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w 1. Introduction 

By a classical construction,  to each polarized Abelian variety and 
each compact  Riemann  surface, one canonically attaches a point in a 
certain modula r  variety. Because of  Torelli 's  theorem in the case of 
Riemann  surfaces, and for e lementary reasons in the case of Abel ian 
varieties, this invariant  determines the R iemann  surface or Abelian 
variety in quest ion up to isomorphism. Fo r  a family of polar ized Abelian 
varieties or R iemann  surfaces, by associating to every fibre its invariant,  
one obtains a mapping of the parameter  space of the family into the 
modu la r  variety. This so-called period mapping reflects various geometr ic  
properties of  the family. 

In his study of the modul i  of algebraic manifolds, Griffiths has 
extended the construct ion of the period mapping. If one considers the 
various ways of  turning a fixed compact  C ~ manifold into an algebraic 
manifold, the Hodge  decomposi t ion  of  the cohomology  groups becomes 
an invariant  of the algebraic structure. To make it depend on the iso- 
morphism class of the algebraic manifold alone, one must identify any 
two Hodge  decomposi t ions  which are related by a diffeomorphism of 
the underlying C ~~ manifold. In this manner,  Griffiths assigns to each 

* Supported in part by an Alfred P. Sloan Memorial Fellowship and NSF contract 
GP32843. 
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polarized algebraic manifold I a point in a "classifying space for Hodge 
structures", modulo the action of a discrete group. Just as before, a 
family of polarized algebraic manifolds gives rise to a period mapping. 
Although the analogue of Torelli's theorem is known only for some very 
special types of algebraic manifolds, the period mapping again reflects a 
number of aspects of the geometry of the situation. 

In the classical cases, the Siegel upper half plane plays the role of 
the classifying space, which is therefore a bounded symmetric domain. In 
general, the classifying space is not at all a bounded domain; nevertheless, 
those holomorphic mappings into it which have a certain property shared 
by all period mappings behave vaguely like mappings into bounded 
domains. One can thus investigate the period mapping of a family of 
algebraic manifolds by function-theoretic methods, and derive geometric 
results by analytic arguments. 

When families of algebraic manifolds come up in algebraic geometry, 
they usually have some singular fibres. The period mapping is then defined 
not on the entire parameter space, but only on the complement of the 
subvariety corresponding to the singular fibres; along the subvariety, 
the period mapping may become singular. It is the object of this paper 
to study the singularities which can occur, and to discuss the geometric 
consequences of the resulting description of the singularities. 

For relatively simple reasons, if a period mapping is defined outside 
a subvariety of codimension at least two, it can be continued across the 
subvariety, so that the singularities are removable [13]. I shall therefore 
consider only subvarieties of codimension one. According to Hironaka, 
a suitable modification turns the ambient space into a manifold, and the 
subvariety in question into a divisor with at most normal crossings. Thus, 
localizing the problem, one arrives at the following situation: the period 
mapping is defined on a polycylinder, from which some coordinate 
hyperplanes have been removed; in other words, on a product of punc- 
tured discs and discs. The mapping, by its very definition, takes values 
in the quotient of a classifying space for Hodge structures modulo a 
discrete group of automorphisms. However, passing to the universal 
covering of the product of punctured discs and discs, one can lift the 
mapping to the classifying space itself. As the first of the two main 
theorems of this paper assert, the lifted mapping is asymptotic to the 
orbit of a certain nilpotent Lie group in the classifying space; moreover, 
the approximating orbit inherits several of the properties of the original 
mapping. 

There is a close relationship between this "nilpotent orbit theorem" 
and the regularity theorem for the Gauss-Manin connection [-8]. The 

1 The polarization, i.e. the cohomology class of a projective embedding, is necessary for 
technical reasons. 
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regularity theorem implies the one-variable version of the nilpotent orbit 
theorem fairly directly, although it does not seem to give the several 
variables case. Conversely, with some effort, the regularity of the Gauss- 
Manin connection can be deduced from the nilpotent orbit theorem. 

The nilpotent orbit theorem reduces problems concerning the 
singularities of the period mapping to questions about the nilpotent 
orbit which approximates the mapping. To make the theorem useful in 
various applications, one still needs detailed information on the nilpotent 
orbits which may occur. This, incidentally, appears to be a deeper matter 
than the nilpotent orbit theorem itself. For most applications, an 
understanding of these orbits in the case of a single variable suffices 
entirely. Also, the general case, of more than one variable, cannot be 
treated by the same arguments and causes major additional difficulties. 
I have therefore limited myself to the one-variable situation. However, 
I intend to take up the general case in a future continuation of this 
paper. 

The nilpotent orbits which can come up in the one-variable version 
of the nilpotent orbit theorem are described by the second major theorem, 
the "SL2-orbit theorem". Roughly speaking, each such orbit in turn is 
asymptotic to an equivariantly embedded copy of the upper half plane, 
which lies in the classifying space for Hodge structures in a special way. 
The precise statement of the theorem is complicated, but it seems to be 
sharp, and it works in various applications. 

For both theorems, it is irrelevant whether the period mapping 
actually comes from a family of polarized algebraic manifolds; the 
proofs only depend on certain properties which are common to all 
period mappings. Consequently, both theorems hold in a more general, 
abstract setting, for which Griffiths has coined the term "variation of 
Hodge structure". Although this generalization is of little interest in 
itself, some of the geometric consequences of the theorems can be derived 
more easily in the wider context of a variation of Hodge structure. 

According to a conjecture of Griffiths, there should be an analogue 
of the Satake-Borel-Baily compactification, for any quotient of a classi- 
fying space for Hodge structures by the action of an arithmetic subgroup 
of its automorphism group. However, in general one ought not to 
expect it to be a compact space. Such a partial compactification should 
have the property that period mappings, defined on punctured discs, 
can be continued across the punctures, as mappings into this larger 
space; also, relative to the extension property, it should be essentially 
minimal. The SL2-orbit theorem suggests how one might try to construct 
a partial compactification. Once the partial compactifications are known 
to exist, the two orbit theorems may well enter the proof of the extension 
property. 
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This is speculation, of course. Among the more immediate applica- 
tions of the two main theorems are a sharpened version of Landman's 
monodromy theorem [21]; more detailed information about the mono- 
dromy transformation around a singular variety; a result which relates 
the action of the monodromy transformation to the growth ofcohomology 
classes; and an affirmative answer to a conjecture of Deligne. As the 
conjecture asserts, if a one-parameter family of polarized algebraic 
manifolds degenerates to a singular variety, the Hodge structures of 
the regular fibres approach what Deligne has called a "mixed Hodge 
structure". According to Deligne's Hodge theory for algebraic varieties 
[7], the cohomology groups of the singular fibre also carry natural 
mixed Hodge structures. By relating these two types of mixed Hodge 
structures, one may hope to get some information on how a nonsingular 
algebraic variety can degenerate into a singular one. To me, of the 
potential consequences of the two orbit theorems, this seems the most 
important. A forthcoming joint paper of Clemens and myself will be 
devoted to such questions. 

Although the two main theorems are of a local nature, they have 
also global implications. In [11], Griffiths proved certain global state- 
ments about the period mapping of a family of algebraic manifolds, and 
more generally, of an abstract variation of Hodge structure. His argu- 
ments are differential-geometric, and they depend on the compactness of 
the base space. Since then, Deligne has given algebraic-geometric proofs 
of the same results, valid for any algebraic family with quasi-projective 
base [6]. By using the two orbit theorems, one can make Griftiths' 
original arguments go through for an arbitrary variation of Hodge 
structure, provided the base is Zariski open in some compact variety. 

As for the organization of this paper, the two sections following the 
introduction establish notation and review the basic definitions and 
constructions. The nilpotent orbit theorem is stated in section four. 
In order to clarify its meaning, I have given a separate statement of the 
one-variable version of the theorem. Section four also discusses the 
connection between the regularity of the Gauss-Manin connection and 
the nilpotent orbit theorem; some of the details, which go beyond the 
framework of this paper, are omitted. Section five is devoted to the 
SL2-orbit theorem and related questions, such as the rationality of the 
orbits which occur, and their behavior with respect to Siegel sets. The 
local and global consequences of the two main theorems are taken up 
in sections six and seven. In a conversation with Griffiths, it became 
apparent that the computations in [11] can be somewhat simplified. 
For this reason, and also for the sake of completeness, section seven 
contains complete arguments, instead of referring to [11]. Since the 
proofs of the two orbit theorems are lengthy, I have separated them 
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from the statements of the theorems; they can be found in the final two 
sections. 

The main results of this paper have been announced  and discussed 
in [14]. There is also a proof  of the one-variable version of the nilpotent 
orbit theorem, using the regularity of the Gauss -Manin  connection, and 
an outline of the proof of the SL2-0rbit theorem. 

I wish to record my indebtedness to Phillip Griffiths and Pierre Deligne. I had nu- 
merous discussions with Griffiths, which have influenced this paper. In particular, he 
helped me understand the relationship between the regularity of the Gauss-Manin con- 
nection and the nilpotent orbit theorem. Deligne read an earlier version of the proofs of the 
two main theorems, and he suggested several improvements. Lemma 8.17 in its present 
form it due to him. He also extracted the statement of Lemma 9.33, which was only implicit 
in the original argument, and simplified its proof. From the two theorems, he independently 
deduced most of the consequences mentioned in section six, as will be pointed out in that 
section. 

w 2. Hodge Structures 
As is well-known, the complex cohomology groups of a nonsingular  

complex projective variety V have a decomposit ion according to Hodge 
type, 

(2.1) Hk(V,~)=~HP'q(V,,tE), p,q>O, p+q=k; 

HP'q(I/,,C) and Hq'P(V,~) are then complex conjugate to each other, 
relative to H k (V,, ~). Now let r/e H2(V,, 7/) be the cohomology class of the 
projective embedding, i.e. the Chern class of any hyperplane section 
of V.. Left mult ipl icat ion by r /determines a linear map  

L: nk(v, Q)--~Hk+2(V, •). 

For  0 < k < n = d i m  c V, the ( n - k ) - t h  power of this K~ihler operator is 
injective. The primitive part of Hk(v, if2), which will be denoted by 
pk(v,, Q), is defined as the kernel of the next higher power of L, namely 
L n- k § If k > n, one defines pk (V, Q ) =  0. One then obtains the decompo- 
sition 

nk(v, Q ) =  ~) LJP k- 2i (V,, Q), j >  max(k - n, 0) 

(cf. [25]). Tensoring with tE gives the corresponding statement 

(2.2) nk(v, C ) =  ~ LIpk-2J(V,, C), j > m a x ( k -  n, 0). 

Here L and Pk(V, r  are defined in analogy to the situation before. Since 
the image o f t / i n  H 2 (V, IE) has Hodge type (1, 1), the two decomposit ions 
(2.1) and  (2.2) are compatible:  let P~',~(V, C) denote the intersection of 
HP,~ (V, IE) and  PP+q(V, IE); then 

Pk(l~, I~)= ~) PP'q(V, IF.), p, q>--_O, p+q=k,  
(2.3) 

HP,~(V, IE)=t~LJPP-I ,q-J(V,C) ,  j>max(p+q-n,O) .  
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The operator L is defined over Q, so that Pv'~(V, ~) and Pq'P(V, C) are 
again complex conjugates. 

The primitive cohomology groups carry a nondegenerate bilinear 
form, the so-called Hodge bilinear form, 

S(Cl,C2)=(--1)k(k-1)/2(Ln-kclAc2)EV], ciEpk(v,~) 
([V]=fundamental  cycle of V), which is evidently defined over Q. 
Depending on whether k is even or odd, S is symmetric or skew. The 
Hodge bilinear relations [25] assert that 

S(PV'q(V, ~), Pr"(V, C))=0 unless p=s ,  q=  r, 
(2.4) 

iv-qS(c,-~)>O for c~PP'~(V,G), c~eO 

(barring designates complex conjugation). 
This state of affairs has been codified by Deligne in the following 

definitions [5]: Let H R be a finite dimensional real vector space with a 
Q-structure defined by a lattice H a c  H~, and let He denote the complexi- 
fication of H R. A Hodge structure is a decomposition 

(2.5) He=  ~ H p'q, with Hq'P=H p'q. 

It is not specifically assumed that HP'q=O unless p, q>0.  The integers 
hv'q= dim H p'q are the Hodge numbers. The Hodge structure (2.5) is said 
to have weight k if the subspaces H p'q are nonzero only when p + q = k .  
To each Hodge structure of weight k one assigns the Hodgefiltration 

(2.6) HCD ... D F  p-1 ~ F V ~ F  v+l ~ ... ~0,  

where 

(2.7) Fv = ~i>- p Hi, k-i. 

This filtration has the property 

(2.8) Hc = F p @ Fk-p +1 for each p. 

Conversely, every decreasing filtration with the property (2.8) determines 
a Hodge structure {HV'q}, namely 

(2.9) HV'q=FVnffa (p+q=k) .  

In this manner, weighted Hodge structures and Hodge filtrations corre- 
spond to each other bijectively. 

A morphism of weighted Hodge structures is a rationally defined linear 
map between two vector spaces with Hodge structures of the same 
weight, which preserves the Hodge decompositions (or equivalently, 
which preserves the Hodge filtrations). More generally, a linear map 

2:H1,r H2, r 
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between two Hodge structures of weight k 1 and k 2 shall be called a 
morphism of type (r,r) if it is defined over Q, if k,_=k~+2r, and if 
2H~,qcH~+,, 4+, for all p, q. This last condition is again equivalent to 
2F~cF~ +r, for all p. 

A polarization for a Hodge structure of weight k consists of the datum 
ofa bilinear form S on He, which is defined over •, and which is symmetric 
for even k, skew for odd k, such that 

S(H p'~, H"~)=0 unless p=s, q=r, 
(2.10) 

iP-qS(v,~)>O if v~H p'q, v4:0. 

In particular, such a bilinear form must be nondegenerate. For  each 
Hodge structure {HP'q}, the Weil operator C: H r  C is defined by 

Cv=iP-qv, if v~H p'q. 

In terms of the Hodge filtration, the relations (2.10) become equivalent to 

S(F p, Fk-p+l)=0 for all p, 
(2.11) 

S(Cv,~)>O if w H o ,  v4~O. 

As the definitions have been arranged, the decomposition(2.1) 
describes a Hodge structure on Hk(v,, C), of weight k. The sub-Hodge 
structure {PP'~(V, C)} on Pk(v,, C) is polarized with respect to the Hodge 
bilinear form. In view of (2.3), this sub-Hodge structure completely 
determines the full Hodge structure (2.1). 

There are some obvious functorial constructions which can be 
performed with Hodge structures. Let Ha, H z be two finite dimensional 
complex vector spaces, each equipped with a ~-structure and a Hodge 
structure of weight k~, i =  1, 2. Then H a | H 2 inherits a Hodge structure 
from the two factors, of weight k, + k z: the tensor product of a vector 
o1EH~I,4, and a vector v2~Hp2'~/2 is assigned the Hodge type (Pa +P2, 
qa + q2). If each of the factors H a and H 2 carries a bilinear form which 
polarizes the respective Hodge structure, then, as can be checked directly, 
the natural bilinear form on Ha| 2 polarizes the product Hodge 
structure. In the case of a single vector space H e with a Hodge structure 
of weight k, the n-th symmetric product of H e carries a unique Hodge 
structure of weight n k, such that the symmetrization map from the n-th 
tensor product to the n-th symmetric product becomes a morphism of 
Hodge structures. In case the Hodge structure of H e is polarized by a 
bilinear form S, the induced bilinear form on the symmetric product 
will polarize the product Hodge structure. Similarly, the n-th tensor 
product | H e induces a Hodge structure of weight n k on its subspace 
A" H e. The dual space H~ of H e has a unique Hodge structure of weight 
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- n, such that the natural pairing from H~ | H c to r becomes a morphism 
when IE is given the trivial Hodge structure of weight zero. Finally, 
since Hom (/-/1,//2) ~- H* | H2, Horn (H1, H2) carries a natural Hodge 
structure whenever H 1 and H 2 do. All these constructures are again 
compatible with any polarizations which may be present. For future 
reference 

(2.12) Hodge structures and polarized Hodge structures are compatible 
with the operations of tensor products, symmetric products, exterior 
products, Hom, and duality. 

Griffiths [10] first considered Hodge structures in order to study the 
following geometric situation: Let ~e ~ and M be connected complex 
manifolds, 

n: 3r M 

a surjective, proper, holomorphic map with connected fibres, which is 
everywhere of maximal rank. For each t~M, the fibre 

is thus a compact, complex submanifold. The fibres are assumed to have 
the structure of polarized algebraic variety, i.e. each comes equipped 
with the cohomology class ~/t~ H2(Vt, 7l) of a projective embedding; as a 
final hypothesis, the polarizations ~/t shall fit together, to give a section 
of the direct image sheaf R 2 n .  (Z). I shall refer to this geometric situation 
as a family of polarized algebraic manifolds, parameterized by M. Typically, 
it arises as follows: Let n: ~--*M be a surjective algebraic mapping 
between complex  projective varieties, whose generic fibre is smooth, 
let M c M be the Zariski open subset of the set of nonsingular points 
of M, over which n has smooth fibres, and let ~e ~ be the inverse image 
of M; if each fibre is given the polarization of a particular projective 
embedding of qT, then all the hypotheses are met. 

One can regard q r ~ M  as a C ~ fibre bundle. Hence, for each k 
between 0 and 2 n (n = dim e Vt), there exists a fiat complex vector bundle 
I - I ~ M ,  whose sheaf of germs of flat sections is the direct image sheaf 
R k n .  (112). For tE M, the fibre of H~ over t can be naturally identified with 
H~(Vt, r The fiat bundle I-I~ contains a fiat real subbundle H~t, whose 
fibres correspond to the subspaces Hk(Vt, R)cHk(Vt, C); and H~, in 
turn, contains a flat lattice bundle Hi ,  whose fibres are the images on 
H~(V, Z) in Hk(Vt, R). From harmonic theory with variable coefficients 
[19] or Grauert's coherence theorem [9], it follows that the integers 
htV'a=dim Hv'~(V, IF.) depend upper semicontinuously on t. Since their 
sum, extended over all p and q with p+q=k, remains constant, the 
individual summands must also stay constant. Thus one can again 
quote [9] or [19], to conclude: there exist C ~ subbundles HP,~c 
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H~ ( p + q = k ) ,  with fibre HP'~(V~,~) over tEM. For  O<p<k, F p= 
•i>=p Hi'k-i is then also a C ~ subbundle of H k. 

Let T*--~M be the holomorphic contangent bundle, and 

17: (9(Hk)--~(9(Hk(~)T *) 

the canonical flat connection (C( . . . )=sheaf  of germs of holomorphic 
section of ...). It is now possible to state Griffiths' most basic theorem 
on the variation of Hodge structures; proofs can be found in [10] or [5]. 

(2.13) Theorem (Griffiths). The subbundles F P c H  k are holomorphic 
subbundles. Furthermore, for each p, 17(9(FP)c(9(Fp-l| 

The first of these two statements asserts that the Hodge filtration 
varies holomorphically with t eM.  The second becomes vacuous if k = l ; 
for higher k, it has turned out to be a crucial ingredient of many arguments. 

Because of technical reasons, which will become apparent in the 
following, it is necessary to consider the polarized Hodge structures (2.3) 
on the primitive parts of the cohomology groups of the fibres Vt, rather 
than the Hodge structures (2.1). Since these sub-Hodge structures 
completely determine the full Hodge structures (2.1), no information is 
lost in doing so. According to the definition of a family of polarized 
algebraic manifolds, the polarizations form a flat section of H 2. It follows 
that the subspaces pR(vr,~)cHR(Vt,~ ) constitute the fibres of a fiat 
complex subbundle pk~  l[_llk which is the complexification of the flat l C l i C ~  

real subbundle PR=W e c~ H~; pk contains the flat bundle of lattices 
k k k P~ = P~ c~ H z. With respect to any local flat trivialization of H k, the vector 

spaces PP'q(Vt, C) become the intersections of a fixed vector space with 
the continuously varying spaces HP'q(Vt, C), so that their dimensions 
must depend lower semi-continuously on t. In view of (2.3), this forces 
the dimensions to stay constant. Thus the vector spaces PP'q(Vt, ~)  are 
the fibres of C a subbundles PP'qcPr k (p+q=k). With a change of 
notation, I now set FP=~i>=pP i'k-i. As a reformulation of Griffiths' 
theorem, one finds: 

(2.14) the subbundles FPcP~  are holomorphic, and 

17(~(FP)cC(Fp-t |  for each p. 

In the case of an algebraic family n: ~--- ,M, the above constructions 
can be performed in the algebraic category. More concretely, let ~ and M 
be nonsingular quasi-projective varieties over C, and n: f ~ M  a 
surjective algebraic mapping with smooth, connected fibres. Then ~ - - ,  M 
may be viewed as a family of polarized algebraic manifolds. The bundles 
l~c, F p all have natural  algebraic structures, and the flat connection V 
is also algebraic. In this context, Grothendieck has called 17 the Gauss- 
15 Inventiones math., Vol. 22 
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Manin connection. A more detailed discussion can be found in [8] and 
[17]. 

It is sometimes convenient to consider collections of data with the 
properties mentioned above, which may not come directly from a family 
of polarized algebraic manifolds. For this purpose, one introduces the 
notion of a variation of Hodge structure (cf. [11]). The ingredients are: 

a) a connected complex manifold M; 

b) a flat complex vector bundle ttc---,M with a flat real structure 
H ~ c H c ,  and with a flat bundle of lattices H z c H ~ ;  

c) an integer k; 

d) a flat, nondegenerate bilinear form S on He, which is rational 
with respect to the lattice bundle Hz, and which is symmetric or skew, 
depending on whether k is even or odd; 

e) and a decreasing filtration 

H c ~ ' . ' ~ F  p - I ~ F p ~ F  p + I ~ ' - . ~ 0  

of He by holomorphic subbundles. 
These objects are to satisfy the following two conditions: 

i) For each point t~M, the fibres F r of the bundles F p constitute the 
Hodge filtration of a Hodge structure of weight k on the fibre of H c at t, 
and S polarizes this Hodge structure. 

ii) For each p, V(9(P)cd~(F p-l) (V=flat connection of Hc). 

Now let {M, He, F p} be a variation of Hodge structure. In view of 
(2.7) and (2.9), the fibres of the intersection F P n F  k-p are isomorphic 
to those of FP/F p+~, and thus have constant dimension. This makes 
the intersection a C ~ vector bundle. For future reference, 

Hp'k-p=FPc~F k-p is a C ~ subbundle of He, and 
(2.15) 

FP= ~ p  W "k-i, as C ~ vector bundle. 

By definition, the fibres of the bundles H p'q at a point t~M are the 
Hodge (p, q)-spaces of the Hodge structure corresponding to t. A section 
of I-I c is said to have Hodge type (p, q) at t if its value at t lies in the fibre 
of H ~' 4. 

According to the explanations above (2.14), if r~: ~ e ~ M  is a family 
of polarized algebraic manifolds, the bundle of primitive k-th cohomology 
groups p k ~  M carries a variation of Hodge structure in the sense of the 
definition. 

As was mentioned already, when a variation of Hodge structure 
arises from algebraic geometry, the base s p a ~  M will usually lie as a 
Zariski open subset in some larger space M. The central technical 
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problem of this paperis the question of the behavior of the bundles F p 
near the subvariety M - M .  The problem becomes more manageable if 
one represents the bundles F p as the pullback to M of certain universal 
bundles over a classifying space for Hodge structures, as Griffiths [10] 
has don_e by means of his period mapping. The behavior of the bundles F p 
near M - M  can then be described in terms of the singularities of the 
period mapping. 

w 3. Classifying Spaces for Hodge Structures 

I shall briefly recall Griffiths" construction of the classifying spaces 
for polarized Hodge structures and of his period mapping. For this 
purpose, I consider a finite dimensional real vector space H R with 
complexification He, and containing a lattice Hz=H ~. Also fixed 
throughout the discussion will be an integer k and a collection of non- 
negative integers {h p'q} which satisfy hP'q=h q'p, h~'q4:0 only if p+q=k, 

h p'q =dim H R. The first objective is to put a natural complex structure 
on the set of all Hodge structures of weight k on He, having the integers 
h p' q as Hodge numbers. Let ~" be the set of all decreasing filtrations (2.6), 
such that d imF p - V  ~i,k-~ In the obvious manner, ~- forms a - - / d > p  "" " 

subvariety of a product of Grassman manifolds. As such it inherits the 
structure of complex projective variety. The general linear group of He 
operates transitively and holomorphically on ~ so that ~ is in fact a 
nonsingular complex projective variety. Those filtrations which satisfy 
(2.8) form an open (in the Hausdorff topology) subset ~ = ~ .  Via the 
correspondence (2.7) between Hodge filtrations and weighted Hodge 
structures, the complex manifold ~ parameterizes exactly the Hodge 
structures of weight k on He, which have the h p'q as Hodge numbers. 

Now let S be a nondegenerate bilinear form on He, symmetric or 
skew depending on whether k is even or odd, and defined over Q, relative 
to the lattice H z. I shall denote by b the subset of all those filtrations 
in ~ which satisfy the first of the two conditions in (2.11); t h e n / 3 = ~  
is a subvariety. The orthogonal group of the bilinear form S is a linear 
algebraic group, defined over Q. The group of its C-rational points 

(3.1) G~={g~Gt(Hr gv)=S(u,v) forallu, v~He} 

acts on ~ and/3;  this action will simply be denoted by juxtaposition. 
As can be checked by elementary arguments [10], 

(3.2) G C operates transitively on D. 

In particular,/) c ~ must be a nonsingular subvariety. Those filtrations 
in / )  which also obey the second condition in (2.11) (equivalently, the 
second condition in (2.10)) automatically satisfy (2.8), and are therefore 
15" 
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Hodge filtrations. The subset D c b of points corresponding to such 
filtrations is open in the Hausdorff topology of/) .  Thus D inherits the 
structure of complex manifold. By its very definition, D parameterizes 
all Hodge structures of weight k, which are polarized by S and have the 
h p'~ as Hodge numbers. 

The group of real points in Go, namely 

(3.3) G~={g~Gl(H~)lS(gu, gv)=S(u,v) for all u,v~HR}, 

acts as a group of automorphisms on D. Again one can use simple 
arguments in linear algebra, to conclude: 

(3.4) G R acts transitively on D. 

In order to exhibit b and D as quotients of Gr and G~, I choose a particu- 
lar Hodge structure {H~'q}, corresponding to a point oeD;  this point 
will be called the reference point or base point. Let {FOP}, be the Hodge 
filtration determined by the reference Hodge structure {Hg'q}. A linear 
transformation g e Gr keeps the base point o fixed precisely when g Fo p = Fo p 
for all p. This gives the identification 

(3.5) b_~GcfB,  where B={geGr for all p}; 

under this identification, the identity coset and the base point correspond 
to each other. As a quotient of a complex Lie group by a closed complex 
Lie subgroup, G~B has the structure of complex manifold; evidently (3.5) 
describes a complex analytic isomorphism. 

In view of (3.4), one obtains an analogous identification 

(3.6) D~-G~/V, with V=G~c~B. 

The embedding D c / ?  then corresponds to the inclusion G~/V= 
G~/G~c~ B c GeJB. As follows from (2.9), each gs  V preserves not only 
the reference filtration {FOP}, but also the individual subspaces Hg 'q, as 
well as the Weil operator C o of the Hodge structure {Hg'q}. Hence V 
leaves invariant a positive definite Hermitian form (cf. (2.11)). Moreover, 
as the intersection of closed subgroups of Gl(Hc), V is also closed, so 
that 

(3.7) V is compact. 

The bilinear form S was assumed to take rational values on the 
lattice H z. In particular, then, 

(3.8) Gz = {g ~ Gxtlg Hz = H z} 

lies in G~ as an arithmetic subgroup. Since G~ operates on D with 
compact isotropy group, and since Gz is discrete in G~, the action of G z 
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on D must be properly discontinuous. Hence, for any subgroup F = G z, 
the quotient of the complex structure of D by F turns F'-.D into a 
complex analytic variety. The analogous statement about classifying 
spaces for weighted Hodge structures without polarization fails, and this 
is a major reason for considering polarized Hodge structures. 

A most important feature of the spaces /3 and D is the existence 
of a distinguished, group invariant tangent subbundle. In order to define 
it, it is necessary to mention some properties of the Lie algebras of Gc 
and GR; these will also be of use independently. The Lie algebra g of the 
complex Lie group Gr can be described by the infinitesimal version 
of (3.1): 

(3.9) g={X~End(Hr v)+S(u, Xv)=O for all u,v~Hc}. 

It is a simple complex Lie algebra, which contains 

(3.10) go = {S~glgn~=n~} 

as a real form; i.e. go is a real subalgebra such that g = go 0) i go. Via the 
containment G~= G c, go becomes the Lie algebra of Gw The reference 
Hodge structure {H~ 'q} of H C induces a Hodge structure of weight 
zero on 

End (He) = Hom (He, He) 

(cf. (2.12)). It can be checked that the - rationally defined - subspace 
g = End (H e) carries a sub-Hodge structure. Hence 

g = ~p gP' - P is a Hodge structure of weight zero, 
(3.11) 

with gP'-P={X~gIXH"~=H r+p's-p for all r, s}. 

As a consequence of the naturality of the definition, 

I- , ]:  g |  is a morphism of Hodge structures; 
(3.12) 

i.e., [gP,-P, gq,-~]=gP+q.-~P+q) 

The Lie algebra b of B consists of all those X~g which preserve the 
reference Hodge filtration {Fg}; equivalently, 

(3.13) b =  ~p_~0 gP' -p '  

Let g0 be the Lie algebra of V= G c~ B. Then 

(3.14) V o = g o c ~ b = g o n b n b = g o C ~ f l  ~176 

As a final observation in this context, one should notice that 

(3.15) Ad g(gP'-P)= ~ _ p  g i ' - i  for g~B. 
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The holomorphic tangent space o f / 3 2  Gc/B at the base point eP is 
naturally isomorphic to g/b. Under this isomorphism, the action of the 
isotopy group B on the tangent space corresponds to the adjoint action 
of B on g/b. Consequently, the holomorphic tangent bundle T ~ / 5  
coincides with the vector bundle associated to the holomorphic principal 
bundle 

B---~ Gr Gc/B ~ - /5 

by the adjoint representation of B on o/b. Because of (3.15), 

(b q~ 9-  ~' ~)/b = 9/b 

defines an Ad B-invariant subspace. By left translation via Go, it gives 
rise to a Gr holomorphic subbundle of the holomorphic 
tangent bundle. It will be denoted by Th(/5), and will be referred to as the 
holomorphic horizontal tangent subbundle. One can check that this 
construction does not depend on the particular choice of the base point 
o e D ;  indeed, this is essentially the statement of Lemma3.18 below. 
A holomorphic mapping ~ :  M ~ / 5  of a complex manifold M into /5 
is said to be horizontal if at each point of M the induced map between 
the holomorphic tangent spaces takes values in the appropriate fibre 
o f t  h (/5). The horizontal tangent subbundle, by restriction to D, determines 
a subbundle Th(D ) of the holomorphic tangent bundle T(D) of D. The 
Gc-invariance of Th(/5 ) implies the G•-invariance of Th(D ). The notion 
of a horizontal mapping into D is defined just as in the case of/5; in 
other words, a mapping into D is horizontal precisely when it is horizontal, 
considered as a mapping into/5. 

It should be pointed out that the definition of a horizontal mapping 
which was given above is stricter than that in [13]. In fact, Th(D ) is a 
usually proper subbundle of the "horizontal distribution" of [13]. In 
order to see this, I define, in terms of the reference Hodge structure {Ho p' q}, 

so that Hc=H:v�9 d. When k is even, these two subspaces are 
defined over R and orthogonal, relative to S. For odd k, they are 
mutually conjugate and coincide with their own annihilators. In both 
cases, the Hermitian form i k S(u, ~) is positive definite on one of the two 
subspaces, negative definite on the other. As can be checked directly, 
and as will also be argued in some detail at the beginning of w 8 below, 
this makes 



Varia t ion  o f  H o d g e  St ruc ture  225 

a maximal compact subgroup of G~. Clearly K contains the isotropy 
group VcG~, and has 

1 o = {X~ ~o IX H . . . .  C H .. . .  } 

= ~0 t~ ~)p  even ~P, - P 

as its Lie algebra. The adjoint action of K preserves 

Po=go n @podd ~P'-P, 

so that go=f0~P0  turns out to be a Cartan decomposition [16]. Let p 
be the complexification of Po. Under the natural identification of g/b 
with the holomorphic tangent space to D ~- G~/V at the identity coset, 
the fibre of the "horizontal distribution" of [13] corresponds to b ~)p/b, 
whereas the fibre of the horizontal tangent subbundle corresponds to 
b~g- l " l /b  ' Since p contains g-1'1, and because of the homogeneity of 
both bundles, the horizontal tangent subbundle lies inside the "horizontal 
distribution". 

