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Abstract. We provide an example of two closed model categories having
equivalent homotopy categories but different Waldhausen K -theories. We
also show that there cannot exist a functor from small triangulated categories
to spaces which recovers Quillen’s K -theory for exact categories and which
satisfies localization.

Introduction

0.1. In [TT90] Thomason and Trobaugh showed that an exact functor
of complicial biWaldhausen categories which induces an equivalence of
homotopy categories also induces an equivalence of K -theory spaces. In
particular, an exact functor between exact categories inducing an equiva-
lence between the associated bounded derived categories also induces an
equivalence of K -theory spaces. Thomason then asked whether two Wald-
hausen categories having equivalent homotopy categories also have the
same K -groups.

It was commonly believed that K -theory can not be defined directly
from its homotopy category. In [Nee92], Neeman showed there can not
be a functor from triangulated categories to spaces which recovers Wald-
hausen’s K -theory. However, the above question remained open. Jeff Smith
suggested looking at an example involving Morava K -theory. But to my
knowledge this has never been carried out (in print). We give a fairly simple
example which proves that the answer to Thomason’s question is no.

Several people, for instance Jens Franke and Amnon Neeman, asked
whether there is a functor K from small triangulated categories to spaces
satisfying some very natural axioms so that it deserves the name K -theory.
If E is a small exact category we write K(E ) for the Quillen K -theory space
ΩQE of E . The two axioms we feel are most natural are the following.
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1) Agreement: For E a small exact category let Db(E ) be its bounded derived
category. Then there is a homotopy equivalence K(E ) � K(Db(E )).

2) Localization: Let A → B → C be an exact sequence of triangulated
categories, i.e. A is equivalent to the full triangulated subcategory of B
whose objects are sent to 0 in C and C is the localization of B with
respect to maps whose cone is isomorphic to an object of A. Then there
is a homotopy fibration

K(A) → K(B) → K(C).

We show in Proposition 2.2 that a functor satisfying agreement and local-
ization cannot exist (see also Remark 2.3).

0.2. Before we come to our example we introduce the following notation.
Let C be a Frobenius category, i.e. an exact category having enough projec-
tives and injectives, and whose projectives and injectives coincide. Write C
for the stable category of C, i.e. the category obtained from C by identify-
ing two morphisms if their difference factors through a projective-injective
object. This is a triangulated category (see Sect. 9 of [Hap87] or [Kel96]
for details).

If C is abelian, we define a morphism in C to be a weak equivalence if it is
a stable isomorphism, i.e. its image in the stable category is an isomorphism.
Define a morphism in C to be a cofibration if it is a monomorphism. Define
a morphism in C to be a fibration if it is an epimorphism. It is well known
that this makes C into a closed model category in the sense of Quillen
([Qui67]) whose homotopy category is equivalent to its stable category
(see Theorem 2.2.12 [Hov99] for the category of modules over a Frobenius
ring). We write mC for this model category in order to distinguish it from
the abelian category C.

0.3. Here are the two model categories. Choose your favorite prime num-
ber p �= 2. Let R be the ring (Z/p)[ε]/ε2 or Z/p2. We write M(R) for
the category of finitely generated R-modules. Then M(R) is an abelian
Frobenius category. In Proposition 1.4 we show that the associated stable
categories are equivalent as triangulated categories. Hence the two model
categories mM(R), R = (Z/p)[ε]/ε2,Z/p2, have equivalent homotopy
categories.

We write K(mC) for the Waldhausen K -theory (see [Wal85]) of the
category with cofibrations and weak equivalences mC (forgetting the fibra-
tions). Proposition 1.7 shows that the Waldhausen K -theories of mM(R),
R = (Z/p)[ε]/ε2,Z/p2, differ. This relies on the calculations of [EF82]
and [ALPS85]. In fact, the groups K4(mM(R)) are different for the two
rings. Hence the answer to Thomason’s question.

Our calculations also show that the existence of a functor from small
triangulated categories to spaces satisfying agreement and localization con-
tradicts the results of [EF82] and [ALPS85]. This is done in Proposition 2.2.
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Nevertheless, the question whether two exact categories having equiva-
lent bounded derived categories do have equivalent K -theories remains
open.

1. The two model categories and their K -theories

1.1. Let k be a field, and let M(k) be the category of finite dimensional
vector spaces over k. We endow M(k) with a trivial structure of a triangulated
category as follows. The suspension functor is the identity functor: Σ = id.
A triangle is distinguished if it is the direct sum of trivial triangles, i.e.

triangles of the form A //

1 A // 0 //

[+1]
A and rotations there of.

It is straightforward to verify that this makes M(k) into a triangulated
category. Moreover, every structure of a triangulated category on M(k) for
which Σ � id is equivalent to the above one.

1.2. Let k be a field. It is known that k[ε]/ε2 is a Frobenius algebra.
Hence the category M

(
k[ε]/ε2

)
of finitely generated k[ε]/ε2-modules is

a Frobenius category. The ring homomorphism k[ε]/ε2 → k sending ε to 0
induces a fully faithful functor ι : M(k) → M(k[ε]/ε2). Since every finitely
generated k[ε]/ε2-module is a direct sum of objects of M(k) and of a free
module, we see that ι induces an equivalence of categories ι : M(k) →
M(k[ε]/ε2). In order to calculate the suspension functor in M(k[ε]/ε2)

we choose for every object M in M(k) an injective hull M ↪→ E(M)
in M(k[ε]/ε2). The suspension of M is then E(M)/M. Multiplication by
ε on E(M) induces a natural isomorphism E(M)/M

∼→ M. It follows
that the suspension is naturally equivalent to the identity functor. Hence,
ι : M(k) → M(k[ε]/ε2) is an equivalence of triangulated categories.

