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Transversality Theories at Dimension Four

Martin G. Scharlemann (Athens)*

In [4] Kirby and Siebenmann prove a relative version of the following theorem:

TOP Transversality Theorem. If f: M™— £° is a continuous map from a topo-
logical m-manifold M to an R® microbundle X ¢ — X then if m+4+4 m—s there
is an arbitrarily small homotopy of f to a function transverse to X <¢.

This paper will consider the case m—s=4, and prove relative versions of the
following three theorems:

Theorem A. If f: M™— ™% is a continuous map from a topological m-manifold
M to a TOP m—4 microbundle X = ¢ — X and H is a homology 3-sphere of Rohlin
invariant 1, then there is an arbitrarily small homotopy of f to a map f' such that

i) f'~Y(X) is a homology manifold;

ii) the link in f'~*(X) of each point s; at which f'~'(X) fails to be locally
Euclidean is homeomorphic to H ;

iii) f'|(M~— | s;) is TOP transverse to X ;

iv) any neighborhood of f'~'(X) contains a neighborhood Z such that the
inclusion f'~1(X)— Z is a proper homotopy equivalence, and the diagram

Z—f X)) —Lot-X

[

I

zZ—¢
is homotopy equivalent to an (m— 5)-spherical fiber space map.

Theorem B. Hypotheses and f' as in Theorem A. If the double suspension of H is
homeomorphic to S° then there is a microbundle [’ ~'(X)cv— f' ~'(X) contained
in M such that f’|v is a microbundle map.

Define a manifold to be almost smooth if it is smooth except at isolated points.

* Supported in part by National Science Foundation Grant MPS872-05055 A02




2 M.G. Scharlemann

Theorem C. Hypotheses as in A. If there is a closed almost parallelizable 4-manifold
of index 8, then there is an arbitrarily small homotopy of f to a map [’ such that f'
is TOP transverse to X and f'~'(X) is almost smooth.

The proof of the converse will also be sketched.

For the convenience of the reader familiar with [4], statements and proofs
here run parallel to those in [4] when this is possible.

The interior of a space X will be denoted X, the cone on X by ¢(X) and the
identity map on X by id,. In particular, é(X) denotes the open cone on X. A
homology m-manifold will mean a space homeomorphic to an m-dimensional
simplicial complex in which the link of any r-simplex has the integral homology
of Sm—r-1,

Since any microbundle contains a bundle [5], we will take & to be a bundle.
The statement f:v— ¢ is a microbundle map then implies that f imbeds each
fiber of a bundle contained in v into a corresponding fiber of . If v and & contain
bundies between which f induces a bundle map we say f contains a bundle map.
Clearly f contains a bundle map when the base space for v is compact.

The outline of the paper is as follows. §1: A preliminary construction which
reduces each theorem to a local problem. § 2: A local version of Theorem A. § 3:
A local version of Theorem B. § 4: A local version of Theorem C. § 5: The proofs
of Theorems A, B and C. § 6: Cancelling pairs of singularities. § 7: Concluding
remarks.

I am indebted to L. Siebenmann for suggested improvements.

1. 8-Transversality

In this section f is homotoped so that transversality holds everywhere except in
certain small cubes scattered about M.

Definition. Up to isotopy there is one smoothing of §* x R", n=2, not isotopic to
the standard smoothing [3]. We denote this structure by (S* x R"),,.

Let M™ be an m-dimensional manifold, (Y, X) a pair of metric spaces such that
X is closed in ¥, and X has an R™~* TOP normal microbundle & in Y. Let 6: M —
(0, ) and f: M — Y be continuous functions such that f|0M is TOP transverse
to X.

1.1. Definition. The function f is -transverse on an open set V of M to X< Y at
v if for a countable collection (B*x B'x B™~%),, i=1,2,3, ... of disjoint m-cells
there is a map g: ) (B* x B' x B"~?), > V which is a proper imbedding into int M

13
satisfying the conditions:
i) For each i there is a subset X, in X and a trivialization t: {|X,—»R™*
such that

1,fg: (B*x B' x B"~%),» R""*=R'x R"~*

is the product of a map f;: B* x B' > R" and the inclusion B™3<»R™" 5.
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ii) In a neighborhood of M-image (g): a) f is TOP transverse to X and b)
there is a smoothing of the manifold f~!(X) which extends to the smoothing
g(l) (B*~0)x BY,q.

iii) f;(B*x1)>0 and f,(B*x —1)<0.

iv) diam f(g(B* x B' x B"~%),)<max 6(g (B* x B' x B"~ %),). The set int(image
(g))= V will be called the singular neighborhood of the map f.

Remark. If closure (image(g)) is not contained in V, f may be é-transverse on V
considered as a manifold, yet not d-transverse on V' considered as an open set of
M, since it is required in the latter case that h be proper into M.