In view of this containement, Theorem 9.1 of [13] gives the following 
lemma. A more self-contained argument can be found in [5]. 

(3.16) Lemma. There exists a G•-invariant Hermitian metric on D 
whose holomorphic sectional curvatures in the directions of Th(D ) are 
negative and bounded away from zero. 

Since G~ operates transitively, any two G~-invariant metrics on D 
are mutually bounded. Thus the previous lemma, together with standard 
arguments in hyperbolic complex analysis (see [18] or [26]), implies 
a very crucial property of horizontal holomorphic mappings: 

(3.17) Corollary (cf. (9.3) in [13]). For any horizontal holomorphic 
mapping of the complex upper half plane into D, the induced mapping 
between the holomorphic tangent spaces is uniformly bounded, relative to 
the Poincar~ metric on the upper half plane and any given Git-invariant 
Hermitian metric for D. The value of the bound depends only on the 
normalization of the metrics. 

It will be useful to have an alternate description of the horizontal 
tangent subbundle and the notion of a horizontal mapping. Since G c 
operates on/3, its Lie algebra 9 may be viewed as a Lie algebra of holo- 
morphic vector fields, via infinitesimal translation. The transitivity of G c 
ensures that 9, by evaluation, maps onto the holomorphic tangent 
space at each point of/3. At the base point, the evaluation mapping has 
kernel b. Thus one again obtains the familiar isomorphism between 9/b 
and the holomorphic tangent space at the base point. 
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(3.18) Lemma. At a point cED, corresponding to the filtration {FP(c)}, 
a vector field X~ 9 takes its value in the fibre of Th(/) ) if and only if X, 
regarded as an endomorphism of He, maps FP(c) into Fr-l(c), for each p. 

Proof. At the base point, this amounts to a reformulation of the 
definition of the horizontal tangent subbundle. Elsewhere it then follows, 
because all of the constructions and identifications which are involved 
are preserved by the action of Gr 

By construction, /) carries a trivial complex vector bundle He(/)), 
with fibre H e, and a filtered family of holomorphic subbundles 

(3.19) Hc(D)~. . .~FP-I(b)~FP(b)~FP+I(b)D . . .~0,  

whose fibres over any point constitute the filtration of H c which describes 
the point in question. Let T* (/)) be the holomorphic cotangent bundle, 
and 

17: e (He(b))--* 0 (Hc(/))| (/))) 

the flat connection. For every integer p, there is a natural quotient 
mapping 

qP: n c ( / ) ) ~  Hr 

As one can check readily, the composition 

qP o V: (P (V p (/)))--~ • (n  C (/))/F p (/))| (/))) 

is linear over O, the sheaf of germs of holomorphic functions. Hence 
qpo V defines a bundle map 

(3.20) ~P: FP(/))-~ Hr174 (/)), 

the second fundamental form of FP(D) in He(/)). If X is a holomorphic 
vector field, one can compose V with the operation of contraction with X; 
notation: V(X). Similarly, I shall write aP(X) for qpo V(X). Then tT'(X) 
is a bundle map from FP(/)) to Hc(b)/FP(b). An element X~9 may be 
regarded either as a holomorphic vector field on /), or as an endo- 
morphism of H c, and thus as a bundle map from He(/) ) to itself. 

(3.21) Lemma. For every Xe9,  regarded as holomorphic vector field, 
tTP(X) is equal to the composition qPoX; in this latter expression, X is 
considered as a bundle map. 

Proof. Let f be a local holomorphic section of FP(/)) over an open 
set Uc/) .  Equivalently, f can be viewed as a holomorphic Hc-valued 
function on U, whose value at any point a~ U lies in the fibre of 
F'( /))  over a. For aeU,  X~9,  t~R ,  the exp(- tX)- t ransla te  of the 
fibre of FP(/)) over exp(t X)a coincides with the fibre over a. Hence 
e x p ( -  t X) f((exp t X) a) takes values in the fibre over a, for all sufficiently 
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small t~R.  Differentiating with respect to t at t=0 ,  one finds that qP 
annihilates ( V ( X ) f - X o f ) ( a ) ,  as the lemma asserts. 

Next I shall consider a holomorphic mapping ~ :  M - * / )  of a complex 
manifold M into/) .  The vector bundles (3.19) pull back to trivial complex 
vector bundle He-*  M, with a family of holomorphic subbundles 

H c ~  ... ~ F  p-I  ~ F P ~ F  '~+I ~ --. ~ 0 .  

Just as in the case of / ) ,  one can define the flat connection V on H c and 
the second fundamental form a p of F p in H e. This second fundamental 
form then becomes the pullback via ~ of the second fundamental form 
of FP(/)) in He(/) ). Hence, by combining (3.18) with (3.21), one obtains a 
criterion for horizontality of maps in to / ) :  

(3.22) Corollary. A holomorphic map tP : M---~D is horizontal if and only 
if V (9(FP)c(9(FP-I | T*), .for all p. 

I now consider a variation of Hodge structure {M, H e,F~}. The 
case of primary interest, of course, is that of a variation of H odge structure 
arising from the k-th primitive cohomology groups of the fibres of a 
family of polarized algebraic manifolds. The universal covering of the 
base space M will be denoted by if/. As a fiat vector bundle, Hc---~ M 
is associated to the principal bundle 

n t (M) -* ~ / - ~  M 

by a representation 

(3.23) q~: n 1 (M) -~ G/(He); 

here H c denotes the fibre of the canonically trivial bundle f | c -*  ~t, which 
is obtained by pulling Hr back to ~/. Thus Hr can be realized as the 
quotient of ]~/x Hr by the product of the obvious action of n 1 (M) on ~1 
and the action ~0 of n 1 (M) on H C. The objects H~, Hz, S correspond to a 
real form HRc  He, a lattice H z in H~, and a rationally defined bilinear 
form S on H C. The subbundles F P c H r  pull back to subbundles FP of 
the trivial vector bundle ~ / x  He. At each point of ~/, the fibres of the FP 
constitute a Hodge filtration on the fixed vector space He. Since the 
Hodge numbers h p'k-p a r e  equal to the ranks of the vector bundles 
FP/F p+t, they must remain constant. Thus one is led to consider the 
classifying space D for weighted Hodge structures on He, which are 
polarized by S and have the collection of Hodge numbers {hP'k-P}. 
Each point of ~ / t h e n  determines such a Hodge structure; in this way, 
one obtains a mapping ~ :  AT/-~D. According to the definition of a 
variation of Hodge structure, together with (3.22), ~ is holomorphic 
and horizontal. 
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I recall the definition of the groups Gc, G~, G z in (3.1), (3.3), (3.8). 
Because of the flatness of H z and S, the action (3.23) preserves both S 
and the lattice Hz, so that its image lies in G z. The subgroup 

(3.24) F = ~p (n 1 (M)) c G z 

is called the monodromy group of the variation of Hodge structure. In 
the case of a variation of Hodge structure coming from a family of 
polarized algebraic manifolds, F represents the action of n 1 (M) on the 
cohomology of the fibres. By construction of ~, if two points o f / f / a r e  
related by some a ~ n 1 (M), the corresponding Hodge structures are related 
by ~p (a). Explicitely, 

(3.25) ~(a~)=~p(a)o~(~), for ~f/1, a~rq(M). 

Hence ~ drops to a mapping 

(3.26) ~:  M--~F'-.D 

of M into the analytic space F'-.D. This is Griffiths" period mapping for 
the variation of Hodge structure in question. 

A holomorphic mapping into the quotient of a complex manifold D 
by the action of a properly discountinuous group of automorphisms f 
is said to be locally liftable if its restriction to some neighborhood of 
any given point in the domain can be factored through the quotient 
map D~F' . .  D. If this is the case, any two local liftings, provided they 
are defined on a common connected open set, are related by an element 
of F. As a direct consequence of its construction, the period mapping is 
locally liftable. Thus: 

(3.27) Theorem (Griffiths). The period mapping (3.26) is holomorphic, 
locally liftable, and the local liftings are horizontal. 

w 4. The Nilpotent Orbit Theorem 

Throughout this section, D will be a classifying space for Hodge 
structures, Gz the arithmetic subgroup of the automorphism group 
defined by (3.8), and F a subgroup of G z. I shall consider a holomorphic 
mapping ~: M ~ F \ D  of a complex manifold M into F',.D, which is 
locally liftable and has horizontal liftings. It will also be assumed that M 
is given as a Zariski open subset of a (reduced) analytic space. The subject 
of this section is a discussion of the possible singularities of �9 along the 
complement of  M. 

According to Hironaka, one can embed M as a Zariski open set 
into a manifold, which is a modification of the original ambient space. 
I shall suppose that this modification has already been made, so that M 
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lies as a Zariski open subset in a complex manifold M. First, I consider 
the case when M - M  has codimension at least two. Every point of M - M  

I 

possesses a simply connected neighborhood ~ in M. For dimension 
reasons, q / n  M will then also be simply connected. On a simply connected 
manifold, a locally liftable map can be lifted globally (cf. Lemma 9.6 of 
[13]; when if, arises as the period mapping of a variation of Hodge 
structure, this follows directly from the construction). Hence, restricted 
to q/r iM, ~ has a lifting ~:  qlnM---,D. By elementary arguments 
involving the Kobayashi pseudometric [18], together with (3.15), it can 
then be shown that ~ extends continuously, and thus holomorphically, 
to all of q/. Since q/was an arbitrary simply connected open subset of M, 
this proves: 

(4.1) Proposition (cf. 9.8 in 1-13]). I f  the codimension of M - M  in 
I 

is at least two, qO has a holomorphic, locally liftable continuation to M. 

In the case of codimension one, the matter of the singularities of 
I 

along M - M  becomes considerably more complicated. Let A denote 
the open unit disc in (E, and A* the punctured open disc, i.e. A* = A - {0}. 
Again the results_ of Hironaka_ make it possible to simplify the situation: 
by modifying M along M - M ,  it can be arranged that M - M  has no 

I 

singularities worse than normal crossings. Hence, if M is replaced by 
some other suitable ambient manifold, which will also be denoted by M, 
every point of M lies in some polycylindrical coordinate neighborhood 
qI~-A k, such that q / n M ~ A * t  x A k-~, with O<l<k.  Since the problem 
of describing the singularities is a local one, I then may as well assume 
that M ~ - A * t x A  k-', M = A  k. The simplest nontrivial case occurs for 
k = l=  1; I shall discuss it separately, both because it suffices for most 
applications, and because it makes the eventual result more transparent. 

I thus let 4: A*---,F',D be holomorphic, locally liftable, with hori- 
zontal local liftings. Via the mapping 

(4.2) T: U ~ A * ,  z(z)=e 2~i~, 

the upper half plane U = {z ~(E I Im z > 0} becomes the universal covering 
of A*. Viewed as a transformation group of U, the fundamental group 
nl(A*) is generated by the translation z ~ z + l .  Since ~oz is locally 
liftable and U simply connected, there exists a global lifting ~:  U ~ D, 
making the diagram 

U ~ , D  

A *  | , F \ D  
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commutative. One can choose an element y e F c Gz, such that 

(4.4) ~ ( z +  1)=yo~(z),  for all ze U. 

I shall refer to 7 as the monodromy transformation of �9 around the 
puncture of A*. The definite article " the" should not deceive: there may 
be more than one y~F with the property (4.4). If~/, is the period mapping 
of a variation of Hodge structure with base A* (or more concretely, of a 
family of polarized algebraic manifolds parameterized by A*), the image 
of the generator zF--,z+ 1 of xl(A*) under the representation ~p of (3.23) 
is one possible choice for V. However, in what follows, 7 may be any 
element of Gz for which (4.4) holds. 

The next lemma, as well as its proof, is due to Borel: 

(4.5) Lemma (Borel). All eigenvalues of y are roots of unity. 

Proof. Computed in the Poincar6 metric y-2(dx2+dy2) on U, the 
points i. n and i. n + l ,  n~bl, have distance 1/n. According to (3.17), 
if a G•-invariant Riemannian distance function d on D is suitably 
renormalized, ~ will not increase distances. When the identification 
D'~G~/V is made as in (3.6), each of the image points ~(i.n), n~N, 
has a representation as a coset g, V, with g,~G~. Because of (4.4), 
~(i .  n+  1)=v~( i .  n) corresponds to the coset ~g, V. Thus 

d(g~X7 g,, V, e V)=d(T g,, V, gn V) 

=d(~( i .  n+ l ) ,  ~(i .  n))< ~1 . 
n 

It follows that the conjugacy class of~ in G~ has a point of accumulation 
in the compact subgroup V c  G~. This forces the eigenvalues of 7 to have 
absolute value one. On the other hand, since 7 lies in an arithmetically 
defined group of matrices, the eigenvalues are algebraic integers. Hence, 
by a theorem of Kronecker, the eigenvalues must be roots of 1. 

In view of the lemma, if y = L Y, is the Jordan decomposition of 7 
into its semisimple and unipotent parts, 7s has finite order. I let m be 
the least positive integer such that y7 = 1, and I define 

= log y u = E k > l (  - 1) k + l  l ( y  u --  1) k N 
(4.6) 

then N is a nilpotent and rational element of the Lie algebra go of G~. 
The complexification g of go, it should be recalled, is the Lie algebra 
of the complex Lie group Gr Also, Gr acts on /), which contains D 
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as a GiR-orbit, as was discussed in w Let exp: g--~ G c be the exponential 
mapping of Gr Then 

(4.7) q/(z) = exp ( - m z N) o ~ (m z) 

describes a holomorphic map of U into/3, which has the transformation 
property (1) 
(4.8) ~ z+ m = e x p ( - m z N ) 7 ~ l T o ~ ( m z ) = 7 ~ o ~ ( z ) .  

This makes ~ invariant under the translation z~-~z+l, so that ~ 
drops to a map ~P: A* ~ / ) ,  with ~ ( e Z ~ ) =  ~(z). 

(4.9) Nilpotent Orbit Theorem (One-Variable Version). The mapping ~P 
can be continued holomorphically over the puncture of  A*. The point 
a= ~P(O)eD is a fixed point of 7s. For a suitable constant ~ >0, Im z>  
implies exp(zN)oaeD.  Perhaps after increasing the constant ~, and for 
a suitable choice offl>O, Im z > ~  also implies the inequality 

d (exp (z N) o a, ~ (z)) =< (Im z) g e -  2 ~m-'lm =; 

here d denotes a G~-invariant Riemannian distance function on D. The 
mapping z~-~ exp(zN)o a of ~ into D is horizontal. 

In order to explain the meaning of this statement, I shall consider 
the multiple valued mapping 

of A* into D, which is a lifting of 4:  A*-*F' . .D.  According to the 
theorem, near t=0,  this map behaves asymptotically like the - also 
multiple valued - mapping 

(4.10) t ~ - ~ e x p ( ~ / l o g t N ) o n .  

Since N is nilpotent, the entries of e x p ( ~ l o g t N )  polynomial are 
/ 

functions of log t. For these reasons, I shall call (4.10) the principal part 
of the singularity of 4>. From 4~, the principal part inherits the property 
of being horizontal. 

The proof of the theorem is technical and will be postponed until w 
As Griffiths has pointed out to me, in the case of a period mapping 
coming from algebraic geometry, (4.9) can be deduced from the regularity 
of the Gauss-Manin connection. However, the general version of the 
theorem, for more than a single variable, does not seem to be a conse- 
quence of the regularity theorem. Conversely, the general nilpotent orbit 
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Theorem (4.12) implies the regularity of the Gauss-Manin connection. 
These matters will be taken up below the statement of (4.12), at the 
end of this section. 

If the monodromy transformation 7 in (4.9) happens to be of finite 
order, it coincides with ~'s, so that N = 0 .  According to the theorem, the 
point a must then lie in D, ~ takes values in D, and the mapping 
t ~  ~(t m) of A* into F \ D  can be covered by a holomorphic map from 
A to D, namely ~. Thus ~: A * - - ~ F \ D  extends holomorphically to A, 
but not necessarily as a locally liftable map (unless m= 1, i.e. 7= 1). 
Griffiths proved this result in [11], using the existence of a discrete 
subgroup of G with compact quotient. 

(4.11) Corollary (Griffiths). I f  the monodromy transformation y of 
~:  d*--~ F x.D has finite order, then ~ continues holomorphically to d. 

In order to extend (4.9) beyond the case of a single variable, I now 
consider a holomorphic, locally liftable map with horizontal local 
liftings 

r d* tx  dk-t--~ F~.D, 

where l>  1, k>  I. By going to the universal covering Ul• A k-l, o n e  can 
lift �9 to a mapping ~: UIx A k-l--4, D. 

Corresponding to each of the first l variables, I choose a monodromy 
transformation ~i~F, so that 

4'(zl . . . . .  z i +  1 . . . . .  z i ,  w l + l  . . . . .  wk)= ~i o ~(z l  . . . . .  z l ,  w z + l  . . . . .  wk) 

holds identically in all the variables. I shall assume that the 7i commute 
with each other. If ~ arises as a period mapping, one can take as 7i 
the image of the generator of the fundamental group of the i-th copy 
of A*, under the representation 

r 7Zl(d*/x Ak-l)-- ,F 

(cf. (3.23)); since the fundamental group of d *l x A k-I is Abelian, the 7i 
certainly do commute in this situation. Let ~i=~i,s~i,u be the Jordan 
decomposition of 7i. Applying Borers result (4.5) to each of the first l 
variables separately, one finds that each ~i,~ has finite order mi, for 
some mieN. Let Ni~g o be the logarithm of 71,u. Since the 71 commute, 
the set composed of all Yi,,, Yi,., N~ is also commutative. 

For the remainder of this section, I shall let (z) denote a typical 
lotuple (z 1 . . . . .  Zl)~ U I, and (w) a typical ( k -  l)-tuple (wl+ 1 . . . . .  wk)~ A k- l; 
for any (z)~ U z, (m z) will be shorthand for the l-tuple 

(m 1 Zl, m2 Z 2 ~ . . .  ~ ml zl). 
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Because of the commutativity of the Ni, and because exp(miN~) equals 
~'7", the mapping qJ: Ul• Ak-~--*O, which is defined by 

~(z, w)= exp(--Z' ,= a m,z,N,)o ~(mz,  w), 

remains invariant under the translation zi~--~ zi+ 1, 1 <_i<_l. It follows 
that ~ drops to a mapping 

7J: A*l x Ak-t-~ f). 

(4.12) Nilpotent Orbit Theorem. The map 7 j extends holomorphically 
to A k. For (w)EA k-t, the point 

a(w) = q'(O, w)eb  

is left fixed by 71,~, l <-i<l. For any given number q with 0 < q < l ,  there 
exist constants ~, fl >0, such that under the restrictions 

Imzi>~,  l < i < l ,  and Iw~l<r/, l + l < j < k ,  

the point exp(Y't;=a z~N~)o a(w) lies in D and satisfies the inequality 

d(exp(Zl=, z,N,)o a(w), ~)(z, w)) 

< (l-[li=l Im zi) r Eli=a e x p ( -  2 n m~ -1 Im zi); 

here d again denotes a G~-invariant Riemannian distance function on D. 
Finally, the mapping 

(z, w) v--, exp (Z',= a z,N,) o a(w) 
is horizontal. 

The proof of this statement, which evidently contains (4.9), will be 
found in w 8. 

It was mentioned already that the nilpotent orbit theorem, for 
period mappings arising from algebraic geometry, is closely related to 
the regularity of the Gauss-Manin connection. A proof of the one- 
variable version, using the regularity theorem, is given in w of [-14]. 
In rough outline, the argument proceeds as follows. Let {A*, He, F p} 
be a one-parameter variation of Hodge structure, coming from algebraic 
geometry, and localized near a singularity. When an algebraic section 
of He is expressed in terms of a multiple-valued, flat frame over A*, 
the coefficient functions grow at most like a negative power of the local 
parameter, on every angular sector; this is the regularity theorem. This 
estimate still holds if the algebraic section is twisted by 

exp( 1 log tN) - ~ /  



234 W. Schmid 

since t log t-~ 0 as t--, 0, on every angular sector. It follows that the 
PliJcker coordinates of the single valued map ~ can be made to have 
only poles; for this purpose, /3 should be viewed as a subvariety of a 
product of Grassmannians, as described in w Since ~ takes values 
in a projective variety, this can only happen if ~ has a holomorphic 
extension over the puncture. The remaining assertions of (4.9) can now 
be deduced relatively easily. 

For more than a single variable, the argument which was just 
sketched breaks down: it can only prove the existence of a meromorphic 
extension of the mapping ~. On the other hand, the nilpotent orbit 
theorem implies the regularity of the Gauss-Manin connection. In fact, 
it implies the following theorem of Griffiths, whose original proof is 
based on Nevanlinna theory and L 2 estimates, giving a more general 
result than stated below. 

(4.13) Theorem (Griffiths). Let {M, Hc, F p} be a variation of Hodge 
structure with quasi-projective base M. Then: 

a) The bundle Hr carries a unique algebraic structure such that the 
flat connection V becomes algebraic, and such that V has regular singular 
points of infinity, relative to any smooth compactification of M. With 
respect to this structure, the subbundles F P c H r  are algebraic. 

b) I f  the variation of Hodge structure comes ]tom the cohomology 
of the fibres of an algebraic family of polarized algebraic manifolds, these 
algebraic structures on He and the subbundles F p coincide with the 
intrinsic algebraic structures. In particular, the Gauss-Manin connection 
has regular singular points. 

Part a) is a straightforward consequence of (4.12) and the com- 
parison theorems of G A G A  1-23]. The second part depends on a non- 
trivial fact, concerning the relationship between algebraic and de Rham 
cohomology, which occurs also in Griffiths" proof. Without it, but 
assuming the regularity of the Gauss-Manin connection, one finds 
trivially that the two algebraic structures agree. 

Omitting this one major detail, I shall show how the nilpotent orbit 
theorem leads to (4.13). I may assume that M lies as a Zariski open set 
in a nonsingular projective variety M, so that M - M  is a divisor with 
at most normal crossings. Every point at infinity then has a coordinate 
neighborhood q/, with 

(4.14) ql~-A k, q l n M ~ - d * l x A  k-I. 

Restricting the variation of Hodge structure to such a neighborhood 
at infinity, I now use the notation of (4.12). As before, I identify the 
universal covering of q/c~M with Utx d k-~. By pulling back H c from 
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q/c~ M to its universal covering, one obtains a canonically trivial bundle, 
whose fibre shall be denoted by H e. In a 1 : 1 manner, the holomorphic 
sections of He over q/c~ M correspond to the holomorphic, He-valued 
functions on U~x A k-t, which have the transformation property 

v(z  1 . . . .  , zi + 1, zi+l, . . . ,  zt, wl+ 1 . . . .  , W k )  
(4.15) 

=~,iov(za . . . . .  zl, wt+ 1 . . . . .  Wk), l<--i<--l. 

For the moment, I assume that the monodromy transformations ~ 
are unipotent. If one composes the functions v in (4.15) with 
e x p ( - ~ t i = l  ziN~), they become invariant under z i ~  z i + l ,  and thus 
drop to holomorphic, He-valued functions on ~c~ M. This now gives 
an isomorphism of C-modules 

(4.16) C~nM(He)-~C~M |  

which leads to a distinguished continuation of H e to a vector bundle 
over all of Y/. It can be characterized uniquely as follows: Let s be a 
section of H~ on ~ M ,  and s 1 . . . .  ,s  N a multiple-valued, flat frame, 
so that s = ~ f j s j ,  with multiple-valued coefficient functions fj .  Then 

(4.17) s extends holomorphically to q/ if and only if the fj have at 
most logarithmic singularities. 

A similar argument, applied to the subbundles F p, and using the fact 
that the mapping 7 j of (4.12) extends holomorphically to A k, gives 
continuations of these bundles as well. Again, a statement analogous 
to (4.17) characterizes the continuations uniquely. If the monodromy 
transformations are not unipotent, the constructions above have to be 
modified slightly: the bundles no longer extend as vector bundles, but 
rather as coherent sheaves. 

On overlapping coordinate neighborhoods at infinity, the description 
(4.17) of the extendable sections is consistent. Hence the local continu- 
ations of H c and its subbundles F p fit together, as global coherent 
sheaves over all of M. According to G A G A  [23], these global coherent 
sheaves have unique algebraic structures, which induce algebraic struc- 
tures on the bundles H e and F p. Again I consider a coordinate neigh- 
borhood at infinity, q/, as in (4.14), and a multiple-valued, flat frame 
51 . . . . .  sN for H e over q/r~M. Let s = ~ f j s j  be a holomorphic section 
of H e on q/c~M, with multiple-valued coefficient functions Jj. As 
follows from (4.17), 

(4.18) s is meromorphic along M - M ,  relative to the algebraic struc- 
ture of He, if and only if the f~ are bounded by some polynomial in 
Iq l -~ , . . . , l t t ]  -~, on the intersection of M with any given compact 
subset of q/ 
16 lnventiones math., Vol. 22 
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( t i=local  parameter on the i-th copy of A*). On the one hand, 
(4.18) uniquely determines the algebraic structure of He; on the other 
hand, it is equivalent to the regularity of the flat connection along 
M - M .  This proves part a) of (4.13). 

I now assume that the variation of Hodge structure comes from 
an algebraic family of polarized algebraic manifolds. The bundles 
Hc,  F p thus have an intrinsic algebraic structure. In order to be able 
to refer to the algebraic structure given by (4.13a), I shall call it the 
extrinsic structure. It must be shown that the two coincide. For  this, 
it is enough that the two induced structures on FP/F p+I agree, for all p: 
the extension class of the sequence 

0 --+ F p + 1 __+ F p __+ FP/F p + 1 _+ 0 

is algebraic, both extrinsicly and intrinsicly; hence one can identify 
the two structures on each F", by induction on p, once the two structures 
are known to coincide on each of the quotients. 

Let s be a holomorphic section of F ' / F  p+I, over a set of the form 
q/r~M, with q/ as in (4.14). With respect to the extrinsic algebraic 
structure 

(4.19) s is meromorphic along M - M ,  if and only if ikS(s,~) can be 
bounded by a polynomial in [q[ -1 . . . . .  Itt1-1, on the intersection of M 
with any given compact subset of q/. 

Here ikS(s,~) denotes the value of s o n t h e  Hermitian form induced 
by the polarization. The statement (4.19) follows from (4.18), together 
with the flatness of the polarization and the definiteness of the induced 
Hermitian form on FP/F p+I. In order to finish the proof of (4.13), one 
only needs the "only i f "  part of (4.19), but for the intrinsic algebraic 
structure on FP/F p+a. An argument which establishes this fact was 
shown to me by Griffiths. Its inclusion, however, would lead too far 
afield. 

w 5. The SLy-Orbit Theorem 

In order to make the nilpotent orbit theorem useful in applications, 
it is necessary to have detailed information about the nilpotent orbits 
which can occur. For  most purposes, the one variable case suffices; 
also, the case of several variables involves major additional difficulties. 
I shall therefore limit myself to the consideration of a single variable. 
I intend to take up the general situation, of more than one variable, 
in a future paper. The main statement of this section is the SLE-orbit 
Theorem (5.13); its proof will be given in w 

Let then a be a point o f / ) ,  ~ a fixed positive constant, and N~ go 
a nonzero nilpotent element, such that 
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a) z ~  exp(zN)o a is a horizontal mapping; 
(5.1) 

b) exp(zN)oaeD for Imz>ct .  

This is precisely the situation arising in (4.9). For z=x+iy, 
exp(zN)=exp(xN)exp(iyN); since the first factor on the right lies in 
GR, and since GR leaves D : / 3  invariant, (5.1 b) becomes equivalent to 

(5.2) exp(iyN)oaGD if y G ~ ,  y > ~ .  

In order to motivate the statement (5.13) below, it may be helpful 
to look at the simplest possible case. If D happens to be the upper half 
plane U, then SL(2, R) plays the role of GR, and the Riemann sphere 
that of 13. There are exactly two conjugacy classes of nonzero nilpotent 
elements in the Lie algebra ,l(2, R). Only for choices of N in the 
conjugacy class of 

(5.3) (0 0 ; )  ~ I ( 2 ,  lR) 

does the mapping exp(zN)oa take values in D, for all large positive 
values of Imz. Thus, under the hypotheses (5.1), if the mapping 
z~exp(zN)oa is composed with a suitable automorphism of the 
upper half plane, it will be of the form 

(5.4) z ~ a + z  (zeC). 

In general, for an arbitrary classifying space for Hodge structures D 
and an arbitrary mapping of the type (5.1) into D, there exists an 
equivariantly and horizontally embedded copy of the upper half plane 
U in D, such that the mapping z~exp(zN)oa asymptotically ap- 
proaches a mapping of the form (5.4) into this copy of U in D; moreover, 
N turns out to be the image of the element (5.3) under the homomorphism 

1(2, P,)--~ 9o, which corresponds to the equivariant embedding. 
Before these statements can be made more precise, some pre- 

liminary remarks are needed. In the usual manner, I shall think of the 
Riemann sphere IP 1 as the one point compactification lI2•{oe} of 112. 
The complex Lie group SL(2, C) operates transitively on IP 1, with 
isotropy subgroup 

at the point iGIP1; this gives the identification IpI~-SL(2,112)/L. The 
SL(2, F,)-orbit of i is then the upper half plane UcIP  1. For future 
reference, I shall record the identity 

(5.5) z=exp(-�89 if zeU; 
16" 



238 w. Schmid 

the branch of the function l o g ( - i z )  on U is to be chosen so that its 
value at z = i is zero, and Y denotes the element 

I recall the definition of the subspaces gP ' -Pc  g and of the subgroups 
BcGc, VcG~. A homomorphism of complex Lie groups 

(5.7) 0: SL(2, C)---,Gc, with ImageOCB,  O(L)cB, 

determines a holomorphic, equivariant embedding 

(5.8) I~" ]Wl___~,/~, with ~(goi)=~b(g)oo, for geSL(2,1E) 

(o= base point in D). The condition 

(5.9) @ (SL(2, IR)) c G~ 

insures that ~ (U)cD. The embedding (5.8) is horizontal precisely when 
the infinitesimal homomorphism of Lie algebras 

~ , :  ~ I(2, 112)--+ 0 

satisfies the condition 

I~r (~ [(2, ( ~ ) ) C b  (~ 0 -1 '1 . 

Indeed, because of the equivariance, it suffices to check the horizontality 
at the single point ielP1; and the induced mapping between the tangent 
spaces ofIP ~ at i and o f / )  at o corresponds to 

if,:  ~ I (2, C)/I ---~ g/b 

(I=Lie algebra of  L). 
The elements 

(5.10) z = ( O  - ~ ) ,  X + = � 8 9  - i  , 1 i 

span ~I(2, ~). The subaigebra 1c~1(2, C) is spanned by Z and X_.  By 
defining 

~1(2, C ) - I ' I = ~ X +  
m 

(5.11) ~ I(2, II~) ~ o = IEZ 

~I(2, ~)1.-1 = CX_ ' 

one obtains a Hodge structure on ~I(2, C), relative to the real form 
~1(2, R)c~ l (2 ,  C), which plays the same role with respect to U and the 
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reference point ieU as the Hodge structure (3.11) does with respect 
to D and the base point o. If ~,. is a mapping of type (0, 0) i.e. if 

(5.12) ff , (X+)eg -1'1 , I]/, ( Z ) e  fl 0 '0  , I//, ( X _ ) c  g 1 , -1  , 

the embedding (5.8) will certainly be horizontal. When D happens to 
be Hermitian symmetric, (5.12) together with (5.9) is equivalent to 
saying that t~ embeds the upper half plane U totally geodesicly in D. 

One should keep in mind that the subspaces g~ ' -Pcg  and the 
isotropy subgroups B and V depend on the choice of the base point o - 
or, equivalently, of the reference Hodge structure {Hg'q}. I can now 
state the main technical result of this section; for this purpose, I assume 
that the point a~b,  the nonzero nilpotent element Nego, and the 
positive constant ct satisfy the condition (5.2). 

