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SOME RECENT RESULTS ON TOPOLOGICAL MANIFOLDS
REINHARD SCHULTZ, Purdue University

Although topological spaces exist in great variety and can exhibit strikingly
unusual properties, the main concern of topology has generally been the study of
spaces which are relatively well-behaved. One particularly interesting class of
examples is given by those spaces which locally look like Euclidean #-space R™.
Explicitly, a Hausdorff space X is called a topological z-manifold (without
boundary) if each point of X has an open neighborhood which is homeomorphic
to an open subset in R*. Since open sets in R™ and R” are homeomorphic if and
only if m =n, the integer # is a homeomorphism invariant of X and is called the
dimension of X. In this paper all manifolds under consideration are assumed to
be second countable.

Topological manifolds arise naturally in several different ways. For example,
they are useful in the qualitative study of differential equations inaugurated by
Poincaré (compare [1]). Topological manifolds are also a natural generalization
of the mathematical systems studied in non-Euclidean and Riemannian geom-
etry. Many interesting results on topological manifolds are generalizations of
older theorems originally proved for these and similar mathematical systems.

During the nineteen sixties important advances in the study of topological
manifolds yielded a great deal of information on their basic geometric structure.
In particular, two long standing conjectures regarding topological manifolds
were shown to be systematically false (see Section 4). One of the most useful re-
sults on topological manifolds of dimension 4, 5—their description in terms of
attaching handles—will be discussed in Section 5. This result allows one to take
certain theorems which had previously been proved under additional structural
assumptions and generalize them to topological manifolds with only minimal
changes in the proofs.

I wish to thank R. Kirby for his detailed comments on an earlier version of
this paper.

1. Classification of topological manifolds. Before beginning our discussion, it
will be useful to generalize the definition of topological #-manifolds to include
the possibility of a boundary. Let R’ be the set of points in R* whose last
coordinate is nonnegative. Then a topological #-manifold with boundary is a
Hausdorff space X each point of which has an open neighborhood homeomorphic
to an open subset of R” or RY.

Of course, the set of all points having neighborhoods homeomorphic to open
subsets of R7is a topological #-manifold without boundary as previously defined.
It is easy to see that the set of such points is open and dense in M ; this subset is
called the interior of M and written Int M. The complement of Int M is called
the boundary of M and written dM; it follows that .M is a topological (n—1)-

Reinhard Schultz received his Chicago Ph.D. in 1968, under Richard K. Lashof. His main
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942 REINHARD SCHULTZ [November

manifold without boundary. The following theorem of M. Brown [9] is ex-
tremely important in the study of manifolds with boundary:

TraeorEM 1.1. (Collar Neighborhood Theorem) Let M be a manifold with
boundary. Then there is an open neighborhood V of d M which is homeomorphic to
M X [0, 1) such that s MV corresponds tod M X {0}.

One of the most immediate problems regarding topological manifolds is their
classification up to homeomorphism. The techniques of point set topology
suffice for the classification of one-dimensional manifolds; this was completed
during the second decade of the twentieth century (see [37] or [41]). There are
only four different homeomorphism types of connected one-dimensional mani-
folds: The open interval, the half-open interval, the closed interval, and the
circle.

The study of two-dimensional manifolds is somewhat more difficult and re-
quires a systematic investigation of polyhedra in the Euclidean plane (e.g., see
[29], [30], or [41]). One of the earliest results was the Jordan Curve Theorem,
first proved correctly by Veblen in 1905 [59]. This theorem was augmented by a
result of Schoenflies [48], and we may combine the two theorems into the follow-
ing single statement:

TrEOREM 1.2. (Jordan-Schoenflies Theorem). Let X be a subset of R2 which is
homeomorphic to a circle. Then R2—X has two components, one bounded and one
unbounded, and X 1is the point set-theoretic frontier of each component. The homeo-
morphism from the unit circle to X extends to a homeomorphism from the unit disk
to the closure of the bounded component of R*—X.

This theorem is the basic result needed for the following theorem of Radé
[45]:

TraEOREM 1.3. Any (unbounded) topological two-dimensional manifold M may
be triangulated; i.e., there is a countable locally finite covering {T.-} of M by com-
pact subspaces satisfying:

(1) There are canonical homeomorphisms h; from T'; o the solid triangle

{9 ER|220,yz0,and s+ y = 1.

(1) Under these homeomorphisms any nonempty intersection T \T; corre-
sponds to either a common side or a common vertex.

