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CONSTRUCTING STRANGE MANIFOLDS
DODECAHEDRAL SPACE

MARTIN SCHARLEMANN

WITH THE

Since its discovery by Poincar at the beginning of the century, the dode-
cahedral manifold K has fueled several of the most fundamental theorems on
manifolds. Originally K was presented as an example of a homology 3-sphere
which is not a sphere, providing a counterexample to the "homology" Poincar
conjecture [ST]. Milnor’s original counterexample 2 to the smooth Poincar
conjecture is closely connected to K in the theory of complex singularities
[Mil], [Mi:]. Since 2 is a PL sphere, it provided the first example of a PL
manifold with more than one smooth structure, thus distinguishing between
the categories DIFF and PL.
Most recently the manifold K has been used by Kirby and Siebenmann to

distinguish between PL manifolds and merely topological manifolds. In
particular, their fundamental example of a non-PL manifold is a 5-manifold
M homotopy equivalent to X X S1, where X is a homology 4-manifold whose
only non-Euclidean point has link K [Sie].

In this paper three manifolds are constructed which are closely related to
the results of Kirby-Siebenmann. Their existence has been demonstrated
elsewhere [Sh], [CS], [HoM]. Here the constructions flow from properties of K.
1 presents two of the many descriptions of K. In 2 fake homotopy structures
are constructed for S X S # S X S and S X S X S’. In 3 anontri-
angulable 5-manifold homotopy equivalent to CP(2) S is constructed, using
deep results of Kirby-Siebenmann.

This paper is derived mainly from the author’s thesis while at U. C. Berkeley;
I would like to express my warmest thanks to Prof. R. Kirby for his guidance
during that time.

1. The dodecahedral manifold K.
The dodecahedral space is remarkable not only for its colorful past, but also

for the multitude of ways in which it can be defined. Originally it was con-
structed by identifying opposite sides of the dodecahedron [ST]. It is also the
p-fold branched cyclic covering of a torus knot of type (q, r), where (p, q, r) is
any permutation of (2, 3, 5). It can be constructed by plumbing 2-disk bundles
of euler characteristic 2 over S along a tree with branches of length 2, 3 and 5.
The descriptions which will be of most interest here are the following. First,

K is the intersection of the unit 5-sphere in C with the complex variety Zo +
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zl q- z2 0. As a consequence, K admits an effective circle action, induced
from the natural action of C* C {0} on C given by t(zo z z.)
(gISZo gIz Z2) for C* (Zo z z:) C Furthermore it can be shown
that K is the unique 3-manifold with an effective circle action and fundamental
group the binary icosahedral group, the group with presentation (K)
{x, y x (xy) yS} [Or]. This fact leads to the second description of K.
Let k S - S be an imbedding of the trefoil knot. Remove an open tubular

neighborhood of k(S1) in Sa. Attach to the boundary torus of the resultant
manifold a copy of S X D by a homeomorphism of boundaries chosen so that
(pt. X OD) C S X D is attached to the dotted curve shown below:

Scale 3 I
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We will show that the constructed manifold N has a circle action and that
r(N) (K). Hence N K.
By Van Kampen’s theorem N has fundamental group isomorphic to

r(S k(S))/r, where r is the element of 1(S ](S)) represented by the
dotted circle in the figure.
The group (S k(S1)) is well-known to have the presentation {a, b aba
bab}, with a and b represented by the illustrated loops IF]. Starting at x,

the word r is read off r ab2ab-3. On substituting a - b-lc the group
rl(S k(S1))/r becomes {b, c lc bcb, cbc b} or {b, c lb (bc) c5}

r(K).
A circle action on N can be defined as follows. The circle action on S induced

by the action of C* on C given by t(zo, zl) (fZo, fzl) leaves the trefoil knot
zo zl nvariant. Choose the tubular neighborhood of the trefoil knot used
in constructing N to be invariant under the circle action and choose the attaching
homeomorphism of O(S D) to the boundary of the tubular neighborhood
so that the induced circle action on O(S X D) is a standard linear action.
By this is meant an action which is complex coordinates maps (t, (u, v)) to
(u -k at, v - t) for in S, (u, v) in S X cOD and a, integers. Such an action
extends linearly over S X D2, yielding a circle action on all of N. Hence N --- K.Remark. A careful look at the described S action shows that N has the
same Seifert invariants as K and therefore is homeomorphic to K. The funda-
mental group calculation is thus unnecessary, but more easily carried out than
is the calculation of Seifert invariants.