(5.13) Theorem. It is possible to choose 
i) a homomorphism of complex Lie groups ~k: SL(2, ~.)--~ Go, 

ii) a holomorphic, horizontal, equivariant embedding ~: IPl---~r), 
which is related to ~ by (5.8), 

iii) and a holomorphie mapping z~-~g(z) of a neighborhood ~WcIP 1 
of oo into the complex Lie group Gr 
with all the following properties: 

a) exp (zN)oa=g( - i z ) (k ( z )  for z~/CF- {oo}; 
b) ~(SL(2, IR))cG~, and ~(U)~D;  
c) ~fi, is a mapping of type (0, 0) (cf. (5.12)); 
d) g(y)eGit for iye~/Crni~..; 

1 \  

e) Adg(oo)- l (N) is  the image under Ip, of tO ; )~1(2 ,  IR); 

f) for iy~C'c~ilR, y>0 ,  let h(y) be defined by 

h (y) = g (y) exp(- �89  logy ~,, (Y)) 
(cf. (5.6)); then 

h(y)-X~yh(y)~(gl.-1 G g-l ' l )  n go; 

g) the linear transformation ~,(Y)eHom(He, Hr operates semi- 
simply, with integral eigenvalues ; let 

g(z)=g(oo)(1 +gl z-l  +g2 z-2 + " '  +gk z - k + ' " )  

g(z) -x =(1 +f l  z-a +fz  z -Z+  "'" +fk z -k+  '")  g(~176 -1 

be the power series expansions of g(z) and g(z) -1 around z= 0o; then, 
for n>=l, g, and f. map the l-eigenspace of ~k,(Y) into the linear span 
of the eigenspaces corresponding to eigenvalues less than or equal to 
I+n-1 .  
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I f  the base point oeD is suitably chosen, it can be arranged, moreover, 
that i I x, 

h) g(oo)= 1, and N is the ~k.-image of IO O) ;in this situation, w i t h  

the notation of g),for n>= 1, (AdN)"+lgn=0 and (adN)n+x fn=O. 

According to a), if h) also holds, the two mappings z~--~ exp(zN)o a 
and z ~ ( z )  agree to first order at z=oo,  and g) then gives more 
specific information about the degree of proximity. Again if h) holds, 
the two mappings have the same invariance property under the trans- 
lation z ~-~ z + 1 : t~ (z + 1) = exp N o ~ (z), 

exp ((z + 1) N) o a --- exp N exp (z N) o a. 

The conditions b) and c) assert that the embedding ~ is compatible 
with various other structures which are present. In a number of 
applications it is important to know a specific lifting of the mapping 

(5.14) y~--*exp(iyN)oa~D~=G~/V, y>~, 

from G~/V to GR -- primarily because the action of G~ on D lifts to the 
family of Hodge subspaces {H p'q} corresponding to the points of D, 
whereas the action of Gr on/3 only lifts to the family of Hodge flags {FP}. 
Since ~'.(Y)ego, and since g(y) takes values in G~ for yeP~, according 
to d), the mapping y ~ h ( y )  goes into GR; in view of a) and of (5.5), it 
is indeed a lifting of the map (5.14) to G~. The differential equation 
stated in f) distinguishes this lifting, in a way which will become apparent 
in the proof of (5.13). The property g) embodies the information on g (y), 
and hence also on h(y), which is crucial to all applications. 

The proof of Theorem (5.13) is somewhat involved and will be 
postponed until w I shall draw several conclusions from this theorem, 
together with Theorem (4.9), in w and w For the remainder of this 
section, I shall look at the behavior near infinity of the mappings 
z ~ exp (z N)o a and of the mappings ~ which occur in w 4; in particular, 
I shall study how the behavior at infinity is related to the arithmetic 
subgroup G z c G~. 

In the situation of w the monodromy transformation V lies in the 
arithmetic group G z. It follows that N, which was defined as the loga- 
rithm of the unipotent part of 7, preserves the rational structure 
H ~ t t  R (H~=Q ~ H z ) .  Hence, from now on, I assume that 

(5.15) N ~ g  0 is an endomorphism of H~. 

One may be tempted to ask, if, in this situation, the homomor- 
phism ~,: SL(2, ff~)--*Gr becomes a homomorphism of Q-groups, 
relative to the standard ~-structure of SL(2, C). Even the simplest 
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example - namely D= U, Ge=SL(2,~) - shows that this is asking 
for too much, as long as one insists on (5.13h). However, if this require- 
ment is dropped, one can, in fact, choose the homomorphism ~J so that 
it becomes defined over Q, as will be argued below. Let 

(5.16) Co=Im{adN: 9o--~ go} c~Ker{adN: 9o--~9o}. 

One can verify directly that c o is a Lie subalgebra of go. As will be 
pointed out in the proof of (5.17), it is in fact a nilpotent subalgebra. 

(5.17) Lemma. There exists a morphism of Q-groups ~Jl: SL(2, ~)---~ Gr 
and an element gl~G~, such that ~bl=Adg 1 o ~, and gag(oo)- l~expco . 

Proof It is necessary to refer to some results of Kostant [20]. Let K 
be a field of characteristic zero, b a semisimple Lie algebra over K, 
and X~b a nonzero nilpotent element. Let r be the intersection of the 
kernel and the image of A d X :  b ~ b. Then c is a nilpotent subalgebra 
of b, so that one can define the exponential map from c into the adjoint 
group of b. Also, expc centralizes X. The set of K-homomorphisms 

(0 
p: ~l(2, K) - - ,b ,  with p 0 - -X ,  

is nonempty, and under Ad, exp c acts on this set transitively. In [20], 
these results are stated for K=II2; however, they remain valid for any 
field of characteristic zero, and the proofs carry over without modifica- 
tion. In the case at hand, I let 

g~={XeOolXH~cH~} 

play the role of b, and c o the role of c. Since the nondegenerate bilinear 
form S, which was used in the definition of go, assumes integral values 
on Hz, ~ is a semisimple Lie algebra over Q, with 

Moreover, because of (5.15), N e ~ .  According to Kostant 's results, 
there exists a homomorphism 

p: ~1(2, R ) -~  go, 

which is defined over Q, such that p maps 

(5.18) (00 10) ~1(2 ,  ~ ) 

onto N. It follows from standard results on algebraic groups that there 
exists a morphism of q-groups  qJl: SL(2, ~ ) ~  Gr lying above p. Both 
~1, and Adg(oo)  o qj, map the element (5.18) to N. Hence, by Kostant 's 
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conjugacy statement, they are related by Adgo,  for some go~eXpco . 
Then gl = go g (oo) has all the desired properties. 

In the notation of Theorem (5.13), replacing the original base point o 
by gl o for some gl~ G~, has the effect of changing ~b to Ad ga o ~, 
g(z) to g(z)g~ -1, g(oo) -1 to glg(oo) -1, and gv,-p to Adgl(gP'-P). With 
g~ as in (5.17), since exp c o commutes with N, this gives 

(5.19) Corollary. In the statement of Theorem (5.13), /f the base point o 
is suitably chosen, ~k will be a morphism of Q-groups, ~,  maps the 
element (5.18) to N, and g(oo)6expc o. This choice of base point does 
not destroy any of the properties listed in (5.13), except for (5.13h). 

For the remainder of this section, I assume that the base point o~D 
has been chosen in accordance with (5.19). Then ~, maps the diagonal 
subgroup of SL(2, ~E) onto a 1-dimensional Q-split torus in Gc. One can 
thus choose a maximal Q-split subtorus T of Gr which contains this 
1-dimensional torus. I let t denote the Lie algebra of T, and /7  the set 
of nonzero roots of (g, t). Via exponentiation, /7 can be identified with 
the set of nontrivial Q-roots of (Gr T). It is possible to select a system 
of positive roo t s / /+  c /7 ,  such that 

(5.20) a~H,  ( a , ~ , ( Y ) ) < 0 ,  implies a~H+. 

For tr~/7, go will designate the a-rootspace. Then 

(5.21) r =  q)~n+ ~, 

is a nilpotent subalgebra of ~. Since N lies in the (-2)-eigenspace 
of ~k, (Y), 

(5.22) r contains N. 

Let R = e x p  r; then R is a unipotent Q-subgroup of G c. The centralizer 
of T can be expressed as TM, where M is anisotropic over Q. One 
knows that 

(5.23) P = R TM 

forms a minimal Q-parabolic subgroup of G c, with unipotent radical R. 
The isotropy subgroup V of G R at the reference point o is compact. 

One can therefore choose a maximal compact subgroup K of G R which 
contains V. Let P~ denote the group of real points of P; then 

(5.24) G~= PR K. 

In fact, this last statement holds for any maximal compact subgroup 
of G~ (cf. w 11 of [1]). 

The following lemma could be derived directly from Theorem (5.13). 
However, it is more economical to deduce it from the proof of the theorem. 
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I shall do so at the end of w 9. Independently, Deligne drew a similar 
conclusion from Theorem (5.13). 

(5.25) Lemma. There exist functions r(y), t(y), re(y), k(y), which take 
values in, respectively, R c~ G~, T c~ GR, M c~ G~, K, and which are defined 
on some ray { Y ~ , I Y  > #}, with the following properties: 

a) for y > ~, the point exp(i y N)oa coincides with the translate of the 
reference point o by r(y) t(y) re(y) k(y); 

b) the functions r(y), exP(�89 ff.(Y))t(y), m(y), and k(y) are real 
analytic functions of the variable y-�89 at y = oo ; 

c) r(oo)~exp Co, l i m y ~  exp(�89 log y ~k.(Y)) t(y)= 1, m(oo)= 1, and 
k ( ~ ) =  1. 

Now let F be a subgroup of Gz, and ~: A*- -~F \D  a locally liftable, 
holomorphic mapping with horizontal local liftings. As in (4.3), I choose 
a lifting 4:  U--~D and some Y~Gz, such that (4.4) holds. The semisimple 
part Ys of 7 has finite order m. I denote the logarithm of the unipotent 
part y~ by N; then N has the property (5.15). With a ~ b  as in the statement 
of the Nilpotent Orbit Theorem (4.9), the hypotheses at the beginning 
of this section are met. Hence the group P, D, etc. can be defined as above. 

(5.26) Theorem. It is possible to select functions r(x, y), t(x, y), re(x, y), 
k(x,y), with values in, respectively, Rc~GR, Tc~G~, M c~G~, K, which 
are defined and real analytic on a set of the form {(x,y)eR21y>fl} ,  
such that: 

a) for y >  fl, the point ~p(x +i y) coincides with the translate of o by 
r(x, y) t(x, y) re(x, y) k(x, y); 

b) as y--~oo, the limits of  r(x,y), exp(�89 m(x,y), 
and k(x, y) exist uniformly in x; 

c) in the case of r(x,y), this limit is a continuous function of x, with 
values in R c~ G~; 

d) limr. ~ exP(�89 logy@.(Y)) t(x, y) = 1, lim~.~ | m(x, y)= 1, lim,~ ~ k(x, y) 
= 1 .  

Proof. According to Theorem (4.9), for some e >0, 

d(exp((x+iy)  N)oa, $ ( x+ iy ) )=O(e -~ ' ) ,  uniformly in x. 

In the notation of (5.25), 

exp ((x + i y) N) o a = exp (x N) r (y) t (y) m (y) k (y) o o. 

Since the distance function d is G~cinvariant, the distance, relative to d, 
between o and 

(5.27) k(y) -1 m(y) -1 t(y) - l  r(y) - t  e x p ( - x N ) o ~ ( x + i y )  
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is bounded by a constant multiple of e - ' L  Locally, any two Riemannian 
metrics are mutually bounded. Also, the principal bundle V-+ G ~ G ~ / V  
~ D  has local sections. Using these statements, one can find a real 
analytic, G~valued function g (x, y), defined for y >> 0, such that the point 
(5.27) can be represented as the g(x, y)-translate of o, and such that 

Ilg(x,y)-l l l=O(e-'r) ,  uniformly in x; 

the double bars denote the norm as a linear transformation. Since K 
is compact, this also gives 

Ilmd k(y)(g(x, y ) ) -  1 II =O(e-~r),  

again uniformly in x. Because 

G R= (R n GIO(Tc~ G~)(M c~ G~ K, 

the function Ad k(y)(g(x, y)) can be expressed as a product 

Ad k (y) (g (x, y)) = r 1 (x, y) t 1 (x, y) m 1 (x, y) k 1 (x, y); 

here the factors are real analytic functions, defined for y ~ 0, with values 
in the obvious groups, and they can be chosen so that they satisfy the 
estimates 

(5.28) II q (x, y) - 1 II = O(e-"Y), uniformly in x,  

and similarly for t 1 (x, y), m 1 (x, y), k l(x, y). 

The groups T and M commute, and they both normalize R. Hence, 
if I define 

r (x, y) = exp (x N) r (y) t (y) m (y) r x (x, y) (t (y) m (y))- 1, 

t (x ,y )=t(y)q(x ,y) ,  m(x,y)=m(y)ml(x,y) ,  

k (x, y) = kl (x, y) k (y), 

these functions are real analytic, they take values in the appropriate 
groups, and they satisfy the statement a). As y - + m ,  the matrix entries 
of t(y) remain bounded by polynomials in y, and m(y)-+ 1, all according 
to (5.25). Together with (5.28), this gives the statements about r(x,y) 
which were still missing. The corresponding statement about the other 
functions follow similarly. 

By a Siegel set in D, I shall mean a set of the form 

= {r t m kooeDlrEtol, m~o92, k~K, te T ~  Gt, and e*(t)> c for all adI+} 

where to t is a fixed compact subset of R c~ G~, ~o 2 a fixed compact subset 
of M n G~, and c a positive constant. Aside from 091, to2, and c, the 
definition depends on the rational structure of Gr the choice of the 
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maximal Q-split torus T, of the minimal Q-parabolic subgroup P c  Ge, 
and the choice of the base point o. Roughly speaking, the Siegel sets 
are fundamental sets for the action of G z on D (cf. [1]; the apparent 
difference in the definition is explained, of course, by the left - rather 
than right - action of G z in the present context). Because of the property 
(5.20) of the system of positive roots H+, and because of (5.26), for each 
positive root tr, e ~ (t (x, y)) either tends to the value one or has a positive 
infinite limit as y---,~, uniformly in x. Combined with the other state- 
ments in (5.26), this shows: for any constant C>0,  there exists a Siegel 
set ~ and a constant ct>0, such that ~ ( z ) e~  if JRezl<C, Imz>ct .  
The interiors of Siegel sets exhaust all of D; hence any compact set can 
be enclosed in a Siegel set. This proves: 

(5.29) Corollary. For any given constants C > 0  and r/>0, there exists 
a Siegel set ~ in D, with ~ ( z ) ~  whenever [Re z[< C, Im z>=q. 

w 6. Monodromy and the Weight Filtration 
In this section, I shall draw some conclusions from the nilpotent 

orbit theorem and the SL2-orbit theorem, concerning the local behavior 
of a variation of Hodge structure near a singularity. Since the primary 
case of interest is that of a geometric variation of Hodge structure, 
I shall phrase the various statements in terms of the cohomology of a 
family of polarized algebraic manifolds. All of these statements have 
analogues for an abstract variation of Hodge structure, which are more 
or less obvious. I shall explicitely state the results for the abstract 
setting only in the few cases that will be referred to later. 

Let then g: ~v'~ A* be a family of polarized algebraic manifolds, 
with the punctured disc A* as parameter space. As was pointed out 
already in w 2, when this situation arises in practice, it is usually possible 
to continue ~ to a mapping ~/~---, A, with ~ Zariski open in the complex 
manifold ~,  by inserting a possibly singular fibre over the origin in A. 
However, for most of the arguments and statements below, the existence 
of a central fibre turns out to be quite irrelevant. 

Forgetting about the complex structure, one can think of ~ A *  
as a C OO fibre bundle. Thus 7q(A*) acts on the cohomology groups of 
a general fibre Vt=n-l(t). Let k be an integer between 0 and 2n 
(n = dime Vt), and ~,e GI (H k (~,  Q)) the action of a generator of nl (d*). 
Griffiths has called V the Picard-Lefsehetz or monodromy transformation 
of the family. As before, I let 7 = ~ , ,  be the Jordan decomposition of 
into its semisimple and its unipotent part. 

(6.1) Monodromy Theorem ([21]). 7he eigenvalues of~ are m-th roots 
of unity, for a suitable positive integer m, so that 7~= 1. Let l be the 
largest number of successive nonzero Hodge subspaces of Hk(Vt, •). In 
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other words, l is the largest integer such that, for some p, Hi 'k- i (~ ,  I~)=t=0 
if p < i < p + l ;  in particular, l<min(k,  2 n - k ) +  1. Then (7u- 1) l=0, and 
hence (7 m -  1) l =0.  

The proof will actually put a slightly stronger bound on the index 
of unipotency l: the statement remains correct if l is replaced by the 
maximum of the integers 10, 11 . . . . .  Ik, where now l i denotes the largest 
number of successive nonzero subspaces p~-i'i(V~, 112) of the primitive 
part  of the j-th cohomology group. 

The original version of the monodromy theorem is Landman's [21]. 
In his survey paper [12; pp. 235-236, 294], Griffiths discusses various 
proofs of the theorem, and he sketches a conjectured outline of the 
argument which I shall give below. Implicit in this argument - indeed, 
already in Theorem (5.13) - is an affirmative answer to conjecture 8.4' 
of [12]. It should perhaps be remarked that the proof  does not give 
any information about the integer m, as do the geometric proofs of 
Landman [21] and others. This is the price one must pay for not using 
the existence of a central fibre, over the puncture of A*. On the other 
hand, the estimate on the index of unipotency is a little stronger than 
in previous versions of the theorem. 

The statement, as well as its proof, carries over immediately to an 
abstract variation of Hodge structure with base A*. Indeed, let 7 be the 
image of a generator of nl(A*) under the representation (3.23), and l 
the largest number of successive nonzero Hodge bundles H p'q. The 
semisimple part 7~ is again of finite order, and the unipotent part 
satisfies (?u-1)~=0. Of course, unless HP'~=0 for p < 0  and q<0,  the 
inequality l < k +  1 need not hold. 

Proof of (6.1). First of all, I may replace the coefficient field ~ by ~E. 
Secondly, since the polarizing classes are assumed to be nl (A*)-invariant, 
the decompositions (2.2) are preserved by the action of nl(A*); hence 
it suffices to consider, for each k, the action of a generator of nl(A*) 
on pk(v ,  C). If V is assigned this new meaning, I must show that 
)'s has finite order, and that (Tu-1)t~=0; the integer I k is defined 
below (6.1). I shall now consider the period mapping corresponding to 
the k-th primitive cohomology groups of the fibers. Let r: U - , A *  be 
the universal covering (4.2), and ~: U--*D the lifting of the period 
mapping, composed with 3, to D. According to (3.25), 7 lies in Gz and 
has the property (4.4). Thus (4.5), (4.9), and (5.13) all apply. In particular, 
V~ is of finite order, by Borel's lemma. Let N = log 7~; because of (5.13 e), 
N is conjugate to the image under ~b. of the element (5.18) of ~ 1(2, R). 
In s I(2, C), any two nonzero nilpotent elements are conjugate. Hence, 
under the adjoint action of Gc on g, N becomes conjugate to ~,.(X+) 
(cf. (5.10)). Also, because of (5.13c), ~ . (X+)~g  -Lt .  Any element of 
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g-1. ~ maps the i-th subspace in the reference Hodge filtration into the 
(i+l)-st  subspace, and is therefore nilpotent of index at most I k. It 
follows that N, which is known to be conjugate to an element of g-1.1, 
has also index of nilpotency at most lk. Since 7u=expN, this proves 
(Vu-1) ~=0,  as desired. 

Deligne has used the Picard-Lefschetz transformation to put an 
additional structure on the cohomology groups of the fibres V,, teA*. 
In order to make the construction more transparent, it may be helpful 
to start with a discussion of the representation theory of the Lie 
algebra ~ I2. Let K be a field of characteristic zero, and ~ the three 
dimensional Lie algebra over K, with generators Z, X+, X_,  which 
satisfy the commutation relations 

(6.2) [Z, X+] =2X+,  [Z, X_]  = - 2 X _ ,  [X+, X_]  = Z .  

A proof of the following assertion can be found in [24], for example. 

(6.3) Fact. Every finite dimensional representation of ~ is fully reducible. 
Next, let ~h: ~-*End(V) be an irreducible representation of ~ on an 
(n+l)-dimensional vector space V. Then ~b(Z) acts semisimply, with 
eigenvalues n, n -  2, n -  4 . . . . .  - n, each with multiplicity one. By ~h (X+), 
the I-eigenspace of ~h(Z) gets mapped onto the (l+ 2)-eigenspace, except 
when l= - n - 2 .  Similarly, for l # n + 2, ~O(X ) maps the l-eigenspace onto 
the ( l -  2)-eigenspace. 

I shall consider a linear transformation N: V-* V on a finite 
dimensional vector space over a field of characteristic zero, which 
satisfies Nk+~= 0, for a given positive integer k. 

(6.4) Lemma (cf. [12], pp. 255-256). There exists a unique fltration 

O = W o  = W l  = " " = W 2  k _ l = W 2  k = V ,  

such that N(Wt)= Wt_ z, and such that 

Nl: Grk+t(W,)~ Grk_t(W,) 

is an isomorphism, for each l>O (Grt(W,)=WdWt_~). I f  l>k, let 
~t=Grl(W,)  be the kernel of 

N/-k+l: Grl(W,)--~Gr2k_l_2(W,) , 

and set ~ = 0 if l < k. Then one has the decomposition 

(,) Grl(W,)= ~iNi(~+2i) ,  i > m a x ( k - l ,  0). 

I f  N is an infinitesimal isometry of a nondegenerate symmetric or skew- 
symmetric form S on V, i.e. if S(Nu, v)+S(u, N v ) = 0  for all u, ve V, the 
filtration becomes self-dual, in the sense that each W t is the orthogonal 
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complement of W2k_t_ 1. In this situation, moreover, the spaces Gr,(W,) 
carry nondegenerate bilinear forms St, which are uniquely determined by 
the following requirements: if l> k, and if u, ve Wl represent ~, ~Grz(W.) ,  
St(~, ~)=S(u, N t-k v); if l <k, N k-t is to be an isometry from Gr2k_t(W,) 
to Grt(W.). The decomposition (*) then becomes orthogonal with respect 
to S t. Whenever S is symmetric and k - l  even, or S skew and k - l  odd, 
S1 is symmetric; St is skew in the remaining two cases. Finally, if ~ is a 
representation of the three dimensional Lie algebra ~ on V, with ~ ( X  )= N, 
each W~ coincides with the linear span of the eigenspaces of ~b(Z) which 
belong to eigenvalues less than or equal to l - k ;  ~ is the isomorphic 
image in Grt(W.) of the kernel of ~(X_)  z-k+1 on the ( l - k )  eigenspace 
of  ~ (Z). 

Before giving an indication of the proof, I would like to make some 
observations about this statement. If ~, is a representation of ~ on V, 
with ~(X )=N,  the last assertion of the lemma suggests how the 
filtration {~}  should be constructed. Such a representation always 
exists: according to the Jacobson-Morosov theorem, in a semisimple 
Lie algebra over a field of characteristic zero, every nonzero nilpotent 
element can be embedded in a copy of ~ 12; applied to the Lie algebra 

I(V), or the Lie algebra of infinitesimal isometrics of a bilinear form S, 
the theorem gives the existence of a representation ~ with the desired 
property. In order to deduce the lemma from the Jacobson-Morosov 
theorem and the representation theory of ~ 12, one needs to know that 
the resulting filtration depends only on N, not on the particular rep- 
resentation ~. This follows from a theorem of Kostant, which was 
quoted in the proof of (5.17). Thus (6.4) becomes a consequence of the 
representation theory of ~ [2, the Jacobson-Morosov theorem, and the 
result of Kostant. However, since (6.4) is an elementary statement, 
I shall give the outline of an elementary proof. 

In this connection with the theorems of Jacohson-Morosov and 
Kostant, a certain schematic diagram may help to clarify the statement 
(6.4). For  definiteness, I shall assume that k=2,  and thus N3=O. Let 
~, be a particular representation of ~ on V, with ~,(X_)=N, whose 
existence is guaranteed by the Jacobson-Morosov theorem. Since 
N3=0,  each s-irreducible subspace of V has dimension one, two, or 
three (cf. (6.3)). In the diagram below, 

I I I I t , l  
N 
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each row shall represent the span of all ~-irreducible subspaces of 
dimension, respectively, one, two, and three, reading from top to bottom. 
Within a given row, a dot stands for the l-eigenspace of ~,(Z). The 
operation of N preserves the rows and shifts l by - 2 .  The subspaces 
corresponding to the various dots depend on the choice of ~b, of course. 
Certain combinations, however, have canonical meaning: the left edge 
represents the kernel of N, the right edge the cokernel, and all dots on, 
or to the left of, the vertical line through I give W~. 

On the cohomology groups of a compact K~ihler manifold, the 
K~ihler operator L, is adjoint A, and their commutator  B=[L, A] 
satisfy the relations 

[B,L]=2L, [B, A ]  = - 2 A ,  [L,A]=B. 

As Serre has pointed out, these three operators therefore span a Lie 
algebra isomorphic to ~. Applied in this setting, the statement (6.3) 
proves the existence of the decomposition (2.2). In particular, (2.2) can 
be viewed as a special case - with reversed indices - of Lemma (6.4). 
This explains the formal analogy between the K~ihler operator L and 
the logarithm of the unipotent part of the Picard-Lefschetz transforma- 
tion, which was commented upon in [12]. 

Proof of (6.4). Proceeding inductively, I may assume that subspaces 
W~c V have already been found for i<  l - 1  and i>=2k-l, where l is 
an integer between 0 and k, starting with WEk = V and W_I=0,  subject 
to the following conditions: 

a) N(Wi)= Wi_2 and Wi= Wj, whenever both sides of the contain- 
ment are defined, and i<j; 

b) Wk_~=NiWk+, for i > k - l + l ;  
c) l'Vk+i={vEVlNi+lv~W~_i_2} for i>k- l ;  
d) if i>k- l ,  l, Vk+ i is spanned by N(Wk+I_Z) and the kernel of Ni+l; 
e) kerNi+l nN(Wk+i+ 2)~ Wk+i_l for i>=k-l+ l. 
At the next step, the statements of the lemma require W t and 

W2k_t_ 1 to be consistent with b) and c), which determines these sub- 
spaces completely. This description of the two subspaces, together with 
the inductive assumptions, gives a), d), and e) at the next stage. At the 
final step, when I=k, the containments N(I, Vk+I)~ Wk_ 1 and N(l, Vk)c 
Wk_ 2 are automatic. Existence and uniqueness of the filtration now 
follow. Since N t-k identifies Gr2k_~(W.) with Grt(W.), the decomposi- 
tion (*) only needs to be constructed for l>_k; in view of d) and e), this 
can be done. 

If N is skew adjoint with respect to a nondegenerate bilinear form S, 
then the dual filtration {'Wl}, with ' • Wt=Wik-l-1, also satisfies a)--c) 
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whenever 0<  l_< k. Hence {'Wt} has all the properties which characterize 
the filtration {W~}, and therefore the two filtrations coincide. In par- 
ticular, the bilinear form St on G rl (W.), l > k, is well defined. The various 
properties of St also follow from the self-dual nature of the filtration. 

According to (6.3), if ~b is a representation of ~ on V, ~b (Z) must be 
diagonalizable, with integral eigenvalues. Also, ~ (X_) maps the l-eigen- 
space into the (l-2)-eigenspace, and for l>0 ,  ~(X_)  ~ maps the/-eigen- 
space isomorphically onto the (-/)-eigenspace. Hence, if ~b(X_)=N, 
and if ~ is defined as the span of all eigenspaces of ~b (Z) corresponding 
to eigenvalues less than or equal to l -k ,  the filtration {~}  has all 
properties which define {Wl}, so that W~= ~ .  Again because of (6.3), 
the /-eigenspace of ~k(Z) decomposes into the kernel of ~b(X) 1+1 and 
the image under ~,(X_) of the (l+2)-eigenspace, if l>0. This gives the 
last assertion of the lemma. 

I shall return to the geometric situation of a family n: ~ A*. 
According to (6.1), the unipotent part ~,~ of the Picard-Lefschetz trans- 
formation Y: nk(vt, Q)--~ nk(vr, ff~), t~A*, 

is unipotent of index at most k +  1, so that Nk+~=O, where 

1+1 1 
N = l o g  ?. =~,,)=~(- 1) T ( ? . -  1)'. 

The filtration 
O c Wo ~ ~ ~ "'" c W2 k-1  ~ W2k= n~ (V,, ~),  

constructed from N in the manner described by Lemma (6.4), is Deligne's 
monodromy weight filtration. For reasons of notational economy, I shall 
refer to its complexification in Hk(V,, ~E) by the same letters. Relative 
to the flat structure on the vector bundle H~:--A* (cf. w 2), the Picard- 
Lefschetz transformation y, and therefore also y,, y,, and N, are flat. 
Hence the weight filtration is fiat, and it can be transferred to a filtration 

(6.5) O = W o  c W~ c " " = W 2  k _ l c W 2  ~ ---- I-I~ , 

where H i  denotes the fibre of the pullback of H~ ~ A* to the universal 
covering space of A*. On the quotients Grt(W), the actions of ), and ),~ 
coincide and are of finite order. Also, the weight filtration is compatible 
with the decomposition (2.2), because the polarization was assumed to 
be Irl (A*)-invariant. 

As an additional assumption on the family n: ~--*A*, I shall require 
that the total space ~ carries a Kiihler metric, corresponding to an 
integral cohomology class r/~H2(~,t~). The polarizing classes r/t are 
to be the restrictions of r/ to each Vt. The Kiihler metric then puts a 
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distinguished inner product o n  Hk(Vt, ~ ) ,  for every teA*. I shall denote 
the resulting norm by I[ II,- If toeA* is fixed and veHk(Vto,~E) some 
cohomology class, v determines a multiple-valued, flat section of 
H k ~ A*. Thus t ~ II v lit may be regarded as a multiple-valued function 
on A*. On each radical ray t = r e  i~ 0 < r < l ,  or more generally on a 
proper angular sector, one can choose a single-valued, continuous 
branch of this function. Deligne first conjectured the following statement, 
and later independently deduced it from Theorem (4.9) and an earlier 
version of Theorem (5.13). 

(6.6) Theorem. Let toeA* and v e H k ( V t o  , ffJ). Then v belongs to W l if 
and only if, along the radial ray through to, 

I l v l l t=O(( - log[ t f  -k~/2) as I t l ~ 0 .  

Moreover, this estimate holds uniformly on every angular sector. 

Implicit in the theorem is the assertion that any two branches of the 
function t ~-~ II v II, on a common angular sector must be mutually bounded. 

If veHk(Vto, r happens to be an invariant cohomology class, i.e. 
~v=v, t ~  [Ivllt becomes a single valued function on A*. According to 
the theorem, this function is bounded near the puncture precisely when 
VeWk. On the other hand, for l>k, N ~-k determines an isomorphism 
between Grt(W,) and Gr2k_t(W,); consequently, Wk contains the kernel 
of N, and thus also all invariant cohomology classes. Hence: 

(6.7) Corollary. An invariant cohomology class has bounded norm near 
the puncture of A*. 

In Section 7, in order to prove certain global statements about the 
period mapping of an algebraic family, it will be helpful to have (6.7) 
not just in the geometric setting, but also for an abstract variation of 
Hodge structure. Let then {He, F p} be a variation of Hodge structure 
of weight k, with base space d*. The weight filtration, which can be 
defined as before, filters I-Ir by a family of flat subbundles {Wl}. However, 
unless H"' q = 0 for p < 0 and q < 0, the length of the weight filtration may 
exceed 2 k. The Weil operators of the Hodge structures corresponding 
to the various points teA* fit together, to give a C | bundle map 
C: H p'q-, H p'q with C equal to multiplication by i p-q Oll H 9,~. Since S 
polarizes the Hodge structures, 

S(C u, ~) 

defines a positive definite Hermitian metric on the fibres of I-Ir Let v 
be a, possibly multiple-valued, fiat section of He. The proof of (6.6) 
below also proves the following abstract version: 
17 Inventiones math., Vol. 22 
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(6.6') Theorem. The (multiple-valued) flat section v lies in Wt if and only 
if, along a radial ray, 

S (Cv ,~)=O(( - log l t ] )  t-k) as [ t l-*0.  

