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A SURVEY OF CHARACTERISTIC CLASSES OF SINGULAR SPACES

JORG SCHJRMANN AND SHOJI YOKURA(*)

ABSTRACT. A theory of characteristic classes of vector bundles andotmmanifolds
plays an important role in the theory of smooth manifolds. ifrestigation of reason-
able notions of characteristic classes of singular spaegted since a systematic study
of singular spaces such as singular algebraic varietiesmdle a quick survey of char-
acteristic classes of singular varieties, mainly focusinghe functorial aspects of some
important ones such as the singular versions of the Chess,ctee Todd class and the
Thom-Hirzebruch’s L-class. Then we explain our recent ‘@t characteristic classes,
which in a sense unify these three different theories ofattaristic classes. We also dis-
cuss bivariant versions of them and characteristic clasSpeoalgebraic varieties, which
are related to the motivic measures/integrations. Fina#lyexplain some recent work on
“stringy” versions of these theories, together with sonferences for “equivariant” coun-
terparts.
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1. INTRODUCTION

Characteristic classes are usually certain kinds of cothmgyaclasses for vector bun-

dles over spaces and characteristic classes of smoothattmifre defined via their tan-
gent bundles. The most basic ones 8teefel-WhitneyEuler and Pontrjagin classes in

(*) Partially supported by Grant-in-Aid for Scientific Reseh(No.17540088), the Japanese Ministry of Ed-
ucation, Science, Sports and Culture.
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the real case, an@hernclasses in the complex case. They were introduced in 1930's
and 1940's and constructed in a topological manner, i.athe obstuction theory, and in a
differential-geometrical manner, i.e., via the Chern-\Medory. Various important charac-
teristic classes of vector bundles and invariants of médsfare expressed as polynomials
of them. The theory of cohomological characteristic clasgere used for classifying man-
ifolds and the study of structures of manifolds.

In 1960's a systematic study of singular spaces was staste®l. @hom H. Whitney
H. Hironaka, S. tojasiewiczet al.; they studied triangulations, stratificationsohason
of singularities (in characteristic zero) and so on. Alyead1958R. Thomintroduced in
[Thom2] rational Pontrjagin and L-classefr rational PL-homology manifolds. In 1965
M.-H. Schwartdefined in [Schwil] certain characteristic classes usingrotiton theory
of the so-called radial vector fields; tlsehwartz classs defined for a singular complex
variety embedded in a complex manifold as a cohomology dbigge manifold supported
on the singular variety. In 1969, Sullivan[Sull] proved that a real analytic space is mod
2 Euler space, i.e., the Euler—Poincaré characteristiosolink of any point is even, which
implies that the sum of simplices in the first barycentricdivision of any triangulation
is mod 2 cycle. This enabled Sullivan to define the “singultiefel-Whitney classs a
mod 2 homology class, which is equal to the Poincaré duahefabove cohomological
Stiefel-Whitney class for a smooth variety.

P. Deligneand A.Grothendieck(cf. [Sull]) conjectured the unique existence of the
Chern classversion of the Sullivan’s Stiefel-Whitney class, and in 4R. MacPher-
son[Macl] proved their conjecture affirmatively. Motivated blacPherson’s proof of the
conjectureP. BaumW. FultonandR. MacPhersofBEM1] proved the so-called “singular
Riemann—Roch theorem”, which is nothing but ffedd clasgransformation in the case
of singular varieties.

M. GoreskyandR. MacPhersotf[GM1], [GMZ2]) have introducedntersection Homol-
ogy Theory by using the notion of “perversity”. Il IGNM1] they extendéte work of
[ThomZ?] to stratified spaces with even (co)dimensionaltatend introduced aomol-
ogy L-class L¢M(X) such that ifX is nonsingular it becomes the Poincaré dual of the
original Thom-Hirzebrucli-class: L¢M(X) = L*(TX) N [X]. In [S]] this was further
extended to so-called stratified “Witt-spaces”, whoserggetion (co)homology complex
(for the middle perversity) becomes self-dual (compare wlgh [Barl] for a more recent
extension). Latel$. CappelandJ. ShanesofCS1](see alsd [CS$2] and [Sh]) introduced a
homologyL-classtransformation’.., which turns out to be a natural transformation from
the abelian grouf)(X) (see§7) of cobordism classes of selfdual constructible comexe
to the rational homology group [BSY 2] (df.[Y?2]).

In the case of singular varieties, the characteristic cadlogy classes have been indi-
vidually extended to the corresponding characteristic dlogy classes without any uni-
fying theory of characteristic classes of singular vaegtunlike the case of smooth man-
ifolds and vector bundles. Only very recently such a unifyiheory of “motivic char-
acteristic classes” for singular spaces appeared in ok {B$YZ]. The purpose of the
present paper is to make a quick survey on the developmemavécteristic classes and
the up date situation of characteristic classes of singydaces. This includes our motivic
characteristic classes, bivariant versions, charatiteciasses of proalgebraic varieties and
finally “stringy” versions of these theories, together watime references for “equivariant”
counterparts.
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The present survey is a kind of extended and up-dated veoditdacPherson’s sur-
vey article [Mac?] of more than 30 years ago. There are otineys, e.g. [TAIUl],[[Br?],
[P&], [Sch#],[Sl] on characteristic classes of singulaieties written from different view-
points.

Acknowledgementst is a pleasure to thank P. Aluffi, J.-P. Brasselet, A. Libgol. Pra-
gacz, J. Seade, T. Suwa, W. Veys and A. Weber for valuableetsations about different
aspects of this subject.

This survey is a combined, modified and extended versionettthor’s two talks at
“Singularities in Geometry and Topology” (the 5th week oblecde la Formation Perma-
nente du CNRS - Session résidentielle de la FRUMAM) heldumhiny, Marseille, during
the period of 21 February — 25 February 2005. The authorsonuikd to thank the orga-
nizers of the conference for inviting us to give these talkse second named author (S.Y.)
also would like to thank the staff of ESI (Erwin Schrodindeternational Institute for
Mathematical Physics, Vienna, Austria), where a part ofpthper was written in August
2005, for providing a nice atmosphere in which to work.

2. EULER—POINCARE CHARACTERISTIC

The simplest, but most fundamental and most important tgpcdl invariant of a com-
pact topological space is tt®ler numbeior Euler—Poincaé characteristic Its definition
is quite simple; for a compact triangulable space or moreeg@ly for a cellular decom-
posable spac#, it is defined to be the alternating sum of the numbers of esltsdenoted

by x(X):
(2.1) X(X) =" (=1)"(n — cells).

n
By the homology theory, the Euler—Poincaré characteristins out to be equal to the
alternating sum of Betti numbers, i.e.,

(2.2) X(X) =) (~1)"dim H,(X;R).

With this fact, the Euler—Poincaré characteristic is deifior any topological space as
long as the right-hand-side ¢f{P.2) is defined, e.g. forllgcammpact semialgebraic sets.
Note that taking the alternating sum is essential in the diefin@Z1), but it is not the case
in the definition [[ZR). The following general form is callda Poinca polynomial

Pi(X) =) dim H,(X;R)t",

which is also a topological invariant. The Euler—Poincararacteristic has the following
properties:

(1) x(X) = x(X") if X = X',

(2) x(X) = x(X,Y) + x(Y) for any closed subspadé C X, where the relative
Euler—Poincaré characteris§i¢ X, Y) is defined by the relative homology groups
H,(X,Y),

(3) x(X xY) = x(X) - x(Y).

For a fiber bundlef : X — Y we havey(X) = x(F) - x(Y), if the Euler characteristic
x(F) of all fibersF' is constant, e.gY is connected. This generalizes the above property
(3). The same properties also hold for thaler characteristic with compact support

(2.3) Xe(X) =) (=1)"dim H} (X;R),

n

together with the followingdditivity property
(24) XC(X) - XC(Y) = Xc(Xv Y) = XC(X \ Y)
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for any closed subspadé C X, where the relative Euler characteristic with compact
supporty.(X,Y) is defined by the relative cohomology grou$(X,Y) = H* (X \Y).
Of coursey(X) = x.(X) for X compact.

Remark 2.5. For two topological spaceX, Y, let X + Y denote the topological sum,
which is the disjoint sum, we clearly have

X(X +Y) = x(X) + x(Y).

However, we should note that for a closed subsgace X the following additivity prop-
erty does not hold in general:

(2.6) X(X) =x(X\Y)+x(Y),

althoughX = (X \ Y) + Y as a set, since the topological sim+ (X \ Y) is not equal
to the original topological spack. In other wordsy (X,Y) # x(X \ Y) in general.
However, in the category of complex algebraic varieties,ahove formuld{216) holds,
i.e., for any closed subvariely ¢ X we have thai(X) = x(X \Y) + x(Y). The key
geometric reason for the equality X ) = x(X \ Y) + x(Y) is that a closed subvariely
always has a neighborhood deformation retfsicduch that the Euler—Poincaré character-
istic of the “link” x (N \ Y) vanishes due to a result of Sullivan (seelFu2, Exercis&, p.9
comments on p.141-142]). In other wordsX \Y') = x.(X \Y) in the complex algebraic
context, which also can be extended and proved in the largoiagomplex algebraically
constructible functions (see [SdH%.0.6]).

3. CHARACTERISTIC CLASSES OF VECTOR BUNDLES

Very nice references for this section are the bodks [MISIZHHUS,| Stong]. A char-
acteristic class of vector bundles over a topological spads defined to be a map from
the set of isomorphism classes of vector bundles d¢o the cohomology group (ring)
H*(X; A) with a coefficient ring\, which is supposed to be compatible with the pullback
of vector bundle and cohomology group for a continuous magmaly, it is an assignment
el : Vect(X) — H*(X;A) such that the following diagram commutes for a continuous
mapf: X —Y:

cl

Vect(Y) —— H*(Y;A)

f*l lf*

Vect(X) — H*(X;A).
HereVect(W) is the set of isomorphism classes of vector bundles Bver

The theory of characteristic classes started in Stiefalfsep [Sii], in which he consid-
ered the problem of the existence of tangential frames, lirmarly independent vector
fields on a differentiable manifold. And at the same year Hitdy defined such char-
acteristic classes for sphere bundles over a simpliciaptex{Wh1], and some time later
he invented cohomology and proved his important “sum foehfWhZ2]. Then Pontrjagin
[Ponti] introduced other characteristic classes of reatarebundles, based on the study
of the homology of real Grassmann manifolds. Finally Chl&nI,[Ch2] defined similar
characteristic classes of complex vector bundles.

The most fundamental characteristic classes of a real vbatwdle £ over X are the
Stiefel-Whitney classes (E) € H'(X;Zs), Pontrjagin classep’(E) € HY(X;Z[1/2]),
and for a complex vector bundlg the Chern classes'(E) € H?(X;Z). These charac-
teristic classes/'(E) € H*(X; A) are described axiomatically in a unified way:
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Definition 3.1. The Stiefel Whitney resp. Pontrjagin classes of real veotimdles, resp.
Chern classes of complex vector bundles, is the operatigrésg to each real (resp. com-
plex) vector bundlgZ — X cohomology classes

w'(E) € HY(X;Zs)
cl'(E) = p'(E) € H*(X;Z[1/2))

c(E) € H*(X;Z)
of the base spac¥ such that the following four axioms are satisfied:
Axiom-1: (finiteness) For each vector bundieone has:/°(E) := 1 andc/*(E) = 0 for
i > rank E (in factp’(E) = 0 fori > [rank E/2]). c¢/*(E) := >, cl‘(E) is called
the correspondintptal characteristic classin particularc/*(0x ) = 1 for the zero vector
bundle0 x of rank zero.
Axiom-2: (naturality) One hast*(F) = c/*(f*E) = f*c¢*(FE) for any cartesian diagram

F~f*E —— E

l !

Y TX

~

Axiom-3: (Whitney sum formula)
A (E@F)=cl*(E)el*(F),
or more generally
cl*(E) = ct*(E)et*(E")

for any short exact sequenge—~ E' — E — E” — 0 of vector bundles.
Axiom-4: (normalization or the “projective space” condition) Fhetcanonical (i.e., the
dual of the tautological) line bundig} (K) := Op~ (k) (1) over the projective spade” (K)
(with K = R, C) one has:

(wh): wh(yL(R)) is non-zero.

(1) P (1, (C)) = ¢ (1, (C))*.

(cD): ct(v(C)) = [P"1(C)] € H?(P™(C);Z) is the cohomology class represented

by the hyperplan®”~1(C).

Remark 3.2. We use the superscript notatiofi for contravariant functorial characteristic
classes of vector bundles in cohomology, to distinguismtfrem the subscript notation
</, for covariant functorial characteristic classes of siaggpaces in homology, which we
consider later on. Also note that in topology any short esacuence of vector bundles
over a reasonable (i.e. paracompact) space splits (by agimgtric onF). But this is not
the case in the algebraic or complex analytic context, whageshould ask the “Whitney
sum formula” for short exact sequences.

The existence of such a class for vector bundles of rankn be shown, for example,
with the help of a classifying space, i.e., the infinite disienal Grassmanian manifolds
G, (K>) (with K = R,C), and the fact that the cohomology ring of this Grassmanian
manifold is a polynomial ring

Zowt,w?, -+ w"] forK = R andA = Z»,
H*(G,(K™);A) = Z[1/2][p', p?,--- ,p*/?] for K = R andA = Z[1/2],
Zlct, 2, e for K = C andA = Z.

The most important axiom is Axiom-2 and the uniqueness offi suclass follows then
form Axiom-3 and Axiom-4. By the so-called “splitting priipde” one can assume (after
pulling back to a suitable bundle, whose pullback on the oudlogy level is injective)
that a given non-zero vector bundiesplits into a sum of line (o2-plane) bundles. These
line (or 2-plane) bundles are then called the “Chern rootsFofThen Axiom-3 reduces
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the calculation of characteristic classes to the case efdimdles (fox! = w, ¢) or real
2-plane bundles (fat? = p). By naturality these are then fixed by Axiom-4, since

G1(K*) = lim P*(K) (forK =R,C),
for the casel = w, ¢, or from the fact that the canonical projection
lim P*(C) — G2 (R™)

is the orientation double cover for the cage= p.

From the axioms one gets in all cases p! andc' arenilpotenton finite dimensional
spaces, and/*(E) = 1 for a trivial vector bundle. Note that a real oriented line bundle
is always trivial so that a real line bundle — X has no interesting characteristic class
cli(L) = 0 € HI(X;Z[1/2)]) for j > 0. Just pullback to an orientation double cover
7 : X — X so thatr*L is orientable withw* : H7(X;Z[1/2]) — H’(X;Z[1/2]) in-
jective (since2 € Z[1/2] is invertible). In particular a real vector bundie of rankr is
orientable if and only ifw! (E) = w! (A" E) = 0.

If a characteristic clas&’* : Vect(X) — H*(X; A) satisfies the Whitney sum condi-

tion
A (E@F)=cl*(E)et"(F) with ¢e*(0x)=1,

thencl* is called amultiplicative characteristic class. Another important multiplicative
characteristic class of aorientedreal vector bundleZ — X of rankr is the Euler
classe(E) € H"(X;Z), with e(E) mod 2 = w"(E), e(E)? = p"/?(E) for r even
ande(E) = ¢"(F) in caseE is given by a complex vector bund of rankr. But the
Euler classis not anormalizedcharacteristic class with?* (L) = 1.

The Stiefel-Whitney, Pontrjagin and Chern classee essential in the sense that any
multiplicative characteristic class/* over finite dimensional base spaces is uniquely ex-
pressed as a polynomial (or power series) in these classesthie “splitting principle”
implies:

Theorem 3.3. Let A be aZ,-algebra (resp. &[1/2]-algebra) for the case of real vector
bundles, or &-algebra for the case of complex vector bundles. Then tiseaa®ne-to-one
correspondence between
(1) multiplicativecharacteristic classes’* over finite dimensional base spaces, and
(2) formal power serieg € A[[z]]
such thatel* (L) = f(w!(L)) or ¢f*(L) = f(c*(L)) for any real or complex line bundle
L (resp. c/*(L) = f(p*(L)) for any real2-plane bundlel). In this casef is called the
characteristic power seried the corresponding multiplicative characteristic clags.

Remark 3.4. For the result above it is important that characteristiss#s of vector bun-
dles live in cohomology so that one can build new classes bgiptication (i.e. by the
cup-product) of the basic ones. This is not possible in tise cd characteristic classes of
singular spaces, which live in homology (except in the cd$mmology manifolds where
Poincaré duality is available).

Moreoverct} is invertible with inverse(; ., if f € A[[z]] is invertible, i.e. iff(0) € A
is a unit (e.g. f is a normalized power series wiff{0) = 1). Then the corresponding
multiplicative characteristic clasg* extends over finite dimensional base spake® a
natural transformation of groups
" (K(X), @) — (H*(X;A),0)
on the Grothendieck groui (X) of real or complex vector bundles ov&r.
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4. CHARACTERISTIC CLASSES OF SMOOTH MANIFOLDS

Let us now switch to smooth manifolds, which will be an impmitintermediate step
on the way to characteristic classes of singular spacesa Borooth (or almost complex)
manifold M its real (or complex) tangent bundi&\/ is available and a characteristic class
cl*(T M) of the tangent bundI& M/ is called acharacteristic cohomology clag$* (M)
of the manifold)/. We also use the notation

clo(M) := c*(TM)N [M] € HEM(M; A)
for the correspondingharacteristic homology classf the manifold A/, with [M] €

HBM (M A) the fundamental class in Borel-Moore homology of the (dedhmanifold
M. Note thatH M (X; A) = H.(X;A) for X compact.

Remark 4.1. Using a relation to suitable cohomology operations, i.eeBtod squares,
Thom [Thom1] has shown that the Stiefel-Whitney classé&\ ) of a smooth manifold
M aretoplogicalinvariants. Later he introduced i [Thomtgtional Pontrjagin and L-

classedor compact rational PL-homology manifolds so thattiatonal Pontrjagin classes
p*(M) € H*(M;Q) of a closed smooth manifold/ are combinatorial or piecewise
linear invariants. A deep result of NovikoV INbv] implies thepologicalinvariance of

theserational Pontrjagin classes* (M) € H*(M; Q) of a smooth manifoldi/.

For aclosed orientednanifold M one has the interesting formula
2 degle(M)) = [ e(TAD) (M) = x(1).
M
which justifies the name “Euler class”. For a closed complexifiold M this formula
becomes
degle.(M)) = [ (TN (M) = x(M)
M

which is called theGauss—Bonnet—Chern Theordoompare[[Chi3]). In this sense, the
Chern class is a higher cohomology class version of the ERt@ncaré characteristic.
Similarly

deg(w.(M)) = /M w*(TM)N[M] = x(M) mod 2

for any closed manifold/.

