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Abstract. This book is a comprehensive introduction to the theory of sta-
ble commutator length, an important subfield of quantitative topology, with
substantial connections to 2-manifolds, dynamics, geometric group theory,
bounded cohomology, symplectic topology, and many other subjects. We use
constructive methods whenever possible, and focus on fundamental and ex-
plicit examples. We give a self-contained presentation of several foundational
results in the theory, including Bavard’s Duality Theorem, the Spectral Gap
Theorem, the Rationality Theorem, and the Central Limit Theorem. The con-
tents should be accessible to any mathematician interested in these subjects,
and are presented with a minimal number of prerequisites, but with a view to
applications in many areas of mathematics.





Preface

The historical roots of the theory of bounded cohomology stretch back at least
as far as Poincaré [167] who introduced rotation numbers in his study of circle
diffeomorphisms. The Milnor–Wood inequality [154, 204] as generalized by Sul-
livan [193], and the theorem of Hirsch–Thurston [109] on foliated bundles with
amenable holonomy groups were also landmark developments.

But it was not until the appearance of Gromov’s seminal paper [97] that a
number of previously distinct and isolated phenomena crystallized into a coherent
subject. In [97] and in [98] Gromov indicated how many important or delicate
geometric and algebraic properties of groups could be encoded and (in principle)
recovered from their bounded cohomology. The essence of bounded cohomology
is that it is a functor from the category of groups and homomorphisms to the
category of normed vector spaces and norm-decreasing linear maps. Theorems
in bounded cohomology can be restated as algebraic or topological inequalities;
rigidity phenomena arise when equality is achieved (see e.g. [31, 93, 149, 45]).

A certain amount of activity followed; for example, the papers [6, 27, 115, 150]
contain significant new ideas and advanced the subject. But there is a sense in which
the promise of the field as suggested by Gromov has not been realized. One major
shortcoming is the lack of adequate tools for computing or extracting meaningful
information. There are at least two serious technical problems:

(1) the failure of the standard machinery of homological algebra (e.g. spec-
tral sequences) to carry over to the bounded cohomology context in a
straightforward way

(2) the fact that in the cases of most interest (e.g. hyperbolic groups) bounded
cohomology is usually so big as to be unmanageable

Monod’s monograph [157] addresses in a very useful way some of the most
serious shortcomings of the subject by largely restricting attention to continu-
ous bounded cohomology in contexts where this restriction is most informative.
Burger and Monod (see especially [33] and [34]) developed the theory of contin-
uous bounded cohomology into a powerful tool, which is of most value to people
working in ergodic theory or the theory of lattices (especially in higher-rank) but
is less useful for people whose main concern is the bounded cohomology of discrete
groups (although Theorem 2 from [34] is an exception).

To get an idea of the state of the subject ca. 2000, we quote an excerpt from
Burger–Monod [35], p. 19:

Although the theory of bounded cohomology has recently found
many applications in various fields . . . for discrete groups it re-
mains scarcely accessible to computation. As a matter of fact,
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almost all known results assert either a complete vanishing or
yield intractable infinite dimensional spaces.

It is therefore a firm goal of this monograph to try to present results in terms which
are concrete and elementary. We pay a great deal of attention to the case of free and
surface groups, and present efficient algorithms to compute numerical invariants,
whenever possible.

It is always hard for an outsider (or even an insider) to get an accurate idea
of the critical (internal) questions or conjectures in a given field, whose resolution
would facilitate significant progress, and of how the field does or might connect to
other threads in mathematics. This monograph has a number of modest aims:

(1) to restrict attention and focus to a subfield (namely stable commutator
length) which already has a number of useful and well-known applications
to a wide range of geometrical contexts

(2) to carefully expose a number of foundational results in a way which should
be accessible to any mathematician interested in the subject, and with a
minimal number of prerequisites

(3) to develop a number of “hooks” into the subject which invite contribu-
tions from mathematicians and mathematics in what might at first glance
appear to be unrelated fields (representation theory, computer science,
combinatorics, etc.)

