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�-Valued Quadratic Forms and Quaternary
Sequence Families

Kai-Uwe Schmidt

Abstract—In this paper, �-valued quadratic forms defined on a
vector space over ����� are studied. A classification of such forms
is established, distinguishing �-valued quadratic forms only by
their rank and whether the associated bilinear form is alternating.
This result is used to compute the distribution of certain exponen-
tial sums, which occur frequently in the analysis of quaternary
codes and quaternary sequence sets. The concept is applied as fol-
lows. When � � � or� is odd, the correlation distribution of family
����, consisting of quaternary sequences of length ����, is estab-
lished. Then, motivated by practical considerations, a subset �����
of family ���� is defined, and the correlation distribution of family
�
���� is given for odd and even �.

Index Terms—Galois rings, low-correlation sequence sets,
quadratic forms, quaternary codes, quaternary sequences.

I. INTRODUCTION

Q UADRATIC forms taking on values in proved to be
useful to analyze subcodes of the binary second-order
Reed–Muller code , including Kerdock and

Delsarte–Goethals codes, as well as related binary sequence
sets, including the Gold and Kasami families (see [14, Ch. 15]
and [7, Sec. 6.1], for example). Dickson’s classification [5, p.
197] of such forms implies that many of their properties depend
only on a single parameter, called the rank of the quadratic
form. This fact is the key to establish the weight distribution
and the correlation distribution of several binary codes and
sequence families, respectively.

In this paper, we revisit -valued quadratic forms, which
have been introduced by Brown [3] and were further studied
by Wood [19]. We demonstrate how the theory of -valued
quadratic forms can be used to analyze certain quaternary
codes and families of quaternary sequences. More specif-
ically, we establish the distribution of an exponential sum
attached to -valued quadratic forms, which enables us to
analyze the correlation distribution of family . Families

were defined by Kumar et al. [11] and
form a nested chain of families of quaternary sequences of
length with increasing size and increasing maximum
nontrivial correlation. The first member in this chain is
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identical to family [17], [2]. When is odd, the sequence
families in the chain correspond to shortened -linear versions
of the Delsarte–Goethals codes, as defined by Hammons et al.
[6]. We refer to the survey chapter [7] by Helleseth and Kumar
for background on sequence families and applications in digital
communications systems.

A detailed outline of this paper is given next. In Section II,
we describe a classification of -valued quadratic forms with
respect to their rank and whether the associated bilinear form is
alternating. This classification is used in Section III to compute
the distribution of an exponential sum attached to -valued
quadratic forms. This distribution appears to be useful to estab-
lish weight distributions and correlation distributions of certain
quaternary codes and families of quaternary sequences, respec-
tively.

In Section IV, we study sets of -valued quadratic forms,
which are intimately related to the -linear Delsarte–Goethals
code of length and to family of length . The cru-
cial property of such a set is that the difference between distinct
elements in the set has rank at least . Recent results on
sets of symmetric bilinear forms [16] are used to determine the
rank distribution of these sets.

In Section V, we combine our results on exponential sums and
on the rank distribution of sets of -valued quadratic forms to
determine the correlation distribution of family whenever

or is odd. So far, the correlation distribution of family
is only known for [2] and for [11]. In the latter

cases, however, we obtain the results in a much easier way. For
even , it is generally hard to compute the correlation distri-
bution of family , as even the size of the set is difficult to
determine. This motivates the definition of a large subset
of family , for which we establish the correlation distribu-
tion for odd and even . It should be noted that family
of length is used in the IMT-2000 standard [12]. We close
this paper with some concluding remarks in Section VI.

II. -VALUED QUADRATIC FORMS

In this section, we summarize some basic facts about
-valued quadratic forms. Let

be the set of Teichmuller representatives in (informally,
can be identified with the subset of ). Then each
can be uniquely written as

where
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We define an operation on by . Then,
is the finite field of size . Let be an -dimensional

vector space over .
A symmetric bilinear form on is a mapping
that satisfies symmetry

(1)

and the bilinearity condition

for
(2)

Note that linearity in the second argument follows from sym-
metry (1). is called alternating if for all .
Otherwise, it is called nonalternating.

Let be a basis for over . Then, rela-
tive to this basis, is uniquely determined by its matrix of size

given by

where

The radical of contains all elements such
that for each . The bilinearity condition (2)
implies that the radical is a subspace of . The rank of is
defined as

Note that the rank of is precisely the rank of its matrix.