More generally let’so(n — dim. G — mfd.) be the set of isomorphism classes of
smooth closed (and oriented) putradimensional manifoldd/ for G = O (or G = SO),
or of puren-dimensional weakly & stably”) almost complex manifolds! for G = U,
i.e. TM @ RY; is a complex vector bundle (for suitahié, with R, the trivial real line
bundle overM). Then

Iso(G —mfd.), = @ Iso(n —dim. G —mfd.)
becomes a commutative graded semiring with addition andipfichtion given by disjoint
union and exterior product, withand1 given by the classes of the empty set and one point

space. Moreover any multiplicative characteristic cle&gscoming from the power series
f in the variablez = w!, p! or ¢! induces by

M — deg(cly.(M)) = /M cl3(TM) N [M]

a semiring homomorphism
aZs-algebra forG = O andz = w?,
s : Iso(G—mfd.). — A=< az[l/2]-algebraforG = SO andz = p!,
aZ-algebraforG = U andz = c'.
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Let Q¢ := Iso(G — mfd.)./ ~ be the correspondingpbordism ringof closed G =
O) and oriented@ = SO) or weakly (“= stably”) almost complex manifold€{ = U),
with M ~ 0 for a closed purer-dimensionalGG-manifold M if and only if there is a
compact purex + 1-dimensionalz-manifold B with boundaryoB ~ M. Note that this
is indeed a ring with-[M] = [M] for G = O or —[M] = [-M] for G = SO, U, where
—M has the opposite orientation 8f. Moreover, forB as above witldB ~ M one has

TB|OB ~TM & Ry,

so thatel3(T'M) = i*cl3(T'B) fori : M ~ 0B — B the closed inclusion of the
boundary. This also explains the use of the stable tangemdlédor the definition of a
stably or weakly almost complex manifold. By a simple argatruie to Pontrjagin one
then gets

M~0 = deg(cﬁf*(TM)):/M cl3(TM)N[M] =0

so that any multiplicative characteristic clagg coming from the power seriein the
variablez = w', p! or ¢! induces a ring homomorphism callgdnus

aZs-algebra forG = O andz = w!,
(4.3) s :0Y — A = { aZ[1/2]-algebraforG = SO andz = p*,
aZ-algebraforG = U andz = ¢!.

In fact for A aQ-algebra this induces a one-to-one correspondence between

(1) normalized power serigin the variablez = p! (or c!),

(2) normalized and multiplicativeharacteristic classe€’ over finite dimensional
base spaces, and

(3) generab : Q¢ — A for G = SO (or G = U).

Here one uses the following structure theorem.

Theorem4.4. (1) (Thom)Q7° ® Q = Q[[P?*(C)]|n € N] is a polynomial algebra
in the classes of the complex even dimensional projectaessp
(2) (Milnor) QY ® Q = Q[[P™(C)]|n € N] is a polynomial algebra in the classes of
the complex projective spaces.

In particular, the corresponding gendtg with values in aQ-algebraA, or the corre-
sponding normalized and multiplicative characteristassk(*, is uniquely fixed by the

values® (M) = [, cl3(TM) N [M] for all (complex even dimensional) complex pro-
jective spaced/ = P™(C). These are best codified by thearithmg € A[[t]] of @;:

ti-l—l
i+1°

(4.5) g(t) ==Y ®s(P'(C))-
=0

Moreover, a genu& : QU ® Q — A factorizes over the canonical map
2/ 2Q—0°0Q

if and only if f(z) is an even power series in= ¢!, f(z) = h(z?) with 22 = (¢!)? =

pl. Consider for example thsignatures (M) of the cup-product pairing on the middle
dimensional cohomology of the closed oriented manifbidof real dimensionin, with

o (M) := 0 in all other dimensions. This defines a geausQ?° ® Q — Q, as observed
by Thom, witha(P?"(C)) = 1 for all n. The signature genus comes from the normalized
power seriesi(z) = +/z/tanh(y/z) in the variablez = p! (or f(z) = z/tanh(z) in

the variablez = c!), whose corresponding characteristic cla&s= L* is by definition
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the Hirzebruch-Thoni-class. This is the content of the famaddszebruch’s Signature
Theorem(compare also witH THI3]):

o(M) = /ML*(TM) N [M].

Remark 4.6. The first structure theorem about cobordism rings due to Tisothe de-
scription ofQC as a polynomial algebrd;[[M"]|n € N,n + 1 # 2*] in the classes of
suitable closed manifoldd/™ of dimensionn, with one generator in each dimensian
with n 4+ 1 not a power of2. Then each genu@? — A to aZ,-algebraA is coming
form a normalized and multiplicative characteristic claés, but this correspondence is
not injective.

The value® (M) of a genusb on the closed manifold/ is also called a characteristic
number ofM . All these numbers can be used to classify closed manifgdds cobordism.

Theorem 4.7. (1) (Pontrjagin—ThomYwo closed”°°-manifolds are cobordant (i.e.,
represent the same elemenf1) if and only if all their Stiefel~Whitney numbers
are the same.

(2) (Thom—-Wall)Two closed oriented>-manifold are corbordant up to two-torsion
(i.e., represent the same elemen®iff’ ®Z[1/2]) if and only if all their Pontrjagin
numbers are the same.

(3) (Milnor—Novikov)Two closed stably or weakly almost complex manifold are cobo
dant (i.e., represent the same elemerf}f) if and only if all their Chern numbers
are the same.

5. HIRZEBRUCH-RIEMANN—ROCH AND GROTHENDIECK—RIEMANN—ROCH

Let X be a non-singular complex projective variety ai@ holomorphic vector bundle
over X. Note that in this context we do not need to distinguish betwolomorphic and
algebraic vector bundles, and similarly for coherent sksaby the so-called “GAGA-
principle” [Serré]. Then the Euler—Poincaré charactersf E is defined by

X(X, E) =Y (~1)" dime H'(X; Q(E)),
i>0
where)(E) is the coherent sheaf of germs of section€iof).-P. Serreconjectured in his

letter toKodaira and Spencefdated September 29, 1953) that there exists a polynomial
P(X, E) of Chern classes of the base varigfyand the vector bundI& such that

X(X,E)= /XP(X,E) N [X].

Within three months (December 9, 1953)Hirzebruchsolved this conjecture affirma-
tively: the above looked for polynomid (X, E) can be expressed as

P(X, E) = ch*(E)td* (X)

wherech* (E) is the totalChern characteof E andtd* (T X) is the totalTodd clas®of the
tangent bundl€’ X of X . Let us recall that the cohomology classés(V') andtd*(V)
are defined as follows:
rank V'
ch* (V)= Y e e H*(X;Q)

i=1

and
rank V' -
td* (V) = — e H*(X;
W= 1I == e x:0

whereq;’s are the Chern roots df . Sotd* is just the normalized and multiplicative
characteristic class corrsponding to the normalized paggesf(z) = z/(1 — e~ %) in
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z = c'. Similarly the Chern character defines a contravariantrahttansformation of
rings

ch: (K(X),®,8) — (HQ*(X;Q),+,U)

on the Grothendieck groul (X ) of complex vector bundles ovef. Then we have the
following celebrated theorem of Hirzebruch:

Theorem 5.1. (Hirzebruch—Riemann—Roch)

(HRR) X(X,E)=T(X,E) := / (ch™(E)td" (X)) N [X].
X
T(X, E) is called theT-characteristic [[HirR2]). For a more detailed historicapact of
HRR, seel[Hir3].

Remark 5.2. TheT-characteristid' (X, F) is a priori a rational number by the definitions
of the Todd class and Chern character, but it has tarbimtegeras a consequence of the
HRR. TheT-characteristid’ (X, E) of a complex vector bundI& can be defined for any
almost complex manifold and Hirzebrudh[Hirl] asked if thg@husT'(X) := T'(X, 1)
with 1 being a trivial line bundle is always an integer. Of courde fhllows from HRR
and the later result of Quillen, th&¥ ® Q is generated by complex projective algebraic
manifolds. The identity

z/(1—e %) =e*?. z/(2sinh (2/2))
allows one to introduce the Todd class
Td*(X) = e TX)/2. A*(TX),

and therefore also th&-characteristicl'(X, '), more generally for a so-calleSpirf-
manifold X . Here A is the so-called\ hat genus or characteristic classrresponding to
the even normalized power serigé:) = z/(2sinh (z/2)) in the variablez = ¢! or to
f(z) = v/z/(2sinh (y/z/2)) in the variablez = p'. TheT-characteristid’ (X, E) of a
complex vector bundlé’ is then anintegerby an application of thétiyah-Singer Index
theoremAS] for a suitableDirac operator(comparel[Hirl, p.197, Theorem 26.1.1]).

A. GrothendiecKcf. [BaSe]) generalize#iRR for non-singular quasi-projective alge-
braic varieties over any field and proper morphisms with Clsgolwomology ring theory
instead of ordinary cohomology theory (compare also withlFchapter 15]). For the
complex case we can still take the ordinary cohomology théar the homology theory
by the Poincaré duality). Here we stick ourselvesdmplex projective algebraic varieties
for the sake of simplicity. For a variet¥, let Go(X) denote the Grothendieck group
of algebraic coherent sheaves &nand for a morphisny : X — Y the pushforward
fi: Go(X) — Go(Y) is defined by

A(F) = ()R [.F,

i>0

whereR' f, F is (the class of ) the higher direct image sheaffof ThenG, is a covari-
ant functor with the above pushforward (sée [Grot1] dnd [Mahet similarly K°(X)

be the Grothendieck group of complex algebraic vector lesdiverX so that one has

a canonical contravariant transformation of rifg8( ) — K( ) to the Grothendieck
group of complex vector bundles. Note that on a smooth algelnanifold the canon-
ical mapK’( ) — Go( ) taking the sheaf of sections is an isomorphism. With this
isomorphism one can define characteristic classes of aepiai coherent sheaf. Then
Grothendieck showed the existence of a natural transfé@mértom the covariant functor
Gy to theQ-homology covariant functals.( ; Q) (seellBoSe)):
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Theorem 5.3. (Grothendieck—Riemann—Roch) Let the transformation Go( ) —
Hy.( ;Q) be defined by, (F) = td*(X)ch*(F) N [X] for any smooth variety(. Then
7, is actually natural, i.e., for any morphisgh: X — Y the following diagram commutes:

Go(X) —— Ha(X;Q)

i I»

Go(Y) —— Ha(Y;Q)

T

ie.,
(GRR) td* (Ty )eh™ (F) N [Y] = fu(td (TX)eh™(F) N [X]).

ClearlyHRR is induced fromGRR by considering a map fromX'to a point. Note that
the target of the transformation of the origi@RR is the cohomology7?*( ;Q) with
the Gysin homomorphism instead of the homolddy.( ;Q), but, by the definition of
the Gysin homomorphism the originéRR can be putin as above.

6. THE GENERALIZED HIRZEBRUCH-RIEMANN—ROCH

In Hirzebruch’s book[[Hir2,§12.1 and§15.5] he has generalized the characteristics
x(X, E) andT'(X, E) to the so-called,-characteristicy, (X, E) andT,-characteristic
T, (X, E) as follows, using a parametgi(see also[[HEJ, Chapter 5]).

Definition 6.1.

Xy(X,B) =Y ( 1)? dimg H(X, (B )@A”T*X)) v
>0

p>0

=Y X(X,E@ APT* X))y

P>

(=}

whereT™ X is the dual of the tangent bundl&X, i.e., the cotangent bundle &f.

T,(X,E) := /X td () (TX)ch(4y)(E) N [X],

dim X
— ai(l+y)
tdgy) (TX) = H (1 —e—ai(lty) aiy) ’
i=1
rank F
ch(r4y)(E) = Z e (1),
j=1

whereq;’s are the Chern roots a&f X andﬁj’s are the Chern roots df .
F. Hirzebruchl[Hir2 521.3] showed the following theorem:

Theorem 6.2. (The generalized Hirzebruch—Riemann—Roch)

(3-HRR) Xy (X, E) = Ty(X, E).
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Theg-HRR can be shown as follows, usittRR:

Xy (X, E) = / > X(X,E®@APT*X))y? (by the definition)
X p=>0

= / > (ch*(E® APT*X)td"(X) N [X])y” (by HRR)

p=>0

= / (Zch*(E®APT*X)td*(X)y’”> N[X]
X

p=>0

p=>0

dim X
:/X (ch*(E)td*(X) 1T (1+yeai)> N[X]

1=1
rank E dim X -
_ B - ?
,/X ; ¢ 1;[1 (1 ye) | N [X].

However, the power serids + ye ™)

_ / (ch*(E)td*(X)Zch*(ApT*X)yp) N X]
X

(67 . . .
1710‘ is nota normalized power series because
— e i

the0-degree partis +y, not1. So, by dividing this non-normalized power serieslby y
and furthermore by changingj to 3;(1 + y) andc; to a;(1 + y), which does not change
the value ofy, (X, E) at all, and by noticing that

1+ ye—@:(1+y) a; a1 +y)
1+y 1 —e—ai(l+y) 1 — e—ai(l4+y)

- o5y,

we can see that the right hand side of the last equati®p(i&, E') (comparel[HBJ, p.61-
62]). In fact the same argument shows that a non-normalinegepseriesf(z) with
a := f(0) € A aunitinduces the same genus as the normalized power gétiey a.

Remark 6.3. The generalized Hirzebruch Riemann-Roch theorem is alsoftr a holo-
morphic vector bundlés over a compact complex manifold, by an application of the
Atiyah-Singer Index theorefAS].

The aboveanodified Todd cIasEd(y) is the normalized and multiplicative characteristic
class corresponding to the normalized power series éinc'):

F) = fo) = Y Qi

1 — e—=*(1+y)
The associated genug, : QU — Q[y] is called the Hirzebrucly,-genus A simple
residue calculation irL.[Hii2, Lemma 1.8.1] implies for alE N:

n

(6.4) Xy(P™(C)=> (-y)' € Zy] C Qly] .

=0
So these values oR™(C) fix the x,-genus and the modified Todd cla&&@y). Moreover,
the normalized power serigi (=) specializes to
142 fory = —1,
fy(z) =< 2z/(1—e%) fory =0,
z/ tanh (2) fory = 1.

So the modified Todd clas?d(y) defined above unifies the following three important char-
acteristic cohomology classes:
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(y=-1) thetotal Chernclass

td_1)(TX) = c*(TX),
(y=0) the total Todd class

td(o)(TX) = td*(TX),
(y=1) the total Thom—Hirzebruch L-class

td1)(TX) = L*(TX).

Therefore, wherF = the trivial line bundle, for these special valugs= —1,0, 1 the g-
HRR reads as follows:
(y=-1) Gauss—Bonnet—Chern Theorem

MD:Lﬁ@@Nﬂ

(y=0) Riemann—Roch Theoremenotingy,(X) := x(X, Ox), called the arithmetic
genus ofX, to avoid the confusion with the above topological EuleiinParé characteris-
tic x(X),

mmszwmmn

(y=1) Hirzebruch’s Signature Theorem
o(X) :/ L*(TX)n[X].
X

Remark 6.5. (Poincaré—Hopf Theorem) The above Gauss—Bonnet—-Chezar&m due
to Chern [ChB] is a generalization of the original Gauss—+&atheorem saying that the
integration of the Guassian curvature is equéltaimes the topological Euler—Poincaré
characteristic. There is another well-known different@dological formula concerning
the topological Euler—Poincaré characteristic. Thahégo-calledPoincaie —Hopf theo-
rem, saying that the index of a smooth vector fiéfdwith only isolated singularites on a
smooth compact manifold/ is equal to the topological Euler—Poincaré characterdti
the manifoldM;

Index(V) = x(M),
where the indedndex (V) is defined to be the sum of the indices of the vector field at
the isolated singularities. Compare with [Mi1] for a be&ultintroduction to the Poincaré
—Hopf theorem. Note that the Gauss—Bonnet—Chern Theorékowofrom the Poincaré—
Hopf theorem (cf.[[Wi] and[Zh]).

7. CHARACTERISTIC CLASSES OF SINGULAR VARIETIES

In the following we consider for simplicity only compact s@s. For a singular alge-
braic or analytic varietyX its tangent bundle is not available any longer because of the
existence of singularities, thus one cannot define its dbeniatic class:/.(X) as in the
previous case of manifolds, although a “tangent-like” Haerslich as Zariski tangents is
available. A main theme for defining reasonable charatietasses for singular vari-
eties is that reasonable ones should be interesting endoighxample, they should be
geometrically or topologically interesting and quite wedlated to other well-known in-
variants of varieties and singularities (e.g., $ee [Mac?])

The theory of characteristic classes of vector bundlasnatural transformatiorfrom
the contravariant functdvect to the contravariant cohomology functéf*( ; A). This
naturality is an important guide for developing various theories ofrabteristic classes
for singular varieties. The knowfunctorial characteristic classef®@r singular spaces are
covariantfunctorial maps

cly: A(X) — Ho(X;A)
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from a suiable covariant theoryt depending on the choice ef.. Moreover, there is
always adistinguished elemeritx € A(X) such that the correspondimparacteristic
class of the singular spac¥ is defined as:/.(X) := ¢/.(1x). Finally one has the
normalization

Cf*(]l]u) = Cf*(TM) n [M] S H*(X,A)
for M a smooth manifold, witke¢* (T M) the corresponding characteristic cohomology
class of M. This justifies the notation/, for this homology class transformation, which
should be seen as a relative homology class version of tleviolg characteristic number
of the singular spac¥:

#(X) := cli(const 1 x) = const.(cli(1x)) € Ho({pt};A) = A,

with const : X — {pt} a constant map. Note that tm®rmalizationimplies for M
smooth:

4(M) = deg(ct, (M)) = /k el (TM) N [M]

so that this is consistent with the notion of characteristimber of the smooth manifold
M as used before.

7.1. Stiefel-Whitney classesv.. The first example of functorial characteristic classes is
the theory of singular Stiefel-Whitney homology classee ttuDennis SullivanSull]
(also seel[EM]). A crucial fact about the original Stiefelkitviey class is the following
fact: if T'is any triangulation of a manifold’, then the sum of all the simplices of the first
barycentric subdivision is mod 2 cycleand its homology class is equal to the Poincaré
dual of the Stiefel-Whitney class. In[Sull] D. Sullivan @pged that also aingular real
algebraic varietyX is amod 2 Euler spacd.e. the link of any point ofX has even Eu-
ler characteristic. And this condition implies that the sofall the simplices of the first
barycentric subdivision of any triangulation &f is always amod 2 cycleand he defined
its homology class to be the singular Stiefel-Whitney clafsthe varietyX. Then, with

an insight ofDeligne Sullivan’s Stiefel-Whitney homology classes where emkadmas a
natural tansformation from a certian covariant functot® inod 2 homology theory.