(4) to highlight the importance of hyperbolic groups in general, and free
groups in particular as a critical case for understanding certain basic phe-
nomena

(5) to give an exposition of some of my own work, and that of my collabora-
tors, especially that part devoted to the “foundations” of the subject

Recently, there has been an outburst of activity at the intersection of low-
dimensional bounded cohomology, low-dimensional dynamics, and symplectic topol-
ogy (e.g. [71, 73, 86, 169, 170, 174], and so forth). I have done my best to discuss
some of the highlights of this interaction, but I am not competent to delve into it
too deeply.

Danny Calegari
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CHAPTER 1

Surfaces

In this chapter we present some of the elements of the geometric theory of
2-dimensional (bounded) homology in an informal way. The main purpose of this
chapter is to standardize definitions, to refresh the reader’s mind about the relation-
ship between 2-dimensional homology classes and maps of surfaces, and to compute
the Gromov norm of a hyperbolic surface with boundary. All of this material is
essentially elementary and many expositions are available; for example, [10] covers
this material well.

We start off by discussing maps of surfaces into topological spaces. One way
to study such maps is with linear algebra; this way leads to homology. The other
way to study such maps is with group theory; this way leads to the fundamental
group and the commutator calculus. These points of view are reconciled by Hopf’s
formula; a more systematic pursuit leads to rational homotopy theory.

1.1. Triangulating surfaces

A surface is a topological space (usually Hausdorff and paracompact) which is
locally two dimensional. That is, every point has a neighborhood which is homeo-
morphic to the plane, usually denoted by R2.

1.1.1. The plane. It is unfortunate in some ways that the standard way
to refer to the plane emphasizes its product structure. This product structure
is topologically unnatural, since it is defined in a way which breaks the natural
topological symmetries of the object in question. This fact is thrown more sharply
into focus when one discusses more rigid topologies.

Example 1.1 (Zariski topology). The product topology on two copies of the
affine line with its Zariski topology is not typically the same as the Zariski topology
on the affine plane. A closed set in R1 with the Zariski topology is either all of
R, or a finite collection of points. A closed set in R2 with the product topology
is therefore either all of R2, or a finite union of horizontal and vertical lines and
isolated points. By contrast, closed sets in the Zariski topology in R2 include circles,
ovals, and algebraic curves of every degree.

Part of the bias is biological in origin:

Example 1.2 (Primary visual cortex). The primary visual cortex of mammals
(including humans), located at the posterior pole of the occipital cortex, contains
neurons hardwired to fire when exposed to certain spatial and temporal patterns.
Certain specific neurons are sensitive to stimulus along specific orientations, but in
primates, more cortical machinery is devoted to representing vertical and horizontal
than oblique orientations (see for example [58] for a discussion of this effect).

1



2 1. SURFACES

The correct way to discuss the plane is in terms of the separation properties
of its 1-dimensional subsets. The foundation of many such results is the Jordan
curve theorem, which says that there is essentially only one way to embed a cir-
cle in the plane, up to reparameterization and ambient homeomorphism. Moore
[158] gave the first “natural” topological definition of the plane, in terms of sep-
aration properties of continua. Once this is understood, one is led to study the
plane and other surfaces by cutting them up into simple pieces along 1-dimensional
continua. The typical way to perform this subdivision is combinatorially, giving
rise to triangulations.

1.1.2. Triangulations and homology. Every topological surface can be tri-
angulated in an essentially unique way, up to subdivision (Radó [176]). Here by
a triangulation, we mean a description of the surface as a simplicial complex built
from countably many 2-dimensional simplices by identifying edges in pairs (note
that a simplicial complex is topologized with the weak topology, so that every
compact subset of a surface S meets only finitely many triangles).

Conversely, if we let
∐
i∆i be a countable disjoint union of triangles, and glue

the edges of the ∆i in pairs, the result is a simplicial complex K. Every point in
the interior of a face or an edge has a neighborhood homeomorphic to R2, by the
gluing condition. Every vertex has a neighborhood homeomorphic to the open cone
on its link. Each such link is a 1-manifold, and is therefore either homeomorphic
to S1 or to R. It follows that the complex K is a surface if and only if the link of
every vertex is compact.

If there are only finitely many triangles, every such identification gives rise to
a surface. Otherwise, we need to impose the condition that each vertex in the
quotient space is in the image of only finitely many triangles, so that the link of
this vertex is compact.