Moreover, this estimate holds uniformly on every angular sector. 

Just as (6.6) implies (6.7), (6.6') leads to 

(6.7') Corollary. For any single-valued, fiat section v of He, the func- 
tion S(C v, ~) is bounded near the puncture. 

Proof of (6.6). As was pointed out before, the weight filtration is 
compatible with the decomposition (2.2). Also, according to standard 
facts in K~ihler geometry [25], the decomposition (2.2) is orthogonal, 
and the operators/J in (2.2)are isometrics. It therefore suffices to consider 
primitive cohomology classes. Let P~-* A* be the flat bundle whose 
fibres are the k-th primitive cohomology groups of Vt, t s A*. The universal 
covering z: U-*A*,  defined in (4.2), pulls P~ back to a trivial bundle 
on U, whose fibre I shall denote by P~. As in w 3, D will refer to the clas- 
sifying space for Hodge structures on P~'~, with the appropriate Hodge 
numbers. The period mapping, composed with z, lifts to a map ~: U -* D. 
For each z~ U, I choose m(z)~G~, such that the V-coset of re(z) represents 
~(z)eD ~-G~JV. As follows from the basic K~ihler identities, 

(6.8) [Ivll, 2 = i p-q S(v, ~) for all v~PP'q(Vt, ~E). 

Hence, in order to compute IIvll, 2 for t=~(z) and ve P  k, I may split v 
into its Hodge components relative to the Hodge structure at ~(z), 
compute the square lengths of these Hodge components by means of 
(6.8), and add them up. Since GR preserves S and complex conjugation, 
I may equivalently take the Hodge components of re(z) -a relative to 
the reference Hodge structure, which corresponds to the base point oeD, 
and sum up the squares of their lengths. Since z maps vertical lines to 
radial rays, and vertical strips to sectors, this reduces the theorem to the 
following assertion: 

(6.9) veP~ belongs to Wt if and only if 

lira(z) - x  vii = O((Im Z) (l-k)/2) a s  Im z---, ~ ,  

and the estimate holds uniformly on vertical strips; 

here [[ [[ stands for an arbitrary V-invariant linear norm on P~. 
Because of (4.9), for some e > 0, the GR-invariant distance between 

4~ (z) and exp (z N) o a is bounded by e- ~lm ~ as Im z -* oo. If z = x + i y, 
in the notation of  (5.13), 

exp (z N) o a = exp (x N) g (y) exp ( -  �89 log y •, (Y)) o o. 
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Since all of the factors on the right lie in G~, the distance between o 
and the point 

(6.10) exp(�89 y ~,,(y)) g(y)-i  e x p ( - x  N) o ,~(z) 

has order e -'~mz, as Im z ~  ~ .  One can therefore choose a G~-valued 
function s(z), defined for Im z>> 0, such that the V-coset of s(z) represents 
the point (6.10), and such that 

(6.11) []s(z)-ll l=O(e-~Im~), as lm z--, oo. 

Clearly, I can now arrange that 

m (z)- 1 = s (z)-I exp (�89 log y ~b, (Y)) g (y)- 1 exp ( -  x N). 

Since e x p ( - x N )  operates trivially on the successive quotients of the 
filtration, and in view of (6.11), this makes (6.9) equivalent to 

(6.12) veP~ belongs to W l if and only if, as y ~  ~ ,  

[[ exp (�89 log y ~b. (Y)) g (y)-I v 1[ = O (y,t- k)/2). 

In particular, the estimate in (6.9) will be uniform on vertical strips. 
As in (5.13 h), I assume g ( ~ ) =  1. The elements 

satisfy the same commutation relations as Z, X+, X_ in (6.2); also ~ .  
maps the first of these to ~k.(Y) and the last to N. Hence, according to 
the next to last assertion of (6.4), 

(6.13) W/is the span of all eigenspaces of ~,,(Y) which correspond to 
eigenvalues less than or equal to l - k .  

I consider an element v of the (l-k)-eigenspace of ff.(Y). Because of 
(6.13g) and the preceeding description of the filtration {Wt} , g ( y ) - l v  
has a power series expansion 

g(y)-I U:V~_Ej> 1 v j y - j ,  with ~j~l+j-l" 

For each coefficient vj, exp(�89 has order of growth at 
most y(l-k+j-1)/2. Hence 

exp (�89 log y ~b , ( Y)) g (y)- 1 v = v ya-  k)/2 + 0 (ytt- k- 2)/2), 

which verifies (6.12) and concludes the proof. 

In order to put the next result into perspective, I shall recall a defini- 
tion of Deligne. Let H~ be a finite dimensional real vector space with 
complexification Hc, and with a Q-structure coming from a lattice 
17' 



254 W. Schmid 

Hz c HR. A mixed Hodge structure on this vector space consists of an 
increasing filtration 

0=- . .  = W t - l c  Wl= Wt+ l= ... ~Hr  

which is defined over Q (the "weight filtration"), and a decreasing 
filtration 

Hr ... ~ F r - I ~  FP~ FP+ I~  ... ~ 0  

(the "Hodge filtration'), such that for each l, the filtration {F p (G r~ (W,))}, 
with 

F p (G rl (I41.)) = F" n Wt/F p c~ W t _ 1, 

constitutes a Hodge filtration of pure weight l on Gr~(W.). The notion 
of a Hodge structure of pure weight k can be viewed as a special case: 
as F-filtration, one takes the Hodge filtration of the weighted Hodge 
structure, Wk is set equal to the full vector space, and Wk_ 1 is set equal 
to the zero subspace. If Hc and H~ are vector spaces with mixed Hodge 
structures, a linear transformation T: He---, H~ is said to be a morphism 
of mixed Hodge structures of type (n, n), with neZ,  if it preserves the 
rational structure, and if 

TFP~F ' p+,, T W t ~  W(+2 n , 

for all indices p and l. A morphism of type (0, 0) will simply be called 
a morphism. 

The importance of mixed Hodge structures stems from the following 
theorem of Deligne: 

Theorem (Deligne [-7]). The complex cohomology groups of a complex 
projective variety carry mixed Hodge structures which are functorial. In 
the case of a nonsingular variety, these mixed Hodge structures reduce to 
the ordinary Hodge structures of pure weight. 

Again, I consider a family rr: "g"--* A*, parameterized by the punctured 
disc. Let H~-~ A* be the flat bundle whose fibre over teA* is Hk(Vt, IE). 
Via the universal covering ~: U ---, A*, H~: pulls back to a trivial bundle 
on U, with fibre H~. For each z~ U, there is a natural identification 
between H~ and Hk(Vt, C), with t=z(z).  By transferring the Hodge 
filtration of Hk (Vt, tE) to H~: via this identification, one obtains a Hodge 
filtration 

(6.14) H~=F~~ F~D ... D F~k-I= F~k~o 

which depends holomorphically on z. Also, if ~: H~--, H~ denotes the 
Picard-Lefschetz transformation, F[+I = ?  F~ p. Let ~=~,  7, be the Jordan 
decomposition of ?, m the order of ~,,, and N = log ~.. As in w 4, one finds 
that 

z ~ e x p ( - z N ) F ,  p, 
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considered as a mapping of U into an appropriate Grassmann variety, 
is invariant under the translation zv-,z+m. Because the decomposi- 
tion (2.2) is compatible with the Hodge decomposition and with the 
action of ?, (4.9) guarantees the existence of 

F~ = lim t . . . .  exp ( - z N) F~ p, 

uniformly in Re z. The resulting filtration 

(6.15) H~=F~ F~ ~ ... ~ F~-I~  F~ ~0  

need not be a Hodge filtration, of course. 

It should be pointed out that the filtration (6.15) depends on the 
choice of the coordinate t on the disc A. To be precise, the construction 
becomes canonical only after the value of the differential dt at t = 0  is 
fixed. Passing from one local coordinate to another has the effect of 
replacing the filtration {F~} by {exp(2 N)F~}, for some 2e ~E. However, 
the filtrations which {F~} induces on the kernel and the cokernel of N, 
and on the quotients of the weight filtration, are completely canonical. 
It is these induced filtrations which have geometric significance. 

The K~ihler operator L: H~--, H~ +z commutes with y, and hence also 
with N, and since it maps the subspace F: p of H~: into the subspace 
FZ +1 of H~ +z, for each ze U, it raises the index of the weight filtrations 
by two and the index of the filtrations (6.15) by one. 

(6.16) Theorem. The two filtrations {Wt} of (6.5) and {F~} of (6.15) 
determine a mixed Hodge structure on H~. With respect to this mixed 
Hodge structure, N is a morphism of type ( - 1 , -  1), and the Kfihler 
operator L: H~--~H k+2 is a morphism of type (1, 1). In particular, the 
mixed nodge structure of H~: restricts to one on the primitive part l~cc H~. 
The induced Hodge structures of pure weight l on Grz(pck n W,) further 
restrict to Hodge structures on 

~=Grt (P~ n W,), l>-k, 

which are polarized with respect to the nondegenerate bilinear forms St 
on ~ (cf. Lemma (6.4)). 

This statement had been conjectured by Deligne, and he also deduced 
it from an earlier version of Theorem (5.13). 

As the theorem asserts, for each l, the filtration {F~} induces a 
Hodge structure of weight l on Gr~(W,). Since N operates trivially on 
Grt(W,), {exp(zN)F~} induces the same filtration on Grt(W,) as {F~}, 
for every zeC. Hence the theorem is equivalent to saying that the two 
filtrations { Wt} and {exp(z N)F~} determine a mixed Hodge structure, 
for each ze ~E. According to (4.9), as Im z --* oo, the filtration {exp (z N) F~} 
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asymptotically approaches the filtration (6.14). One might therefore 
suspect, that for all z e U  with sufficiently large imaginary part, {Fz p} 
and { W~} give a mixed Hodge structure on H~. Deligne had originally 
conjectured this stronger version of(6.16), which is listed as problem (9.17) 
in [12]. However, as Deligne has pointed out since, (6.16) is all that 
should be expected: if the Hodge filtration of a mixed Hodge structure 
is perturbed slightly, the result will usually not be a mixed Hodge struc- 
ture any more; not even the horizontal nature of the period mapping 
suffices to remedy this problem. In some special cases, which include 
the periods of Abelian varieties and of K3 surfaces, the stronger version 
of (6.16) does become correct. This fact was observed by Deligne, and 
it may be worthwhile to state it explicitely: 

(6.17) Proposition. Let I~r H k be the primitive part, and suppose that 
the classifying space for the Hodge structure on I~c happens to be Hermitian 
symmetric. Then, for every z~U with sufficiently large imaginary part, 
the two filtrations {F~PnPc k} and {WlnPc k} determine a mixed Hodge 
structure on poke. 7he resulting Hodge structures of pure weight I on 
Grl(W. npck), viewed as a function of z, have a limit as I m z - *  ~-~; the 
limit coincides with the Hodge structure of weight I induced by the filtration 
(F~ nP~}. 

I shall prove the proposition at the end of this section, following the 
proof of Theorem (6.16). 

I now suppose temporarily that n: ~ - - ,  A* can be continued to a 
family over the discA, by inserting a possibly singular fibre over the origin. 
More precisely, let ~U be Zariski open in a complex submanifold ~U 
of some projective space, such that n extends to a proper, surjective, 
holomorphic mapping it: ~ - ~  A. The polarization of the fibres V t, t ~e 0, 
are to be the ones induced by the given projective embedding. The 
central fibre Vo=n-l(0) the has the structure of a projective variety. 
According to Clemens [3], V 0 is a strong deformation retract of ~,, so 
that H*(Vo,~)~H*(~, ,~) .  Composing this isomorphism with the 
mapping which corresponds to the inclusion V,~-~,, one obtains a map 
Hk(Vo, IE)~  HR(Vt, C), t~:O. The image consists of cohomology classes 
which come by restriction from the total space to the fibre of the C ~ 
bundle V, ~ ~ - - ,  A*, and these must be invariant under the action of 
the Picard-Lefschetz transformation 7. Since there is an identification 
between H k and HR(vt, r which is distinguished up to the action of 7, 
this gives a well-defined map 

(6.18) Hk(Vo, C ) ~  H k. 

According to Deligne's construction on the one hand and to Theo- 
rem (6.16) on the other, both the domain and the target of the mapping 
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(6.18) carry canonical mixed Hodge structures. It is thus natural to ask 
if the mapping is a morphism. An affirmative answer to this question 
and a discussion of its geometric significance, along with a number of 
related matters, will be contained in a tbrthcoming paper, jointly written 
with H. Clemens. 

Now to the proof of (6.16)! Once the filtrations {F~} and {Wt} are 
known to give a mixed Hodge structure on H k, the statements about 
N and L do not present any problems: as was pointed out above (6.16), 
L raises the index in the Hodge filtration by one, and in the weight 
filtration by two; according to the definition of the weight filtration, 
N(W~)c W~_2, and in view of the final statement in (4.9), combined with 
Lemma (3.18), N maps F~ to F~ -1. As for the main assertions of Theo- 
rem (6.16), since N and the K~ihler operator commute, it suffices to 
consider the primitive part P~ of H k. To simplify the notation, I shall 
refer to the filtration {F~ n P~} as {F~} from now on, and similarly to 
{WtnP~} as {I41//}. It should be recalled that the filtration {F~} corre- 
sponds to the point a t / ) .  According to (5.13), 

a = exp ( - z N) g ( - i z) o (k ( z). 

On the other hand, ~(z) is the exp(z N)-translate of the base point oeD.  
Hence, whenever g ( - i z) is defined, 

(6.19) a = Ad exp ( - z N) (g ( - i z)) o o. 

For reasons of convenience, I shall assume that the base point has 
been chosen as in (5.13 h), so that g(oo)=l .  

(6.20) Lemma. The limit o f  A d  exp ( - z N) (g ( - i z)), as z tends to infinity, 
exists in G C. Let  g~ be the value of  this limit; then go preserves the f i l tra-  
tion {Wi} and operates as the identity on Grl(W,), for  each I. 

Because of (6.19), the point a coincides with the g~o-translate of o. 
Hence: 

(6.21) Corollary. For each l, the reference Hodge fi l tration and the 
f i l tration {F~} determine the same f i l tration on Gr~(W,). 

Proof  o f  (6.20). It follows from the next to last statement in (6,4) 
that W~ can be described as the direct sum of those eigenspaces of ~b, (Y) 
which correspond to eigenvalues less than or equal to l - k ;  this was 
already observed in the proof of (6.6). Hence if g ( - i z )  is expanded as 

g ( - i z ) =  1 +~,~1  g , ( - i z ) - " ,  

the coefficient g. maps Wt into W~+,_ x (cf. (5.13g)). Consequently, 
(Ad N)" g, maps W~ into Wt_._ t ; in particular, for all l and all n > 1, 

(6.22) (Ad N)" g,(W~) = Wt_2. 
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According to (5.13 h), 
(Ad N) "+1 g. =0 ,  

which leads to the identity 

Ad exp ( - z N) (g ( - i z)) 

= 1 + ~ . > 1  ~ o < t < . ( -  1) t i"(Ad U)' g. z -t"- ') .  

Hence limz ~ ~ Ad exp ( -  z N) g ( -  i z) exists and equals 

g~= l + ~.~_l (- i)"(Ad N)" g.. 

The remaining assertion now follows from (6.22). 

In view of (6.21), as far as the proof of (6.16) is concerned, I may as 
well assume that {F~} is the reference Hodge filtration, and I shall now 
consider this special case. In the original definition of a weighted Hodge 
structure, the underlying vector space comes equipped with a q-structure 
and a lattice. In the following arguments, various r and lattices 
can be dragged along; however, they would only be excess baggage. 
Hence, for the remainder of the proof, the underlying vector spaces of 
Hodge structures will be required only to carry an R-structure. 

In (5.10), I defined generators Z, X+, X of ~1(2, C); they satisfy 

EZ, X+] =2  x+,  [Z, X_] = - 2 X _ ,  IX+, X_] = Z  

2 = - Z ,  X + = X _ .  

Now let {H p' ~} be a Hodge structure of weight k on the vector space 
Hc=H~| A linear action of ~I(2, IE) on H C - for simplicity, I 
shall denote it by juxtaposition - will be called horizontal if it is defined 
over R,  and if 

X+ HP'~cH p-i'd+l, X_ HP'~cH p+l'q-1, ZHV'~cH p'~ 

for all p, q. Incidentally, the second and third of these relations are 
consequences of the first. When the Hodge structure happens to be 
polarized by a bilinear form S, I shall say that the ~ I(2, C)-action is 
compatible with the polarization if 81(2, C) acts as a Lie algebra of in- 
finitesimal isometrics of S. A subspace H 1 c H c is invariant with respect 
to the given Hodge structure and horizontal ~ I(2, ~)-action, if it remains 
stable under complex conjugation, the ~ I(2, C)-action, and under the 
projections onto the Hodge subspaces H p' 4 c H e. The subspace H 1 c H c 
shall be said to be irreducible, again with respect to the given data, if it 
is a minimal nontrivial invariant subspace. 

For  the statement of the next lemma, I need a repertoire of basic 
examples. The one-dimensional complex vector space ~2, with the obvious 



Variation of Hodge Structure 259 

real structure, carries a unique Hodge structure of weight 2. Deligne 
denotes it by H(1) and calls it the "Hodge structure of Ta te ' .  For n > 0, 
H(n) shall be the n-th symmetric power of H(1), and H ( -  n) the dual of 
H(n) (cf. (2.12)). The trivial ~1(2, Ir) action is clearly horizontal with 
respect to H(n). Also, each H(n) has a natural polarization: the under- 
lying vector space of H(n) can be identified with •; the nondegenerate 
bilinear form S on C, which is normalized by S(I, 1)= 1, then gives the 
polarization. Next, let el, e2 be the standard basis vectors of II; 2. For  
p+q, I define a Hodge structure E(p, q) of weight p+q on II~ 2, with the 
natural real structure, by requiring that 

v +=el q-ie 2 

shall be of type (q, p), and 
V_ = e  1 -- ie  2 

of type (p, q). Again the trivial ~ 1(2, 112) action is horizontal, and with 
respect to it, the Hodge structure E(p, q) becomes irreducible. The 
bilinear form S on IE 2, which is described by the identities 

S(v+, v+)=0,  S(v_, v )=O, 
(6.23) 

S(v+,v ) = 2 i  p-q, S(v_,v+)=2i  q-p, 

polarizes E(p, q). Next, I let S(I) denote the same Hodge structure as 
E(1, 0), but equipped with the standard ~ 1(2, ~E)-action on the underlying 
vector space ~2. One can check directly that this action is horizontal. 
With respect to the bilinear form S of (6.23), in the special case when 
p =  1, q=0,  ~ 1(2, IE) acts as a Lie algebra of infinitesimal isometries, so 
that the action and the polarization become compatible. Finally, S(n) 
shall be the n-th symmetric product of S(1), as polarized Hodge structure 
(cf. (2.12)); from S(1), S(n) also inherits a horizontal~l(2,1E)-action, 
compatible with the polarization. Since S (n), for n > 0, is irreducible even 
as an ~ 1(2, IE)-module - this follows from a comparison of the eigen- 
values of Z with the statement (6.3)- it must certainly be irreducible with 
respect to the Hodge structure and ~I(2, C)-action, considered as an 
entity. The following result was first used by Deligne: 

(6.24) Lemma. Let He = H~ | ~E be a complex vector space with a Hodge 
structure of weight k and a horizontal ~1(2, IE)-action. 7hen He can be 
decomposed into a direct sum of subspaces which are invariant and irre- 
ducible with respect to the given structures. Every irreducible subspace is 
isomorphic - relative to the Hodge structure and horizontal action - to 
one of the following types: H(kO| with kle7z, k2>0, and k =  
2k l+k2;  or E(p,q)|  with p>q, kl>O, and k = p + q + k  1. I f  the 
Hodge structure of He happens to be polarized, compatibly with the 
~1(2, IE)-action, then the decomposition can be chosen to be orthogonal 
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with respect to the polarization, and the isomorphisms between the irre- 
ducible constituents and the irreducible structures of special type can be 
chosen with the further restriction that they should preserve the polariza- 
tions. 

Proof. Since Z leaves the Hodge subspaces invariant and acts semi- 
simply, with integral eigenvahies, one can define an SO(2)-action on 
H e as follows: if vEH p'q also lies in the l-eigenspace of Z, the element 

cos0 sin0] 
- sin 0 cos O! 

of SO(2) shall operate on v as multiplication by e i~t+p-q)~ The action 
of S0(2) is orthogonal with respect to any polarization which He might 
carry. I may regard SO (2) as the group of real points of an algebraic 
1-torus T, which is defined and anisotropic over H. The SO(2)-action 
extends to a representation of T over H. The action of ~ I(2, C) on H C 
determines a representation, again defined over H, of the algebraic 
group SL2. Because of the horizontal property, the representations of T 
and SL2 commute. Hence they determine a representation of the product 
T x SL 2. A Z-stable subspace of H e carries a sub-Hodge structure if and 
only if it is self-conjugate and invariant under the SO(2)-action. It follows 
that the subspaces which are invariant, respectively irreducible, with 
respect to the Hodge structure and ~1(2, C)-action correspond bijectively 
to those invariant, respectively irreducible, subrepresentations of the 
representation of T x SL2, which are defined over H. Because of the 
reductive nature of the product group T x SL2, this proves the first 
assertion of the lemma. If a bilinear form S on He polarizes the Hodge 
structure in question and is compatible with the ~1(2, r then 
TxSL2  operates as a group of isometries; moreover, on each sub- 
Hodge structure, S must be nondegenerate. Hence the decomposition 
can be performed orthogonally with respect to S. 

An irreducible representation over IR of the group T • SL 2 either 
remains irreducible under SL2, in which case T acts trivially, or splits 
into two conjugate subspaces, each of which is T-stable and SLz-irre- 
ducible, with T acting nontrivially. The first situation corresponds to 
an irreducible Hodge structure with ~l(2,~)-action of the type 
H ( k 0 |  S(k2); here k2 is the dimension of H e plus one, and kl is deter- 
mined by k = 2 kl + k2. The second case corresponds to a Hodge struc- 
ture of the type E(p, q) |  S(kl); now He has dimension 2(kl + 1), the 
integer p - q  is an invariant of the action of T, and k=ka+p+q; this 
determines kl, p, q completely. The final details of the verification are 
left to the reader. For an irreducible representation of T x SL2 over H, 
the space of bilinear forms over H, which are preserved by the represen- 
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tation, has dimension one. Also, a real multiple of a polarization form 
is again a polarization precisely when the multiplicative constant is 
positive. Hence any two polarizations on an irreducible Hodge structure 
with horizontal ~ 1(2, Ir)-action, as long as they are compatible with the 
action, must be related by a multiple of the identity transformation. 
Hence the lemma. 

In the following, He=HR| will be a complex vector space with 
a Hodge structure {U p' q} of weight k, and a horizontal ~1(2, ~) action. 
The elements Y= i(X_ - X+), 

N+ =�88 +X_ - 2 i Z ) ,  N_ =I (X+  +X_ + 2 i Z )  

satisfy the same commutation relations as Z, X + , X .  Thus Y acts 
semisimply, with integral eigenvalues, and N maps the l-eigenspace 
of Y into the (1-2)-eigenspace. I let W~ denote the direct sum of all 
those eigenspaces of Y which correspond to eigenvalues less than or 
equal to l - k .  Then { Wt} forms an increasing filtration of H e, defined 
over IR. By ~ ,  I denote the projection into Grt(W.) of the kernel of 
Nt_ -k+l on the (l-k)-eigenspace of Y. 

(6.25) Lemma. The Hodge filtration {F p} of the Hodge structure {H p' q}, 
together with the filtration {W t}, determines a mixed Hodge structure 
on H e. The induced weighted Hodge structure of Gr~(W,) restricts to a 
Hodge structure on the subspace ~t. I f  a bilinear form S polarizes the 
original Hodge structure, compatibly with the ~I(2, IE)-action, then Sl, 
defined as in (6.4), polarizes the induced Hodge structure on ~ .  

Proof If He can be decomposed into a direct sum of subspaces which 
are invariant with respect to the given data, and if the statement holds 
for each of the summands, then it holds for the entire space. Hence, 
and in view also of the preceeding lemma, I may assume that He is of 
type H(kl)| S(k2), or of type E(p, q)| S(kl). 

In the first situation, the tensor product with the one-dimensional 
Hodge structure H(kl) only has the effect of shifting the indices in the 
Hodge filtration by kl, and in the weight filtration by 2kl. I may thus 
limit myself to the case when k~ =0, k2=k. The underlying vector space 
He is now the k-th symmetric product of ~2. The vectors e~, e 2, v+, v_ 
shall have the same meaning as in the definition of S (1), or more accurately, 
as in the definition of E(1,0). Then H p'k-p is spanned by vk-~vP_; 
{~- i  e~12i<_l} forms a basis of Wt. Evidently Grl(W,) vanishes for all 
odd integers 1. In the even case, I claim that 

W2~c W2j_2+F j, and 
(6.26) 

W2jd~= W2j_2.q-F j+l, if j > 0 .  
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Because the s 1(2, IE)-action is known to be irreducible, N_ must map 
W~ onto Wl_2 (unless l - 2 = k ;  cf. (6.3)). Hence it suffices to verify the 
containment for j = k, and the non-containment for j =0. The vector v k_ 
spans Fk; moreover, 

O k _ =(el--ie2)k=(--i) k ek2 mod W2k_2, 

so that ~V2R:Hc=W2k_2"~-F k. On the other hand, ~ spans W o, but 
does not lie in F~: 

~ = 2 - k ( v +  +v_)k~Fl=span of {vk+ -p vPtp> 1}. 

This gives (6.26). Consequently, for O<j<k, {F p} induces a Hodge 
structure of weight 2j on Gr2j(W,), which is isomorphic to H(j). Except 
for l=2k, ~ is zero; in the remaining case, ~2k=Gr2k(W,). On S(1), 
the polarization form S, which is described by (6.23), must satisfy 

S(el, el)= S(e2, e2)=0, S(el, e2)= -S(e2, el)= - 1. 

Consequently, for the resulting bilinear form on the k-th symmetric 
product of CE 2 - I shall also denote it by S - one has S(~2, e~)= 1. 
If e designates the image of ek2 in ~2k, according to the definition of S2k 
in (6.4), 

S2k(e, e)= S(~2, N k ~2)= S(~2, ~ ) =  1. 

Since e is a real basis vector for ~2k, this shows that S2k polarizes the 
Hodge structure of ~2k- 

The remaining situation, when the Hodge structure is of type 
E(p, q) | S(k2), can be reduced to the case which was just treated. Since 

I(2, ~E) acts trivially on E(p, q), the (l+p+q)-th quotient in the gradation 
of the tensor product is naturally isomorphic to the l-th quotient in the 
gradation of S(k2), tensored with E(p, q). The isomorphism is also an 
isometry with respect to the various bilinear forms. Hence I may quote 
(2.12), to obtain the desired conclusion. 

In order to deduce Theorem (6.16), I choose the base point o e D  as 
in (5.13g). As was pointed out already, I may then assume that {F~} is 
the Hodge filtration of the reference Hodge structure. According to 
(5.13), the reference Hodge structure comes equipped with a horizontal 
s 1(2, C)-action. Since the action is described by a homomorphism of 
~1(2, C) into the Lie algebra of infinitesimal isometrics of the polariza- 
tion, the horizontal s 1(2, ~E)-action and the polarization are compatible. 
The linear transformation N in (5.18) corresponds to N_, as defined 
above (6.25); also Y, N+, N_ satisfy the same commutation relations as 
Z, X§ X_. Hence the filtration {Wz} and the subspaces ~cGrl(W.),  
which were introduced just before the statement of  (6.25), coincide with 
the weight filtration and the spaces of primitive elements for the weight 
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filtration; this may be inferred from the final assertions in Lemma (6.4). 
Lemma (6.25) now gives the theorem. 

Proposition(6.17) still remains to be proven. Again in order to 
simplify the notation, I shall refer to the filtrations {F~ c~ P~'c }, {F~P • pk}, 
{WIc~P~r of/~r simply as {F~}, {F~P}, {14111}. At this stage, one should 
recall Theorem (4.9). The filtration {F~} corresponds to the point 

a = liml . . . .  ~ (z) 

of/3, and the filtration {F~ p} to the point 

t~ (z) = exp (z N) o ~' (m- 1 z). 

For  any z~r  exp(zN) preserves the weight filtration and operates 
trivially on the successive quotients. Hence, without altering the con- 
clusion of (6.17), I may replace the filtration {F~P} by the filtration 
corresponding to the point q'(m -1 z). I choose the base point o~D as 
in (5.13g), and the element g| as in Lemma(6.20). Since g~ 
operates trivially on the quotients Grt(W,), I may further simplify the 
situation by translating both a and qJ by gL t  In other words, I can 
assume that a coincides with the base point o, and that 

o = liml . . . .  q~(z). 

Every filtration which is sufficiently close to a given Hodge filtration 
must again be a Hodge filtration. Hence the preceeding remarks, 
Theorem (6.16), and the following lemma together imply (6.17). 

(6.27) Lemma. Suppose that the classifying space for Hodge structures 
happens to be Hermitian symmetric. Then there exists a Zariski open 
subset ql of 1), which contains D, and which has the following property: 
the filtration {Fb p} corresponding to the points b of ql induce filtrations 
on the quotients Grl(W,), which depend continuously on b. 

Proof In the case of a Hermitian symmetry space, the isotropy 
group V at the base point must be maximal compact in Gw I shall 
therefore denote it by K. It is possible to choose an Iwasawa decom- 
position UAK of G•, such that the Lie algebra of A contains ~b,(Y) 
(notation of (5.13)), and such that the Lie algebra of U includes all 
eigenspaces of ff,(Y) on go which belong to negative eigenvalues. Let 
M be the centralizer of A in K. Then UAM is the group of real points 
of an R-parabolic subgroup P of G. Since UA acts transitively on D, 
the Pc-orbit of any point of D contains all of D. I denote the orbit by q/. 
As an orbit of a parabolic subgroup of Gr which contains an open 
set relative to the Hausdorff topology, q /has  to be Zariski open in/5. 
The groups U, A, M all preserve the weigth filtration (A and M even 
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preserve the gradation defined by ~,  (Y)); hence so does Pc. The action 
of Pc on the quotients Grt(W,) is certainly continuous. This gives the 
assertion of the lemma. 

w 7. Global Properties of the Period Mapping 
By looking at the curvature of the Hodge bundles, Griffiths [11] 

established certain global properties of the period mapping of a variation 
of Hodge structure - and thus in particular for the period mapping 
of a family of polarized algebraic manifolds - under the assumption 
that the base space is compact. In rough outline, the arguments proceed 
by considering the square lengths of certain holomorphic sections of the 
Hodge bundles. These functions on the base space turn out to be pluri- 
subharmonic, because of the nature of the curvature in the Hodge bundles. 
A compact manifold does not carry any nonconstant plurisubharmonic 
functions. Through further reasoning, this then leads to the conclusions 
about the period mapping. 

In the geometric situations which usually occur, the base is not 
compact, but only Zariski open in a compact variety. Such manifolds 
do admit nonconstant plurisubharmonic functions, but only unbounded 
ones. Griffiths' arguments therefore extend to this more general setting, 
as soon as the plurisubharmonic functions which come up are known 
to be bounded. The results of w in particular (6.7), do give the 
boundedness of the functions in question, and hence they make it 
possible to apply the curvature arguments, even if the base is not 
necessarily compact. As was mentioned in the introduction, Deligne [6] 
had already proven Griffiths' theorems for algebraic families with 
quasi-projective base, by algebraic geometric methods. The transcen- 
dental arguments which are based on the curvature of the Hodge 
bundles have the minor advantage that they do not depend on the 
presence of any algebraic structures. 

In this section, I shall prove Griffiths' theorems about the period 
mapping for families whose base is Zariski open in some compact 
analytic space, and more generally, for an arbitrary variation of Hodge 
structure with a base space of this type. Passing to the more general 
abstract setting has the advantage of actually simplifying the proofs. 
The starting point, of course, is the curvature of the Hodge bundles, 
which was computed by Griffiths in [11]. I shall include a derivation 
of the curvature properties; not only for the sake of completeness, but 
also because some simplifications are possible. These simplifications 
were the result of a conversation with Griffiths. 

