Have the above simple
examples led you to guess the definitions of homeomorphisms and
homotopy equivalences?

1.1. Homeomorphisms

permnirion 1.1, We say that topological spaces X and Y are
homeomorphic if there exist continuous maps f : X — Y and g :
Y — X such that the composites g o f and fog are the identity maps
of X and Y respectively; in short, g o f = id and [ o g = id, where
id denotes the identity map. In this case f is a homeomorphism from
X to Y and g is a homeomorphism of Y to X.

The fact that go f is the identity map implies that f is an injection
and g is a surjection. Similarly the fact that { o g is the identity map

implies that f is surjective and g is injective. Altogether it follows
that both f and g are continuous bijective (1-1 onto) maps.

savere proezev 1.2, Consider the letters M and N. Think of
them as topological spaces and construct homeomorphisms f : M — N

and g : N — M.
M N

\Y

FIGURE 1.1

sowvrron. Let f be a map which sends the left half A of the M
onto the left vertical line plus the center diagonal A of the N without
changing anything, while straightening the right half A of M and
sending it onto the right vertical line I of N (see Figure 1.1). We want
g to transfer the left vertical line and the center diagonal line of N
onto the left half A of M, and to bend the right vertical line of N
and map it onto the right half A of M. Then we get g o f = id and

fog=id
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SampLE ProBiLEM 1.3. Show that the topological spaces X and
[ are not homeomorphic.

SoruTIoN. Suppose there existed a homeomorphism f : X — L
For any point x, in X the definiton of a homeomorphism insures that
the map flix-,) which is the restriction of f to the space X minus
the point z, is a homeomorphism of X =z, onto I = f(xp). Take, in
particular, the crossing point of X as zy. Then X = x; consists of four
dispint line segments (each being half open, having one open end and
one closed end), and I — f(x)consists of two disjoint line segments
(each of which is half open). These two spaces are not homeomorphic.

The basic stance of topology is to regard all spaces homeomorphic
to each other as identical.

1.2. Homotopy equivalences

In order to define homotopy equivalences we must first say when
two maps are homotopic.

DerINITION 1.4.Two mapsfrom atopological space X to atopo-
logical space Y,
f,LX—}Y (i:O,l),
are homotopic if there exists a family of continuous maps
fi:x =Y (t €10, 1)),

varying continuously from f;to fi. We indicate this situation by
fo~ fiand say that f, (¢ €/0, 1])is a homotopy between them.

ExampLE L.5. We consider two maps f; and f, from the letter
X to the letter Y: fy sends every point of X to the crossing point of
Y, and f; maps the upper vee v of X onto the upper vee v of Y and
the lower wedge A of X onto the lower vertical 1 of Y by closing A
like a tweezer. Then f; and f; are homotopic because we can define
fi, t €10, 1], to be the map sending each point x of X to the point
obtained by shrinking f; (x) by t from the center crossing of Y.

Exaveie 1.6. Take the letter 0. Let f; be the map of 0 into
itself which sends every point to the apex of the 0 and let f; be the

identity map. Then f, and fi are not homotopic.

This fact is intuitively obvious (we can never change the identity
map of 0 to a constant map through continuous maps: we cannot
shrink the letter O to a point without breaking it). A precise proof,
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however, depends on homology theory, and we will see it in Example
4.9,

Suppose we look at the set S of the maps from a topological
space X to a topological space Y. The following properties are easy
to check.

1.Amap f:X — Y is homotopic to itself.

2. If f is homotopic to g : X — Y then g is homotopic to f,

3. If f is homotopic to g and g is homotopic to %2 : X — Y then
f is homotopic to .

Therefore the relation of being homotopic is an equivalence re-
lation on S that breaks S into equivalence classes called homotopy
classes . We denote by

(X, Y]
the set of the homotopy classes of maps from X to Y, which we call
the homotopy set of X to Y. In other words, we regard all homotopic
maps from X to Y as identical and place them in the same homotopy
class. Therefore, even if a homotopy class has a large number of
maps, we need to look at only one of them. This is an algebraic
simplification.

Exaveie 1.7. Consider the letters X, Y and 0. We will discuss
the following result in Chapter Three:

[X, Y] = one point, [O, O] & Z (the set of the integers).

permnrion 1.8, Let X and Y be topological spaces. A map
f:X =Y is a homotopy equivalence of X and Y if for some map
g:Y — X, the composites go f:X -Xand fog:Y — Y are
homotopic to the identity map of X and Y respectively.

We say that X and Y have the same homotopy type if there exists
a homotopy equivalence between them.

In general a homotopy equivalence is neither injective nor surjec-
tive. We write X ~ Y when X and Y have the same homotopy type.
We are using the same symbol for homotopic maps, but this should
not cause any confusion here since both sides are topological spaces.

Proem. Show that the map f; : X — Y from the letter X to
the letter Y in Example 1.5 is a homotopy equivalence (Hint: for a
suitable g : Y — X construct a homotopy between g o f; and the
identity map as well as a homotopy between f, o g and the identity
map).
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From the definition we see that two topological spaces that are
homeomorphic have the same homotopy type; therefore, homotopy
equivalences are a looser (less strict) way of classifying topological
spaces.

We have so far used only letters of the alphabet. These are
one-dimensional geometrical objects (topological spaces) consisting
of lines and curves; however, the definitions of homeomorphisms and
homotopy equivalences carry over to geometrical objects of dimen-
sions two or higher, including of course three-dimensional spaces.

exaeze 1.9, A doughnut is homeomorphic to a coffee cup with
a handle, and has the same homotopy type as the letter O.

In later chapters we will study homology groups and cohomology
groups (of topological spaces). They each offer the identical informa-

tion for spaces of the same homotopy type. We will introduce other

tools such as characteristic classes to determine if the given spaces
are homeomorphic.

1.3. Topological pairs

In topology we frequently consider a pair of topological spaces
(X, A) rather than a single space X. Passing from single spaces to
pairs of spaces as objects of study was a great breakthrough in alge-
braic topology in the past.

By a topological pair (X, A) we mean a topological space X and
a subspace A of X.

Given two pairs (X, A) and (Y, B), by a map of pairs f : (X, A) —
(Y, B) we mean amap f:X — Y such that

f(4) C B.

The concept of homeomorphisms for topological pairs parallels
the case for single spaces; namely, two pairs (X, A) and (Y, B) are
homeomorphic if we can find maps f : X — Yand g: Y — X such
that the composites go f : X —» X and fog : Y — Y are the identity
maps of X and Y respectively. The restrictions f |4: A — B and
9|z : B — A are both homeomorphisms.

exawzz 1.10. In the (z,v,z)-space R, splice the ends of a
string to make a simple loop A. Make a loop B in R® by tying a
knot in the string before splicing its ends (see Fig. 1.2).
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A

Ficure 1.2. Knots

We can show that such pairs (R*, A) and (R?, B) are not homeo-
morphic to each other (later we wil compute the “fundamental groups
of the complements of A and B” using “homotopy theory”).

We say that two continuous maps of pairs f, : (X, A) — (¥, B),
1=, 1, are homotopic if there exists a family of continuous maps of
pairs

ft:(Xl A)""(Yv B)1 tE[O'; 1],
varying continuously from fyto f;.

We partition the continuous maps from a pair (X, A) to another
pair (Y, B) into homotopy classes; that is, we look at the set denoted
by

(X, 4).(Y,B),

in which each element is a homotopy class consisting of all homotopic
maps from (X, A) to (Y, B). We say that [(X, A), (Y, B)] is the homo-
topy set of maps from (X, A) to (Y, B). In particular,if A = B = {
we write X and Y in place of (X, ) and (Y, (). Then we have

X, ¥Y]=[(X.8),(Y, 0]

as the right-hand side of the equality is the homotopy setin which an
element is a set of homotopic maps from X to Y.

We investigate detailed features of homotopy sets in Chapter
Three.

Summary

1.1 A map from one topological space to another is a homeomorphism
if it has an inverse map. Two topological spaces are homeomorphic
if there exists a homeomorphism between them.

1.2 A map from one topological space to another topological space
is a homotopy equivalence if it has an “inverse map” in the homotopy
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sense. Two topological spaces have the same homotopy type if there
exists a homotopy equivalence between them.

1.3 The same ideas carry over to homeomorphisms, homotopy equiv-
alences and homotopy types for maps of topological pairs.

Exercises

1.1 Show that the letters W and Z are homeomorphic.

1.2 Show that the letters P and R have the same homotopy type.

1.3 The upper portion A of the letter A is a subspace of A and the

upper portion D of R is a subspace of R. Show that the pairs (A, A)
and (R, D) are homeomorphic.



CHAPTER 2

Topological Spaces and Cell Complexes

There is a large selection of geometrical objects around us, rang-
ing from basic ones such as line segments and disks to fuzzy ones
whose boundaries are blurry. We must state precisely which geomet-
rical objects are subjects of our investigation in this book. We must
be able to determine if a geometrical object is connected or sepa-
rated. In other words, we only consider those objects on which we
can impose the concept of continuity, and we will call them topo-
logical spaces. There is a wide variety of topological spaces, among
which the most basic are (solid) balls, also referred to as disks or cells.
The boundary surface of a ball is a sphere. The dimensions of cells
we study do not stop after one, two and three, but run up to » in
general. We construct a topological space called a cell complex by
splicing together finitely many cells of suitable dimensions. In this
chapter we explain how to build various topological spaces and cell
complexes. In the ensuing chapters we will deal with cell complexes
only, unless otherwise stated.

2.1, Basic spaces

For a natural numbern > 1, we define the n-dimensional ball (or
n-ball) D" by

D" = { (T1,22,...,2,) ER* Y 2F <1 }
and the (n = 1)-dimensional sphere (or (n  1)-sphere) by
gt = {(xl,xg,...,:cn) ERY Y zi=1 }

The O-sphere S® consigts of two points {+1}. We make the convention
that the O-disk DU is a one-point space. The boundary 9D™ of the
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n-disk D" is the (n — 1)-sphere S"~!: that is,
D" = Sn—l.
The interior of a ball D" — D" is called a ball without boundary or

an open ball

Denote by I the closed interval [0, 1] between 0 and 1. Then |
and D! are homeomorphic.

2.2, Product spaces and quotient spaces

For topological spaces X and Y the set of all ordered pairs (z, y)
of points x ¢ X and y € Y, denoted by X x Y, becomes a new
topological space, which we call the product space (or the product) of
X and Y.

exavere  2.1. A unit square
IxI={(z,y)|0<z<1,0<y< 1)
is homeomorphic to D? We write [ for I x L

exawrre 2.2, The product space S' x S! is homeomorphic to
the surface of a doughnut. We call this space the torus and denote it
by T? (cf. Example 2. 15).

Consider a topological space X and an equivalence relation~ on
X. We partition X into mutually disjoint subsets according to this
relation; namely, elements r and y of X belong to the same subset
if and only if x ~ y. These subsets are called equivalence classes.
Denote by X the family of the equivalence classes of X under the
equivalence relation ~ ;then X is a new topolggical space in which
each point is an equivalence class. We say that X is the quotient space
of X (formed) under the equivalence relation ~, Often we write X/~
for X.

exaweze 2.3, We make a circle by identifying the ends 0 and
1 of the interval I. This circle is homeomorphic to both S' and the
letter 0. If we collapse the boundary D™ = §* 1 of D™ to one point,
we get a topological space homeomorphic to §™. Here the equivalence
relation on D" isz ~y & x, y € D" (we regard the boundary points
as a single point), and Dno= D™/~ is homeomorphic to S.

Examere 2.4, We identify the upper and lower edges of the
square [* = {(z,y)]0 <z <1, 0< v <1} by (0,5) ~ (Ly),
0 <y <1, and the left and right edges by (x,0) ~ (x,1),0 <z < 1.
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In other words, we stitch the upper and lower edges together with-
out twisting the square (we now have a cylinder) and then stitch the
right and left edges (two circles) together without twisting the cylin-
der. Then the quotient space I*= I?/~ is homeomorphic to the
torus T2 = S' x S,

exameze 2.D. We splice the right and left edges of the square

= {(z,y)|0 € z <1,0 <y <1} by identifying the points on
these edges symmetrically with respect to the point (I/ 2,1/ 2); that
is, we regard (0,y) and (1,1 y),0 <y <1, as identical ((0,y) ~
(1, 1 ~ y). 0 <y < 1). The resulting quotient space [ is the Mébius
strip, which is well-known for its one-sidedness (see Figure 2.1).

a d

h C

rreure 2.1. The Mobius strip

exaeze 2.6, The quotient space S"/~ of the n-dimensional
sphere S™ with the identification of each point x of 5™ with its
antipodal point —x is the n-dimensional real projective space (here
X = (1‘1,1‘2,.. .,$n+1), —X = (—-331, —X2,. _$n+l) € Sn) We de-
note this space by P*(R). When n = 2, in particular, P*(R) is the
real projective plane.

The quotient space of D? under the equivalence relation identi-
fying each pair of antipodal points on the boundary 4D? = S! is
homeomorphic to the real projective plane P2(R).

2.3. Topological sums and attaching spaces

A

gi

TLet X and Y be topological spaces with the intersectio
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sum of X and Y, which we might also denote by X, Y. fXNY
X U Y is a disjoint union of X and Y (Figure 2.2).
Suppose now that XN Y = { but that there is a homeomorphism
h : B — A between some subsets A ¢ Xand B ¢ Y. We paste
A onto B by h and pretend that X N'Y = A = B to construct the
topological sum of X and Y. We indicate this sum by X U, Y.

T

ca
g,
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XUY
A
X Y
A
=
Al
FIGURE 2.2. Topological sum
Y
X / ) Y
A > E _______
N
51

rrevre  2.3. Attaching space

More generally, if we have a continuous map -2 : A — B where
A cXand B ¢Y, we can still make a quotient space of the topo-
logical sum X U Y by identifying each b ¢ B with every ac A such
that A(u) = b. This is the attaching space X Uy Y of X and Y by the
attaching map h : B — A (Figure 2.3).

exaveze 2.7, Let X be the one-point space pt. Consider
X=A=pt, Y=D) B=0D*=5"

Then attaching map 2 : B — A “collapses” B to the point p¢, and
the resulting attaching space X UJ; Y is homeomorphic to the two-
dimensional sphere SZ.

Exaverze 2.8. let X = A = S], Y =1x Sl,B = {O}x St
Then both A and B are homeomorphic to a circle. Let o : B - A
be the map that sends B twice around A, i.e., h(z) = z*?, where
we think of our circles as the set of complex numbers of modulus 1.
The attaching space XU, Y is homeomorphic to the Mobius strip (cf.
Exercise 2.2 for the proof).

EXAMPLE 2.9. X =A=S! Y =D? B=08D*=S5"' Here,
we have the same X, A and B as above. Only Y is the new addition.
If we use the above h : B — A, the attaching space X U, Y is homeo-
morphic to the space that we get by attaching a two-dimensional ball
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to the Mobius strip along its boundary, which is in turn homeomor-
phic to the two-dimensional projective space P?(R).

Exarie 2,10, We make a robot’'s glove TO2 by removing the
interior of an embedded disk D? from the torusS! x.S'. The boundary
of T3 is S'. We join two T;’s along their boundaries to make a double
torus M,. We say that M, is a closed surface (more accurately, an
orientable closed surface) of genus two. If we remove the interior of
D? from }M, and attach T, along the boundary 9D? = 51, we obtain
a triple torus (a torus with three holes) M;, and we continue this
process to obtain an n-ple torus (a torus with n holes). In fact, every
(orientable) closed surface is homeomorphic to an n-ple torus M,, for
some n; we say that n is the genus of M,,. You can pretend that the
n-ple torus is an inflated n-person life buoy (Figure 2.4).

T

Frewre 2.4. Closed surfaces

2.4. Cell complexes

In this section we put together a finite number of spaces each
homeomorphic to some open i-ball D' = §D'= D' = §i-1 0 <i < n,
to form a topological space. It is customary to call each component
(homeomorphic to an open i-ball) an i-cell and denote it by ¢’ (a cell
in this definition has no boundary). A closed cell &' is homeomorphic
to the i-dimensional ball. The boundary, 9¢', of & is homeomorphic
to §*~!. Thus we have that & — J&' = ¢*. We adopt the convention
that &° = ¢” is a singleton space and that 9e° > S~!is the empty
set. Hence the closed O-cell is also an open O-cell (O-cell without
boundary).

Dermvition  2.11. We build an attaching space called a (finite)
cell complex inductively according to the following recipe.
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INGREDIENTS.
ko closed O-cells &, ¢&3,..,8% ,
ky closed l-cells e1, &,. , & ,
P |
k; closed i-cells  €},é5,...,&,
er
k, closed n-cells &7, €5,y Ep
constructzon. Our construction begins with X” = é?UégU-- -Uégo,

which is a disjoint sum. Set X (1) = e;U g U. ..U g (adisjoint sum)
and XV =del U desU .. U Bé}cl. Specify an attaching map
hy: 80X 4 X0
and attach X to XCby A, and obtain the attaching space
0, x ()
Set X@=glyedu. .. Uel anddoX@=9e7U g3 U . . U def .
Specify an attaching map
hy: 80X o X1
and attach X2 to X'by hs to obtain the attaching space
X?= XUy, X,
We continue this process till we reach X ("), Set
xn = xyn-l Un, x(n)

We have now exhausted our ingredients. The final product X = X"
is an n-dimensional cell complex. For each ¢, 0 < ¢ < n, X9 is the
q-skeleton of the cell complex X.

Let X be a cell complex. For each g-cell ej.', we have the nat-
ural inclusion map i : éj’. — X9 the natural identification map
7 X0, Xo= xa-1 U;,WX(‘I), and th e inclusionmap . : X9 - X
The composite of these maps

¢§EL0ﬂOi:é§—>X
is the characteristic map of the cell e].
The restriction of the characteristic map qﬁj. to the boundary 86‘;.

agrees with the restriction of the attaching map h, : 0X o) _, x9-1
to the boundary de?.
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Remarx. [t may be that cells of some dimensions are missing in
our construction, but the boundary 9X (%) of X(@ = gfu el U €.,

(a disjoint sum) must always be attached to some subcomplex X™ by
an attaching map:

o Loavie) | ovr e
g OA - A, r <q.

The theorem below is an obvious consequence of the above defi-
nition.
Treorem 2.12. A cell complex X is a union of cells (without
boundary); that is,
— 'y
X = U €q-
P:q

Exarre 2.13. The n-dimensional sphere S™ is a cell complex
consisting of one O-cell e? and one closed n-cell & with the attaching
map

hy, : OX' = de™ &,
that is,
S" = ¢y Up, €.

If we attach a closed n-cell e"to §"~1= g% U, . & ! by the

identity map
h'n : 8X(n] — Sn—l — Xn—l - Sn—l
the resulting cell complexis an n-dimensional ball

D" = (EO Uh, én_l) Un, e".

n—1
Exaeiz  2.14. The real projective plane P?(R) consists of one
closed O-cell éoj one closed 1-cell ¢! and one closed 2-cell &2:
PYR) = (& Up, €') Up, &,
where hy : 8e° = S' — (e° Uy, €') = §!is the map which sends §'
around S!twice.

Exare 2.15. The torus 7% = S' x ' consists of one O-cell &%

two closed l-cells, ¢! and él, and one closed 2-cell &*:
S x S'= (&% Uy, (81 U &3)) Un, &
This structure suggests that if one opens up the torus along a
suitable pair of circles intersecting at a single point, one will get a
square (Figure 2.5).
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complexes X and Y is again a cell complex.

Sampre Proerem 2,16, Show that the product X x

sorurzon. For the cells € of the cell complex X and the cells

ej* of the cell complex Y we consider the cells ¢! x ¢*.

When X is a cell complex and A ¢ X is a subspace consisting
of cells of X, we say that (X, A) is a pair of cell complexes. In this
case A is also a cell complex: whose attaching maps are the restrictions
of the attaching maps of X.

In the following chapters our topological space (a topological pair)
will always be a cell complex (a pair of cell complexes) unless other-
wise stated.

Summary

2.1 The basic building blocks of manifolds we use in this book are
balls B" and spheres S"~! which are the boundaries of B".

22 [Equivalence relations on topological spaces define quotient spaces.
2.3 We glue two spaces using an attaching map to make an attaching
space.

2.4 A cell complex is a collection of a finite number of closed cells
held together by characteristic maps.

Exercises

2.1 In Example 2.4, we defined the torus as a quotient space of I? =
[ (z,y)]0 <2 <1,0<y<1} Show that the further identification
of (z,y) € I°with (1 z,1 y) € I? yields the two-dimensional
sphere S.

2.2 Show that the attaching space X U, Y of Example 2.8 is home-
omorphic to the Mobius strip.

2.3 Represent the double torus (torus with two holes) as a cell com-
plex. What about the rn-ple torus (torus with n holes)?




CHAPTER 3

Homotopy

Suppose that you are standing on a geometrical object (say on
the Pampas). You toss a lasso and try to shrink it to a single point
at your feet (the lasso must stay on dry ground). If there is no pool
of water on this grassland the lasso will smoothly converge at your
feet. Imagine, however, that there is a pool of water which your lasso
is enclosing (We assume that the interior of the pool does not belong
to our geometrical object). In this case you cannot bring the lasso
to a single point without getting it wet. The fundamental group or
the first homotopy group of the Pampas measures the degree of the
possibility in shrinking the lasso to a point.