Let X be a complex (or real) algebraic set andA&tX ) (or F™°%2( X)) be the abelian
group ofZ- (or Zy-)valued complex (or real) algebraically constructibladtions on a
variety X. Then the assignmett (or F°42) : V — A is acontravariantfunctor (from
the category of algebraic varieties to the category of ahejroups) by the usual functional
pullback for a morphisnf : X — Y: f*(a) := a o f. For a constructible se&f C X, we
define

X(Z;a) = Z n-xe(ZNa t(n)) (mod?2).
neZ
Then it turns out that the assignmeiit(or F™°2): V — A also becomes aovariant
functor by the following pushforward defined by

fe(@)(y) = x(f'(y);a) foryey.

To show that this is welldefined (i.¢..(«) is again constructible) and functorial requires,
for example, stratification theory (see [Mac1]) or a suigahlkeory of constructible sheaves
(seelSch3]). For later use we also point out, that here irfgtmmi-)algebraic context we
do not need the assumption that our spaces are compact or the srphs proper for
the defintion off.. This properness of for the definition off. is only needed in the
corresponding (sub-)analytic context.

The above Sullivan’s Stiefel-Whitney class is how the splecase of the following
Stiefel-Whitney class transformation
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Theorem 7.1. On the category of compact real algebraic varieties thelistexa unique
natural transformation

wy t FMOR() — Ho( 5 Z)
satisfying the normalization condition that for a nonsitagwariety X
we(lx) =w*(TX)N[X].
Herel x := 1x is the characteristic function oX .

Note thatf(X) = deg(w«(1x)) = x(X) mod 2 is just the Euler characteristicod 2
of the singular spac¥’.

7.2. Chern classes:.. Based orGrothendieck’'sdeas or modifying Grothendieck’s con-
jecture on aRiemann—Roch type formutmncerning the constructible étale sheaves and
Chow rings (see1Grot2, Part Il, not&7), p.361 ff.]), Delignemade the following con-
jecture — this is usually simply phrased “Deligne and Gratlieck made the following
conjecture” — andR. MacPhersoifMacl] proved it affirmatively:

Theorem 7.2. There exists a unique natural transformation
e : F( ) — Ha( ;2)

from the constructible function covariant functér to the integral homology covariant
functor (in even degreedj-.., satisfying the“normalization” that the value of the chara
teristic functionll x := 1x of a smooth complex algebraic varie}y is the Poincaé dual
of the total Chern cohomology class:

e(lx)=c"(TX)N[X].

The main ingredients ar€éhern—Mather classes, local Euler obstruction and “graph
construction” The uniqueness follows from the above normalization diordand reso-
lution of singularities. For an algebraic version of the @helass transformation, over
a base field of characteristic zero (taking values in Chowigsd, compare with [Ken].
MacPherson’s approadh [Méc1] also works in the complexyicalontext, since the ana-
lyticity of the “graph construction” was solved by Kwiesiki in his thesis[[KwP].

Remark 7.3. (see[KMY]]) The individual component : F( ) — Hy;( ) of the trans-
formatione, : F( ) — Ha.( ) is also a natural transformation and also any linear
combination of these components is a natrual transfomati@h us consideprojective
varieties. Thenmodulo torsionthese linear combinations are thely natural tansforma-
tions from the covariant functar to the homology functor. In particular, thiationalized
Chern—Schwartz—MacPherson class transformation Q is the only such natural tans-
formation satisfying theveaker normalization consitiotihat for each complex projective
spaceP the top dimensional component @f(P) is the fundamental clag®]. A note-
worthy feature of the proof of these statements is that oms dot need to appeal to the
resolution of singularities.

J.-P. Brasselet and M.-H. Schwaf&rSc] showed that the distinguished valug1 x)
of the characteristic function of a complex variety embetitéo a complex manifold is
isomorphic to theSchwartz clas§Schwl, Schw?] via the Alexander duality. Thus the
above transformation, is usually called th&Chern—Schwartz—MacPherson class trans-
formation For a complex algebraic variety, singular or nonsingular, we have the dis-
tinguished element x := 1x andec.(X) := c.(1x) is called the total Chern—Schwartz—
MacPherson class of . By considering mappin& to a point, one gets

X(X) = deg(c.(lx)) = 4(X) ,
which is a singular version of the Gauss—Bonnet—Chern #meor
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Remark 7.4. For a singular version of the Poincaré—Hopf theorem in seohstrati-
fied vector fields see [BLS$S], and for a version in termsl-gbrms and characteristic
cycles of constructible functions, compare for examplehvf§ch3,§5.0.3] and [[Sch5].
There are also other notions of Chern classes of a singutaplex algebraic variety
X: Chern-Mather classeg’¢(X) ([Mac1]), Fulton- and Fulton-Johnson Chern classes
cF(X), el (X) ([EM] and [Ful, Ex. 4.2.6]), and for “stringy and arc Chermsses”
ST (X), c27¢(X) see subsectidniI1.4. In many interesting cases these castébedd as

¢« (ax ) for a suitable constructible functieny related to some geometric properties of the
singular spaceéX (comparellAlul[ Br2[ Ba, Schil, S¢h4,"Sdhg, Su]). Of courge= 1x

for X smooth, but in generaly # 1x so that the MacPherson Chern class transforma-
tion ¢, is the basic one, but in generilly = 1x is not the only possible choice of a

distinguished elemerit x !

7.3. Todd classesd,. Motivated by the formulation of the Chern—Schwartz—MaaBbe
class transformatiot. Baum, W. Fulton and R. MacPhergBitM1] have extende®RR
to singular varieties, by introducing the so-calledalized Chern characterh) (F) of a
coherent sheaf with X embedded into a non-singular quasi-projective variety as
a substitute ot:h*(F) N [X] in the aboveGRR. Note that if X is smoothch (F) =
ch*(F) N [X]. In [BFM] they showed the following theorem:

Theorem 7.5. (Baum—Fulton—MacPherson’s Riemann—Roch)
() tdo(F) := td*(i%,Tar) N ch¥ (F) is independent of the embedding : X — M.
(i) Let the transformationid, : Go( ) — Ha.( ;Q) be defined by

td.(F) = td* (i, Tar) N ch¥ (F)

for any varietyX. Thentd, is actually natural, i.e., for any morphisth: X — Y the
following diagram commutes:

Go(X) 4 H,y(X;Q)

| I»

Go(Y) — Hy. (Y;Q)

5

i.e., forany embeddings; : X — M andiy : Y — N
(BFM-RR) td* (iyTn) N chd (AF) = fu(td* (i3, Tar) N ch i (F)) .

For a complex algebraic variet¥, singular or nonsingulatd, (X) := td.(Ox) is
called the Baum—Fulton—MacPherson’s Todd homology clésk ,a.e. the class of the
structure sheaf is the distingiuished elemiegt:= [Ox]. And we get

Xa(X) = /X 1. (X) = §(X) .

which is a singular version of the Riemann—Roch theorem. iIAfIBEMZ] this Todd class
transformation is moreover factorized through complexdfalology, which maybe is the
most natural formulation of this transformation. For thgeddraic version of the Todd class
transformationid, over any base field compare with [Ful, chapter 18].

Remark 7.6 (Euler homology class;). Even though the formulation of the BFM—RR was
motivated by that of the Chern—Schwartz—MacPherson dtagas proved in a completely
different way. And now there is available a similar proof ohtPherson’s theorem for
the embedded context based on the theory of charactenstiessCC' of constructible
functions, with the Segre classCC' of these conic characteristic cycles playing the role
of the localized Chern character in the proof of Baum—FuddacPherson. Here these
characteristic cycles are conic Lagrangian cycleBin/ | X, and the pullback

ey :=k*CC : F(X) — Ho(X;Z)
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by the zero sectiok : X — T*M|X can be seen as a functorililer homology class
transformationeven in the context of real geometry. In particular

X(X) = deg(e(lx)) = #(X)

also in this context. For more details of this, see [S€h455chinally, this approach by
characteristic cycles also gives a new approach to theeBtéhitney class transformation
w, Of Sullivan as observed and explainedin [FUMC].

7.4. L-classesL,. Using the notion of “perversity”"M. Goresky and R. MacPherson
(IGM1], [GM2]) have introducedntersection Homology Thearylin [GM1] they intro-
duced a homology.-class LEM (X)) for stratified spaces( with even (co)dimensional
strata such that ifX is nonsingular it becomes the Poincaré dual of the origltem—
HirzebruchL-class: LSM(X) = L*(TX) N [X]. And for rational PL-homology mani-
folds their L-classes agree with the classes introduced by Thom longrefitaom?2] as
one of the first characteristic classes of suitable singdaces.

Later, S. Cappell and J. Shanesf@S1] (see also [C$2] and [5h]) introduced a ho-
mology L-class transformatiot..., which turns out to be a natural transformation from
the abelian grouf(X) of cobordism classes of selfdual constructible complexbsse
definition we now explain, to the rational homology group 12 (cf. [IY2]).

Let X be a compact complex analytic (algebraic) space WiiX) the bounded de-
rived category of complex analytically (algebraicallynstructible complexes of sheaves
of Q-vector spaces (compaie [KS] and [Sch3]). So we considendedisheaf complexes
F, which have locally constant cohomology sheaves with fiditeensional stalks along
the strata of a complex analytic (algebraic) Whitney dicatiion of X. This is a triangu-
lated category with translation funct@ = [1] given by shifting a complex one step to
the left. It also has a duality in the sense of Youssin [Yodliced by the/erdier duality
functor (comparel[Sch3, Chap.4] arild [KS, Chap.VIII]):

Dx := Rhom(-,k'Qp) : DY(X) — DY(X),

with k& : X — {pt} a constant map, together with tt&duality isomorphisnzan : id =
Dx o Dx. A constructible complexr € ob(D%(X)) is calledselfdual if there is an
isomorphism

d:F > Dx(F).
The pair(F, d) is calledsymmetrior skew-symmetrjdf
Dx(d)ocan=d or Dx(d)ocan=—d.

Finally an isomorphism oisometryof selfdual objectsF, d) and(F’,d’) is an isomor-
phismu such that the following diagram commutes:

F — F

~

1l |«

— /
Dx(F) N Dx(F').

The isomorphism classes of such (skew-)symmetric selfdoaiplexes form a set,
which becomes anonoidwith addition induced by the direct sum. Using a definition of
Youssin [Yoll], thecobordism group$2+ (X ) of (skew-)symmetric selfdual constructible
complexes onX are defined by introducing a suitalitebordism relatiorin terms of an
octahedral diagrami.e. a diagranfOct) of the following form:
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F [ul,] G2 F [:,} Go
d + U
]|’ + Hy + v (1]’ d Ha d v
g1 " F1 1 ” F1.

Here the morphism marked HY] are of degree one, the triangles markedre com-
mutative, and the ones markédare distinguished. Finally the two composite morphisms
from H; to Hs (via G; andgs) have to be the same, and similarly for the two composite
morphisms fronfs to H; (via F; and.Fs).

Application of the duality functoD := Dy and a rotation byt80° about the axis con-
necting upper-left and lower-right corner induces anotdwtahedral diagrariRD - Oct)
such thatkRD applied to(RD - Oct) gives the octahedral diagraf? - Oct) which one
gets from(Oct) by application ofD? (compare with[[Yoli, p.387/388]). Then the octa-
hedral diagram{Oct) is calledsymmetricor skew-symmetridf there is an isomorphism
d: (Oct) — (RD - Oct) of octahedral diagrams such that

RD(d)ocan=d or RD(d)ocan= —d

as maps of octahedral diagraisct) — (RD - Oct). Note that this induces in particular
(skew-)symmetric dualitied; andd, of the cornersF; and F,, and(Oct, d) is called
anelementary cobordismetween(F;,d;) and(F», d2). This notion is a symmetric and
reflexive relation(F, d) and(F’,d’) are calleccobordant if there is a sequence

(F,d) = (Fo,do), (Fi,d1), ... ,(Fm,dm) = (F,d)
with (F;, d;) elementary cobordant {¢F; 11, d;+1) fori = 0,...,m — 1. Thiscobordism

relationis then an equivalence relation.

Thecobordism group2+ (X)) of selfdual constructible complexes éhis the quotient
of the monoid of isomorphism classes of (skew-)symmetriftlsal complexes by this
cobordism relation. These are indeed abelian groups arjdstahonoids.

Consider now an algebraic (or holomorphic) méap X — Y, with X, Y compact so
that f is proper. ThenRf. ~ Rfy mapsD%(X) to D%(X). Moreover, theadjunction
isomorphism

Rf.Rhom(F, f'k'Qut) ~ Rhom(RAF, k' Q)
induces the isomorphism

so thatR f, commutes with Verdier-dualityn particularR f. maps selfdual constructible
complexes oiX to selfdual constructible complexes®rinducing group homomorphisms

fe 1 Q:(X) = Qe (Y); [(F,d)] = [(REF, Rf(d))] -
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A simple example of a selfdual constructible complex is théted constant sheaf
Qz[n] on a complex manifold of pure dimensiom, with the duality isomorphism in-
duced from theomplex orientatiorf Z by Poincaré-Verdier duality:

E'Qp ~ Qz[2n] ,withk: X — {pt} a constant map.

This is (skew-)symmetric for even (or odd).

Then the results of Cappell-Shaneson [C&8],can be reformulated as in [BSl 2](cf.
[Y2] Corollary 2.3]):

Theorem 7.8(Cappell-Shaneson)or a compact complex analytic (or algebraic) space
X there is ahomologyL-class transformation

Lo: QX)) =0, (X)®Q_(X) - H (X,Q),

which is a group homomorphism functorial for the pushdgiwmduced by a holomorphic
(or algebraic) map. The degree 6§ ((F, d)) is thesignatureof the induced pairing

HY(X,F)ooR x H(X,F)®gR — R

(by definition this i) for a skew-symmetric pairing). Moreover, f&f smooth of pure
dimensiom one has the normalization

L.((Qx[nl, d)) = L*(TX) N [X].

There is also ainiquenesstatement in[[CS1§5] for such anl-class transformation,
but for this one has to go outside the complex algebraic dytioaontext.

For X pure dimensional (otherwise one should only look at the topedsional irre-
ducible components aX) one has the distinguished self-dual constructible ietgien
cohomology compleA x := ZCx, whose global cohomology calculates the intersection
(co)homology of Goresky-MacPherson. By definition one detX) := L.(ZCx) =
LEM(X) so that

[ 20 =10
X
is the signature of the global intersection (co)homology.

Remark 7.9. Thom used in[[Thom?2] his combinatoridl-classes for the definition of
combinatorial Pontrjagin classesf rational PL-homology manifolds. Note that in the
context of rational homology manifoldsational L- and Pontrjagin classes carry the same
information (i.e. can be deduced from each other). But thi®t the case for more singular
spaces, and only a correspondinglass transformation exists for suitable singular spaces
but not a Pontrjagin class transformation.

So all these theories of characteristic homology classteamations for singular spaces
have the same formalism, but their existence and construigidue to completely differ-
ent underlying ideasnod 2 Euler spacef®r w,, local Euler obstructiorfor ¢,, localized
Chern characteffor td, andduality for L,. Nevertheless it is natural to ask for another
theory of characteristic homology classes of singular epawhich unifies these theories
for complex algebraic varieties:

Problem 7.10. (cf. [MacZ] and[Y3]) Is there a “unifying and singular versiony of
the generalized Hirzebruch—Riemann—-RgeHRR such that
(y=-1) 71 gives rise to the rationalized Chern—Schwartz—MacPhésstassc,. ® Q,

(y=0) 0 gives rise to the Baum—Fulton—MacPherson’s Todd cldssand
(y=1) 1 gives rise to the Cappell-Shaneson’s homology L-class
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An obvious obstacle for this problem is that the source damafunctors of these three
natural transformations are all different. And even if sadieory is not known, itaor-
malization conditiorfor a smooth complex algebraic manifald has to be

el (Lpr) = td () (TM) N [M]

by g-HRR so that this transformation has to be callebliazebruch%vd(y*)— or Ty.-class
transformation

8. RELATIVE GROTHENDIECK RINGS OF VARIETIES AND MOTIVIC CHARACTERISTIC
CLASSES

A “reasonable” answer for the above ProblEm¥.10 has beeainast in [BSY2] via
the so-calledelative Grothendieck ring of complex algebraic varietmser X, denoted
by Ko(V/X). This ring was introduced by E. Looijenga [nJLo] and furttsémdied by F.
Bittner in [Bif]. The relative Grothendieck groug,(V/X) ( of morphisms over a variety
X) is the quotient of the free abelian group of isomorphisnssdg of morphisms t&

(denoted byY — X]or[Y LN X1), modulo the followingadditivity relation:
YA X =ZoVvEX]|+Y\Z—YV L X]

for Z C Y a closed subvariety df". The ring structure is given by the fiber square: for
v LX), WL X] e Ko(V/X)

v LX) WL X =y xx WXL X
HereY xx W ELLTN's isgo f' = fog'wheref’ andg’ are as in the following diagram

YV oxx W —L s W

/| Js

f

Y — X.
The relative Grothendieck rino(V/X) has the unilx := [X dx, X1, which later
becomes the distinguished elemdnt := [idx]. Similarly one gets an exterior product

X : Ko(V/X) x Ko(V/Y) = Ko(V/X xY).

Note that whenX = {pt} is a point, then the relative Grothendieck rifg (V/{pt}) is
nothing but the usual Grothendieck ridig (1) of V, which is the free abelian group gen-
erated by the isomorphism classes of varietiesmodulo thgrsup generated by elements
of the form[V] — [V'] — [V \ V] for a subvarietyy”’ C V, and the ring structure is given
by the Cartesian product of varieties.

Remark 8.1. In some sense the Grothendieck rifig()) can be seen as an algebraic
substitute for cobordism ring3.. of smooth manifolds, based on thdditivity instead of
a cobordism relation.

For a morphisny : X’ — X, the pushforward
fe: Ko(V/X') = Ko(V/X)
is defined by
AV x =y LX)
With this pushforward, the assignmeit — Ky(V/X) is a covariant functor. The
pullback

[T Ko(V/X) — Ko(V/X')
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is defined as follows: for a fiber square

yr L x

f’l lf

y -2 . X

the pullbackf*[Y & X] := [Y” LN X']. With this pullback, the assignmef —
Ky(V/X) is a contravariant functor. Ldko" (SV/X) be the free abelain groups on
isomorphism classes of proper morphisms from smooth Veasi¢d a given varietyX .
Then we get the canonical quotient homomorphism

quo : Iso™ (SV/X) — Ko(V/X)

which is surjective by the above additivity relation anddtiaka’s resolution of singulari-
ties [Hi]. And it turns out that the kernel of this surjectiveap is generated by the “blow-up
relation”, more precisely we have the following theoremjakhis due to F. Bittner [Bi,
Theorem 5.1], based on the very deep “weak factorizatioorthva” (JAKMW] and [WI):

Theorem 8.2. The relative Grothendieck groulg, (V/ X)) is isomorphic to the quotient of
the free abelian groufiso® (SV/X) modulo the following “blow-up relation”

00— X]:=0 and [BlyX' - X]—[F— X]=[X'—X]-[Y — X]
for any Cartesian “blow-up” diagram

E —" . Blyx'

4k

y — x 1. x
with 7 a closed embedding of smooth (pure dimensional) varietids'a X’ — X proper.