The classification of two-dimensional manifolds up to homeomorphism then
follows from a study of triangulated manifolds (e.g., see [18], [30], [46]). Re-
sults of Moise imply that the classification of three-dimensional manifolds
reduces to a study of triangulated three-dimensional manifolds (e.g., [35], [36]),
and a classification scheme in the compact case exists modulo Conjecture 1.4
below.

If X is any arcwise connected space, then X is said to be simply connected
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if any continuous map from the unit circle in R? to X (i.e., a closed curve in X)
extends to a continuous map of the unit disk. Given this definition, we may state
the following conjecture made by Poincaré in 1904 [44]:

ConNJeECTURE 1.4 (Poincaré Conjecture). Let M be a compact topological 3-
manifold without boundary that is simply connected. Then M is homeomorphic to
the unit sphere in R* (i.e., the 3 dimensional sphere).

Relatively little is known about four-dimensional manifolds; the direct ap-
proach used in lower dimensions becomes increasingly complicated as the dimen-
sion increases, and in four dimensions the problems involved becomes forbid-
dingly difficult. There is a marked change, however, when one considers manifolds
of dimension at least five. In this case one has enough space in which to make
geometric constructions involving circles and disks almost at will. A particular
consequence of this freedom of construction is that no general classification
scheme for compact topological manifolds exists in any dimension =5 (compare
[5, pp. 375-376]); for the freedom in constructing higher dimensional manifolds
implies that any classification scheme would yield a solution to the word problem
for finitely presented groups (see [47, Ch. XII] for a discussion of the latter
problem).

2. Generalized Schoenflies and Poincaré Conjectures. The Jordan curve
theorem was soon generalized to higher dimensions by Brouwer ([7]; also see
[14, §18] or [54]). However, Antoine [4] and Alexander [3] constructed ex-
amples of subspaces X in R? that are homeomorphic to the unit sphere in R? but
are not the frontiers of subspaces homeomorphic to the unit disk; counterex-
amples similar to Alexander’s exist in all higher dimensions. On the other hand,
Alexander also proved that X bounds a disk if it is a polyhedron in R® [2].
Around 1960 B. Mazur [31], M. Morse [38], and M. Brown [8] proved results
implying the following generalization of the Jordan-Schoenflies theorem:

THEOREM 2.1. (Generalized Schoenflies Theorem). Let X be ¢ subset of R*
that is homeomorphic to the unit sphere, and assume that the closure of the bounded
component of R*—X is a topological n-manifold with boundary. Then the homeo-
morphism from the sphere to X extends to a homeomorphism from the disk to the
closure of the bounded component of R*—X.

About the same time that the Generalized Schoenflies Theorem was proved,
Smale [53], Stallings [55], and Zeeman [64] proved a generalization of the
Poincaré Conjecture (1.4 above) in all dimensions greater than four; however,
their proofs required additional structure on the manifolds under consideration
(i.e., they had to be differential or combinatorial manifolds as defined in Section
3). Several years later Newman gave a proof of this result for topological mani-
folds using his generalization of Stallings’ techniques and arguments of E. H.
Connell [42]. For completeness, we state the result below:

THEOREM 2.2. (Generalized Poincaré Conjecture). Let M be a compact topo-
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logical n-manifold (n = 5) without boundary that is 3 (n—1)-connected if n is odd and
tn-connected if n is even. Then M is homeomorphic to the unit sphere in R+,

REMARKS 1. A topological space X is said to be k-connected if any con-
tinuous map from the unit sphere in R¥~*! (for any m = 0) extends to a map of
the unit disk.

2. We already noted that the three-dimensional case of Theorem 2.2 is un-
known; the four-dimensional case is also unknown.

The proof breaks down in dimensions 3 and 4 because in these cases there is
not enough room in the manifold to make all the constructions needed in the
proof (compare the last paragraph of Section 1).

Smale’s proof of the generalized Poincaré Conjecture (most of whose details
are independently due to A. H. Wallace [62]) was a central technique in the
theory of surgery on manifolds developed by Kervaire, Milnor, S. P. Novikov,
W. Browder, and C. T. C. Wall (for a definitive account see Wall’s book [61]).
Wall's theory in turn was important in studying the following elaboration of the
Generalized Schoenflies Conjecture:

CoNJECTURE 2.3. (Annulus Conjecture). Let A C R be a compact topo-
logical (n+1)-manifold whose boundary is homeomorphic to a disjoint union of two
copies of the unit sphere in R**'. Then A is homeomorphic to the closed annulus
in R+ bounded by the spheres of radius 1 and 2.