Let C and D be closed subsets of a TOP m-manifold M and U and V be open
neighborhoods of C and D respectively. Let ¢"~* be a normal TOP microbundle
to a closed subset X of a metric space Y.

1.2. 5-Transversality Theorem. Suppose f:M—Y, ¢:M —(0,) and 6: M —
(0, o0) are continuous functions and f is d-transverse to X on U at vo. If m=5
suppose IM < C.

Then there is an e-homotopy (i.e. a homotopy moving no point image more than
adistance ¢) f: M —Y,0=5t<1of fy=f fixing a neighborhood of CuM—-V)so
that f, is d-transverse to X near C U D at a microbundle v equal v, near C.

Proof of 1.2. The requirement that v=v, near C will not be stressed in the proof,
for v, near C can always be added to v at any stage in the argument.

We may assume without loss of generality that ¢ < 4.

The proof is trivial if m<4.

Casel. M=%, m=5, Y=E({)=X x R!.

Proof. The map g of 1.1 is a proper imbedding into M, so by including in C the
closure of any component of the singular neighborhood S of f which intersects C
and deleting from U any component of closure(S) which is disjoint from C we may
assume that closure(S) lies in C. Without loss of generality closure(S) may then
be deleted from M and we may assume that S=@, and take e¢=46.

The trivialization of v, given by f and the given smoothing of f~1(X)~ U
provide a smoothing for E(v,). Let N be a closed disk bundle contained in Vol
(f X)) Q).

There is an obstruction in H*(M, N; Z,) to extending the natural smooth
structure near N to all of M [3]. The dual in H“(M —N; Z,) to this obstruction
can be represented by a locally flat proper imbedding of L, a countable disjoint
union of circles and lines. Extend the smooth structure on N to a smoothing of all
of M — L. Choose also a smoothing of L and a smooth bundle structure on 5(L),
the normal bundle to L in M. The two induced smoothings on 5(L)— L are not
isotopic.

Since Lc M — N and N is a neighborhood of f ~(X)n C in M, f|L is trivially
DIFF transverse to X near C. Using the homotopy extension theorem ¢/3 homo-
tope f rel CU(M —V) so that f|L is DIFF transverse to X near Cu D. Choose
n(L) so small that for any fiber F of y(L), diam f(F)<eg/3.
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Let H:n(L)xI— X x R be a pinching homotopy from H,= f to H,= f-(pro-
jection): (L) - X. Perform the homotopy H near f ~*(X)n LN D and extend to
an ¢/3 homotopy of frel Cu(M—V). After the homotopy [ has the property
that near LN D, f~'(X)nn(L) consists of a properly imbedded countable collec-
tion F, of fibers of n(L). By transversaltity of f|L near Cu D, for each F, there is
an ¢>0 and a bi-collaring g;: F,x[—1, 1] - #(L) of F, such that the following
diagram commutes.

Fx[—1, 11— —n(
t

&i'p2

Choose ¢; so small that for x in F;, diam f (x x B') <¢/3. Then diam f (F, x B')<2¢/3.

If both n(L) and each ¢ have been chosen small enough the imbeddings g;
such that g,(F,x [— 1, 1])m(CuD +( define an imbedding g = U g U F;xB'—>
(neighborhood of Cu D) which is proper into M.

Let A: M— (0, o0) be a function such that on each g; (F x BY), 0<i<ey/2. In
the smooth manifold M — L, f is, by definition, DIFF transverse to X near C and
is trivially DIFF transverse to X near D n(n(L)—image(g)).

Let M’ be a smooth codimension zero submanifold of M — L such that M’
is closed in M and dM'<n(L)— L. Perform a min(4, ¢/3) homotopy of f|M’
rel (n(L)—image(g)) v Cu(M —V) so that f|M’ is DIFF transverse to X near
Cu D. Extend this homotopy to a min (4, ¢/3) homotopy of f on all of M rel (y(L)—
image(g))u CU(M —V). The resulting map, which we still denote f, clearly
satisfies near CuUD 1.1 ii). Property 1.1 iii) is satisfied since A<e¢ /2, and 1) is
trivially satisfied. Finally diam f'(g;(F; x B')) <¢, because before the last homotopy
the diameter was less than 2¢/3. This completes the proof of Case 1.

Case 2. OM =@, E(¢) contains X x R™~* as an open sub-microbundle, m> 5, and
f:vo—¢& contains a bundle map v, —» & near C.

Proof. As above we may assume S=, e=4. Choose a bundle trivialization
7: ¢ X x R"~*. By making the following substitutions: f+—7-f, Y— X x R™" %,
M —open neighborhood M’ of f~!(X) in (tf) '(X x R"~*) which near C
coincides with E(vy), V+—open neighborhood V' of f~'(X) in ¥~ M’ such that
closure (V') M’ (so that any imbedding into V' which is proper into M’ is also
proper into M), C— CnM’, D— Dn(tf)~'(X x B"*)nM’ we may assume that
Y=XxR" 4 C < E(vy) which has been given a smooth structure as in Case 1,
and near C, f:vy— X x R"~* is a DIFF bundle map.