Hererw : Bly X' — X' is the blow-up ofX’ alongY with E denoting the exceptional
divisor.

From this theorem we can get the following corollary:

Theorem 8.3. Let B, : V/k — A be a functor from the category of reduced separated
schemes of finite type ov€rto the category of abelian groups such that

(i) B.(0) := 0,

(ii) it is covariantly functorial for proper morphisms, and

(iii) for any smooth varietyX there exists a distinguished elemént € B..(X) such that
(iii-1) for any isomorphisnmh : X’ — X, h.(dx/) = dx and

(iii-2) for any Cartesian “blow-up” diagram as in the abovéh€orenf8R withf = idy,

ﬂ-*(dBlyX) — ’L*ﬂ';(dE) =dx — Z*(dy) S B*(X)
Then we have by (iii-1) that there exists a unique naturai$farmation of covariant func-
tors
O Iso”(SV/ ) — B.( )
satisfying the normalization condition that for smodth

(X 4 X]) = dy,

and furthermore by (iii-2) there exists a unique naturalntsformation of covariant func-
tors N

b:Ko(V/ )— B.( )
satisfying the normalization condition that for smodth

(X L X]) = dy.
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Then, using results of [Grbs, IV.1.2.1] ar [GINA, Propositi.3], we can get the fol-
lowing corollary about anotivic Chern class transformationC..

Corollary 8.4. There exisits a unique natural transformation (with redge@roper maps)
mCy : Ko(V/ ) = Go( ) ®Z[y]

satisfying the normalization condition that f&r smooth
id dim X . . i}
mC.([X =5 X)) = Y [NT*X]y' =: A, ((T*X]) N [Ox].
=0
HereA,( ) is the so-calledotal A-class
If we composenC., |,—_1 0,1 with the natural transformatio6,( ) — Ki*( ) to
topological K-homology constructed in IBEM?2], thenC..(X) unifies for X smooth the
following K-theoretical homology classes:
(y=-1) the top-dimensional Chern cIaé@”(TX) N [X]k in K-theory
mCily=—1([idx]) = A1 ([T"X]) N [X]k ,
(y=0) the fundamental class in K-homology of the complex ifwdth X
mCly=o([idx]) = [X]x ,
(y=1) the class of the signature operator of the underlypig‘snanifold of X
mCily=1(lidx]) = A ([T X]) N [X]x -
Consider the twisted BFM—RR transformation
td(14y) : Go(X) ® Z[y] — Hau(X) @ Qly, (1 +y) "]
defined by

td(1sy) ([F]) = D tdi((F(L +y)~
i>0
and extending it linearly with respect #&jy| ([Y3]). Using this twisted BFM—RR transfor-
mationtd, .,y and the above transformationC'., we define thedirzebruch class trans-
formationT,.. as the composité, .. := td,.,yomC,. Thenwe getthe following theorem:

Theorem 8.5. Let K (V/X) be the Grothendieck group of complex algebraic varieties
over X. Then there exists a unique natural transformation (witpect to proper maps)
Ty, : Ko(V/ )= HpM( ) ®@Qly)l C HZM( )@ Qly, (1+y)7]
such that forX nonsingular
id =
Ty, (X — X)) = td(y)(TX) n[X].

Remark 8.6. The transformations:C, andTy, can also be defined in the same way in
the algebraic contexbver a base field of characteristic zero, using the algelweision

of the Todd tranformationd,. as in [Ful, chapter 18], and in tltempactifiable complex
analytic contextusing the analytic version of the Todd tranformatidn constructed in
[Cevy] (compare with[[BSYR] for more details).

For a later use, we observe thgt commutes with the exterior product (and similarly
for mC,), i.e., the following diagram commutes:

X

Ko(V/X) x Ko(V]Y) — X Ky(V/X xY)

Ty*XTy*l lTy*

Hz. (X) ® Qly] x Hau(Y) ©® Qly] —— Hou(X x Y) ® Q[y)-
And we have the following theorem for a compact complex algietvariety X :



A SURVEY OF CHARACTERISTIC CLASSES OF SINGULAR SPACES 23

Theorem 8.7. (y = -1) There exists a unique natural transformatien K,(V/ ) —
F( ) such that forX nonsingulare([X M, X]) = 1x. And the following diagram

commutes
Ko(V/X)
HQ*

(y = 0) There exists a unique natural transformat@n Ko(V/ ) — Go( ) such that
for X nonsingulary([X i, X]) = [Ox]. And the following diagram commutes

Ko(V/X) X)
\H\ /

(y = 1) There exists a unique natural transformation Ky(V/ ) — Q( ) such that for
X nonsingularw ([ X , X]) = [Qx[dim X]]. And the following diagram commutes

TN

An original proof of the above TheordmB.5 uses Saito’s thedmixed Hodge mod-
ules [Sdi] instead of the above TheorEm 8.2. And an even niemeemtary proof can be
given based on some classical results of [DuBo] about theafled DuBois complex of
a singular complex algebraic variety. Only the proof of tlase(y = 1) of the above
Theoren817 depends, up to now, on the Bittner’s theorem,the above Theorem 8.2,
in other words, on the “weak factorization theoreni” {TAKNI\&hd [W]). Also note that
the transformation is defined foranyalgebraic map of not necessarily compact algebraic
varieties, and it also commutes with pullback and (ext¢pooducts. For more details, see
[BSYZ).

Remark 8.8. The reader should be warned that the transformatjcarsdw above dmnot
preserve the distinguished elements in general. For anpaonsingular complex alge-
braic varietyX one has([idx]|) = 1x so thattheédirzebruch clasg..(X) := Ty ([idx])
specializes td_1,.(X) = ¢.(X) € H2.(X;Q). Butin general

v(lidx]) # [Ox] € Go(X) and Tpu(X) # tdu(X) .

But 7. (X) = td.(X) if X has at most “Du Bois singularities”, e.g. “rational singisla
ties”like, for example, toric varieties. Similarly

w(fidx]) # [ZCx] € Q(X) and Ti.(X) # L.(X)
in general, but weonjecturethatTy..(X) = L.(X) for X arational homology manifold

Moreover, the Hirzebruch characteristic cIangy) = T, is themost generahormal-
ized and multiplicative characteristic class of complestoe bundles

cly : Vect(X) — H**(X;A),
with A aQ-algebra, which satisfies the condition of Theofenh 8.3 with
dx = cl3(TX)N[X] € HLM(X;A)
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for X smooth. In fact, the correspondignus® ; factorizes as
Iso® (SV /{pt}) —— Q7 eQ

(8.9) | &

P
Ko(V) — 5 A= Hy ({pt}; A).
Moreover, the characteristic clag&; or its genusp is uniquely determined by

e(POD = [ TP PO

for all n. Butif @ also factorizes oveK,()) then we get from the decomposition
P*(C)={pt}uCu---UC"
by “additivity” and “multiplicativity” (and compare with guation [6})):

(8.10)  ®4([P"(C)]) =1+ (=y) + -+ (=y)" with y:=1-2,([P'(C)]).

So @, is a specialization of thélirzebruch x,-genuscorresponding to thélirzebruch
characteristic classl};. Of course here we use a decomposition into tba-compact
manifoldsC™, which “is classically forbidden for a genus”, with= —&([C]).

Remark 8.11. Soadditivity is the underlying principle which “singles out” those notma
ized and multiplicative characteristic class€p, which have (so far) a functorial extension
to singular spaces. Also note that the specializagiea 1 corresponding to theignature
genussign = x1 and thecharacteristicL-class transformatiorl* = 77} is the only one
that factorizes by the canonical m&y @ Q — Q%9 ® Q over thecobordism ring25©

of oriented manifoldssince[ P! (C)] = 0 € Q5. In particular this “explains” why there
is no functorialPontrjagin class transformatiofor singular spaces.

For X a compact complex algebraic variety one can also deduceTrworen 81 the
Chern class transformation

e : Ko(V/X) — Ho (X Z)
on the relative Grothendieck groufy (V/ X ) without appealing to MacPherson’s theorem,
since the distinguished element
dx == (TX)N[X] € Ho(X;Z)
of a smooth spac# satisfies the corresponding conditions. Condition (iifellows from
the projection formula, and condition (iii-2) is an easy kgagion (by pushing down t)
of the classical “blowing up formula for Chern classes™ [Fuiheorem 15.4] . And recent

work of Aluffi [Alu3] can be interpreted as showing that thiarisformatiore,. factorizes
overe: Ko(V/ )— F( ).

9. BIVARIANT CHARACTERISTIC CLASSES

In [EM] (also, seellEFull]W. Fulton and R. MacPhersantroduced the notion dBivari-
ant Theorywhich is a simultaneous generalization of a pair of covdrgad contravariant
functors. Most pairs of covariant and contravariant thesyre.g., such as homology theory,
K-theory, etc., extend to bivariant theories. A bivaridmdryB on a suitable categoy
(with a distinguished class of so-called “proper” or “coefiti maps) with values in the

category of abelian groups is an assignment to each morpkiisén Y in the category
an abelian group(X ER Y, which is equipped with the following three basic operasion
(Product operations): For morphisnfis X — Y andg : Y — Z, the product operation

o BX LY)oBY L 2) - BX L 2)
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is defined.
(Pushforward operations): For morphishs X — Yandg : Y — Z with f proper, the
pushforward operation

foBX L2y S BY L 2)

is defined.
(Pullback operations): For a fiber (or more generally a deedéndependent) square

/

x99 . x

f/l lf
Y —— Y,

g
the pullback operation
7 BXLy) B Ly
is defined. And these three operations are required to ya&sfen compatibility axioms
(seellEM, Part 1§2.2] for details). In particular, the class of “proper” mdyas to be stable
under composition and base change, and should contaireatitgmaps. LeB, B’ be two
bivariant theories on such a categ@ryThen aGrothendieck transformatiofiom B to B/
v:B—B
is a collection of homomorphisms
BX—-Y)->B((X—-Y)

for a morphismX — Y in the category, which preserves the above three basic opera-
tions:

i) y(aes B) =(a) s v(A),
(i) ~(fse) = fiv(a), and
(i) ~(g*a) = g*v(a).
B.(X) := B(X — pt) andB*(X) := B(X , X)) become a covariant functor for
proper maps and a contravariant functor, respectively. &A@aothendieck transformation

~ : B — B’ induces natural transformations : B, — B’ and~* : B* — B’" such that
~, commutes with the (bivariant) exterior product, i.e. thiéofeing diagram commutes:

X

B, (X)xB,(Y) —— B, (X xY)

'Y*X'Y*l J/'Y*

B.(X)xB.(Y) —— BL(X xY).
If we have a Grothendieck transformatign: B — B’, then via a bivariant clask
B(X EN Y') we get the commutative diagram

B.(Y) —=— BL(Y)

(9.1) | RS
B.(X) —— BL(X).

Vx

This is callecthe Verdier-type Riemann—Roch formula associated to trerriaint classh.

Bivariant Todd class transformation 7. The most important (and motivating) example
of such a Grothendieck transformation of bivariant thevisehebivariant Riemann-Roch
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transformationr from thebivariant algebraic K-theoryK.,, of perfect complexe® ra-
tional bivariant homologyHg

T Kalg — HQ
constructed in[[EM, Part II] in the complex quasi-projeetmontext. Herélly is the bi-
variant homology theory corresponding to usual cohomolagi rational coefficients
constructed in[FM§3.1] for more general cohomology theories. Then the astat@n-
travariant theorll (X) = H*(X; Q) is the usual cohomology, and the associated covari-
ant theoryHg. (X) = HPM(X; Q) is the Borel-Moore homology. Similarfit;;, ~ K°
is the Grothendieck group of algebraic vector bundles&ng. ~ G is the Grothendieck
group of algebraic coherent sheaves. Then the associatégeariant transformation*
is theChern character

e Kig( ) ~KO( )= H'( Q) ~Hy( ),
and the associated covariant transformation
o Kage( )= Go( )= HPM( Q) ~Hou( )

is just Baum—Fulton—MacPherson’s Todd class transfoonadi, constructed in[[BEML].
And the bivariant transformationunifies many different known Riemann-Roch type the-
orems. In particular for amoothmorphismf : X — Y of possible singular varieties one
has

1 = [Ox] € Kug(X L Y)
with 7(1L ;) = td*(Ty) e [f]. HereTY} is the vector bundle of tangent spaces of fibers of
f,and[f] € Ho(X ER Y') is thecanonical orientatiorof the smooth morphisnfi. Then

the Verdier-type Riemann—Roch formula{9.1) associatel;tbecomes the usudkerdier
Riemann-Roch theorefar the Todd class transformatiod,:

(9.2) td.(f*B) = td*(Tf) N f'td.(B) for B € Go(Y).

Heref' = [fle : HEM(Y;Q) ~ Hg.(Y) — Hg.(X) ~ HEM(X;Q) is thesmooth pull-
backin Borel-Moore homology. And for aalgebraic versiorof this bivariant Riemann-
Roch transformatiom compare with[[Full, Ex. 18.3.16].

Bivariant Stiefel-Whitney class transformation w. In the context of real geometry (e.g.
the piecewise linear, (semi-)algebraic or subanalytidexthone has the following inter-
esting example of a bivariant theory (with “proper” the usnaaning). Heré-ulton—-Mac-
Pherson’s bivariant groufi°42 (X ER Y') of Z,-valued constructible functioreonsists
of all the constructible functions ol which satisfy the local Euler condition with respect
to f. Here aZ,-valued constructible function € F™°%2(X) is said to satisfy théocal
Euler condition with respect tg, if for any pointaz € X and for any local embedding
(X, x) — (RY,0) the equality

a(z) = x (BN f71(2); @) mod?2
holds, whereB. is a sufficiently smalbpenball of the origin0 with radiuse andz is any
point close tof (x) (cf. [Brl], [S&]). In particular, ifll; := 1x belongs to the bivariant

grouplFmod2(x ER Y’), then the morphisnf : X — Y is called arEuler morphism For
f: X — {pt} a constant map this just means (by the “local conic strutnfreY), that
X isamod 2 Euler spacd.e. the linkdB. N X of any pointz € X has vanishing Euler
characteristic modulo 2:

X(aBe ﬂX) = Xc(aBe ﬂX)
=1-—x(B:NX)
=1-x(BNX;1x)=0 mod?2
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Also asmoothmorphism, or a locally trivial fibration with fiber a mod 2 Eulgpace, is
always an Euler morphism.

The three operations df™°42(X ER Y') are defined as follows:
(i) the product operation

°: Fm0d2(X L Y) ® Fmod2(y i) Z) N Fmon(X i Z)

is defined by e 3 := o - f*(3.
(i) the pushforward operatiof, : F™°42(X o, Z) — Fmod2(y L, 7) is the usual
pushforwardf., i.e.,

Fe(@)(y) = x(f ({y}); a) mod 2.

(iii) for a fiber square

X -9 ., x

f/l lf

/ }/7

the pullback operatiog* : F™m°??(X = Y) — Fmed2(X’ — Y') is the functional
pullbackg’™, i.e.,

g (@)(@") := a(g'(z)).
!

Note that forf proper and angpivariant constructible functiom € Fm°?2(X = V), the
Euler—Poincaré characterisb{c{f”(y); a) of « restricted to each fibef~!(y) is locally
constanonY mod 2 (by the local Euler condition fgf, («)).

The correspondencé (X — Y) := F™°42(X) assigning to a morphisni :
X — Y the abelian group™°42(X) of the source varietyX, whatever the morphistfiis,
becomes a bivariant theory with the same operations abdws bivariant theory is called
the simplebivariant theory of constructible functions (sée [Sch2dl §¥i6])). In passing,
what we then need to do for showing that the Fulton—-MacPhérgpoup ofZ.-valued
constructible functions satisfying the local Euler coiaditwith respect to a morphism is
a bivariant theory, is to show that the local Euler conditigth respect to a morphism is
preserved by each of these three operations.

For later use let us point out the abstract properties nefedelde definition of ssimple
bivariant theory{Sch2, Definition, p.25-26]:
(SB1)We have a contravariant funct@r: C — Rings with values in the category of rings
with unit.
(SB2) G is also covariantly functorial with respect to proper mags 4 functor to the
category of Abelian groups).
(SB3) G satisfies thewo-sided projection-formula.e. for f : X — Y proper andx €
G(Y)andg € G(X),

[(ffa)UB) =aU(fB),
i.e., f« is aleftG(Y)-module and
[BU(ffa)) = (/B Ua,

i.e., f« is arightG(Y)-module. (Note that we do not assuiit@, U) is (graded) commuta-
tive so that both versions of the usual projection formutarazeded.)
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(SB4) F has thebase-change property* f. = f.¢"* : G(X) — G(Y”) for any fiber (or
independent) square

/

x -9 ., x

f/l lf

g
!/ Y ,

with f, /' proper.

Then one gets a (simple) bivariant theai@ by sG(X ER Y) := G(X), with the
obvious push-down and pull-back transformations as alféinally the bivariant product

0 sG(X LV)xsGY L 2) - sG(X 2L 7)

is just given byve 3 := aU f*(3), with U the given product of the ring-structure. Note that
this construction does not only apply to constructible fionsG( ) = F™°42( ), but
also to the relative Grothendieck group of complex algebraiietiesG( ) = Ko(V/ ),
even if we allow all algebraic morphisms as “proper” morpiss

Let H™e2( X ER Y') be Fulton—MacPhersontsvariant homology theorwith Z, co-
efficients, constructed from the corresponding cohomotbgpry in [EM, §3.1] so that
H™ed2*(X) = H*(X;Zo) andH™%?(X) = HBM(X;Z,). Then Fulton—-MacPherson
[EM] Theorem 6A] showed in theiecewise linear contexthe following theorem, which is
a bivariant version of the singular Stiefel-Whitney classisformationy, : F™°%2( ) —
HBM (. 7Z,):

Theorem 9.3. There existis a unique Grothendieck transformation

W Fmon N Hmod2

satisfying the normalization condition that for a morphigom a smooth varietyX to a
point
w(ly) =w*(TX)N[X] € H™¥?(X) = HPM (X, Z,) .

Remark 9.4. As to the bivariant mod 2 constructible functions, in the teah of real
geometry, the definition and the theory of them can be giveminof the following cate-
gories: theP L-category, the (semi-)algebraic category and the subnabtegory. Note
that the above bivariant Stiefel-Whitney class transfdionds only proved and known in
the P L-category.