If this conjecture were false for =1 or 2, then an argument of Brown and
Gluck [10, p. 42] would imply that the compact unbounded topological manifold
A’ formed from 4 by gluing together the two components of the boundary of 4
could not be triangulated. Hence the conjecture is certainly true in these dimen-
sions by reductio ad absurdum (more elementary arguments are also possible). In
[19] Kirby gave an elegant argument which reduced the proof of the annulus
conjecture for =4 to a problem which could be handled by means of Wall’s
surgery theory. This surgery theoretical problem was solved independently by
Wall [60] and W.-C. Hsiang and Shaneson ([15], [16]); thus Conjecture 2.3 is
true except possibly in the case # = 3.

3. Differentiable and Combinatorial Manifolds. In this section we shall
describe the kinds of “additional structure” often associated to topological mani-
folds and mentioned in the previous sections.

The topological manifolds appearing in analysis and differential geometry
usually satisfy the conditions appearing in the following definition:

DEFINITION. A topological #-manifold is smoothable if there is a collection of
pairs { (Ua, be) }aEA satisfying:

(i) U, is an open subset in R*.

(ii) The map &: U,— M is a homeomorphism onto an open subset.

(iii) The functions kg ha:h; hs(Us)—hz ' he(Us) are functions of class Cr for
some 72 1.
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If U and W are open subsets of Euclidean spaces, recall that a map f: U-W
is a function of class (" if the coordinate functions f* defined by f(w)
=(fY(w), - - -, f~(w)) each have all possible partial derivatives of order r and
these functions are continuous; a function is C* if it is C* for every positive
integer 7. Two collections {(Ua, ha)} and {(Vp, kg)} satisfying (i)—(iii) are
equivalent if their union satisfies property (iii); it follows that every collection
{(Ua, h,,)} is equivalent to a unique maximal collection @ which is called a
smooth atlas for M of class (. A differential (or smooth) #-manifold is a
pair (M, @) consisting of a smoothable #-manifold M and a smooth atlas Q.
We shall always assume that the atlas is smooth of class C*®, since it is known
that any C" atlas corresponds to a unique C* atlas [40, Sections 4 and 5].

More generally, if I' is any reasonable family of continuous functions from
open sets in R to open sets in R* (technically a pseudogroup; see [22]), then
it is possible to define a I' atlas and a I' #-manifold. In topological investiga-
tions I' is usually taken to be the Cr functions defined above or the piecewise
linear (PL) functions defined below. Thus in order to define a piecewise linear
n-manifold, it is only necessary to specify which mappings on open subsets of
Euclidean space are piecewise linear; this requires a succession of definitions.

DEFINITION. Let %o, * * +, %, be points in R™ such that x;—x,,  * +, Xn —%0
are linearly independent. Then the #-dimensional simplex (or #-simplex) with
vertices xo, - - +, %5 is the set of all linear combinations y = Z tix;, where each

t;is nonnegative and 2 #;=1 (the last condition and linear independence imply
that the #; are unique). The x; are called the vertices of the simplex.

X3

FiGc. 1

A simplex is actually a generalized version of a triangle. It is immediate from
the definition that a 1-simplex is a line segment and a 2-simplex is a solid tri-
angle. Furthermore, a 3-simplex is a tetrahedron (see Figure 1).

DEFINITION. Let 4 be a simplex with vertices a;(1 £:=#), and let V be any
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real vector space. A function f:A—V is affine linear provided y&4 and y
=Y ta; with Y t;=1 imply f(y) = >, t:f(as).

DEerFINITION. Let U and V be any subsets of R® A continuous function
f:U—7V is piecewise linear (or PL) if there is a countable locally finite covering
® of U by simplexes such that f is an affine linear map on each element of ®.

REMARK. Any open subset of R} has many countable locally finite coverings
by simplexes.

ExampLEs 1. Let f:R*—R" be an affine transformation; i.e., f(x) =Lx-+7,
where L is a linear transformation. Then f is automatically affine linear on every
simplex in R* (compare [6, p. 272]).

2. Let f: R2—R? be given by f(x, ¥) = (x, ») if y=0and (x, 2y) if y £0. Then
fis affine linear on any simplex contained in either the upper or lower half plane.

3. Let f be the map which sends the solid regular pentagon ABCDE to
the solid irregular pentagon A’B’C'D’E’ in Figure 2 by stretching the tri-
angle OXY into O'X'Y".

f
D T
E E c
A B
F16. 2

A fundamental theorem of Cairns and Whitehead states that any smooth
manifold determines a basically unique PL manifold ([11], [63], [40, Pt. II]).
However, a PL manifold need not be determined by a smooth manifold ( a result
of Thom [58]), and two distinct smooth manifolds may determine the same
PL manifold (a result of Milnor [32]). A comprehensive study of the relation-
ship between smooth and PL manifolds appears in [25].