On the other hand the second homotopy group of a geometrical
object measures the degree to which one can shrink a large piece of
cloth, spread out with its border being gathered at a single point, to
that point while keeping the cloth always in the object.

If the above explanation gives you some idea of what is going on,
you might skip this chapter and proceed to the next one.

3.1. Homotopy sets
Recall that in Section 1.3 we denoted by

[(X, A), (Y, B)]

the set of homotopy classes of the continuous maps from a pair (X, A)
to another pair (Y,B) (tw omaps are in a same homotopy class if they
are pairwise homotopic).

For a natural number n, set X = [* and A = 0I". Then the
pair (X, A) = (I”, dI") is homeomorphic to (D™, §»~1),

By atopological space X with a base point xo (we might simply say
a pointed topological space) we mean a pair whose second component
is a singleton subspace {x,}. We habitually drop the curly braces
around z; and write (X, ).

17
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A pointed topological space (X, zry) and natural numbers n de-
termine the homotopy sets

(1", 81"),(X,xo)], n=12,....

These homotopy sets (each of which turns out to be a group; cf. §§ 3.2,
3.3) constitute one of major characteristics of the space X.

Pick a base point x( on the n-dimensional sphere $" so that we
have a pointed space (S™, xg). We also get a pair homeomorphic to
(5™, x¢) by squeezing the boundary 3]" of the n-ball I” to a point.

Since we can represent an element of [(I”, 91™), (X, 330)] by some
map

f . (I”,@In) — (X,$()),

where f(aI”) = 1, we get the following

Treorem 3.1. There exists a natural one-to-one correspondence
{(ITL, ajn)a (X7 .fl}'())] = [(Sn 170)7 (X CC())] .

You will see that the set [(I”, 91"), (X, ,1:0)], seemingly more com-
plicated at the first glance, is easier to handle than [(S, xo), X, xnﬂ
in the following section and beyond, when we give a group structure
to these sets.

Exavere 3.2. Let X be the topological space representing the
letter X and let z, be the crossing point of X. Then for each natural
number n we have

(1", 8I"), X, z¢)| & {one point}.

In other words, an arbitrary map f,: (™, 0I") — (X, zo) is homo-
topic to the constant map

fo - (Ina aIn) - (nyo)a fU('E) = .T[}, x eI
To see this, consider the maps f;: (I", 8I"™) — (X, zp), defined by
filz) = tfi(z), x €1

(each f; multiplies the distance from 1z to fi(z) by t). The family of
maps f;, t € [0, 1], gives a homotopy between fjand f).

Examrre 3.3. Denote by X the letter 0 = S! and by xp its
apex. Then we have a one-to-one correspondence

(r, o1'), (8, zo)] = Z;

since every element of [( I 11 or 1), (S 1, JZ())] has as a representative some
map f : (Sl : l‘g) — (S, ry) with its rotation number (a negative
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integer if [ changes the direction of the rotation) indicating how many
times the map f makes §! wrap around S! and such maps with the
same rotation number are homotopic.

Evidently taking a different base point z; in 5' gives the corre-
spondence

(17,81, (S, 20)] & [(I",01M),(S",21)] -

The same argument carries over to homotopy sets of topological
spaces without base points, and we obtan the following results, which
we saw in Example 17.

ProrPosITION 3.4. For the letters X, Y and 0, we have
X Y] =~ fone poing, [0, 0] = 7.

More generally, we have the following theorem, whose simple
proof will appear in §3.4.

THEOREM 3.5. Suppose that X is a connected topological space
(note, if you are an advanced reader, that for a finite cell complex
connectedness and arcwise connectedness are equivalent). Then for
any pair of points xo and 1 of X and each natural number n, we
have a one-fo-one correspondence

[(In’afn), (X,.’Bo)] = [(In’ 8In)a (X,.T,‘l)] :

The reader might perhaps conclude from this theorem that base
points are not necessary; however, in introducing a certain group
structure to homotopy sets in the next section and beyond we will
see that base points are very important indeed.

3.2. Fundamental groups

We give a group structure to the homotopy set [(I”, 81™), (X, xc)],
where (X, 20) is a pointed topological space ($3.3). We denote this
group by 7,(X, o) and say that 7,(X,Zo) is the n-th homotopy
group of the space (X, z(). For a connected space X, the respective
n-th homotopy groups of its pointed spaces with distinct base points
are isomorphic, and so we often write 7,(X). When X is a cell com-
plex, m (X, zg) is finitely generated but not necessarily abelian; in
particular, if 7,(X, zg) = {1}, then for n > 2, 7, (X, z¢) is a finitely
generated abelian group isomorphic to a direct sum of some copies
of the infinite cyclic group Z and some copies of finite cyclic groups
Z/(p;). The first homotopy group m1(X, xo) is especially important,
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and we have traditionally come to call it the fundamental group of
(X, .3'3()).

In this section we study the case n = 1; fundamental groups.

We make the homotopy set [(I, d1), (X, zg)]) determined by a
pointed topological space (X, x() into a group. For two elements o)
and a,in[(1,81),(X, zo)] we define their “product”

ay . az €[(1, 81, (X, z0)]
as follows: we select suitable maps
fzj(f,af)—)(X,.’L'()), 1= ],2,

representing ¢;, %= 1,2, respectively (since «, is the homotopy class
of fi,this selection can be anything as long as it is homotopic to f:)-
Divide the interval I = [0, 1] into the subintervals [0,1/2]and [1/2,1]
both of which are homeomorphic to I = [0, 1]. Since both fi and f2
map I1 to xy, we can define a continuous map

fLUfo (1,0) — (X, xp)

by fiUfa= fion [0, 1/2](identifying  with [0,1/2]),and fiUf2= f5

on[1/2, 1] (identifying [ with[1/2,1]). Any change of [, or f, through
a homotopy results only in a change of f; U fy by ahomotopy; hence
we may define o, . @ to be the homotopy class of f; u fa.

The homotopy set [(I, 81), (X, x)] with the above “product” sat-
isfies the group axioms. We denote by m; (X, z;) the resulting group,
which we call the fundamental group (or the first homotopy group)
of (X, xy). When X is connected we often write m (X).

We say that a topological space X is simply connected if X is
connected and 7 (X, zp) = {1} (the unit element). You may perhaps
be familiar with the fact that Cauchy’s integration theorem holds for
holomorphic functions defined on a simply connected domain in the
complex plane.

SamprE Proerem 3.6. What sort of maps
f i (,0I) — (X, o)
represent the unit element of the group m (X, %o)?

Sorurion. The constant map f; defined by f(S) = z9, 8 € I,
represents the unit element of 71 (X, z,), the reason being that for any
map f : (I, 91— (X, zp), fo U f and f U fo are both homotopic to f.
To see this, imagine the interval ! as the time interval (so that t € 1
reads “at time ¢”). Then the map fo U [ stays still at x, for the first




30 seconds, say, and then hurries up to cover in the next 30 seconds
what f would cover in a minute. If we decrease the interval of time
during which f; U f remains still from 0 to (1/2 1/2t) minute, then
we have f; = f and the family of maps f; is a desired homotopy.
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resents a € 7(X, z¢). Find a map that represents the inverse o *.

Sorurion. Denote by o the inversion of the interval I about its
midpoint 1/2, mapping 0 to 1 and 1 to 0. Then the composition
foo:d 8I) = (X z)represents (¢ ' for the following reason: the
maps f U (foo)and (f 00} U f are both homotopic to the constant
map fo with the homotopy {f;} which pulls the returning point back
closer and closer to 0.

Exarre 3.8. We saw in Example 1.7 that there is a bijection
[(7,01%), (8',20)]  Z.

The rotation number of the product of two elements in 7 (S!) equals
the sum of their respective rotation numbers, and hence we have a
group isomorphism
n(Sh) 2 Z.
ExamprrLe 3.9
7T1(Dn) g{l}, n=ao, 7T1(Sn) = {1}, n > 2

To show the first isomorphism, let f : (I”, 9I") — (D", *) repre-
sent a typical element of 7; (") and define f, : (I’, 0I") — (D", *)
by fi{x)= tf(z), t €[0,1]. Then the family of maps {f;}, t € [0,1],
is a homotopy between f and the constant map taking the entire [™
to the center point 0 of [)". For the second isomorphism, notice that
if n > 2, then for an arbitrary map from (/™,01") to (S™,z¢) there
is a point I (# Zo)in S™ such that, by perturbing the image of the
map by a small homotopy if necessary, we can make it avoid z; . Since

S™ — {x1} is homeomorphic to the interior of D™, the proof reduces
to the case for D",

Exavere 3.10. We consider the figure eight: that is, two circles
joined at a point, say x; (the choice of the intersection point is im-
material). Let o € 7| (co) be the homotopy class of a map going once
around the left circle only, and let 3 € 7;(oc) be the homotopy class
of a map going once around the right circle only (cf. Figure 3.1). In
this situation we have

71 (co) X free group generated by & and ;
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i. e., every element of 7 (00) has some expression
a™ ﬂbl o 6b2 ok 6bk .

Note that a3 # S, and hence 71 (co) is not abelian

Exavrrie 3.11. We have the isomorphism
m(S'x SH27Za7Z.

The homotopy class « of a map of S'into S'x 5!, going around
its first component S! once, generates the first component Z. and
the homotopy class 3 of a map of S!, going around the second St
generates the second Z. The following simple argument shows that
af = Pa. The product S! x S! is homeomorphic to the torus (Ex-
ample 2.15) that we constructed by gluing together the upper and
lower edges of [?by (z,1) ~(z, 0) as well as the right and left edges
by (0,3) ~ (1,9). Then a map of $! into itself going around the
boundary of I? once represents aBa 37!, which is homotopic to
the constant map that sends the entire S! to the center of I?; hence
afa~ 1371 is the unit element of the group.

3.3. Higher homotopy groups

We adopt the same trick that we used for n = 1 to define a
product structure on the homotopy set [(I”, 4I"), (X, zo)] for n > 2;
that is, we decompose the n-cube " as

r=(0,1/2u[1/2,1)x "' @TuDx [
Suppose two maps
fi (I", 0I") = (X,x9), 1= 1,2,

represent a; and as € [( I", 01I™), (X, x¢)] respectively. Then we de-
fine the product a; ¢ to be the homotopy class of

U fo: (I™0I7) = (X, zo).
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We denote by 7,,(X, zy) or simply ,,(X) the homotopy set with this
product, and say that T X, xg) is the n-th homotopy group of the

topological space X. We show in the following theorem that the n-th

homotopy group of X is abelian for n > 2.

[ A A

TueorREM 9.12. For every natural numbper n > 4, Wn\X 1§ an

abelian group; ie., o1 . oz = . o for a, oy € [(I", OI™), (X, z0)].

Proor. We prove the theorem for n = 2. The proof is exactly
the same for the case n > 2.
We can write

P=(0,1/2]x [1/2,1)) x I
= ([0,1/2) U[1/2,1]) x ([0,1/2] x[1/2, 1]}.

In matrix form, we have

12— I, I
Iy I )’

where
I - [U 1/2] X [0 1/2] 12 = |0, 1/2} x [1/2,1]
Ly = [1/2,1] x [0, 1/2), I - [1/2,1] x [1/2, 1],
and we may define oy . as by

FUf = fi, on Iy Uly;
fa, on I1o U lp,.

Through a suitable homotopy we can change f, and f; so that they
map [,; and I}, respectively onto the point z;. Denoting by s the
constant map taking I,; and [, to zy, we can write

Fufeea 2= (00

We think of /2 as D? (since they are homeomorphic) and rotate D?
through the angle nt. Then the composite

) ) -1
(cos%t sm%t) (fl *) . (cos s sm%)
st Tt i Tt
—sin 5 c0s fa —sin %5 c08 5

changes from ( /! f ) to ( /2 ;1) continuously as ¢ goes from 0 to 1.

The last matrix represents a map homotopic to f, U f; and hence we
conclude that f, U fo >~ f, U fi; thatis,

), O = G . (] € Wn(X,.’L'()). ]
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If a cell complex X is simply connected, then for n> 2, 7, (X, xo)
is a finitely generated abelian group, and so it is isomorphic to a
direct product of finitely many copies of the infinite cyclic group Z
with finitely many copies of some finite cyclic groupsZ /(pi).

Here are several examples.

Exavpre 3.13.
(D) =0, k>0, m(SYY=0 n>2;
(S X Z, 71,.(55)=0, n<k;
7 (letters A, B,. . ,Z) =0,

In order to show that 7,(S!) =0 (n >
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differ by integers. Then we can show thatr,, (S')=m,(R), and hence
our claim.

= 2
S
=
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o
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&
@
¢
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2

ExamprLE 3.14.
. (S'x $')=0, n>2

We identify S!x S! with the quotient space of R? under the identifi-
cation of points which differ componentwise by integers. Then we can
show that 7,(S' x §!) 2 7,(R), n > 2, and the conclusion follows.

Exampre  3.15.
T 3(82) =7
The Hopf map f: 5% — S? representing the generator 1 € Z will
come aboard as the projection of some fiber bundle in Chapter Eight.

34. Homotopy invariance

Suppose we have a map

fo(X zo) = (Y, wo)
between two pairs (X, z;) and (Y, ye). Then f determines naturally
an induced map

Fe i [(I7, 01M), (X, zo)] = [(I7, BI7), (Y, o)

that sends the homotopy class generated by g : (I, 8I") — (X, zo)
to the homotopy class of f o g: (I",0I") — (Y, ye). It is easy to see
from the definition that

fo i ma (X, z0) = (Y, 90),

is a group homomorphism.
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The following theorem will become evident as we recall the defi-
nition of homotopy equivalences (cf. $1.3).

TueoreEM 3.16 (homotopy invariance). If fwo pairs (X, z,) and
(Y, yo) have the same homotopy type, then for each n we have a group
isomorphism

WH(X, IU) & TTn(Y, yo).

When a connected topological space X enjoys a very nice geo-
metrical property called homogeneity (for instance, X is a manifold),
there is a homeomorphism h : (X, z5) — (X, z1) for any pair of points
xy and x; of X. This implies that there exists a homotopy equivalence
between (X, ;) and (X, z1), and so we have group isomorphisms

7Tn(X, -T:O) = WTE(X: :El)

for all n.

Actually, for a connected cell complex X, not necessarily ho-
mogeneous, the pointed spaces (X, z,) and (X, z,) have the same
homotopy type for any pair of points z, x;, and hence we have an
isomorphism

(X, xg) 2 1o (X, 21)
for every n. The proof of homotopy type is not straightforward,
however, and so we will directly establish isomorphisms of homotopy
groups in the following

TueoreM 3.17. If X is a connected topological space, then for
any two points ryand 1 we have a group isomorphism

Wn(XaxO) = Wn(Xaxl)
for each natural number n.

Proor. Consider a continuous curve 1 €X, ¢ € [0, 1], which
connects zyand x;. We define a family of maps from I” to X taking
the boundary of I” along this curve, which naturally defines a family
of homomorphisms

ht :ﬂn(XaxU) - Wn(Xamt)a
where ¢ € [0, 1]. Similarly we get homomorphisms
Flt s (X, 24) — m (X, 20),

so that we have
h10h1=id, h10h1=id.
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Summary

3.1 The set of homotopy classes of the maps from the pair consisting
of the unit interval and its boundary to a pointed space has a (natural)
group structure, and it is called the fundamental group of this pointed
space.

3.2 We say that a topological space is simply connected if its funda-
mental group is trivial.

3.3 The set of homotopy classes of the maps from the topological
pair of I’ and its boundary to a pointed topological space becomes
an abelian group for n > 2, and we call it the n-th homotopy group
of the pointed space.

Exercises

3.1 Show that 7,(8%) =0, n <k,

3.2 Determine the fundamental group 7, (P?(R)) of the real projec-
tive plane P?(RR).

3.3 Compute the fundamental group 7, (M;) of the two-holed torus
Ms.



CHAPTER 4

Homology

We are now ready to discuss homology. We start with the ax-
iomatic treatment of homology. Our approach in this chapter will be
neat and tidy for the reader who is inclined towards abstraction. If
you prefer a more concrete approach to the subject, you may simply
skim through this chapter; however, while actually computing the ho-
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come to appreciate these axioms. In fact, the history of homology
reveals how great mathematicians in the present and past struggled
with computations before finally formulating suitable axioms to ease
their work (or sharpen their results or whatever); therefore, rest as-
sured that a complete homology theory that satisfies homology axioms
does exist, although we will not give a direct proof.

4.1. Homology groups

A homology theory h,(X) = 3777 h,(X) assigns to a topological
space X a family of abelian groups h,(X),p=0, 1,2, ..., and hence
their direct sum h,(X) = Zp o hp(X) with the property that if X
and X’ have the same homotopy type (this is of course the case if
they are homeomorphic) then

hp(X) 2 hy(X') (isomorphic as groups),

for each p. The direct sum A,(X) is a homology of X, and each
summand h,(X,) is the pth homology group of X. Thus if for some p
the p-th homology groupsh,(X) and h,(X") are notisomorphic, then
X and X’ are not of the same homotopy type, and so we conclude
that they are not homeomorphic. In this sense we might say that
homology groups are basic topological invariants.

Homology theories are not unique. In particular, any abelian
group G can appear as the 0-th homology group #hg(pt) of a one-
point space pt. When Ay(pt) = G, we denote by H (X G) the p-th
homology group h,(X) of X and by H.(X; G) = Z o Hpo(X; @)

27
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the homology h(X) = > 7 hy(X). We say that H.(X;G) is the
homology of X over the coefficient group G (or simply over ). Con-
versely for an arbitrary abelian group G there exists a homology the-

ory h. =Y~y hy with ho(pt) 2 G.

What sort of abelian groups do we know? We have a famous the-
orem (the fundamental theorem of abelian groups) which says that a
finitely generated abelian group is a direct sum of finitely many copies
of the infinite cyclic group Z and finite cyclic groups 7Z, of period g,
where ¢ is a prime number. There is a wide variety of abelian groups
not finitely generated, among which are the real numbers R, the ra-
tional numbers (@, the complex numbers C, and so on. Accordingly,
we can conceive homologies such as H, (X; Z), H, (X; Z,), H. (X; R),
etc. In a later chapter we will show that for any abelian group G,
we can calculate H,(X; G) algebraically from H,(X; Z) (the univer-
sal coefficient theorem). Thus H.(X; Z) is the most basic homology
here, but then in many cases H, (X; R) is easier to compute.

If G is abelian, the pth homology group H,(X; G) is also abelian.
In this book we use only (finite) cell complexes, and this means that
if G is finitely generated so is Hy(X; G), and if G is Z then H,(X; Z)
is a direct sum of a suitable number of copies of Z and Z,’s. The
numbers of copies of the respective distinct summands dictate the
topology of the space X. We mention in passing that the homology
group H,(X;R)with an infinitely generated coefficient group R turns
out to be the direct sum of a certain number of copies of IR.

One can indeed define a homology A,(X) = E;i(] hy(X) in many
different ways; however, for the following two reasons we will postpone
giving a certain simple definition till later and start here by taking

the hasic nronerties of hnmn]ncv theories as axmoms which hold no
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matter how we define h,:

(a) Two homology theories with the identical ho(pt) agree on
every h,(X) for any cell complex X.

(b) Computing homologies from the definition is difficult even
if we define them first.

4.2, Homology axioms

Let X be a topological space. Recall that we defined a pair to be
an ordered pair (X, A), where A is a subspace of X (cf. 1.3). If A is
the empty set, we simply write X in place of (X, }). When we have
determined a homology theory for every pair (X, A) we will certainly
have one for (X, 0} = X, and besides we can understand how to define
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a homology of X more clearly when we include pairs, (X, A)’s, in our
consideration.

Given two topological spacesA and B, we form pairs (B, BN A)
and (A U B, A). The inclusion map i: B — (A U B) determines the
map of pairs

i: (B,BnA) - (AUB,A),
since (BN A) c A.
A sequence of abelian groups and homomorphisms

) f
—)Gp+1ﬁg—+-l)G Gplp—)Gpg—}--

is exact if we have

ker fp = imfp-i-l ;
where ker fy is the subset of G, mapped to O by f, and imf,.1is the
image of Gpt1 by fo41.

In order to state the properties of homology groups inclusive of all
conceivable coefficients groups, we denote by 4, the p-th homology
group, where p is 0, 1, 2, . . . . By setting h,(X)=0 forp < 0,
however, we may even assume thatp € Z.

Once again recall that our pars are always pairs of cell complexes.

Axioms 4.1 (HOMOLOGY AXIOMS) . We say that h* = Z::D hp s
a homology theory if h, assigns to each topological parr (X, A) abelian
groups h,(X,A), p=0,1,2 ., which satisfy the following properties.

(1) To an arbitrary continuous map f : (X, A) - (X', A’), there
corresponds for eachp a homomorphism of abelian groups

Jo D hp(X, A) = by (X', A),

satisfying the following three properties:
(a) The identity map i: (X,A) — (X, A) determines the identity
homomorphism

id, : h,{X,A)— hy(X,A).
(b) If we have a second map g : (X', A’) —» (X", A”) then the com-
position (g o f). determined by g o f : (X, A) — (X’, A”) satisfies
(90 F)e=g.0fu  hp(X, A) s hp(X 7, AY)

(c) Eomorory Axiom. If two maps f and f of (X, A) into (X, A’
are homotopic (f ~ f :(X,A) — (X', A")), then

fo=f0 D hp(X,A) = hy(XT A”)
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(2) BOUNDARY AxioM. To a pair (X, A) there corresponds
a homomorphism, called the boundary homomorphism (connecting
homomorphism or differential), for each p:

By : hy(X, A) = hy_1(A)

(we often drop the subscript p and simply write ), such that for
any continuous map f: (X, A) = (X, A’ and for each p we have
0 o fe=(f|a)« 0 8. In short, the following diagram commutes:

ho(X, A) —L hy(X', A7)

s Js
hpr(A) L5 g (4.

