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ON A THEOREM OF R. JUNGEN
M. P. SCHUTZENBERGER

Let us recall the following elementary result in the theory of ana-
lytic functions in one variable.

TuEOREM (R. JUNGEN [7]). If a is rational and b algebraic their
Hadamard product ¢ is algebraic; if, further, b is rational, ¢ also is ra-
tional.

For several variables, Jungen’s proof shows that the theorem is
still true for the Bochner-Martin [2] Hadamard product. It does not
hold for the Cameron-Martin [3] and for the Haslam-Jones [6]
Hadamard products. In this note we give a version of Jungen’s theo-
rem which is valid for a restricted interpretation of the notions in-
volved when @ and b are formal power series in a finite number of
noncommuting variables.

1. Notations. Let R be a fixed not necessarily commutative ring
with unit 1. For any finite set Z, F(Z) is the free monoid generated by
Z and R,01(Z) is the free module on F(Z) over R. An element a of
Ry01(Z) will usually be written in the form a= Y {(a, f)-f: fFE F(Z)}
where the coefficients (@, f) are in R; Rp01(Z) is graded in the usual
manner and m,a= Z{(a, N-f:feEF(2), degf_S_n}. We identify R
with 7oRp01(Z). Rpe1(Z) is also a ring with product aad’
=2 4@, N, 11, f [ EFRQZ), f=Ff"}.

It is well known (cf., e.g., [4; 3]) that these notions extend to the
ring R(Z) of the formal power series (with coefficients in R) in the
noncommuting variables s&Z; R(Z) is topologized in the same man-
ner as a ring of commutative formal power-series and aa’
=liMp 0 2w (7,0) (mnea’). Any bER*(Z) = {aER(Z): ma=0} has a
quasi-inverse (—b)*=1iM,. P w<s (—b)*. If a is invertible,
a'=(14+0%)(ma™t) where b= — (ma1)(a —mw) ER*(Z). We shall
say that S*CR*(Z) is rationally closed if r, ¥ &R, b, b'&.S* imply
rb-+0'r’, bb’, b*& S*. If this is so, the set of those elements a of R(Z)
such that ¢ —me & .S* is a ring containing the inverses of its invertible
elements.

DEFINITION 1. R} (X) is the least rationally closed subset (of
R(X)) containing X.

Now let ¥={y,} be a set of a finite number M of new variables
and R¥(X\UY) (resp. R¥(X\UY)) the cartesian product of M copies
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of the R-module R(X VU Y) (resp. Rf,{,l(X U Y)). For each
g=(q, """, gn) ERMXIY), wug= (Tuqs, -+, Tagm). I
gER*M(XUY) (ie., if mog=0) let A\, be the homomorphism of the
monoid F(X\UY) into the multiplicative monoid structure of
R(X\UY) that is induced by Agx=x if x€X and Ay;=¢; if y,EY.
Since mog=0, N\, can be extended to an endomorphism of the R-
module R(XUY) by Na= > {(a, HA\S:fEFXUY)}; also, A\p
=Agp1, - -+, Npu) for any p&RM(XUY).

We shall say that pER*M(X\UY) is a proper system if (p;, ;) =0
for all j, ;<M. Then, if gER*M(X), ApER*™(X) and mTapi\gp
=Tu1ilr,qp for all n. Consider now the infinite sequence p(0) =0,
P(l) = )\P(O)P’ T P(m + 1) = kP(m)p! T TriViallyy Wm’P(ml)
=Tpp(m'+m')ER*M(X) for m'=0 and all m'’. If these relations
hold for m’ =m, they still hold for m+41 because

Tmp1p(M + 1) = Ty dpm)p = Tmirppmp = Tmi1Aappmim')P
= TmtApnim)p = Tmprp(m + 1 + m”).

Hence, p(»)=lim,., p(m) exists and it satisfies p(»)ER*¥(X),
wop(0) =0, p(0) =Npp. In fact, p( ) is the only element to satisfy
these equations because if mop’ =0 and p’ =N, p, any relation m.p( )
=m.p’ implies 7r,,,+1p'=1rm+;)\,mp:p=7rm+1)\,m,,(m)p=7rm+1p( »). For
this reason we call p(«) the solution of p.

DEFINITION 2. R (X) is the least subset (of R*(X)) that contains
every coordinate of the solution of any proper system having its
coordinates in Ry (X\UY).

(REMARK. It can easily be shown that Rjj;(X) is rationally closed
and that it contains every coordinate of the solution of any proper
system having its coordinates in Rjjg(X\UY).)