Remark 1.3. It is worth looking more closely at the set of all possible ways in which
a given surface can be triangulated. Any two triangulations τ, τ ′ (given up to isotopy)
of a fixed surface S are related by a finite sequence of local moves and their inverses.
These moves are of two kinds: the 1–3 move, and the 2–2 move, illustrated in Figure 1.1.
Only the 1–3 move and its inverse change the number of vertices in a triangulation, and

↔ ↔

Figure 1.1. The 1–3 and the 2–2 moves

therefore these moves cannot be dispensed with entirely. However, it is an important fact
that any two triangulations τ, τ ′ of the same surface S with the same number of vertices
are related by 2–2 moves alone.

In fact, somewhat more than this is true. Define a cellulation of a surface to be a
decomposition of the surface into polygonal disks (each with at least 3 sides). Associated
to a surface S and a discrete collection P of points in S there is a natural cell complex
A(S,P ) with one cell for each cellulation of S whose vertex set is exactly P , and with the
property that one cell is in the boundary of another if one cellulation is obtained from
the other by adding extra edges as diagonals in some of the polygons. In A(S, P ), the
vertices correspond to the triangulations of S with vertex set exactly P , and the edges
correspond to pairs of triangulations related by 2–2 moves. Hatcher [105] proves not only
that A(S,P ) is connected, but that it is contractible.
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The combinatorial view of a surface as a union of triangles gives rise to a
fundamental relationship between surfaces and 2-dimensional homology.

Example 1.4 (integral cycles). Let X be a topological space, and let α ∈
H2(X) be an integral homology class. The class α is represented (possibly in many
different ways) by an integral 2-cycle A. By the definition of a 2-cycle, there is an
expression

A =
∑

i

niσi

where each ni ∈ Z, and each σi is a singular 2-simplex; i.e. a continuous map
σi : ∆2 → X where ∆2 is the standard 2-simplex. By allowing repetitions of the
σi, we can assume that each ni is ±1.

Since A is a cycle, ∂A = 0. That is, for each σi and for each singular 1-simplex e
which is a face of some σi, the signed sum of copies of e appearing in the expression∑
i ni∂σi is 0. It follows that each such e appears an even number of times with

opposite signs. This lets us choose a pairing of the faces of the σi so that each pair
of faces contributes 0 in the expression for ∂A.

Build a simplicial 2-complex K by taking one 2-simplex for each σi, and gluing
the edges according to this pairing. Since the number of simplices is finite, and
edges are glued in pairs, the result is a topological surface S (note that S need
not be connected). Each simplex of K can be oriented compatibly with the sign of
the coefficient of the corresponding singular simplex σi, so the result is an oriented
surface. The maps σi induce a map from the simplices of K into X , and the
definition of the gluing implies that these maps are compatible on the edges of the
simplices. We obtain therefore an induced continuous map fA : S → X . Since S is
closed and oriented, there is a fundamental class [S] ∈ H2(S), and by construction
we have

(fA)∗([S]) = [A] = α

In words, elements of H2(X) are represented by maps of closed oriented surfaces
into X .

Remark 1.5. One can also consider homology with rational or real coefficients. Every
rational chain has a finite multiple which is an integral chain, so if one is prepared to
consider “weighted” surfaces mapping to X, the discussion above suffices. We think of
H2(X; Q) as a subset of H2(X; R) by using the natural isomorphism H2(X; Q) ⊗ R =
H2(X; R). Suppose α ∈ H2(X; Q) is represented by a real 2-cycle A =

P
riσi. Then for

any ǫ > 0 there exists a rational 2-cycle A′ =
P
r′iσi (i.e. with the same support as A)

such that the following are true:

(1) The cycles A and A′ are homologous (hence [A′] = α)
(2) There is an inequality

P
i |ri − r′i| < ǫ

To see this, let V denote the abstract vector space with basis the σi. There is a natural
map ∂ : V → C1(X)⊗R. Since ∂ is defined over Q, the kernel ker(∂) is a rational subspace
of V . There is a further map h : ker(∂) → H2(X; R) = H2(X; Q) ⊗ R. This map is also
defined over Q, and therefore h−1(α) is a rational subspace of V (and therefore rational
points are dense in it). Since A is in h−1(α), it can be approximated arbitrarily closely
by a rational cycle A′ also in h−1(α).