¢/3 homotope f rel Cu(M —V) so that f is TOP transverse to X x R! near
CuD [4]. Apply Casel to f=f|f""(XxR!'. That is, ¢3 homotope
f rel CU(M —V) to make f &/3-transverse to X x 0c X x R! near D. Extend the
homotopy to an &/3 homotopy of f on all of M rel C u(M V).

Choose a tubular neighborhood

h: f~Y(XxR)xR"™ 5> M
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so that near C, h is a smooth tubular neighborhood in the smooth manifold E(vy)
and near C

Sfoh:fHX X RYXR™ % — (X xR')x R™*

is a smooth bundle map. After an ¢/3 pinching homotopy rel Cu(M — V) alter f
so that near DU C the map f - h is a TOP microbundle map.

Since f is &/3-transverse to X near CuD it follows easily that f satisfies 1.1 and
so is e-transverse to X.

Case 3. IM =4(.

Proof. Cover X with open sets X, a some index set, such that £ is trivial over each
X,. Choose a star-finite cover of M by coordinate charts R, j=1,2,... such
thateach RT < V,Dc U BT, and each set p(f(R})NE(E)) lies in some X, denoted X ;.

For each j let n; jbe the number of coordinate charts intersecting X; and
A;=(1/n;)- min (¢(2 B})).

Let Uy=U, f;=/f and suppose for j=0 there is an ¢ -homotopy f/, 0St<j
from f; to a map f;: M — Y é-transverse to X on an open subset U;=M at v;,
where U;=>C;=Cu(Bf'u---UB}) and &;: M —(0, ) is a continuous function
such that &}(x) < kz Ay

Zj
X in Ek"‘

NC; is compact, the microbundle map fj’: vil3 B;.”H—»é contains

Since 3B"

j+1
an open bunzile map v;— ¢ near C,.
Apply Case 2 with the substitutions M +— 3B}, , UV/|3B7

j+1°

C—C,n(3Br UV3BT, ), D—B,, V—2BT,,,
Y= (Y=E@QDVECEIX,, ), E—8X;, ., frfl, e,

Vi vi[3 I§;”+1 to obtain a homotopy f, fixed outside 21-03;."H ,jStZj+1toa map
which is o-transverse to X on an open subset U;,, > C; ;. This completes the
induction to stage j+ 1.

Finally define f,,0<t<1 to be the unique homotopy such that f,=//,_,,
0t

+1

Case 4. The general case.

Proof. By definition f is TOP transverse near M nC. By exploiting a collar of
éM and applying codimension 3 TOP transversality to f|0M we may assume
OM < C. Here property 1.1 i) is satisfied because 2M nf ~*(X) is a three manifold
and therefore has a smoothing (unique up to isotopy).

The proof is completed by applying Case 3 to int (M).

2. H-Transversality

As above, let M be an m-dimensional manifold, (¥, X) a pair of metric spaces such
that X is closed in ¥, and X has an R™ * TOP normal microbundle ¢ in Y. Let H
be a homology sphere of Rohlin invariant 1 (i.e. H bounds a smooth parallelizable
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manifold of index 8 mod 16). Let f: M — Y be a continuous function such that
f|oM is TOP transverse to X.

2.1. Definition. The function f is H-transverse to X < Y at a microbundle v if
i) f~1(X)is a homology 4-manifold;
ii) the singular (i.e. non-manifold) points {s;} of f~'(X) each have link in
f~Y(X) homeomorphic to H;
iii) fI(M—{] s;)is TOP transverse to X at v;

iv) any neighborhood of f~!(X) contains a neighborhood Z such that the
inclusion f ~'(X)— Z is a proper homotopy equivalence and the diagram

Z—f (X)L é-X

z ¢
is homotopy equivalent to an (m— 5)-spherical fiber map.
Let S(H) denote the suspension of H, and I? denote [0, 1] x [0, 1].

22. Lemma A. There is a map h: R*xR'—R' such that h(B*x1)>0,
h(B* x —1)<0, h is DIFF transverse to 0 near ((R* — B*) x R'), and h is H-transverse
to 0eR! with one singular point at 0 R* x R*. Furthermore each neighborhood Z
given by 2.1 iv) may be chosen so that near 6B* x B', h: Z— R' is a microbundle map.

Proof. Topological surgery provides a non-smoothable cobordism U from
3o(U)=S>xS' to 0,(U)=H x S' and a homotopy equivalence U — S x S' x 1.
There is no obstruction to assuming the map on ¢, (U) is the product of a homology
equivalence H— S* and Idg,. We may further assume the map is a diffeomorphism
on 0,(U) [13]. For details see [11].