2. Fake homotopy structures on S X S S X S’ and S X S X S1.
A homotopy structure on a PL manifold M is a simple homotopy equivalence

] M -- M. Two structures 1o Mo --* M, ] M1 -- M are equivalent if there
is a PL s-cobordism W from Mo to M and a homotopy equivalence F W
M X I restricting to ]o and ]1 on Mo and M respectively.
A fake homotopy structure will here mean a homotopy structure ] M --, M

such that there is a PL cobordism W from M to M and a map F W -- M I
covered by a map of the respective normal microbundles and restricting to
the maps ] and the identity on M and M respectively, yet W cannot be chosen
so that F is a homotopy equivalence.
Here we construct fake homotopy structures on S X S # S X S and

S X S X S. Interest in the second manifold arises from the work of Kirby-
Siebenmann, who show that any homotopy equivalence M -. S X S X S
is homotopic to a homeomorphism. The fake homotopy structure on S X
S X S provides a counterexample to the Hauptvermutung, because the
homeomorphism M -. S X S X S is not even homotopic to a PL homeo-
morphism.

Similarly one might hope that a close study of the fake homotopy S X
S # S X S might lead to the same conclusions for 4-manifolds. For this
a good understanding of its geometry seems to be necessary.
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The existence and uniqueness of the fake homotopy structure on S
S # S S was demonstrated by Cappell-Shaneson-Lee [CS], that on S X
S X S by Shaneson [Shl].

2.1. LEMMA. There is a PL cobordism W, with trivial normal bundle, ]rom
OoW’" S X S to OW --- K X S such that ]or i O, 1, H.(W, OW; Z) O.
Moreover the inclusion K X (pt.) --+ OW -- W induces the trivial map r(K)
--, ,(W).

Prool. K is imbedded in S as the link of the algebraic variety defined above.
Since K is a homology 3-sphere, it follows from the Mayer-Vietoris sequence
that S K is a homology circle. Remove from S a tubular neighborhood
of K and of a circle in the complement of K representing the generator of
H(S K). An easy calculation shows that the resulting cobordism W
between the boundaries of the tubular neighborhoods satisfies H,(W, OW) 0
for i 0, 1. Furthermore Van Kampen’s theorem implies that the inclusion
induces the trivial map rl(K X (pt.)) -- r(W). This proves 2.1.

Let a r(K) be a generator of #,(K), and leg M be the manifold obtained
from K X S by doing surgery on a in the normal homology equivalence
K X S--S X S.

2.2. LEMMA. There is a PL cobordism W’ with trivial normal bundle lrom
OIW’ _" M toOoW’=S X S’ # S X S suchthatlori=O, 1, H,(W’, OW’;Z) O.

Prool. Let T C K X (pt.) be a PL flatly imbedded circle representing
By 2.1 and general position there is a PL flat imbedding k S X I -- W such
that l(S X {01) is a trivial circle in S X S and k(S X 1}) T. Do surgery
along k(S X I). That is, remove a tubular neighborhood of k(S X I) and
to its boundary attach a copy of D X S X I by an S2-bundle equivalence
h OD X S X I -- chosen so that the resulting manifold W still has trivial
normal bundle.
The manifold W’ is a homology product since W is. Furthermore since

k(S X {0}) is null-homotopic in OoW it bounds an imbedded 2-disk in’ OoW.
Therefore OoW’ is the connected sum of OoW S X S and S X S along
a 4-disk neighborhood of the 2-disk which k(S X {01) bounds
The map h defined in the proof of 2.2 extends naturally to an imbedding

h:D X S X I-Wt.

2.3. LEMMA. The identity map OoW --> OoW extends to a norm. al map F
W --> OoW’ X I such that Fh D X S X I -- h(D X S X O) is the natural
projection and F 01W’ is a homotopy equivalence.