DeriniTION 3. For any

6,8 ERX), a0b=2{(e,N0f)ffEFX)}.

2. Main result.

Property 2.1. The element a of R*(X) belongs to Rj:(X) if and
only if there exists a finite integer N =2 and a homomorphism u of
F(X) into the multiplicative monoid of R¥X¥ (the ring of the N XN
matrices with entries in R) such that a= Y {ufiv-f: /€ F(X)}
(abbreviated as D ufi,x-f).

ProoF. (1) The condition is necessary. This is trivial if a=ma.
Hence it suffices to show that for any r, ’€R, a= Zp,fl,N-f and
a’= D u'fin -f one can construct suitable homomorphisms giving
ra—+a'r’, aa’ and a*. This is done below, defining the homomorphisms
by their restriction to X.
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Addition. Let N''=N+N'+2 and p''x ©RN'""XN"" defined for each
x&X by

,u"x,-,l = ,u"an,,- =0 fOI' 1 é 'L é N";

B0 = ruwy: and  p e e = paxiy for1 £ 42N
u'r N = p's and  W'xinp e = plainer’ for1 =i N
w'x; = the direct sum of ux and u'x for2 < 4,7 < N’ — 1;

n — ’ /
wlry N = ruxyy + pley,nr’.

The verification is trivial.

Product. Let N’ =N+ N’ and define vyf& R¥""X¥" for each fE F(X)
by vfio=pfinif f#1, 121N, "= N+1; vf;,i» =0, otherwise. Then,
if u''x=gx+vx where gx is the direct sum of ux and u’x, one has for
eachf = xWx® . .. xm y!'f — gf 4+ Z{p;f’,,x(i)ﬁf“;f'x(i)f” = f}_
Since pfx@ =pgfrx® and (vf""’'gf’")1,n»=0 when f'’=1, one has
W i = 24 (uflw) Wfi): f'f'' =f}. Hence, 2ou''fiy-f=ad'.

Quasi-inverse. Let N''=N and define »fE R¥X¥ for each f& F(X)
by vfie=ufin if f#1, 1Si<N, i'=1; vf;+=0, otherwise. Then
w'x = pux + vx and since pfrx = vfx identically one has u'’f
= > ufWpf® . .. pf®f0+D where the summation is over all the
factorisations f=fMf® . . . f&+1 of fin an arbitrary number of fac-
tors. The (1, N) entry of any of these products is zero unless all its
factors are different from 1 and under this condition, it is equal to
wfh f - - - wfS Y. Hence, 2 op''fin-f= 2 as0a"=a* and the first
part of the proof is completed.

(2) The condition is sufficient. We say that the proper system p is
linear if for each jE M, pj=q;.o0+ Z,-' g;.iy;» where all the ¢'s belong
to R¥.(X) and we verify that all coordinates of the solution of such
a system belong to R} (X).

Thisis trivial if M =1because p(©)=(1—g1,1) " q1,0(= (1+¢F1)q1,0).
If it is true for M’ <M it is still true for M. Indeed, because p(®)x
= (1—qu,m) " (gar,04 2j<ar gar,p();), the proper linear system p’
defined by pf=p; — ¢iuyu + ¢ upu for j < M and py
=1 —qu,u) Y (pu — qu,uyn) is such that p(w)=p'(«). Since its
first M —1 coordinates do not involve y, the result follows from the
induction hypothesis.

Now, given a homomorphism u of F(X) into R¥*XM the M ele-
ments a;=  {ufiau-f:fEF(X), f#1} are such that (a;, «f)
= > uxj.i(a;y, f). Hence (a1, - - -, an) is the solution of the linear
proper system such that gj,0 = Z{ij,M'x: x € X}, q;.i’
= > {ux;y,;-%: xEX} for each 4, j* and 2.1 is proved.
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We now consider two subrings R’ and R’ of R that commute
element-wise.

Property 2.2. If a= Y u'fi,v-fERX(X) where u’ is a homomor-
phism into R'¥X¥ and if b= p( =) ER}{¥(X) where the proper system
p has its coordinates in Rjy(X\UY), then ¢ 0 bERN(X). I, fur-
ther, bERZ¥(X) then a © bERE(X).

ProoF. We verify first the case of bE RIS (X), i.e.,0f b= Y _ufiyf
for some N’/ and p'’. Then a © b= D (' ®u'")fi,yn'+f where the
kroneckerian product p’'®u’’ is a homomorphism of F(X) into
RNN""XNN'" hecause R’ and R’' commute and the result is proved.