Attach copies of S xI? to d,U and to S?>x S'x0 by means of a homeo-
morphism s: §' — dI? and thereby obtain spaces U’ and S* x I? together with a
homotopy equivalence g': U’ — §3 x 2.

Let g: 1> T?=5" x S' be the quotient map which identifies (¢, 0) with (z, 1)
and (0, t) with (1, ¢) for all ¢ in I.

Let Q be the manifold obtained from U’ by identifying points in 0U" which have
the same image under (id,) x (¢ s) and let ¢': U’ — Q be the resulting quotient map.
There is then a homotopy equivalence g defined by the following commutative
diagram:

U 55 $3x 1
1 !

q"l lids3 xq

Q0 =25 8*xT2

The map g is homotopic to a homeomorphism [14] which we continue to denote g.
Let L be the cover of q(01>)= T? in R?. Then in the universal cover Q of Q,

q'(0U") is covered by H x L. Let r: R — B? be the homeomorphism which sends

the polar coordinates (t, ) to (t/1+t,6) and let i: S* x R — §° be the imbedding

which is the composition of idg; x r and the quotient map S* x B> — 8% x §' =5°

which identifies S* x dB? to S".
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Since any homeomorphism g: Q — S* x R* covering g satisfies

lp,(x)—p, 8(x)|l <(constant)

for x in H x L= @, it follows that the closure of i §(H x (x-axis)) in ' x $>=5% is
homeomorphic to S(H). We label the suspension points () and (0) after their
angular coordinates in the suspension circle. Then S(H)—(0) is a properly im-
bedded copy of é(H) in S° —(0).

Similarly use ig(H x (y-axis)) to imbed another copy of S(H) in S* “perpen-
dicular” to the first. Label the two copies S, (H) and S (H) respectively.

Let b: H x R x B' - S x R? be a smooth bicollaring of

g(H x (x-axis))cg(H x L)
in S3 x R? chosen so that b(H x R* x B')= 83 x R! x(—n, n), for some integer n
sufficiently large, and so that b(H x {0} x B') is a bicollaring of g(H x {0}) in
g(H x (y-axis)). This may be done by covering an appropriate collar of g(H x s
in §3 x T2 Define f: S x R x[—n,n] — R! by

fbh,x,y)=y on b(HxR'xB")

f=+1 on (83 xR! x[—n,n])—int (image (b))

where the sign of +1 is chosen so as to make f continuous.
Define the map
fi(S3 xR x[—n,n])u(r)—> R' by
fizx, y)=f(zx /x|+1) for x=0
fi(z, x,9)=1(z,x,y) for x20
f(m)=0,
and notice that f is continuous.
Using Urysohn’s lemma extend f to a map of all of S°—(0) so that no points
outside ¢(H) are mapped to 0.
Let p: R*x R'— §°—(0) be a stereographic projection which carries 0 x R*
to the suspension circle via the map t+— €™, where w(t)=1—1t/(lt|+1).
A component of (S3x[—n,n])—b(H x R' x B") is a homology cobordism
from S®x R to HxR. An extension to all of the cobordism of the projection
(S® x R)u(H x R)— R, if made DIFF transverse to 0, would provide a smooth

index 0 parallelizable cobordism from S? to H, contradicting Rohlin’s theorem.
Hence the cobordism is not smoothable. Therefore the map

b:HxR'xB'<>S3xR!x(—n,n)

is not isotopic to a smooth imbedding. However, b is a homology equivalence, so
there is an extension of the natural smoothing of Hx R to S3x Rx(—n,n), an
extension which must be the exotic smoothing [3]. It follows that the map
fPl((R*—0)x R"),, is DIFF transverse to 0.

Since fp(0,1)>0 and fp(0, — 1)<O0 there is an ¢>0 such that the function

h:R*xR!'—>R!
given by h(x, y)=fp(ex, y) satisfies h(B* x 1)>0, h(B* x —1)<0.
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Clearly h satisfies i-iii) of 2.1. It remains to find appropriate neighborhoods
Z of ¢(H) satisfying iv).

S, (H) divides S* into two contractible components; let C be the closure of
that contalmng n. Let Z = Cuzb(H X [O oo)xBl) Altering p, if necessary, we
may assume that p~! C is contained in B*x B

Since C and the components D* and D~ of C—¢(H) are contractible, the
inclusions of ¢(H), D* uib(H x [0, c0)x (0, 1]) and D~ uib(H x [0, o) x [—1,0))
into C are proper homotopy equivalences. Hence the neighborhood p~'(Z,,)
is of the required type.