Proo]. Since H*(W’, OoW; Z) O, H*(W- h(D X S X I), OoW’
h(D X S X 0); r,(OoW- h(D X S X 0)) 0 and there is no obstruction
to defining F as above. It remains to show that ] is a homotopy equivalence.
The fundamental group of r(O,W’) is (K) X S/a rl(S) Z. The

map ] OW --> OoW is of degree 1, so Poincar5 duality defines a splitting
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of the induced map HI(O1W’; Z) HI(OoW’; Z) [W2, Lemma 2.2]. Therefore
since the fundamental groups are both infinite cyclic ] rl(O1W’) rl(OoW’)
is an isomorphism. Once again [W., Lemma 2.2] implies that f, H, (01W’; Z[Z])

H,(OoW’; Z[Z]) is also a split surjection. By a Mayer-Vietoris argument,
H,(O1W’; Z[Z]) and H,(OoW’; Z[Z]) are isomorphic as Z[Z] modules. Hence
], defines an isomorphism with local coefficients, and so ] is a homotopy
equivalence.

2.4. PROPOSITION.
identity.

The homotopy equivalence is not PL s-cobordant to the

Pro@ Suppose there is a PL manifold V and a .homotopy equivalence
H V --, OoW I which coincides with ] on 0IV - M - 01W and is the identity
on OoV.

Since ]’ h(D X S X 1) - h(D X S X O) 1 C OoW 1 is the natural
homeomorphism, H can be extended to a homotopy equivalence between the
manifolds obtained by attaching 3-handles to 01V and OoW X {1} along
h(D X S X 1) and h(D X S X 0) X 1 respectively. Since H[OoV is the
identity, H can further be extended to 3-handles attached to OoV and OoW X {0}
along copies of S orthogonal to h(D X S X 0) in OoW --- S X S # S X S.
The result is a homotopy equivalence H’ V’ --, S S X I. Here OtV’
has been obtained by undoing the surgery of 01W in Step 2 and so is PL homeo-
morphic to 01W --- K St. On OoV’, H’ is the identity.

Construct a possibly new homotopy equivalence V’ S X S X I, still
denotedH’, as follows. LetH’ 0IV’ K X S S X S be ahomology
equivalence which fibres over S1. There is no obstruction to extending to a
homotopy equivalence H’ V’ S X S I. H’ OoV’ S X S S X S
is a homotopy .equivalence, hence we may assume it is a diffeomorphism which
fibres over S [Sh]. Homotope H’ rel OV’ so that H’ is PL-transverse to S X
(pt.) X I. A theorem of Novikov implies that H’-I(S X (pt.) I), a PL
cobordism from K to S, has the index of S X (pt.) X I [N]. But K bounds
a parallelizable PL-manifold of index 8 [Mi.]. Attach this manifold to one
end of H’-I(S’ (pt.) X I)along H’-I(S3 (pt.) 1), K and attach
D to the other end along H’-I(S X (pt.) X 0) Sa. The result is an almost
parallelizable PL 4-manifold of index 8. A theorem of Rohlin states that the
index of any almost parallelizable PL 4-manifold is a multiple of 16 [Roh.]
This contradiction proves the proposition.
A fake homotopy structure on S X S X S can be consVructed analogously.

Instead of the cobordism W of 2.1 consider the cobordism W X S from K X
S X S to S X S X S1. Do surgery as in 2.2 to obtain a PL normal cobordism
from a manifold M to S S X S # S S such that the normal cobordism
is a homology product (with coefficients in Z). Construct a homotopy equi-
valuence M -- S X S X S # S X S as in 2.3. By general position there
is an imbedded S in M whose image under the homotopy equivalence represents
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a generator of r2(S S X S S X S3) Z. Perform a surgery on S C M
and thereby obtain a homotopy equivalence N -- S X S X S1.

Suppose N --, S X S X S is PL s-cobordant to the identity map. Then
by the s-cobordism theorem there is a PL homeomorphism ] :N -- S X S X S1.
Notice, however, that in the construction of N from K X S X S1, any K X
S X (pt.) chosen well away from the circle T C K X S X S on which surgery
is first performed (see 2.2) remains intact during the construction of N. Thus
any PL homeomorphism N -, S X S X S would provide a fiat PL imbedding
of K X S into S S X S1. Lift this to an imbedding K X S S X S X R
in the covering S X S R of S X S X S1, and observe that for large
enough K X S (% S X S X {t} . An elementary argument shows that
the region V’ of S X S X R between K X S and S X S X {tl has the
homotopy type of S X S. Just as in the proof of 2.4 this property of V’
contradicts Rohlin’s theorem.