I begin by recalling some basic facts about connections. Let M be 
a complex manifold, and E--, M a holomorphic vector bundle. A con- 
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nection for E is a G-linear mapping 

V: C~~ C|174 

(T~=complexified C ~ cotangent bundle), which satisfies the derivation 

rule Vfe=df  | e+f  Ve, 

for every C ~ section e of E and every C ~ functionf. If X is a C ~ vector 
field, V(X) will denote the operation of 17, followed by contraction 
with X. The connection V is said to be of type (1, 0) if V(X)e=0, when- 
ever e is a holomorphic section and X an antiholomorphic vector field. 
Let {el . . . . .  e,} be a local holomorphic frame for E. The connection 
matrix of V, relative to the local frame, is the r x r matrix of 1-forms 
(qo~), such that Vei= ~ j  tp j | e~; 

on its domain of definition, it determines the connection completely. The 
connection forms have type (1, 0) precisely when V is a (1, 0)-connection. 

Next, I suppose that E carries a nondegenerate, but not necessarily 
positive definite, Hermitian pseudometric. A connection V will be 
called compatible with the pseudometric if, for every vector field X 
and sections el, e2 of E, 

(V (X) e,, e2) + (el ,  V(zY) e2)= X (e,, e2). 

In terms of the connection matrix ((p[) of a local holomorphic frame 
{el .. . .  , er}, this condition becomes equivalent to 

(7.1) E, q~'i ht~ + Z, hi, ~} =dhij, 

where hij = (el, ej). When V happens to be of type (1, 0), the first summand 
in (7.1) has type (1,0), and the second has type (0, 1). Thus, equating 
terms of the same type, one finds ~ (Jihtj=c3h~j; or, in matrix notation, 

(7.2) (tpJ) = ((;3 hi j) (hi j)- 1. 

In particular, this proves: 

(7.3) A holomorphic vector bundle with a nondegenerate Hermitian 
pseudometric carries a unique (1, 0)-connection which is compatible 
with the pseudometric. 

I shall refer to this connection as the metric connection. 
To each connection V of E, there corresponds a dual connection V* 

on the dual bundle E*, which is uniquely determined by the require- 
ment that 

<V*2, e>+ <2, Ve)=d<2, e>, 

for every section e of E and 2 of E*. If (~p~) is the connection matrix 
of V relative to a local holomorphic frame {el . . . . .  e,} of E, and if 



266 W. Schmid 

{2 t . . . . .  2"} is the dual frame, 

(7.4) V* 2 ' =  - ~ j  q~j 2 j, 

as one checks directly. A Hermitian pseudometric of E induces one 
also on E*. With respect to it, the matrix of inner products (2 I, 2 j) 
coincides with the transposed inverse of the matrix (h 0.  In view of 
(7.2) and (7.4), the last remark implies that 

(7.5) the dual connection of a metric connection is the metric con- 
nection corresponding to the dual pseudometric. 

It will be necessary to study induced connections on subbundles 
and quotient bundles. For this purpose, I consider an exact sequence 
of holomorphic vector bundles 

(7.6) 0 ,E '  J ~E q , E "  ,0.  

Let V be a (1, 0)-connection on E. Every C * splitting s: E" -* E of the 
sequence (7.6) determines a connection V' on E': 

(7.7) V'e=j-a(1 - s q )  Vje,  er176176 

Evidently [7' is again a (1, 0)-connection, even though the splitting s 
need not be holomorphic. If E comes equipped with a Hermitian 
pseudometric, whose restriction to E' shall be nondegenerate, the C * 
orthogonal decomposition E = E ' ~  E '• defines a Coo splitting s: E " ~ E .  
In this situation, under the assumption that [7 is the metric connection, 

(7.8) the connection [7' of (7.7) coincides with the metric connection 
of E', relative to the restricted pseudometric. 

In order to verify the statement (7.8), one only has to check that [7' 
is compatible with the restricted pseudometric. Let el, ez be sections 
of E', and X a vector field. Then 

[7(X) je l=jax+sbl ,  V ( X ) j e z = j a 2 + s b 2 ,  

for suitable C OO sections al, bi of, respectively, E' and E". By definition 
of V', 

[7'(X) el = al, V'(X) e2 = a2. 

Since sE" is perpendicular to E', 

([7'(X) e,, e2) + (et, V'(.~) e2) = (j al, j e2) + {j el, j a2) 

=(j al + sb l , j  ez)+(j e l , j  a2 + sb2) 

=(V(X) j  ea,j e2)+ (j e,, V(X) j  ez) 

= X(j el, j e2) = X(el,  e 2 ) ,  

as was to be shown. 
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Again I assume that E carries a Hermitian pseudometric, whose 
restriction to E' is nondegenerate, and that V is the corresponding 
metric connection. Because the pseudometric is nondegenerate on the 
subbundle E', it projects to a pseudometric on the quotient bundle. 
With respect to the projected pseudornetric, the splitting s: E " - , E  
becomes an isometry. By dualizing the sequence (7.6), one obtains an 
exact sequence of vector bundles 

0 'E"*  ~ ' E * - 2 - ~ E  '* ' 0  

(tj and tq are the bundle maps dual t o j  and q). As before, I let s: E' -~E  
denote the C ~ splitting of the exact sequence (7.6) which corresponds 
to the pseudometric. Its dual ts coincides with the orthogonal projection 
of E* onto E"*. According to (7.8), the metric connection of E* is 
therefore given by the formula 

v"*;.='sV*'q~. (;t~ coo (E"*)). 
Dualizing again, and using (7.5), one finds: 

(7.9) the metric connection V" orE" satisfies V" e = q V s e, for e~ C ~~ (E"). 

In order to review the definition of the curvature form, I consider 
a holomorphic vector bundle E with a (1, 0)-connection 17. If X, Y are 
vector fields and e a section of E, the expression 

O(X, Y) e=(17 (X) 17(r)- 17(Y) 17(x)- 17([x, Y])) e 

is linear over the ring of C OO functions in each of the three variables, 
and it is skew in X and E Thus O may be regarded as a differential 
2-form with values in the vector bundle Horn(E, E); O is the curvature 
form of the connection. I let O* denote the curvature form of the dual 
connection 17" on the dual bundle E*. If X, Y are vector fields, and e 
and 2 sections of, respectively, E and E*, one finds 

( 6~*(X, Y) 2, e) = - (17"(Y) 2, 17(X) e) + (V*(X) 2, V (Y) e) 

+ (2, 17([X, Y]) e)  + X(V*(Y) 2, e) 

-- Y (V*(X)  2, e)  - IX, Y] (2, e)  

= (2, (V(Y) 17(X)- V(X) 17(Y)+ V(EX, Y])) e)  

- Y(2 ,  V(X) e)  + X ( 2 ,  17(Y) e> 

+ X (17*( Y) 2, e>- Y (V*(X) 2, e> 

- IX, Y] (2, e> 

= - (2, 8 (X, Y) e)  + X Y (2, e)  - YX (2, e)  

- [X, Y] (2, e) 

= -- (2, O(X, Y) e). 
18 Invent/ones math., Vo/. 22 
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Hence - O * ( X ,  Y) coincides with the transpose of O(X, Y): 

(7.10) O*(X, Y)= - 'O(X,  Y). 

In the definition of the curvature form, if both vector fields X and Y 
happen to be antiholomorphic, O (X, Y) e must vanish, because of the 
(1, 0)-property of the connection. Consequently, the curvature form has 
no component of type (0, 2). I now suppose that V is the metric con- 
nection corresponding to a Hermitian pseudometric. Then, for every 
pair of vector fields X, Y, 

(7.11) O(X, Y) is adjoint to - O ( X ,  Y), relative to the pseudometric. 

This can be verified by a computation which is formally identical to 
the computation preceeding (7.10), except for the fact that the pseudo- 
metric is conjugate linear in the second variable. In particular, since O 
has no (0, 2) component, it cannot have a (2, 0) component, either. Hence 

(7.12) the curvature form of a metric connection is of type (1, 1). 

One other observation should be made in this context. Let el, ez be 
holomorphic sections of the pseudo-Hermitian vector bundle E. The 
mapping 

(X, Y)F-~ (V(X) el, V(Y)e2)-(V(Y) e 1, V(X) e2) 

is linear over the ring of C ~ functions in both variables, and it is skew 
symmetric. It therefore may be viewed as a differential 2-form, which 
I denote symbolically by (Vel, Ve2). It has type (1, 1), because V is a 
(1, 0)-connection. The expression (O e 1, e2) also defines a scalar valued 
(1, 1)-form. The difference of these is the Levi form of the function 
(el, e2); explicitly, 

(7.13) O0(el, e2)=(Ve 1 , Ve2)-  (O el, e2). 

Since both sides of the equality are forms of type (1, 1), in order to 
prove (7.13), it suffices to check it on a pair of vector fields X and Y, with 
both X and Y holomorphic. For  such vector fields, IX, Y ] = 0 ;  also, 
O(X, Y) e= - V (Y) V (X) e, provided e is a holomorphic section. Thus 

08(ex, e2)(X, Y)=dO(el, e2)(X, Y) 

= X(O(e,, e2)(Y))- Y(0(e,, e2)(X)) - 0(e,, ez)([X, 9])  

= XY(e, ,  e2)= YX(e,, e2)= Y(V(X) el, e2) 

=(V(X) el, V(Y) e2) +(V(Y ) V(X) e,,e2) 

=(V el, ~e2)(X, Y ) - ( O  el, e2)(X, Y), 

which verifies (7.13). 
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Again, I look at an exact sequence of holomorphic vector bundles 

0-- - -~E'  J , E  q ,E"  ,0 ,  

in which E carries a Hermitian pseudometric with a nondegenerate 
restriction to the subbundle E'. Both E' and E" then inherit a pseudo- 
metric from that of E. I denote the metric connections on the three 
bundles by V, V', V", and the corresponding curvature forms by @, ~' ,  
and 8".  For C | sections e of E' and vector fields X, the expression 

a (X) e = q V (X) j e ~ C ~ (E") 

depends linearly on both variables, linearly over the ring of C ~~ functions. 
Hence a may be regarded as a (1, 0)-form with values in Hom(E', E"); 
it is the second fundamental form of the subbundle E'. I define a*(X) 
as the adjoint of o(X). This makes a* C~-linear in X, so that a* 
becomes a (0, D-form with values in Hom(E' ,  E'). The wedge products 
a * ^  a and a ^  or* can therefore be viewed as (1, l)-forms with values 
in, respectively, Hom(E', E') and Hom(E", E"). It should be remarked 
that if the Hermitian pseudometric of E happens to be positive definite, 
for any two vector fields X, Y of type (1, 0), the bundle map a*/x a(X, Y) 
of E' is pointwise negative semidefinite, whereas a ^ a*(X, Y) is point- 
wise positive semidefinite. 

(7.14) Lemma. Let s: E"---~E be the C ~~ inclusion defined by the 
pseudometric. Then 

O ' = j - l ( 1 - - s q )  O j +a * / x  a 

O"=qOs+a/xa*.  

Proof In order to verify the first identity, I consider two holomorphic 
sections et, e2 of E' and two holomorphic vector fields X, Y. In particular, 
@'(X, Y) el = - V'(Y) V(X) el, and 6)(X, Y)j el = - V(Y) V(X)j el. Using 
(7.8), as well as the orthogonality o f jE '  and sE", one finds 

(O'(X, Y) e,, e2)= -(V'(Y) V'(X) e,, e2) 

= - ( j - '  (l - sq )  V(Y)(1 - sq)  V(X)jel, e2) 

= - ( V  (Y) (1 - s q) V(X)j et, j e2) 

= -(V(Y)  V(X)jex, jez)+(V(Y)sa(X)e, , je2) 

= (O(X, Y)j  e,, j e2)-  (s a(X) et, V(Y)j ez) 
=(@(X, Y) j e,, j e2)-(a(X) e,, a(Y) e2) 

=(/'-1(1 -sq)~9(X, Y)je~, e2)--(a*(Y--) or(X) el, e2) 

=(j - l (1  --s q) Ig(X, Y)j e,, e2)+(a* n a(X, Y) el, e2). 
18" 
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This proves the first identity, because both sides of it are (1, l)-forms 
with values in Hom(E', E'). By a straightforward computation, one 
checks that the first fundamental form of the bundle E"* in the dual 
exact sequence 

(7.15) 0 ,E"* t~ ~E* tJ ' E ' *  ' 0  

is - 'o-  ( ta(X)=dual of a(X)). I now use the first formula in the dual 
exact sequence, taking into account (7.10): 

_ t O , ,  _~ _ t s t O t q  + to . ,  A to-. 

Since to-*A to- is the transpose of - a  A a* (the wedge product is skew 
symmetric !), by dualizing the last identity, I obtain the second assertion 
of the lemma. 

These basic facts about the curvature of Hermitian vector bundles 
will now be applied in the context of a variation of Hodge structure 
{M, He, FP}, of weight k. For each p, I let E v denote the quotient bundle 
FP/F p+I. As was remarked just after the definition of a variation of 
Hodge structure in w one has a natural isomorphism of C ~ vector 
bundles 

(7.16) E P ~ H  p'k-p (=FPnFk-P) .  

The bundle He, it should be recalled, carries a flat, nondegenerate 
bilinear form S, of parity ( -  1) k, which polarizes the Hodge structures 
on the fibres of H e . In particular 

(el, e2) = i 2p-k S(el, Z'2), ele C OO (H p' k- p), 

defines a positive definite Hermitian metric on H e' k-p. Transferring it 
to E p via the isomorphism (7.16), one obtains a positive definite 
Hermitian metric for the holomorphic vector bundle E p. The second 
fundamental form of the subbundle FPcI-Ie, with respect to the flat 
connection on He, will be denoted by o-P; it is a (1, 0)-form with values 
in Hom(F p, He/FP). In view of the requirement ii) in the definition of 
a variation of Hodge structure, for every field X and every ee Coo (FP), 
aP(X) e is really a section of the subbundle 

E p- 1 = F p- t/Fp c He/F p . 

Also, O-P(X)e=0 if ee C ~ (FP+I). Hence o.P defines a (1, 0)-form z p, with 
values in Hom(E p, EP-I). I want to record an immediate consequence 
of the definition: 

(7.17) if eEC~ takes values in the subbundle F P c H r  and if 
e '~C|  p) denotes its projection to E p, then zPe'=O if and only if 
17e e C ~ (T~ | FP). 
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From z v, one can construct the (0, 1)-form (rP) *, with values in 
Hom(EP-~,EV), by requiring that (zP)*(X) shall be the adjoint of 
rP(.~), relative to the positive definite Hermitian metrics of E p and 
E p -  1. 

(7.18) Lemma (cf. Theorem(6.2) of [11]). The curvature form of  the 
metric connection on E v is 

0 = - ( ~ 0 "  ^ T P - r  p+I ^ (~+1)..  

Proof  On He, I consider the flat Hermitian form 

(el, ez) = ( -  i) k S (el, e2), e~ e C ~~ (Hd.  

As a consequence of the polarization condition, it restricts non- 
degenerately to each subbundle F p. Hence the bundles F", as well as 
the quotients EV=FP/F v+l, inherit Hermitian pseudometrics from He. 
With respect to the pseudometric on He, @ H p'k-" becomes an orthog- 
onal direct sum. Also, the induced metric on each E p agrees with the 
previously defined, positive definite metric, but only up to sign: I shall 
refer to the former as ( , )i; then, o n  E v, 

( , ) ~ = ( - 1 ) v ( ,  ). 

This alternating change of sign will turn out to be crucial. However, 
the change of sign affects neither the metric connection, nor its curvature 
form.  

For the rest of the proof, X and Y will denote vector fields of 
type (1, 0). Let O p be the curvature form of F p. Since I-Ir carries a fiat 
pseudometric, its curvature vanishes. Hence, and according to (7.14), 
if el, e2 e C ~~ (FV), 

(Or(X, ?)  e,, e2)= ((aP) * A aPtX, Y) ea, e2) 

= - (aP(X)  el, aP(Y) e2); 

the inner product on the right is computed with respect to the induced 
pseudometric of He/F p. Under the inclusion EP-I,--*He/F p, oP(X)el  
coincides with zP(X)qVe I (qV=projection of F v onto EV), and similarly 
for e2. Thus 

(0  v (X, Y) ea, e 2 ) = - (z v (X) qV el ' zv (y)  qV e2), ' 

with the right hand side computed in the induced metric on E p. Next, 
I consider the exact sequence 

0 , F  v+l  J",F v q~,EV '~0. 
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The definition of z p+I shows that C + l o q p + l = s e c o n d  fundamental 
form of F p+I. The pseudometric determines a C ~ splitting sP: E P ~  F p, 
which is adjoint to qP, and which is an isometry, relative to ( , )i. I use 
the second identity of (7.14) to compute the curvature O of EP: for 
e i ~ C ~ (EP), 

(O(X, ? )  ea, e2),= (qPOP(X, Y) s p rl, e2), 

+((Z p+I o qp+ l) n (Zp+l o qP+')*(X, Y) e, ,  e2) i 

= - ( e ' ( x )  e l ,  ~ " ( v )  e~), 

+((z p+I o q.+X). (~) el ' (zp+l o qp+,). (~) e2)i 

= - ( C ( X )  el ,  C ( Y )  e2) i 

+ (ZP+' (Y) * e 1, zP+l(X) * e2) i 

((qP+~)*: E p+I ~ F  p+I is an isometry!). In this computation,  the super- 
script * always designates the adjoint, relative to the induced pseudo- 
metrics on the bundles E p. Since these metrics agree with the positive 
definite metrics at least up to sign, so do the resulting adjoints. In the 
expression (zp+l(y) ,  el, zP+I(X) * e2)i, the same adjoint occurs twice, 
so that  the potential sign changes cancel. In other words, 

(O(X,  Y) e, ,  e2) , = --(zP(X) e 1, zP( Y) e2) , 

+ ((C+ 1),.(~) el, ('c p + 1)* (.~) e2),, 

where now (zP+l) * is given the same meaning as in the statement of 
the lemma. The inner products on the right are computed in E p-I  
and E p+I, the one on the left in E p. Because of the alternating changes 
in sign, in terms of the positive definite metrics ( , ), the identity becomes 

(O(X,  Y) e, ,  e 2 ) = ( C ( X )  e 1, C ( Y )  e2) 

- (('d'+') * (Y)  e , ,  ( C + I )  * (X) e2) 

= -- ((ZP) * A zP(X, Y) el, e2) 

- ( z  p+a A (zP+I)*(X, Y) el,  e2), 

so that  O = - ( C ) *  ^ z P - C  +1 A (zP+l) *, as asserted. 

(7.19) Lemma (cf. (5.5) and (5.8) of [11]). Let  e be a holomorphic section 
o f  I-I c ,  with values in the subbundle F ~, and such that Ve takes values 
in T~ | F r. Le t  e' be the induced section o f  E p. Then tp=(e',  e') is a 
plurisubharmonic function. Furthermore, i f  q9 happens to be constant, 
there exists a f la t  section e 1 with values in the C + subbundle H p" k-p c He ,  
and a holomorphic section e 2 of rio, with values in F p+ 1, so that e = e 1 + e 2 . 
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Proof. According to (7.13) and (7.18), for any (1, 0)-vector field X, 

c~c~9 (X, .~)= (VE. (X) e', VEp(X ) e') 

+ ((~P)* ̂  TP(X, .~) e', e') +( r  p+I ^ (~'+1)* (X, X) e', e') 

=(Vzp(X)e', VEp(X)e' ) 

-(rP(X) e', z'(X) e') + ((rP+I)* (X) e', (zP+')* (.Y) e') 

(V,~=metric connection on EP). Because of (7.17) and the hypotheses, 
zP(X) e'=O. Thus 

O~qo(X, .~) = (VE. (X) e', VE.(X ) e') 

+ ((vp + 1). (,~) e', (v" + 1). (.~) e') > 0, 

which means that r is plurisubharmonic. If (p is a constant function, 
the Levi form vanishes identically. In this case, the two nonnegative 
terms on the right must vanish, so that 

VEpe'=O and (zP+t)*e'=0 

(e' is a holomorphic section; hence VEp(X)e'=0 for any (1,0)-vector 
field X!). With respect to the Hermitian pseudometric on Hr which 
was defined in the proof of Lemma (7.18), and which will be used 
throughout the remainder of this proof, one has an orthogonal de- 
composition F p = Fp+ 1 ~ H p, k - -  p 

In particular, there exist C ~ sections el, e2 of He, with values in the 
subbundles H p'k-p and F p+I, respectively, which add up to e. In view 
of (7.9), VEp e' coincides with the image of 17F, el under the projection 
F P ~  E p. On the other hand, because of (7.8), VFp el can be computed 
by orthogonally projecting Vel onto F p (V=flat connection of He). 
Therefore, the vanishing of 17~, e' becomes equivalent to: 

(7.20) under the orthogonal projection of H c onto its subbundle 
H p, k- p, Ve I goes to zero. 

Now let X be a (1, 0)-vector field, f a C ~ section of F p+l, f '  its image 
in C~(EP+a). Then aP+l(X)f  projects to zP+l(X)f  ' under FP--~E p. 
Since e 1 is an orthogonal lifting of the section e' of E p back to Hr and 
since e 1 s F p+I, 

(V (.~) e 1, f ) =  - (e 1, V(X) f ) +  A'(el, f )  

= - ( e  1, V ( X ) f ) =  - ( e ,  aP+X(X)f) 

= +(e', r P + l ( X ) f ) =  +(( rp+l) , ( .~)e ' , f )=O.  
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In the final two expressions, the inner product is computed with respect 
to the positive definite metric of E p, and this accounts for the possible 
change in sign. Consequently, V(.~)el_I_FP+I. Next, I consider a 
holomorphic section f of F p+I, and again a (1, 0)-vector field X. Then 
el I f, and 17 (.~) f = 0, so that 

(V ( X) e,, f )  = - (e,, V (X) f )  + X (ea, f )  = O. 

At each point of M, the local holomorphic sections of F p+I span the 
fibre of F p+~. I may therefore conclude that V(X)e~• F p+I. Together 
with the previous orthogonality statement and (7.20), this gives 

(7.21) Ve 1 • F p. 

Because of the condition ii) in the definition of a variation of Hodge 
structure, 17e 2 takes values in T~ | F p. According to the hypotheses, 
the same is true of Ve, and hence also of Vel= Ve-17e 2. Since the 
Hermitian pseudometric of ~ restricts nondegenerately to F p, (7.21) is 
now only possible if 17e~ = 0, i.e. if el is a flat section. As the difference 
of a holomorphic and a flat section, e2 must also be holomorphic. 

I can now prove the central technical result of this section. As 
before, I consider a variation of Hodge structure {M, He, FP}. The 
following theorem was originally proven by Griffiths, for the case of a 
compact base space M (Theorem 7.1 of [11]). Deligne then proved it 
in the geometric setting, for algebraic families with quasi-projective 
parameter space ((4.1.2) of I-6]). It was remarked already that the proof 
which I shall give below is essentially that of Griffiths, coupled with 
the results of w 

(7.22) Theorem. I f  M can be embedded as a Zariski open subset in a 
compact analytic space, for any flat, global section e of He, the Hodge 
(p, q)-components of  e are also flat. 

Proof One can certainly express e as a sum e=~pep ,  with 
epeC~~ Let l be the least integer such that ep=0 for p>l. 
I shall argue by induction on I. For  the lowest possible value of l, there 
is nothing to prove. If I is arbitrary, I consider the function 

~0 = (e', e') = i 2 l- k S (el, e/) 

(e' = image of e under the projection F g ~ El). According to the previous 
lemma, ~0 is plurisubharmonic; also, if ~o were known to be constant, 
et would have to be fiat, hence also e-e~, and this would complete the 
induction step. A Zariski open subset of a compact analytic space does 
not admit any nonconstant, bounded, plurisubharmonic functions [22]. 
It therefore suffices to prove the boundedness of ~o. Although it is not 
strictly necessary to appeal to Hironaka's desingularization theorem, 



Variation of Hodge Structure 275 

it will be convenient to do so. I assume that M lies as a Zariski open 
subset in a compact manifold M, with complement M - M ,  which is a 
divisor with no singularities other than normal crossings. One can choose 
an open neighborhood q / o f M - M  in M, having the following property: 
for ev__ery point of M, there exists an embedded copy of the_ unit disc 
A c M, passing through the point in question, intersecting M - M  only 
in the origin or not at all, and such that dAn  q/=lJ. As will be shown 
presently, the restriction of tp to such a disc A remains bounded from 
above near the origin. Hence the restriction extends as a plurisub- 
harmonic function to all of A 1-22]. By the maximum principle, ~o[d is 
bounded from above by its maximum on ~3A, which in turn is bounded 
by the maximum of ~p on the compact subset M -  q /of  M. Let then A c M 
be an embedded disc, with A c~ ( M - M ) =  {0}, and let A*= A -  {0}. On 
this copy of the punctured disc, e restricts to a well defined (i.e. single 
valued), flat section of I-I C. Thus one can apply (6.7'), which asserts that 
the sum of the squares of the lengths of the Hodge components ep remains 
bounded mear the puncture. In particular, the squared length of el, 
namely ~o, stays bounded. This completes the proof. 

(7.23) Corollary. Under the hypotheses of the theorem, if a flat global 
section e of I-~ is of pure Hodge type (p, q) at some point, then it has 
Hodge type (p, q) everywhere. 

As was remarked in w 2, the operations of tensor products, symmetric 
and exterior products, Horn, and duality can be performed on polarized 
Hodge structures. Also, the category of flat vector bundles over a given 
space is closed under these operations. As a result, one can do the opera- 
tions on variations of Hodge structure with a given base M: the only 
point which has to be checked is the property ii) in the definition of a 
variation of Hodge structure, and this presents no major problem. 

By a morphism between two variations of Hodge structure 
{M, Hi, c, Fp} with the same base space M (i= 1, 2), I shall mean a 
morphism of the underlying flat bundles Hi, r which induces a morphism 
of the Hodge structures corresponding to every teM. In other words, 
a morphism is a global, flat. section of Horn(H1, r H2, c), everywhere of 
Hodge type (0, 0), and rational, relative to the flat lattice bundles Hi, z. 
According to (7.23), if M lies as a Zariski open set in a compact analytic 
space, the condition on the Hodge type needs to be checked only at one 
point. Without any condition on M, the rationality of a flat section at a 
single point implies the rationality everywhere. Hence, under the hypoth- 
esis of (7.22), for any teM, the morphisms between the two variations 
of Hodge structures correspond in a 1:I manner to the n~(M, t)-invariant 
morphisms between the two Hodge structures on the fibres over t. In 
particular, this proves the 
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(7.24) Rigidity Theorem (cf. (7.4) of [11]). Let {M, Hi.c, Ff} be two 
variations of Hodge structure, with base M, which is Zariski open in a 
compact analytic space. I f  for some point t ~ M  the two Hodge structures 
at t are isomorphic, and i f  the isomorphism preserves the action of nl(M ), 
then the isomorphism extends to an isomorphism of the variations of 
Hodge structure. 

Loosely speaking, the period mapping of a variation of Hodge 
structure is completely determined by its value at a single point, plus the 
action of the fundamental group - provided the base can be compactified. 
For families of Abelian varieties, the rigidity theorem is due to Grothen- 
dieck 1-15]. Borel and Narasimham proved (7.24), in effect, whenever 
the classifying space D is Hermitian symmetric [2]. 

Deligne has deduced a remarkable fact from the flatness Theo- 
rem(7.22): under the usual hypothesis on the base, the monodromy 
group of a variation of Hodge structure acts semisimply: 

(7.25) Theorem (Deligne, cf. 4.2.6 of [6]). Let {M, He, F p} be a variation 
of  Hodge structure, such that the base M can be embedded into a compact 
analytic space as a Zariski open set. Then the representation (3.23) is 
completely reducible. 

I shall outline the proof. As usual, ]f/ will refer to the universal 
covering of M, and Hc to the fibre of the pullback of l ie  to M. I keep 
fixed a point t ~M,  and I choose some point lying above t in /f/. This 
choice determines an isomorphism between He and the fibre of H e at t, 
with which one can transfer the Hodge structure at t to Hc. I shall 
denote the Weil operator of the Hodge structure on H c by C. According 
to (7.22), 

(7.26) the space of nl(M)-invariants in H c is C-stable. 

Now let L c H c  be a one-dimensional, nl(M)-invariant subspace, 
such that  the action of nl(M) on L factors through a finite group. In a 
suitable symmetric product of He, the line generated by L becomes 
trivial under the action of nl(M). If one applies (7.26) to the corresponding 
symmetric product of the variation of Hodge structure, it follows that 
the line generated by CL in the symmetric product of He must be nl(M)- 
trivial. Hence, under the assumption at the beginning of the paragraph, 

(7.27) CL is invariant under nl(M ). 

Because nl(M) preserves the lattice Hz c He, if a line L ~ H c is rationally 
defined and nl(M)-invariant, nl(M) can only act on it by ___ 1. In par- 
ticular, (7.27) holds in this situation. 
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(7.28) Lemma. Let V1, V2 be ~q(M)-invariant subspaces of He, which do 
not intersect, and whose sum is defined over ~.  7hen nl(M ) leaves CV i 
invariant, i = 1, 2. 

Proof. I set n i = dim V i, V = V 1 G V2, n = n 1 + n E . Since 

AnV~-An' V~| V2 

is an isomorphism of ~l(M)-modules, the remark below (7.27) shows 
that ~q(M) can act only by + 1 on the one-dimensional 7h(M)-submodule 
A n~ V 1 | A n2 V 2 of A nl H e | A n2 H e. Applying (7.27) to the induced varia- 
tion of Hodgc structure on A~IHe| one finds: A ~ CVi, and 
hence also CV i, are ~l(M)-invariant, for i=  1, 2. 

Deligne's argument for the complete reducibility of the ~h(M)-action 
on H e now proceeds as follows. Let I be the least dimension of all lq(M)- 
invariant subspaces, and W the span of all /-dimensional 7q(M)-sub- 
modules of H e. As a sum of irreducible submodules, W must be semi- 
simple. Thus each /-dimensional, 7q(M)-irreducible subspace V of H e 
has a ~1 (M)-invariant complement in W. Also, since ~z I (M) acts rationally, 
W is defined over Q. Hence (7.28) gives the containment C V ~  W, for 
any such V. These subspaces V span W, so that C W =  W. Consequently, 
the polarization form S restricts nondegenerately to W. Both nl(M) and C 
preserve the orthogonal complement of W. The same argument can 
therefore be applied again to W • and one can continue by induction. 

Instead of the Weil operator C, Deligne works with an action of S ~, 
defined by p(e  iO) V= e i(p-q)O v, for ei~  1, v 6 H  p'q. This does not really 
affect the argument, and gives the following additional information: 
the subspace W, and the other subspaces constructed inductively, cor- 
respond to a sub-variation of Hodge structure. 

w 8. Proof of the Nilpotent Orbit Theorem 
I shall begin with some preliminary remarks and constructions. The 

choice of a base point o ~ D determines a reference Hodge structure on H e, 

He=@H~ 'q, p + q = k ,  

which in turn leads to a Hodge structure 

g=@gp, -p 

on g, of weight zero, as described in w 3. Let 0: g-+ ~ be the Weil operator 
of this Hodge structure; explicitly 

O X = ( - 1 ) P X  for X ~9  p'-p 
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Then 0 is an automorphism of g, as follows from (3.12), it is involutive, 
and is defined over F,. The + 1 and - 1 eigenspaces of 0 will be denoted 
by, respectively, ~ and p, and I set 

~o=~Cng0, po=pC3go . 

The properties of 0 which were just mentioned imply 

g = t ~ p ,  go=~oq)Po, 
(8.1) 

[[,~]=~, [t~,p] = p, [ p ,p ]=~ .  

Composing 0 with complex conjugation (relative to go), one obtains a 
conjugate linear, involutive automorphism of g, whose fixed point set is 

(8.2) mo=[o  ~ ipo. 

It follows that mo is a real form for g, i.e. an R-subalgebra such that 

g = m o E ) i m o .  

Now let C be the Weil operator on He which corresponds to the 
reference Hodge filtration. Then 

(8.3) (u, v)=S(Cu, ~), u, wHo,  

defines a Hermitian inner product on He. As can be checked directly, 
C is an element of the group G~, whose adjoint action on g coincides 
with 0. Thus m0 can be described as the intersection of g with the Lie 
algebra of all skew Hermitian transformations, relative to the inner 
product (8.3). One may conclude that the connected subgroup M c Go, 
which corresponds to the subalgebra m0 c g, coincides with the connected 
component of the identity in the intersection of Gc with the unitary 
group. In particular, this forces M to be compact. Also, a compact real 
form in a connected, complex semisimple Lie group is always connected 
and is its own normalizer; hence M equals the full intersection of Gr 
and the unitary group. 

