398 Appendix

leading to the tetrahedron, octahedron, icosahedron, cube, dodecahedron, respectively.

The trivial solutions are

$$d=2$$
, $c=2$, b arbitrary

(corresponding to the double b-gon), and b=2, d=2c (corresponding to an orange peeled in d slices). (For a different argument see Weyl: Symmetry.)

Appendix 4. Hermite's Inequality and the Form E_8

In some sense it is very difficult of exhibit interesting examples of regular symmetric bilinear forms: Over fields all forms can be written down in a trivial manner, namely in diagonal form. On the other hand, it is usually difficult to find (indecomposable) regular forms over rings. The most famous individual form is certainly the form E_8 over \mathbb{Z} which we want to describe now. To do this we will need Hermite's inequality, a basic tool in the theory of integral quadratic forms.

Theorem (Hermite). Let L be a free **Z**-module of rank n and b: $L \times L \to \mathbb{R}$ a positive definite **Z**-bilinear symmetric form of determinant D. Then there exists a vector $0 + x \in L$ with

$$b(x,x) = q(x) \le (\frac{4}{3})^{\frac{n-1}{2}} \sqrt[n]{D}.$$

Proof (Compare 6.3.4): We extend b to $V=L\otimes_{\mathbb{Z}}\mathbb{R}$. The case n=1 being trivial we proceed by induction on n. Let $0 \neq e_1 \in L$ be a vector with $a=q(e_1)$ minimal. Consider the hyperplane $H=e_1^{\perp} \subset V$ and let

$$\pi: V \to H$$
, $\pi(x) = x - \frac{b(x, e_1)}{b(e_1, e_1)} e_1$

be the orthogonal projection. Let $e_1, e_2, ..., e_n$ be a basis of L. Then

$$L = \sum_{i=2}^{n} \pi(e_i) \mathbb{Z}$$

is a lattice in H. Let d be the determinant of b_L . The change of basis matrix from e_1, \ldots, e_n to $e_1, \pi(e_2), \ldots, \pi(e_n)$ is

$$\begin{pmatrix} 1 & \alpha_2 & \dots & \alpha_n \\ & \ddots & \ddots & \ddots \\ & & \ddots & \ddots & \ddots \\ & & & 1 \end{pmatrix}, \quad \alpha_i = -\frac{b(e_i, e_1)}{b(e_1, e_1)}.$$

Appendix 399

Therefore D=ad. For every $x' \in L'$ there exists an $x \in L$ such that $x=x' + te_1$. Adding a suitable integral multiple of e_1 to x we may assume $|t| \le \frac{1}{2}$. Choose $x' \in L'$ such that a' = q(x') is minimal. Then

$$q(x) = q(x_b' + t e_1) = q(x') + t^2 a.$$

Hence

$$a \leq q(x) \leq a' + \frac{1}{4}a, \quad a \leq \frac{4}{3}a'.$$

By induction hypothesis we have

$$a' \leq (\frac{4}{3})^{\frac{n-2}{2}} {}^{n-\frac{1}{2}} \sqrt{d}.$$

Combining this with $a \le \frac{4}{3}a'$ and D = ad we get the result.

Corollary. Let (L,b) be a regular positive definite bilinear space of rank ≤ 5 . Then

$$(L,b)\cong\langle 1,\ldots,1\rangle.$$

Proof: By Hermite's inequality, there is a vector $0 \neq x$ such that q(x) = 1. Thus

$$L = x \mathbb{Z} \perp L = \langle 1 \rangle \perp L$$

with L regular so that we can proceed with this argument. \square

Now we come to the form E_8 .

Theorem (Korkine-Zolotareff, Mordell). There exists over \mathbb{Z} an 8-dimensional positive definite regular symmetric bilinear form b which is even, that is, $b(x, x) \in 2\mathbb{Z}$ for all x. This form is uniquely determined up to isometry.

Proof: One checks that the form corresponding to the graph E_8 (see appendix 2) is such a form. This establishes the existence part of the theorem. To prove uniqueness we use Hermite's inequality. Since q(x) is even and

 $(\frac{4}{3})^{\frac{7}{2}} < 4$

there is a vector $w_1 \in L$ with $q(w_1) = 2$. Consider the sublattice

$$L := \{v \in L | b(v, w_1) \equiv 0 \pmod{2}\} = \mathbb{Z} w_1 \perp L_7.$$

Since [L:L]=2 it follows that $det(L_7,b)=2$. Applying Hermite's estimate to L_7 we get $(\frac{4}{2})^{\frac{6}{2}}\sqrt[7]{2}<4$

and find a vector $w_2 \in L_7$ with $q(w_2) = 2$. As above

$$L'' := \{v \in L_7 | b(v, w_2) \equiv 0 \pmod{2}\} = \mathbb{Z} w_2 \perp L_6,$$

400 Appendix

and $[L_7: L'] \le 2$ so that $\det(L_6, b) \le 4$. Using Hermite once again we find a vector $w_3 \in L_6$ with $q(w_3) = 2$. So we have found a subspace (2, 2, 2) of our lattice. Unfortunately, this process stops at this point.