Bivariant Chern class transformation ~. Instead of mod 2 constructible functions, in
the complex analytic or algebraic context we certainly hsivalarly the bivariant group
F(X — Y) of Z-valued constructible functions satisfying the local Ewdendition with
values inZ (and not only inZ2) and the bivariant homology theol(X — Y') with
integer coefficients, and W. Fulton and R. MacPherson ctunjed or posed as a question
the existence of a so-callédvariant Chern class transformaticandJ.—P. BrasselefBrl]
solved it:

Theorem 9.5. (J.-P. Brasselet) For the category of embeddable complakyéio varieties
with celluar morphismghere exists a Grothendieck transformation

v:F—-H

such that for a morphisnf : X — {pt} from a nonsingular varietyX to a point{pt}
and the bivariant constructible functialh; := 1x the following normalization condition
holds:

y(1y) = (TX) N [X] € Ho(X) = HEM (X;2).
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Since then, theiniguenes®f the Brasselet bivariant Chern class and the problem of
whether “ cellularness” of morphisms (which is not so easghteck) can be dropped or not
have been unresolved. [n]3a] Sabbaltonstructed a bivariant Chern class transformation
“micro-local analytically” in some cases. In{Z1[, 73] Zhoushowed that the bivariant
Chern classes constructed by J.-P. Brasselel [Brl] andribg @onstructed by C. Sabbah
[SE] in some cases are identical in the case when the tanjetywis anonsingular curve
And in [Y5, Theorem (3.7)] we showed the following more geaiemiqueness theorem
of bivariant Chern classes for morphisms whose target tvesi@renonsingular of any
dimension

Theorem 9.6. If there exists a bivariant Chern class transformatipnF — H, then it is
unique when restricted to morphisms whose target variatiesonsingular; explicitly, for
a morphismf : X — Y with Y nonsingular and for any bivariant constructible function

aeF(X ER Y') the bivariant Chern class(«) is expressed by
(@) = f*s(TY) N ea(a)
wheres(TY) := ¢*(TY)~! is the Segre class of the tangent bundle.

The twisted clasg*s(TY) Nc. () is called theGinzburg—Chern classf « ([Gi1, [GiZ]
and [Y1[Y&]). Here, the above equality needs a bit of exianaThe left-hand-side(«)

belongs to the bivariant homology grotig X ER Y") and the right-hand-sidg*s(TY) N
c« () belongs to the homology group”™ (X), and this equality is up to the isomorphism
B Ly) T HX - pt) —2— HPM(X)

3

where the firstisomorphism is the bivariant product withftmedamental clasg’] and the
second isomorphism is the Alexander duality map. Since we usually idenfifyX —
pt) asHBM (X)) via this Alexander duality, we ignore this Alexander dugittomorphism,
unless we have to mention it. Hence we have

(@) o [Y] = f*s(TY) N e.(a).
We remark that this formula follows from tlemple but cruciabbservation that

vr(a) @ vy Lp(Ly) = yx—pt(a)
and the fact thafy _,,; is nothing but the Chern—-Schwartz—MacPherson class tianaf

tion c.. And in [BSY1] the above theorem is furthermore generalizettie case when the
target variety can be singular but is “like a manifold”.

Definition 9.7. (cf. [BM]) Let A be a Noetherian ring. A complex varieljy is called an
A-homology manifold (of dimensi@m) or is said to bed-smoothif for all x € X

A i=2n

Hi(X, X\ z;A) = _
( \ a3 4) {0 otherwise.

In this caseX has to be locally pure-dimensional, where we consideras a locally
constant function oX'. Just look at the regular part &f, because a pure-dimensional
complex manifold is a homology manifold of dimensimn Moreover the local orientation
systemorx with stalkorx , = Han (X, X \ z; A) ~ Ax is then already trivial (on each
connected component &f) so thatX becomes anriented A-homology manifold

Example 9.8. If A = Z, aZ-homology manifold is called simply homology manifold
(cf. [MiSt]). There are singular complex varieties whicle &romology manifolds. Such
examples are (products of) suitable singular hypersusfadth isolated singualrities (see
[MiZ]). If A = Q, aQ-manifold is called aational homology manifold As remarked
in [BM] §1.4 Rational homology manifolds], examples of rational lotwgy manifolds
include surfaces with Kleinian singularities, the modplase for curves of a given genus,
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and more generallpatake’sV -manifoldsor orbifolds In particular, the quotient of a
nonsingular variety by a finite group is a rational homolognifold.

Theorem 9.9. Let Y be a complex analytic variety which is amiented A-homology
manifoldfor some commutative Noetherian rirg If there exists a bivariant Chern class
transformationy : F ® A — H ® A, then for any morphisnf : X — Y the bivariant

Chern classyy : F(X ER YY) A - H(X ER Y) ® A is uniquely determined and it is
described by

yp(e) = e (V)™ nea)
Herec¢*(Y) is theunique cohomology classuch thate, (1y) = ¢*(Y) N [Y]. (Note that
c¢*(Y) isinvertible.)

WhenY is nonsingular, we see that the cohomolgy cl&g%”) is nothing but the total
Chern class*(TY) of the tangent bundl&Y, hence the inverse*(Y)~! is the total
Segre class(7Y). Therefore the twisted clags c*(Y)~! Ne.(a) shall also be called the
Ginzburg—Chern classf o and still denoted by,“*(a). Note that we also have in this
more general context the isomorphism

HX Ly)ed UL H(X - pt) oA —2— HEM(X) @4,
since for an oriented!-homology manifoldy” the fundamental clagy’] € H2M (X) @
A~ H(X — pt) ® Ais astrong orientatiorin the sense of bivariant theories (compare
[BSYT)).

Existence and uniqueness of bivariant characteristic clags. Note that the proof of
Theoren 8P also applies in the real (semi-)algebraic oasalytic context to a bivariant
Stiefel-Whitney class transformatign: 242 — H™°42 (with the obvious modification
of the notations fronz*, ¢, to w*, w,). In a similar manner, we can show the following
theorem, which is an extended version[of [Y5, Theorem (3.7)]

Theorem 9.10. The Grothendieck transformation from the bivariant alggbrK-theory
Kaig Of perfect complexes

7 : Kag — Hg
constructed inMEM], Part Il] is uniqgue on morphisms whose target varieties are rational

homology manifolds. Explicitly, for a bivariant element K (X ER Y) with Y being
a rational homology manifold

() = f*td*(Y) ' Ntd.(a e [Oy]).
Here [Oy] € K,+(Y) ~ Go(Y) is the class of the structure sheaf and the associated
covariant transformatiorr, : Kag«( ) =~ Go( ) — HBEM( ;Q) is Baum—Fulton—

MacPherson’s Todd class transformatiah constructed ifBEM1]. Moreovertd*(Y') €
H*(Y;Q) is the Poincaé dual of the Todd clasg..(Y) := td.([Oy]), which is invertible.

Conversely we ask ourselves whether the above GinzburgaCless becomes a Gro-
thendieck transformation for morphisms whose target tiageare oriented! - homology
manifolds.

Theorem 9.11. For a morphism of complex analytic varietigs: X — Y with Y an

oriented A-homology manifold, we defirig( X ER Y') to be the set of all constructible
functionsa € F(X) satisfying the following two conditiong)(and ¢) : for any fiber
square

/

x99 . x

f’l lf
G —

—>Y'7
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with Y’ an orientedA-homology manifold the following equalities hold:
(#) for any constructible functio’ € F(Y”):

,}/Gin(g*a ° ﬁl) _ ’YGin(g*Oé) ° ’}/Gin(ﬁl),
(®)

Gin( * Gin(OL)'

7R a) = gy
ThenF becomes a bivariant theory with the same operations a&iand furthermore the
transformation
,_yGin . F L H
is well-defined and becomes the unique Grothendieck tremstion satisfying that G

for morphisms to a point is the Chern—Schwartz—MacPhersassdransformatior.. :
F — H,.And alsoF (X — pt) = F(X).

The proof of the theorem is the same as[inl[Y9], in which theecabken the target
variety Y is nonsingular is treated. Note that to pr@eX — pt) = F(X) we need the
cross product formular multiplicativity of the Chern—Schwartz—MacPherson class trans-
formationc, due toKwiecihski[Kwl] (cf. [KY]), i.e. the commutativity of the following
diagram:

X

F(X)x F(Y) R F(X xY)

Cye X Cxe l lc*

HBM(X;7) x HPM(Y;7) —— HPM(X xY;Z).
The cross product formula for Stiefel-Whitney classes er#al algebraic contextan be
shown similarly by using “resolution of singularities”, tire corresponding product for-
mula for “characteristic cycles” of constructible funet®so that a variant of this theorem
also works in the real algebraic context.
And for amuch more general versioof Theorenf9.1I1, seE[Sdh2].

The above theorem led us to anothaiqueness theoremwhich in a sense gives a pos-
itive solution to the general uniqueness problem concgr@irothendieck transformations
posed in[[EM,§10 Open Problems].

Theorem 9.12. We define
Fx L y)
to be the set consisting of all € sF(X EN Y') satisfying the following condition: there

exists a bivariant clas®, € H(X ER Y’) such that for any base change: Y’ — Y
(without any requirement) of an independent square

/

x99 . x

f/l lf
g

— Y,
and for any3’ € F(Y”) the following equality holds:
ci(g*ae ') = g"Ba e ci(f).
ThenF is a bivariant theory. Furthermorg(X — pt) = F(X).

The above bivariant clas8,, should ideally be the unique bivariant Chern classof
However, so far we still do not know if it is the case or not. f@visionally we callB, a
pseudo-bivariant Chern class of
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Example 9.13(VRR for smooth morphisms)Let f : X — Y be asmoothmorphism of
possible singular varieties. Then we have

1;:=1x e F(X L V)
with ¢*(Ty) [ f] being a pseudo-bivariant Chern clasdlgf HereTY is the vector bundle

of tangent spaces of fibers ¢f and[f] € H(X ER Y') is thecanonical orientatiorof the
smooth morphisnf. Then as in Theore@ 3112 we have fére F(Y'):

cilg™ly o B) = cu(f ')
=" (Tp) N fheu(B)
=" (Ty) o [f]ecu(B)
=g"c"(Ty) o g"[f] @ cu(B)
=g"(c"(Ty) o [f]) @ ().

Heref" = [f'le : HEM(Y') ~ HL(Y') — H.(X') ~ HEM(X') is thesmooth pullback
in Borel-Moore homology, and the equality

(9.14) c(fB) = c*(Tp) N flen(B)

is the so-calle/erdier-Riemann-Roch theorgor the smooth morphisnfi’ and the Chern
class transformatioa. (comparel[EM[_ScH1.Y4]).

In order to remedy this unpleasant possible non-uniqueofetsee bivariant class3,,
above, we set

PH(X L v) .=
{B € H(X ER Y)|B is a pseudo-bivariant Chern class of some F(X EN Y) }

to be the set of all pseudo-bivariant Chern classes for thphigmf : X — Y. Itis clear
thatlPH is abivariant subtheorpf H, i.e, it is a subgroup stable under the three bivariant
operations.Then we define

0x Ly)=PHX LY) ~
where the relation- is defined by
B ~ B/ <:>g*B.C*(6/) :g*B/.C*(ﬂ/)

for all independent squares wigh: Y’ — Y and all3’ € F(Y”). Certainly the relation-

is an equivalence relation. In other words, with this idécation we want to make possibly
many pseudo-bivariant Chern classes into one unigue biva€hern class. Indeed we
have

Theorem 9.15. ﬁ(X ER Y') is an Abelian group andl is a bivariant theory with the
canonical operations induced from thoseHf Furthermore we have

H(X — pt) = Image(c, : F(X) — HEM(X)).
And we have the following theorem
Theorem 9.16. There exists a unique Grothendieck transformation
o F—H
whose associated covariant transformatiom.js F' — Im(c.), where

Tm(c,)(X) == Image(c* L F(X) — HfM(X)) .
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Remark 9.17. As mentioned above, a key for the above argument is the fatt.tfr) =
~v(a) e ci(1y). So, very sloppy speaking, the bivariant clags:) is a kind of “c.(«)
divided byc.(1y)”", whatever it is meant to be. In our previous paperl[Y5] wequbthe
problem of whether or not there is a reasonable bivariantdiogy theory so that such a
“quotient”

ce(@)

C*(]ly)

is well-defined. The above theoﬁlis in a sense a positive answer to this problem.

The above construction works for the following more gensttalation such that
(1) there exists a natural transformatian: F.(X) — H.(X) between two covariant
functorsF, and H, (covariant with respect to proper maps) such thatpt) and H. (pt)
are commutative rings with unit and such thaimaps the unit to the unit,
(2) there are two bivariant theori@sandH such that the associated covariant theories are
F(X —pt) = F.(X) and H(X — pt) = H.(X),
(3) . commutes with the bivariant exterior products, i.e., tHfeing diagram commutes

X

F.(X)x F.(Y) —— F.(X xY)

T*XT*l lm

X

Ho(X) x Ho(Y) —— H, (X xY).

Here we assume that fof =Y = {pt} a point this exterior product agrees with the given
ring structure.

Certainly this construction works for the previaustivic Chern class transformation
mC, : Ko(V/ ) — Go( ) ®Zy
and themotivic Hirzebruch class transformation
Ty, Ko(V/ ) —H.( )®Qly.
Indeed, the bivariant theory fdt,(V/ ) is the simple bivariant theory
SK()(X — Y) = KO(V/X) 5
the bivariant theory foG( ) ® Z[y] is the Fulton—MacPherson’s bivariant algebraic K-
theoryK,;, tensored wittZ[y], and the bivariant theory fa.( ) ® Q[y] is of course the

Fulton—MacPherson’s bivariant homology thedfytensored withQ[y]. It also applies in
the real algebraic context to tisiefel-Whitney class transformation

w*:FmOd2( )— H.( ;7Z2)

by using the simple bivariant theogfF™°%2 of Z,-valued real algebraically constructible
functions.

Remark 9.18. Let f : X — Y be asmoothmorphism of possible singular varieties. Then
also the example21L3 works in this context, with

I =1y =lids] € sKo(X LY) or 1;:=1xesFm?2(x Ly),

andc*(T) o [f] being a pseudo-bivariant classif for c£*(T') = A, (1), fd(y)(Tf) or
w*(T). Here the correspondingerdier-Riemann-Roch theordor the smooth morphism
1 follows for the motivic characteristic classeg”, andTy,. from [BSY2, Corollary 2.1
and Corollary 3.1]. For the Stiefel-Whitney class transfationw, it can be shown as
for Chern classes by using “resolution of singularities™characteristic cycles of con-
structible functions”.
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This Verdier-Riemann-Roch theorem for smooth morphisnadso very important for
the definition ofG-equivariant characteristic class transformatianghe equivariant alge-
braic context withG a reductive linear algebraic group. Here we refef to [EGI12FH8]
for the equivariant Todd class transformatiad<, and to [Oh] for theequivariant Chern
class transformatior<. In fact, in future work we will construct in this equivariaal-
gebraic context equivariant versionsC'¢ and Tyci of our motivic characteristic classes,
together with the equivariant version of Theorem 8.5, neted “,, with ¢ and T with
td<.

Bivariant L-classes. At the moment we have no bivariant version with values in hargt
homology of the L-class transformation

L.: Q(X) — H.(X,Q),

since we do not know a suitable bivariant theory, whose aatsutcovariant theory reduces
to the cobordism grouf( ) of selfdual constructible sheaf complexes. Note that is thi
case wecannotdefine asimple bivariant theorg(2. Of course the Grothendieck group of
constructible sheaf complexég.( ) satisfies the properties (SB1-4) with respect to the
induced proper push dowfy, pullback f* and tensor product so that one gets a simple
bivariant theorysK.. But the problem is thaf* and® do not commute with duality in
general so that this approach doesn’t appiffo ).

A similar problem appears in the context of real semialgiebtaand subanalytic geom-
etry for the groupFie?2( ) of Z,-valued constructible functions satisfying theod 2
local Euler condition(for a constant map), which also can be interpretated as aitgu
condition (compare [Sch3, p.135 and Remark 5.4.4, p.3@H)s group (or condition) is
also not stable under general pullback or product so thataneotdefine a simple bivari-
ant theorysF292 in this context (compareable ™42 in the real algebraic context).
Nevertheless one can defin&tefel-Whitney class transformation

wy  Fg®™( ) — HEPM( 5 Zy)

with the help of “characteristic cycles of constructiblen@tions” (compare[[EUMC]),
which ismultiplicative for exterior productand satisfies th¥erdier Riemann-Roch theo-
rem for smooth morphisms

Similarly one can define in the complex algebraic or analgictext arexterior prod-
uct and smooth pullbacfor the cobordism grouf( ) of selfdual constructible sheaf
complexes (compar&[BSY2]), and the L-class transformatipis alsomultiplicativeby
an argument similarly as in the recent paper[Wo, p.26, Fsitipa 5.16]. Also the cor-
responding Verdier Riemann-Roch theorem for smooth memsiseems reasonable, but
at the moment we have no proof or reference for this. Of coilnise/RR theorem holds
on the image of the transformatian: Ko(V/ ) — Q( ) from Theoreni815 (compare
[BSYZ)).

Then in both these cases, L-class and Stiefel-Whitney tfassformations, we can
apply the results ol [YI6] to get at least bivariant versiohshese theories for the corre-
spondingoperational bivariant theories

10. CHARACTERISTIC CLASSES OF PROALGEBRAIC VARIETIES

A pro-algebraic varietyis defined to be a projective system of complex algebraic va-
rieties and goroalgebraic varietyis defined to be the projective limit of a pro-algebraic
variety. Proalgebraic varieties are the main object$ iIroffr A pro-category was first
introduced by A. Grothendieck [Grotl] and it was used to tlgwe the Etale Homotopy
Theory [AM] and Shape Theory (e.g., s€e [Bol], [MhSe], etand so on. In [Grom 1]
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M. Gromov investigated theurjunctivity, i.e. being either surjective or non-injective, in
the category of proalgebraic varieties. The original ossieal surjunctivity theoremis the
so-calledAx’ Theoren{AX], saying that every regular selfmapping of a complexehlgic
variety is surjunctive; thus if it is injective then it haslie surjective.

A very simple example of a proalgebraic variety is the CaateproductX™ of count-
able infinitely many copies of a complex algebraic vari&tywhich is one of the main ob-
jects treated in([Grom]. Then, what would be tt@¢hern—Schwartz—MacPherson class”
of X ? In particular, what would be tH&uler—Poincaré characteristic’of XN ? This
simple question led us to a study of characteristic clas§gsaalgebraic varieties and
it naturally led us to the so-calledotivic measureésee [Y10[ YTIL]). The motivic mea-
sures/integrations have been actively studied by manylpéem., see [Cr][[DLA]/IDLP],
[Kanl, [Col, [Me2] etc.).

