398 Appendix

jeading to the tetrahedron, octahedron, icosahedron, cube, dodecahed-

ron, respectively.
The trivial solutions are

d=2, ¢=2 b arbitrary

(corresponding to the double b-gon), and b=2, d=2c¢ (corresponding
to an orange peeled in d slices). (For a different argument see Weyl:
Symmetry.)

Appendix 4. Hermite’s Inequality and the Form E,

In some sense it is very difficult of exhibit interesting examples of
regular symmetric bilinear forms: Over fields all forms can be written
down in a trivial manner, namely in diagonal form. On the other
hand, it is usually difficult to find (indecomposable) regular forms over
rings. The most famous individual form is certainly the form Eg over
Z which we want to describe now. To do this we will need Hermite’s
inequality, a basic too] in the theory of integral quadratic forms.

Theorem (Hermite). Let L be a free E-module of rank n and b:
L x L-IR a positive definite E-bilinear symmetric form of determinant D.
Then there exists a vector 0 xeL with

n—1
b(x,x)=q(x)<) > }/D.

Proof (Compare 6.3.4): We extend b to V=L&®,R. The case n=1
being trivial we proceed by induction on n. Let O%e,€L be a vector
with a=g(e;) minimal. Consider the hyperplane H=e7 <V and let

——- b(x,e)
n.V-H rx)=x——1"¢
ble,e,) !

be the orthogonal projection. Let e, e,,...,¢, be a basis of L. Then
E=Y n(e)Z
i=2

is a lattice in H. Let d be the determinant of b,.. The change of basis
matrix from e, ...,e, to e, n{e,), ..., nle,) is

I ble,,e;)
" bley,ey)
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Therefore D=ad. For every x’eL there exists an xeL such that x=x’
+te,. Adding a suitable integral multiple of e, to x we may assume
[f| =1. Choose x'e L such that &' =g(x’) is minimal. Then

g(x)=gq(x,+te,)=q(x)+t*a.
Hence
azq(x)<a' +%a, asia.

By induction hypothesis we have

n-1
d=@) > Y

Combining this with a<%a’ and D=ad we get the result. [J

Corollary. Let (L,b) be a regular positive definite bilinear space of rank

=35, Then
(L,By=<1, ..., 1,

Proof: By Hermite’s inequality, there is a vector 0= x such that g(x)
=1. Thus
L=xZ1L={1>1L

with [ regular so that we can proceed with this argument. [
Now we come to the form Eq.

Theorem (Korkine-Zolotareff, Mordell). There exists over Z an 8-
dimensional positive definite regular symmetric bilinear form b which is
even, that is, b(x, x)e2Z for all x. This form is uniguely determined up to
isometry.

Proof: One checks that the form corresponding to the graph Eg (see
appendix 2) is such a form. This establishes the existence part of the
theorem. To prove uniqueness we use Hermite’s inequality. Since g(x)

is even and a
(<4

there is a vector w €L with g(w,)=2. Consider the sublattice
L:={vellb(v,w)=0(mod2)}=Zw, | L,.

Since [L:E£]=2 it follows that det(L,,b)=2. Applying Hermite’s es-

timate to L, we get (%)51/544

and find a vector w,eL, with g(w,;)=2. As above

L':={veL,|b(v,w,) =0(mod 2} =Z w, L L,,
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and [L;:L]<2 so that det(L,,b)<4. Using Hermite once again we
find a vector wyeL, with g{w;)=2. So we have found a subspace
€2,2,2) of our lattice. Unfortunately, this process stops at this point.
So we consider L/2L =L with the symplectic form 5. The vectors
w,,w,, W, lie in a totally isotropic subspace U=U*, U=U/2L of L.
Clearly [L:U]=2* and b(U,U)<2Z so that (U,1b) is a regular
bilinear space. We can split off the three lines generated by w,,w,, w,
U=W1 ZJ.WZ ZJ_%Z_J_Us
and find an orthogonal basis of Us by the above corollary, Thus
(U,tbhy=1,..., 1)
Since Uc L iU, we see that {L,b} can be constructed in the follow-
ing way: Start with the unit form
(28’<’>} <x)y>:zxiyi‘
Then there exists a lattice M with Z® < M < (3 Z)® such that
(L,bYy=(M,2<{, )
It is easy to see that M is uniquely determined (corresponding to {he
even, selfdual extended [8, 4] - Hamming code). [

Remark. Recall that we have shown in 5.4.2, that the dimension of an
even positive definite regular bilinear form is always a multiple of 8.

The following approach to the form E; and related ones is due to
H.-G. Quebbemann who also peinted out the above proof to me.

Let A be a nxn-matrix over Z[X] such that E4+ 4' 4 has only
even coefficients, that is

LE+ A" AyeM(n,Z[X]).

We consider the symmetric matrix

- B_(.?E A _(2E A)
“\a %{A‘A+E))_ A4 DI

The following transformation shows that this matrix is positive-de-
finite and unimodular

( E 0) 2E A)(E —14 (ZE 0

—-34' E (A‘ b/ \0 E ) 0 ‘E)'

We now choose for A a so called conference matrix, that is A*A=
(n —1)E with n even. If n=4k, we get

(ZE A )
A 2kE[]
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an even positive definite unimodular form. Taking for example

0 1 1 1
-1 0 -11
A=
-1 1 01
-t -1 10

we obtain necessarily the form Eg.

We now come to a variation of this construction: Let C be again a
conference matrix, which we assume (in fact, without loss of generali-
ty) to be symmetric or skew-symmetric. We now put

A=(1—X)C+XE.
Then
E+ A A=nE+(C'+C-2n—1)E)}+(nE-C'-C)X*

is an even matrix so that we can apply our construction. Thus {B) is
a regular symmetric bilinear space over the polynomial ring Z[ X}

If we now specialize X =0, we get for n=4k the even form
2E C )

B0=(o yccen

If we specialize X =1, we get the odd form

ro- (g )

which is isometric to the diagonal unit form. In particular, B{0) and
B(1) are not isometric but homotopic in an obvious sense. This applies in
particular to Eg and the unit form.