In the following section we shall discuss the parallel problem regarding the
existence and uniqueness of PL manifolds associated to a given topological
manifold.
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REMARK. For historical reasons the study of PL manifolds and related ob-
jects is frequently called combinatorial topology and PL manifolds are often
called combinatorial manifolds.

4. The Triangulation Conjecture and the Hauptvermutung. The following
conjectures were formulated (in roughly equivalent form) soon after the es-
tablishment of combinatorial topology as a subject in its own right.

TRIANGULATION CONJECTURE. Any topological n-manifold has a PL atlas.

HAUPTVERMUTUNG FOR MANIFOLDS. Any two homeomorphic PL n-manifolds
are equivalent as PL manifolds.

The results quoted in Section 1 imply that the first conjecture is true if
n=3. Similarly, the second conjecture is true if #<3 (n=1, straightforward;
n=2, see Papakyriakopoulos [43]; n=3, see Moise [35], [36]). The solution
of the generalized Poincaré conjecture in higher dimensions implies that the
second conjecture is true for PL manifolds homeomorphic to spheres of di-
mension at least five. A fairly strong version of the Hauptvermutung for simply
connected manifolds was proved by Lashof and Rothenberg [26], and Sullivan
([56], [57]); in the next paragraph we shall discuss subsequent results which
eliminated the simple connectivity assumption (see Theorem 4.2).

Kirby's reduction of the Annulus Conjecture, other results appearing in
[19], and consequences of these results due to Lees [28] led directly to initial
results on the Triangulation Conjecture due to Lashof [23]. These theorems
and computations of Casson, Wall, Hsiang, and Shaneson ([15], [16], [60]) in
turn led to the following strong results on the Triangulation Conjecture and the
Hauptvermutung due to Lashof and Rothenberg ([27], [24]), and Kirby and
Siebenmann [20]:

THEOREM 4.1. Let M be a topological manifold of dimension at least six (or
five in the unbounded case), and assume that the four-dimensional cohomology
group H*(M; Z,) is zero. Then M has a PL atlas.

THEOREM 4.2. Let M be a PL manifold satisfying the above dimensional re-
striction, and assume that the three-dimensional cohomology group H*(M; Z,) is
zero. Then any PL manifold homeomorphic to M is equivalent to M as a PL mani-
fold.

REMARK. For the sake of completeness we shall describe the cohomology
groups H*(M; Z,) in a geometric manner exploited by Sullivan in his proof of
the earlier version of Theorem 4.2; for a more standard description of H*(M; Z;)
see [14, §23] or any algebraic topology text. If X is any topological space, a
smooth k-manifold in X is a continuous function f: V—X, where V is a compact
smooth k-dimensional manifold. An element in H*(X; Z,) is then a function
which assigns to each k-manifold in X an element of Z, subject to certain con-
sistency conditions which are straightforward but a little too technical to de-
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scribe here (see [12, §8] or [56] for further discussion; the description does not
generalize to odd primes).

The restrictions on cohomology appearing in the above theorems were also
shown to be unnecessary if H*(Top/PL; Z;) =0, where Top/PL is a topological
space arising from the geometry of the proof of 4.1 and 4.2. However, Sieben-
mann (first alone and later jointly with Kirby) constructed examples which
implied that H*(Top/PL; Z,) is nonzero; it followed quickly that both the
Triangulation Conjecture and the Hauptvermutung were systematically false
in every dimension greater than four.

There are very simple manifolds which yield contradictions to the Haupi-
vermutung. For example, consider the cartesian product S*X7? of the unit
sphere in R* with the two-dimensional torus 72. This product is a smooth mani-
fold and consequently determines a unique PL manifold; results of Shaneson
combined with H3(Top/PL; Z,)#0 imply the existence of a PL 5-manifold
M® which is homeomorphic to S*X T2 but inequivalent to S*X7? as a PL
manifold ([49], [50]).

5. Handlebody theory for topological manifolds. In one sense the Kirby-
Siebenmann results are disappointing because they disprove two conjectures
which would have reduced the study of topological manifolds to combinatorial
topology. On the other hand, the results used in the proof of 4.1 and 4.2 yield
a convenient method for decomposing topological manifolds of dimension at
least six, which will be discussed in this section.

Throughout this section S? will denote the unit sphere in R?*! and Dr+! will
denote the unit disk in Re*!. It follows from the definitions that D?+! is a
topological (p+1)-manifold with boundary, and its boundary is .S».