In a general set-up one can deal with the so-cdliédnctors The bifunctors which
we consider are bifunctotg : ¢ — A from a categon( to the categoryd of abelian
groups, i.e.,F is a pair(F., F*) of a covariant functorZ.and acontravariant functor
F* such thatF,(X) = F*(X) for any objectX. Unless some confusion occurs, we
just denoteF (X)) for F.(X) = F*(X). A typical example is the constructible function
functor F(X). Furthermore we assume that for a final objecte Obj(C), F(pt) is a
commutative ringR with a unit. The morphism from an objedf to a final objectpt
shall be denoted byx : X — pt. Then the covariance of the bifunctér induces the
homomorphismry, := F(nx) : F(X) — F(pt) = R, which shall be denoted by

xF:F(X)—=R
and called theF-characteristi¢ just mimicking the Euler—Poincaré characteristic (with

compact supporty : F(X) — Z in the case whett = F.

Let X = @AE/\{XA,WM X, — XA} be a proalgebraic variety. Then we define
Fid(X ) = lii)n{]:(X,\),ﬁM* cF(Xy) —» F(X)(A < u)}7
AeA

which may not belong tdhe categoryd. Another finer one can be defined as follows.
LetP = {pM} be aprojective systerof elements ofR by the directed sed, i.e., a set
such thapyy =1 (theunit) andpy, - pu = pav (A < p < v). For each\ € A the
subobjectF3 (X ) of x #-stable element® F (X)) is defined to be

fg(XA) = {a,\ € f'(X,\)| X}‘(ﬁ)\#*a,\) = Dxp ~X_7:(Oé)\> for anyu such that\ < /L}.
Theinductive limit

i { FE(X), m” s FROG) = FR(G) (<)}
A

considered for a proalgebraic variety,, = @AGA X is denoted by

]_—;}:.ind(XOO)-

Of course this definition is not intrinsic to the proalgebneaariety X .., but depends on the
given projective systen{XA, Tap  Xpy — XA}. But for simplicity we use this notation.

Our key observation, which is an application of standardsfan indcutive systems and
limits, is the following:
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Theorem 10.1. (i) For a proalgebraic varietyX ., = @AGA{XA’ Tap t Xy — XA} and
a projective systen? = {p,, } of elements oR, we have the homomorphism

yipd . Fetind(x Y @{pru R — R},

AEA
which is called theroalgebraicF-characteristic homomorphism
(i) AssumeA = N. For a proalgebraic varietyX,, = @neN{X"’”"m X — Xn}
and a projective syste® = {p..,} of elements oR, the proalgebraicF-characteristic
homomorphisnyi2d : F5t-ind(X ) — li_n>1n{><pnm ‘R — R} is realized as the homo-
morphism
xind : FRnd(X ) Rp

defined by

T ind XF\Qn
(1) = o
Po1 P12 " P23 P(n-1)n

Herepg; := 1 andR p is the ringR s of fractions ofR with respect to the multiplicatively
closed sefS consisting of all the finite products of powers of element8.in

(iii) In particular, in the case when the above projectivestgm P = {p°} consists of
powers of an elemempt we get the homomorphism

X s (X ) — R[%}

defined by
T _ Xxr(an)
de([an]) =
HereR[ﬂ is the localization by the multiplicatively closed $et= {p®|s € Ny}.

Note thatRs or R[ﬂ is the zero ring in the case whénc S for the corresponding
muliplicatively closed sef. A typical example for the above theorem is the following.

Example 10.2. Let X, = @neN{X"’W"m X — Xn} be a proalgebraic variety
such that for each the structure morphism,, ,,+1 : X,+1 — X, satisfies the condition
that the Euler—Poincaré characteristics of the fibers,gf 1 are non-zero (which implies
the surjectivity of the morphism,, 1) and constant; for example,, ,+1 : Xp+1 — X»

is a locally trivial fiber bundle with fiber variety beingj, andy(F,,) # 0 Let us denote
the constant Euler—Poincaré characteristic of the fibitteeomorphismr,, p4+1 @ Xpy1 —

X, by e, and we seky := 1. Then we get the canonical proalgebraic Euler—Poincaré
characteristic homomorphism

Xind . Find(Xoo) N @
described by

de ([an]) — ( 71) )

60 . el . 62 DY en71
In particular, if the Euler—Poincaré characteristigsare all the same, say, = e for any
n, then the canonical proalgebraic Euler—Poincaré cheriatit homomorphismyi»d :

Frd(X ) — Qis described by ™ ([a,]) = X(Oénl)’
en—

and furthermore the target rirfg

can be replaced by the rirﬂg[ﬂ .

Note that this example applies especially to the Cartesiadyzt X" of countable
infinitely many copies of a complex algebraic varietywith x(X) # 0. In fact this
example of Cartesian products is a special case of the fislppmore general example:
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Example 10.3. We make the following additional assumptions for our bifionc

(1) The contravariant functaF* takes values in the category cbmmutative rings
with unit The corresponding unit itF(X) is denoted byl x, and F(X) becomes an
R := F(pt)-algebra by the pullback farx : X — pt.

(2) F* and.F, are related for a morphisif: X — Y by theprojection formula

fula- f*8) = fula) - B foralla € F(X)andg € F(Y)

so thatf,. : F(X) — F(Y) is F(Y)- andR-linear. (This is just a special case of our
simple bivariant theories, where all morphisms are “prbop@d only the “trivial fiber
squares” are “independent”.)

Consider a proalgebraic variefy,, = @neN{Xn, Tom & X — Xn} such that for
eachn the structure morphism,, ,,11 : X,+1 — X, satisfies the condition

Tnnt1x(Ux,.,) =en - 1x, € F(X,) forsomee, € R, witheg := 1.
Then we get the canonical proalgebr&iecharacteristic homomorphisms
N s F(X) — F(X)p and yB: FrY(X L) — R
described by

ind T1n, () ind x(an)
XFox, ([om]) o e eaen X7 ([an)) €o- €1 €2 €1

HereRg (or F(X1)g) is the ring of fractions ofR with respect to the multiplicatively
closed set consisting of all the finite products of powershefeélements; (or their pull-
backs toX,).

Consider a bifunctor as in exam@le10.3, with: X — Y being a morphism such
f«(lx) = ey - 1y for someey € R. Then one gets any € F(Y'):
f*f*a: f*(]lX f*a) =€f- -«
so that for any morphism: Y — Z (e.g.g = 7y : Y — pt):
(go )(fra) = g (fuf )
= g«(ef - @)
= ef - gu(a).
Hence if we set in the context of the example

1 n=m
Pnm =
€n €ntlEm—1 n<m,

thenP := {p,,,} is a projective system ang;-"d(X ) = Fnd(X ) for both notions
of Euler characteristics working over the base sp&geor overpt. Thus the above de-
scription ofy'2% andy'p follows from TheoreniL TOI1.

A “motivic” version of the Euler—Poincaré characteristic F'(X) — Z is the homo-
morphisml'x : F(X) — Ky(V/X) “tautologically” defined by

FX(Z awﬂw) = Zaw[w C X] ,
w w

or better is the composie := 7x. o I'x : F(X) — Ky(V). Note thatl'x commutes
with pullback f* (but not with push dowrf,). Then we get the following theorem, which
is a generalization of the (nhaive) motivic measure:
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Theorem 10.4. (i) For a proalgebraic varietyX ., = @AGA{XA’”M X, — XA}

and a projective syster&@ = {'V/W} of Grothendieck classes, we get thmalgebraic
Grothendieck class homomorphism

Find . th.ind(Xoo) N h_H}l{X’Y)\# : KO(V) — KQ(V)}
AEA

(i) AssumeA = N. For a proalgebraic varietyX,, = @neN{X"’”nm D X —

Xn} and a projective syste = {v,,m } of Grothendieck classes, we have the following
canonical proalgebraic Grothendieck class homomorphism

rind : FEind(X ) — Ko(V)a
which is defined by

fi;a([an]) : C

B o1t Y12 - Y23 '/Y(nfl)n.
Here we setyp; := 1 and Ky(V)¢ is the ring of fractions of<;(V) with respect to the
multiplicatively closed set consisting of finite produdtpowers of elements 6f.
(iii) Let X, = @neN{Xn, Tnm @ Xm — Xn} be a proalgebraic variety such that each
structure morphisnr,, »+1 : Xn+1 — X, satisfies the condition:
T+ ([idx, 1 ]) = v - [idx,] € Ko(V/X,) forsomey, € Ko(V);

for exampler,, ,+1 : Xn4+1 — X, is a Zariski locally trivial fiber bundle with fiber
variety beingF,, (in which case one can takg, := [F},] € Ky(V)). Then the canonical
proalgebraic Grothendieck class homomorphisms

rigd: Frd(X o) — Ko(V/X1)e and ™ FY(X ) — Ko(V)g
are described by

i s (Dx, (@) i [(an)

rind ([,]) = —& (x, and T4 ([a,]) = .

% (o)) Yo Y1 V2 Vet (fon]) Yo Y1t V2 Yn—1
Here v, := 1 and Ko(V)¢ (or Ko(V/X1)c) is the ring of fractions ofKy (V) with
respect to the multiplicatively closed set consisting atdiproducts of powers of,,
(m=1,2,3---) (or their pullbacks taX;).

(iv) In particular, if -,, =  for all n, then the canonical proalgebraic Grothendieck class
homomorphisms
rigd: Frd(X ) — Ko(V/X1)e and T4 (X ) — Ko(V)e

are described by

ind 1,0 (Lx, (@) ['(a)
%7 (lan]) = e An—1
In this special case the quotient ringo (V) (or Ko(V/X1)¢) shall be simply denoted
by Ko (V). (or Ko(V/X1)~).

Example 10.5. The arc spac€(X) of an algebraic varietyX is defined to be the projec-
tive limit of the projective system consisting of the trutezharc varietie<,, (X) of jets
of ordern together with the canonical projectiong ,+1 : £n,+1(X) — £,(X). Note
that £o(X) = X so that this time we us&@ = Ny. Thus the arc space is a nontrivial
example of a proalgebraic variety. X is nonsingularand of complex dimensiod, then
the projectionr,, n41 : Ln41(X) — L,(X) is a Zariski locally trivial fiber bundle with
fiber beingC?. Thus in this case, in (iv) of Theordm1D.4 the Grothendidaksy is LY,
with L := [C].

and I'"([a,]) =
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An element ofFind(X ) = lim F (X)) is called andndconstructible functiorand
up to now we have not discussed the role of functions, evemgthd is called “function”.
In fact, the indconstructible function can be considered matural way as a function on
the proalgebraic vquety simply as follows: f[u%] € E‘“d(XOO) = lim _ F(X)) the
value of[a,] ata point(z,,) € X, = @AeA X, is defined by

) (@) = ax(ax)

which is well-defined. So, if we leF'un(X, Z) be the abelian group &-valued func-
tions onX ., then the homomorphism
U lim F(X)) — Fun(Xe,Z) definedby ¥ ([an]) ((z4)) :== ax(za)
AEA
shall be called the “functionization” homomorphism.
One can describe this in a fancier way as follows. tgt: X, — X, denote the
canonical projection. Consider the following commutatifagram (which follows from

A = Tap o (A < p)):

F(X))

K
T Fun(Xw,Z)
F(Xy)

Then the “functionization” homomorphissh : lim, F(X)) — Fun(X,Z) is the
unigue homomorphism such that the following diagram conastut

/\

Find(x Fun(Xoo, 7).

To avoid some possible confusion, the |mdg(e§ak ) = m}a, shall be denoted biyvy]
For a constructible sé¥/, € X, by the definition we have

Moo = 1100,

7~ 1(W,) is called gproconstructible or a cylinder semimicking [Cr]. And the charac-
teristic function supported on a proconstructible set Ikedaa procharacteristic function
and a finite linear combination of procharacteristic fumes is called groconstructible
function Let FP™(X,) denote the abelian group of all proconstructible functionshe

proalgebraic varietX ., = @AE/\{XA, Tap : Xp — XA}. Thus we have the following
Proposition 10.6. For a proalgebraic varietyX ., = gn {XA, Tap t Xy — XA}
FP(X..) = Image (¥ : F"Y(X ) — Fun(Xu,Z)) Uw
If the structure morphisms,,, : X, — X (A < p) are all surjectlve, then we have
Fd(X ) = FP(X,.).

In the case of the arc spag¥ X) of a nonsingular varietyX, since each structure
morphismm, n+1 : Ln+1(X) — L£,(X) is always surjective, we get the following
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Corollary 10.7. AssumeX is anonsingulavariety of dimensior. Then we have for the
arc spaceL(X) the canonical isomorphism
F(L(X)) = FPe(L(X)),
together with the following canonical Grothendieck classtomorphisms
e FP(L(X)) — Ko(V/X)Lay and T™: FP(L(X)) — Ko(V)La
described by

F(O‘n)
[L]d

T0,n* (Fﬁn (X) (an ))

T and 1 () =

Fixnd ([anlo) =

In particular, we get thal'g4 (1 2(x)) = [idx] andI'™? (1.(x)) = [X].

Sol'ind andTi»d define finitely additive measurese andy on the algebra of cylinder
sets in the arc spad¥ X ) of anonsingulawariety X, which are callechaive motivic mea-
sures So we can rewrit€’gd () andI''™d(a) for a € FP™(L£(X)) as motivic integrals

rind(q) = / adux and T'Md(q) = / adu.
L(X) L(X)

Therefore we see that our proalgebraic Grothendieck clas®horphisms of Theorem
[I02 are a generalization of these naive motivic measurese fér “naive” we point out
that for the applications of a good motivic integration theg.g., as described in the next
section) one needs to take values in a suitabl@pletionof Ko(V/X )4 or Ko(V) L

so that more general sets than just cylinder sets becomestiredale”. Also the use of the
“relative measureT 2 over the base spacé due to Looijengal[Lio] is more recent, and
will become important in the next section.

When we extend th€hern—Schwartz—MacPherson class transformafiacl] to a
category of proalgebraic varieties, we appeal toBhariant Theory To fit it in with the
notion ofbifunctorsused before, we assume for simplicity tladit morphisms in the un-
derlying category are “proper”, e.g. in the topological &t we work only withcompact
spaces. More generally, applyitdgvariant characteristic classes, namely Grothendieck
transformationgas in Theorerii9.16), given in the previous section, we caa general
theory ofcharacteristic classes of proalgebraic varieti@s follows:

For a morphismf : X — Y and a bivariant class € B(X ER Y'), the pair(f;b) is
called abivariant-class-equipped morphisand we just express;b) : X — Y. LetB be
a bivariant theory having units. If a systef, , } of bivariant classes satisfies that

by = 1X>\ and b#l’ [ b)\# = by, ()\ < p< V),

then we call the systemprojective system of bivariant classdafs{mu X, — XA} and
{bx.} are projective systems, then the systgfn,; bx,.) : X, — X} shall be callech
projective system of bivariant-class-equipped morphisms

For a bivariant theroyB having units on the categoxy and for a projective system
{(ﬂm bry) : Xy — XA} of bivariant-class-equipped morphisms, the inductivetlim

lim {B. (X)), bue £ Bu(X2) = Bu(X,) }
A

shall be denoted by
Bind (Xoo; {b/\,u})
emphasizing the projective systefn, } of bivariant classes, because the above inductive

limit surely depends on the choice of it. So we make the cawvafunctorB.. into a bi-
functor using the functorial “Gysin homomorphisntg),e : B.. (X)) — B.(X,) induced
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by the projective systerﬁbm}. For example, in the above Example-10.2 we have that
P (Xo) = F2 (X {1y, }).
Definition 10.8. Let {f\ : X\ — Y)}.ea be a pro-morphism of pro-algebraic varieties

{XA,MH X, — XA} and {Y,\,p,\u 1Y, — YA}. If the following commutative
diagram for\ <

Xu L) Yu

”“l lp)\u

Xy — Y,
a

is a fiber square, then we call the pro-morphi§fia : X, — Y)}aca afiber-square
pro-morphismabusing words.

With these definitions we have the following theorem:

Theorem 10.9. (i) Let~y : B — B’ be a Grothendieck transformation between two bivari-
ant theoriesB, B’ : C — A and let{(m,;bx,) : X, — X\ } be a projective system of
bivariant-class-equipped morphisms. Then we get theviatlig pro-version of the natural
transformationy,. : B, — B.:

in in ind
Vs d : B* d (Xoo; {b)\u}) - B; (Xoo; {V(b)\u)})
(i) Let { fi : Y — X} be a fiber-square pro-morphism between two projective Byste

{(papsdrn) : Yy — Ya} and {(mau;ban) @ X, — X} of bivariant-class-equipped
morphisms such that,,, = f{b,,. Then we have the following commutative diagram:

i i in
B (Vio; {dau}) ——— B'I(Yoes {v(dan)})

fml lfoo*

B2 (X oo; {ban}) T B/ind(Xoo;{V(bAu)})-

(iii) Let B.(pt) = B! (pt) be a commutative rin@ with a unit and we assume that the
homomorphismy : B.(pt) — B, (pt) is the identity. LetP = {p,,} be a projective
system of elements,,, € R. Then we get the commutative diagram

ind
Vi

Eit,)gnd (Xoo; {bM}) Bf}éind (Xoo§ {’Y(b)\u)})

ind ind

tim, _ {xpy, s R = R},

If we apply this theorem to the Brasselet’s bivariant Chdes< [Brl] or to the one
of [BSY1]], we get a proalgebraic versietf! of the Chern—Schwartz—MacPherson class
transformatiore, : ' — H,. But of course we also can apply it to the bivariant versions
of our motivic characteristic class transformatien€’, and7,..

As a very simple example, consider a proalgebraic varkety = @AGA{XA’ Tap °

X, — XA}, whose structure maps,,, are smooth (and therefore “Euler morphisms”)

and proper. Then we can apply the proalgebraic Chern—SthvidacPherson class trans-
formationcd to

P (X ) = F2(Xoi {1y, })-
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Note that in this case(1,,,) = c*(T;

T\

) ® [mx,] by theVerdier Riemann-Roch theorem

for a smooth morphispso thatH, ™ (XOO; {W(Ilw)}) is just the inductive limit of the
following system of “twisted” smooth pullbacks in homolagy

W!)Eu = C*(wau) mﬂl)\,u : H*(X/\;Z) - H*(X“;Z) ’

Suitable modifications of such “inductive limits of twistethooth pullback morphisms”
are closely related to the constructionegfuivariant characteristic classgsompare for
example with[[Oh§3.3, p.12-13]).

11. STRINGY AND ARC CHARACTERISTIC CLASSES OF SINGULAR SPACES

In this last section we explain another and more recent sidamf characteristic classes
to singular spaces. These ai@ functorial theories as before, but have a better “birationa
invariance”, in particular foK-equivalentmanifolds, i.e.M; (i = 1, 2) are irreducible (or
pure dimensional) complex algebraic manifolds dominatga Ibhird such manifoldV/,
with ; : M — M, proper birational{ = 1, 2) such that the pullbacks of their canoni-
cal bundles (or divisorsy Ky, ~ w3 K, are isomorphic (or linearly equivalent). For
exampleM; and M, are bothCalabi-Yau manifoldi the sense that their canonical bun-
dle is trivial. In fact the origin of these classes and in@ats goes back to two different
generalizations of Hirzebruchjg,-genus (which was related to our motivic characteristic
classesnC, andT,).