Definition 1 (Brown [3]): A -valued quadratic form is a
mapping that satisfies

for (3)

and

(4)

where is a symmetric bilinear form.

We say that the -valued quadratic form has
rank if its associated bilinear form has rank . Moreover, is
called alternating if its associated bilinear form is alternating.
Otherwise, is called nonalternating.

Since by (3), we have by (4)

(5)

and therefore

is -valued is alternating

where is the bilinear form corresponding to . Note that, if
is -valued, then can be identified with a -valued

quadratic form.

Now let be the -valued coordinate
vector of relative to the basis for over

, so that . Then, (2)–(4) give

Therefore, by (5), there exists such that

(6)

where is the matrix of , relative to the basis
.

Recall that two symmetric matrices and over are sim-
ilar if there exists an invertible matrix such that .
Clearly, two similar matrices have the same rank. The following
theorem is well known (see [1, pp. 390–392]).

Result 2: Let be a -valued symmetric matrix of
rank .

i) If is alternating, then is even and is similar to a ma-
trix that has zeros everywhere except on the subdiagonal
and the superdiagonal, which are
with ones.

ii) If is nonalternating, then is similar to a diagonal
matrix, whose main diagonal is with ones.

Combination of the representation (6) and Result 2 gives the
following.

Corollary 3: There exists a basis for over , determining
the coordinates of , such that a

-valued quadratic form of rank can be written
as follows. If is alternating, we have

and if is nonalternating, we have

for some .

III. EXPONENTIAL SUMS

Let be an inner product in , that is,
is a symmetric bilinear form of rank . Let be
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a -valued quadratic form. In this section, we study the expo-
nential sum

for (7)

where . It turns out that the distribution of the values
in the multiset

depends only on the rank of and on whether is alternating or
nonalternating. If is alternating, we have the following well-
known result (see [7, Th. 6.2], for example).

Result 4: Let be an alternating -valued
quadratic form of rank . Then, the distribution of the values
in the multiset is given by

value frequency

An equivalent of Result 4 for nonalternating -valued
quadratic forms is the following.

Theorem 5: Let be a nonalternating -valued
quadratic form of rank , and write . Then, the
distribution of the values in the multiset is as
follows. If is odd, we have

value frequency

If is even, we have

value frequency

(each)

Proof: By Corollary 3, there exists a basis
for over , determining the co-

ordinates of , such that

(8)

for some .
Let be another basis for over that

is dual to with respect to the inner product
, that is

for (9)

where is the Kronecker delta. Let be the
coordinate vector of relative to and
write . Then, we have from
(7)–(9)

Clearly, when ranges over , so does . Applying further
manipulations, we obtain

If for some satisfying , then .
This can happen in cases. Now let for

. Then, we have

where denotes the Hamming weight. For integer , let
be the number of words with

. Then, the value

occurs times in the multiset . It remains
to determine the numbers for .

Since half of the words in have odd weight, we have

(10)

It is straightforward to obtain the recurrence

for

Substituting (10) gives

for (11)

Using (11) together with the initial values

we readily verify that for odd , we have

for
for
for

for

Similarly, (11) and the initial values
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can be used to verify that we have for even

for
for
for
for

This completes the proof.

IV. SETS OF -VALUED QUADRATIC FORMS

In this section, we study sets of -valued quadratic forms
on having the property that the difference between distinct
elements in such a set has rank at least for integer
satisfying .

We will first recall some facts about Galois fields and rings.
Let be a Galois extension of of degree . Then, is
a Galois ring of characteristic and cardinality . For details
on Galois rings, we refer to [13], [15], and [7]. Define

to be the set of Teichmuller representatives in . Then, each
can be uniquely written as

where

For , we define

Elementary manipulation gives

It is straightforward to verify [15, Statement 2] that
is a Galois field of size . By the definition of , the prime
subfield of is equal to .

The Frobenius automorphism on is given by ,
and the absolute trace function on is the mapping
given by

It is easy to check that and
for . Another useful property is that

the mapping is an inner product in , as a
vector space over . The Frobenius automorphism on is
given by

where

and the absolute trace function on is defined to be the mapping
given by

We have and
for . Moreover, the identity

holds for each .