(3) ExcisioN AxioMm. For each p, the inclusion map i :
(B,BNA) — (A U B, A) induces an isomorphism

iy hy(B,BNA) —hy(Au B, A).

(4) EXACTNESs AxioM. For a topological pair (X, A) with the
natural inclusion maps i: A - X and 7:X = (X, 0) - (X, A) there
is an exact sequence

where pt is a one-point space.
This completes axiom 4.1.

We say that G = hy(pt) is the coefficient group G of the homology
theory 4,.

Suppose that G is an gbelian group. We can prove that for cell
complex pairs (X, A) there is a unique homology group over the coef-
ficient group G, h.(X,A) = Z;‘io hp(X,A), satisfying the homology
axioms. The computations of homologies of various spaces that you
will read in the following sections will shed some light upon this fact.
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When G is the coefficient group of h we write
ho(X, A) = Hy(X, A; G),

(X, 4) = Ho(X,4G) = Y Hy(X, 4;G).
p=1

Suppose h. satisfies the axioms (1) through (4) but not (5); for
instance, h,(pt) # 0 for some p > 1, or hy(X,A) # 0 for some p < 0.
In this case we say that h, is a generalized homology theory. We do
not discuss this type of homology in this book; however, there are
some important ones, such as K-theory (that comprise one of the
main topics in the Iwanami series: Developments in Contemporary
Mathematics).

Exwvere 4.2, For any X, we have that
hy(X,X)=0, p=0,1,2 ,..

for the following reason. By Axiom (4) the long exact sequence

1

o et (X) 25 B (X) 25 Ry (X, X)
% (X)) S by (X) =

of the pair (X, X) is exact. The inclusion map i : X — X is the same

as the identity map id : X — X, and s0 i, = id : h,(X) — hy(X).
The exactness of the above sequence implies that 7. : h,41(X) —
hp+1(X, X) is a zero map and Op11: hpt1 (X, X) — hp(X) is also a
zero map. Hence we have h,(X, X) = 0.

4.3. Immediate consequences of the axioms
(a) HoMoTOPY INVARIANCE. The homology axioms lead to the
following theorem, known as the homotopy invariance of homology
groups.
tmoren 4.3, If f @ (X, A) — (X, A) is an homotopy equiva-
lence, then for each natural number p, fi: H,(X,A) — H,(X', A)
is an isomorphism.

Proor. Since f is an homotopy equivalence, there exists a map
g: (X, A) — (X, A) suchthat go f~id and fo g2id. Then from
Axiom 4.3 (1) we get the equalities
G O f.=id: Hy(X, 46 — H(X', A G),
f* 0 x =ld .'Hp(XI;A,; G) — H(X7A; G);
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therefore, we have the isomorphisms f, and g, of abelian groups. [J

(b) Homorocy orF QuoriENT Sepaces. Let X be a topological

- YIT_. 1 P v

space and A a subspace of X. We define the quotient space X/A to
be the space where the set A is regarded as a single point denoted
by pt. When X is a cell complex the excision axiom (Axiom 4.1 (3))
gives the following result

THREOREM 4.4. Let (X, A) be a cell complex pair. For each nat-
ural number p, there exists an isomorphism

h‘P(Xa A) = hP(X/Aa pt)

ProoOF. Let f: A x {0} — xbe the constant map of the product
space A x I onto a one-point space *. The attaching space

CA=*Uf(AxI)

has the homotopy type of a one-point space. We say that CA is
the cone over A, and we regard A as A ¢ CA. We can extend the
homotopy which collapses CA to a point to a homotopy of the sum
X U4 CA still collapsing CA to the point (this is possible because X
is a topological pair of cell complexes); hence, we have a homotopy
equivalence

(X Ua CA, CA) ~ (X/A,pt).
The excision axiom implies that
hy(X, X NCA) = h, (X Ua CA, CA),

but we have X N CA = A, and so XX N CA) = (X, A). The
conclusion follows from homotopy invariance. ]

(c) Repucep Homorocy GROUPS. The homology groups (un-
like the homotopy groups) h,(X) and k. (X, zo) of a topological space

X and a pointed space (X, xp) (zp € X), respectively, are different
from each other.

THEOREM 4.5.
ho(X) B ho(X, CE()) a5 ho(iro),
hp(X) 2 hy(X, 20), P>0.

PROOF. Since hi,(xg) = 0 for p > 0 and ho(zy) = G, the exact
sequence

Ta " ap
— hp{z0) = hp{X) = hp(X,20) = By (a0) — . .




4.3. IMMEDIATE CONSEQUENCES OF THE AXIOMS 33

yields h,(X) 2 h,(X,x0), p > 2. Furthermore, the constant map
f: X — 2 induces the homomorphism f, : ho(X) — ho(xo), and we
get

f* 0iv=1d : ho(.’];o) — ho(;Eo),
as foi=id: Ty — zg; hence, i, s injective and we have the short
exact sequence

0 — ho(zo) 25 ho(X) 2% ho(X,20) — 0.

Because f.is the leftinverse of 7, , the middle of the above short exact
sequence splits:

ho(X) 2 ho(X, xo) ® ho(zo).
It follows from h,(zo) =0, p > 1, that hi(X) = ki (X, z0). O

Set h,(X) = h,(X, zo). The expression

o

h* (X, l’[)) =§hp(X, (Eo)

becomes

hi(X) = Y hy(X).
p=0
We say that h,(X) is the reduced homology group of X. By the above
theorem these groups are related by

ho(X) @ ho(zo) = ho(X),  hy(X) Z he(X), p>0.

exaveie 4.6, The reduced homology group of a one-point space
is always zero:

i’L*(Io) = 0;
that is, ﬁp(:cg) = 0 for every natural number p.

We may also define the reduced homology group ﬁp(X ) to be the
kernel of the homomorphism f, : h,(X) — h,(x¢) induced by the
constant map [ : X — zj. 5

We define the reduced homology group h.(X.A) of a pair (X, A)
simply by

ho(X, A) = ho(X, A

For an arbitrary map f: (X, A) — (X, A’) we may define the reduced
homomorphism

fi: BP (X, A) — hy (X' A)
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to be the restriction of f., and the boundary homomorphism
0 : hy(X,A) — by 1(A)

to be the restriction of the boundary homomorphism & of the homo-
logy groups. If one examines the zero-dimensional situation carefully
one can immediately establish the following.

Prorosition 4.7. We have a long exact sequence of reduced ho-

mology  groups:

oo By (A) 25 by (X) 25 Ry (A

VoA B rvy
? l(/p\['l} i lbp\/\} b

(d) Homoroecy Grours or Spreres. Since the n-dimensional
ball D" has the homotopy type of a singleton set, we have for every
natural number p

hy(D™) = 0;
in other words,
H,(D"; @) =0, p>0, Ho(D", G) =G.
The n-sphere 5™ is also easy to calculate.
Prorosition 4.8. For any n > 0, we have
ho(57) 2 {ff o
, PFEN

Proor. We first compute the homology groups of S = {z(,z;}.
From the excision axiom (Axrom 4.1 (3)) we get

hp(xla @) = hp(SOa CU(J), p >0.

The long exact sequence for the pair (SY, z)

s hyle) 5 hp(S%) 2 Rp(S°,20) 2 By (20) —

together with h,(xo) = 0 ( > 0) and ho(x¢) ® G implies that
ho(S") 2 G @ G, hp(S") =0, p>0,
or equivalently that
ho(S) 2 G,  h(8%) =0, p>o.

We now note that, since the quotient space D" /9D" is homeomorphic
to S”,

hp(S™) = hp(S™,pt) & by (D", 8D") = (D", HD™).
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We also have the exact sequence

~ L~ ap -~ - E* -~
= (D7) B (D™, OD™) 5 Ry 1 (ST B Bpa (D) o
for the pair (D™, dD") = (D", S»~!), Hence we have that
hy(S™) = hp_1 (S"71),
and proceeding inductively with p = 1,2, . . ., we get what we wanted.
O

examere 4.9, Let fo be the map of the letter O into itself which

send every point of 0 to the apex xg of 0, and let fi be the identity
map of 0. Then by axioew 4.1 (1), which says id, = id, we have that

(f1)« =1d : Hp(0; G) — H,(0; Q).

On the other hand, let i : £y — 0 be the natural embedding. Then
as fo= 1o fo, by Axiom 4.1 (1) ((go f). = g, o f), the image of the
map

(fo)s 1 Hy(0; G) — H,(0; G)

is contained in the image of the map
iy Hy(2o; @) — Hp(0; G,
By the dimension axiom we get
Hy(xg; G) = 0.
Since 0 and S! are homeomorphic, we also have
H{0;G) =G
Thus we have that

(folx # (f1)«; H1(0; G) — H1(0O; G),
and we conclude by axwox 4.1 (1) that fo and fi are not homotopic.

OsservaTioN. Let us review how we used the homology axioms
to compute the homology groups of a general n-dimensional sphere.
Our starting point was the homology group of a singleton space. The
zero-dimensional sphere S¥ consists of two pointszy and 1, and we

used the exact sequence of the pair (S, zy) and the excision axiom

for 5° to determine its homology groups. The homotopy invariance
enabled us to compute the homology groups of the n-ball D™. Then,
using the exact sequence of the pair (D", S*~!), we computed the
homology groups of S" = D"/ S™=1 This example suggests that
exact sequences of suitable pairs would help us calculate the homology
groups of a variety of new spaces.
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(e) HomMoLoGY ExAcT SEQUENCES oF TRIPLES. Wecanobtain
homology exact sequences of topological triples wusing only the homol-
ogy axioms, though we need some lengthy but fun diagram-chasing.
Exact sequences of triples will be quite useful in various ways in the
later chapters. ‘

Consider three topological spaces X,A and B,Bc A ¢ X. By
the homology axioms, we have the following exact sequences:

o hp (X) 25 hp (XA T h4) 2 h(X) =

(o]

= By (X) 25 b1 (X, B) S5 hyB) < hp(X) = e

W ailJ 17
by (A) 25 b (A B) P B S5 A — .

The natural inclusion maps
i: (AB) - (X,B) and j:(X B = (X, A)
determine the group homomorphism
te:h(A,B) = h(X,B) and J.: h(X, B) > h(X, A).

We define the boundary homomorphism

Ipt1 ¢ hp1 (X, A) = hy(A, B)
by
— ap 1 i’
Bpor= §70 Byt b1 (X, A) 25 h(A) 25 hy(A, B).
We then get the following exact sequence of of the triple (X, A, B).
THEOREM 4.10. The long sequence
o by (X, B) 25 by (X, A) 0 B (A B) 2 hy(X, B) -
s exact.

PrROOF. Enjoy the fun game of a diagram chase applying the
homology axioms repeatedly. Make the use of the diagram shown in
Figure 4.1.

0

If you are one of those who find diagram-chasing too tedious to
go through, you may instead adopt this theorem as an axiom,

REMARK. For more general spaces one can count singular homol-
ogy, Cech homology, and so forth as homology theories which satisfy
the homology axioms.
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Summary

4.1 There are five homology axioms.

4.2 For a fixed homology theory, the homology group of a pair is
equal to the reduced homology of the corresponding quotient space.
4.3 One can compute the homology groups of spheres straight from

the homology axioms.
4.4 The homology exact sequence of a triple will be useful later.

Exercises

4.1 wmore cmariencine. Let X, Xl, X9 and A be topological
spaces, where X; ¢ X (1= 1,2),X= X;U Xyand A = X; N Xs.
Denote by h; : A — X, and m;: X; —» X the natural embeddings
of A and X;in X; and X respectively. Set ¢ = (A1, ho,) and ¥ =
Mi, Mo,. Show that there exists a long exact sequence (called the
Mayer- Vietoris exact sequence):

o (A 5 hy(X0) & ho(X2) 25 Rg(X) — by (4) — oo

4.2 We identify a point on the p-dimensional sphere SP with a point
on the g-dimensional sphere 59 and denote by S5 V 59 the resulting
quotient space. Calculate the homology groups of S” V 5S¢ using the

Mayer-Vietoris exact sequence.



CHAPTER 5

Homology Groups of Cell Complexes

We are going to compute the homology groups (for homologies
satisfying the axioms) of some concrete cell complexes. First we out-
line our plans using a lot of technical jargon. This will help you
organize your strategy if you are half-way familiar with these words.
If you have never heard of them, just skip this introductory gibberish.
We will define everything in the coming sections.

We will compute the i-th homology group as the quotient group
of a subgroup of i-cycles (i-th chains which get sent to the zero ele-
ment by the boundary operator) by a subgroup of i-boundaries (the
image of the i + 1-chains by the boundary operator). The boundary
operator will become quite easy to see once you get acclimatized to
your environment. We will favor a more theoretical approach in this
portion of our discussion (though this may contradict our policy of
introducing you to the theory with concrete examples), and we first
explain how to compute the homology groups of simplicial complexes
(that is, triangulated spaces), which correspond directly to the ho-
mology axioms.

In short, one can surmise the situation by saying that the cal-
culation of the homology groups of simplicial complexes is clear in
its direction but a bit complicated in the actual manipulation. The
calculation of cell complexes requires that you know the behavior of
the boundary operator, which is not immediate from the homology
axioms, but becomes quite simple to handle once you get to know it.
You decide which is more palatable to you.

Once you finish this chapter you will be able to calculate the
homology groups of all sorts of topological spaces which you treat as
cell complexes.

39
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5.1, Calculation of homology groups of cell complexes

Let X be a k-dimensional cell complex. We denoted by X7the g
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of the triple (X”,X” L X2y,
ha(X7, X"2) =5 b (X7, X7
S by (XL X
Forn=0,1,2,..., we define abelian groups C,,(X) by
Co(X) = hp (X", X271,

Then C’n_(X) =0for n <0.For n>k = dim X we have X" = X"~ 1,
and so (',(X) = 0. We regard 9, as the map

O i Co(X) — Cr1(X).
taeoren 5.1, Let X be a cell complex. Then the composite
Op_1 00, : Cp(X) = Cp, »(X)
satisfies d,,_10 0, = 0 for every integer n > 0.
PROOF. Recall that we defined 9, as Jx0 On, and so we get
On-100n = ju00p-10J. 00y = juo (Op_107.) 09y = 0.

The next proposition computes C,, (X).

prorostrron 5.2. Let X be a cell complex and let ¢, be the num-
ber of n-cells in X. Let ho(pt) = G. Then

qn
~ —— ——
Co(X)=2G"=G& -G
Proor. Choose a point zp on the n-sphere S™. Take g,, copies
of this sphere and let 5™ V... V S" be the quotient space, where ¢,
copies of the point z, are regarded as a single point. We call this

quotient space a bouquet of S”. It follows from the excision axiom
that

ha (X", X"1) 2 b, (Uég, Ua(é;)) N WCLEVISRVE LY
By induction starting with ¢,, = 1, we obtain the result
ho(S™V -V ™) 2 G,



5.1. CALCULATION 41

Similarly we can show the following result.

PROPOSITION 5.3. For an arbitrary cell complex X,
ho(X", X" 1) =0, p#n

We use Proposition 5.3 and the exact sequence of (X7, X"~ 1) to
obtain

ProposiTioN 5.4, For a cell complex X and the natural inclu-
stion map 1 @ X" — X, we have the following:

h,(X") =0, q>n
ix: By(X™) = hy(X) is an isomorphism, q< n.

Oeservation. We use only the homology axioms to prove the last
proposition, but it nicely exhibits one basic property of the homology
groups of a cell complex; that is, for the q-th homology group we need
only to consider the p-dimensional skeleton X7, p > ¢ + 1. The q-th
homology group vanishes on any skeleton X" if n < g =1.

We shall now move to a general theory: homology groups of chain
complexes. Here we do not build axioms but compute algebraically.

Derinrtion 5.5. A chain complex C consists of a long sequence
of abelian groups (7, and homomorphisms f,

fo J f-
- = Gp_+_1 I—+)]Gp —p} Gp*-l L;GP*QU -

such that f,0 f,+1=0(.e ker f, c im f,,,) for every p. The homo-

morphisms f, are boundary operators or boundary homomorphisms.
Note that this condition is a bit weaker than the exactness condition,
ke]f'fp =1im fp+1'

Smetrack. The term complex of a cell complex refers to a combined
object, whereas that of a chain complex refers to the existence of
boundary operators which satisfy f, o f,.1 = 0.

DermnrTion 5.6, Let C be a chain complex. We define the pth
homology group 4,(C) of C by

hy(C) =ker f,/Im pr.

We can say that an exact sequence is a chain complex whose
homology groups all vanish.

For a chain complex C, we define a subgroup Z,(C) € G,) of
p-cycles to be the kernel of f,,, and a subgroup B,(C) (¢ G,) of p-
boundaries to be the image of (7,1 under f,.i. With this notation
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we can express the p-th homology group of the chain complex C as
hy(C) = Zp(C)/Bp(C).

The boundary operators & of the long sequence C(X) of a cell
complex X,
p

— Bpi1 A _
= Cppi(X) = Cp(X) —

LX) S Ca(X) o

satisfy d,.1 0 8, = 0. Hence C(X) is a chain complex and so we can

define the homology groups h,{C(X)) of CX).
We give the fundamental theorem on the homology groups of a
cell complex as follows.

mueorem 9.7, For each p, there exists a natural isomorphism
hp(X) & hy(C(X)),

where the left-hand side is the axiomatic homology of the cell complex
X which gives rise to the chain complex c¢(X). The right&hand side
is the homology of C(X) computed algebraically.

proor. We make a commutative diagram by arranging the ex-
act sequence of a triple (XP+! XP XP~1) horizontally and that of
(XP, XP~1 XP~%) vertically:

0 =h,(XP !, XP %)

!

hppr (XPH, XP) O0tl g oxp xee2y e el XPUZy Ly p (xPHLXP)

| b |

oy (X) Co(X) = hy(X?, X77")

I

Cpr(X) = hy (X771 XP7H)

From the vertical sequence we get
ker 3, ¥ im j, 2 h, (X", X?7?%),

while the identity 5p+1 = Jx» 0 Opy1 and the fact that j« is injective
imply

im 8p+1 = im p+1-
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Hence it follows that
ho(C(X)) = ker 8,/ im 8,11 = hy(XP, XP™2)/im 4,
ho(XPTL XP2),

R

But from Proposition 5.4 one gets
+1 -2
hp(Xp , XPTH) B hy(X).
L]

You might ask if you can actually calculate the homology groups
of a cell complex from the right-hand side of the equality in the the-
orem. Surprisingly, the answer is YEs. You might get the impression
that you need to calculate some homology groups (so far unknown
to you) in order to build the chain complex on the right-hand side.
Recall, however, that each p—chain C,,(X) is isomorphic to the direct
sum of the-number-of-the-cells many copies of G. How should we
interpret the boundary operator 3 : Cp(X) - Cp_1(X)?

For simplicity we discuss the case G = Z. Denote by (e,) the
generator 1 € Z of C,(X) corresponding to a p-cell ey. Then we can
write

(E 1) dleyy = N Jevelted lesel € 7
(U.J.j AT Ay L_‘ LA HRIANTLD L=A2 ) 'y
eueX(?“U

We call [e,, e,,] the incidence number of e, and e,. When we have
calculated all incidence numbers we will have the homology groups of
the cell complex. So let us investigate the incidence number [ey, e,].
Let g, be the number of p—1-cells of X. We use the attaching map
hy :0e), — XP~1of e, and the boundary isomorphism

J: Hp(é)\, O€x; Z) >7 Hp_l(aéx; Z) ~ 7
to define a homomorphism h,  of H,(e,,d¢ex; Z) by
hy, = hy, 08 : Hy(éx,080;Z) = Z — Hy_(XP~ " Z)

Furthermore, the characteristic map of e, ¢, : &, — XP~! induces
the injective homomorphism

awvn o <soeall Aa A T aaen e e Tha g
ldaytC d wgell-uvllilicu HUINVINUIPIisii

(G) "t Hy (XPT XPTH L) 2 2% — Hy (8, de; Z) 2 Z
‘o ¢, =1on H, (¢,,06,Z).
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Consider the induced homomorphism
Jot Hyt (XP7HZ) — Hy oy (XPH, XP7% )

of the inclusion (XP~! ) — (XP~1, XP~2),
The following is an easy consequence of definitionchasing.

TrmoreM 5.8, The incidence number [ey, e,] € 7 of the homo-
logy group with Z coefficients of a cell complex X is well-defined by

exren = (807 odio b)) € 2 2 H, 1(6,.06,: D),
leZ= Hp(é)\, dex; 7).