The intersection 
K = M  c~G~ 

is a compact subgroup of G~, whose Lie algebra ~o = m0 n go consists 
of skew Hermitian transformations, whereas the complement Po of t~ 0 
in go consists of Hermitian transformations. Now one can appeal to 
standard arguments on semisimple Lie groups (e.g. [16], Chapter III), 
to conclude: the connected component of the identity in K forms a 
maximal compact subgroup of the connected component of the identity 
in GR. The maximal compactness of K in GR would follow, if it were 
known that K meets every component of G~. In order to establish this 
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latter fact, I shall make use of Lemma 4.3 in Chapter IX of [ 16]. According 
to the description of M, K is equal to the intersection of GR and the 
unitary group of the inner product (8.3). Also, the adjoint of geGr 
relative to the inner product, is the complex conjugate of CgC-~; 
since C lies in G~, GI~ must thus be closed under adjoints. Hence the 
lemma applies, which asserts the connectedness of G~/K. I may deduce: 

(8.4) K is a maximal compact subgroup of G~ and it meets every con- 
nected component of G~. 

At this point, one should recall the identifications/) ~- G~JB, D ~ G~/V. 

(8.5) Lemma. The groups M and B have V as their intersection, and K 
contains V. 

Proof Since K = G ~ n M  and VcG~t, the latter assertion follows 
from the former. The elements of M n B  leave the subspaces Fd= 
~,_>_ p Hi. k-, invariant, and they preserve the inner product. With respect 
to the inner product, the reference Hodge decomposition of He is orthog- 
onal, so that the elements of M n B must also leave the subspaces 
Hg' q invariant. On the other hand, every g e M  is self-adjoint, i.e. 

Cg C -1 u = ~ - ~  for veHr 

If g e M  also happens to preserve the subspaces Hg '~, it commutes with C. 
It must then respect the real structure of He, and thus belongs to G~. 
Hence M n B c  GR. Conversely, any ge  V= GRn B leaves the subspaces 
H8 ,q invariant (cf. w 3), therefore commutes with C and preserves the 
inner product (8.3). This gives the containment V= G~n B ~ M. Finally, 
then, M n B = G ~ n B =  V. 

In view of the lemma, the M-orbit of the identity coset in Gc/B-~ D 
becomes naturally isomorphic to M/V. Since G~ and M have the same 
dimension (both are real forms in Go), the dimensions of M/V and 
D ~- G~/V also agree, so M/V must be an open orbit. Because of the 
compactness of M, the orbit is also closed. Hence M operates transitively 
on/~, and this gives the identification 

(8.6) D _~ M /V. 

As usual, I regard the elements of g as linear transformations on the 
vector space Hc. The bilinear form 

(8.7) B(X, Y)=trace XY, X, Yeg, 

is clearly symmetric, invariant under the adjoint action of Gc on g, and 
defined over ~,0 relative to the real structure go c g. 
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(8.8) Lemma. 7he bilinear form - B (  , ) polarizes the Hodge structure 
g = @  gP' -p 

Proof. For X~g  p'-p, Y~g~'-q, with p , - q ,  the linear transforma- 
tion X Y  shifts the subspaces H~' q of H c nontrivially. It follows that XY 
has zero trace, and that B (X, Y)= 0. With respect to the inner product 
(8.3), the elements of m o are skew Hermitian. This makes the eigenvalues 
of any Xemo all purely imaginary, and if X 40,  not all eigenvalues can 
vanish. Thus B( , ) is negative definite on too. By complex extension, 
since complex conjugation composed with 0 is the conjugation operator 
relative to the real form mo c g, one finds - B(0 X, X) > 0 for X ~ g, X ,  0. 
This concludes the proof. 

As a consequence of (8.8), the inner product 

(8.9) (X, Y)= -B(OX, Y), X, Y~g, 

turns g into a complex Hilbert space and go into a real Hilbert subspace. 
Under the adjoint action, the Lie algebra m o operates in a skew Hermitian 
manner, which makes the adjoint action of M on g unitary. For emphasis: 

(8.10) the adjoint actions of V, K, and M leave the inner product on g 
invariant. 

The norm which results from the inner product will be denoted by 
double bars. 

At this point, it is useful to insert an observation for later reference: 

(8.11) Lemma. If  T~g o is nilpotent, and if T is expressed as T= Y+ Z, 
with Y~fo and Z~p0,  then II TII = l f 2  II Ell =1/~  IlZl[. 

Proof. According to (8.8), ~ and p are orthogonal, so that LITII2= 
[I yII2+ [IZll 2. On the other hand, the nilpotency of T forces T 2 to have 
zero trace, which leads to 

O=B(T, T)=B(T, T)=B(Y+ Z, Y+ Z) 

=B(Y, Y)+B(Z, Z)=B(OY, Y)-B(OZ, Z) 

= _ II yl12 + IlZll 2. 

The statement follows. 

The holomorphic tangent space to D ~ Ge/B at the identity coset is 
naturally isomorphic to the quotient o/b; the quotient, in turn, is iso- 
morphic as a V-module to the orthogonal complement ofb in g, namely 

c =  ~ p > o g  p' - P  
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From g, c~  fl/b inherits a V-invariant inner product. When this inner 
product is translated via G~ and M, one obtains, respectively, a G~- 
invariant Hermitian structure h( , ) o n  D~-GFJV, and an M-invariant 
Hermitian structure hM( , ) on f)~-M/E The corresponding distance 
functions shall be denoted by d( , ) and dM( , ); the value oo is allowed 
for d( , ), since D need not be connected. 

For  g~Gc,  I let l(g): D--~D denote left translation by g, and l(g). 
the differential of this mapping. It will be necessary to estimate the 
operator norms of the linear transformations l(g)., with respect to the 
Hermitian metric h M. Any given g~Gr can be expressed as g=mb, with 
meM and beB, because M operates transitively on Gc/B. Then 

l(g), = l(m), o l(b),. 

At the identity coset, the action of l(b), on the holomorphic tangent 
space corresponds to the action of A d b  on gila. The operator norm of 
Adb on this quotient is bounded by that of A d b  acting on g, and since 
b=m-lg,  with m operating unitarily on 0, it is also bounded by the 
operator norm of Ad g on 0. With respect to hu, l(m), becomes an isom- 
etry; hence: relative to the Hermitian metric hu, the operator norm 
of the linear transformation l(g), from the holomorphic tangent space 
at the identity coset to that at the g-coset is bounded by the operator  
norm of Adg, measured with respect to the inner product (8.9) on 0. 
The same estimate must then hold at any point of D, for M operates 
unitarily on O and transitively and isometrically on / ) .  This proves: 

(8.12) Lemma. At each point of 1), the operator norm of the linear trans- 
formation l(g),, measured relative to the Hermitian structure hu, is bounded 
by the operator norm of Adg acting on g. 

The statement (8.12) implies a relation between the two metrics h 
and hM on D. Let X be a holomorphic tangent vector at the point 
g V~GFJV~D, with geGR. Then there exists a holomorphic tangent 
vector Z at the identity coset, such that l (g) ,Z=X, or equivalently 
Z = / ( g - J ) ,  X. By construction, the two metrics h and hu agree at the 
identity coset. With respect to h, both l(g), and l(g-1), are isometries; 
with respect to hu, they are not, but (8.12) limits their dilation. Hence: 

(8.13) Corollary. I f  the point aeD is the g-translate of the base point, 
with geG~, and if X is a holomorphic tangent vector at a, then 

h(X, X) �89 IIAdg -~ II hM(S, X) �89 

hM(S, X)~ < Ilmdgll h(X, X)~; 

in this statement, double bars denote the operator norm, relative to the 
inner product (8.9) on 0. 
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In order to prove (4.9), I consider a particular holomorphic, locally 
liftable map 

~: A*-~,F',.D, 

which has horizontal local liftings. Let ~ be the universal covering map 
(4.2) of U onto A*, ~:  U ~ D a lifting of ~b o �9 to D, and ?~F an element 
with the transformation property (4.4). The map ~:  U ~ / 5  is defined by 
(4.7), and pushing qJ down to A* via z, one obtains the map 7': A* ~ / 3 .  
According to (3.17), ~ is uniformly bounded relative to the Poincar6 
metric on U and the G~-invariant metric on D, both globally and in- 
finitesimally; the particular value of the bound depends only on the 
normalization of the metrics. This boundedness property of ~ is the most 
important ingredient of the proof of (4.9). In rough outline, the argument 
proceeds as follows: Under the translation z ~-~ z + m, ~ gets transformed 
by the element 7~ =exp(mN) of E Because of the boundedness of ~, and 
because N is nilpotent, it can be deduced that ~ becomes asymptotically 
tangent to the holomorphic vector field determined by N, as the imaginary 
part of z tends to infinity. In view of its definition, ~ can then vary only 
little for large values of Imz, and this forces '/' to have a removable 
singularity. The lemmas below will be stated in slightly greater generality 
than would be necessary for (4.9) alone, in preparation for the proof of 
(4.12). 

For each z~ U, I choose an element g(z)~G~whose V-coset represents 
the point ~(z)~D~-G~/V.Although g(z) is determined only up to right 
multiplication by an element of V, which operates unitarily on 9, the 
following statement is meaningful: 

(8.14) Lemma. There exist positive constants ~, 8, which depend only on 
the choice of base point in D and on the integer m, such that Imz > 
implies 

IIAdg(z) -1 NIl </~(Imz) -1. 

Proof Two preliminary remarks are necessary. The tangent space 
to G~JK at the identity coset is isomorphic as K-module to 90/[0. This 
quotient inherits an inner product from go, which is invariant under K 
and can thus be translated into a G~-invariant Riemannian structure; 
the Riemannian structure then defines a G~-invariant distance function 
dGR/x( , ) on G~/K. Because of the Grinvariance of the metrics of D 
and G~K, the quotient map D ~_ G~V~G~/K has a uniformly bounded 
differential; by renormalizing the metric on Gr./K, the bound can be 
arranged to have the value one. Now let G~= UAK be an Iwasawa 
decomposition (cf. [16], Chapter VI, for example; if GR happens not to be 
connected in the Lie topology, K still meets every connected component 
of G~ according to (8.4), so that this case does not create any additional 
difficulty). Here A stands for a vector subgroup of Gl~, and U for a 
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suitable maximal unipotent subgroup. The Lie algebra Uo of U is then 
known to contain a conjugate, relative to Ad G•, of any given nilpotent 
element of go; since .4 and U normalize Uo, the conjugation can even 
be performed in K. In particular, for each ze U, I can choose k(z)eK 

such that Ad g (z)- 1 N E Ad k (z)- 1 Uo. 

Because of the uniform boundedness property of ~, for a suitable positive 
constant C, one finds 

mC (Imz) -1 > d(cb(z + m), ~(z)) 

=d(7 m ~(z), ~(z))=d(g(z)- '  7'~ g(z) V, eV) 

> dci~/g(g(z) -1 ~ g(z) K, eK) 

= da~/K(k (z) g (z)- 1 7~ g (z) K, eK) 

= d%m(ex p (m Ad k (z) g (z)-I (N)) K, e K). 

According to the choice of k (z), Ad k (z) g (z)- 1 (N) lies in u o . The mapping 
from u o x A to G~/K, which is given by 

( X , a ) ~ ( e x p X ) a K ,  Xeuo ,  aeA,  

is a diffeomorphism and maps (0, e) to the identity coset. With respect 
to any given metrics, a diffeomorphism is locally bounded. Applying 
this remark to the Euclidean metric on Uo, an arbitrary metric on A, 
and the Riemannian metric on GR/K, one finds that llAd k (z) g (z)- 1 (N) ti 
can be bounded by a multiple of (Imz) -1, if only Imz is sufficiently 
large. Since K operates unitarily on g, the lemma follows. 

The mapping (X, b) ~ exp X o b of g x ~ i n t o / )  is infinitely differen- 
tiable and sends a sufficiently small neighborhood of (0, eB) into D. 
Like any C 1 map, this one must be locally bounded. Hence: 

(8.15) Lemma. 7here exists a neighborhood qi of the base point in D, 
and positive constants ~1, C, such that X~g,  [[Xl[ <q,  ae6//, together imply 
exp X o a e D, and d (exp X o a, a) < C II X II. 

As before, for each ze U, I let g(z) be some element of G~ such that 

(z)-- g(z) ve a l d v ~  D. 

I now define a mapping F~: U - z ~ D by 

F~(u)=g(z) -1 e x p ( - m u N ) o  ~(z +mu) 

= e x p ( - m u  Ad g(z)- X( N)) g(z) - x o ~(z + mu); 

it is holomorphic and periodic of period one. Let ~ be a polycylindrical 
coordinate neighborhood of the base point in D; after shrinking ~, if 
19 Inventiones math., Vol. 22 



284 W. Schmid 

necessary, I may assume that the G~-invariant metric of D and the 
Euclidean metric of ~'  are mutually uniformly bounded on ~ .  

(8.16) Lemma. There exist positive constants ct, ~, which depend only on 
the choice of base point, the choice of ~, and on the integer m, such that 
Fz (u )~  whenever I m z > ~ ,  Ilmul <~ Imz. 

Proof. To begin with, after shrinking q/ and r/ in (8.15), one can 
arrange that exp X o a lies in ~, provided II XII < ~ and a t  q/. Until further 
notice, ~ shall have the same meaning as in (8.14). As a consequence of the 
uniform boundedness of ~, for a suitable positive constant ~1 (which 
depends on ~), I m z > ~  and lul <~1 (Imz) -1 together imply 

d (~ (z + m u), ~ (z)) < diameter of q/, 
and hence also g(z)- l o ~(z + mu)~ll. 

According to the initial assumptions on q/ and r/, if fl has the same 
meaning as in (8.14), and if 

I m z > ~ ,  [ul<ffl(Imz) -1, mlulfl(Imz)-l<rl, 

F~(u) must now lie in ~. Let ~ be the smaller of the two numbers 2 -~ ff~, 
2 - ~ r / f l - l m - ~ ;  for I m z > ~ ,  Fz maps the u-disc of radius 1 / ~ I m z ,  
centered at u = 0, entirely onto ~. This disc contains the rectangle 

[ R e u [ < ~ ,  [ I m u l < ( I m z .  

Enlarging ~ does not destroy any of the previous properties, which 
allows me to assume that ~ ff > 1. The periodicity of F~ then gives the 
conclusion of the lemma. 

The following lemma, which replaces a clumsier one in the original 
version of the proof  of (4.9), was suggested by Deligne: 

(8.17) Lemma. For each r/>O, let ~ be the collection of all bounded 
holomorphic functions on the strip tImu[ <r/which are periodic of period 
one. Each f ~ then satisfies 

3~fu (0) =< (sinh q)-2 If(u) l. sup  

Proof. Let f ~  be given, and let M =  sup [f(u)[. Since f is periodic 
of period one, there exists a holomorphic function (p(t), defined on the 

a n u l u s  e -  2nn < It[ < e 2nn, 

such that tp(t)=f(u) if t=exp(2niu); tp is then also bounded by M. 
Evidently, 

Of(o)=2~i  ~ t  (1) ' 8u 
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For the purpose of estimating the derivative of tp at 1, let r be any real 
number between 1 and e 2~". Then 

c~o (1) ___ (21t i)_1 S (t-1)-2~~ dt 
~t Itl=r 

--(2rti) -1 S (t-1)-2qg(t)dt, 
r l t l=l  

and therefore 

(1)-<(2r0-1M {r lre i~  - l l r  - t e i ~  

_-<M { r ( r -  1) .2 + r  -1 (r -1 - 1) .2  } = 2 M r ( r -  1) .2  

Letting r tend to e 2~", one obtains the bound for ~ i -  (1) which gives the 
desired inequality. 

According to (8.16), for I m z > ~ ,  the coordinate functions of F~, 
relative to the coordinate Polycylinder ~, belong to o~, with tl=~ Imz. 

0 
Consequently, again for Im z > e, the image of the tangent vector - -  0u 
under the differential of the mapping Fz at u = 0 is bounded by a multiple 
of e x p ( - 2 ~  Imz); through increasing e and shrinking ~, the value of 
the bound can be arranged to be one. By infinitesimal left translation, 
N determines a holomorphic tangent vector field on ~;  its value at a 
point ae/~ will be denoted by N(a). In the following, stars as subscripts 
designate differentials of mappings, and vertical bars will be used, when 
necessary, to describe the point in the domain at which the differential 
of the mapping in question is being considered. For g e Gr let/(g): ~ ~ 
be left translation. Then 

Fz,(~-~) ,=o-- l (g(z) - l ) ,  (mt~,  ( ~ z )  - m N ( ~ ( z ) ) ) .  

Since g(z)- 1 eG~, l(g(z)- 1), is an isometry with respect to the Hermitian 
structure h, and one finds: 

(8.18) Corollary. There exist positive constants ~t and ~, which depend 
only on the choice of base point and on the integer m, such that Imz>ct  

implies ' ,  ( ~-~) z -N( ' ( z ) )  <exp( -e  Imz); 

in this statement, length is measured with respect to h. 

(8.19) Lemma. Let 0t>0 be given. For suitable positive constants C, fl, 
the operator norms of both Ad g (z) and Ad g (z)- 1 are bounded by C (Im z) a, 
19" 
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provided that Imz>ct  and [Rez[__<m. The constant fl can be chosen inde- 
pendently of 4~ (but not independently of m), and as long as 4~(i) is known 
to lie in a particular compact subset of D, C can also be chosen uniformly. 

Proof. Let G~= UAK be an Iwasawa decomposition, as in the proof 
of (8.14), and let a o be the Lie algebra of A. Then every element of G~ 
can be expressed as k I exp Yk2, with Y~ao, kl, k2eK (cf. [16], again 
this holds even if GR has more than one component in the Lie topology, 
since K meets all of them). In particular, I shall write g(z) in this form: 
g(z)=k I exp Yk 2. With respect to the Riemannian structure on GF./K, 
which was defined in the proof of (8.14), and the Euclidean metric on ao, 
which comes from the inner product (8.9), the mapping X ~  exp X K  
embeds a0 globally isometrically in G~/K, except possibly for the nor- 
malization of the metrics [16]. Thus, for a suitable positive constant ~/, 

I I Y [[ = q dG~r(exp YK, e K) = q d 6 ~x(g (z) K, e K) 

(8.20) < q d~R/r(g (z) K, g (i) K) + q d~/r(g (i) K, e K) 

<= n d (4 (z), ~(i)) + ,  d6./K(g (i) K, e K). 

If ~(i) is restricted to lie in some fixed compact subset of D, g(i) will have 
to lie in a compact subset of G~, and so the second summand on the 
right hand side of the inequality can be bounded by a constant. Because 
of the boundedness of 4~, the first summand can be at most propositional 
to the Poincar6 distance between z and i in the upper half plane. For  
IRe z I< m, Im z > ~t, this distance in turn is bounded by m~t-1 +l log Im z I; 
since Imz stays away from zero, the absolute value bars may be dropped, 
provided m~ -a is replaced by a possibly larger constant. Under the 
adjoint action, ao operates semisimply on 9, with real eigenvalues. 
Hence the operator norm of Ad exp Y cannot exceed a multiple of the 
exponential of the largest eigenvalue of Ad Y; the eigenvalues of Ad Y 
can be estimated in terms of II Y[I. Putting all of these inequalities together, 
one finds a bound for the operator norm of Ad exp Y, 

I[Ad exp YII < C(Im z) ~, 

which is valid under the assumptions made on z. The dependence on 
is confined to the second term on the right hand side of (8.20), which 
affects only C. Since g(z)=kl exp Yk2, with kl, kzeK,  the same bound 
holds for the operator norm of Adg(z). Replacing Y by - Y  in the 
above argument, one also gets the same inequality for Adg(z) -~. 

By means of (8.13) and (8.19), the inequality contained in (8.18) 
gives an analogous one in terms of the M-invariant metric, which is 
valid, however, only on a vertical strip. Since the imaginary part of z 
remains bounded away from 0 by ct, the constant C of (8.19) can be 
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increased, and the constant e of (8.18) decreased, so that the exponential 
term absorbs the factor (Im z) p. Thus there exist positive constants C, 
~, e, such that Im z > ct, [Re z l < m together imply 

(8.21) ~* (-~-z)z -N(~(z)) < C e x p ( - ~ I m z ) ,  

where length is now measured with respect to h M . 
Since N is nilpotent, the operator norm ofAd exp (zN) can be bounded 

by a polynomial in [z]. The definition of ~ gives 

~. ( ~--~) z=l (exp( -mzN) ) . (m~ .  ( ~ )  ,z-mN(~(mz)))  �9 

In view of (8.12), one now obtains an estimate for the hM-length of 

~. ( ~ z ) .  For this purpose, I adjust the constants a, C, e, to take into 

account the change of scale by the factor m. By further changing the 
constants, I can absorb the polynomial which estimates the norm of 
Ad exp(-mzN) into the exponential factor. The estimate can thus be 
brought into the form 

(8.22) hM(~* ( ~ z ) ~  ' ~* ( ~ z )  z ) � 8 9  

provided Im z > ct. The restriction on the real part of z becomes un- 
necessary, since ~ is invariant under zw~z+l. Now let ~ be a fixed 
positive number greater than ct, and let zl, z2 be two points in U, with 
[m zl, Im z2 ~fl. By integrating the inequality (8.22), taking into account 
the periodicity of ~,, one finds that the M-invariant distance between 
~'(zl) and ~(z2) can amount to at most 

C(1 +e  -1) exp(-ef t ) .  

When this estimate is rephrased in terms of the mapping ~ and un- 
cluttered by absorbing the factor (1 + e-1) into C, one obtains: 

(8.23) Corollary. There exist positive constants p, 2, C, such that for any 
two complex numbers q and t 2 , with 0 < [ q l, I t21 <= r, r < p, the inequality 
d~(~(ta), q~(tz))< Cr ~ holds. 

Clearly, then, 7 ~ extends continuously, and therefore holomorphicly 
to a mapping from A into/5. Let a denote the point 7 j (0). The trans- 

formation property ~ (z + 1 ) =  ~s o ~ (z) translates into ~ ( e 2 ~ " - '  t)= 

y~o ~(t); letting t tend to zero in this identity, one finds that a is a fixed 
point for y,. 
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For sufficiently small values of teA, the dM-distance between a and 
~(t) grows at most linearly with Itl. Hence 

dM(a, exp(--zS)o $(z))=du(a, ~U(exp 2n ira-' z)) 

is bounded by a constant multiple of e x p ( - 2 n m  -1 Imz), for all large 
values of Imz. According to (8.12), left translation by any geGr distorts 
the metric hM by no more than a factor equal to the operator norm of 
Adg;  the global version of this statement clearly follows from the in- 
finitesimal one. As was pointed out before, if z is restricted to a vertical 
strip and bounded away from the real axis, the operator norm of 
Ad exp zN does not increase faster than a power of Im z. On such a vertical 
strip, then, if Im z is large enough, one obtains an estimate 

dM(exp(zN)o a, ~(z))<= C(Imz) ~ e x p ( - 2 n m  -1 Imz), 

where C and/~ are suitable constants. I recall the choices of g(z)~G~, 
for z~ U, which were made just before the statement (8.14). From the 
preceeding estimate, translating both points by g(z) -~, again using the 
global version of (8.12), together with (8.19), one can deduce the same 
type of bound for the dM-distance between g(z) -1 exp(zN)o a and the 
base point eB in GcJB ~-D. In particular, for any given neighborhood of 
the base point, if z is constrained to a vertical strip and has a sufficiently 
large imaginary part, the points g(z) -~ exp(zN)oa are forced to lie in 
that neighborhood. One can pick such a neighborhood, entirely contained 
in D, such that the two distance functions d and dM are mutually bounded 
on it. Hence there exist positive constants ~,/~, and C with the following 
property: if IRe z[ _-< m and Im z > ~, the point g (z)- 1 exp(zN) o a lies in D, 
and its G~-invariant distance from the base point does not exceed 
C(Imz)aexp(-2r~m -1 Imz). By enlarging ~ and /~, if necessary, the 
constant C can be absorbed. Translation by g(z) leaves D invariant and 
preserves the distance function d. I have therefore proven that Im z > 
implies 

exp(zN)oa~D, and d(exp(zN)oa,~(z))<(Imz) t J exp ( -2nm -1 Imz); 

the restriction [Rez[ < m becomes unnecessary, because the substitution 
zF-:,z+m has the effect of translating both ~(z) and exp(zN)oa by 
7" = ~,"- 

In order to complete the proof of (4.9), it remains to be shown that 
z ~  exp(zN)o a is a horizontal mapping. As usual, N(b), for be/), will 
refer to the value at b of the holomorphic tangent vector field which is 
defined by infinitesimal left translation by N. The tangent vector to the 
holomorphic curve z ~  exp(zN)o a, for any particular value of z, equals 
the exp(zN)-translate of the vector N(a) at a. Since Gr leaves the hori- 
zontal tangent subbundle invariant, it suffices to verify that N(a) lies 
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in the fibre of this subbundle at a. For reasons of continuity, this would 
follow if it were known that N(~(z)) differs from a horizontal vector at 
~'(z) by a vector whose hM-length tends to zero, as z tends to ~ in a 
vertical half strip. Since 7 j extends holomorphically over the origin, 

and since ~(z)=~(exp2~iz) ,  the hM-length of * ~-z does tend to 
zero as Im z ~ + oo. On the other hand, 

~* (~zz) z = - N ( ~ ( z ) ) + l ( e x p ( - m z N ) ) ,  ~ ,  ( ~-~-~) ,z" 

The vector ' ,  (~z-z) -  is horizontal because ~ is a horizontal mapping, 

and thus the translate of this vector by l (exp(-mzN))  must also be 
horizontal. This concludes the argument. 

I now turn to the situation described above the statement (4.12). To 
begin with, I shall prove that q~ continues holomorphically to A k. For 
this purpose, two simplifications can be made. First, since the problem 
is a local one, I only need to continue 7 j to a neighborhood of the origin 
in Ak; for any other point of the subvariety on which 7 ~ is not yet deter- 
mined, the same argument can be applied to a smaller polycylinder 
centered at the point in question. Secondly, nothing is lost by assuming 
k=l: I merely choose 7i=1, N~=0 for l + l < i < k .  By applying (8.18) to 
each of the variables separately, one can find positive constants 0t and e, 
such that the restrictions Im zl > ~, 1 < i < k, imply the inequalities 

(8.24) r (0~j-j),z, -Nj(~(z)} <exp( -~ Imz j ) ,  

1 < j <  k. Here (z) is shorthand for the k-tuple (zl . . . . .  Zk)~ U k, and the 
metric h is used to measure length. Just as in the proof of (4.9), the next 
step is to replace the metric h by hM in the inequality. To this end, for 
(z)e U k, I choose an element g (z) e G• whose V-coset represents the point 

(z) e D'~ G~/V. In complete analogy to the statement and proof of (8.19), 
one may conclude: 

(8.25) Lemma. For any ~t >0, there exist positive constants C, fl, such 
that, subject to the constraints IRe zi[ < mi, Im z i > or, 1 < i < k, the operator 
norms of Adg(z) and Adg(z) -1 remain bounded by C 1--I/k= 1 (Imzi) ~. The 
constant fl can be chosen independently of ~ (though not independently of 
the mi), and if ~ (i . . . . .  i) is known to lie in a particular compact subset of D, 
C can also be chosen independently of ~. 

In conjunction with (8.13), Lemma (8.25) allows me to rephrase the 
inequality (8.24) in terms of the metric hM. For Imzi>ct, IRezil<mi, 
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1 < i-< k, the hM-length of the tangent vector 

is bounded by C(I-I~= 1 Imzi) ~ exp ( -~  Imzj); herej is any integer between 
1 and k, and the various constants have the same meaning as before. 
Since the Nj are nilpotent, on each product of truncated vertical strips 
Imzi>~, IRezil<m, l<i<=m, one can bound the operator norm of 
Ad e x p ( - ~ = x  raiz i Ni) by a constant multiple of a suitable power of 
1~=1 Imzi. Let (mz) denote the k-tuple (rn 1 z 1 . . . . .  mk zk); the definition 
of ~ gives the formula 

By combining the preceeding estimate with (8.26), and using (8.12), one 

~ an estimate f~ the hM-length ~ the tangent vect~ ~* (0~-~)~z,' 

I adjust the constants C, ~, ~, e to take into account the scale factors m~, 
and to absorb the estimate for the operator norm ofAd exp ( - ~k= 1 m~ z~N~) 
into the term C (I~k= 1 Im zl) a. Thus, for Im zi > ct, and 1 < j  < k, 

(8.27) qt* ( ~ z i ) , z ,  <C(I- I '=l Imzi )~exp(-~Imzj ) ;  

here length is measured with respect to hM. The restriction on the real 
parts of the z~ can be dropped, because q~ is invariant under z~ ~ z~ + 1. 

Since D is acted on transitively and isometrically by the group M, 
there exists a constant 6 > 0, with the following property: 

(8.28) any subset o f / )  of hu-diameter less than 6 can be enclosed in a 
polycylindrical coordinate neighborhood. 

It is certainly permissible to enlarge the constant ct, without destroying 
the estimate (8.27). I may therefore assume that 

S y '  e -~" dy + (ct + -~ -  log 2) e-~ '}<-~  -. (8.29) C {(ct+ 2 ~  log ~) 'k-t) '  ~ 1 kS 6 

Let (z), (z')~ U k be two points which satisfy, for some integer j between 
1 and k, 

Imzj,  Imzj>~t; z~=z'i for i4:j; 

(8.30) , 1 
~ < Im z~= Im zi < ~ +~-~-n log 2 for i+j.  



Variation of Hodge Structure 291 

By integrating the inequality (8.27), taking into account the periodicity 
of qJ, one finds: 

(8.31) under the hypotheses (8.30), 
6 

dM(q'(z), q'(z'))< T 

If necessary, I increase ct further, so that 

(8.32) kC (l + 2~log2) (ct+ 2~log2) k' 6 e - e ~ < _ _ .  
3 

With this new choice of ~, as another consequence of (8.27) and the 
periodicity of q', I conclude: 

k 1 (8.33) theset  ~ ' ( { ( z ) s U  ~<Imz ,<~+~-~-n log2})  

6 
has hM-diameter less than - - .  

3 

Let p=e-Z~'; then 0 < p < l .  The next statement is obtained by com- 
bining (8.28), (8.31), and (8.33), and rephrasing the result in terms of the 
mapping 7". 

(8.34) Lemma, There exists a polycylindrical coordinate neighborhood 
c D, such that 7" maps the set 

Uk=l {(t)~AklO<ltj[<p; �89 for i:~j} 
into ~. 

Since the coordinate functions of 71 with respect to ~ '  are bounded, 
7' extends holomorphically to the set 

U~=a{(t)~Aklltjl<p; �89 p for i•j}, 

and maps the enlarged set also into ~. According to a classical theorem 
of Hartogs, a holomorphic function which is defined on a set of this 
form extends holomorphically to all of 

{(t)~Ak[ltil<p for l <i<_k}. 

The mapping 7", therefore, extends at least to some neighborhood of 
the origin in d k. As was pointed out before, this already implies that 7" 
continues holomorphically to all of A k. Thus: 

(8.35) Corollary. The mapping 7" has a holomorphic extension to A k. 

I now drop the assumption l = k, and for (w)e A k-~, I set a (w)= 7"(0, w). 
Let r /be  given, with 0 < r / < l .  Corresponding to each (z, w)eU~• A k-t, 
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I choose an element g(z ,w)eG~,  whose V-coset represents the point 
~(z ,w)eD~-GpJV.  Under the restriction Iwjl_-<~t, for l + l < j < k ,  the 
points ~(i, ..., i, w~+l . . . .  , wk) are confined to a compact subset of D. 
Thus, applied to the first l variables, for any given a > 0, Lemma (8.25) 
asserts the existence of positive constants fl, C, so that: 

(8.36) under the hypotheses Im zi > ~, IRe zll < mi for 1 < i < l, and I wjl _-< r/ 
for l + 1 < j ~ k, the operator norms of Ad g (z) and Ad g (z)- 1 are bounded 
by C (1-l~ =1 Im zi} e. 

