Inventiones mathematicae

A note on K-theory and triangulated categories

Marco Schlichting

Department of Mathematics, University of Illinois at Urban-Champain, 273 Altgeld Hall, 1409 West Green Street, Urbana, IL 61801, USA (e-mail: mschlich@math.uiuc.edu)

Oblatum 28-V-2001 & 7-III-2002 Published online: 17 June 2002 – © Springer-Verlag 2002

Abstract. We provide an example of two closed model categories having equivalent homotopy categories but different Waldhausen *K*-theories. We also show that there cannot exist a functor from small triangulated categories to spaces which recovers Quillen's *K*-theory for exact categories and which satisfies localization.

Introduction

0.1. In [TT90] Thomason and Trobaugh showed that an exact functor of complicial biWaldhausen categories which induces an equivalence of homotopy categories also induces an equivalence of K-theory spaces. In particular, an exact functor between exact categories inducing an equivalence between the associated bounded derived categories also induces an equivalence of K-theory spaces. Thomason then asked whether two Waldhausen categories having equivalent homotopy categories also have the same K-groups.

It was commonly believed that *K*-theory can not be defined directly from its homotopy category. In [Nee92], Neeman showed there can not be a functor from triangulated categories to spaces which recovers Waldhausen's *K*-theory. However, the above question remained open. Jeff Smith suggested looking at an example involving Morava *K*-theory. But to my knowledge this has never been carried out (in print). We give a fairly simple example which proves that the answer to Thomason's question is no.

Several people, for instance Jens Franke and Amnon Neeman, asked whether there is a functor \mathbb{K} from small triangulated categories to spaces satisfying some very natural axioms so that it deserves the name *K*-theory. If \mathcal{E} is a small exact category we write $K(\mathcal{E})$ for the Quillen *K*-theory space $\Omega Q \mathcal{E}$ of \mathcal{E} . The two axioms we feel are most natural are the following.

- 1) *Agreement:* For \mathcal{E} a small exact category let $D_b(\mathcal{E})$ be its bounded derived category. Then there is a homotopy equivalence $K(\mathcal{E}) \simeq \mathbb{K}(D_b(\mathcal{E}))$.
- 2) Localization: Let A → B → C be an exact sequence of triangulated categories, *i.e.* A is equivalent to the full triangulated subcategory of B whose objects are sent to 0 in C and C is the localization of B with respect to maps whose cone is isomorphic to an object of A. Then there is a homotopy fibration

$$\mathbb{K}(\mathcal{A}) \to \mathbb{K}(\mathcal{B}) \to \mathbb{K}(\mathcal{C}).$$

We show in Proposition 2.2 that a functor satisfying agreement and localization cannot exist (see also Remark 2.3).

0.2. Before we come to our example we introduce the following notation. Let C be a Frobenius category, *i.e.* an exact category having enough projectives and injectives, and whose projectives and injectives coincide. Write \underline{C} for the stable category of C, *i.e.* the category obtained from C by identifying two morphisms if their difference factors through a projective-injective object. This is a triangulated category (see Sect. 9 of [Hap87] or [Kel96] for details).

If C is abelian, we define a morphism in C to be a weak equivalence if it is a stable isomorphism, *i.e.* its image in the stable category is an isomorphism. Define a morphism in C to be a cofibration if it is a monomorphism. Define a morphism in C to be a fibration if it is an epimorphism. It is well known that this makes C into a closed model category in the sense of Quillen ([Qui67]) whose homotopy category is equivalent to its stable category (see Theorem 2.2.12 [Hov99] for the category of modules over a Frobenius ring). We write mC for this model category in order to distinguish it from the abelian category C.

0.3. Here are the two model categories. Choose your favorite prime number $p \neq 2$. Let *R* be the ring $(\mathbb{Z}/p)[\varepsilon]/\varepsilon^2$ or \mathbb{Z}/p^2 . We write $\mathcal{M}(R)$ for the category of finitely generated *R*-modules. Then $\mathcal{M}(R)$ is an abelian Frobenius category. In Proposition 1.4 we show that the associated stable categories are equivalent as triangulated categories. Hence the two model categories $m\mathcal{M}(R)$, $R = (\mathbb{Z}/p)[\varepsilon]/\varepsilon^2$, \mathbb{Z}/p^2 , have equivalent homotopy categories.