By a regular cell complex we mean a cell complex whose charac-
teristic maps are homeomorphisms. Simplicial complexes are regular,
and we will look into them in the following sections. If X is a regu-
lar cell complex, then we can determine directly from the homology
axioms that

lex,e,] = 0 or =1

Hence, the homology groups of a simplicial complex are determined
uniquely from homology axioms. In the coming sections, we will give
a direct definiion of a homology of simpliciall complexes which agrees
with the homology determined by the homology axioms. Then we
can calculate the incidence numbei tnd hence the boundary operator
0 given by (5.1) of an arbitrary cell complex.

5.2. Homology of simplicial complexes

(a) DerFmNTioN oF SmpLiciaL CompLex. Calculating the ho-
mology groups of a two-dimensional sphere is easy if we treat it as
the surface of a regular cube. We will investigate the possibility of
regarding more general spaces (including spaces of higher dimensions)
as collections of “triangles”. We first define a simplex as a higher-
dimensional triangle.

DermnzTzon 5.9 (smverex) . Suppose N is a sufficiently large nat-
ural number. Let po, pi, . , p, be n + 1 points of R V¥ in general
position (i.e., the vectors popi, . . , Pobn are linearly independent),
and denote by ¢" = (po,...,p,) the smallest convex set spanned by
these points. We say that ¢" is the n-simplex, and that py,. .. ,p,
are the vertices and n is the dimension of ¢ . The j-simplex spanned
by a subset {p:,,.. .p;, } of {pp, .. ,pn} is called a face of ¢". In
particular, ¢" is its own face. Denote by da” the collection of the
faces of o™ of dimension less than n. We say that da” is the boundary
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of ¢”. We indicate that ¢’ is a simplex belonging to the boundary of
" by writing ¢’ < g™,

mxavere 5.10. In the (x, y, z)-space R® the points py = (0,0, 0),
pr = (1,0,0) and pz = (1,2,0) span a two-simplex. Any set of three
points in general position (i.e., not all on the same line) defines a
two-simplex. Similarly, any set of four points not on the same plane
determines a three-simplex.

DerIniTIoN H.11 (SIMPLICIAL COMPLEX) . Let S = {O’n} be a fi-
nite family of simplexes of various dimensions in RY, where N is
large, satisfying the following conditions:

(@) If o™ € S, then every face of g" is also in S.

(i) If o"¢% €8, then 07" N 07 is a face of each of ¢f" and 4§.
We say that S is a simplicial complex. The highest dimension of the
simplexes in S is the dimension of S. A zero-simplex in Sis called a
vertex of S.

In short, a simplicial complex S is a collection of simplexes spliced
together along some faces such that any face of a simplex in S is again
a simplexin S.

A simplicial complex is a regular cell complex; that is, its char-
acteristic maps are homeomorphisras,

Examere .12, Here is an example of a simplex ¢ whose bound-
ary is a simplicial complex. Consider four points in R?:

PO = (07010)71’1 = (laOvO)aPZ = (1:230)3 pP3 = (233’4)5
four two-simplexes:
(pﬂaplaPQ)ﬂ Jg = (pl,anPS)a
(p01p2ap3)s 0'2 = (pOaplapfi)’

2
1

&

six one-simplexes:
7 = (po?pl)a O-% = (pOaPQ)a 031. = (p07p3)7
oy = (p1,p2), Ué = (p1,p3), Ué = (p2,p3),

= (pO), C’g = (p), a3 = (p2), Ug = (ps).
The set S consisting of these fourteen simplexes satisfy the con-
ditions (i) and (ii), and so it is a two-dimensional simplicial complex

which is the boundary of the three-dimensional simplex spanned by
the p;'s (Figure 5.1).
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FIGURE 5.1. Simplicial complex

Exaeiz 5.13. In the (z,y, 2)-space R? add p; = (-2, -3, -4)
to the points in Example 5.12. Then the boundary S of the simplex
spanned by four points pg = (0,0,0), p; = (1,0,0), p2 = (1,2,0) and
p, = (-2 -3, -4) consisting of fourteen simplexes is also a simplicial
complex. The union

su &
is another simplicial complex of dimension two which consists of
twenty-one simplexes (the number of simplexes in S N S being seven).

DermnrTion  5.14. Let S be a simplicial complex and denote by
|8| the subset of RY consisting of the points belonging to simplexes
of S. Then |§| has the relative topology as a subset of R . Since we
can regard each simplex as a cell, |§|is a cell complex.

Exavere 5.15. Look at S, S, and S U S of Example 5.12 and
Example 5.13. The spaces |8| and |8'| are both homeomorphic to
the two-dimensional sphere 5°, while |§ U §'|is homeomorphic to the
space which one obtains from the sphere S? by putting the divider

{(0,22,23) |25 + 25 <1} C §°

in it. The space |8 U §'| has the homotopy type of $? V §2, which is
the quotient space of two copies of S? attached at a single point.

(b) HomorocY oF SIMPLICIAL COMPLEXES.
ORIENTATIONS OF sSIMPLEXES. If we reorder the vertices in a sim-
plex ¢” = (po,...,pn), we still have the same simplex. A specific
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order of the vertices defines an orientation of the simplex o™, and we
say that we have oriented o™. Those orientations which can reach each
other through an even number of permutations are regarded as equal,
and those differing by an odd number of permutations are regarded
as unequal, so that there are essentially two distinct orientations.

When we orient o™ by po,. . . ,p, in this order we write (¢") =
(pa,. . ., p, ). If we change the order through an odd permutation we
add the minus sign; for example,

<p07p17p21‘.. 7pn> = _<p()7p17p23p21' . 7pn>'

Exareze D.16. We can orient the one-simplex with vertices pp
and p, by:
(po,p1) = —{p1,p0),
which we show by an arrow as in Figure 5.2.

P2

Po 55 3

Py 1

rreuee 5.2. Oriented l-simplex and 2-simplex

Exareze D.17. We orient the two-simplex spanned by vertices

PO, PI and ps by
(posp1,p2) (p1,p2,00) = (P2,P0, 1)
—{po,p2,p1) - —(pl,po,m) = _<p21p1:pﬂ>a

which we can indicate by an arrow as in Figure 5.2.

(5.2)

INTEGRAL HOMOLOGY OF SIMPLICIAL COMPLEXES.

perrnzrron  5.18. Let S be a simplicial complex. Denote by %,
the number of g-simplexes in S. Then we say that the abelian group
kq copies

CiS;Z)=Tr - Z®6Z@---&Z

is the g-chain group of S over the coefficient group Z; when q <0 or
g > dim$§, we set C,(S; Z) = 0.

We now construct a chain complex by defining a boundary oper-
ator 0, : Cy(8;Z) — Cy—1(S; Z).
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pDeriNiTion 5.19. Orient each simplex in S in any way you wish.

Label the g-simplexes by 1 through kq, crg, ag’ C 0'134. Then form

a formal set:
A,(8:Z) = {al(af) +az(0f) + - +ak, (0] ) |a; € Z }
We make this set into an abelian group isomorphic to the g-chain
greup O, (S; Z) = ' =723 Z&% - 32 by
(ar (D) + v an, (08)) + (b1 o8 oo+ b, (1))
= (ar+ b ){oT)+ o+ (ak, + by, ) {0

(technically we say that Aq(S; Z) is the free abelian group generated
by (o), ... J{ei))-
If (o) = (po, . .. ,pg) we define ,(ai(0f) = o4(ai(po,. ,p)) by
k“?

Z I)Jal pOapla'--7pj“17ﬁjapj+la"'apq>’
7=0

where p, means p, is being deleted. Hence 8q(ai<o’f>) is an element
of Aq—l (S; Z), and so we can define a boundary homomorphism 8q :
A (8: Z) — Ay 1(8; Z) by

0, (o1 (o) + a(0) + . + a, (0f))
= 8, (a1(0)) + B (02(09)) + - + Bylan, (01, )-
Thus we have defined a boundary homomorphism
By : Cyl82) — Cyr(82)

(which depends on the choice of the orientation on each simplex and
the order in which we arranged the simplexes). We also set 8q =0
for ¢ > dim § or ¢ < 0.

A simple calculation leads to
ProprositioN 5.20. For every q, the composition
;00,01 1 Cor1(8; Z) — Con (8 Z)
satisfies aq 0 aq+1 = 0.

Proerem. Prove Proposition 5.20.
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Thus if dim S = n, we get a chain complex C, (S; Z):

0% 0.8 7) 2 0y (8:7) D

—> C1(S Z) ————> CO(S Z) 0

pernvirion 5.21. We say that the g-th homology group of the
chain complex C, (5; Z), i.e.,

H(C.(8;Z)) = kerd,/im8,.,,

is the g-th homology group of the simplicial complex S over the coef-
ficients Z. We will write H (S Z) instead of H,(C.(8;Z)). Also, we
denote by Z,(8;Z) the group of cycles, kerd,, and by B,(S;Z) the
group ofboundaries, imd, . (so Hy(8;Z) = 7 (8; Z)/B, (S' Z)).

By a simple calculation one can show that H,(§;Z) depends only
on the simplicial complex Sand does not depend either on the choice
of the orientation of simplexes or on the way the simplexes are in-

dexed.

Exameie 5.22. Here we compute the homology groups over Z of
the simplicial complex in Example 5.12. We use the orientation of
each simplex and the indexing of the simplexes as in Example 5.12.
Then the boundary operators 9 : Co(8; Z) = Z4 ~— C1(8; Z) 2 76
and 0;: C| (S, Z) 2 Z¢ — Cy(8; Z) 2 Z* correspond to the following
6 x 4 and 4 x 6 matrices respectively:

(1 1
1 0 1 0 14 -1 0 0 0
0 0 1 -1 1 0 0 -1 -1 0
1 1 0 of 0 1 0 1 0 -
0 -1 0 1 0 0 1 0 1 1

\0 1 1 o0

Hence we have the following:
O Z(8;2)= {alo}) = alod)+ alo}) alod) « <2} 22,

E’:’
%Y
B
I

(i) Z1(8;7) = Bi(S;Z)
= {a){o]) + az{ad) — (a; + az){0d) + (a — %)(gi)
+(as{os) + (a1 tas—a3)(od) |ay € 2} = 73,
(ii) Zo(8;Z) = Co(8;Z) =
B58.2) = (anlo) + aufo) + ax(od) + asfoh | Das = 0) >
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Thus we get the result:
D Hy($;Z) = Z, G H(SZ)=0, (i) Ho(S;Z) 2 Z.

The generator of Hy(S; Z) = Z (corresponding to +1 € Z) is
generated by {(o}) = (03) + (03) = (07). The reader should examine
the figure (Figure 5.1) to confirm that this is a two-cycle which is not
a geometrical boundary.

The topological space |8| is homeomorphic to the two-dimensional
sphere S? and H, (S; Z) 1s exactly the same as the homology of 92,
which we derive from the homology axioms.

To define homology groups of simplicial (complex) pairs (S, T)
(relative homology) we define the q-chain C, (S, 7) by

Cq(8,T) = Cy(8)/Co(T),

and carry out the computation.

The homology theory over Z is called the integral homology. We
can develop a homology theory over a more general coefficient group
G as follows. For an abelian group G, define the chain as

C8;Z)®G=C,8,Z)

and extend the definitions.

In order to identify a topological space as a simplicial complex we
must visualize the space as a collection of warped simplexes, which we
can choose to be homeomorphic to a simplicial complex in some real
space RY of high enough dimension. Given a topological space X,
the process of finding a simplicial complex S homeomorphic to X is
called a triangulation of X (or a simplicial decomposition). Homology
groups for simplicial complexes are called simplicial homology groups

Exawre 5.23. Rearn Progective Prane P?(R). Let us
compute H, (PQ(R); Z). The projective plane P?(R) is a quotient
space of 52 with antipodal points identified; in other words, it is a
quotient space of the two-dimensional ball D? with antipodal points
of its boundary S’ identified. In Figure 5.3 one sees its subdivision
with curved simplexes. The integral homology and &-homology of
P?(R) are as follows:

Ho(PY(R); Z)=Z, H\(P*R);Z)= Zy, Hao(P*(R);Z)=0,
Ho(P*(R); Zg) & Ly, Hi(P*(R);Z2) ¥ Zy, Ho(R;Zy) = Zs.
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Ficure b5.3. Real projective plane

Recall that a triangulation of a topological space meant identi-
fying the space with a simplicial complex. If you triangulate trian-
gulable spaces finely enough, you can approximate any map between
them by a simplicial map (sending a simplex to a simplex), which
induces homomorphisms between their simplicial homology groups.

The following theorem will shed some light on the validity of our
axiomatic homology theory. We do not give its (easy) proof here, as
it is somewhat lengthy.

TuEoREM 5.24. The simplicial homology of a triangulable space
satisfies the homology axioms. Any two homologies of a triangulable
space are equal over the same coefficient group (and so they agree with
its simplicial homology too).

You will have fin proving the exactness axiom (Axiom 4.1(4)) for
simplicial homology. It is also easy to prove the excision axiom.

5.3. Homology calculation of cell complexes

Now that we know the homology groups of simplicial complexes,
we can proceed to compute the incidence numbers of a cell complex
and then its boundary operators

8_n : C'H(X) — _n—l(X)-
We discuss this procedure by examples.

real projective plane:

lev}
o
—t
s
b
o
3o
<!I
et}
o'}
o
o2}
ok
=
[=
s
<
=
¢y}
o
o}
[t
-
o}
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The incidence numbers in the integral coefficients are [e!, ] = 0
and [e?, e'] = 2; hence we have

2 1

1 )

)= 2(e

A/l o0 Pa YN \
C\E" ) = U, ugic /-

Hence we get the following groups:
Ho(P*(R); Z) > Z, H(PYR); Z)~Zy, Hs(P*(R);Z)=0.

examere 5.26. The torus in Example 2.15 has a cell division

N

ol ol P IS P =2
2 X0 =(e" Uy eu ey)) Uy, €.

The integral incidence numbers are [e}, e’] = 0 and [e*, €] = O for
7=1,2,and so we get

Blel) = Alel) = 0, 9le?) =0,

and hence

Ho(T% 2)2 7, H(TZ) 2267, Hy(T%:2) =1
exarere  5.27. The n-dimensional complex projective space

PYC)= U(n + 1)/U(n) x U

has a cell division:
PYC)= & U, & U--. Uy, &

Hence 9;: C; (X) — C;_1(X) = 0 for each i; therefore,

lz, i=02,... 2

H(P*C), Z
L(PHC) 2) I0,0 otherwise

Summary

5.1 The homology of a cell-complex is the same as the homology of
its chain complex.

5.2 The n-th chain group (group of n-chains) of a cell-complex is

a direct sum of nj; copies of its coefficient group G, where ny is the

number of n-cells.

5.3 We define the chain complex, and the boundary operators of a
simplicial complex, and thereby compute its homology.

5.4 We compute the homology of a cell complex by investigating its
boundary operators.




EXERCISES 53

Exercises

5.1 Using cell divisions of S™ and D", compute their respective
integral homology groups.

5.2 Derive the integral homology groups of the double torus Ms from
the result on the torus T2 = S! x S together with the Mayer-Vietoris
exact sequence.

5.3 Calculate the integral homology of the torus with n holes using
a cell division of M,



CHAPTER 6

Cohomology

We obtain the cohomology axioms by reversing the direction of
arrows for induced homomorphisms and boundary homomorphisms
of maps used in developing homology theory. We have a unique co-
homology theory once we specify the coefficient group. We can also
compute cohomology groups directly from the corresponding homol-
ogy groups with the aid of the universal coefficient theorem, which we
study in the next chapter; however, in many instances cohomology is
much easier to handle. In any case, as cohomology and homology are
on parallel tracks, we will just state the cohomology axioms and give
a direct definition of simplicial cohomology and its calculation.

Gudl. H

UJ.J.GJ.J.].U Ug}r aX}.OmS
We remind the reader that our topological space is a cell complex
AXIOMS 6.1. A cohomology theory h* =3 " (h? assigns to each

pair (X, Aja direct sum Zgio hP(X,A) of abelian groups h?( X, A),
p=0,1,2,..., which satisfy the following properties.

(1) Homotopy Axiom. To an arbitrary map [ : (X, A) —
(X’, A) and each natural number p, there corresponds a homomor-

phism
f*: (X' AN - W (X, A)

of abelian groups such that
id* : h"(X,A) - hP(X,A),
where id : (X, A) - (X, A) is the identity map, is always equal
to the identity homomorphism. If g(X’, A) — (X”, A”) is another
continuous map, then
(gof)=[f"0g*:hP(X" A" - h?P(X,A.

25
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If fo~ f: (X, A) — (X1, A, then
fr= 7 RP(X Ay - hP(X, A).
(2) CoBounpDAaRY AxioMm. To a pair (X, A) and each natural

number p there corresponds a homomorphism, called the coboundary
homomorphism,

67 : hP(A) = hPTH(X, A),
such that for any continuous map f: (X, A) — (X’, A)
5 0 (fla) = 70 67,

We often write § for 6P,
(3) ExcisioNn Axiom. The inclusion map i: (B, BNA) —
(A U B,A) induces an isomorphism

i*:h"(Au B,A) > h?(B,BN A)

for every p.
(4) ExacTNEss Axiom. For a pair (X, A) and the natural

inclusion maps i: A =X, j: X =(X, 0) —» (X, A) we have a long
exact sequence
S RPTHX) S R A) Y R(X, A) D hP(X) B RP(A) —
(5) DmmensioN Axiom. If p > 0, then
hP(pt) = 0,

where pt is a singleton space.

6.2. Cohomology of simplicial complexes

a nlicial combplex. We orient each simnlexin Sin any
A A J_L.IJ_J_UJ.D\-I— s e y AN dr Y U WLy WOV L i J—\/A i rNSOL

old way. For each ¢, we label the ¢-simplexes with numbers 1 thmugh
q

Ay(8)= {ar{of) + axlon) + -+ ay, (0} ) |a; € L}

for the g-th integral chain group (the group of g-chains over Z) and
define the ¢-cochain group over G, C9(8; G), by

C4(8: G) = Hom(C9(S; Z)), G).

In the case G = Z, we have C9(8; Z) = Hom(CY(8; Z),Z). We define
coboundary operators §P : C1(8; G) — CPT1(8; G) by

§9(z)(e) = = (B(a))., 1 € CU8;G),a € CPT'(8;G).



6.2. COHOMOLOGY OF SIMPLICIAL COMPLEXES 57

Then we get a chain complex
0 —C"(8 @ L= e, q) L

08 o5 @) 0,

which we denote by C*(8; G). We say that (*(8;G) is the cochain
complex of S over G (G-cochain complex for short).

permnrtion 6.2, By the g-th cohomology group of a simplicial
complex Sover coefficient group G we mean the g-th homology group

H,(C*(8; Q) = ker67/im 6771

, (o ,
of the cochain complex C*(S; G) over G of S, which we shall denote
by H(S; Q).

permnrrion 6.3, We denote by Z9(§; ) the group of g-cycles in
the G-cochain complex C*(§; G). Elements of Z9 (8; G) are g-cocycles
of the simplicial complex S over the group G. Similarly, BY(8; G) de-
notes the group of g-boundaries of C* (S; G). The elements of BY(S; G)
are called the g-coboundaries of S. We can now write

Hi(8;G) = Z(5; G)/B(S; G).

Exampze 6.4. In Example 5.22 we calculated the integral ho-
mology of the simplicial complex of Example 5.12. Here we calculate
its integral cohomology. For each oriented simplex (o ) we define

(of)* € C(S;Z) by |
(of) (o)) = &,

where ¢} is the Kronecker delta,

0, 1#£].
Then CY(8;Z) is 1somorph1c to {Z ?ai{oly* a; €L}, afree abelian
group generated by (o7)*, i , ky, and we get the following:
CY(8:7) =2 74, CI(S; Z) a ZG, C2(8; Z) = 74
The calculation of the coboundary homomorphism §°: C%(8: Z) —
C(8; Z) goes as follows. First we notice that

8" ((piy*) (pyyox)) = (i)™ (Blpsy o)) = (i) ({pk) (i) = 6k = &

Then, we get 6°((py) *} for example as

8 ((p0)™) = —(posp1)™ = (po,p2)* = (Po,P3)".
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Similarly we can compute the coboundary operator §' : CI(S; Z) —
C?(8;Z). Thus we have the following 6 x 4 and 4x 6 matrices repre-
senting 6° and &' respectively:

‘11 0\
-1010 1 -1 01 0 0
100 0 1 0 0 0 1 -1 1
0 -1 10" 0 1 -1 0 0 1
0 -1 0 1 1 0 -1 0 1 0
0 0 -1 1/

4 /

These matrices are the transposes of the matrices for the bound-
ary operators in the homology calculation. Hence we get

G) Z°8; Z) = {a(o®) alod)*+ a{od)* alo)) ac€cZ}X1Z,
BY(8;Z) = 0,
(i) Z'(8:Z)= B'(S;Z)
= {ar{o)" + a2(02)" + az(03)* + (~a1 + a2){0y)"
+ (=a; + a3){od)* + (—az + a3) (o) @ €2} 7Y,
(i) Z%(8; Z)= C*(8; Z) = 74,

4
B(SZ {Zazao }al—ag+a3—a4—0}%23.

1=1
Hence we get the following result:
(i) H(8;7Z) =2 7, (ii) HY(8;Z) =0, (iii) H*(8;Z) = 7.