1.1.3. Topological classification of surfaces. For simplicity, in this section
we consider only connected surfaces.
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Closed surfaces are classified by Euler characteristic and whether or not they
are orientable. For each non-negative integer g, there is a unique (up to homeo-
morphism) closed orientable surface with Euler characteristic 2− 2g. The number
g is called the genus of S, denoted genus(S).

For each positive integer n, there is a unique (up to homeomorphism) closed
non-orientable surface with Euler characteristic 2− n.

Example 1.6 (closed surfaces). The sphere is the unique closed surface with
χ(sphere) = 2 and the torus is the unique closed orientable surface with χ(torus) =
0. The projective plane is the unique closed surface with χ(projective plane) = 1.
For the sake of notation, we abbreviate these surfaces by S2, T, P . Every closed
surface may be obtained from these by the connect sum operation, denoted #. This
operation is commutative and associative, with unit S2, and satisfies

T#P = P#P#P

Moreover, every other relation for # is a consequence of this one.
Euler characteristic is subadditive under connect sum, and satisfies

χ(S1#S2) = χ(S1) + χ(S2)− 2

A closed surface S is non-orientable if and only if P appears as a summand in some
(and therefore any) expression of S as a sum of T and P terms.

If S is an oriented surface, we denote the same surface with opposite orientation
by S. We say that a topological surface is of finite type if it is homeomorphic to a
closed surface minus finitely many points. If T is closed, and there is an inclusion
i : S → T so that T − i(S) is finite, then

χ(S) = χ(T )− card(T − i(S))

(here card denotes cardinality). Moreover, S is orientable if and only if T is.

1.1.4. Surfaces with boundary. A surface with boundary is a (Hausdorff,
paracompact) topological space for which every point has a neighborhood which
is either homeomorphic to R2 or to the closed half-space {(x, y) ∈ R2 | y ≥ 0}.
Points with neighborhoods homeomorphic to R2 are interior points, and the others
are boundary points. Surfaces with boundary can be triangulated in such a way
that the triangulation induces a triangulation (by 1-dimensional simplices) of the
boundary. We denote the set of interior points of S by int(S), and the set of
boundary points by ∂S.

If S is a surface with boundary, the double of S, denoted DS, is the surface
obtained from S

∐
S by identifying ∂S with ∂S. Note that S is only distinguished

from S if S is oriented, in which case the double is also oriented. We say S is of
finite type if DS is. Note that in this case, DS may be obtained from a closed
surface DT which is the double of a compact surface with boundary T by removing
finitely many points. If this happens, we can always assume S is obtained from T
by removing finitely many points. Note that some of these points may be contained
in ∂T .

Genus is not a good measure of complexity for surfaces with boundary: −χ
is better, in the sense that there are only finitely many homeomorphism types of
connected compact surface for which −χ is less than or equal to any given value.
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1.1.5. Fundamental group and commutators. Let S be an oriented sur-
face of finite type. If S has genus g and p > 0 punctures, π1(S) is free of rank
2g + p− 1, and similarly if S is compact with p boundary components.

If S is closed of genus g, then S can be obtained by gluing the edges of a 4g-gon
in pairs, and one obtains the “standard” presentation of π1:

π1(S) = 〈a1, b1, . . . , ag, bg | [a1, b1] · · · [ag, bg]〉
A closed surface is obtained from a surface with one boundary component by

gluing on a disk. If S has genus g with one boundary component, π1(S) is free with
generators a1, b1, . . . , ag, bg and ∂S represents the conjugacy class of the element
[a1, b1] · · · [ag, bg].