A family of neighborhoods {Z,,} can be defined similary, as follows: For any
rational g/re[0, 00) it is easy to construct an imbedding j: R— L={(x, y)|x or y
is an integer} = R? such that |g(p, i(x, 1)) +r|p,i i(x, 0)l|< 1. Then the composition
Hx R4, gx], —8?xR?—— 55 extends to an imbedding S, (H)
of S(H) in $° and, as g/r—0, S, (H)— S, (H).

It is left to the reader to supply details, construct correspondmg neighborhoods
{Z,,} of ¢(H) in $°—(0) and verify that {p~'(Z,,)} is a fundamental collection
of neighborhoods, thus completing the proof of 2 2

Remark. The neighborhoods {Z_,} constructed in 2.2 have the pleasant property
that each has boundary homeomorphic to ¢(H)x S°. We would like to prove a
similar result for the general situation: for f an H-transverse approximation to a
map f': M — Y, each neighborhood Z of f~'(X) defined in 2.1 may be chosen so
that 6Z is an (m— 5)-sphere bundle. Since there are R" bundles containing no
disk bundles, this assertion is too strong [1].

However, it is possible to show that if & contains a sphere bundle &, then the
neighborhoods Z may be chosen so that each has boundary homeomorphic to
(f1f~1(X)) *(§). The proof is long and will not be given here.

3. Creating a Microbundle Map

The assumption that the double suspension 2 H of a homology 3-sphere of non-
trivial Rohlin invariant is homeomorphic to S° implies that a large number of
non-PL manifolds are homology manifolds [12]. There is a transversality theory
in the category of homology manifolds [10]. It is therefore not surprising that,
under the assumption X2 H~S>, f~(X) of theorem A may be equipped with a
normal microbundle.

The necessary analogue to lemma A is

3.1. Lemma B. Suppose £* H~S>. Then the conclusion of 2.2 holds; moreover
each Z may be taken to be a normal microbundle to h=Y(X), and h: Z— R to be a
microbundle map.

Proof. The suspension circle in ? H has a neighborhood homeomorphic to
c(H)xS'. Thus if £2 H~S%, ¢(H)x S" is a manifold.

Let U be as in the proof of 2.2. Although the natural smoothing of U does
not extend through the interior of U, there is no obstruction to extending the
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natural smoothing of 8, U= H x §' to the interior of U. The induced smoothing
near 9, U=S>x §' will be exotic.

Attach c(H)x S! to U along H x §*=4, U. Since any h-cobordism of $* x S!
to itself is a product cobordism [13], it follows easily that the resulting manifold
is B*x S*.

Regarding B! as the universal cover of §!, the lift of this construction defines
a proper imbedding ¢ (H) x B! — B* x B' < R* x R! such that the natural smoothing
of Hx B! extends to (R*x B')—(c(H) x B") and is the exotic smoothing near
(R*— B*) x B!. Since the imbedding is proper, the projection map R* x (R'— B')
is a continuous extension of the projection ¢(H) x B'— B'; the union of these
maps is denoted ¢: R* x (R'— BY)u (c(H) x BY) - R'.

The projection c(H)x B'— B' is clearly DIFF transverse to 0 on H x B!
and is itself a normal microbundle map. By DIFF transversality applied to the
smooth manifold (R* x BY)—(c(H)x B'), ¢ may be extended to the required map
h: R*x R' > R!.

4. Rohlin’s Theorem and Transversality

Rohlin’s theorem states that if M is a PL or DIFF closed orientable 4-manifold
with w,(M)=0, then index(M)=0(mod 16). In PL and DIFF the hypotheses
on M are equivalent to the statement that M is almost parallelizable, but in TOP
the latter is a possibly stronger condition.

In [9] it is shown that for m>32 and {=R™ *, Kirby-Siebenmann trans-
versality is equivalent to the existence of a closed orientable 4-manifold with
w,(M)=0 and index(M)=38.

Theorem C will show that a somewhat stronger form of transversality, in
which the inverse image is almost smooth, is equivalent to the existence of an
almost parallelizable closed 4-manifold of index 8. For our purposes, therefore,
Rohlin’s theorem will be: Every PL closed almost parallelizable 4-manifold has
index a multiple of 16.

If there is a topological counterexample to Rohlin’s theorem, then the tri-
angulation conjecture is false for 4-manifolds. More important for our purposes,
the Hauptvermutung is false for S* xR :

4.1. Lemma. If Rohlin’s theorem is false in TOP, then there is a smooth structure
(83 x R),, on S*x R not concordant to the standard smoothing.

Proof. Let N be a topological counterexample to Rohlin’s theorem. Then N-
(point) is open and parallelizable, hence smoothable [7]. The induced smoothing
on a neighborhood, homeomorphicto S* x R, of the deleted point is exotic. Indeed,
were it concordant to the standard smoothing, this neighborhood would also
be the end of a smooth parallelizable manifold V of index 0 [8]. The union of
N-(point) and V along their common end would then be an index 8 smooth
almost parallelizable manifold, contradicting Rohlin’s theorem.