Now we realize the correspondence from Z*(8; Z) = C?(8: Z) =
Z* to H? (S, Z) = Z by sending an element

a1(07)" + az{o3)” + ag(o3)" + as(of)”

to the element
a) = a2z + g3 — a4 € Z.
Recall that
(07) = (03) + (0F) = {o7)
is the fundamental cycle which generates Hy(8; Z). We can say that
we realize the correspondence to the cohomology group H*(S; Z) > Z

by “integrating” the two-cochain at this fundamental cycle (do not
fret about this, since most likely it makes no sense to you yet).
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Summary
6.1 One obtains the cohomology axioms from the homology axioms
by reversing the arrow in every homomorphism appearing in the ho-

mology axioms.

,,,,,

Exercises

6.1 Use a triangulation of the torus 72 = Sx S! to compute its
integral cohomology groups.

6.2 Triangulate the real projective plane P?(R) to compute its inte-

gral cohomology groups.



CHAPTER 7

The Universal Coefficient Theorem

In this chapter we state without proof how to calculate homology
and cohomology groups (we will write (co)homology groups) of prod-
uct spaces as well as (co)homology groups with a change of coefficient
groups. This will be handy for computing (co)homology groups over
various coefficient groups of concrete geometrical objects. We also de-

Bnrioathe c1in nvndiint af eahamalanoy orating Tn CThantoar Nina vwro wrill
J.J.J.J.U ULIG VUL LJJ.U\/LU\JU Ul bUJ.J.UJ_J.J.UJ.USJ SIVUPMD, 111 V/LIQP VWL LY LLIU YWU VY 111

deal with the calculation of the (co)homology groups of fiber spaces,
which are generalized version of product spaces, by using spectral
sequences.

7.1. Products of abelian groups

We will discuss four types of products of abelian groups; however,
we do no more than state some properties of each of these products,
which are enough for the calculation of (co)homology groups. We
hope that you consult the recommended reading at the end of the
book if you are interested in knowing their precise definitions.

(a) TENsOrR PRODUCTS. Fortwo abelian groups (G; and G5, there
is a well-defined abelian group called their zensor product (over Z),

G, ® Gs,

such that if G; and G are direct sums, G = 3, G4 and G2 =}, Gl
then there is an isomorphism

G ®G2§ZG§®G%

The tensor product also satisfies
G1®Gy =Gy @G,
Moreover, for every abelian group G we have that
ZRGEGRZL=G,

61
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and for every pair of natural numbers m, n and their greatest common
divisor (m, n), the following relations hold:

~o rF

ZRL=E LR Ly = Ly QL=
Note that these relations completely determine the tensor product
of two finitely generated abelian groups.

(b) Horn. For any two abelian groups G and G2 we have the
abelian group Hom(G,, G2} of the homomorphisms from G;to Gbs.

In particular, if G;= 3, G and Gy = Y, G} are direct sums, we
have

Hom(G1, G2) &) Hom(G3. GY).

.7
b

An abelian group G satisfies
Hom(Z,G) 2 G
Finally, the following relations hold:
Hom(Z, Z) = Z, Hom(Z, Z,,) & Z,,, Hom(Z,,,7Z) = 0
Hom(Z, Zn) E Zimn,n).
Note again that these properties completely determine the abelian

group Hom(G, G5) of any two finitely generated abelian groups G,
and GQ.

(c) Torsion Ppropucts. Two abelian groups G1and @5 deter-
mine an ghelian group, called their torsion product (over Z),

TOI‘(Gl, GQ),

which depends only on the torsion parts of (G; and (G, (their respective
subgroups consisting of the elements whose integral multiples become
0 for some integers). If G1 and G are direct sums, G = > Gj and
Gy = Zj G? , then we have

TOI‘ Gl, G2 ZTOI'

We also have

TOI‘(Gl, Gz) = TOI‘(GQ, Gl)
for any abelian groups (G, and G5, and for any abelian group G we
have that

Tor(Z, G) = Tor(G, Z) =
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In addition, we have the following:
Tor(Z, Z) = Tor(Z, Zy) = Tot(Zm, Z) = 0, Tor(Zm, Zn) = Ly 5)-

Sometimes we write Tori (G1, G2 ) in place of Tor(G1,G5);in this case
we set Torg(Gy, G2) = G1 ® (.

Note that we can determine the torsion product of two finitely
generated abelian groups from these properties.

(d) Ext. Fortwo abelian groups G, and Ga, an extension of G2
by G is a group G together with an exact sequence

0 Gy, —=G —G1— 0.

Equivalence classes of extensions of G2 by G1 determine an abelian
group, denoted by

Ext(Gy, G2).
If G, and G- are direct sums, Gy = 3., G}, Ga= 3, G%, then there

is an isomorphism
Ext(G1, G2) = ) BExt(G},GY).
tJ
For any abelian group G, we have that
Ext(Z, G) = 0.
We also have the following:
Ext(Z, Z) 2 Ext(Z, Zn} = 0,
Ext(Zm, Z) = Zuny,  EXC(Ziny Zn) 2 Ziyrony-

Sometimes we write Ext' (G1,G5)in place of Ext(G1, G2), and in this
case we set ExtO(Gl, G2) = Hom(G, G2).

Note that these properties completely determine Ext(G, Go) for

two finitely generated abelian groups (G; and Go.
We list the similar relations using R:

ROZEZIRER, R® Zpy = Zy @ R =0,
Hom(R,Z) = 0,Hom(Z,R) = R, Hom(R, Z,) = 0, Hom(Z, R) = 0,
Tor(R, Z) = Tor{Z, R) = 0, Tor(R, Z,,) = Tor(Z».R) = 0,
Ext(Z,R) = 0, Ext(Z,,,R) = 0.

Note that all these groups are regarded as Z-modules.
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7.2. The Kiinneth formula

We will now state a formuia to compute the (co)homology groups
of the product spaces X x Y of topological spaces X and Y given their

respective (co)homology groups

A ~clasidoadad 4n A ~F A1l Amninlae  Fs a4
Yy & caiciuaieqa wne J.J.U]JJ.UJ.US_)/ SJ.ULI.PD Ol 4 CéiL CO PJ.UA ol its

chain complex (Theorem 5.7). We can regard the tensor product of
the respective chains of X and Y naturally as a chain on X x Y,
which induces a homomorphism

x  Hy(X;ZY® H(Y;Z) - Hy1 (X xY; Z).
Similarly we get the induced homomorphism
x : HP(X;Z)® HI(Y:Z) = HP" (X x Y, Z).

We say that these maps are induced by the cross product.
We have a very strong result in the following theorems, which
imply that the map induced by the cross product is injective.

Tueorem 7.1 (the homology Kiinneth formula).

H. (X x Y:7) = Z H,(X:7)

® Ho(Y:Z)® ) Tor (Hy(X;Z), Hy(Y: Z))

ptg—n-1

TueoreM 7.2 (the cohomology Kiinneth formula).

H(X xY;Z)% Y HY(X;Z
p+g=n
QHUY;Z)® ) Tor (HY(X;Z), HY(Y;Z))

ptg=n+l

7.3. Cup products

We define: in this section, a cup product which gives a prod-
uct structure to cohomology groups. For a topological space X the
diggonal map

A X > X xX,

gendine r € X 1o (‘r 'r'\ X v X 1ig contnuon

ST LAl y B O A coniinuou

th
D
o}
(@]
(4]
r
(4]
(@]
:

tion of the cross product and the induced map A7,

HY(X; @) x HUX: 6 -5 H (X xX; G =5 HPH(X; o),
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defines a homomorphism
u: H?(X;G)x HY(X;G) = H(X;G).
For ae HP(X; &) and b € HY(X; G), we define their cup product aUb
by
aub=~A"(axb e H"TI(X; G).

The definition implies that the structure induced on a cohomology
theory by the cup product is homotopy invariant. The cup prod-
ucts satisfy the following properties (which follow naturally from the

properties of tensor products together with the trick of regarding the
tensor product of chains as a chain):

Forac HP(X; ), be HI(X;G), c € H'(X; G),
(aUD)Uc=aU{bUc), aUb=(—1PbUa);

Foramap f: X — Y, f*(aUb)= f*(a)U f*(b).

The cohomology group H*(X;G) = Zp H?(X; @) thus equipped
with a product structure has become a ring, and f*is a product—
preserving homomorphism (ring homomorphism).

exaveie 7.3, The topological space $2 V §* which is the quo-

tient space of §2 U §* under the identification of one point on §2 with
another on §¢ has the integral cohomology

{Za .7 =0, 2,4,

HI(S*v §4.Z
( 2) 0, otherwise.

174

Hence one can show that the cup product homomorphism
u: H*(S%v 8% Z)x H*(S*v 8%, Z) - H(S* v §*, Z)

is the zero map (cf. Exercise 7.4 with its hint).
On the other hand, although the complex projective plane P?(C)
has the same integral cohomology
Z, j=0,24,
0, otherwise,

HI(PY(C),Z) = {

nraodiet

u : H*(P*C),Z)x H*(P*C);Z) — H*(P*(C;Z)
satisfies U(1, D =1ifwelookatU asU :ZxZ — 7.

:
:
w3
s
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The above example shows that the cup product observes topo-
logical spaces in finer detail than cohomology does; nevertheless, the
geometric implication of the cup product is in general hard to grasp.
Cup products of manifolds are closely related to intersection theory.

7.4. The universal coefficient theorem

We compute homology groups over a general group [rom the
corresponding integral homology groups, and we obtain cohomology
groups over a general group from the integral homology or integral
cohomology groups. We list four formulae known as the universal
coefficient theorem.

ruzorem 7.4, We can calculate homology over a general coeffi-
cient group G by using the corresponding integral homology and the
torsion product:

H,(X;G) =H,(X;Z)®G & Tor(H,_1(X; Z), G).

Taeorem 7.9, We can calculate cohomology over a general co-

efficient group G using the corresponding integral homology and the
extension product:

H"(X:; G ¥ Hom(H,(X;Z),6 & Ext(H,_1(X; Z), G).

azorem 7.6, We can also compute cohomology over a general
coefficient group G from the integral cohomology and the torsion prod-
uct:
HM"X;® = HY(X;Z)®G & Tor(H" (X, Z), G

Tueorem 7.7. We can calculate homology over a general coeffi-
cient group G from the integral cohomology and the extension product:

H,(X; @) ZHom(H"(X;Z),G) & Ext(H" (X Z), G).

Summary

7.1 For abelian groups 1 and G2, one defines G1 ® G2, Hom (G4, G=2),
Tor(G, Gs) and Ext{G, G2).

7.2 One defines the cross product by identifying the tensor products
of the respective (co)homology groups of two topological spaces with
the (co)homology groups of the product space.

7.3 The cross product homomorphism is injective, and the (co)homo-
logy groups of a product space fall out from the Kilinneth formula.
7.4 With the structure of a cup product, cohomology groups become
rings.




VIPDATOING
Fo N L W L0 K ) L

cn
=~J

7.5 One computes (co)homology groups over a general coefficient
group using the integral (co)homology groups together with the uni-
versal coefficient theorem.

maciulisop

7.1 Use the integral homology of the real projective plane,
Hy(P*(R),Z) = 7. Hi(P*(R); Z) & Zo, Ho(P*(R): Z) = 0,

to compute the homology group H, (P*(R) x P*(IR); Z) of the product
space P”(R) x P%(R).
7.2 Determine the integral cohomology groups of the real projective
plane P*(R) using the results on the corresponding homology groups.
7.3 Compute the integral cohomology groups of the product space
PQ(R) x P(R).
7.4 Show that the map

u: HY(S%v §*Z)x HY(S*V §%Z) - HY(S* v §4 Z)
is trivial (Hint: consider an onto map F : §2 V §¢ — §? which
collapses S* to a point).
7.5 Compute the homology groups of the real projective plane P*(R)
over Z, using its integral homology groups.
7.6 Derive the cohomology groups of the real projective plane P
over 7, from its integral homology groups.

(&)

(®)



CHAPTER 8

Fiber Bundles and Vector Bundles

In order to investigate a curve on the plane we take its derivative
at each point. We get a rough idea of the shape of the curve from the
distribiition of the signs of the derivatives. Similarly, if we look at the
tangent plane at each point of a surface and observe how these planes
change as we move the points, we get some global information about
the surface. We can do the same for geometrical objects in higher—
dimensional spaces; therefore, in investigating a higher-dimensional
smooth geometrical object (differentiable manifold, to be precise) we
must consider the linear space tangent to it at each of its points. This
leads us to tangent bundles of manifolds, general vector bundles and
fiber bundles, and to their firm establishment as powerful tools for
the exploration of manifolds. Meanwhile physicists too established
gauge theories, while building field theories for elementary particle
physics; this turns out to be essentially equivalent to the concept of
fiber bundles.

In this chapter we discuss fiber bundles and vector bundles, and
then we define Grassmann manifolds, which have absolute control
over the equivalence classes of vector bundles, and investigate their
roles.

8.1. Fiber bundles

Let S!' be the unit circle and D! = [-1, 1] the unit interval. We
first consider the product space E = S! x ! Evidently there exists
a natural projection 7 : E — S!such that 7 (/)= U x D! holds
for any open interval [/ in S' (Figure 8.1).

Next we look at the Mobius band A7. In this example, too, the
center of the band is a circle S! and there is a projection 7 from Af
to S'. We see that 7~ 1 (U) = U x D! for any open interval [J of §!
(Figure 8.2).

69
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SlxDl

e

FIGURE 8.1. §' x D!

N (/ |
|=
st C | \ : D

FIGURE 8.2. The Mobius strip

Keep the above examples in mind for the definition of a fiber

bundle. Suppose we have topological spacesE, B and F, and a map
m: E — B such that for each b € B, 7~ '(b) is homeomorphic to
F and there is a neighborhood U of b with a homeomorphism % :

ﬂ'il(rur) — (-U x F malﬂng the fOHOWlﬂg dlagram commute, where
1: U x F = U is the projection of I/ onto the first component:
_ h
WOy->Uux F

™ P
U
Then we say that the ““dl 1ple ‘E m, B, F) 1 bv.;wn’le with

that the u fiber
the total space E, the base space B, the fiber F and projection

We also denote this fiber bundle by
F—-E5S B.

We say that the homeomorphism A between 71 (U} and Ux F is a
local trivialization. We say that 7~ 1(b) is the fiber over b.
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Remark. If you have read other books on the subject, you might
be concerned with the structural group. Our structural group in this
book is always the group of self-homeomorphisms Homeo( F).

ExamprLe 8.1. The product space E = B x F is the simplest
fiber bundle; it is called a trivial bundle (over B).
Exavpie 8.2. Let G be a Lie group, and let H ¢ G and K ¢ H
be closed subgroups of G. Then we have a fiber bundle
H/K - G/K = G/H.

In particular, consider G = SO(3), H = SO(2) and K = {¢/ (the
trivial group consisting of the unit element). Then we have a fiber
bundle

St = S0(2) = SO(3) — S* = S0(3)/S0(2),
with the fiber §! and the base space S2. More generally, if we take the

groups SO(n+1),80(n) and SO(n — 1) for G, H and K respectively,
we obtain a fiber bundle over the base space S™ with the fiber 5™ ':

w1 _ SO SOm 1) .. _ SOm + 1)
S =m0 _"50m-1"" = s0m) .

This is a fiber bundle known as the (unit) tangent sphere bundle.

Let G = SU(2), H = U(l) and K = {e}. With the natural
inclusion map U(1) — SU(2) we get a fiber bundle
U — SU2)= §* — SU(2)/U(1) = S~

The projection map w: SU(2) = §* - SU(2)/U(1)= §*is the so-
called Hopf map and induces a generator of 714(S?) 2 Z (cf. Example
3.5).

Now that we have defined fiber bundles, we can define bundle
maps between any two of them, and settle the question of bundle
equivalences.

DeriniTioN 8.3. Suppose that we have two fiber bundles (with
the same fiber), (E, 7, B, F) and (E’, n’, B’, F). Then a bundle map

f:(E =B F)~(E, B, F)
congists of a pair of maps

f-(f2), L:E—E, f:B—=B,
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subject to the condition that the diagram

E f] E;

ﬁl 7
1

B —— B’

f2

commutes (that is to say, fo 0 m= 7' o f1), and that for every b € B
the restriction of f; to the fiber 7~ '(b) over b,

from HB) = 7T (fa(0)),

is a homeomorphism.

Let (E, m, B, F) be afiber bundle and let A be an arbitrary topo-
logical space. For any map g : A — B we have the following natural
construction of a fiber bundle (D, p, A, I') over A and a bundle map
g=1(99) (D, pAF)—(E r B F)

C ONSTRUCTION. Put
D=f{a,e) €AxE gla)=r },
ple, €)= a,
gla, e = e

You will see immediately that ([, p, A, F) is a fiber bundle and
that (§, g) is a bundle map. We say that (D, p, A, F) is the induced
bundle or the pullback of (E, r, B, F) by the map g : A — B, and we
denote it by ¢*(E.,m,B,F) (or g*(§), where { = (E 7, B, F)).

exarrze 8.4, let g : A — B be a constant map. In this case for
any fiber bundle £ = (E, 7, B, F) over B, the induced bundle g*(J) is
the trivial bundle (over A).

The definition of fiber-bundle equivalences follows naturally from
the definition of bundle maps.

perznrrion 8.5. We say that two fiber bundles (E, 7, B, F) and
(E’, ' B’, F) over F are bundle equivalent if there exist bundle maps

f=(f,f): (E,m,B,F) - (E',«',B', F),
g=(g1, g2): (E', ", B F) - (E, =, B, F),
such that
grofi=udg, fiog =ide
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Notice that in the above definition, we have

gQOfgz ?:dB, fzoggz idBf,

and there are homeomorphisms between E and E’, and B and B’
respectively.

exavere 8.6. let f= (f1, f2): (E, 7, B, F) —(E, n', B, F)
be a bundle map of £ = (E, m, B, F)to £ = (E’, 7/, B, F). Then £ is
bundle equivalent to the induced bundle f5 (£).

exarze  8.7. This example may be a bit hard to understand.
For a trivial bundle ¢ = (E, 7, B, F') there are infinitely many bundle
equivalences of B x F inducing the identity map B — B (since we
can rotate the fibers). Physicists use a simple expression, “choosing a
gauge” , when they pick one fiber bundle which is bundle-equivalent
to the trivial bundle.

8.2. Vector bundles

Perhaps you are not yet familiar with manifolds, but they form
a family of topological spaces which share extremely beautiful prop-
erties, and you will find an abundance of literature concerning them
(see the References) everywhere you look. In the most pithy way, one
might, characterize a manifold as a topological space each point of
which has a neighborhood homeomorphic to some fixed n-dimensional
Euclidean space R". Vector bundles are linear approximations of
manifolds and are essential tools for the investigation of manifolds.
In order to study manifolds, we look at their tangent bundles, which
are easier to handle.

Tangent bundles form a special class among vector bundles, which
in turn form a special class among fiber bundles. So we first define
vector bundles. The underlying vector space is either real or complex,
and we will use the notation V" for either R" or C".

permnirion 8.8, By an n-dimensional vector bundle we mean a
map 7 :E --» B of topological spaces E and B such that for any b € B,
the inverse image 7~!(b) of & has the structure of the n-dimensional
vector space V" (that is, the addition and the scalar product are
defined on 7~ !(b) and satisfy the vector space axioms), having the
following property of locally triviality:

For each b € B, we can find a neighborhood U of 5 in B and a
homeomorphism

him MUY Ux V"
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such that for every b’ € U the assignment of z € 71 (¥') to h(V, ) is
an isomorphism of vector spaces n‘l(b’ yand V7.

S0 you see that an n-vector bundle is a fiber bundle whose fiber
is the n-dimensional vector space, and locally trivial maps preserve
the vector structure.

We often write (E, 7, B) for an n-vector bundle, since its fiber is
V™. The direct product £ = B x V" is the simplest vector bundle,
which we call a trivial vector bundle.

exaveze 8.9. E = B x R is a one-dimensional trivial real vector
bundle. The Mobius strip is a one-dimensional vector bundle whose
fiber is the real one-dimensional vector space.

You will some day come to see that the following is an example
of ultimate importance.

exavere 8.10. Let M be an n-dimensional differentiable man-
ifold. Then the space TM consisting of the tangent vectors of A
becomes, in a natural way, the total space of a real n-vector bundle
whose base space is M .

We can also define bundle maps and bundle isomorphisms for
vector bundles in a natural way.

R i PR - A
[

perrnirion  8.11. By a (vector) bundle map f between
dimensional vector bundles (E, 7, B) and (E’, 7', B) we mean a bun-
dle map f = (f1, f2) with the property that the restriction of fi to
each fiber 7~1(b), b € B,

_ ~1
fllﬂ'*l(b) c T 1(b) - (fg(b)),
is an isomorphism of vector spaces.
permnition  8.12, Vector bundles (E,7T, B) and (E’,ﬂ", B’) are

bundle isomorphic (isomorphic as vector bundles) when we can find
(vector) bundle maps

f=(f1, fo): (E, 7, B) = (E', =", B'),
g- (91, g2): (E', 7', B')— (E, 7, B)

0 n-

such that
giofi =idg, fiog =idg.

A Fuwoamentan  PromieM. For a fixed natural number n, how
many n-dimensional vector bundles with a given base space (of ocourse,
here we count isomorphic vector bundles as one) are there?
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Exavere 8.13. There are exactly two distinct one-dimensional
real vector bundles over S. These are the trivial bundle and the

AT Alhzaan lhaand (A8 Q OTY
VIV DLIUD Ddllu \Ul. O.41).