1.3. Let M(Z/p2) be the category of finitely generated Z/p2-modules.
The ring Z/p2 is self injective and every finitely generated Z/p2-module is
a submodule of a finitely generated free Z/p2-module. Hence M(Z/p2) is
a Frobenius category. If we replace “multiplication by ε” in 1.2 by “multi-
plication by p” then the arguments of 1.2 carry over mutatis mutandis
showing that the stable category M(Z/p2) is equivalent as a triangulated
category to M(Z/p).

Summarizing we have the following (certainly well known) proposition.

1.4. Proposition. The homotopy categories of mM(Z/p2) and
mM(Z/p[ε]/ε2) are both equivalent as triangulated categories to M(Z/p).

1.5. Let R be the ring Z/p2 or Z/p[ε]/ε2. The categories mM(R) are
biWaldhausen categories (see 1.2.4 [TT90] for a definition) which implies
that the K -theory spaces of mM(R) and mM(R)op are equivalent (the Wald-
hausen S·-constructions are isomorphic). That’s why taking K -theory with
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respect to cofibrations or fibrations leads to the same result. The categories
mM(R) both have natural cocylinder objects since they have natural path

objects: R[M] // //

m �→m M (recall that a finitely generated R-module M is
finite). They satisfy the dual of the cylinder axiom, saturation and extension
axiom of [Wal85]. Let P (R) be the category of finitely generated projective
R-modules. The biWaldhausen categories P (R) and M(R) have (by defin-
ition) isomorphisms as weak equivalences, admissible monomorphisms as
cofibrations and admissible epimorphisms as fibrations. Now the dual of
Theorem 1.6.4 of [Wal85] asserts that the sequence

P (R) → M(R) → mM(R)

of biWaldhausen categories induces a homotopy fibration of K -theory
spaces. Moreover, Quillen’s dévissage theorem [Qui73] shows that ι :
M(Z/p) → M(R) induces a K -theory equivalence. Hence there is a ho-
motopy fibration

K(R) → K(Z/p) → K(mM(R)).

1.6. Quillen’s calculation of Kn(Z/p) (see [Qui72]) gives K4(Z/p) = 0
and K3(Z/p) = Z/(p2 − 1). Hence there is an exact sequence

0 → K4(mM(R)) → K3(R) → Z/(p2 − 1).

On one hand, the calculations of [EF82] and [ALPS85] show that K3(Z/p2)
= Z/p2 ⊕ Z/(p2 − 1). Therefore, K4(mM(Z/p2)) contains a subgroup
which is isomorphic to Z/p2 (multiplication by p2 is an automorphism on
Z/(p2 −1) but zero on Z/p2). On the other hand, the calculations in the two
articles also show that K3(Z/p[ε]/ε2) = Z/p ⊕Z/p ⊕Z/(p2 − 1). There-
fore, K4(mM(Z/p[ε]/ε2)) cannot have a subgroup which is isomorphic to
Z/p2.

Summarizing we have the following proposition.

1.7. Proposition. The Waldhausen K-theories of mM(Z/p[ε]/ε2) and
mM(Z/p2) are not equivalent.

1.8. Remark. Although the Theorem 1.9.8 of [TT90] is written down
only for “complicial biWaldhausen” categories, its proof carries over to
Frobenius categories with (co-) cylinder functor satisfying the (dual) of
the cylinder axiom. In fact, the proof becomes easier, since no calculus of
fractions is involved.

2. Nonexistence of the functor K

2.1. Suppose there were a functorK from small triangulated categories to
spaces satisfying agreement and localization. Keep the notations of 1.5. Ac-
cording to Theorem 2.1 of [Ric89] (which works for Frobenius categories,
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not only for those which arise from self-injective k-algebras), there is an
exact sequence of triangulated categories

Db(P (R)) → Db(M(R)) → M(R)

(see also [KV87]). By agreement, localization and dévissage, it follows that
there would be a homotopy fibration

K(R) → K(Z/p) → K(M(R)).

Proceeding as in 1.6, we find a contradiction to the calculations of [EF82]
and [ALPS85] because the triangulated categories M(R) for R = Z/p2,

Z/p[ε]/ε2, are equivalent by 1.4.
Summarizing we have the following proposition.

2.2. Proposition. There is no functor from small triangulated categories
to spaces satisfying agreement and localization.

2.3. Remark. If we also want additivity (see 3) below) to hold then
a weaker form of agreement, namely 1’), and localization lead to a contra-
diction as well.

1’) Agreement on K1: Let E be a small exact category. Then K1(E )
∼=

K1(Db(E )).
3) Additivity: Let F, G, H : S → T be three exact functors between

triangulated categories such that there is a natural exact triangle F →
G → H → ΣF then

0 = K∗(F) −K∗(G) +K∗(H) : K∗(S) → K∗(T ).

There is no functor satisfying agreement on K1, localization and additivity.
Suppose on the contrary that a functor K satisfying 1’), 2) and 3) exists.
By additivity, Σ acts on the K-groups as −1. The fact that Σ � id for
the stable module categories M(R), R = Z/p2 or k[ε]/ε2, then implies
that the groups K∗(M(R)) are 2-torsion. Agreement on K1 shows that
K1(P (R)) = R× = Z/p ⊕ Z/(p − 1) and K1(M(R)) = Z/(p − 1). So
the map K1(P (R)) → K1(M(R)) sends the factor Z/p to zero. Using
localization as before, we see that Z/p has to be 2-torsion which is clearly
wrong for p > 2.

Acknowledgements. I would like to thank Dan Grayson for the discussions I had with him,
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