Since ~u is holomorphic on all of A k, its restriction to any compact 
subset dilates distances at most linearly. Reinterpreted in terms of $, 
this statement implies: 

(8.37) Lemma. Let a > 0  be given. For a suitable positive constant ~, 
/f Imz i>~ ,  l < i<l ,  and if Iw~l__<~, l+ l < j < k ,  then 

dM (a (w), exp (-- ~I  =1 Z, N~) o ~ (z, w)) < ( ~ i  =1 exp ( -  2 ~ m~ -1 Im z,). 

At this point, with the help of (8.36) and (8.37) the argument can be 
continued just as in the proof of (4.9). As the conclusion of this argument, 
for a suitable constant a>O, if Imz~>~ for l < i < l ,  and if Iwjl<rt for 
l+ 1 < j < k ,  the point exp(~l=l  z, N~)o a(w) lies in D, and its G~-invariant 
distance from the point ~(z, w) does not exceed 

(l-[~i= 1 Im zi) Ig Zli=l exp( -21 t  m~ -1 Im zi); 

in this estimate, the constant fl may have to be larger than in (8.36). 

In order to finish the proof of (4.12), I have to show that the mapping 

(8.38) (z, w)F-~ exp(Z~=, z, N~)o a(w) 

is horizontal. As usual, for beD, I let N~(b) denote the value at b of the 
holomorphic vector field generated by Ni. If one applies Theorem (4.9) 
to the j-th variable separately, for 1 < j < l, with all other variables kept 
fixed, one finds that the tangent vector 

Nj(exp(Zi , j  m F' z, N~)o lim I . . . . .  ~(m -1 z, w)) 

lies in the appropriate fibre of the horizontal tangent subbundle; here 
(m -1 z) is shorthand for the l-tuple (m~ 1 zl . . . . .  mi -I zt), and zl . . . . .  
zi_l, zj+l . . . . .  ZkeU, as well as (w)eA k-l, are arbitrary. Since the ?4/ 
commute, for any b e d  one has 

Nj(exp(E, , j  mF 1 z, N~)o b)= l (exp(Ei , j  m? 1 z i ~ ) ) ,  Nj.(b). 

Moreover, translation by any element of Gr preserves the horizontal 
tangent subbundle. Thus under the restriction tj=O, and t~4:O if 
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l<=i<j-1 or j+l<=i<=l, the tangent vector Nj(TJ(t)) must lie in the 
fibre of the horizontal tangent subbundle of 7,(t). When the first l varia- 
bles are made to tend to zero (except for the j- th one, which equals zero 
already) and the others are kept fixed, 7,(w) tends to a(wl+l ..... Wk). 
For reasons of continuity, then 

(8.39) N~(a(w)) lies in the fibre of the horizontal tangent subbundle, 
for all (w)ed k-t and 1 <=j<=l. 

The mapping (z, w)~-* ~(z, w) is known to be horizontal. Since 
translation by elements of Gr preserves the horizontal property of a 
map, in view of the definition of 

(w)~ ~(z, w) 

is horizontal, for each (z)~ U.  Thus, as long as each of the first I variables 
differs from zero, 7,(w) depends horizontally on the last k - l  variables. 
Since 7' is holomorphic on all of A k, I may let the first l variables tend 
to zero, and conclude: 

(8.40) (w)-~ a(w) is a horizontal map of d k-I into D. 

Taken together, (8.39) and (8.40) imply the horizontality of the mapping 
(8.38). 

w 9. Proof of the SL2-Orbit Theorem 

In this section, I shall freely use the notation established in the 
beginning of w 8. In particular, a base point o e D  will be chosen, which 
corresponds to the identity coset under the identification D~G~JV. 
The base point determines an Ad V-invariant Hodge structure of weight 
zero on g, 

(9.1) g =  t~p gr, -p; 

it has the property that gO, o=  v = complexified Lie algebra of V I shall 
denote the Weil operator of this Hodge structure by 0. In view of (3.12), 

(9.2) J :  g - - ,g ,  with J X = i - P X  for Xeg  ~ 

defines an automorphism of g. Then 

J preserves the real structure go c g, 
(9.3) 

J 2 = 0 ,  and J X = X  for X~v, 

as can be checked directly. It will be convenient to have the notation 

(9.4) q = g l ' - l e g - l '  1 , q 0 = q n g o  . 
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For  the remainder of this section, I shall keep fixed a point a~D, 
a nilpotent element NEg0, and a positive constant 0t, such that the 
conditions (5.1)are satisfied. As was pointed out in w (5.1b) can be 
replaced by (5.2). Since V preserves the Hodge structure (9.1), 

(9.5) 9o = % @ {Oo c~ (@~, o 9 p' - P)} 

defines an Ad V-invariant splitting. This splitting determines a G~- 
invariant connection on the principal bundle 

V---~ G~--~ Gv,/V ~- D . 
The mapping 

yF-~exp(iyN)oaED, y~IR, y>ct, 

has a unique (except for the choice of some initial point) lifting from D 
to G• which is tangent to the connection. I shall denote this lifting by 

(9.6) y~-~h(y)~G~, y ~ ,  y>ct. 

For the sake of notational simplicity, apostrophes will be used to desig- 
nate derivatives. Because the map (9.6) takes values in a matrix group, 
h(y) -1 h'(y) lies in its Lie algebra, 90, for all y>ct. Thus 

A(y)= - 2h (y ) - l  h'(y), 
(9.7) 

F(y)=Adh(y)  -1 N, E(y)= -OF(y), 

defines three go-valued functions on the interval {y~Rly>ct}. I recall 
(9.4). 

(9.8) I.emma. For all y~R ,  with y>~, A(y)~qo, E(Y)~Do~)qo, 
F(y)~Do~qo , E(y)-F(y)~Do, and A(y)=- J (E(y )+F(y ) ) .  Moreover, 
these three functions satisfy the differential equations 

2E'(y) = - [A (y), E (y)], 2 F ' (y)= [A (y), F(y)], 

A'(y) = - rE (y), F(y)]. 

Proof. The fact that the mapping (9.6) is tangent to the connection 
determined by the splitting (9.5) immediately implies 

(9.9) h(y) -1 h' (y)~g o n (~p,o 9P'-v). 

I choose an element go eGo whose B-coset represents the point 
a ~ D ~ G~JB. The condition (5.1a) is equivalent to 

(9.10) Adgo 1 N~g  -1'1 ~ b .  

By construction, the coset h(y)B represents the point exp(iyN)oa. 
Hence there exists a B-valued function y~--~b(y), such that h(y)= 
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exp (iy N) go b (y). Differentiation of this identity gives 

(9.11) h(y) -1 h'(y)=iAdb(y) -1 Adgo 1 N+b(y) -1 b'(y). 

Since b(y) takes values in B, b(y) -~ b'(y) lies in the Lie algebra b. More- 
over, the subspace g - l '  1~  b of g is Ad B-invariant. Thus (9.10) implies 

(9.12) h(y) -1 h'(y)~ g -1'1 Oh. 

The values ofh(y) -1 h'(y) lie in go, hence 

h(y)-X h,(y)~g ~ ~ (g-1,1 ~b )  

=goC~(g-l'1 ~ b ) c ~ ( g l , - 1 |  

In combination with (9.9), this gives A (y)~ qo- 
The formula (9.11) can be rewritten as A ( y ) = - 2 i A d h ( y ) - t N  

- 2 b ( y )  -1 b'(y), so that 

(9.13) A(y)= - 2 i  F(y)-2b(y) -1 b'(y). 

In particular, F (y) must lie in b ~ g-1,1. But F (y) also lies in go, and I can 
conclude F (y)E o o ~9 q0, just as in the case of  h (y)-1 h' (y). The subspace 
~ ~ q0 is 0-invariant, so that it must also contain E(y). According to 
the definition of E(y), the components of E(y) and F(y) in qo coincide; 
hence E(y)-F(y) lies in D o. On g-~'a, J acts as multiplication by i. 
Thus, and in view of (9.13), A(y)+2JF(y) does not have a component 
in g-1,1. As was shown above, A(y) has a zero component in t~. From the 
definitions (9.7), it follows that J(E(y)+F(y)) also has a zero component 
in o, and that its component in g-l,  1 is equal to twice that of JF(y). Thus 

A(y)+ J(E(y)+ F(y))~gl,-1 c~ go =0. 

It remains to verify the differential equations. Differentiation of the 
identity F(y)=Adh(y) -1N yields 2F' (y) = [A (y), F (y)]. Applying the 
automorphism 0 to both sides, I obtain the first of the three equations. 
Combining these two, and taking into account that J operates as the 
identity on E(y)-F(y), and that j2 =0, I find 

A' (y) = - J (E' (y) + F '  (y))= �89 [A (y), E (y)-  F (y)] 

= �89 [JA (y), E (y)-  F (y)] = �89 I-E (y) + F (y), E (y)-  F (y)] 

= - [ e  ( y ) , / ~  ( y ) ] ,  

as was to be shown. 

The strategy of the proof of (5.13) is to show that A (y), E (y), F(y) can 
be developed in a convergent series near y = ~ .  The differential equations 
in (9.8) then give recursive relations on the coefficients of the series. If 
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all possible information is squeezed out of these relations and applied 
to the function h (y), Theorem (5.13) follows. The next few lemmas are 
aimed at obtaining the convergent series for A(y), etc. As in w II II will 
denote the Ad K-invariant norm on g which comes from the inner 
product (8.9). 

(9.14) Lemma. For all sufficiently large values of y, IIA(y)II, ]IE(y)H, 
IIF(y)ll are bounded by a constant multiple of y -1. 

Proof. According to (5.1), 

z ~, exp ((z + ict) N) o a = ~ (z) 

defines a horizontal mapping S of the upper half plane into D. In view of 

(3.17), the length of the tangent vector 6 ,  , measured with respect 
z 

to h, is bounded by a multiple of (Ira z) - 1. For z = i ( y -  cO, with y > c~, ~ (z) 
coincides with the h (y)-translate of the base point o s D. Since translation 
by h (y) preserves the G•-invariant metric, the length of 

0 , l(h(Y)-l)* ~* (~z  ) .y_~) 

which is a tangent vector at o, does not exceed a multiple of (y-c() -1. 
For X e g  and be/), the value of the holomorphic vector field "infini- 
tesimal translation by X"  will be referred to as X(b). Then 

l(h(Y)-l)*~*(~---z) ,(r- ~) 

= l(h (y)-1), N(h (y) o o) = (Ad h (y)-1 N)(o) = F (y)(o); 

under the natural identification between the holomorphic tangent 
bundle at o and g/b, this tangent vector corresponds to the image of F (y) 
in g/b. It follows that the length of the projection of F(y) into g/b - 
equivalently, the length of the component of F(y) in g-1.1 _ is bounded 
by a multiple of ( y -  ct)-1, and hence also by a multiple of y-1, as long as y 
is sufficiently large. Since F(y) is real, and since gl,-1 and g-1,1 are 
mutually conjugate, also the length of the component of F(y) in q=  
g-1,1 q)gl,-1 remains bounded by a multiple of y- l ,  as y--, oo. Being a 
conjugate of N, F(y) must be nilpotent; also, F(y)euo@q0, with u0c l0 ,  
q0cPo  . Thus Lemma (8.11) gives the desired estimate for F(y). The 
estimates for A(y) and E(y) follow, because E(y)=-OF(y), A(y)= 
- d(E(y)+ F(y)). 

In view of the differential equations (9.8), the k-th derivative of A (y) 
can be expressed as a Lie polynomial, homogeneous of degree k + 1, in 
A (y), E (y), and F (y). Thus: 
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(9.15) Corollary. For k=0,  1, 2 . . . . .  

IIa~k~(y)ll=O(y -k-a) as y - - ~ .  

I let G~= UAK be an Iwasawa decomposition, as in the proof of 
Lemma (8.14). For geG~, the components o f g  in U, A, K depend real 
analyticly on g. Thus, if I express h(y) as 

(9.16) h(y)= u(y) a(y) k(y), with u(y)~ U, etc, 

u(y), a(y), k(y) will be real analytic functions on the interval {yelRJy>ct}, 
with values in U, A, K. 

(9.17) Lemma. The matrix entries of u(y) and a(y) 2 are rational functions 
of y, which are regular on the interval ye~,,  y>e.  

Proof For y >  ct, the point exp(iyN)o a defines a polarized Hodge 
structure on He, which will be denoted as 

(9.18) He= ~ H',q(y). 

Let He=  OHg "q be the reference Hodge filtration. Since h(y) lies in GR, 
and since exp(iyN)o a coincides with the h(y)-translate of the reference 
point, 

(9.19) nP'q(y) =h(y) H~ 'q, 

for all p, q. I choose an element goeGr whose B-coset represents the 
point a t  b ~ GeJB. Then for each integer p, 

exp(i y N) go( @j>=pHJo ' k-j)= (~j>=pHJ, k- j(y). 

Let (wt, w2, ..., ws) be a basis of He, such that the first few basis vectors 
span the last nonzero subspace in the reference Hodge filtration 

H~z=... ~ F ~ - I D F ~ F ~ + I ~ . . .  ~O, 

the next few basis vectors span the next to last nonzero subspace, and so 
forth. Then, for y > ~, 

(9.20) {exp (i y N) go w i[ 1 < j < s} 

forms a basis with the same property relative to the Hodge structure 
(9.18); also, because N is a nilpotent linear transformation, these basis 
vectors have polynomial dependence on y. 

I shall have to digress briefly on the Gramm-Schmidt orthogonali- 
zation process. Let E be a finite dimensional complex vector space, 
F = E a subspace, (x, y ) ~  h (x, y) a nondegenerate Hermitian form, such 
that h is positive definite on F, negative definite on the orthogonal 
complement of F in E. I suppose that a basis {v~ . . . . .  v,} for E is given, 
with v~ . . . . .  v~ spanning F, for some l<n. Inductively, I define vectors 
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U 1, u 2 . . . .  , u ~ E  by 

u l = v l ,  u ,=vr-~j~,h(v , ,u~)h(u~,u~)- lu~.  

Because of the hypotheses, the process is well-denned: each u, lies 
either in e or f ' ,  and thus has nonzero "length". One verifies easily 
that the uj are mutually orthogonal with respect to n, and that {u~ . . . . .  u,} 
forms a basis for E, u ~ f  for 1 _-<j_-< l, uj~ F l for j > 1. With respect to an 
arbitrary nxed basis of E, the coordinates of the uj are rational functions 
of the coordinates of the v~. This "Gramm Schmidt process without 
normalization" evidently works in the more general setting of a nitration 
rl = "" c F k c E ,  as long as h is nondegenerate on fj and of definite sign 
on the orthogonal complement of Fj_~ in F~, for 1 __<j < k. 

Since S polarizes the Hodge structure (9,18), I can apply the Gramm- 
Schmidt process without normalization to the basis (9.20) and the 
Hermitian form (u, v) ~,  S (u, -~). The result will be a basis {w 1 (y) .. . .  , ws(y)} 
for He, with the following properties: 

a) S(wj(y), wl(y))=0 for j:t: l, S(w~(y), w~]) : t :0 ;  

b) wj(y) is a rational function of y, for 1 < j <  S; 
c) each subspace HP'q(y) has a basis {wj(y)]l(p, q) < j < l ( p -  1, q + 1)}, 

for suitable integers l(p, q). 
The projection of H c onto the subspace H p' q (y) in the decomposition 

(9.18) can therefore be represented explicitly as 

E S(w ty), 
with j running from l(p,q) to l ( p - l , q + l ) - l .  In particular, this pro- 
jection becomes a rational function of y, regular for ye ~ ,  y > ct. The same 
assertion then holds also for the Weil operator C (y) corresponding to the 
Hodge structure (9.18). Let C be the Weil operator of the reference Hodge 
structure. As was pointed out in w CeGI~ and 0 = A d  C. In particular, 
0 lifts from the Lie algebra to an automorphism of GR, which shall also be 
denoted by 0. According to the definition of K, 0 acts on K as the identity. 
The Lie algebra a0 of the group A in the Iwasawa decomposition lies in 
the (-1)-eigenspace of 0, so that O(a)=a -x for a e A  (of. [16]). In view of 
(9.19), C(y)=h(y)  Ch(y)-~; as was pointed out before, this linear trans- 
formation depends rationally on y, with no singularities on the interval 
yeF,,  y>ct. Hence the same is true of 

C -1 C ( y ) = C  -1 h ( y ) C h ( y ) - t = ( O  -1 h(y))h(y) -x 

----- (0 h (y)) h (y)-~ = {0 (u (y) a (y) k (y))} k (y)-a a (y)- x u (y)-a 

=(Ou(y)) a(y) -1 k(y) k(y) -1 a(y) -1 u(y) -1 

=Ou(y) a(y) - z u(y) -1, 
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and thus also of its inverse 
(9.21) u(y) a(y) 20u(y) -1. 

Since the Weil operator C is defined over lR, the inner product (8.3) 
restricts to a real inner product on H R. With respect to this inner product, 
the adjoint of each geGR equals C -1 g-1 C=Og-1. Thus, relative to 
any orthonomal basis of H R, K is represented by orthogonal matrices, 
and g~-, 0g -~, for geG~, corresponds to transposition of matrices. As 
can be deduced either directly, or from Lemma 9.3 and the proof of 
Proposition 11.25 of [1], there exists some orthonormal basis of H~, 
relative to which 

a) U is represented by lower triangular matrices, with l 's in all 
diagonal entries; 

b) A is represented by diagonal matrices; 
c) g ~-~ Og -1 corresponds to matrix transposition. 
If a nonsingular square matrix M can be expressed as M--TDtT,  

where D is diagonal and T lower triangular, with l's on the diagonal 
(tT=transpose of T), then this expression is unique, and the matrix 
entries of T and D depend rationally on those of M. Since the matrix 
entries of (9.21) are rational functions of y, this concludes the proof of 
the lemma. 

According to the definition of an Iwasawa decomposition, the 
subgroup A c GR is Abelian, connected, simply connected, and consists 
wholly of semisimple elements with real eigenvalues. Thus, as a matrix 
group, A can be diagonalized over ~ .  From this, together with the 
preceeding lemma, it follows that the entries of a(y) -~ a'(y) must be 
rational functions, with no singularities on the interval y e R, y > ct; also, 
the entries of a (y) must be linear combinations of square roots of rational 
functions which assume positive values on {yeN[y>ct}. Rational 
functions of y can be expanded as Laurant series in y-~, converging on 
some punctured neighborhood of y = oo. Likewise, the square root of a 
rational function r(y), with r (y)>0 for y e ~ ,  y >  ct, can be expressed as a 
Laurant series in the variable y-�89 such that the series converges and 
represents the function in question on some interval of the form y ~ ,  
y>fl .  Thus: 

(9.22) Corollary. The matrix entries of u(y), u(y) -1 u'(y), and a(y) -1 a'(y) 
all have series expansions of  the form 

ar~oy-mO+amo+l y-too-1 +amo+2y-mO-2+..., mo~Z ' 

and the matrix entries of a(y) can be expressed as a series in y-�89 of the type 

b~oY-n~ +bno+l y-(n~ +bno+2 Y-(n~ 2)/2 + ..., n o , Z ;  

these series expansions are valid and converge on some interval {y ~ ff( l Y > fl }. 
20 Inventiones math., Vol. 22 
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(9.23) Lemma. For yG~ ,  y>ct, 

k' (y) k (y)-1 = _ �89 Ad a (y)-I (u (y)-i u' (u)) 

- �89 Ad a (y) (0 (u (y)-a u' (y))), 
and 

Ad k (y)(A (y)) = - 2 a (y) -x a' (y) - Ad a (y) -~ (u (y)- '  u' (y)) 

+ Ad a (y)(0 (u (y)-i u'(y))). 

Proof. If the identity (9.16) is differentiated logarithmically and 
rearranged, using the Definition (9.7), one obtains 

�89 Ad k (y) (A (y)) + k' (y) k (y) -~ 

= -- Ad k (y) (h (y)- 1 h (y)) + k' (y) k (y)-I 

= - Ad  a (y)- 1 (u (y)- 1 u ' (y))-  a (y)- 1 a' (y) 

= - a (y)-I a' (y) - �89 {Ad a (y) -1 (u (y)-1 u' (y)) 

- 0 A d a ( y )  -~ (u(y) -~ u'(y))} 

-- �89 {Ad a (y)-:  (u (y)-I u' (y)) + 0 Ad a (y)-I (u (y)-I u' (y))}. 

According to (9.8), A(y) takes values in qo- Since qo c Po, and since 
Ad K(Po)C la o, the first summand on the left hand side of the identity 
above must lie in ~0; the second summand clearly lies in the Lie algebra 
of K, namely lo. The subspaces to and Po of go can be described as, 
respectively, the (+1)- and (-1)-eigenspace of 0; furthermore, by the 
very definition of an Iwasawa decomposition, the Lie algebra of A lies in 
P0- Thus, equating the components in f0, I find 

k' (y) k (y)- 1 = _ �89 {Ad a (y)-I (u (y)-I u' (y)) + 0 Ad a (y)-i (u (y) u' (y))}. 

Since 0 acts as multiplication by - 1 on the Lie algebra of the connected 
subgroup A c G~, the lifting of 0 to an automorphism of G~ acts on A as 
inversion. Hence, for aEA, Oo A d a = A d a  -1 o 0, and this now proves the 
first of the two assertions; the second can be verified similarly. 

In view of (9.22) and (9.23), the matrix valued function k'(y)k(y) - l  
can be expanded as a series 

(9.24) k'(y) k(y) -1 = ~,~,o Zn y-n/2 

which converges and represents the function on some interval {yelRJy>fl}. 
The values of this function lie in lo; hence Znefo, for n=no, no+ 1,. . . .  

(9.25) Lemma. For n<2 ,  Z , = 0 .  

Proof. I define Z(y )=  ~>=~o Z~ y-~/2, so that 

k' (y) = Z (y) k (y). 
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If no >2, there is nothing to prove. I shall therefore assume that the 
leading coefficient Z.o does not vanish, and that n o < 2; from this I shall 
deduce a contradiction. By induction on 1, one finds that the/-th deriv- 
ative of k(y) satisfies an identity 

kt~ (y) = Pl(Z (y), Z' (y) . . . . .  Zt '-  ' ) (y)) k (y), 

where Pt is a noncommutative polynomial, homogeneous of weighted 
degree l when Z (r) (y) is assigned the weight r + 1, for r--- 0, 1 .. . .  ; more- 
over, the monomial (Z(y)) ~ occurs in Pt with coefficient 1. Since n o was 
assumed to be less than 2, this implies 

Pz(Z (y), Z' (y) . . . . .  Z('- ')(y)) 

= ( Z . J  y-1.o/2 + terms involving higher powers of y-�89 

As an element of the Lie algebra of a compact group of matrices, Z.o 
must he semisimple; in particular, Z .o40  implies ( Z . J + 0 ,  for every 
1>=0. Since k(y) - I  ranges over the compact group K, its matrix entries 
are uniformly bounded. Putting these statements together, I find that, 
under the hypotheses mentioned above, 

][k(Z)(y)[] =O(y9 as y - ~  if and only if s> - �89 o, 
(9.26) for /=0,  1 . . . . .  

As a consequence of (9.22), there exists a constant (, such that, for l>0,  

d t0 111 
~-,l  (u(y)- ) =O(y~-t), and 

(9.27) 
d (o I 

~-y~ (a(y)-') =O(y;-t), as y-- ,oo.  

Similarly, one obtains a bound for h(y)=u(y)a(y)k(y): because the 
entries of k (y) are uniformly bounded, after enlarging ~, if necessary, 

(9.28) Ilh(y)]l=O(y ~) as y--,oo. 

Since 2 h' (y) = - h (y) A (y), there exists a noncommutative polynomial Q~, 
such that 

ht~ Qz(A (y), A'(y) . . . . .  A(l-1)(y)); 

Qt is homogeneous of weighted degree l if A(')(y) is assigned the weight 
r + 1. Combined with (9.15) and (9.28), this gives the estimate 

(9.29) Ilh('~(y)l ] =O(y  g-t) as y ~  ~ ,  
20* 



302 W. Schmid 

for I=0,  1 . . . . .  In view of (9.27) and (9.29), when the identity k(y)= 
a(y) -1 u(y) -1 h(y) is differentiated l times, each single differentiation of 
one of the factors pushes down the order of growth by a factor of y -  ~ ; thus 

(9.30) Ilkt~>(Y)ll =O(y  3~-~) as y---~ ~ ,  l=0, 1 . . . . .  

Taken together, (9.26) and (9.30) contradict the original hypotheses, 
namely that n o < 2 and Zno 4= 0. Hence the lemma is proven. 

(9.31) Lemma. There exists an element L o f  the Lie algebra to, and a 
K-valued function k 1 (y), which is a real analytic function of  the real 
variable y-�89 on some interval lY-~l< t/, such that k (y)= k 1 (y) exp(log y L ). 

(9.32) Remark. It will turn out that L=0 .  

Proof. When the differential equation 

k'tY)=(~,_>2 Z. y-,/2) k(y) 

is rewritten in terms of the variable t = y-~, it becomes 

dk 
dt = ( - 2 Z 2 t -  ~ + higher order terms) k (t). 

This latter equation at worst has a regular singular point at t = 0. More- 
over, the leading coefficient - 2 Z  2, which is an element of the Lie 
algebra of a compact matrix group, has purely imaginary eigenvalues. 
In particular, no two distinct eigenvalues of the leading coefficient 
differ by an integer. Hence, from the theory of linear differential equations 
with regular singular points (e.g. Chapter IV, w of [4]) it follows that 
any solution, and hence also the definite solution k(y) occuring in (9.16), 
is of the form 

k (y) = m (y) exp (log y Z_ 2 )mo 

(because l o g y = - 2 1 o g t ) ;  here re(y) denotes a matrix valued function 
whose entries have power series expansions in y-~ near y =  ~ ,  and such 
that m ( ~ ) =  1; m0 stands for a constant matrix. Since k(y), when defined, 
is invertible, the matrix m0 must also have an inverse. The matrix entries 
of m(y) -1 also have convergent power series expansions in y-*,  because 
m ( ~ ) =  1. Thus 

IIm(y) -1 m'(y)l l=O(y-~) as y---~ a3. 

Since e x p ( l o g y Z _ 2 ) e K  for y ~ , ,  the entries of this matrix, as well as 
those of its inverse, remain bounded near y =  ~ .  I deduce: 

l imr,  ~ (yk(y) -1 k' (y)) 

=raft ~ Z_ 2 mo+l imr .  ~ {Ad(mff 1 e x p ( - l o g y  Z_2))(ym(y) -1 m'(y))} 

=too 1 Z_2 m0. 
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On the other hand, for those real values of y for which it is defined, 
k(y)-t k'(y) lies in [o, so that m o 1 Z 2 moe [o. I now define L =  mo 1 Z_ 2 too, 
k 1 (y)= re(y)m o . Then k(y)= k 1 (y)exp(logyL), as desired. This last iden- 
tity also forces kl(y ) to take values in K, since Lefo. All the other stated 
properties have already been verified. 

The next step of the proof consists of showing that L=0 .  For this 
purpose, a certain algebraic statement is needed. In my original version 
of the proof of (5.13), this statement was implicit, though rather well 
hidden; Deligne extracted it, cleaned up its proof, and recast it in the 
following neat form: 

(9.33) Lemma. Let ao, bo be Lie algebras of compact Lie groups, 
p: a o --~ b o a linear map, and L~b o some element of bo, such that 

[pX, p Y]=( l  +adL)op[X,  Y] 

for all X, Yea o . Then p is a Lie algebra homomorphism. 

Proof. It must be shown that L commutes with p [ao, ao]. The derived 
algebra of a compact Lie algebra is semisimple and therefore equal to its 
derived algebra; moreover, it is again the Lie algebra of a compact 
group [16]. One may therefore assume that ao is semisimple. A compact 
semisimple Lie algebra is the linear span of some number of subalgebras 
which are isomorphic to ~u(2) [16]; this reduces the problem to the 
case when ao=~U(2). I let X, Y, Z, denote the images under p of, respec- 
tively, 0 0 )  10t ' 
then, according to the hypotheses, 

[X, Y] = Z + [L, Z], 

[Y, z ]  = x +  [L, X], 

[Z, X] = Y+ [L, Y]. 

Using this, together with the Jacobi identity, one finds 

[X, [X, L]] + [Y, [Y, L]]  + [Z, [Z, L]]  

= - [ X ,  [Y, Z ] ] -  [Y, [Z, X ] ] - [ Z ,  IX, Y]] =0. 

Since bo is the Lie algebra of a compact Lie group, one can choose a 
negative definite, ad-invariant bilinear form B( , ) on b o (for example, 
the trace form of a faithful finite dimensional representation). Then 

B(EX, L], [X, L])+B([Y, L], [Y, L])+ B([Z, L], [Z, L]) 

= - B ( [ X ,  [X, El] ,  L ) -  B([Y, [Y, El],  L) -B([Z ,  [Z, L]], L) 

= 0 .  
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Because of the negative definiteness of B, L must commute with 
p [ao, ao] = p ao, as was to be shown. 

(9.34) Corollary. Let gl, g2 be real semisimple Lie algebras, with Cartan 
involutions 01, 02, and p: gl ~ g2 a linear map which is compatible with the 
involutions (i.e. 02op=po01). I f  there exists some L~g2, with 02L=L, 
such that [p X, p Y] = (1 + ad L) o p [ X, Y] for all X, Ye gl , then p is a homo- 
morphism of Lie algebras. 

Proof I set mi = {X e gi ~ l O i  X = X}; then ml, m2 are Lie algebras 
of compact Lie groups 1-16]. Because of the hypotheses on p, the complex 
linear extension maps m 1 to m2, and p, L, ml, m2 satisfy the assumptions 
of the lemma. 

(9.35) Lemma. In the notation of Lemma (9.31), L=0 .  

Proof According to (9.16), (9.22), and (9.31), one can express the 
function h (y) as 

h (y) = h 1 (y) exp(logy L), 

where h I (y) is a G•-valued function whose matrix entries have convergent 
Laurant series expansions in y-�89 near y =  ~ ,  and L~[o. I define 

.zi (y) = Ad exp (log y L)(A (y)), 

/~ (y) = Ad exp (log yL)(e (y)), 

P (y) = Ad exp (log y L) (F (y)). 

As one can compute easily, 

(9.36) ,4(y) = -2h i (h )  -1 h'~(y)-2y -1 L, 

which implies that ,4 (y) has a Laurant series expansion in y -  ~ near y = ~ .  
Similarly, 

P (y) = Ad h~ (y)-~ N 

and/~ (y)= -OF(y)  (0 commutes with Ad K !) have such Laurant series 
expansions. Since K operates unitarily on g under the adjoint action, 
and in view of (9.14), the lowest power of y-1 which can occur in these 
expansions is the first power, so that 

A(y)=A2 y-1 _l_.~ 3 y - ~ +  "", 

/~tY)=/~2 Y-~ +/~3 Y-~+ "", 

P(y)=P2 y- l  + p3 y-~ +.... 
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Using the differential equation for A(y) in (9.8), I find 

_42  y - 2 - ~ a 3  y-~ . . . . .  ,4'(y) 

= Ad exp (log y L)(A'(y)) + y - 1  [ L ,  A (y ) ]  

= - [~ (y), P (y)] + y - '  [L, 4 (y)] 

: ( -  EE2, P22 + EL, 4~2) y -  ~ + . . . ,  

and hence [/~2, F2] = (1 + ad L)(A2). Similarly, 

[42,/~2] =(1 + adL)(2/~z), [42, F2] =(1 +adL) ( -2Fz ) .  

Since AdK commutes with 0, 042= - 4 2 ,  and OE2=F'z . There exists a 
unique linear map p: ~[(2, F , )~  go which sends 

to, respectively, 42,/~z, F2. Under this map, the usual Cartan involution 
on ~1(2, ~), namely X ~ -  tX, corresponds to the Cartan involution 0 
of go- In view of the identities above, and because OL=L, (9.34) can be 
applied to this situation; in particular, [L, 42] =0. As a consequence of 
(9.36), 

hi(Y)-1 , 1 - hl (y )=(-~Az-L)  y -1 + . . . ,  

when this differential equation is rewritten in terms of the variable t = y-�89 
it becomes 

dht = {(2L- 42) t- 1 + higher order terms} h 1 (t). 
dt 

According to the elementary theory of ordinary differential equations 
with regular singular points (e.g. Chapter IV, w in [4]), the general 
solution, near t=0, cannot have a Laurant series expansion in the 
variable t, unless the leading coefficient (2L-42)  has only integral 
eigenvalues. On the other hand, hi(t) does have a Laurant expansion 
in t near t=0;  hence the eigenvalues of (2L-42)  are all integral. Since 
Lefo, L is semisimple and has only purely imaginary eigenvalues, 
whereas the eigenvalues of 42sP0 must be real ([o~ipo is the Lie 
algebra of a compact Lie group; cf. w Also, L and A2 are known to 
commute. But all this is only possible if L= 0. 