Remark. One might ask why a similar final surgery on the homotopy equiv-
alence M --, S X S # S X S of 2.3 cannot be used to construct a fake
homotopy structure on S X S. Classically the answer has been:

a) It may be impossible to imbed in M an S with trivial normal bundle
representing a generator of H2(S

b) Should such an S be found, surgery on S may alter the fundamental
group, since S is a codimension 2 submanifold.

Note, however, that h (pt.) X S
in M as in a) above. Thus the difficulty lies in obtaining an imbedded S
with the property (M S) ’1(/), in order that the surgery on S not
alter the fundamental group.

3. /k non-triangulable homotopy CP(2) X S.
Ho!lingsworth and Morgan calculate in [HoM] that there is a closed 5-manifold

M which is homotopy equivalent to CP(2) S but is not a PL manifold.
In order to construct M via the dodecahedral space we cite the following theorems
which are corollaries of the classification results of Kirby-Siebenmann [KS]:

3.1. THEOREM. Any homotopy equivalence h N S X T is homotopic
to a homeomorphism.

3.2. THEOREM. Let M be a PL manifold without boundary o] dimension
m >_ 5. I] Ha(M; Z) 0 then the PL triangulation o] M is unique up to isotopy.

In light of our construction of the fake homotopy equivalence N --, S X
S X S1, 3.1 has the following important corollary"

3.3. PROPOSITION. There is a mani]old W and a homeomorphism K X S -- OWwhich extends to a homotopy equivalence cone(K) X S W.
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Prool. It was shown in 2 that a PL homeomorphism N --. S X S X S
may be used to define a PL cobordism V’ from K X S to S X S’ such that
the inclusion S X S ---* V’ is a homotopy equivalence. Though in the PL
category this created a contradiction, 3.1 asserts that N -- S X S S is
homotopic to a (non-PL) homeomorphism. Thus there is a topological cobordism
V’ as defined above. Construct W from V’ by attaching D* X S to S X S

OoV’. There is no obstruction to extending the homeomorphism K X S --OV’ OW to a homotopy equivalence cone(K) )< S -- W, proving 3.3.
In 1 K was obtained from S by performing surgery on the trefoil knot.

Equivalently, K is the boundary of the 4-manifold U obtained by attaching
a 2-handle to D along a trefoil knot in OD4. Attach W defined in 3.3 to U X S
along OW -OU X S by a PL homeomorphism and call the resulting manifold P.

3.4. THEOREM. P is a non-PL maniJold oJ the homotopy type o] CP(2) X. S.
Proof. Let X be the complex obtained from U by attaching cone(K) to

O U. X is a simply-connected homology manifold with H.(X; Z) Z. By
Poincar duality, the self-intersection number of a generator of H.(X; Z) is =t=1,
so, properly oriented, X has the quadratic form of CP(2). Milnor, using a
theorem of Whitehead, shows that the homotopy type of a simply-connected
4-dimensional Poincari complex is determined by its quadratic form [Mi3], [Wh].
Thus X has the homotopy type of CP(2). It follows from 3.3 that P has the
homotopy type of X )< S, hence the homotopy type of CP(2) )< S1.

Suppose P is PL. Then so is the universal cover /3 of P. /3 is the union
along the boundary of the universal covers l of W and of U. Since Ha()

0, the natural. PL triangulation of interior () is unique up to isotopy.
Hence, after an isotopy, 0 01 is PL flatly imbedded in/5. The natural
triangulation of 01 therefore extends over l. But as in the proof of 2.4,
PL transversality of a proper map I -- R would then produce a counter-
example to Rohlin’s theorem. The contradiction proves 3.4.

4. Concluding remarks.
In [Sch] a structure similar to that on P in 3 is obtained for any nontriangul-

able closed oriented 5-manifold. In fact, it is always possible to remove a
copy of interior (W) from a 5-manifold and obtain a PL manifold with boundary.
The connection between the fake homotopy S X S # S: X S in 1 and

that of Cappell-Shaneson-Lee is mysterious. The surgery theory of [CS]
implies that the two examples are PL h-cobordant, but I do hot know whether
they are homotopic. Perhaps an easier problem is the following" In 2.2 the
only property of a r(K) which was used was that ’(K)/(a) 0. The
group r(K) contains 120 elements but only one non-trivial normal subgroup,
the center of order 2. There are thus 118 possible candidates for a. Many
are equivalent under homeomorphisms of K, but do all 118 define the same
manifold?
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