For the general case we denote by K(Z) for any set Z the ring of
the N X N matrices with entries in R(Z). We shall have to consider
several homomorphisms of module ¢: R¥(Z')—KM(Z'") where Z’ and
Z'" are two finite sets. In each case ¢ is defined by a mapping
Z'—K(Z'") which is extended in a natural fashion to a homomor-
phism of the monoid F(Z’) into the multiplicative structure of K(Z'').
Then for each

a=(ay-+,au) € R™(Z), aa; = D {(a; g)-0g: g € F(Z)}

and ca=(oay, - - -, dan).

More specifically, u: R¥(X)—KM(X) is induced by a mapping
pu: X—K(X) such that the entries of each ux belong to R'*(X).

For each ¢&R'"*M(X), M\g: R(XVY)—KHM(X) is induced by \,of
=uf if fEF(X) and N,y;=pg; if y;& Y. Hence, since R’ and R’’
commute element-wise, ulgg=»MN.,¢ for each g& F(X\UY) (with )\,
as previously defined). Consequently, wA;p = Np for any
PER"M(XUY).

Let now Z= {z,‘,i,i'}(l SjSM; 151, 7 £N), a set of MXNXN
new variables and v: RYM(XUY)—KM(X\UZ) induced by »f=puf if
fEF(X), vy;=the NXN matrix with entries z;,;,+ if y;&Y. Also
Mgt R(IXUZ)—-R(X) is induced by N\, .f=f if FEF(X) and N\,g2;,4,0
= (vq;)s,# if 2;,0,0 ©Z. We extend N, to a homomorphism K#(X\UZ)
—KM(X) by defining N\,qm for any mEK(X\UZ) as the NXN
matrix with entries N\, ,(m;, ).

Because R’ and R’’ commute, A\,,g =\, vg for each gE F(XUY)
and, consequently, N,gp=N,#p for each p&€R"*M(X\UY). Hence,
if p is a proper M-dimensional system with coordinates in R’'*(X\UY)
we have up( ) =uNp(e)P =Nup(eyP. Since p and v coincide on R’/ *¥(X),
we have also pp(®) =vp(°) =Np)p =N V).

However, the M XN XN elements p;,s= (vp;)i«r all belong to
R*(X\UZ) and they constitute a proper system p’ of dimension M N2,
Thus, by construction, (up(«);)s,i=p"(0);,s+ identically. If, fur-
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ther, pERIFM(XUY) all the entries appearing in vp belong to
R}, (X\UZ) and then finally (up();):,# ERig(X).
This completes the proof because

aQb=2 {(NufinffEFX)}
=2 {, Nufin:f E F(X)} = ubiy

where for each xEX, u is defined by ux,,; =u'x;, - x.

REMARK 1. Definitions 1, 2, and 3 and the computations of this
section used only the structure of monoid of the additive groups con-
sidered. Hence, the results are still valid when an arbitrary sem:-
ring S is taken in place of R. For .S consisting of two Boolean elements,
Jungen’s theorem and its special case for b rational have been ob-
tained in a different form by Y. Bar-Hillel, M. Perles and E. Shamir
[1] (also by S. Ginsburg and G. F. Rose [5]) and by S. Kleene [8]
respectively as by-products of more sophisticated theories.

REMARK 2. Let R=C, the field of complex numbers; and p a
proper system of dimension M. Introducing 4 M new symbols z; and
replacing each y; by 24;-+424j41— 24j42— 724545 in the p;s we can deduce
from p a new system of dimension 4M in which all the coefficients are
non-negative real numbers and whose solution is simply related to
p().

Assume now that pE& CH(X\UY) has only real non-negative coeffi-
cients and denote by @ a homomorphism of Cpo1(X\UY) into C. Be-
cause of the assumption that (p;, y;+) =(p;, 1) =0, identically, we
can find an €>0 such that Iapjl <e for all j when laxl <e and
\ayl =<2e for all x&€X and y& Y. Since the sequence ap(0), ap(1),

-, ap(n), - - - is monotonically increasing it converges to a finite
solution (cf., e.g., [10]).

Hence, the canonical epimorphism of Cpoi(X\UY) onto the ring of
the ordinary (commutative) polynomials can be extended to an epi-
morphism of C,(X) onto the ring of the Taylor series of the alge-
braic functions.
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