Let X be a topological space, and let αi, βi be elements in π1(X) such that
there is an identity

[α1, β1] · · · [αg, βg] = id ∈ π1(X)

There is an induced map π1(S) → π1(X) sending each ai → αi and bi → βi.
Thinking of S as the quotient of a polygon P with 4g sides glued together in pairs,
this defines a map ∂P → X whose image is null homotopic in X , and therefore this
map extends to a map S → X . The homology class of the image of the fundamental
class [S] depends on the particular expression involving the αi, βi. Moreover, two
different choices of the extension ∂P → X to P differ by a pair of maps of P which
agree on the boundary; these maps sew together to define a map S2 → X defining
an element of π2(X). In words, identities in the commutator subgroup of π1(X)
correspond to homotopy classes of maps of closed orientable surfaces into X, up to
elements of π2(X).

In the relative case, let γ ∈ π1(X) be a conjugacy class represented by a loop
lγ ⊂ X . If γ has a representative in the commutator subgroup [π1(X), π1(X)] then
we can write

[α1, β1] · · · [αg, βg] = γ ∈ π1(X)

Let S be a genus g surface with one boundary component. S is obtained from a
(4g + 1)-gon P by identifying sides in pairs. Choose loops in X representing the
elements γ, αi, βi and let f : ∂P → X be defined by sending the edges of P to
loops in X by ai → αi, bi → βi, and the free edge to γ. By construction, f factors
through the quotient map ∂P → S induced by gluing up all but one of the edges.
Moreover, by hypothesis, f(∂P ) is null-homotopic in X . Hence f can be extended
to a map f : S → X sending ∂S to γ.

In words, loops corresponding to elements of [π1(X), π1(X)] bound maps of
oriented surfaces into X .

1.1.6. Hopf’s formula. The two descriptions above of (relative) maps of
surfaces, in terms of homology and in terms of fundamental group, are related
by Hopf’s formula.

Let X be a topological space. If π2(X) is nontrivial, we can attach 3-cells to X
to kill π2 while keeping π1 fixed. If X ′ is the result, then H2(X

′; Z) can be identified
with the group homology H2(π1(X); Z), by the relative Hurewicz theorem.

We let G = π1(X). Suppose we have a description of G as a quotient of a free
group:

0→ R→ F → G→ 0

where F is free. Every map from a closed oriented surface S into X ′ is associated
to a product of commutators [a1, b1] · · · [ag, bg] which is equal to 0 in G. A choice
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of word in F for each element ai, bi in such an expression determines an element of
R ∩ [F, F ]. A substitution a′i = air where r ∈ R changes the result by an element
of [F,R], since

[ar, b] = [ara−1, aba−1][a, b]

By the discussion above, there is a surjective homomorphism from the Abelian
group (R ∩ [F, F ])/[F,R] to H2(G).

Hopf’s formula says this map is an isomorphism:

Theorem 1.7 (Hopf’s formula [155]). Let G be a group written as a quotient
G = F/R where F is free. Then

H2(G) = (R ∩ [F, F ])/[F,R]

One quick way to see this is to use spectral sequences. This argument is short
but a bit technical, and can be skipped by the novice, since the result will not
be used elsewhere in this book. The extension R → F → G defines a spectral
sequence (the Hochschild–Serre spectral sequence [110]) whose E2

n,0 term is Hn(G)

and whose E2
0,1 term is H1(R)G, the quotient of H1(R) by the conjugation action

of G. Since H1(R) = R/[R,R], we conclude that H1(R)G is equal to R/[F,R]. Let
d2 : E2

2,0 → E2
0,1 be the differential connecting H2(G) to R/[F,R]:

H1(R)G

Z H1(G) H2(G)
...........................

............................
............................

............................
............................

............................
.......................... d2

Then there is an exact sequence

H2(F )→ H2(G)→ R/[F,R]→ H1(F )→ H1(G)→ 0

Since F is free, H2(F ) = 0 and therefore H2(G) is identified with the kernel of the
map R/[F,R] → H1(F ). But the kernel of F → H1(F ) is exactly [F, F ], so we
obtain Hopf’s formula.

1.2. Hyperbolic surfaces

1.2.1. Conformal structures. A conformal structure on a surface is an at-
las of charts for which the induced transition maps are angle-preserving. We do
not require these maps to preserve the sense of the angles, so that non-orientable
surfaces may still admit conformal structures. Orientable surfaces with conformal
structures on them are synonymous with Riemann surfaces.