The first one is th&-polynomial or Hodge characteristie( X ) (u, v) € Z[u, v] defined
in terms of Deligne’snixed Hodge structurfbell,[De2] for the cohomology with compact
supportH} (X, Q) of a complex algebraic variety. We have tiatX)(1,1) = x(X) for
any varietyX and E(X)(—y,1) = x,(X) for X smooth and compact. In the 90
Batyrev[Batl] extended this E-polynomial tostringy E-functionE,;,. and stringy Euler
numbersy " of “log-terminal pairs”(X, D) relating them in some cases known as the
“McKay correspondence” to orbifold invariants of suitajleotient varieties. He also used
in [BatZ] methods from p-adic integration theory to provattHifferent “crepant resolu-
tions” of a given singular space, and alsimationally equivalent Calabi-Yau manifolds
have equal Betti numbers. Later dh KontsevichKon] invented “motivic integration”
(with some analogy to p-adic integration) for extendingstheesults from Betti numbers
to Hodge numbers.

The other generalization of thg,-genus is the (complexlliptic genusell,, studied by
I. Krichever [KricH] and G. HOhn[[HGHN]. As observed Bgtaro [T0] (and compare with
[BH), this is the most general genus on the complex cobordisg QY ® Q, which can be
invariant under a suitable notion of “flips”. Later on thisssextended biz. Borisov and A.
Libgober[BL1] and C.-L. Wang[Wand] for showing the invariance of this elliptic genus
elly, for K — equivalent complex algebraic manifolds, a notion coming from “minimal
model theory”. Both works use the very deep “weak factormatheorem” ([AKMWI]
and [W]) for the comparison of different resolution spac€&bey also introduced in this
way theelliptic homology clasg'l. (X ) of aQ-Gorenstein log-terminadingular complex
algebraic varietyX [BLZ] Wand]. HereQ-Gorensteirfor a normal irreducible (or pure di-
mensional) varietyX” just means that some multipte Kx (r € N) of the canonical Weil
divisor K x is already a Cartier divisor, with = 1 corresponding to &orenstein variety
(e.g. X is smooth). Herd( x is just the closure of a canonical divisor on the regular.part
In fact, Borisov-Libgober proved inBL2] for this elliptibomology class a very general
version of the “McKay correspondence”.

More recently simplestringy Chern classeg!” (X ) were introduced byluffi [Alud],
based on the “weak factorization theorem”, and indepemyéytde Fernex, Lupercio,
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Nevins and UribdELNU], based on “motivic integration” and MacPherson'sittorial
Chern class transformatien. In fact Aluffi pointed out that there are two possible notion
of such classes, depending on two different choices of &sysf “relative canonical di-
visors” K. for suitable resolution of singularities : M — X (i.e. 7 is proper and\/
smooth), which he calls the?-flavor” and ‘w-flavor”.

The “w-flavor” is related to “stringy invariants and charactaecisiiasses” (likeF;,., £l
andc:'). Here one assumes is irreducible andQ-Gorenstein so that the relative canoni-
cal divisorK,, := K — m* K x is at least &)- Cartier divisor (class). Moreover it is sup-
ported on the exceptional locusof the resolution, which is supposed to be (contained in)
a normal crossing divisor with smooth irreducible compdaéh. ThenkK, ~ >, a;- E;

for some fixeda; € Q (depending on the resolution). And for the definition of akse
“stringy invariants” one needs the condition> —1 for all 4, which exactly means that
has onlylog-terminal singularities If this condition holds for one such resolution, then it
is true for any resolutions of this type. A resolutiens calledcrepant if K, ~ 7*Kx,
e.g. alla; = 0 for £ a normal crossing divisor as before.

The “Q-flavor” is related to what we call “arc invariants and arc retderistic classes”,
because these generalize corresponding “arc invariaftSeaef and LoeselDLI] §6]
and [DLZ, §4.4.1], which they introduced already before by their work‘motivic inte-
gration”. In this caseX is only assumed to be purkdimensional and<; is defined for
all resolutionst such that the canonical mapQ4, — Q4, of Kahler differentials has an
imageZ ® Q4¢, with 7 a principal ideal in0,, (this can always be achieved by Hironaka
[Hi). Then K is defined byZ = Oy (—K ). The effective Cartier divisoK, is again
supported on the exceptional locsof the resolution, which can also be supposed to be
(contained in) a normal crossing divisor with smooth irreidle componentds;. Then
one can introduce the, € Ny as before.

For X already smooth, both notations of a relative canonicakdivk’,, agree with the
divisor of the Jacobian ot defined by the sectior of K;; ® 7* K% corresponding to
the canonical map*Q4 — Q4,. Note that in both cases the corresponding resolutions
m: M — X as above form a directed set, i.e. two of them can be domirstadhird one
of this type (and taking suitable limits over this directed sorresponds to the view point
of Aluffi [Alu4]). If =’ : M’ — M is a proper birational map with and= o 7’ as above,
then the relative canonical divisors have (in both casesfdHowing crucial transitivity

property:

(11.1) Krow ~ K + 7K .

Then all these new invarianf$ X ) for a singular spac& as above are defined as
I(X) = m(I(M) - J({E;,a:}) € Bu(X)

for such a special resolutian: M — X, with E a normal crossing divisor with smooth
irreducible component®;, whereI (M) € B. (M) is the corresponding invariant of the
smooth spacé@/, together with some “correction ternd({ £;, a;}) € B*(M) depending
on the exceptional divisat and the multiplicities:; defined by the relative canonical divi-
sor K. HereB, andB* are suitable covariant and contravariant theories takages in
the category of Abelian groups and commutative rings witit, nelated by the projection
formula as in Example_I0.3. Typical examples are

(1) B.(X) = B*(X) = A is a commutative ring with unit (with all pullbacks and
push downs the identity transformatiafiz) so that/ (M) € R corresponds to a
suitable generalized “Euler characteristic type invafian

(2) B. andB* correspond to a suitable (co)homology theory e (X),B*(X)) =
(HPM(X) @ A, H*(X) ® A) or (B, (X), B* (X)) = (Go(X) © A, K°(X) ® A)
so that/ (M) € B.(M) is a suitable characteristic classaf.
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(3) B(X) := B.(X) = B*(X) is a bifunctor as in ExampE_10.3, e.g. like con-
structible function®(X) = F(X) ® A or relative Grothendieck rings of varieties
Ky(V/X) ® A coming up from “motivic integrals”.

If I(X) € B.(X) is such an invariant not depending on the choice of the réealu, then
the same is true foy..(I(X)) € B'(X) for any natural transformation of covariant theories
v« : B, — B,. For example/ (X) € H.(X) ® A is a characteristic homology class with
X compact, andeg := v, : H.(X)® A — H,.({pt}) ® A = Aisjustits degree (or push
down to a point). Or we apply suitable “completions” of ourtivic characteristic class
transformationsnC.. andT). to invariantsl (X') coming from motivic integration!

For showing that the final resul{ X') does not depend on the choice of the resolution,
either “motivic integration with its transformation ruleglated to the “Jacobian factor”
J({E;,a;}) is used:

(112) / L=« diipr = W;/ Lf(ﬂ',*o‘JrKW’) dpipg

L(M) L(M')
for 7' : M’ — M a proper birational map of manifolds afid:= [C] € Ky(V). This
suggests to think of (X') as the push down of an “integral with respect to the invariant
I(M)":

I(X)=m. /M L5 d1(M) .

Or the "weak factorization theorem” is used, in which casly time invariance under suit-
able “blowing ups” has to be checked.

MoreoverJ({E;,a;}) = 1 in case alla; = 0, so that/(X) = =, (I(M)) in case of a
crepant resolution In particularr, (I(M)) doesnot depend on the choice of this crepant
resolution. Suppose two maybimgularspacesX; (i = 1, 2) are K-equivalentin the sense
that they are dominated by a manifadld, with 7; : M — X; a resolution of singularities
such that the relative canonical divisdis, are definedi= 1, 2) and equal. After taking
another resolution o/, we can even assume that the exceptional locus of both maps is
contained in a normal crossing divisér with smooth irreducible components, (here
we use the transitivity property of the relative canonideistbrs). But then the correction
factor J({ E;, a; }) for both maps is the same, so that

I(X1) = m(I(M) - J({Es,ai})) and I(Xz) = mo.(I(M) - J({Es, ai}))
i.e. both invariantd (X) andI(X5) are “dominated” by the same element coming from
M. In particular
(X)) = I(X5)
in case of “Euler characteristic type invariants”, and
deg(I(X1)) = deg(1(X2))

in case of “characteristic homology classes” for compaetcsepX;. If we are working
in the “w-flavor” of stringy homology classe§ X;) € HZM (X;) ® A for Q-Gorenstein
varietiesX;, we can use the first Chern clasgK x,) := c*(r- Kx,)/r € H?(X;; Q) (for
A aQ-algebra) to modifyl (X;) into

(X)) = f(e (Kx,)) - 1(X:) € HPM (X)) @A

By the projection formulaalso these new invarianf$(X;) andI’(X>) are “dominated”
by the same element coming froM, where f € AJ[z]] can be any power series. If
X; are both Gorenstein, we can do the same thing for correspgmaiariants/ (X;) €
Go(X) ® A by using polynomials in the (inverse) clas$ﬁ’§i1] € KY(X;) of the canon-
ical Cartier divisors (instead of their first Chern classes)
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Note that the approach by resolution of singularities ifedént from our approach to
functorial “motivic characteristic classes” based on ‘idiy” (i.e. decomposing a sin-
gular space into smooth pieces), but nevertheless thelyfiwgether as we now explain.

11.1. Elliptic classes. Let us start with the definition of tHgomplex) elliptic clas§ LL(E)
of a complex vector bundl& — X. Consider the formal power series

A(E) =) t"A"E and Sy(E):=)» t"S"E,
n>0 n>0

with A” E andS™ E the corresponding exterior and symmetric poweFofsoA"E = 0
forn > rank FE, with A, the total Lambda class coming up in our definition of the motiv
Chern class transformationC., in Corollary[83). Then one has

At(E@F) :At(E)At(F), St(E@F):St(E)St(F), and At(E)S,t(E): 1

So these operations extend to the Grothendieck group of lesnvector bundles (and
similarly in the algebraic context):

As, S (K(X), @) — (1+ K(X)[[t]], ®) < (K(X)[[t]], ®) -
Then we define theomplex elliptic class
ELL(E) = ELL(y,q)(E) € K(X)[[g]lly""]
of a complex vector bundl& — X aséLL(E) := Ay(E*) ® W(E), with
(11.3) W(E) =R (qun (E") ® Ay140(E) @ Syn (E*) @ Sy (E)) :
n>1

More generally thelliptic class of orderk

ELL(E) = ELLi(y,q)(E) € K(X)[[glly*'] withk € Z
of a complex vector bundl& — X is defined as the twisted class
(11.4) ELLK(E) = det(B)* % @ ELL(E),

with det(E) := A™"k P(E) being the determinant line bundle & SoELL(E) (or
ELLL(E)) is a one (or two) parameter deformation of the total Lambdasc\, (E*),
with
ELLy(E) = ELL(E) and ELL(E)|,—0 = Ay (E¥).
For M a complex projective algebraic manifold (or a compact alncosnplex mani-
fold) one can introduce as il they = T-characteristic

X(ELLk(E)) € Q[[k, qllly™"]
of ELL,(E) as

X(ELLy(B)) := /M ch*(ELLL(E)) - td* (T M) N [M]

= / e R BE) L h*(ELL(E)) - td* (TM) N [M] .
M

Note that in the last term one can introduces a formal parameteth*(ELLy(E)) and
ch*(ELL(E))) aremultiplicative(but not normalized) characteristic classes so that we get
the induced Krichever—Hohelliptic genus

elly : QU @ Q — Q[lk, q]][y™"] ,
with

(11.5) elly(M) = / e R e (TM) e (ELL(TM)) - td*(TM) N [M] .
M



46 JORG SCHIRMANN AND SHOJI YOKURA()

The correspondingomplex elliptic genusll := elly : QY ® Q — Q[[q]][y™'] given by
ello(M) = / ch*W(E)) - ch*(A,T*M) - td* (T M) N [M]
=: ;Z(M, W(E))
=y (M, Q) (Aygr (TM*) ® Ay 10 (TM) © Sy (TM*) © S, (TM)))

n>1
was formally interpretated by Witten as ti§é-equivarianty,-genusy, (S*, LM) of the
free loop spacé M = {f : S' — M|f smooth of M (comparel[HBU, Appendix Ill] and
[BH)).
Xy (M) := ell.(M)|4=0 € Qy][[¥]]
is called thewistedy,-genusof A :

(11.6) Xby(M) = /M eF e (TM) L ep* (A, (T* M) - td*(TM) N [M] .

Another specialization is theal elliptic genuseli|,—1, which factorizes over the oriented
cobordism ring

ellly=1: 229 ® Q — Qllq)].
This one parameter genus interpolates between the signgémus (for; — 0) and the
A-genus (forg — ), and was formally interpretated by Witten as thie-equivariant
signatures (S, LM) of the free loop spacé&M of the oriented manifold/ (compare
[HBJ, §6] and [BH]).

Remark 11.7. We should point out that there are many different normabzet of the
elliptic genus and classes in the literature. First of alhynauthors (like[[BLLI BL2[ Tb,
Wang]) use—y instead ofy so that their elliptic genus is related to the ,-genus. But
what is maybe more important, we do not work with “normalipbaracteristic classes”,
i.e. the power serieg(z) € Q[[k,¢]][y*'][[z] in the variablez = ¢! corresponding
to the multiplicative characteristic clasgd*(ELL;( )) has a constant coefficient:=
f(0) # 1, sincech*(ELL(E))|q=0 = ch*(A,(E*)) impliesa(k = 0,¢ = 0) = 1+
y € Q[y*!]. So twistingf(z) to a normalized power seriggz)/a (as used in[[BF, To,
Wand]) would change the elliptic genus onlydtd, (M) /a™ for M an (almost) complex
manifold of complex dimension, and similarly a characteristic homology clasg ) €
HEM( ) ® A would just be multiplied by:~*. For example in theorefn 8.5 we could
have started with the natural transformation (with respeproper maps):

Ty i=tds omC., : Ko(V/ ) — HZM( ) @Qly],
satisfying forM nonsingular the normalization
Ty (M % M) = ch*(A,T* M) - td* (T M) 0 [M].
And “twisting” by 1 + y would then give our motivic characteristic class transfation
Ty« with
(11.8) Ty:( )=01+ ?J)_i Ty,l( ) € HQBi)M( ) @ Qly, (1 + ?J)_l] .

But since we work in this section only with pure dimensior@aes, this “twisting” does
not matter for the question of getting invariants of pure elisional singular complex
algebraic varieties. Similarly it will be enough to considaly the complex elliptic genus
and classes correspondingite= 0 (as in [BL1[BLZ]), since the case of genekalollows
then from the projection formula (as already explained t#fo So the elliptic classes
Ell*(z,7) used in [BL1[BL2] correspond in our notation to

EI* (2, 7)(TM) := y~4m/2 g (T M) - ch*(ELL(TM))(~y,q) ,
with y = 2™# andq = €27,
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With these notations, we can now explain the definition ofjober and Borisov([BL2,
Definition 3.2] withG := {id}) for theirelliptic class&ll.((X, D)) of a “Kawamata log
terminal pair(X, D)", i.e. X is a normal irreducible complex algebraic variety, with
aQ-Weil divisor on X such thatK x + D is aQ-Cartier divisor satisfying the following
condition: There is a resolution of singularities M — X with the exceptional locug
and the support ok’ (D) := K — 7*(Kx + D) contained in a normal crossing divisor
with smooth irreducible components; (i € I) such thatk'(D) ~ 3. a; - E;, with all
a; € Q satisfying the inequality; > —1. Note that the last condition is then independent
of the choice of such a resolution (compére [KM, DefinitioB4£.Corollary 2.31]), with
the caseD = 0 corresponding to the caseX"is Q-Gorenstein with only log-terminal
singularities”. Moreover, the “relative canonical divisi (D) of D" also satisfies the
transitivity property

(119) Kﬂ—oﬂ/(D) ~ K.+ WI*KW(D)
for’ : M’ — M a proper birational map with andw o «’ as before. Then

(11.10) EL((X, D)) :==m. (e (TM)N M) N [ ] J(Ei,ai))

with
0(5% — (a; + 1)z, 7)0(—2,7)
0(5% — 2,7)0(—(a;i + 1)z, 7)

Hered(z, 7) is the Jacobi theta function in= €2 andq = *™", with ¢; = ¢! (E;) €
H?(M,7Z) the first Chern class of the smooth divigor.

J(E;,a;)(z,7T) = H*(M;Q)[[y,q]] -

The proof of the independence of the resolutiamses the “weak factorization theorem”
for reducing it to the comparison with a suitable blowing lgng a smooth center. Using
some modularity properties of tifefunction, this is finally reduced to the vanishing of a
suitable residue (of an elliptic function with exactly onelgy comparelIBLR, p.11] and
[Wang, §4]). If X is compact, then

(11.11) ell((X, D)) := deg(&ll.((X, D)))

is just thesingular eliptic genu®f the Kawamata log terminal pajtX, D) as defined in
[BLI] Definition 3.1] (up to a normalization factor).

Later on we only need the following limit formula (with= e27*):
(y — 1A —y*tle )
lim J(F;,a;)(z,7)= . .
A T BT = (e e
(y—y (I —e®)
(" T =D = ye )
Note that the multiplicative characteristic class

(11.12)

T;(E) = ch*(ELL(E))|q=0 - td*(E) = ch*(Ay(E™)) - td*(E)
exactly corresponds to the power serfés) = % in the variable: = ¢! (compare
with sectior{®). If we denote fof C I the closed embedding : E; := (., E; — M
of the submanifold” ; (with £y := M), then one has by the “adjunction formulg’.¥ =
[Lic; e N, wWithTE; =4%(TM -, ; O(E;)) (comparel[HBU, p.36]):

. Tk * 1_6 °
(T (TE) N [ES) = (Tyran o) o T 1 =
i€J
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So altogether we get the following “limit formula” (withh = e27%#):

. _ a1
(11.13) lim y@™2. e, (X, D) = 7 (Y i@y (B2) - [ L5—) .
e JcI I A

Recall that we use the notatioh (E;) = cI*(T E;)N[E,] for the characteristic homology
class of a manifold (corresponding to a characteristicsel&sof vector bundles).