4.2. Lemma C. If Rohlin’s theorem is false in TOP, the projection h: R* x R* - R
is DIFF transverse to 0 on [(R*—0)x R'],.
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Proof. Let (R*—0),, be the smooth structure given by Lemma 4.1. (R*—0), x R!
is not g-isotopic to the standard smoothing, for the resulting diffecomorphism
(R*—0), x R' > (R*—0)x R* would provide a concordance from (R*—0), to
R*—0. Thus (R*—0), x R'~[(R*—-0)x R'],, and the lemma follows.

5. Proof of Theorems A, B and C

This section contains full statements and proofs of the three main theorems.

Let C and D be closed subsets of a TOP m-manifold M and U and V be open
neighborhoods of C and D respectively. Let H be a homology 3-sphere of Rohlin
invariant 1. Let f: M > Y, &2 M —(0, o) be continuous functions.

5.1. Theorem A. Suppose f is H-transverse to X on U at vy. If m=35, suppose
oMcC. it ’

Then there is an e-homotopy f,: M — Y,0=t =<1, of f, =/ fixing a neighborhood
of CU(M—V) so that f; is H-transverse to X near C U D at a microbundle v equal
vy near C.

5.2. Theorem B. Suppose 2> H~S®, f is as in 5.1, and furthermore f~'(X) has a
normal microbundle neighborhood v, near C such that f|v, is a microbundle map.

Then the function f, of 5.1 may be chosen so that f~'(X) has a normal micro-
bundle v near CuD, v=v, near C, and f|v is a microbundle map.

5.3. Theorem C. Suppose f is TOP transverse to X on U at vy, and f~'(X) is
almost smooth. If m=15 suppose ¢M c C.

Then, if Rohlin’s theorem is false in TOP, there is an e-homotopy f,: M —Y,
0=t=Z1of f,=Ff fixing a neighborhood of C (M —V)so that f, is TOP transverse
to X near CuD at a microbundle v equal v, near C, and f~YX) is almost smooth.

Proof of 5.1, 5.2, 5.3. Clearly f is ¢/2-transverse to X at v, near C. Apply an &/2
homotopy rel Cu(M — V) to make f ¢/2-transverse to X near CuUD, as in 1.2.
The proofs of all three theorems thereby reduce to the following special case:
V=D=M=R*xR!'x B" 3 M—C=B*xB'x B" 5, f=f, x (identity): (R* x
RY)x B™" 35— R'x B"°, where f,(B*x1)>0, f,(B*x —1)<0 and ¢=diameter
f(B*x B! x B™"%).

Without loss of generality we may assume that f,(B* x B')c B' and, by condi-
tion 1.1 ii), that near d(B*x B'xB™~%), f~'(X) is a smooth submanifold of
((B*—0) x BY),.

Since f=f; x (identity), the general case follows easily from the case m=3.
Finally, since any R* TOP bundle has a unique DIFF structure,we may assume that
near oM the map f is DIFF transverse on ((B*—0)x BY), to 0 in R.

The proof of this case proceeds as follows: For Theorems A, B or C choose h
from Lemma A, B or C respectively and normalize so that h(B* x B')< f(B* x B').
Construct a map f: R*xR'—R! such that f'=f near (R*x R')—(B*x B,
f'(x,»)=h(2x,2y) near (: B*x4B') and, finally, on (B*x B")—(3 B*x3B"), f’
is any continuous extension which is non-zero on % B*x(B'—4 B') and has
f'(B*x B')= f(B* x B), for example, an approximation of the linear extension.
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The function f” then satisfies the conclusion of the appropriate theorem except
perhaps in (B*—1 B*) x B!. But on a neighborhood of the boundary of (B* —} B*) x
B!, given the smoothing induced from [(B*—1 B*) x B'],,, f' is DIFF transverse
to 0. Therefore there is a small homotopy of f” with support in (B*—1 B*) x B!
to a map which is satisfactory everywhere [4; Theorem 1.2].

Since f’=f near (R*x R!)—(B*x B"), and f'(B*x B')=f(B* x B'), the linear
homotopy from f to f” is fixed near (R* x R')—(B*x B') and moves no point
more than diameter f(B* x B'). This completes the proof.

Remark. Here is a sketched proof of the converse to Theorem C: In [14] Sieben-
mann presents an orientable S-manifold M with w, (M)=0 and a proper homotopy
equivalence M —7_, X xR where X is a closed homology manifold of index 8.
Suppose p, f: M — R is homotopic to a map such that the inverse image of 0 is
an almost smooth manifold N. Let B be an open 4-ball in N such that N—B is a
smooth manifold. Since N — B is smooth, orientable and w,(N —B)=0, N—B is
parallelizable. Therefore N is an almost parallelizable manifold of index 8.