So we consider $L/2L = \bar{L}$ with the symplectic form \bar{b} . The vectors $\overline{w_1}, \overline{w_2}, \overline{w_3}$ lie in a totally isotropic subspace $\bar{U} = \bar{U}^1$, $\bar{U} = U/2L$ of \bar{L} . Clearly $[L:U] = 2^4$ and $b(U, U) \subset 2\mathbb{Z}$ so that $(U, \frac{1}{2}b)$ is a regular bilinear space. We can split off the three lines generated by w_1, w_2, w_3

$$U = w_1 \mathbf{Z} \perp w_2 \mathbf{Z} \perp W_3 \mathbf{Z} \perp U_5$$

and find an orthogonal basis of U_5 by the above corollary. Thus

$$(U,\frac{1}{2}b)\cong\langle 1,\ldots,1\rangle.$$

Since $U \subset L \subset \frac{1}{2}U$, we see that (L,b) can be constructed in the following way: Start with the unit form

$$(\mathbb{Z}^8, \langle , \rangle) \qquad \langle x, y \rangle = \sum x_i y_i.$$

Then there exists a lattice M with $\mathbb{Z}^8 \subset M \subset (\frac{1}{2}\mathbb{Z})^8$ such that

$$(L,b)\cong (M,2\langle , \rangle).$$

It is easy to see that M is uniquely determined (corresponding to the even, selfdual extended [8, 4] - Hamming code). \square

Remark. Recall that we have shown in 5.4.2, that the dimension of an even positive definite regular bilinear form is always a multiple of 8.

The following approach to the form E_8 and related ones is due to H.-G. Quebbemann who also pointed out the above proof to me.

Let A be a $n \times n$ -matrix over $\mathbb{Z}[X]$ such that $E + A^t A$ has only even coefficients, that is

$$\frac{1}{2}(E+A^tA)\in M(n,\mathbb{Z}[X]).$$

We consider the symmetric matrix

$$B = \begin{pmatrix} 2E & A \\ A^t & \frac{1}{2}(A^tA + E) \end{pmatrix} = \begin{pmatrix} 2E & A \\ A^t & D \end{pmatrix}.$$

The following transformation shows that this matrix is positive-definite and unimodular

$$\begin{pmatrix} E & 0 \\ -\frac{1}{2}A^t & E \end{pmatrix} \begin{pmatrix} 2E & A \\ A^t & D \end{pmatrix} \begin{pmatrix} E & -\frac{1}{2}A \\ 0 & E \end{pmatrix} = \begin{pmatrix} 2E & 0 \\ 0 & \frac{1}{2}E \end{pmatrix}.$$

We now choose for A a so called conference matrix, that is $A^tA = (n-1)E$ with n even. If n=4k, we get

$$\begin{pmatrix} 2E & A \\ A^{i} & 2kE \end{pmatrix},$$

an even positive definite unimodular form. Taking for example

$$A = \begin{pmatrix} 0 & 1 & 1 & 1 \\ -1 & 0 & -1 & 1 \\ -1 & 1 & 0 & 1 \\ -1 & -1 & 1 & 0 \end{pmatrix}$$

we obtain necessarily the form E_8 .

We now come to a variation of this construction: Let C be again a conference matrix, which we assume (in fact, without loss of generality) to be symmetric or skew-symmetric. We now put

$$A = (1 - X) C + XE.$$

Then

$$E + A^{t} A = nE + (C^{t} + C - 2(n-1)E) + (nE - C^{t} - C)X^{2}$$

is an even matrix so that we can apply our construction. Thus $\langle B \rangle$ is a regular symmetric bilinear space over the polynomial ring $\mathbb{Z}[X]$.

If we now specialize X = 0, we get for n = 4k the even form

$$B(0) = \begin{pmatrix} 2E & C \\ C^t & \frac{1}{2}(C^tC + E) \end{pmatrix}.$$

If we specialize X = 1, we get the odd form

$$B(a) = \begin{pmatrix} 2E & E \\ E & E \end{pmatrix}$$

which is isometric to the diagonal unit form. In particular, B(0) and B(1) are not isometric but homotopic in an obvious sense. This applies in particular to E_8 and the unit form.