DEeFINITION. Let V be a topological #-manifold with boundary, and let
fiS¥1XD*—=0V be a one-to-one continuous mapping. Then the manifold W
obtained by attaching a k-handle to V along f is the disjoint union of V and
DX D»* modulo the identification of f(S*'1XD»*)CV, with Sk1XD*
C D*X D" * (see Figure 3 for an illustration).

Dkan—k
- - — oV
N A
k=1 I F(S¥1X D% —
n=2 12

F1G. 3
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This construction dates back to the beginnings of the study of manifolds.
For example, the classification theorem for compact orientable 2-manifolds
may be written as follows (compare [30]):

THEOREM 5.1. Let M be a compact orientable 2-manifold. Then M =93Q, where
Q is formed by attaching 1-handles to D3

The work of Marston Morse on critical point theory implies that any smooth
manifold M may be constructed by successively attaching handles (e.g., see
[33], [34], [39]); in terms of the definition below, M has a kandle decomposition.
Standard results of combinatorial topology imply a similar result for PL mani-
folds [17, p. 226].

In the definition below, X\UdX X [0, 1] will be interpreted to mean the
disjoint union modulo the identification of yE9X with (y, 0)EIX X {0}. We
shall assume the manifold M discussed below is either unbounded or compact
in order to simplify the definition.

DEFINITION. Let M be a topological manifold. A handle decomposition of M
is a (finite or denumerable) sequence of compact subspaces {M;};es (J a well-
ordered subset of the integers) satisfying:

(i) M=\Yje; M;and each M;is a compact manifold with boundary.

(ii) For all j&J we have M;CInt M;.; in fact, M;4, is formed by attaching
a k-handle to MAJIM;X [0, 1] (provided 7 is not maximal in J).

The following result of Kirby and Siebenmann is a straightforward con-
sequence of the arguments used to prove 4.1 and 4.2 [21]:

THEOREM 5.2. Any topological manifold of dimension greater than five has a
handle decomposition.

This is one case of a general principle implicit in [21]; namely, results which
work for smooth and PL manifolds in dimensions greater than five also work
for topological manifolds in dimensions greater than five. Some particular ex-
amples are the theorems of Siebenmann [51] and Farrell [13] and the surgery
theory presented in [61].

Since any topological manifold of dimension <3 has a PL atlas, and hence
a handle decomposition, the only unknown cases occur in dimensions 4 and 5.
The nonvanishing of H*(Top/PL; Z,) implies the following negative result due
to Siebenmann [52]:

THEOREM 5.3. For n=4 or 5 (possibly boih) there exists a compact unbounded
topological n-manifold that has no handle decomposition.

Siebenmann also proves in [52] that certain fundamental theorems on
smooth and PL manifolds in dimensions greater than five fail somewhere in
dimensions three, four, and five. Precise knowledge of where these failures
occur would be a useful addition to our relatively meager knowledge of mani-
folds in these dimensions.
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REMINISCENCES OF AN OCTOGENARIAN MATHEMATICIAN
L. J. MORDELL; St. John’s College, Cambridge, England

It is customary for the fellows of St. John’s College, Cambridge, to dine
privately on December 27, the birthday of St. John, the Evangelist. The Master
proposes a toast to those fellows who have attained the age of eighty since the
preceding December 27, and asks each of them to give a talk. As I became
eighty on January 28, 1968, it was my turn to do so.

I started off by saying that this was a really great occasion in my life and
that I was very grateful to our College for making it possible. I said that it was
not an easy matter to make an appropriate speech on such an occasion. For-
tunately it was not too difficult for me to do so, as I have recently been reading a
book by the well-known and popular American author Dale Carnegie, entitled
How to Stop Worrying and Start Living. In this, he makes the cogent remark
that no man is so happy as when he is talking about himself. He says nothing
about the feelings of his listeners.

There are two reasons why I propose to make myself thoroughly and un-
ashamedly happy by talking about myself. The first is that on several occasions,
both in England and America, I have been told that I am a legendary character.
As it occurs to me that most legendary characters, for example King Arthur,
are dead, I wish to show that I have actually existed and am very much alive,
and so I shall give some account of the subject so that there will be no doubt
about the matter.

The second reason is that there have been many stories, mostly apocryphal,
as to how I, a natural born American, came to study at St. John's College. The
reason is a very simple and natural one. I do not mean to be boastful or vain-
glorious, and I wish to apologize if I seem so and to crave your indulgence.

! This talk was presented to the Philadelphia Section of the MAA on Nov. 22, 1969 at
Swarthmore College. It was given in part to the Fellows of St. John’s College on Dec. 27, 1968 and
again to the Adam Society, St. John’s College, on March 5, 1969.