In what follows, we will make use of the fact that
is an -dimensional vector space over and consider

-valued quadratic forms defined on . For write
, and define by

Straightforward manipulation yields

where is given by

It is readily verified that for each and
that is a symmetric bilinear form on . Therefore, is a

-valued quadratic form by Definition 1.
We define the following two sets of -valued quadratic

forms:

Notice that is the subset of that contains precisely
the alternating -valued quadratic forms in .

In [16], the corresponding sets of bilinear forms

have been studied. The crucial property of is that the differ-
ence between distinct elements in has rank at least ,
and when is odd, is the largest possible set with this
property. The rank distribution of and has been de-
termined in [16, Th. 8 and 9], respectively. By the definition of
the rank of -valued quadratic forms, we immediately deduce
the rank distributions of and . In order to state the
results, we recall that for real and nonnegative integer the

-ary Gaussian binomial coefficient is defined to be

for

We refer to [14, p. 444] for some properties of Gaussian bino-
mial coefficients.

Result 6: Let , and write . Let be
the number of elements in having rank . If is odd, we
have
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for . If is even, we have

for . Moreover, and if is
odd.

Result 7: Let , and write . Let be
the number of elements in having rank . If is odd, we
have

for and

for . If is even, we have

for and

for . Moreover, .

V. CORRELATION DISTRIBUTION OF FAMILY

In this section, we recall the definition of family from
[11] and define the related family . We then study the cor-
relation distribution of these families.

Let , and . Let be a primitive
element in . For write , and
define the quaternary sequence by

Given a sequence , the least period of is by defi-
nition the smallest positive integer such that

Since has order , the least period of the sequence
is at most . Define a subset of by

has least period

We record the following lemma for later use.

Lemma 8: We have

(12)

if and only if or is odd.
Proof: The identity (12) holds if and only if has

least period for each nonzero . Since has
order , (12) holds for . When is odd, we have

for [14, p. 449],
and therefore, has order for . We
conclude that (12) holds for odd and all . When is even,
we have , and therefore, for , there exists
nonzero such that has least period less than

.

We say that two sequences and are cyclically
equivalent if there exists an integer such that

This equivalence relation partitions

into equivalence classes, each consisting of cyclically
equivalent sequences. Let be a subset of corre-
sponding to picking precisely one sequence in each equivalence
class. Family is defined in [11] to be the set

Family is also known as family [17], [2].
From Lemma 8, we have

for or odd

When is even, it is generally difficult to identify the full set
. It is therefore preferable in practice to work with a subset

of , which we define now. Let

be a subset of . For each , the sequence
has least period , and for distinct , the

sequences and are not cyclically equivalent.
We define family to be the set

By virtue of definition, is a subset of of size .
Family of length 255 is used as an uplink scrambling code
in the IMT-2000 standard [12].

For integer , we define the correlation between the se-
quences and to be
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TABLE I
CORRELATION DISTRIBUTION OF FAMILY ���� FOR � � � OR � ODD

�� � ��� �� � � � ����

If and , we say that is
a trivial correlation value, otherwise is called a non-
trivial correlation value. It was established in [11, Th. 1] that
for all nontrivial correlation values

are at most in magnitude. In what follows,
we determine the distribution of the correlation values of family

whenever and the distribution
of the correlation values of family .

Theorem 9: Let or be odd, and write
. For , let be the number of elements

of rank in , and let be the number of elements of rank
in . Then, the distribution of the correlation values

is as given in Table I.

Theorem 10: Write . For ,
let be the number of elements of rank in , and let be
the number of elements of rank in . Then, the distribution
of the correlation values

is given in Table II.

From Results 6 and 7, we have for
, which implies that the maximum modulus

of the nontrivial correlation values of family is .
Since is a subset of , this shows that the upper bound
on the maximum modulus of the nontrivial correlation values of
family , given in [11, Th. 1], is tight. Moreover, we conclude
that the number of different correlation values in the correlation
distributions given in Theorems 9 and 10 equals .

We note that the statement in Theorem 9 in connection with
Results 6 and 7 was proved using different techniques in [2, Th.
6] for and in [11, Th. 2] for . For even , the
correlation distribution of family was established in [11,
Th. 3]. The correlation distribution of family of length
255 was obtained numerically in [12] (though, unfortunately,
there is a mistake in the first two rows of [12, Table 2]).