We write $K(m\mathcal{C})$ for the Waldhausen *K*-theory (see [Wal85]) of the category with cofibrations and weak equivalences $m\mathcal{C}$ (forgetting the fibrations). Proposition 1.7 shows that the Waldhausen *K*-theories of $m\mathcal{M}(R)$, $R = (\mathbb{Z}/p)[\varepsilon]/\varepsilon^2$, \mathbb{Z}/p^2 , differ. This relies on the calculations of [EF82] and [ALPS85]. In fact, the groups $K_4(m\mathcal{M}(R))$ are different for the two rings. Hence the answer to Thomason's question.

Our calculations also show that the existence of a functor from small triangulated categories to spaces satisfying agreement and localization contradicts the results of [EF82] and [ALPS85]. This is done in Proposition 2.2.

Nevertheless, the question whether two exact categories having equivalent bounded derived categories do have equivalent *K*-theories remains open.

1. The two model categories and their *K*-theories

1.1. Let *k* be a field, and let $\mathcal{M}(k)$ be the category of finite dimensional vector spaces over *k*. We endow $\mathcal{M}(k)$ with a trivial structure of a triangulated category as follows. The suspension functor is the identity functor: $\Sigma = id$. A triangle is distinguished if it is the direct sum of trivial triangles, *i.e.* triangles of the form $A \xrightarrow{1} A \longrightarrow 0 \xrightarrow{[+1]} A$ and rotations there of. It is straightforward to verify that this makes $\mathcal{M}(k)$ into a triangulated category. Moreover, every structure of a triangulated category on $\mathcal{M}(k)$ for which $\Sigma \simeq id$ is equivalent to the above one.

1.2. Let k be a field. It is known that $k[\varepsilon]/\varepsilon^2$ is a Frobenius algebra. Hence the category $\mathcal{M}(k[\varepsilon]/\varepsilon^2)$ of finitely generated $k[\varepsilon]/\varepsilon^2$ -modules is a Frobenius category. The ring homomorphism $k[\varepsilon]/\varepsilon^2 \to k$ sending ε to 0 induces a fully faithful functor $\iota : \mathcal{M}(k) \to \mathcal{M}(k[\varepsilon]/\varepsilon^2)$. Since every finitely generated $k[\varepsilon]/\varepsilon^2$ -module is a direct sum of objects of $\mathcal{M}(k)$ and of a free module, we see that ι induces an equivalence of categories $\iota : \mathcal{M}(k) \to \mathcal{M}(k[\varepsilon]/\varepsilon^2)$. In order to calculate the suspension functor in $\mathcal{M}(k[\varepsilon]/\varepsilon^2)$ we choose for every object M in $\mathcal{M}(k)$ an injective hull $M \hookrightarrow E(M)$ in $\mathcal{M}(k[\varepsilon]/\varepsilon^2)$. The suspension of M is then E(M)/M. Multiplication by ε on E(M) induces a natural isomorphism $E(M)/M \xrightarrow{\sim} M$. It follows that the suspension is naturally equivalent to the identity functor. Hence, $\iota : \mathcal{M}(k) \to \mathcal{M}(k[\varepsilon]/\varepsilon^2)$ is an equivalence of triangulated categories.

1.3. Let $\mathcal{M}(\mathbb{Z}/p^2)$ be the category of finitely generated \mathbb{Z}/p^2 -modules. The ring \mathbb{Z}/p^2 is self injective and every finitely generated \mathbb{Z}/p^2 -module is a submodule of a finitely generated free \mathbb{Z}/p^2 -module. Hence $\mathcal{M}(\mathbb{Z}/p^2)$ is a Frobenius category. If we replace "multiplication by ε " in 1.2 by "multiplication by p" then the arguments of 1.2 carry over *mutatis mutandis* showing that the stable category $\mathcal{M}(\mathbb{Z}/p^2)$ is equivalent as a triangulated category to $\mathcal{M}(\mathbb{Z}/p)$.

Summarizing we have the following (certainly well known) proposition.

1.4. Proposition. The homotopy categories of $m\mathcal{M}(\mathbb{Z}/p^2)$ and $m\mathcal{M}(\mathbb{Z}/p[\varepsilon]/\varepsilon^2)$ are both equivalent as triangulated categories to $\mathcal{M}(\mathbb{Z}/p)$.