11.2. Motivic integration. Motivic integration was invented by Kontsevich_[Kon] for
showing that birational equivalent Calabi-Yau manifoldsd equal Hodge numbers. In
all details with many different applications it was deveddipy Denef-Loeser (e.d._[DI1,
DL2I[DL3]), with some improvements by LooijendalLo], whoparticular introduced the
calculus of relative Grothendieck rind, (/X ) of algebraic varieties. For a nice intro-
duction to “stringy invariants of singular spaces” we recoemd [Vel[VePR]. Even though
motivic integration can be directly studied on singularcgs we restrict ourselves to the
simpler case of smooth spaces, which will be enough for oplicgions. Also in this way
it can easily be compared to results coming from the use ofwleak factorization the-
orem”. For a quick introduction to “motivic integration omsoth spaces” compare with
[Cr] (where by CorollanfI0]7 all arguments 6f JCr] extendthe framework of “relative
motivic measures).

Let M be a pured-dimensional complex algebraic manifold afd = Zle a; B;
be an effective normal crossing divisor (e.@; € Ny) on M, with smooth irreducible
componentdr;. Then one can introduce on the arc spa¢#/) = {v,|u € M} the order
function alongFE:

ord(E) := Z a; -ord(E;) : LIM) — NoU oo,

with ord(E;)(vy) := ordy fi o y.(t) the zero order of; o v, (t) € C[[t]], if f; is a local
defining equation of; near the point, € M. In particular

ord(D;)(yvw) =0 u¢ D; and ord(D;)(v.) =00 < v, C D;.

Then{ord(E) = n} C L(M) is for alln € Ny aproconstructible or cylinder sdh the
sense offld. Then one would like to introduce the following motivigegral:

(11.14) / Lo dpp = > iy ({ord(E) = p}) - L7

L(M) iyl
with values in the localized ringo(V /M)« as in Corollary"I0J7. Recall that we nor-
malized the (naive) motivic measutg, in such a way that we get far = 0:

/ 1 d,U/]\/I = [M] c KQ(V/M)[Ld] .
L(M)

But the problem with the definitio {111 4) is that this is reofinite series, and that
{ord(E) = oo} is not a cylinder set inC(M). Both problems are solved by taking a
suitable completion of{,(V /M)« More precisely forX a complex algebraic variety

Ietﬁ(V/X) be the completion aky(V/ X)[L 1] with respect to the following dimension
filtration (for k — —o0):

F.(Ko(V/X)[L™Y]) isgenerated by [X' — X|L™" with dim(X') —n < k.

Remark 11.15. Here we considek(V/X) as an algebra oveky(V) := Ko(V/{pt})
by the pullbackconst* for const : X — {pt} = Spec(C) the constant structure map.
If S C Ko(V) is a multiplicatively closed subset, then we can localize ¢cbmmutative
ring Ko(V/X) with respect to the induced multiplicatively closed subsetst*(S) C
Ky(V/X), or we can localizesy(V/X) as anK,(V)-module with respect t&. Both
localizations can be identified, sineenst* is injective (compose with any mapt} —
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X), and are denoted bi{((V/X)s. In caseS = {L"|n € Ny}, with L := [C] € K((V),
we also use the notatialig(V/ X )[L~!] above.

Also note that the filtration and completion as above are a@iible with push dowry,
and exterior product so that in particulaM(V/X) is aM(V) := M(V/{pt})-module,
with an inducedvi(V)-linear push dowry, : M(V/X) — M(V/Y)for f : X — Y an
algebraic morphism.

Let us come back to our motivic integr@l(111.14) on the mddift/. The composed
relative motivic measure
fing : FPO(L(M)) — M(V/M)
can now be extended from cylinder sets to a more general afdsseasureable subsets”
of the arc space& (M) in such a way thaf{ord(E) = oo} becomes measureable with
measurd), and the serie§{11114) above convergeslif)’/M). So now one can define

(11.16) / L= Fdfip = > jin({ord(E) =p}) L7 € M(V/M) .
L(M) pENg
Moreover it can easily be computed:

L-1
LB qn, = E E? — M]- | | T H
/g(M) ot ol ] Laitl —1

el
(11.17) etk © -
= >, E-M [ Gm— -
1C{1,...k} iel

Here we use the notation:
Er:=() E; (withBy:=M),and Ef:=E/\ |J B,
i€l i€{1,....k}\I

and the facto(L®*! — 1)~! = L=(@+1 . (1 - L~(e:+1))~1 has to be developed as the
corresponding geometric seriesh()). Moreover one gets the last equality [N {11.17)
by multiplying out the following products:

(b 1B — M)+ M\, — b)) =
(11.18)

=-1-

((bi —1)-[E; — M] + [idM]) e M(V/M),

=1

with b; == (L — 1)(L%“+! — 1)~ € M(V). Recall that multiplication iflVi(V/M) is
induced from taking the fiber product ovif.

The other piece of information that we need is ttasformation rule
(1119) / Lford(E) d/lM — ﬂ;/ Lford(ﬂ—’*E+Kﬂ,) dﬂ]\/[/
L(M) L(M")

for «’ : M’ — M a proper birational map of pure dimensional complex algebreani-
folds such that’* ¥ + K- is a normal crossing divisor with smooth irreducible compo-
nents.

Assume now that we have a proper birational mapM — X, with X pure dimen-
sional but maybe singular, together with a Cartier divisbon M such thatD and the
exceptional locus of are contained in (the support df). Finally we assume

K (D) ::KW—D:Zai-Ei,
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with all a; € Z satisfying the inequality; > —1 (i.e. a; € Ny). Here we use of course the
relative canonical divisof; in the “Q-flavor”. Then we define the followinmotivic arc
invariant

(X, D)) e M(V/X)
of the pair(X, D):

(11.20) £¥e((X, D)) = m, (/ Lford(Kw(D))dﬂlw) ,

L(M)
which more explicitly can be calculated as In.{11.17). Thigariant is “independent” of
the choice ofr in the following sense. Let’ : M’ — M be a proper birational map of
pure dimensional complex algebraic manifolds such #ab and the exceptional locus
of ron’ : M’ — X is contained in a normal crossing divisor with smooth irrgtle
components. Then

Kror (W/*D) = Kron' — a*D = WI*KW(D) + K
is also an effective Cartier divisor with
(C/’ll’!'(l((X, D)) — (c/’ll’!'c(()(7 ﬂ_l*D))

by the transformation rule. So this is an invariant of the pai, D), if we considerD as

a Cartier divisor (in the sense of AlufiiL[Alli4]) on the diredtset of all such resolutions
m: M — X. In particular€?™¢(X) := £97¢((X, 0)) is an invariant of the singular space
X. Infactin the language of [DIL1, sec.6] and [OL2, sec.4.43 just the “motivic volume
of the arc spac&(X)” of the singular space:

EVX) = / ldix .
L(X)
And this fits with our general description in the introduactiof this section, if we set

I(M) := [idy] € M(V/M), with J({E;,a;}) := / L) diny .
L(M)

For the corresponding “stringy invariant” in thev“flavor”, one has first to extend
these motivic integrals tQ-Cartier divisors supported on a normal crossing divisahwi
smooth irreducible componenfs;, i.e. we start with a strict normal crossing divisor
E = Zle a; E; on the smooth manifold/, with a; € Q such thatr - E is a Cartier
divisor for somer € N, i.e.r - a; € Z for all i. Add a formal variabld.'/" to ﬁ(V) (and
const*LY/™ to M(V/X)), with (L1/7)" = L. Then one can introduce and evaluate the
integral

(11.21) /ﬁ(M) LB iy = I% fins ({ord(rE) = p}) - (LY/7)77,

with value inﬁ(V/M)[Ll/’”], if a; > —1 for all 5. Moreover the corresponding formula
CILIT) withL*+! .= (LY/7)(@+1) "and transformation rul€{T1J19) are also true in this
more general context (compare with [Vel, Appendix] for moegails).

With these improvements, one can introduce for a “Kawanug&drminal paif X, D)”
the correspondinmotivic stringy invarian{for a suitabler € N):

£ ((X, D)) € M(V/X)[LY] .

Let D be aQ-Weil divisor on the normal and irreducible complex variétysuch that
K x + D is aQ-Cartier divisor (withr- (K x + D) a Cartier divisor) satisfying the following
condition: There is a resolution of singularities M — X with the exceptional locug
and the support ok’ (D) := Ky — 7*(Kx + D) contained in a normal crossing divisor
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with smooth irreducible components; (i € I) such thatk (D) ~ . a; - E;, with all
a; € Q satisfying the inequalityg; > —1. Then we set

(11.22) SSW((X,D)) =, (/ Lfon(Kn(D))dﬂM) ,
L(M)
which more explicitly can be calculated as[in{11.17). Oneeanthis is an invariant of the
pair (X, D), not depending on the resolutiarby the transformation rule! In the language
of [DLII IDLZ, [DL3] it is for D = 0 just the “motivic Gorenstein volume of the arc space
L(X)" of the singular spac&, i.e. the following “motivic integral” on the singular spac
X:
gstr((X)) _ / LL—ord(Kx) diix .
L(X)
Note that by our conventior&*" ((X, D)) = £°7¢((X, D)) in caseD a Cartier divisor
(with strict normal crossing) on a smooth manifd{d= M.

11.3. Stringy/arc E-function and Euler characteristic. By application of suitable trans-
formations, one can build from the motivic invaria&” ((X, D)) and £4°((X, D))
other invariants. For example by pushing down by a constat m

consts : ﬁ(V/X)[Ll/T] — M(V)[LI/T] ,
one can transform these “relative invariants aXerto "absolute invariants” (with- = 1
in the case of “arc invariants”). And then one can apply foaraple the “E-function
characteristic”
E: M(V)[LY"] = Z[u, v][[(u0) ] [(u0) /"],
which is defined with the help of Deligne’s mixed Hodge thediyen
Eu((X,D)) := E(&*""((X,D)))

becomes Batyrev'stringy E-functionof the Kawamata log terminal pa{X, D) (as in
[Batd]). Similarly

Eure(X) := E(£9(X))
is the “Hodge-arc invariant” ofX in the sense of( [DL1§6] and [DLZ, §4.4.1] (up to
a normalization factofuv)®™(X) coming from a different normalization of the motivic
measure).

HereE : Ko(V) — Z[u,v] is induced from
(11.23) X — B(X):= Z (=1)" - dime (gripgryy JHUX™, C)) uPr?

4,p,q20

with F' the decreasing Hodge filtration afid the increasing weight filtration of Deligne’s
canonical and functoriahixed Hodge structuren H (X", Q) [Del,[De2]. HereX
means the complex algebraic varietywith its classical (and not the Zariski) topology.
This E-polynomial satisfies the defining “additivity” reila of Ky ()’), because the corre-
sponding long exact cohomology sequence is strictly coiblgawith the filtrationsF' and
W (i.e. the sequence remains exact after applicatityr@tyrmq).

In particular, E(—1,—1)(X) = x(X) is the topological Euler characteristic &f.
Finally classical Hodge theory implies, fof smooth and compacthe “purity result”

grph H (X, C) = 0for p+ q # i, together with

WPU(X) =Y (1) (=1)PF - dime (grigr) HA(X",C))
>0

=dime (gr% HPT1(X ", C)) = dime HY(X Y, APT* X ")
=dimcHY(X,APT*X) .
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Remark 11.24. One can get the transformatidh: K,(V) — Z[u,v] also as an applica-
tion of Theoren813 (but in a less explicit way), since theaiant

dx = E(X)= > (=1)"*9 - dimcHI(X, A’T* X )uPv*
P,920
for X compact and smooth satisfies the corresponding propeitigs#nd (iii-2).
In particular,y, (X) = E(—y, 1)(X) for X smooth and compact bg{HRR), so that
this E-function is another generalization of thg-genus. But the classéX | for X smooth

and compact generafé,; (V) so that we get the following Hodge theoretic description for
any X (with T, our Hirzebruch class transformation of Theolenj 8.5):

(1125) T,.(X]) = 3 (~Didime (g H(X™",C)) (—y)? = B(~y, 1)(X).
i,p>0
Moreovery, (X) := E(—y,1)(X) is for X # () of dimensiond a polynomial of degre€,
with E(L) = E(C) = uv € Z[u,v] so that one gets an induced map
E: M(V)[LY"] = Z[u, v)[[(uwo) ][ (u)/"].

By (IIT) we get the following explicit description &%, ((X, D)), with7: M — X a
resolution of singularities such that. (D) ~ >, a, - E; is a strict normal crossing divisor
with a; > —1 for all i as before (and similarly foE,...((X))):

uv — 1

Eur (X, D)) = Z E(EY) - H (wo)st — 1
Ic{1,...,k} el
(11.26) 1
= > E<E1)'H<m_”'
Ic{1,...,k} el

Putting(u, v) = (—y, 1) gives a similar formulafor (or defines) the “stringy-characteris-
tic” x3'"((X, D)) (or the “arcy,-characteristic’x"*((X))), and also the limiu, v — 1
exists with

X((X, D)) = Tim By ((X; D))

u,v—

] 1
(11.27) = 2 X(Ef)'HaiH

Ic{1,...,k} icl

DI (RGN | ey

IC{1,....k} il

This x**"((X, D)) is just Batyrev'sstringy Euler numbeof the log-terminal paif X, D)

(as defined in[[Ball]). Similarly®"¢(X) is just thearc Euler characteristiof X in the
sense of[[DLIL§6] and [DLZ, §4.4.1]. Finally note thaf{IT.26) and the “limit formula”
(I1.13) for the elliptic clasgil((X, D)) of the pair(X, D) imply for X compact (with

Yy = 6271'12)):

(11.28)  lim y"" N2 ell(X, D)) = x*((X, D)) = Eur (X, D))(y. 1) -

11.4. Stringy and arc characteristic classes.Recall our motivic characteristic class trans-
formationsmC, form Corollary[83,7,,.. from Theoreni8l5 and,.. from RemarkLLI7.
HereT,;( )= (1+y)~" - T,.( )foralli, sothatboth classes carry the same informa-
tion. These classes all satisfi. ([C]) = —y, so that they induce similar transformations
onKo(V/X)[L71):

mC, : Ko(V/X)[L™Y — Go(X) @ Zy,y Y],
Tye, Ty : Ko(V/ X)L — HPM(X) @ Qly,y '] .
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And these extend by [BSY2, Corollary 2.1.1, Corollary 3]1olthe completions
mC) : M(V/X)[L'"] = Go(X) @ Z[y]lly " N(=9)"/"],
Ty, Ty MV/X)ILY'] — HPM(X) © Qlyllly " I(—9)"/"]-

yx L yk

(11.29)

So we can introduce fotl, = mC.,T,.,T,. the correspondingtringy characteristic
homology classi'"((X, D)) of the Kawamata log terminal paiX, D) by

(11.30) (X, D)) : = (7 ((X, D))) .
Moreover these transformatioais' commute with proper push down and exterior products
so that

dl (fela - const*B)) = (fu(cl())) - const™ 3
for f : X — Y proper, witha € ]\/4\(V/X) andg € ]\/4\(1/). By (IIIT) we get the follow-
ing explicit description ot ((X, D)), with = : M — X a resolution of singularities

such thatk'» (D) ~ ", a, - E; is a strict normal crossing divisor with > —1 for all i as
before:

str _ o (7y> -1
A ((X,D) = Y du(Bf - XD-]] [

I1c{1,....k} il

~ (B — x1). T &)=
= Z l*([EI X]) H (,y)aﬂrlfl ’

Ic{1,...,k} icl

(11.31)

But E; is a closed smooth submanifold 8f so thatel.([F; — X]) is just the proper
pushforward taX of the corresponding characteristic (homology) class

cl(Er) = c*(TEr)N[Ef] for cl. = mCy, Tyu, Ty -

Thestringy Hirzebruch classeg;'" ((X, D)) andT;f‘((X, D)) interpolate by[(TT13)
and [II3N) in the following sense between #ikptic class&il.((X, D)) of Borisov-
Libgober defined in[(I1.10):

(11.32) lim y@m/2 (X, D)) (z,7) = T, (X, D)) fory = e>™*

i
and for compacK thestringy E-functionE,,.((X, D)) of Batyrev as in[11.26):
X2y (X, D)) : = deg (T2, (X, D)))

= deg(T}.((X, D))) = Estr (X, D))(y, 1) -

So these stringy Hirzebruch classes are “in between” thigtielclass and the stringy
E-function, and as suitable limits they are “weaker” thansthenore general invariants.
But they have the following good properties of both of them:

e The stringy Hirzebruch classes come from a functorial “dell characteristic
homology class.

e The stringyE-function comes from the “additive2-polynomialdefined by Hodge
theory, which does not have a homology class version (coenpith [BSYZ,55]).

e The elliptic class is a homology class, which does not coromfan “additive”
characteristic class (of vector bundles), since the cpordingelliptic genusis
more general than thdirzebruchy,-genuswhich is the most general “additive”
genus of such a class.

Finally the stringy Hirzebruch class’l" (X, D)) specializes foy = —1 in the follow-
ing way to thestringy Chern class:'" ((X, D)) of (X, D) as introduced i [Alu4, FLNU]:

(11.33)

*

(11.34) yEHjl s (X, D)) =" ((X,D)) e HPY(X) 2 Q.
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In fact
Jim TEEGD) = Y (e - X)) ]
(11.35) et < , a;
= IC{;M T-1.([Er — X])- ()" ]1 P
So by Theoreri 817 (foy = —1) we get:
Jim D) e S mlie) [ )
(11.36) IC{1,0..k} 1 ie;i
= IC{;H (—1)!! g pa—— (e (Er)) -

And the right hand side is just!” ((X, D)) by [Alu4, §§3.4,5;5,6.5] and[FLNU, Corol-
lary 2.5,84]. In a similar way one gets fafl, = mC,,T,., T, the arc characteristic
classes

(11.37) (X, D)) : = cll (5‘“’"(()(, D))) ,
with
(11.38) Jim (X, D)) = 27 ((X, D)) € HPM(X) ©Q

the Chern clasg,, 1(—D) dcx of the pair(X, —D) as introduced and studied inJAlu4,
§63.3,5.5], with ‘L —°"4(K~(D)) corresponding td.(—D) for L — —y — 1”.

Of course it is also natural to look at the other specialaretyy — 0 andy — 1 of the
stringy and arc characteristic classé¥"/*"((X, D)) for cl, = mC.,T,.,T,.. But the
limit y — 1 doesn’t exist in general so that one castintroduce “stringy or arc L-classes
and signature” in this generality. But if we specializelif@l) forD = 0toy = 0, then
we get by “additivity”:

lim mC:'"(X) = 7. ([On]) = lim mC*¢(X)
y—0 y—0
and
lim T3 (X) = m(Td (TM) N [M]) = lim Tgr°(X) .
y—0 y—0

In particular the middle terms are independent of a resmiuti: M — X, whose excep-
tional locus is contained in a strictly normal crossing siori And by the “weak factoriza-
tion theorem” one can even conclude (compare [BSY2, Caxo82]):

Proposition 11.39.Letr : M — X be a resolution of singularities of the pure dimen-
sional complex algebraic varietY¥ . Then the classes

7. ([Om]) € Go(X) and 7 (Td*(TM)N[M]) € HEM(X)2Q
are independent aof.
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