TABLE II
CORRELATION DISTRIBUTION OF FAMILY � ��� �� � ����� � � � ����

Proof of Theorem 9: By the definition of family , for
fixed , we have the following multiset equality:

Therefore

(13)

Given , let be the number of solutions
of . If or is odd,

we have by Lemma 8

and therefore, using

for

otherwise.

(14)

Since does not contain , we conclude that the
trivial correlation value occurs times
in the multiset (13). Writing

then by (14), the nontrivial correlation values in the multiset (13)
are distributed as follows:

occurs times

occurs times
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For , define

is cyclically equivalent to

Then, for each , the set is an equivalence class
in the sense that contains exactly
cyclically equivalent sequences. By definition, contains
exactly one member of each equivalence class, and we have the
partition

Therefore, the set contains exactly mem-
bers of each equivalence class. Note that is constant for all

belonging to one equivalence class. Hence, the distribution of
the nontrivial correlation values in the multiset (13) can be ex-
pressed as follows. For each , the value occurs

times. When runs through , so does . Therefore, it
remains to establish the distribution of when ranges over

.
For , write and let

be given by

so that for , we have
, where is a primitive element in . Define

Then, , which leaves to estab-
lish the distribution of when ranges over

.
Notice that is a -valued quadratic form and that we have

By assumption, as ranges over is alternating and has
rank in cases, and is nonalternating and has rank in

cases for . Note that for odd .
Combination with Result 4 and Theorem 5 gives the distribution
of when ranges over . The proof is completed
by noting that .

Proof of Theorem 10: First observe that, by writing
and for , we have

for integer

where

for

Therefore, for fixed , we have the following multiset
equality:

where is the group of units in . Therefore

(15)

Given , let be the number of solutions
of . Writing

, we have from the definition of

for
otherwise.

(16)

For and , let
be given by

so that for , we have
, where is a primitive element in . Define

Then, by (16), for each and each ,
the value occurs times in the multiset (15). No-
tice that is a -valued quadratic form. Therefore, in view
of Result 4 and Theorem 5, for and , it
remains to classify with respect to its rank and whether it
is alternating or nonalternating.

The -valued quadratic forms are alternating, and we
have

Therefore, for has rank equal to in cases,
where . Note that for odd . For ,
the -valued quadratic forms are nonalternating and we
have

By applying variable substitution , we see that, if
, then the distribution of the rank of the values in the multiset

is independent of . Therefore, for
and , the -valued quadratic form has rank

in cases, where . This completes
the proof.

We close this section with a specific example for the applica-
tion of Theorems 9 and 10. Take and and use the
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TABLE III
CORRELATION DISTRIBUTIONS OF FAMILIES ���� AND � ��� FOR � � �

notation of Theorems 9 and 10. From Result 6, we find that the
nonzero ’s are given by

and by Result 7, the nonzero ’s are given by

For , the correlation distributions of families and
are shown in Table III.

VI. CONCLUDING REMARKS

The theory of quadratic forms is a natural tool to analyze sub-
codes of the binary second-order Reed–Muller code ,
including Kerdock and Delsarte–Goethals codes, as well as re-
lated binary sequence sets, including Gold and Kasami fami-
lies. We have shown that, by allowing quadratic forms to take
values in , we obtain a natural tool to analyze certain sets of
quaternary sequence families. We have used this relationship to
study the correlation distribution of family , which includes
family .

The theory of -valued quadratic forms, in particular Result
4 and Theorem 5, can also be used to establish the correlation
distribution of other sets of quaternary sequences of length

, such as the quaternary Kasami set [8] and family with large
linear span [9]. Moreover, the concept can be adapted to handle
sets of quaternary sequences of length , such as family

[10], and sets of related binary sequences of length ,
such as the Kerdock sequences [18].

Since the real part of the exponential sum (7) can be related
to the Lee weight of the word obtained by evaluating the cor-
responding -valued quadratic form on (see [6, Sec. II.C],

for example), the theory of -valued quadratic forms can be
used to analyze the Lee weight distribution of subcodes of the
quaternary second-order Reed–Muller code , such
as the quaternary Kerdock and Delsarte–Goethals codes [6]. We
remark that the relation between the quaternary Kerdock code
and -valued quadratic forms has been first reported by Calder-
bank et al. [4].
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