6. Cancelling Singularities in Pairs

In this section we show how to cancel the singularities which appear in theorem A
until there is at most one singular point in each component of f~!(X). The
following lemma is the key ingredient.

Let X be a closed subset, with trivial R' normal microbundle, of a topological
space Y, let y: [0, 17— R5 be a locally flat imbedding, and let H' be a homology
sphere with trivial Rohlin invariant.

6.1. Lemma. Suppose g: R®> — Y is TOP transverse to X on R®>—y[0,1] and the
quotient space g~*(X)/y [0, 1] is homeomorphic to ¢(H'), then for any ¢>0 and any
neighborhood N of v {0, 1], g is e-homotopic with support in N to a map which is TOP
transverse to X everywhere.

Proof. A construction analogous to that of 2.2 provides a proper imbedding
(¢(H),*)— (R>,0). Now, however, since H' has trivial Rohlin invariant, the
imbedding can be defined to be smooth away from the vertex *. Then ¢(H')— (%)~
H' xR divides S* x R into two components whose closures in $*x R we denote
D, and D,. Each D, has two ends and it follows from the construction in 2.2 that
each D,is 1 — LC at co.

Since y is locally flat, the quotient space R*/y [0, 1] is homeomorphic to R
The normal microbundle to X in Yis trivial, so g~ '(X)—y [0, 1] divides R* —y[0, 1]
~§* x R into two components whose closures we denote E; and E,. Van Kampen’s
theorem and the Mayer Vietoris sequence applied to the pairs (E,, E,), (D, D,),
(E,,D,) and (E,, D,) then show that for i=1,2, E;uD, is a homotopy S*xR
which is 1 — LC at co. Hence E;uD;~S*x R [15].

Since both g~!(X)—7 {0, 1] and the normal bundle to X are DIFF, there is a
natural smoothing of a bicollar of g~'(X)—y [0,1] in R*—y [0, 1] defined by
requiring that in this structure g be DIFF transverse to X. Denote the inter-
section of this bicollaring with E; by C,. Since C,u D, is a homology disk, the
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natural smoothing of C,uU D, is unique up to isotopy. Hence the smoothing of
E,u D, induced by a homeomorphism E; U D,~S* x R restricts, up to isotopy, to
the natural smoothing of C;u D,. We conclude that the natural smoothing of
C, extends to a smoothing of E;.

Returning to the map g: R°—y[0,1]=E, UE, - Y, we conclude that there
is a smoothing (isotopic to the standard smoothing) [R®>—7v [0, 1]]; on which
g is DIFF transverse to X. Let D3 = N be a ball containing y [0, 1] such that D3
is smooth in [R®—7 [0, 1]],. There is no obstruction to extending [R®—D%]; to
all of R® [3]. Then 6.1 follows by standard DIFF transversality.

Let M, f, X, Y and ¢ be as in 5.1.

6.2. Theorem. There is an e-homotopy f, of f,=f to a map f,, H-transverse to X,
such that each component of f,~*(X) contains at most one singular point.

Proof. By 5.1 we may assume f has been made H-transverse to X. Suppose s, and
s, are two singular points in the same component of f -1(X).

Three properties of the construction of the H-transversal map f are relevant:

a) By 1.1 i) each s; has a co-ordinate neighborhood g;: (R™, 0)—(M,s,) and
each f(s;) a neighborhood X, for which there is a trivialization 7;: £| X; > X; x R"~*
such that g7 ' f~'(X)cR°cR™ and tfg;: R°xR" °>->X,xR'xR""* is an
R™=% microbundle map.

b) By 5.1 there is a map h: R® — R! such that h~'(0)=¢(H) with vertex * at 0
and, on R p,t fg;=h: R®>>R.

¢) The function h may be chosen so that in a tubular neighborhood W of the
interior of a ray pc R*<=R?>, h is the projection R®— R! taking R*<R® to 0.

The justification for c) is the following: Let p be a point in H, q a point in S*.
By general position in the manifold Q appearing in the proof of 2.2, a tubular
neighborhood of {p} x ! x (point)=S* x S* x §* is ambient isotopic to a tubular
neighborhood of g ({g} x S* x (point)) in S* x §* x S*. It is easy to trace the conse-
quences of such an isotopy through the construction, and conclude that a tubular
neighborhood W of é(p)—»* in f ~*(X) is a tubular neighborhood of ¢(q) — * in R*.
In 2.2 h was defined to be a normal bundle trivialization of ¢(H)— *, so h may be
the projection near é(g)—*<R*. Property c) then holds for the ray p=_<¢(q).
Given p, let geR* be the point (6B* x B')np.

We now proceed with the Bro\o£ of 6.2.