1.5. Let *R* be the ring \mathbb{Z}/p^2 or $\mathbb{Z}/p[\varepsilon]/\varepsilon^2$. The categories $m\mathcal{M}(R)$ are biWaldhausen categories (see 1.2.4 [TT90] for a definition) which implies that the *K*-theory spaces of $m\mathcal{M}(R)$ and $m\mathcal{M}(R)^{op}$ are equivalent (the Waldhausen *S*-constructions are isomorphic). That's why taking *K*-theory with

respect to cofibrations or fibrations leads to the same result. The categories $m\mathcal{M}(R)$ both have natural cocylinder objects since they have natural path objects: $R[M] \xrightarrow{m \to m} M$ (recall that a finitely generated *R*-module *M* is finite). They satisfy the dual of the cylinder axiom, saturation and extension axiom of [Wal85]. Let $\mathcal{P}(R)$ be the category of finitely generated projective *R*-modules. The biWaldhausen categories $\mathcal{P}(R)$ and $\mathcal{M}(R)$ have (by definition) isomorphisms as weak equivalences, admissible monomorphisms as cofibrations and admissible epimorphisms as fibrations. Now the dual of Theorem 1.6.4 of [Wal85] asserts that the sequence

$$\mathcal{P}(R) \to \mathcal{M}(R) \to m\mathcal{M}(R)$$

of biWaldhausen categories induces a homotopy fibration of *K*-theory spaces. Moreover, Quillen's *dévissage* theorem [Qui73] shows that ι : $\mathcal{M}(\mathbb{Z}/p) \to \mathcal{M}(R)$ induces a *K*-theory equivalence. Hence there is a homotopy fibration

$$K(R) \to K(\mathbb{Z}/p) \to K(m\mathcal{M}(R)).$$

1.6. Quillen's calculation of $K_n(\mathbb{Z}/p)$ (see [Qui72]) gives $K_4(\mathbb{Z}/p) = 0$ and $K_3(\mathbb{Z}/p) = \mathbb{Z}/(p^2 - 1)$. Hence there is an exact sequence

$$0 \to K_4(m\mathcal{M}(R)) \to K_3(R) \to \mathbb{Z}/(p^2 - 1).$$

On one hand, the calculations of [EF82] and [ALPS85] show that $K_3(\mathbb{Z}/p^2) = \mathbb{Z}/p^2 \oplus \mathbb{Z}/(p^2 - 1)$. Therefore, $K_4(m\mathcal{M}(\mathbb{Z}/p^2))$ contains a subgroup which is isomorphic to \mathbb{Z}/p^2 (multiplication by p^2 is an automorphism on $\mathbb{Z}/(p^2 - 1)$ but zero on \mathbb{Z}/p^2). On the other hand, the calculations in the two articles also show that $K_3(\mathbb{Z}/p[\varepsilon]/\varepsilon^2) = \mathbb{Z}/p \oplus \mathbb{Z}/p \oplus \mathbb{Z}/(p^2 - 1)$. Therefore, $K_4(m\mathcal{M}(\mathbb{Z}/p[\varepsilon]/\varepsilon^2))$ cannot have a subgroup which is isomorphic to \mathbb{Z}/p^2 .

Summarizing we have the following proposition.

1.7. Proposition. The Waldhausen K-theories of $m \mathcal{M}(\mathbb{Z}/p[\varepsilon]/\varepsilon^2)$ and $m \mathcal{M}(\mathbb{Z}/p^2)$ are not equivalent.

1.8. Remark. Although the Theorem 1.9.8 of [TT90] is written down only for "complicial biWaldhausen" categories, its proof carries over to Frobenius categories with (co-) cylinder functor satisfying the (dual) of the cylinder axiom. In fact, the proof becomes easier, since no calculus of fractions is involved.

2. Nonexistence of the functor $\ensuremath{\mathbb{K}}$

2.1. Suppose there were a functor \mathbb{K} from small triangulated categories to spaces satisfying agreement and localization. Keep the notations of 1.5. According to Theorem 2.1 of [Ric89] (which works for Frobenius categories,

not only for those which arise from self-injective *k*-algebras), there is an exact sequence of triangulated categories

$$D_b(\mathcal{P}(R)) \to D_b(\mathcal{M}(R)) \to \mathcal{M}(R)$$

(see also [KV87]). By agreement, localization and *dévissage*, it follows that there would be a homotopy fibration

$$K(R) \to K(\mathbb{Z}/p) \to \mathbb{K}(\mathcal{M}(R)).$$

Proceeding as in 1.6, we find a contradiction to the calculations of [EF82] and [ALPS85] because the triangulated categories $\underline{\mathcal{M}(R)}$ for $R = \mathbb{Z}/p^2$, $\mathbb{Z}/p[\varepsilon]/\varepsilon^2$, are equivalent by 1.4.

Summarizing we have the following proposition.

2.2. Proposition. *There is no functor from small triangulated categories to spaces satisfying agreement and localization.*

2.3. Remark. If we also want additivity (see 3) below) to hold then a weaker form of agreement, namely 1'), and localization lead to a contradiction as well.