A Bir or Historr. There exist infinitely many four-dimensional
real vector bundles over the four-dimensional sphere. In 1957, .
Milnor showed that among these bundles there are some which are
not vector-bundle isomorphic despite the fact that their total spaces
are homeomorphic; and using this, he came up with several man-
ifolds that are homeomorphic but not diffeomorphic to the seven-
dimensional sphere $7. His discovery made a big splash in the math-
ematical community.

The fundamental problem above boils down to a question of clas-
sifying homotopy classes of maps from the base space to a Grassmann
manifold, where we utilize the remarkable result that characteristic
classes which are elements in some suitable cohomology groups can
detect differences among vector bundles. We will try to give a lucid
explanation of this result in the rest of this chapter (and beyond).

8.3. Grassmann manifolds

(a) DEFINITION or GRASSMANN MaNIForD. For natural num-
bers m and nwithm > n, wedefinethe Grassmann manifold G®(m, n)
to be the space of all n-dimensional linear subspaces of the real vector
space R™ of dimension m. Similarly we define the complex Grass-
mann manifold G® (m, n).

Can you visualize the space of the n-dimensional subspaces (each
point is an n-dimensional linear subspace)?

Exarie 8.14. et m = 2 and n = 1. A one-dimensional
subspace of the plane R? is a line through the origin with slope 6,
-c¢ < 6 < +00. The lines with slopes —oc and +oc respectively are
identical (the y-axis). Hence G®(2,1) is homeomorphic to the circle
which is the straight line (in#) with —oc and +o0 identified; that is,

GR(2,1) = S

Exaere 8.15. Let m = 3 and n = 1. Each line through the
origin in R? intersects the unit sphere 52 in two antipodal points, so
that the correspondence of a one-dimensional linear subspace to the
corresponding pair of antipodal points on 52 is one-to-one. Hence,
the Grassmann manifold GR(3, 1) is the quotient space of G% where the
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antipodal points are identified; in other words, it is the real projective
plane P2(R):
G*(3,1) = P*(R).
It is evident, further, that G%(3,2) is homeomorphic to G¥(3,1)
(consider the line intersecting orthogonally with a two-dimensional
linear subspace), and in general,

G*(m,n) = G¥(m, m - n).

We should mention further that G®(m,n)is an n x (m - n)-
dimensional manifold (i.e., GR(m, n) is a compact topological space
such that each of its points has some neighborhood homeomorphic
to R"*(m=n)) If you are familiar with the definition of the k-th
orthogonal group O(k), you will probably guess that

G¥(m,n) = O(m)/O(m n) x O(n)

So you see that Grassmann manifolds have many fascinating facets,
but in fact, beyond just being amusing, they dominate the universe
of the equivalence classes of all n-dimensional vector bundles over all
possible base spaces, with the limit lim GR(m, n) as their tsar. We
pursue this topic next. meee

(b) Canonicarn. BUNDLES OVER GRASSMANN Mantroins. We
look at the subset

E= {(X,x)EGR(m,n) me|x€X}

of the product space G® (m, n) x R™ . This is a topological space where
every point X (an n-linear subspace of R™)in GR(m, n) appears with
a train (homeomorphic to R”) of attendants (points of R™ belonging
to X). If we define n: E — GR(m, n) by #(X, z) = X it is obvious
that

v (G¥(m, n)) = (E, 7. G¥(m, n))

is an n-dimensional vector bundle over the base space G*(m, n) with
the total space E. We say that fy”(GR(m,n)) the canonical vector
bundle over the Grassmann manifold G%(m, n).

Exawre 8.16. The Grassmann manifold ~'(G®(2, 1)) is homeo-
morphic to the Mobius strip.

Exavere 8.17. It is a bit hard to visualize ~'(G®(3, 1)). You
might look at G® (m, n) in the following way:

G*(3,1) = PX(R) = (Mobius strip) U D,
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First you think of the one-dimensional vector bundle over the
circle ! whose total space is the Mobius strip (this can be a different
copy from the Mobius strip in the above decomposition). If you think
of the base space S! as the center circle of the Mobius band and
extend this bundle over the entire Mobius band, you have the trivial
one-dimensional vector bundle along its boundary edge (which is also
the boundary of [?). Now extend this bundle over all of D? The
resulting total space is F.

(c) GRASSMANN MANIFOLDS as CLASSIFYING SPACES. Since
we may think of n-dimensional subspaces of R™ as those of R™T! we
have the following inclusion sequence:

CRn+1,n) cG®*n+2,n)C---CcG¥n+N,n)C

We also have the inclusion sequence of the corresponding canonical

\'rl\n"'l\‘lﬂ L\ 'V\I].Il\{‘i
veCloT Dundaies:

v (GR(n + 1, n) ) Y (CR(n +2,2))
c " (GR(n+ N,n)) ¢

We have a very important theorem, whose proof we will only
outline.

Tueorem 8.18. Let X be a cell complex and let £ = (E,n, X)
be an arbitrary n-dimensional vector bundle. Then for a sufficiently
large number N (n fact, N > dim X +2), there exists a vector bundle
map from & to the canonical vector bundle 4"(G®(n + N, n)); thus, ¢
is an induced bundle of ~™.

OvmLme or Proor. 10 show that there exists a vector bundle
map from ¢ to the canonical bundle v*(G¥(n+ N, n)), we need a map
from E to R™*¥ such that the image of its restriction to each fiber is
always an n-dimensional linear subspace of R"*~. We can show that
such amap from E to R™"" exists if N is large enough. For instance,
for a trivial vector bundle ¢ = (E, 7, B) all you need is N = 0. O

Recall (Example 8.6) that if a vector bundle map of £ to * exists
then its pullback is equivalent to ¢. Denote by g = (g,g) a bundle
map of the above theorem. Then g : X — GR(n + N, n) and

E= 9" ("(GH(n+ N.n))),

So the gist of the theorem is that the bundle ¥" = v*(G®(n + N, n))
is more complicated than any other n-dimensional vector bundle §
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and hence that { isinduced from 7" (actually reduced from "), with
no exceptions.

We say that two vector bundle maps are bundle homotopic if
they change continuously from one to the other through vector bundle
maps. Under this circumstance, their induced maps of the base spaces
are homotopic (as ordinary maps).

The proof of the following theorem is analogous to that of Theo-
rem 8.18.

Tacorem 8.19. Let X be a cell complex and let ¢ = (E,m X)
be an n-dimensional vector bundle. Then for a large enough N (for
instance, N > dim +3), any two vector bundle maps from £ to the
canonical vector bundle ~*(G®(n+ N,n)) are bundleehomotopic.

Since an arbitrary map f : X — G®(n + N, n) induces a pullback
/4™ over X, as a corollary to Theorem 8.18 we get the following
result.

Tacorem  8.20. There is a one-to-one correspondence between
the set of all homotopy classes of maps from X to G®(n + N,n),
where N is at least dimX + 3, and the set of all isomorphism classes
of n-dimensional vector bundles over X (fwo bundles belong to the
same isomorphism class if they are vector-bundleeisomorphic).

exaweze 8.21. Take X = S! and consider the set of all (iso-
morphism classes of) one-dimensional vector bundles over S, which
consists of two points (the trivial vector bundle and the Mobius band,
cf. Example 8.13). On the other hand, GR(l + N, 1) is homeomorphic
to the N-dimensional real projective space PV (R). It is evident that
the set of homotopy classes of maps from S to PV (R) also consists
of two points (the homotopy class of a constant map and the homo-
topy class of a homeomorphism of S! to the oneedimensional real
projective line P1(R) = §! ¢ PNV(R)).

We denote by limuy_ o GR(n + N, n) any Grassmann manifold
G®(n + N, n) with a large N, and write

BO{n) = Jim G%(n + N, n).

Since there is a one-to-one correspondence between the set of all vec-
tor bundles over X and the set of all homotopy classes of X to BO(n),
we say that BO(n) is the classifying space for the n-dimensional real
vector bundles. Now we must refer you to some results concerning



Lie groups; that is, the Grassmann manifold G®(n+ N, n) has a rep-
resentation as a homogeneous space (quotient space of a Lie group by
its Lie subgroup) G*(n + N, n)= O(n + n)/0{n) x O(N). Hence we

can write

In a similar way, we can classify complex vector bundles using the
complex Grassmann manifold G‘C(n + N, n) and the classifying space

BU(n) = dm, U(n + N)/U(n) x UN)
= U(n + 00)/U(n) x U(c0).

The above argument has reduced the fundamental problem of
classifying the n-dimensional real (complex) vector bundles to that of
investigating the set of homotopy classes of maps into the classifying
space BO(n) (BU{(n)).

Have we simplified the problem? Now cohomology plays a useful
role. A map [ from X to BO(n) induces the cohomology homomor-
phism

f*: H* (BO(n); ®) - H*(X; ®)

for any coefficient group G. Recall that homotopic maps induce
the identical homomorphism. If a map is constant then its induced
homomorphism maps every element of H*(BO(n); G) to 0. But
a constant map corresponds to the trivial vector bundle, and so
if f*(¢) € H*(X;G) does not vanish for some non-zero element
¢ € H*{BO(n); G), then the corresponding pullback f*(+") over X
is guaranteed to be non-trivial.

For a non-zero ¢ € H*(BO(n); G), we say that f(c) € H*(X; Q)
is a characteristic class of the vector bundle [ (+") over X.

We can thus rephrase our problem: how many non-zero elements
are there in H*(BO(n);G)? In the next chapter we will investi-
gate the cohomology H*{BU(n);R) of the classifying space of n-
dimensional complex vector bundles while limiting ourselves to stat-

ing only the results for H*(BO(n); G).

Summary
8.1 A fiber bundle is locally a product, but not globally a product
in general.
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FiGURE 8.3. The Klein bottle

8.2 We say that a fiber bundle is a vector bundle if each of its fibers
has the structure of a vector space.

8.3 A Grassmann manifold consists of all subspaces of a certain
dimension in a vector space, over which we have the canonical vector
bundle.

8.4 There is a one-to-one correspondence between the set of all
isomorphism classes of vector bundles (of a fixed dimension, say n)
and the set of homotopy classes of maps into the classifying space
which is the lLimit of Grassmann manifolds G®(n+N, n) as N becomes

large.

Exercises

8.1 Define a homeomorphism r: S! — ! of the circle to be the
reflection along the plumb line dividing §' symmetrically right and
left. We define the Klein bottle (Figure 8.3) as the quotient space of
the product space 7 x S!, where 7 is the interval [O 1] identifying
the point {0} x z on {0} < S* with the point {1} x r(z) on {1} x S!

for every x € S, Show that the Klein bottle is the total space of a
certain fiber bundle.

8.2 Show that the complex Grassmann manifold G*(2, 1) is homeo-
morphic to the two-dimensional sphere S2.




CHAPTER 9

Spectral Sequences

We can compute homology groups of product spaces using the
Kiinneth formula that we discussed in an earlier chapter, but we can
do better. We now introduce the theory of spectral sequences, which
relate homology groups of the total spaces of fiber bundles to those of
the base spaces and fibers. This theory, at a glance, looks somewhat
complicated; however, once one masters its usages one will find it to
be quite an attractive and practical computational tool. Spectral se-
quences ensble us to show the existence of the Chern classes of vector
bundles which ocecupy an important space in current mathematics.

9.1. Exact couples and spectral sequences

By an exact couple we mean two abelian groups D and F, and
homomorphisms i :D = D, j: D — E and k : E — D between them
with the exact triangle:

D5 D
KN
E,

that is,

ker k =imj, at E,

keri = imk, at D,

kerj = imi, at D.

Given an exact couple as above, set
d=jk:E — E.
Then d satisfies
d* = dd = (jk)(jk) = j(kj)k = 0.

81
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From a given exact couple we derive a new exact couple

D.F i DJ’
KN
Eﬁ
as follows. Set
D’ =i(D) (= kerj) ¢ D,
E’ = H(E,d) (= kerd/imd),
and define

/D =D, j.:D =E, k.EBE D

by

i =i|p : D — D, restriction of i to D,

j'=gi ' D = iD) — ker(dj) — kerd/imd = E
that is, for i(z) € D’ we have d(j(z)) = (jk)j(z) = 0, and so j(z)
determines the homology class [j(z)] € H(E,d) =E’, where we set
7'(i(z)) =[j(z)] (the definition of ;' is good, since if we take z’ with
i(z') = i(x) € D, the fact keri = imk implies ' =z = k(y), and
j(@') = j(a) = jk(y) = d(y), and so we get [j{z)] = [j(z")]).

We define £’ by
k'ly) = k(y);

that is, for [y] € E, y € kerd, the fact jk(y) = d(y) = 0 implies
that k(y) € kerj = imi. Hence, k{y) € D', and so we can determine
k'ly] as an element of D (This k' is well-defined. Take [y’] = [y];
then from ¥y’ =y = d(z) we get k(y') —= k(y) = kd(2) = (kj)k(z) = 0.)
We have thus constructed the derived couple as shown in the above
diagram.

samere proiem 9.1. The derived couple gives an exact trian-

gle; that is,
keri =imk’, @
ker k' = imj,
ker j' =im 1.

sowrion. Take your time and enjoy.
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If we continue deriving a new exact couple out of the old, we will
arrive at the n-th derived couple

pr L pr
kn'\ /]n
En

in a natural way.

permnrrron 9.2. Let (D, E, 1, 7, k) be an exact couple and con-
sider the sequence of the derived exact couples (D", E™, ", 57, k™).
Set d" = 77k". Then d" : E" — E™ is an endomorphism of E™
(d"d" = 0). We say that the sequence (E" d"),n=1,2,.., n, is
the spectral sequence of'(D, E, 1,7, k) (E”'H = H(E”’ d”)). The spec-
tral sequence converges if for some integer k£ > 0, we have E™ = 0 for
every n > k. In this case ker " = E™ and im d" = 0; hence

Ek - Ek+l — Ek:JrQ - .

We denote by E™ these mutually identical abelian groups.

We need some new terminology.

perrnrrron 9.3, We say that an abelian group A is bigraded if it
has a direct sum representation

T8 3) DI
pEZ q£Z
The abelian group A is first quadrant bigraded if it has the expression

A=)Y Ay,

p:U q:O
We say that a homomorphism
FrA=3 3 Apa— A=) ) Apg
pEL €L pEZ gL

has bidegree (a, b) if for every p, g € 7 we have

f(AP,q) C Ap+a,q+b~

For the same A and A,,, as above, suppose we attach A,,, # 0 to
the lattice point (p, g), and suppose that A is first quadrant bigraded.
Then the dot to represent (p, g) in the plane always stays in the first
quadrant.
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A P-n,d+n—-1

d
Ap,q

0

Freore 9.1. Differential

DermvrTion 9.4. We say that a homomorphism d : A — A is a
differential when it satisfies

dd = 0.
Suppose a differential d : A=Y Y A, . —=A=> > 4,,
L L 5P VAV AR ot
pEZ qeZ peZ geL

has the bidegree (—n,n — 1). Put

A’i = Z Ap.qa

prq=t
d; = dlAi A — Ai—l-

Then we have the chain complex

dl 1 dl*
-—-)Ai+1—+1>Aid—> i_lw—iAi_g—-)---.
See Figure 9.1.
If we start out with a bigraded exact couple, we will end up with
a bigraded spectral sequence.

9.2, Spectral sequences of fiber bundles

In Chapter Seven we computed homology groups of a product
space B x F via the Kiinneth formula. Serre developed a method to
calculate the homology groups of the total space E of a fiber bundle
(E, 7, B, F) from those of B and F. In the latter case it is more
complicated than passing to the tensor products and so on. In fact
one looks at the limit F__ of a certain spectral sequence to obtain
some information about H.{E; G). To be more explicit, we can prove
the following Theorems 9.6 and 9.9.

Let B be a simply connected cell complex. For g = 0, 1,2, .., de-
note by B? the g-skeleton of B, which consists of all cells of dimension
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less than or equal to ¢g. Thus we have that
0 =B 'ecBcB'c..cpt=p b=dmB.

1

Putting
Fi= n"Y(BY) CE,

we get
0g=FE 'cE'cE'c... cE'=E.

We choose an abelian group G and set
Fpq =im (Hppo(EP; G) = Hyro(E; G)).

We can reduce the calculation of the n-th homology group of E
to its calculation over the n-cells of the base space B. Thus we can
prove the next proposition by an argument similar to the one we used
for Theorem 5.7.

propostrion 9.5. For any n, n = 0, 1,2,. ., we have

H,(E; G) = Fpo=im (H.(E™; G — Ho(E; G)

LR 2 ol

T_T 1aTATAY TIT, .If\,f\ T f\‘;l\ rh1.|f\N|~\
L Clldll  dUUEIUUPS.

0= F_ yn41¢ Fonevvve Fro1yc Fho= Hy (B G).

maeorem 9.6 (Serre’s homology spectral sequence). Let G be
an abelian oroup. Let (E,mw, B, F) be a fiber bundle, where B a simply
connected cell complex. Then we can define in a natural way an exact
couple which has the convergent spectral sequence (E™,d"} with the
following properties.

(1) E" = 2 EE;’Q (first quadrant bigraded), and d™ is a
p:O q=0
differential of bidegree (-n, n  1;d"(Ep )e £y iin_1-

(2) B2, = H, (B; Hy(F; G)).
3) EE.Cq = Fp-q/Fp—I.q+1

This is the Serre homology spectral sequence of the fiber bundle
(E,m, B, F) overQG.
We obtain the initial exact couple for the theorem as follows.

Consider the chain complexes Cy (E) , C. (EP) and C. (EP 1) of the cell
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complexes E, EP and EP~! respectively. They induce the homology
exact sequence that we can use to define the initial exact couple:

D} = LHypy(Co(B)/C(EP 1)) = Db = 3 2lyiq(CL(E)/C.(E77)

AN B ,/j ’
B = S C.(B7) (B

OeservaTion D0 you understand the implication of the theorem?
What the theorem says is the following. First we compute the Ez%,q
from the homologies of B and F. From this we keep taking homologies
(compute inductively Eg”q, E} .. .). Then the sequence converges to
E,, which is the quotient F}, ;/F,_1 4,1 of the adjacent groups in
the sequence 0 = F_ ,41¢ Fyne vve Fyo17¢c Frno= Ha(E; G)

of subgroups of H,(E).

TTr /™

For instance, £ = H(B; Hy(F; G)) is isomorphic to
H,(B; Z) ® Hy(F;G) © Tor (H,_1(B;Z), H,(F; Q)
by the universal coefficient theorem.

Exaveze 9.7. For a trivial bundle (E, n, B, F) = B x F, we have

d" =0forn >2 and so E* = F? =.. = E”, Moreover, we have
the equality
H,(B x F,Z)
= Y H(BIL)9H(FZ)& Y Tor(Hy(B;L), Hy(F;Z)),
ptg=n p+g=n-1

which is nothing but the Kiinneth formula.

permnrrzon 9.8. We say that a spectral sequence (£7,d") col-
lapses whend™ = 0, n > 2, and hence when

In §9.6 and beyond we will encounter some non-trivial collapsing
spectral sequences which will work a miracle in the computation of
cohomologies of classifying spaces.

In the above spectral sequence, we see that the points £ , on the
y-axis is a cyele for r > 0 (since d" sends Ej o to £7. ., which is
in the second quadrant and hence is zero). Hence a natural map

r r+1
EO.q - EO.q
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[+ 4]
=

Ficore 9.2

onto the homology classes exists. Furthermore, the fact ., ,,, =0
implies that E§S = Foq/F.1411 = Foq ¢ H,(E; G). By Theorem
9.6 (2) we have that E§ ,~ Hy(B; H,(F; Q)), but then the universal
coefficient theorem and the fact HO(B, Z) Z imply that E& ¢ o
F,(F; Q). Hence we have a natural map

H,(F; Q) 2 E} , — E5S, — H,(E; G
Similarly, the boundary of a point Er o on the x-axis comes from
the fourth quadrant and so it is zero (Flgure 9.2). Hence the cycles
and homology classes agree, and there is a natural one-to-one map
r+1 r
EG — Epg.
We also have a projection H,(FE) = F,o — EJ, because E;j =
Fyo/Fp-11. It follows from Theorem 9.6 (2) and the universal coef-

ficient theorem (Theorem 7.4) that E2 & H,(B;G). Therefore, we
have a natural map

Hy(E:® — ES% — E2 = Hy(B; G
The Serre spectral sequence is also useful in
TaeoreM 9.9, Let (E, w, B, F) be a fiber bundle whose base space
B is simply connected, and let i . F' — E be an embedding of F onto
some fixed fiber over a point of B. Then we can calculate the induced
maps 7. and i, from Serre’s spectral sequence; that is, in Serre’s
spectral sequence for (E,m, B, F) we have, for all n > 0, that
qj*=£ AF; Q) — H,(FE; G),
.= 7 H(E; G) — H,(B; G
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I

0 N

Freoee 9.3. Homology of P*(C)

Can we actually compute H,(E) using non-collapsing spectral
sequences? In the next section we apply this theorem to compute
some homology groups.