Combined with (9.22) and (9.31), the lemma implies 

(9.37) Corollary. The function k(y) extends to a real analytic K-valued 
function of the real variable y �89 near y = ~ .  In particular, k ( ~ )  lies in K. 
The matrix entries of  h(y), h(y) -1, A(y), E(y), F(y) all have convergent 
Laurant series expansions in y-�89 near y =  ~ .  
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Because of the statement (9.14), the lowest power of y-�89 which can 
occur in the series expansions of A(y),E(y),F(y) is y-1. Thus I can 
write 

A(y)=~n>=oA, y -~"+2)/2, E(y)=~n.~oE.y -~+2)/2 
(9.38) 

F (y) = 2n>=O F n y--(n+ 2)]2. 

The coefficients A., E., F. lie in go, because A(y), E(y), F(y) are go-valued 
functions. The labelling of the indices in (9.38) does not agree with nay 
previous practice, but it will turn out to be more convenient. In terms 
of the coefficients of the series, the differential equations (9.8) become 

(n+2) E. = ~ =  0 [Ak, E._k], 

(9.39) (n + 2) F. = ~ = 0 [Ak, F,_ k], 

(,+2) A.= YLo [E~. F._d. 
By setting n = 0, one finds 

(9.40) [Ao, Eo] = 2Eo, [Ao, Fo] = - 2Fo, lEo, F o] = A o �9 

Thus Ao, Eo, Fo span a subalgebra of ~o, which I shall denote by %; 
will stand for the complexification of% in g. The commutation relations 

(9.40) are those of the standard generators of s 1(2, ~,). Hence %-~I (2 ,  IR), 
unless Ao, Eo, Fo all vanish. In this latter case, from (9.39) one deduces by 
induction on n that all the coefficients A,, E,, F, must be zero. But then 
A(y)=0, F(y)=0,  so that h(y) must remain constant, and 

N=Adh(y)(F(y))=O. 
For emphasis: 

(9.41) % ~ 1 ( 2 ,  R), s ~ i ( 2 ,  r unless N=0 .  

From now on, I specifically exclude the trivial situation, when N = 0. 
Via ad, ~ is represented on g. I recall the basic facts about representations 
of ~l 2, which were stated in w In particular, g breaks up into a direct 
sum of ~-invariant, ~-irreducible subspaces. For each such irreducible 
subspace, the collection of eigenvalues of ad Ao is of  the form 

{r,r-2, r - 4  ..... -r} ,  with r~Z, r > 0 ;  

the eigenvalues all have multiplicity one. Corresponding to every non- 
negative integer r and every integer s, I define subspaces 

(9.42) g(r) = linear span of all ~-invariant, irreducible subspaces of g on 
which adAo has eigenvalues r , r -2  ..... - r ;  g(r,s)=s-eigenspace of 
adAo in g(r). 
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Then g becomes the direct sum of these subspaces: 

(9.43) g =  Gr->o g(r), 9(r) = ~o=<+=<r 9( r, r - 2  i). 

The mapping [ , ]: g ~ 9 ~ 9 commutes with the action of s. Hence, for 
rl, r2 >=0, [g(rl), 9(r2)] is an ,-invariant subspace of 9, on which adAo has 
no eigenvalues exceeding r, + r2, and all of the same parity as rt + r2. 
This implies 

(9.44) [9(rl, st), o(r2, s2)-] c (~o__<i O(q +r2 - 2  i, s I +s2). 

For future reference, I record the identities 

[Eo,~(r,s)]~g(r,s+2), [Fo,g(r,s)]cg(r,s-2), 
(9.45) 

[Ao, g(r, s)] c g(r, s), 

which are a simple consequence of the commutation relations (9.40) and 
the ~-invariance of the subspaces g(r). 

I define an element f2 of the universal enveloping algebra of ~ by the 
formula 

(9.46) f2 = 2E o F o + 2F o E o + Ao Ao. 

One can verify that g2 lies in the center of the universal enveloping 
algebra of ~, either directly or by identifying O with eight times the 
Casimir operator of s. It follows that f2 acts as a constant mutiple of the 
identity under every irreducible representation of ~. According to the 
Definition (9.42) (if one takes into account the first identity in (9.45)), 
each irreducible subspace of g (r) contains a nonzero element X, with the 
properties [Ao, X] =rX, [E o, X] =0. One computes easily 

ad I2 (X) = (2 ad E o ad F o + 2 ad F o ad E o + (ad Ao) 2) (X) 

=(4 adFo adEo +2  ad [-E o, Fo] + (adAo)2)(X) 

=(r2 + 2r)X. 

Hence f2 acts on all of g(r) as multiplication by (r 2 +2r). For distinct 
nonnegative r's, these numbers are also distinct, and this gives another 
characterization of g(r): 

(9.47) g(r)-- {Xegbad I2(X)=(r 2 +2  r)X}. 

I now decompose the coefficients of the series (9.38) into their compo- 
nents in the various subspaces g(r, s): 

A.=E,,,A•", E.=~,,,,E'~ '~, F~=E,,,~"', 
with A, . . . . . . ,  E n , F~"'eg(r, s), for n=  1, 2 .. . .  
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(9.48) Lemma. ?he following statements holds for n>0 :  
r s r , s  r s  . a) I f  n<r, or if n - r  is not an even integer, A : =E. = F~' =0 ,  

n,n__ n,-n__ n,--n F n, 2--n Fn, n Fn, n- 2__D. b) A. - A .  - E .  = _ .  =_. =_. - ~ ,  
C)  A n - 2 ' n - 2  A n - 2 , 2 - n  1 7 n - 2 , 2 - n  l ~ ' n - 2 , 4 - n  Fnn~-z2, n - 2 ,  Fnn-22,n-4  all 

Zln--2 ~ n - 2  ~ ~ n - 2  , ~ n - - 2  , - -  

vanish. 

Proof By induction on n. I let n > 0  be given, and I assume that the 
statements in the lemma have been verified for all coefficients Ak, Ek, Fk 
with 0 < k < n. This induction hypothesis is vacuously satisfied for n = 1. 
I define 

X . = Z  Zo<k<.[Ek,F.-R], 

Y. = ~o <k <. [Ak, E._k], 

Z .  = - ~o < k <, [ak, F._ k], 

X~'~=component of X~ in g(r, s); 

Y.r'S=component of 1I. in g(r, s); 

Z~'~= component of Z .  in g (r, s). 

The induction hypotheses, together with (9.44), imply 

(9.49) 

a) if n < r, or if n -  r is not  an even integer, 
r , s  r , s  r , s  . x .  = ~  = z .  =o,  

b) X~'s=Oifs=+_n, + ( n - 2 ) ;  Y." '~=Oifs=-n,  2 - n ,  4 - n ,  

or s=n; Z~,'s=O if s=n ,  n - 2 ,  n - 4 ,  or  s=  - n ;  

c) X,~-2 '"-2=X~-Z'E-"=Y~-Z'2-"=Y."-2 'a-"=Z~ -2'"-2 

7 .  n - 2 , n - 4  - - 0  
~ - - n  - - v .  

From (9.39), by equating the components in the subspaces g(r, s), taking 
into account (9.45), one finds 

(9.50) 

E. ] -  lEo, A . ] + y r,~, , ,s_ [Ao, ~,~ ~,~-2 (n+2)  E. - 

+ [Vo, A . ] + Z .  , (n+2)  F r,~= _[ao ,F . , , ]  r,~+2 ,,~ 

(n+ Z) A'.'~=Z[Eo,F.r'~-2]-2[Fo, U.'s+2]+ X~; ~. 

In the first and second of these equations, I replace s by, respectively, 
s + 2  and s - 2 ;  since adAo operates on g(r,s) as multiplication by s, 
this gives 

r, s (n -s )  E~ 's+2 = - [E o, A.  ] + y~,~+z, 
(9.51) 

(n+s)F."s-Z=[Fo,A." . . . . . .  ] + Z .  z. 
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Next,  I mult iply the third equat ion in (9.50) by n 2 -  s 2 and substi tute the 
equat ions  (9.51): 

(n + 2)(n 2 - -s  2) A~, 's 

= ( n  2 --S 2) X~'~+2(n-s)[Eo,  [Fo, A~,' s]] + 2 ( n - s ) [ E  o , Arn ,s-2] 
+ 2(n + s) [Fo, [Eo, A': ~]] - 2 (n + s) [Fo, Y."" + 2] 

= 2 n (ad E o ad Fo + ad Fo ad Eo) (A'," 5)_ 2 s [A o, A': ~] 

+ 2 ( n - s ) [ E  o , Z'd s-2  ] - 2  (n + s)[Fo, y,.~+ 2] +(n  2 _ s  2) X~,~ 

= n ( ( 2 -  (ad Ao) 2) (A': s)_ 2 s 2 a', '~ + 2 ( n -  s) [E o , Z', '~- 2] 

- 2(n+ s)[Fo, Y~'S+ 2]+(n2-s2)  X,. s 

= n ((r 2 + 2 r ) -  (n + 2) s 2) A~ '~ + 2 ( n -  s) [Eo, Z~, '~- 2] 

-2 (n+s ) [Fo ,  Y,"s+2] + (n2 - s  2) X,, �9 

(cf. (9.46) and (9.47)). Thus 

n((n+ 1) 2 - - ( r +  1) 2) a,~ 's 
(9.52) 

= 2 (n - ~s) [E 0 . Z~" 2- 2] _ 2 (n - s) [Fo, Y,~' ~+ 2] + (n 2 _ s 2) X,. ~. 

If n < r, or if n - r  is not  an even integer, the right hand side of (9.52) 
vanishes because of the induction hypotheses.  In this case, since the 
coefficient of A,~ '~ in (9.53) is nonzero,  A', '~ must also vanish. But then 
(9.52) and (9.49 a) give 

E~' ~ = 0, except possibly for s = n + 2; 

F," ~ = 0, except possibly for s = - n -  2. 

Still under the hypothesis  that  n < r  or n - r r  according to the 
previous conclusions  and the third equat ion in (9.51), 

[Fo,E~,"+2] =0 ,  [Eo, F.~' - " -  2] = 0. 

F o r  s 4 : - r ,  adFo maps  g(r ,s)  injectively to g ( r , s - 2 )  (cf. (6.3)); also, 
r is known to be nonnegative,  and n > 0 .  Hence  E~, '"+2 =0,  and similarly 
one finds tha t  F . " - " - 2 =  0. This concludes the induction step for (9.48 a). 

As  a consequence of the definition, g(r, s ) = 0  unless s is an integer 
between r and  - r, of the same par i ty  as r. Together  with (9.49 b, c), (9.50), 
and (9.51), the preceeding statement  gives the following informat ion:  

(9.53) i f r = n o r r = n - 2 ,  andi f s=+_n,  +(n -2 ) ,  
?, $ _ _  ( n + 2 ) A . - 2 [ E o , F . ' ~ - 2 ] - 2  r~  ~,,~+21 L ~ 0 ,  ~ n  - I ,  

r ,  5 ( n - s ) E , ' s + 2 = - [ E o , A ,  ], and 

(n + s) F. "~- 2 = [Fo, A~,' ~3. 
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Since E. "'"+2 = 0  and [-Eo, A~'"] =0,  I deduce 

n(n + 2) A~'"=2n[E o , F. " '"-2] = [E o, IF o, A~'"]] 

= [Eo, EFo, A."'"]] - [Fo, [-Eo, A. '"]] 

= [Ao, A.'"] =na~'", 

so that A,"'"= 0. Similarly, 

( n -  1)(n + 2) A". - z ' " - z  = (2 n -  2) [Eo , F. "-  2'"-4] 

=[Eo ,  [Fo, A."-2'"- z]] 
- - rn  an-2,n-23--(n--2) A n-2,"-2 
- -  L ~ O ,  " x n  1 - -  " ~ n  ' 

and hence A,]-2'"-2 =0. For trivial reasons, A,]'n+2=Ann-2'"=0. If these 
conclusions are fed back into the last equation in (9.53), one finds 

F . , .=  F , , . -  2 = F . - 2 . . -  2 = F . - 2 , . - 4 = 0 .  

(For n = l ,  the coefficient of F. " - z ' " -4  in (9.54) vanishes, but FI - x ' - 3  is 
zero because of trivial reasons.) By completely analogous arguments, 

A~'-n=A~-2'2-n=En'-n =Enn'2-n=E~-2'2-n=Enn-2'4-"=O. 

This concludes the proof by induction. 

Since Ao lies in the Lie algebra of go, the function y ~ exp ( - � 89  logy Ao) 
takes values in Gs. Hence the relation 

(9.54) h (y) = g (y) exp ( -  �89 log y ao) 

defines a G~-valued function g(y). 

(9.55) Lemma. 7he function g (y) is a real analytic, G~-valued function of 
the real variable y-1 near y= ~ .  Moreover, Fo = A d g ( ~ ) - t ( N ) .  

Proof Logarithmic differentiation of (9.54) gives 

A (y) = A o Y- ~ - 2 Ad exp (�89 log y ao) (g (Y)- ~ g' (Y)), 

or equivalently, 

g(y)- t  g,(y)= - � 8 9  e x p ( - � 8 9  logy ao)(A(y))+ �89 Ao y - i  

= - � 8 9  e x p ( - � 8 9  logyAo) 
(9.56) + ~ '  ~ A,,S ,,-(n+2)/2~+�89 �9 (Aoy -1 /~.>0/_~r,s . Y J 

= - �89 -("+~+2~/2. 

According to (9.48), A'.,~=O unless n and r have the same parity. Also, 
g(r, s)=O unless r - s  is even. Hence only integral powers o fy  occur with 
nonzero coefficients on the right hand side of (9.56). Again by (9.48), if 
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r ,  s n > 0  and A. 4:0, n+s must be strictly positive. Thus g(y)-i  g,(y) has a 
series expansion of the form 

(9.57) g(y)-I g' (Y)= ~,k> 2 Bk Y -k, 

which converges near y =  oo. One can regard (9.57) as a differential 
equation for g(y); as such, it has a regular point at y =  oo, and this implies 
the first conclusion of the lemma. In view of the definition of the function 
f (y), 

Ad g (y)-l (N) = Ad exp ( - �89 log y A o)(f (y)) 

=AO exp(- �89 logy Ao)(F o y- i  + ~,.>o ~,,,~ E~ '~ y-tn+ 2)/2) 

=fo + E.>o E,.sF."S y -t"+'+2)/2 

In this last series, only positive powers of y-1 can occur, since F.r'~ = 0 for 
s < - n. By letting y tend to ~ ,  one obtains the second statement. 

According to the lemma, g (y) and g (y)-1 can be expanded in series 
of the form 

g(y)=g(cr +g~ y- l  +g2 y - 2 +  ...), 
(9.58) 

g(y)-i =(1 +fl y-I +f2 y-Z +...) g (~) - l ,  

which converge and are valid for all sufficiently large values of y. The 
coefficients gk, fk lie in Hom(H~, HR). In view of the facts about represen- 
tations of M2 which were mentioned in w Ao operates on Hom(H~, H ~  
semisimply, with integral eigenvalues. Thus I can decompose the 
coefficients gk and fk as follows: 

gk=~_.,sezgtr fk=~_~seZfk, s, with gk, s,fk,~eHom(HR, H~), and 
(9.59) 

[ao,  gk, ~] = S gk, ~, I-A0, fk.,] = Sfk, s" 

(9.60) Lemma. Unless s < k - 1 ,  gk,~ and fk,~ vanish. 

Proof Slightly more detailed information will be needed below. 
I shall therefore record certain statements which are not important for 
the proof of  (9.60) itself. Also, with a shift in notation, I shall replace 
g(y) by g(oo) - t  g(y); this has the effect of setting g ( ~ )  equal to 1, which 
simplifies the formulas below, but does not affect the general validity of 
the argument. According to (9.56), 

r 1 g (Y)=g(Y){ - 3  ~'~,n>'l ~,,r,s arn 's y--(n+s+2)/2}, 

and A~:=0  unless n+s is even, r<  n, and Is[ < r - 2 .  Thus 

g'(Y)=g(Y){~.k=>2 Bky-k}, with 
(9.61) 1 ~ X TM A~,~ 

Bk+l  = - - ~  ~s<-_k--1 / , r ~ 2 k - s  2k - s"  
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When the series (9.58) is substituted in (9.61), one finds 

1 < 
gk = - - ~  E2=/<k+l gk+l--t BI. 

Hence, by induction on k: 

(9.62) gk is a noncommutative polynomial in B2, B3, ..., Bk+l, homo- 
geneous of weighted degree k when Bz+l is assigned the weight l; Bk+l 

1 1 
occurs with coefficient - ~ - ,  and B k with coefficient ( -  1) k ~-.T" 

Multiplying the two series in (9.58) gives the identities 

fk = --~l<__l<=kfk-lgt, for k > l .  

Hence, by induction on k, and using (9.62), it can be shown that 

(9.63) fk is a noncommutative polynomial in B2,B3 . . . . .  Bk+l, homo- 
geneous of weighted degree k when B~+I is assigned the weight l; Bk+~ 

1 1 
occurs with coefficient ~-,  and Bk2 with coefficient k~- 

As is asserted by (9.61), B~+I has a nonzero component in the s-eigenspace 
of Ao on H o m ( H ~ , H ~  only if s < l - l .  Under composition in 
Hom(H~, Hit), the s 1- and the s2-eigenspace of Ao get mapped into the 
(sl + s2)-eigenspace. Thus the lemma follows from (9.62) and (9.63). 

Instead of considering the action of GR on HR, one may compose g (y) 
with any finite dimensional representation of  Go. The proof of (9.60) 
carries over to this more general situation without difficulty. 

(9.64) Corollary. Let rc be a representation of  Gr on a finite dimensional 
complex vector space W. The coefficients of y - k  in the power series ex- 
pansions of rc(g(oo) -1 g(y)) and of n(g(y) -1 g(oo)) have zero components 
in the s-eigenspace of A o on Hom (IV,, W), whenever s > k. 

So far, the choice of the base point o e D  has remained arbitrary. 
If o is replaced by go o, for some go~G~, V will be replaced by Adgo V, 
v by Adg o ~, q by Adg o q, h(y) by h(y) go ~, g(y) by g(y) go 1, and F(y) by 
Adg o (F(y)). In particular, setting go = g(oo), one finds 

(9.65) Lemma. By choosing the base point o ~ D  appropriately, it can be 
arranged that g ( ~ ) =  I and that F o = N. 

At this point, the proof of(5.13) is more or less complete. The generators 
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of~I(2, IR) satisfy the same commutation relations as the triple A0, E0, Fo. 
Hence there exists a unique homomorphism ~k,: M(2, F,)---} g0, which 
maps these generators, in the given order, to A0, Eo, and Fo. Clearly g,, 
extends complex linearly to the complexifications, and since SL(2, (E) is 
simply connected, it lifts to a homomorphism 

~b: SL(2, (~) --) Gc. 

As in (5.8), g, determines the embedding ~. The G~-valued function g(y) 
has a convergent power series expansion in y - i  near y =  oo. Replacing 
y by the complex variable z, one obtains a holomorphic function g(z), 
defined near z=  ~ ,  with values in Hom(Hc,  Hc). For z~R, g(z) lies in the 
complex submanifold G c of Hom(Hc,  He); hence g(z)~Gc, also for 
complex z. According to (9.54), the definition of ~, and (5.5), 

exp(i y N) o a =g(y) exp ( - �89  logy Ao) o o 

= g (y) exp ( -- �89 log y ~k, (Y)) o o = g (y) o ~ (i y), 

which is the assertion a) for z~ U c~ i~ .  By the identity theorem for holo- 
morphic functions, a) follows. The statement b) is a consequence of the 
containment if, (~ l (2, ~)) c go. As for c), Lemma (9.8) gives 

~,(z)=i(~o-t0)co; 
~b,(X +)=�89 Ao + Eo + Fo)ev(~q, 

and 
J $ ,  (X+) = it#. (X+), 

hence $ .  (X+) ~ g -  i. i (cf. (9.2)). Similarly, ~ ,  (X _ ) e gl. - i. Next, d) follows 
directly from the construction of g(y), and e) is asserted by (9.55). The 
definition of h(y) in f) agrees with (9.54), and so the differential equation 
is just the one which was used to characterize h(y) in the first place. 
Lemma (9.60) leads to g), and the first part  of h) is embodied in (9.65). 
I assume then, that g(oo)= I and N=Fo (cf. (9.55)). In the notation of the 
proof  of Lemma (9.60), for l > I, 

(AdN) t+l Bl+l =(AdFo) t+l Bt+I =~,__<t-1 ~,,<21-,(AdFo) l+1 A~_s.  

Under the indicated restrictions, s - 2 1 - 2 < s - 2 1 < - r ,  so that 
g(r ,s-2l -2)=O. On the other hand, (AdF0)l+lA "~ 2;-, must lie in 
g(r, s - 2 / - 2 ) ;  hence (AdN) '+x Bt+I =0. Combined with (9.62) and (9.63), 
this implies the vanishing of (AdN) k+l gk and (AdN)k+lfk, which 
completes the proof  of the theorem. 

I now turn to the proof of Lemma (5.25). The strategy will be to 
investigate closely the functions u(y), a(y), k(y) in (9.16), with an appro- 
priate choice of Iwasawa decomposition. 
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Since I do not insist on the conclusions of (9.65), the choice of base 
point can be made as in (5.19). It will be necessary to know that the group 
K of the Iwasawa decomposition, which enters the statement (9.17), 
agrees with the choice of K in w For this purpose, I consider a sub- 
algebra [o c go, such that [o belongs to a compact subgroup of Gt, and 
such that ~o contains %, the Lie algebra of V. Since 0 = A d  C, with C~ V 
(C is the Weil operator of the reference Hodge structure), ~0 splits up as 

fo = (fo c~ t0)~ (fon Po) 

(cf. (8.1)). Any X~f0 has purely imaginary eigenvalues, which makes the 
trace form (8.7) negative definite on fo. On the other hand, the trace form 
is positive definite on Po. I conclude fo c ~o- As a result, the group K of 
the Iwasawa decomposition, which was defined in w contains the 
identity component of every compact subgroup of G~ which contains V. 
In a real, semisimple matrix group (which may have more than a single 
component in the ordinary topology), a maximal compact subgroup is 
the normalizer o f  its own identity component. It follows that K can be 
described as the unique maximal compact subgroup of GR which contains 
V; hence the choices of K in w and w are consistent. 

One of the identities which was used to define ~b, is ~k, (Y)= Ao. The 
change of base point, which may have been necessary to accomplish 
(5.19), does not destroy this identity. Similarly, F o is the image under ~k, 
of the element (5.18) of ~1(2, ~,); combined with (5.19), this gives F 0 =N.  
For emphasis; 

(9.66) A 0 = ~b, (Y), F o = N. 

Let ao be the Lie algebra of the group A in the Iwasawa decomposition. 
Aside from the datum of K, no special demands were made on the 
decomposition. Thus ao may be any maximal Abelian subspace of the 
( -  1)-eigenspace of 0 on go. According to (5.13 c), 

A o = r  - X +) 

belongs to this ( -  1)-eigenspace of 0. Hence, without loss of generality, 
I may assume that Ao~ao. 

Once A and K have been determined, the choice of U amounts to 
the choice of a system of positive roots for (go, ao), such a system can be 
selected so that it contains every root which assumes a strictly negative 
value on A 0. In this case, the Lie algebra u o of U has the following 
property: 

(9.67) for every strictly negative number l, u 0 contains the l-eigenspace 
of adAo: go ~ go. 



Variation of Hodge Structure 315 

Again, I can make this hypothesis without loss of generality. I recall the 
definition of Co in (5.16). According to the representation theory of sl2, 
as it was reviewed in w Co lies inside the direct sum of the eigenspaces 
of adAo corresponding to strictly negative, integral eigenvalues. Hence 
Uo contains Co, and because of(5.19), g(oo)eexp CoC U. Also, the relation 
[Ao, Fo] = -2Fo  gives N=Fo~ u o. 

For the statement of the next lemma, one should remember the 
decomposition (9.16) of the function h (y). 

(9.68) Lemma. Suppose that the base point o and the Iwasawa decom- 
position G~= UAK have been chosen subject to the following conditions: 
K ~  V, Aoeao, g ( ~ ) e U ,  and (9.67). Then u(y), k(y), exp(�89 
are regular functions of the variable y-~ near y =  oo, and u(oo)=g(~) ,  
k(oo)-- 1, limy~| exp (�89 logy Ao) a(y)= 1. 

Proof. 1 define auxiliary functions 

u 1 (y)= Ad exp(�89 logyAo)(g(~) -1 u(y)), 

a 1 (y) = exp (21- log y Ao) a (y). 

The linear transformation Ao acts semisimply, with integral eigenvalues. 
Because of this, and because of (9.22), (9.31), and (9.35), all of the functions 
u (y), ul (y), a (y), a 1 (y), k (y) have Laurant series expansions in terms of the 
variable y -  �89 which converge and are valid around y = ~ .  The group A 
normalizes U, and Aoeao; hence ul(y) takes values in U, and al(y) in A. 
From the definition (9.54) of g(y), one obtains 

Ad exp(�89 logyAo)(g(oo) -1 g(y))= ul(y) al(y) k(y). 

In the notation of (9.60), the left hand side can be expressed as 

i "~-Ek~_ 1 Zs<k--I gk, sY -(2k-s)/2 

which tends to the identity as y-~ oo. The Iwasawa decomposition 
establishes a diffeomorphism between G~ and U x A x K. Thus each of 
the factors on the right tends to the identity individually: k (y), a~ (y), ul (y) 
are regular functions ofy -~ near y = oo, and k (oo) = 1, a 1 (oo) = 1, ul (oo) = 1. 

The statement about u(y) is more difficult; it will come out of a 
careful consideration of the differential equations in (9.23). I recall that 
A (y) -- ~ .  >= o A. y -  t. + 2)/2, and I define 

L(y) = Ad k (y)(A (y))-  ao y - '  = Z .  => a L.  y-"/2, 

k'(y)k(Y) -l=~._~a B.Y -"12 with B.~to. 

By induction on n, one shows: 

(9.69) the coefficient of y-"t2 in the series expansion of k(y) (respectively, 
of k(y)-t) is a noncommutative polynomial in the Bk'S, homogeneous of 
21 Inventiones math,, Vol. 22 
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weighted degree n when nk+ 2 is assigned the weight k; Bn+ 2 occurs  with 

coefficient 2 (respectively' with c~ 2 )  " n 

As a consequence, 

(9.70) L~ is a noncommutative polynomial in the Bk'S and the Ak'S, 
homogeneous of weighted degree n - 2  when B k + 2 and A k are assigned 

2 
the weight k; the only term involving B~ and Ao is ~ [Ao, B,]. 

I let A .... B .... L,,s denote the components of A~, B,, L, in the s-eigen- 
space of adAo on go. Lemma (9.48) asserts that 

(9.71) A,,s=O if n > 0  and I s l > n - 2 .  

The Cartan involution 0 is the identity on to, and OAo = - A o .  Hence 

(9.72) 0 B~,s = Bn, _s. 

The Lie algebra Uo contains all eigenspaces of adAo corresponding to 
strictly negative eigenvalues, and 0u o contains all eigenspaces corre- 
sponding to strictly positive eigenvalues. Also, ad Ao acts trivially on %. 
These facts, together with (9.23), give 

(9.73) Ln,~=2Bn,~ for s<0 .  

By induction on n, I shall show that 

(9.74) Bn,~=0 unless t s l < n - 3 .  

For n<3,  this is vacuously satisfied. Let me assume, then, that (9.74) 
has been verified for all integers less than a given n > 3. According to the 
induction hypothesis and (9.70), 

L = 2 - - ~ - [ A  o, 2s ~'~ n - 2  B, , , s]=~_2 B .... provided s < 3 - n .  

If s < 3 - n, s is negative, and (9.73) now implies the relation 

(n-2)Bn,~=sBn,~ if s < 3 - n ,  n>3. 

This is possible only if B~,~=0. By invoking (9.72), I complete the in- 
duction step. 

In the power series expansion of k(y) -1, the coefficient of y-~/2 has a 
zero component in the s-eigenspace of Ao on Horn(He, He), unless 
n = 0  or Isl_-< n -  1, as follows from (9.69) and (9.74). I may conclude that 

limy_.oo Ad e x p ( - � 8 9  logyAo)(k(y)- l)= 1. 
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Finally, then, 

u(y)=h(y) k(y) -1 a(y) -1 =g(y) exp(- �89 logyAo) k(y) -1 a(y) -1 

--- g (y) Ad exp ( - �89 log y Ao) (k (y)- 1) al (y) ~ g (oo) 

as y ~  ~ ,  and this proves the lemma. 

Let r be the subalgebra of g which was defined in (5.21), and to = r n go. 
From the construction of r and (9.67), it follows that r o c a o ;  in fact, 
to is an ideal in Uo. The centralizer of Ao=~' , (Y)  in u o, which will be 
denoted by r 0, is a complementary subalgebra for ro in uo, so that 

(9.75) Uo= ro (9 to (semidirect product). 

The same argument which gave the containment Co C Uo also implies 
Co c to. Hence, and because of (9.68), 

u (oo)=g(~)eexp  cocexp r o. 

Near the identity, the group U is real analytically diffeomorphic to the 
product of its two subgroups e x p r o = R n G ~  and expt0; the global 
statement is also true, but not necessary in this context. Hence the 
U-valued function u (~ )  -1 u(y) can be expressed as a product 

u(~)  -1 u(y)=r 1 (Y) r2 (Y); 

here r 1 (y) takes values in R n G~, r2 (y) in exp r0, both are regular functions 
of the variables y-�89 near y =  oo, and rl(oo)= 1, r2(oo)= 1. As in the proof 
of (9.68), I set 

a l (y) = exp (�89 log y Ao) a (y); 

then al(oo)= 1. Since r0 centralizes Ao, 

h (y) = u ( ~ ) r 1 (y) rz (y ) a (y) k (y) 

= u(oo) r~ (y) exp(- �89 logy Ao) z(y) k(y), 

with z(y)= r2(y ) as (y). The function z(y) takes values in the centralizer 
of Ao in G~, it is a regular function of y-�89 near y = oo, and z(oo) = 1. 

I shall denote by Z(Ao) the centralizer of Ao in Gr or, equivalently, 
the centralizer of the image under r of the diagonal subgroup of SL(2, C). 
Then Z(Ao) is a reductive Q-subgroup of Gr it contains the maximal 
Q-split torus T c G r  which was defined in w Consequently, P n Z(Ao) 
must be a minimal q-parabolic subgroup of Z(Ao). Since O A o = - A o ,  
the Lie algebra of Z(Ao) is 0-stable. It follows that K n  Z(A) is maximal 
compact in Z(Ao)nG~,  certainly if one considers only the connected 
components of the identity, in the Lie topology. Hence the product 

(R n Z (Ao)~) T. M . ( Z  (Ao) n K) 
21" 
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c o n t a i n s  at  least  t h e  iden t i ty  c o m p o n e n t  o f  the  cen t ra l i ze r  o f  A 0 in GR 
( the  subsc r ip t s  ]R refer  to  t he  g r o u p s  o f  real  points) .  N o w  I can  exp res s  
t he  f u n c t i o n  z (y) as  

z(y)=r3(y ) t l (y  ) m(y) kl(y);  

t he  f ac to r s  are  r egu la r  f u n c t i o n s  o f  t he  va r i ab le  y - � 8 9  n e a r  y =  or, w i th  
va lues  in, respec t ive ly ,  RnZ(Aoht, TR, MR, a n d  Z(Ao)C~ K; all a s s u m e  
the  iden t i t y  as va lue  at y = 00. Since  r 3 (y) c o m m u t e s  wi th  Ao,  

h (y) = u ( ~ )  r 1 (y) r 3 (y) exp  ( -  �89 log  y Ao) tl (Y) m (y) k 1 (y) k (y). 

I def ine  r(y)=u(oo)rl(y ) r3 (y), t(y)=exp(-�89 a n d  I c h a n g e  
n o t a t i o n ,  r ep l ac ing  kl (y) k (y) by  k (y). Th i s  p r o v e s  L e m m a  (5.25). 
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