For a sufficiently small B*x B! contained in B*x B!, g,(q) and g,(q) are

connected in f~(X)—(g,(B*x B')uUg,(B* x B')). Hence we may assume without
loss of generality that there is a locally flat arc y: [0, 11— f~(X) from s, to s,
whose image coincides with g;(p) near g,(B*x B'). Parameterize y so that y~*
(g,(B*x BY)=[0, 1/3]1=1I,, y~ (g, (B* x B))=[2/3, 1]=1,.

Let 6: (0,1)xR®*— f~!(X) be a framing of a normal bundle to y(0,1) in
£~ YX) such that near g,(B*x B"), image ocg;,(W) (W as defined in c) above)
and 6~ '(g,(B*x BY))=1,x R>.

Extend & to a framing o: (0, 1) x R® x R! x R"~3 — M such that fo:((0, 1) x R?)
x (R!'x R™~%)— ¢ is a TOP microbundle map and near y(1,), o|y(I) x R®> x R' x
{0} cg, (W ~(B* x B"). This is possible since the space of lines in R™~* (that is
RP™ %) is connected.
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The general argument now parallels the argument in the special case m=35,
so henceforth the factor R™~ > will be dropped.

Note that since 7 fo is a TOP microbundle trivialization and p, 7fg; is the
projection near W (B*x BY), ¢({1/3} x R®*x R)cg,(dB* x B') and ¢({2/3} x
R3>x RY)cg,(0B*x BY).

Let RS and R} be disjoint copies of R® and consider the manifold obtained by
attaching [1/3,2/3]xR3>x R to (R?—W)u(B*xB"); by g 'o, for i=0,1.
Clearly the interior P of this manifold is homeomorphic to R

Moreover, g,, o and g, define an imbedding K: (B* x B'), U([1/3,2/3] x R3x
RY) U (B* x BY), » M. Consider the function g: P — ¢ given by g|(R} —W)u (B* x
BY),=fg and g|[1/3,2/3] x R xR'=f g. Then g is clearly TOP transverse to X
on P—K-'y[0,1], fK=g, and g~*'(X) is homeomorphic to the interior of the
boundary connected sum of two copies of ¢(H).

Since y is locally flat, P/K 'y [0, 1]~ R®. Furthermore, g~*(X)/K~" [0, 1]~
¢(H # H), as is shown explicitly in [2].

If ¢ were trivial, 6.1 would imply that g is e-homotopic with support an arbi-
trarily small neighborhood of K~'y[0,1] to a map TOP transverse to X. Since
near y[0,1], f=gK~!, the same would then be true of f, eliminating this pair
of singularities.

Although ¢ may not be trivial, f: M — ¢ factors through a trivial microbundle
near y [0, 1], as follows. Let ]_I denote disjoint union and X,,, X, be the subsets
of X defined in a). Define Y’ to be the space obtained from (XoI_IX JxR and
a([1/3,2/3] x R® x RY) by identifying the two lines ¢({1/3,2/3} x {0} x R") with
their image under 7 f. Define X' < Y' to be (X,]IX) x {0y ua([1/3,2/3]x R3 x {0}.
Since 7 f o is a microbundle map, X’ has a normal R' microbundle in Y” which is
easily seen to be trivial.

Define the map ¢: Y'— ¢ to be t=! on (X,] JX) xR and f on 6([1/3,2/3] x
R® x RY). Define the map ¥: g,(B*x B)yua([1/3,2/3]1x R* xR)ug,(B*x B") -
Y to be tf on g,(B*xB') and the identity on ([1/3,2/3]x R*>x R?). Clearly
@ -y =/ and @ is a microbundle map near X’. Apply 6.1 to ¢ and again conclude
that f is e-homotopic with support an arbitrarily small neighborhood of y [0, 1]
to a map which is TOP transverse to X.

To complete the proof of 6.2, perform this entire process simultaneously on
a properly imbedded family of disjoint arcsin f = 1(X) chosen to connect in pairs all
but at most one singularity in each component of f~!(X).

7. Concluding Remarks

The simplest example of a homology 3-sphere of Rohlin invariant 1 is the Poincaré
3-sphere, which is the link of the complex singularity X3+ X7+ X2 =0. It can
be shown, in a proof reminiscent of [6], that if N is a compact connected homo-
logy 4-manifold which is a combinatorial 4-manifold except at a vertex whose
link is the Poincaré sphere, then N is a component of a singular real algebraic
variety. Hence for M compact we may take f ~1(X) to consist of components of
some real algebraic variety. Following Tognoli’s proof of the Nash conjecture,
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H.King and S. Akbulut have announced that if H is the Poincare 3-sphere,

=

(X) in Theorem 6.2 is a real algebraic variety.
We have examined here TOP transversality of maps to a microbundle. For

codimension =3 transversality of imbedded submanifolds and transversality of
maps to a TOP block bundle will be discussed in a forthcoming paper of A. Marin.
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