9.3. Applications of spectral sequences

It is easy to show that the complex projective space Pk(C) is the
base space of a fiber bundle whose total space is S**t! and whose
fiber is S'. Hence P*(C) is a 2k-dimensional cell complex (it is in
fact a manifold) with

H;(P*(C); Z)=0, j<Oand j> 2k

It is also easy to show that Pk((C) is simply connected for & > 1. We
stated earlier (Exercise 5.1) that the homology groups of the (2k+ 1)-
sphere $%**1 were

Hj(s?k-{-l;z) v {Z: .] = 07 2k + 1,

0, otherwise,

We wish to compute the homology groups H; (P*(C;Z) (> 0) using
the Serre spectral sequence of the fiber bundle (S**=!, 7, P*(C), §!)
over Z (cf. Figure 9.3).

Theorem 9.6 (2) says that EZ = H,(B; H,(F; Z)), so that

Ep,=0,q¢<0org>1, El,E, = Hy(BL).
Since E;’“,j;l = H(E} ,.d"), we have, for all n > 2,

E,=0,g<0 or g>1
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Look at the homomorphism d" : £}, — E,_,, 4n_1.If 7 > 2, then
we have ), = Oor B} ., =0, and so

d”:U;E;q%E;'_nq*_n_l, n> 2
Therefore, for all p and g we have
3 ~pd ~ ~
Epg = Bpg = 2 ES,

We have dQ(Egtl) (c Ej_;,) =0.Furthermore, the fact B2 , | = 0
implies that im(d”* : EZ,, |, — E2,)= 0 ¢ EZ . Hence we get

o o~ 3 A 2 : 2. 2 2
Ep,l - Ep-l - Ep,l/lm(d : EP+2,0 — Ep,l)’

v = By Zker(d”: By — Ey o).
On the other hand, we have K = SQk-H’ and so from the sequence
F()jj c'..c¢ Fj_l,l (54 F"O = Hj(82k+1;Z)

we get
£, =0, p+q#0, 2k+1.

Recalling Theorem 9.6 (3), which says that E°, = Fyo/Focigs1, we
conclude that

Egz, p+q#0, 2k+1;

hence it follow s that

E§.1 = im(d2 : E;%Jrz,o - Ez,l)a p # 2k,

p
ker(d? : E2 . — E? . Y=0 15 L9 +1
e 2 2,1/ =Y P FLR T 1,

From these two equalities we conclude that if p # 2k, then

& By 00 Hyeo(B; Z) — E2 = Hy(B; Z)

is an isomorphism. We now recall that 7 (B; Z) = 0, Ho(B; Z) = Z
and B = P*{C), to obtain

Z: j=0,2,.. 12k1

H,;(P*(C); Z)
i(PH(C); Z) {Or i odd.

We can compute the cohomology groups of P*(C) using the uni-
versal coefficient theorem.
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9.4. Cohomology spectral sequences

We obtained Serre’s homology spectral sequences from certain
exact couples of fiber bundless. In a like manner we derive cohomology
spectral sequences as follows. Recall that cohomology groups have
cup products, which will turn out to commute with the convergence
of cohomology spectral sequences. In this sense cohomology spectral
sequences are even more useful than homology sequences.

In working with cohomology we habitually use subindices for de-
rived couples (E,, Dy, in, jn, ko), where E_ and D, are bigraded.
Setting

FP9 = ker (HP"9(E;G) — HPY(EP™ 1, Q)
we get a sequence
HYE;G)=F" o p'm 1. . D Frhol=g
of abelian groups.

taeorem  9.10 (Serre’s cohomology spectral sequence). Let G be
an gbelian group, B a simply connected cell complex and (E, n, B, F)
a fiber bundle. Then we can define a natural exact couple which has

a convergent spectral sequence satisfying the following properties.

(D Ep =Yg 2ogeo EB (first quadrant bigraded), where d,, is
a differential d,(FP7) ¢ EEY"47"+1 of bidegree (n, -n + 1).

(2) ER 2 H? (B, HY(F; G).
(3) Epoxppa/prila-l,

(4) For every n > 1 there is a well-dejined product EP? ® Eg"q’
R E£+p',Q+q’

(5) dn(ab) = dn(a)b+ (—1)p+qadn(b)’ a € Eﬁ’q,b € ng‘qj'
(6) The product
qu (= HY(B, HI(F, G R Egi’q’ (E HP'(B’ Hq’)))
_ E§+P’,q+q" (f: HP+Pprime(B,Hq+q’(F; G)))

equals (—1)‘”” times the cup product of B, whose coefficient product
is the cup product of F.

(7) We derive the product for E, .y from the product for En, and
we derive the product for F, from the cup product for E.
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The spectral sequence in Theorem 9.10 is the Serre cohomology
spectral sequence of afiber bundle (E, 1, B, F) overG.

Note that tha hideoroa nf :’ iefn —m 11 which ie diffarant from
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the homology bidegree (~n,n = 1).
We can also compute the maps of cohomology groups,

i H'(E; G) -» H"(F; Q)
p: H'(B; G — H'(E; G),

______ o1m 1.~ o 0l 1
111uuu::u. Uy l;llt:t: peuuL lgl. I‘ ~ 1L QI UNE I1

7 : E — B of the total space E in the s
homology case.
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9.5. Cohomology groups of P*(C)

In §9.3 we calculated the homology groups of P”(C) from the ho-
mology spectral sequence over Z of a certain fiber bundle, and noted
that we can obtain its cohomology groups from the universal coeffi-
cient theorem. In this section, we want to take advantage of Serre’s
cohomology spectral sequence to compute the cohomology groups of
the projective space P’“((C) and investigate their cup-product struc-

ture.
Our situation here is just as it is with homology, and for p # 2k

the map
dy : EP' = H?(B; Z) — E5™° = H7+2 (B; 7))

is an isomorphism.

On the other hand, suppose that ¢) € EY Land ag € EY 9 cor-
respond under isomorphisms E5' & > H?(B; Z) and K% = Hp( B; 7).
For this oy € E7° @ HP(B; 7),1 € Ey' = HY(B; 7) = 7, satisfies

apu 1=a;€EP ~ HP(B; 7)

(it may be a bit tedious, but write down three copies of the spectral
sequence and consider the cup product).
Hence, by Theorem 9.10 (5) we have
dy(a1) = daagu 1) = do(ap) u 1 +(—1)"agu dz(1)
= (——1)pag u dQ(].),

where do(1) € H%(B; Z) = Z, as well as its multiple by -1, is a
generator of the group 7. Thus we have shown the following result.
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azoren 9.11. The cohomology groups of P*(C) over Z are

HI(P*C);Z) =< ’ T
(PH(€);Z) {0’ o

If u generates H*(P*(C); Z), then v/ = u U w U . . U u generates
H*(P*(C); Z).

9.6. Collapsing cohomology sequences

We see in the next proposition an example of non-trivial fiber
bundles with collapsing spectral sequences. We only investigate co-
homology which will be useful for us later.

By H°%(X:G) we mean the direct sum

H(X;G) =Y H*(X; @)
1=0
of odd-dimensional cohomology groups of X over G.

PrOPOSITION 9.12. Suppose that a fiber bundle (E, w, B, F) over
a simply connected base space B satisfies

HOdd(B; ]R) - HOdd(F; JR) = 0.
Then the spectral sequence of (E, w, B, F) over R collapses; that is,
d,=0:EPY Eptrg-r+l
; ; ;
for every r > 2.
PROOF. The universal coefficient theorem (Theorem 7.6) and the

facts that Tor{Z,R)=0and Z@ R =R 2 R Qg R imply that
Equ >~ [P (B: HU(F- R\~ HP(R. 7))@ HIF- R)

=~ HP(B: R) @z H(F;R).
Therefore, if either p or g is odd then E}'? = 0. Thus in this case
EP? =0 for r > 2. Moreover we get d, = 0 : EP? - EPrma 7+l

But atleastone of p, q, p +r, g—r + lis always odd, and so d,. = 0
holds whenever r > 2. a

We have one more proposition restricted to cohomology groups.

propositron 9.13. Suppose that a fiber bundle (E, n, B, F) over

a simply connected base space B has a collapsing cohomology spectral
sequence. Then for every natural number n the following statements

hold:




9.7. COHOMOLOGY OF CLASSIFYING SPACES 93

() i*: H™(E;G) — H" (F; Q) is a surjection;

(2) p*: H"(B;G) — H"(E; G) is an injection;

(3) H*(E;R) = H*(B;R) ®r H*(F;R).

proor. Just as in the homology case, the map " is equal to the
composition

H™(E; Gy = FO" o pon/pln-lx EOm o 9" > HY(F; G),
and the fact that I

surjective.
Furthermore, p* is equal to the composition

H™(B; G)= H* (B; H(F; G) = EF 5 EnY = F*0c HY(E; G),
but the fact that Eg"o — E™Y is an isomorphism implies that it is

injective.
By the universal coefficient theorem we see that

EY9= H? (B; HI(F;R)) = H*(B; R) @ H'(F; R);
hence (as we are working over R), it follows that

"(E;R) 2 Y ERS = Y HY(BiR)®r H(FiR).
pra=n p+q=n

9.7. Cohomology of classifying spaces
Let us calculate the cohomology groups of the classifying space
BU(n)= Nlim Un+ NY/Un)x UN) = Un + )/Un)x U(x)

of n-dimensional complex vector bundles over the real coefficientsR.
There is a natural identification of 7™ which is the product of n
copies of U(1) & S! as a subgroup of U(n); i.e.,

*¥0 ... 0
0 = ... 0

™ =1 . ] e Uln).
0 0 *

We have the fiber bundle
Un)/T" = U(n+ N)/T" x UN) - U(n + N)/U(n) x UN),
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and passing to the limit as N — o0 we get the fiber bundle
Un)/T" - BT" =U(n + 00)/T" x U(oc0)
— BU{n) = U(n + 00)/U(n) x U(0).
We use this bundle to compute the cohomology of BU(n).

exawere 9.14. In low dimensions we have the following:
U(1)/T'(= §'/S') = one point, U{(2)/T* = 52.
prosostrron  9.15. For any natural number n,
H°% (U(n)/T" : R) = 0.

proor. We prove the proposition by induction on n. By the
above example we know that the equality holds forn =1, 2. Suppose
that we have shown the equality up to n. We now prove the case for
n 4 1. Consider the fiber bundle

Un)/T" = Um) xT' /T — Un+1)/T™"" = U(n+1)/U(n) xT"
whose base space U{n+1)/U(n) x T is homeomorphic to the complex

projective space P"(C) through the identification U(n + 1)/U(n) =
S§2n+1l Hence we have

H (U(n +1)/U(n) x T R) = 0.

By the induction hypothesis we have

H (U(n)/T™ R) = 0.
Propositions 9.12 and 9.13 imply that the cohomology spectral se-
quence of this fiber bundle collapses, and the fact that

i1

TT n+1,mY
/4 1)

‘r'r;r‘.f T ]
H* (U(n+ 1

=~ H* (U(n)/T"; R) ®x H* (U(n+1)/U(n) x T"; R)

R

implies that
H*% (U(n + 1)/T™"; R) = 0.
a

The set R[x),x2,...,x,] of the real polynomials in n variables
T, Io,- . I,,1s an abelian group which has also a ring structure.

propostrion 9.16. We have the following group (actually ring)
isomorphism:

H*(BT™;R) = Rlzy, 23, . ,1,|, = € HX(BT™R).
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PrOOF. Indeed,
BT” = U(n + o0)/T" x U(c0)
=U(n(l+o0)) /T'xU(o0)x...x T x U(co)
= BT! x BT' x ... x BT,

Since BT' = P>®(C) = lim,_ o, P*(C), we get H*(BT';R) = Rz,
where z corresponds to a generator osz(BTl; JR). Hence,

H*(BT";R) @ Rlz| ®g - -- ®p R[z] 2 R[z1, 22,...,24]
U

PROPOSITION 9.17. The projection m : BT” — BU(n) induces a
cohomology homomorphism

m*: H*(BU(n);R) — H™(BT™;R) & R(z1, 22, ..., ]
which satisfies the following:
(1) m* is injective;

(2) im7* =R[oy, 09,. ., 0,), where 0, = 0i(x1,T2,.. . ,7,) is an
elementary symmetric function of degree i.

Proor. We prove (1) by noting that H°% (U(n)/T"; R) = 0 (this
is the conclusion of Proposition 9.15) and examining the basic prop-
erties of cohomology spectral sequences (Theorem 9.13 (2)).

Proof of (2): The group of permutations on n letters acts on 7" =
T! x..x T! by interchanging T'’s, which induces self homeomorph-
isms of the classifying space BT™. The set of the cohomology elements
invariant under these homeomorphisms is R[oy,09,...,a,]. Under
this action each permutation gets represented by an element of U(n)
and thus induces the identity map of the classifying space BU(n).
This shows that

im7" C Rlo1,09,...,al

We show the reverse inclusion by induction on n. Suppose that the
inclusion holds up to n = 1, so that R[oy,09,...,0, 1] C im7*. Let
o € Rloy, g9,. . , a]. We use the cohomology spectral sequence of
the fiber bundle

1

BUn=-1)=U(n=1+ c0)/U(n~ 1) xU{co)
— BU(n)= U(n + o0)/U(n) x U{x)
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to construct an element a € H*(BU(n);R) such that 7*(a) = o (cf.
Exercise 9.2). L]

Exaerz 9.18. For U(2)/7?= §? 5 BT? 5 BU(2), we have

H*(BT%R) = Rz, 23],
H* (BU(2);R) = R[o1,00), 01= 21 + 29, 02 = T173,
H* (U(2)/T2;R) & R[y]/yQ, i*(y) = 1 x3.
guestion. Show that
H*(BT*R) = H*(BU(2);R) @ H*(U(2)/T%R).

AAT A Anwmcra 4 n FAllacxrianes v oz 4 nnasnaas Finan Dasn o ds
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Teeorem  9.19. Forn > 1,
E*(BU(n);R) 2 Rler,c,...,¢,], ¢, € H¥(BU(n);R)).

To investigate the properties of the classifying space BU(n) for
complex vector bundles we often pass to BT! from BT” = BT! x
- x BT! via the injective map

" H* (BU(n); R) 2 R[zy, T2, - -, Zn].

This technmique, which has a wide variety of applications, is known as
the splitting method.

Dermvzrion . 9.20 (Chern classes). An n-complex vector bundle
¢ over a base space X has an expression as a pullback of the standard
vector bundle v over the classifying space BU(n) by amap f: X —
BU(n) (unique up to homotopies); that is, £ = f{r). By the j-th
Chern class of the vector bundle ¢ we mean the pullback f*(c;) €
H%(X;R) of the element c; in the 2j-th cohomology group of BU(n)
(by the homomorphism f*: H*(BU(n); R) » H*(X; R)). Itis a very
important class which detects the nontriviality of a vector bundle.

In general, cohomology elements of classifying spaces are called
characteristic classes. Chern classes are characteristic classes for com-
plex vector bundles.

We can also compute the cohomology groups of the classifying
space

BO(n) = lin O{n + N)/O(n)x ON) = O(n+ )/0(n) x Oc0)

of n-dimensional real vector bundles over R or Z,. The results are as
follows.
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Taeoren 9.21. For n > 1, we have the following:
H* (BO(n);R)= Rlp1,py,. . »Pmsz),  0s € HY (BO(n); R),
H* (BO(?I),ZQ) = Zg[wl, wo,..., wn], w, € H’ (BO(n); ZQ) .

Dermntion  9.22. (Pontrjagin and Stiefel-Whitney classes) Let
£ be a real n-dimensional vector bundle over a base space X. We
define the j-th Pontrjagin class of the vector bundle £ to be the pull-
back of the cohomology element p; € H* (BO(n); R) of the classifying
space BO(n), and the j-th Stiefel-Whitney class to be the pullback
of w; € H(BO(n); Z2) (p, and w, are as in Theorem 9.21).

Note that Pontrjagin classes and Stiefel-Whitney classes are char-
acteristic classes of real vector bundles.
When a manifold is smooth we have the tangent bundle over it.

Wa dAafine shamartamctes  olacang af a marifnld tn ha thacs af e tanoent
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bundles. These characteristic classes measure global curvatures of the
manifold.

Summary

9.1 For an exact couple, we construct its n-th derived couple from
its (n = 1)-st derived couple, n > 1 (when n = 1 think of the “0-th
derived couple” to be the starting exact couple). Each derived couple
is exact. These are the building blocks for a spectral sequence.

9.2 We can calculate the homology of the total space of a fiber bundle
from Serre’s spectral sequence.

9.3 We can actually experience the potency of Serre’s spectral se-
quence in computing the homology of the complex projective space
P*C).

9.4(W)e can also compute the cohomology groups of the total space
of a fiber bundle from Serre’s cohomology spectral sequence.

9.5 We can calculate that the cohomology ring of the classifying
space of the complex vector bundles is the same as the polynomial
ring of the Chern classes.

Exercises
9.1 Determine the integral homology groups of an n-sphere bundle
(E, 7,52, 8%) over the base space S” with fiber S2.

9.2 Consider the cohomology spectral sequence of a three-sphere
bundle U(2)/U(1) = S* — BU(1) = BU(2) over R. Show that
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ER® = E}® and ES*'Y = EJ*'". Using H*(BU(1);R)) = Rley),
c1 € H2(BU(1); R), show that dy : Ef” — EF**" is an injection for
P20

9.3 In Serre’s cohomology spectral sequence of (E, 7, B, Y ), show
that there exists a cohomology element ) € H’ "'](B : R) such that
the map ¥ : HP(B;R) — HP™/*T!(B;R) defined by ¥(u)= u U {,
u € HP (B, JR), induces the following exact sequence:

. o HPYI(E;R) - H?(B; R) 5 HPY*+!(B; R)
L*HPH“(E;R) —

This is the Gysin cohomology sequence of a sphere bundle.




A View from Current Mathematics

We will give an easy explanation of the geometric (combinatorial)
representation of characteristic classes as it stands today; at present
the problem is not yet solved completely.

Evier Nomeers. Denote by k, the number of j-dimensional cells
of an n-dimensional simplicial complex 8. We say that the alternating
sum
ko—ki+-..+(17ki+--. + (-1,

is the Euler number or the Fuler-Poincaré characteristic of the sim-
plicial complex §, and denote it by y or x(8). The surface of a reg-
ular tetrahedron is a two-dimensional simplicial complex, and from
4 =6+ 4 =21t follows that y(8) = 2. The surface of a cube is also
a two-dimensional simplicial complex, and since 8 - 12 + 6 = 2 we
again get x(8) = 2. In both cases the topological space |$| realized by
the simplicial complex § is homeomorphic to the two-sphere 5%. Now
do we conclude that Euler numbers are topological invariants (invari-
ant under homeomorphisms)? The answer is YES, and we can show
the even stronger result that they are homotopy invariants (invariant

under homotonv eaquivalences). using a simnle homologv arcument as
WAL VALVWIRY VR VGIVEARS,, WSy & SApat LDVANVVES fig il o8
follows.

Recall that for a simplicial complex § there is naturally defined
a certain chain complex {C, = C, (8; Z), 3} over Z, and that we have

exact sequences
0—Z,—Cy2 By — 0,
0 2B, —Z,—H,— 0,
linking the groups of cycles Z, = Z,(8; Z), the groups of boundaries
B, = B,(8; Z), and the g-th homology groups H, = H,(8; Z).
Recall also that a finitely generated abelian group G is isomorphic

to a direct sum of a certain number of copies of the cyclic group Z
and a certain number of finite cyclic groups Z,. We say that the

99
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number of copies of the infinite cyclic group 7 in the direct sum for
G is the rank of G, which we denote by rank G. From Z ® R @R
and Z, ® R = 0, we see that the rank of G is equal to the number of
R’s appearing in the direct sum decomposition G R=R D .. DR,
Hence for any exact sequence

0—-A—-B—-C-—0
of abelian groups we have
rank B =rank A + rank C.
For a chain complex C,, this reads
rank C, = rank Z, +rank B,_ 1,
rank Z, = rank Bg +rank Hg.

We multiply both sides of these two equations by (—1)? and sum from
g =1to g =n (= dim ) on each side to obtain the following

THEOREM 1 .

ZrankC (8;Z) = ZrankH (8;Z).
¢=0 g=0
Going back to the proof of the theorem, we see that if G is a field
(for example G is Z,,, with a prime number p), we get

I3
=) "dim H,(8; &.
g=0

Since each H, (S; Z} is homotopyyinvariant, it follows that the
Fuler number is also a homotopy invariant (a topological mvariant as
well),

Using alternating sums in place of usual sums of simplexes, we
established one form of invariance as above. In fact, contemporary
mathematics owes much to this simple trick. The Atiyah-Singer indez
theorem, one of the most important theorems in modern mathematics,
which states that the analytic index and the topological index are the
same, is a variation of the above theorem concerning Euler numbers.

Evier SpaceEs. Let S be an n-dimensional simplicial complex and
let 0% € Sbe a gq-simplex. Define the link complex of o in S by

T1./ O n {f — ~Cl — ., @ — @ —~ (1 A

LKo", D)= T€E€o|7T*0" Co, T1o" =V,
where 7 x %18 a simplex spanned by the vertices of 7 and the vertices
of 09 (Fig. 1). If Sis a standard triangulation of Euclidean space R",
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Lk(6,8)

3 g

\Mms)

Frevre 1. Link complex

then Lk(0?,8)is homeomorphic to §77P~! and so y(Lk(c9,8)) =
x(S"971) = 0 (mod2).

In general, we say that a simplicial complex Sis an Euler space
if every simplex o € S satisfies

x(Lk(o, 8) = O(mod?2).