- 1') Agreement on K_1 : Let \mathcal{E} be a small exact category. Then $K_1(\mathcal{E}) \stackrel{\sim}{=} \mathbb{K}_1(D_b(\mathcal{E}))$.
- 3) Additivity: Let $F, G, H : \mathscr{S} \to \mathscr{T}$ be three exact functors between triangulated categories such that there is a natural exact triangle $F \to G \to H \to \Sigma F$ then

$$0 = \mathbb{K}_*(F) - \mathbb{K}_*(G) + \mathbb{K}_*(H) : \mathbb{K}_*(\mathscr{S}) \to \mathbb{K}_*(\mathcal{T}).$$

There is no functor satisfying agreement on K_1 , localization and additivity. Suppose on the contrary that a functor \mathbb{K} satisfying 1'), 2) and 3) exists. By additivity, Σ acts on the \mathbb{K} -groups as -1. The fact that $\Sigma \simeq id$ for the stable module categories $\underline{\mathcal{M}(R)}$, $R = \mathbb{Z}/p^2$ or $k[\varepsilon]/\varepsilon^2$, then implies that the groups $\mathbb{K}_*(\underline{\mathcal{M}(R)})$ are 2-torsion. Agreement on K_1 shows that $\mathbb{K}_1(\mathcal{P}(R)) = R^{\times} = \overline{\mathbb{Z}/p} \oplus \mathbb{Z}/(p-1)$ and $\mathbb{K}_1(\mathcal{M}(R)) = \mathbb{Z}/(p-1)$. So the map $\mathbb{K}_1(\mathcal{P}(R)) \to \mathbb{K}_1(\mathcal{M}(R))$ sends the factor \mathbb{Z}/p to zero. Using localization as before, we see that \mathbb{Z}/p has to be 2-torsion which is clearly wrong for p > 2.

Acknowledgements. I would like to thank Dan Grayson for the discussions I had with him, Amnon Neeman for stimulating my interest in these questions and for pointing out to me that the calculations of Sect. 1 imply the results of Sect. 2.

References

- [ALPS85] Janet E. Aisbett, Emilio Lluis-Puebla, Victor Snaith: On $K_*(\mathbb{Z}/n)$ and $K_*(\mathbb{F}_q[t]/(t^2))$. Mem. Amer. Math. Soc. **57**(329):vi+200, 1985. With an appendix by Christophe Soulé
- [EF82] Leonard Evens, Eric M. Friedlander: On $K_*(\mathbb{Z}/p^2\mathbb{Z})$ and related homology groups. Trans. Amer. Math. Soc. **270**(1):1–46, 1982
- [Hap87] Dieter Happel: On the derived category of a finite-dimensional algebra. Comment. Math. Helv. 62(3):339–389, 1987
- [Hov99] Mark Hovey: Model categories. American Mathematical Society, Providence, RI, 1999
- [Kel96] Bernhard Keller: Derived categories and their uses. In: Handbook of algebra, Vol. 1, pp. 671–701. North-Holland, Amsterdam, 1996
- [KV87] Bernhard Keller, Dieter Vossieck: Sous les catégories dérivées. C.R. Acad. Sci. Paris Sés. I Math., 305(6):225–228, 1987
- [Nee92] Amnon Neeman: Stable homotopy as a triangulated functor. Invent. Math. **109**(1):17–40, 1992
- [Qui67] Daniel G. Quillen: Homotopical algebra. Springer-Verlag, Berlin, 1967. Lecture Notes in Mathematics, No. 43
- [Qui72] Daniel G. Quillen: On the cohomology and *K*-theory of the general linear groups over a finite field. Ann. of Math. (2), **96**:552–586, 1972
- [Qui73] Daniel Quillen: Higher algebraic *K*-theory. I, pp. 85–147. Lecture Notes in Math., Vol. 341, 1973
- [Ric89] Jeremy Rickard: Derived categories and stable equivalence. J. Pure Appl. Algebra 61(3), 303–317, 1989
- [TT90] R.W. Thomason, Thomas Trobaugh: Higher algebraic *K*-theory of schemes and of derived categories. In: The Grothendieck Festschrift, Vol. III, pp. 247–435. Birkhäuser Boston, Boston, MA, 1990
- [Wal85] Friedhelm Waldhausen: Algebraic K-theory of spaces. In: Algebraic and geometric topology (New Brunswick, N.J., 1983), pp. 318–419. Springer, Berlin, 1985