Evidently, any triangulation of a smooth manifold is an Euler
space.

HoMoLOGY STIEFEL-WHITNEY Crasses. Denote by & the bary—
center of a simplicial complex S. We define a new simplicial complex
S which is more finely divided than S but still satisfies |§'| = |$].
This is done as follows. The zero simplexes consist of the barycenters
o of the simplexes . We insist that the psimplex spanned by &y,
01, ..., 0pisin S only if p + 1 simplexes g, 01, . .., op satisfy
op < 01 < +++ < g,. We say that § is the barycentric subdivision of
S. The barycentric subdivision of a triangle divides the triangle into
six subtriangles.

We define a q-chain s,(8) € C,(8'; Z) of the barycentric subdivi-
sion §' over 7, by

54(8) = Y Ua%, 1€Za

odc8’

TaeoreM 2. [f § is an Euler space, then 84(8) € Cq(Sl;Zz) is a
eycle.

€ Cy(8'; Zs), the coefficient of the

term (69, 51,...,6 8)) € Cy—1(8'; Zy) is given by
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Each of the first two terms (being the Euler number of a sphere) is
zero, and the third term is zero by the assumption that Sis an Euler
space. O

I hope you will check this theorem by looking at some simple
examples.

permnrzon 3. For the g-cycle s,(8) € Cy(8'; Zy,), we also denote
by s,(8) its homology class in H,(8; Z,). We call this element the g-th
homology Stiefel- Whitney class of the simplicial complex S.

exaweie 4. The number of zero-simplexes (vertices) of the bary-
centric subdivision S of a connected simplicial complex Sis equal to
the sum of the numbers of simplexes of each dimension. The even
number of vertices constitute the boundary of a one-chain mod 2. It
follows that
(50(8) mod2) = x(8) € Ho(8; Zs) & Zy.

exaverz 5. Triangulate the real projective plane P?(R) and
take its barycentric subdivision. Label these simplicial complexes by
p? (R) and T? respectively. Calculations according to the definition
give us the following:

so (P*(R)) = 1 € Hy (P*(R); Z3) & Zy;

s1 (P*(R)) = 1 € Hy (P*(R); Z) = Zy;

sy (PYR)) = 1 € Hy (P2(R); Zs) % Za,
so(T?) = 0 € HT? Zy) & Zy;
s1(T?) =0 € H(T% Zy) = Zy © To;

82(T2) =1 € HQ(T2; Z2) = ZQ.

We see in Figure 2 the barycentric subdivision of a triangulation of
T? and the two-chain of T2 whose boundary is the one-cycle s,(T?)¢€
7y (T?; Z2) = ker &, (Definition 5.21).

Recall that we calculated the cohomology of the classifying space
BO(n) = lim O(n + N)/O(n) x O(N)
of the real n-vector bundles over the coefficients Z, to be

H*(BO(n); Zo) = Zolwy, wa, .. . wy), w1 € HY(BO(n); Zy)).
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Fiere 2. Barycentric subdivision and two-chains
of the torus

Suppose that § is a triangulation of an n-dimensional smooth
manifold (that is, |§| = M). The pullback of w; by the classifying
map f: M — BO(n) of the tangent bundle of M,

wi(M) = f*(un) € H'(M : Zy),

defines a characteristic class of the manifold M called the i-th Stiefel-
Whitney class, which depends only on the homotopy type of M. We
mention that wy (M) = 0if and only if M is orientable.

For each manifold M there exists an isomorphism called the
Poincaré duality,

p: HY(M; Zs)— Hni(M; Zy), n=dimM.

Timorem 6. Let § be a triangulation of a smooth manifold M of
dimension n. Then the g-th homology Stiefel-Whitney class s4(8') €
H,(8'; Zy) is Poincard-dual to the (n  q)-th Stiefel- Whitney class
Wn—o(M) € H UM, Zy); that is, we have the equality

p(wn—q(M)) = 84(8').

Thus homology Stiefel-Whitney classes are homotopy-invariant
in the category of manifolds; however, we can construct any number
of Euler spaces which have the same homotopy type but have differ-
ent homology Stiefel-Whitney classes. Complex analytic spaces with
singularities are not manifolds, but they turn out to be Euler spaces,
whose triangulations are familiar,
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From the above discussion, we might conclude that the i-th ho-
mology Stiefel-Whitney class is a geometric representation of the

srhavantametis nlacg 20 f AN T a milar mannar wa pan alan daofine
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Euler classes as the pullbacks of cohomology elements of the classi-
fying space BSO(n) by the classifying map of the oriented tangent
bundles. We can regard the alternating sum of the number of sim-
plexes as a geometrical representation of Euler classes. So far nobody
has come up with any satisfactory geometric realization either for
Chern classes or for Pontrjagin classes. We expect a bright future
in developing these, as well as in a deeper study of Grassmannian
manifolds. We have already seen some progress in this direction, and
in fact we already have arich collection of its byproducts, such as the
discovery of the Chern-Simons invariant.




Appendix

This chapter offers a short list of basic definitions and results at
an introductory level, which will help the reader start our book.

Sets

We will not give a rigorous definition of sets. A set is a collec-
tion of items. The items in a set are its elements or members. We
often denote a set by a capital letter and list its elements by lower
case letters within braces. For instance, A = {a, b, ¢} represents a set
consisting of the elements a, b and c. Suppose P(x) is some state-
ment about z. Then we write {z| P(z)} to represent the set of all =
for which P(r)is valid. For instance Z. = {z| z is an even integer }
says that Z. is the set of the even integers; we can also write Z, =
{....-4,-2,0,2,4,... }.If x belongs to a set A, we write x € A. If
xisnotin A, we write x ¢ A.

DEFINITION 1. Let X be a set. A set Y is a subset of X (we
write Y C XorX DY)ifevery x € Ygatisfiles e X IFX C Y
and Y ¢ X we write X = Y and say that they are the same.

If Q(x) is some statement about z, then S = {x € X| Q(x)} reads
“S is the subset of X for which Q(x) is true”. If a set is empty we
call it the empty set (all empty sets are equal) and denote it by O.
We say that X is finite if it contains only finitely many elements.

When A is an infinite set we often use an index set A to label its el-

ements. Forinstance we can write {a. ). N instead of {a+.a-. g- .
b s VAAL LA WAAL VR OLWTJ EEN RAVSRANE l_“"l PMLY W3y L |

Here N is the set of the natural numbers. An indexing set is most

likely to appear when one defines a set whose elements are sets (in

this case we use the expression a family of sets).

DEFINITION 2, Let A and B be subsets of a set X (We often
ignore the set X and pretend A and B are just sets). We define the
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union A U B, the intersectionAn B and the Cartesian productA x B
of A and B by

AUB={zeX|z€ Aorz e B},

ANB={zeX|zrecAandz € B},
AxB={(z,y)|ze X,y B}.

Two sets A and B are disjoint whenANB = {,

Evidently the operations U and N satisfy the following properties
for any sets A, B and C.
(1) AuA=AnA=A,
(2) AU(BNC) = (AUB)N(AUC); AN(BUC) = (ANB)U(ANC).
(3) (AUB)JUC=AU(BUC); (AnB)nB = An(BnC) (associativity).

Because of the associativity property we can denote by 41 U Az U
- U A, the union of n sets A;. We write this more briefly as |, 4;,

i=1,2,...,n Similarly, {); A; denotes the intersection of n sets A;.

The Cartesian product x satisfies the associativity property: A x
(BxC)= (A xB) x C. It is also distributive over the union and the
intersection.

We can generalize these operations over a family of sets indexed
by a set A.

If B ¢ A then the complement A = Bof Bin A is defined by
x ¢ B}. Sometimes we just write -B.

perniTION 3. A map fﬁ'OIIl A to B, written as f T A - B, is
a subset f of A x B with the properties: (1) for each z € X there
isy € Y such that (z,y) € f; (@if (z,y) and (z,y’) are both in f,
theny =y’.

A map f: A — B is aninjection (we also say that f is one-to-one)
if f(z) = f(y) implies x = y. A map f: A — B is a surjection (f is
onto) if for every y € B there is z € A with f(z)=y. If f: A - B is
both injective and surjective we say that itisa bijection, or a bijective
map.

We have the identity map I4:A — A of A defined by I4(x) = x,
x € A. In particular, if A is a subset of B then we have the inclusion
(map)i: A — B defined by i(z) = x, x € A. The inclusion (map) i
is the identity map [, of A if we choose to ignore the set B.

By the inverse image of a subset B’ ¢« A by f we mean the subset
{zx €A fix) € B’ }. With an abuse of notation we indicate this set

by f—l(B).
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The composite of maps f: A — B and g: B — C is a map
gof:A — Cdefined by g o f(z) = g(f(x)) (check that this makes
sense).

If A’ is a subset of A, then the composite foi: A” = B of
i :A’ = A and f: A~ D is the restriction of f to A’. We denote this
restriction by f| 4.

permvirion 4. We say ~ is a binary relation on a set A if for any
two elements a and b (in this order) of A, a is related to b by ~ (we
write this as a ~ b} or a is not related to b by ~ (a » b). A binary
relation ~ in A is an equivalence relation if it satisfies the following
properties:

(1) a~ aforevery a € A (reflexivity).
a ~ bimplies b~ a for a, b € A (symmetry).

(2)
(3) a~b and b~ cimpliesa~cfora, b c €A (transitivity).

ERERR VSN YL whe) e T V- L%

Let ~ be an equivalence relation on A. For an element a € A
we denote by [u] the subset { z € A z ~ a}. Then we say that [u]
is the equivalence class of a with respect to ~ and that a (or any
element in [u]) is a representative of [ul. We denote by A/ ~ (read
“A modulo tilde”) the set of all equivalence classes of A with respect
to A and say that it is the quotient set of A (with respect to ~).
Each element of A/ ~ is some subset of A, and if [u] # [b] then
[a] N [b] = 0. M oreover the union of the equivalence classes of A is
equal to A. Note that the number of equivalence classes may not be
finite and in that case we must consider an infinite union. But we do
not go into a theoretical discussion of this nature. Let's say that we
only consider the circumstance where this type of union exists. We
define the projection 7 : A — A/- by n(x) = [z] (verify that this is
well-defined).

The set of integers modp, denoted by Z,, p a prime number, is
the quotient set of 7Z by the equivalence relation ~:a~b & a = p is
divisible by p.

Topological spaces and continuous maps

permnirion 5, Let X be a set. A topology in X is a family
U of subsets of X, which we call open sets, satisfying the following
properties:
(1) A union of elements of {{ is again an element of {{.
(2) A finite intersection of elements of |{ is again an element of {{.
(3) The empty set {) and X both belong to .



108 APPENDIX

In terms of open sets we can rephrase these properties:
(1) A union of open sets is an open set.
(2) A finite intersection of open sets is an open set.
(3) @ and X are both open sets.

We say that X is atopological space whenever X has some topol-
ogy |{ defined in it. We often write (X,U/) to indicate that X is a
topological space with topology U.

DEFINITION 6. In a topological space (X,U) a subset Y ¢ X is
closed in X if -Y is open; that is, if -Y € U/.

The closed sets of a topological space (X, U) satisfy the following
properties:
(I’) The intersection of closed sets is a closed set.
(2°) The union of finitely many closed set is a closed set.

F VYV o0mmd A gwnan hadhh aAlnond cndao
\OW ) AN adllu o di© PDULLLL VIUBCU dDTLD,

DEFINITION 7. Let (X,U) be a topological space and let r € X.
We say that U € U/ is a neighborhood of x if x€U.

Let {X,U) be a topological space. Let Y be a subset of X. Set
Uy ={UNY|UelU}.

Itis easy to check that U4y is a topology in Y, making Y a topological
space. We say that Uy is the relative topology on'Y with respect to U
and that (Y,lUy } is a fopological subspace (subspace, for short) of X.

permnrrron 8. Let X and Y be topological spaces. We say that
amap f: X — Y is continuous if the inverse image of an arbitrary
open set in Y is open in X.

Suppose X is a topological space and [ : X — Y is a surjection
(here Y is a set). Then

v={veY f7'(V)isanopen subsetof X}

defines the identification fopology or quotient topology on Y.

In particular, if ~ is an equivalence relation on a topological space
X, then the projection of X to X/~ is an onto map. So X/~ becomes
a topological space with the quotient topology with respect to ~. We
then say that X / ~ is the quotient space

aeorem 9. In the above setting f : X — Y is continuous.
Moreover, if we give Y another topology V' for which f is continuous,
then V' c V.,
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In other words, the quotient topology is the strongest (largest)
topology of Y such that f : X — Y is continuous.

Let (Y, V) be a topological space. Let f : X — Y be a map from a
set X to Y. Then the family { f~1(V) V €V} of subsets of X defines
atopology on X, called the topology induced by f : X— Y. Evidently
[ (X, U) = (Y, V) 1s continuous. Moreover, if f: (X, U) = (Y, V) is
continuous with respect to any other topology ' on X then U/ ¢ {’.
In other words, the topology on X induced by f:X - Y is the
weakest (smallest) topology on X making f continuous.

Let X; and X, be topological spaces and consider their set prod-
uct X; x Xy, Letm : Xy x Xy — Xi, i = 1,2, be the projections.

Then there is a smallest topology on X; x X; making both m; and 7
continuous. This topology is called the product topology (also called
the weak topology) on the product space X x X5 (the same name as
before, but notice that this time it has become a topological space).

This generalizes to the product of spaces indexed by an index set A.

Dermatzon 10. A topological space X is connected if it is not a
union of two open sefs.

A subset of a topological space is connected if it is connected as
a subspace (with respect to the relative topology).

Teeorem 11. A space X is connected if and only if the only
subspaces of X that are both open and closed are the empty set () and
X.

Groups

Suppose that a set G satisfies the following properties: To every
pair a, b of elements of G there corresponds a third element a - b, in
such a way that
(Da.(.c)= (a-b) c (associativity),

(2) there exists an element : in G such that a . . - . a for every
a € G (L is the identity element of G),

(3) to every element a € G, there corresponds a unique element a
such thata.a=a.a= . (every ain G has its inverse element g).

Then we say that G is agroup.

If G satisfiesa . b = b . a as well, we say that the G is qbelian or
commutative.

Question: what is purple and commutes? Answer: an ahbelian grape.

Exarie 12, Let 7 be the set of the integers with the usual
addition, +. Then (Z, +)1is an abelian group (we usually say an
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additive group). The identity element is O and the inverse of ¢ is -a,
of course. From now on Z implies this group structure.

On the other hand, Z with the usual multiplication fails to satisfy
property (3), and so it is not a group.

The quotient set G/ ~ of a group G with respect to an equiva-
lence relation ~ inherits the group structure of G: fa] [b] = [a . b].
One must show that this operation does not depend on the choice of
representatives (easy). We say that G/~ is the quotient group of G
with respect to ~.

A subset H of agroup G is asubgroup of Gif H is closed under
the group operation of G (ab € H for any a, b € H).

Let (G1, +) and (G2, +) be abelian groups. A map ¢ : G — G
is a (group) homomorphism if p(a + b) = ¢(a) + ¢(b) for all a, b in
(G; (the operation + on the left-hand side is for (1, and that on the
right-hand side is for G2).

For a homomorphism ¢ : G; — G2 we use the following notation:

kergp = {x € G, ¢(z) =0},
im¢ = {y € Gy | ¢{x) =y for some z € Gy }.

Then ker ¢ (read the kernel of ¢)is a subgroup of G, and im ¢ (read
the image of (G, under ¢, or simply the image ¢) is a subgroup of Gs.

The homomorphism ¢ : G; — G5 is a monomorphism if ker ¢ = ()
or equivalently if ¢ is one-to-one, and ¢ is an epimorphism if im ¢ =
(zy or equivalently if ¢ is onto. If ¢ is a monomorphism and an
epimorphism then it is an isomorphism.



Answers to Exercises

CHAPTER ONE

1.1, Show that both are homeomorphic to the letter L.

1.2. Let f : P — R be the identity map of P as the subspace of R.
Let g : R — P be the map which send the subspace P of R onto P
(as the identity map of P) and the leg of R to the joint of P. Then

ne f = aA_D_qunA an it 1¢ onnnich +ta chow that 'Fng_»PCP
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is homotopic to the identity map. We can construct a homotopy by
pulling a leg continuously out of the joint.

1.3. Extend the homeomorphism between /A and D to a homeomor-
phism from A onto R.

CHAPTER TWO

2.1. This quotient space is homeomorphic to the quotient space of
A = { (x,y) € I*|y < =} in which the points on each of the three
boundary segments are identified with respect to its center. The latter
space is homeomorphic to 52.

2.2. If one opens up the Mobius band along its latitudinal center
line one gets a band that is homeomorphic to 7 x S. By resewing
the cut we get the suggested attaching map.

2.3. We get a space homeomorphic to a square by opening up the
double torus along a suitable set of four loops joined at a single point.
Therefore, the double torus has a cell division consisting of one O-cell,
four l-cells and one 2-cell. More generally, the n-ple torus has a cell
division of one O-cell, 2r 1-cells and one 2-cell.

CHAPTER THREE

3.1. Given a map of (I’, 81"} into (S*, zy), we can choose a point
r, € §* and change the map by a small homotopy so that its image
misses z, (# xg) € §*. Now S — 1 is homeomorphic to the interior
of D¥. Follow the proof of m,(D*) =

3.2. Us.
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3.3. The group generated by a, 51, &3, B2 with the relation

—1.—1 —1 -1
041)81041 61 0‘2)62&2 /82 .

CHAPTER FOUR
4.1. For p#q, hO(SP v §9) = G, hP(SP VS G, h9(SP V S9) = G;
all others are 0. For p = ¢, h?(SP v S9) =G, WP(STV SY) 2 G @ G;
all others are 0.

CHAFPTER FIVE

5.1.
7 A= Y (7] a n
Z i=0n Z j=0
. n, g 3 ) 1 H Dn;Z g ] .
H;(5%2) iO, otherwise; i ) io, otherwise.

5.2. From the Mayer-Vietoris sequence for 7% = T, o? Us1 D? we get
the homology groups of Tg (the robot’s glove):

Ho(T2, Z) 27, H\(T:Z)2ZGZL, H(T5HZY=0, i>2
Further, we use the Mayer-Vietoris sequence for
My = TE Ugi T¢
to obtain
Ho(My; Z) = 7, Hy(Mo; 7) = Z* = ZOLOLDL, Ho(Ms; ) = L.

5.3. Divide M, into one O-cell, 2n 1-cells and one 2-cell. Then the
boundary operators are all zero maps. Therefore, we get

2n copies

e N—
Hy M Z) =27, HI(My,Z) 227" =76 - & L, Hy(M,;Z) = L.

CHAPTER SIX

6.1. HyT* Z)~Z H(T% Z)~7*= 2 & Z, H(T* Z) = L.
6.2. HO(P*R);Z) ¥ Z, H'(P*(R); Z) = 0, H*(P*(R); Z) & Zy.

7.1. Hy(P*(R) x PX(R);Z) ¥ Z, H,(P*(R) x P?(R); Z) =
Hy(P*(R) = P*(R); Z) = Lo, H3(P*(R) x P*(R); Z) & Zy,
Hy(P2(R) = P*(R); Z) -
7.2. HY(PYR); Z2) &
7.3. H'(PY(R)x P*(R);Z
H?(P*(R) =  P*R);

-
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74. f*: HYS? 7)=7 — H?(§*V §';Z) = Z is an isomorphism.
Hence, an arbitrary element q; of H2(5? v §%; Z) is of the form a; =
f*(a;), a; € H*(S2% Z). Since @) U a2 € H*(S% Z) = 0, it follows that
a1y Uag = f*(ﬁ,l) U f*(&g) = f*(fll Uas) =0.

7.5. Hy(P*(R);Zy) = Zo, Hi(PA(R)iZy) = Zp, Ha(P*(R);Zp) =
L.

7.6. H'(P*(R); Zg) ¥ Zy, HY(P*(R);Zy) & Zy, H*(P*(R); Zy) =
Z?a HZ(PQ;ZQ) = Z2-

CHAPTER EIGHT

8.1. The natural projection 7: I x S! — I becomes the projection

of the Klein bottle onto S!. The local triviality is obvious, and we

have the fiber bundle over S!' with the fiber S! whose total space is

the Klein bottle.

8.2. There is a one-to-one correspondence between the real Grass-

mannian manifold GF and S! (the real numbers R plus the point
at infinity). Similarly, each complex line through the origin in the
complex plane has the slope that corresponds to a complex number
(including the point infinity). The space C of complex numbers plus
the point oo is §2.

CHAPTER NINE
9.1. The spectral sequence collapses and we have

Ho(E; Z) = Z, Ho(E; Z) ¥ 7.8 7, Hy(E: 7) 2 7.

All others are zero.
9.2. See the discussion in §9.3.
9.3. Asin §9.3, we show that the sequence

*

. — HPTI(E; R) — Eg”djb E£+j+1’0 T HPHA(ER) — -+ -
is exact. We can do this by setting 3= d,,,1(1), 1 € H*(B;R) ~ R,
to show that U(u)= (—1)Pd;;1(u)jusasin§9.5, and then by sliding

the sign factor one term over.
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convergent spectral sequence, 83
cup product, 65
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genus, 13
Gysin cohomology sequence, 98

homeomorphic, 2
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homotopy invariance, 31
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