Example 1.8 (conformal surfaces by cut-and-paste). A Euclidean polygon P
inherits a natural conformal structure from the Euclidean plane, which we denote
by E2. Isometries of E2 preserve the conformal structure, and therefore induce a
natural conformal structure on any Euclidean surface. If S is obtained by gluing
a locally finite collection of Euclidean polygons by isometries of the edges, the
resulting surface is Euclidean away from the vertices, where there might be an
angle deficit or surplus. If v is a vertex which has a cone angle of rπ, we can
develop the complement of v locally to the complement of the origin in E2. If we
think of E2 as C, and compose this developing map with the map z → z2/r the
result extends over v and defines a conformal chart near v which is compatible with
the conformal charts on nearby points.
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Let S be an arbitrary triangulated surface. By taking each triangle to be an
equilateral Euclidean triangle with side length 1, and all gluing maps between edges
to be isometries, we see that every surface can be given a conformal structure.

Example 1.9 (Belyi’s Theorem [9]). Belyi proved that a non-singular algebraic
curve X is conformally equivalent to a surface obtained by gluing black and white
equilateral triangles as above in a checkerboard pattern (i.e. so that no two triangles
of the same color share an edge) if and only if X can be defined over an algebraic
number field (i.e. a finite algebraic extension of Q).

Such a description defines a map X → P1, by taking the black triangles to
the upper half space and the white triangles to the lower half space; this map is
algebraic, and unramified except at 0, 1,∞. The preimage of the interval [0, 1]
is a bipartite graph on X , which Grothendieck called a “dessin d’enfant” (child’s
drawing; see [100]). The point of this construction is that the algebraic curve X
can be recovered from the combinatorics and topology of the diagram. The Galois
group Gal(Q/Q) acts on the set of all dessins, and gives unexpected topological
insight into this fundamental algebraic object.

A conformal structure on S induces a tautological conformal structure on S.
We say that a conformal structure on S is conformally finite if it is conformally
equivalent to a closed surface minus finitely many points. Every surface of finite
type admits a conformal structure which is conformally finite.

The classical Uniformization Theorem for Riemann surfaces says that any sur-
face S with a conformal structure admits a complete Riemannian metric of constant
curvature in its conformal class, which is unique up to similarity (note that this
theorem is also valid for conformal surfaces of infinite type).

1.2.2. Conformal structures on surfaces with boundary. Let S be a
surface with boundary. We say that a conformal structure on S is given by a
conformal structure on DS which induces the same conformal structures on the
interiors of S and S by inclusion, after composing with the tautological identification
of S and S. A surface with boundary S is said to be of finite type if DS is of finite
type, and a conformal structure on S is conformally finite if DS is conformally
finite.

If S admits a conformally finite conformal structure, we define

χ(S) =
1

2
χ(DS)

Note that this may not be an integer, but always takes values in 1
2Z.

If T is compact with boundary, and there is an inclusion i : S → T so that
T − i(S) is finite, then

χ(S) = χ(T )− card(int(T )− i(int(S))) − 1

2
card(∂T − i(∂S))

1.2.3. Hyperbolic surfaces. A Riemannian metric on a surface S is said to
be hyperbolic if it has curvature −1 everywhere. A conformally finite surface admits
a unique compatible hyperbolic metric which is complete of finite area if and only
if χ(S) < 0. The Gauss–Bonnet Theorem says that for any closed Riemannian
surface S there is an equality ∫

S

K = 2πχ(S)
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where K is the sectional curvature on S.
If S is hyperbolic, we obtain an equality

area(S) = −2πχ(S)

A conformally finite surface S with boundary admits a unique hyperbolic struc-
ture for which ∂S is totally geodesic if and only if χ(S) < 0. For, by definition,
χ(DS) < 0 and thereforeDS admits a unique complete finite area hyperbolic struc-
ture in its conformal class. If i : DS → DS is the involution which interchanges
S and S, then i preserves the conformal structure, and therefore it acts on DS as
an isometry. It follows that the fixed point set, which can be identified with ∂S, is
totally geodesic. Notice that with our definition of χ(S) the relation

area(S) = −2πχ(S)

holds also for surfaces with boundary.

1.2.4. Straightening chains. Let ∆ be a geodesic triangle in H2. The
Gauss–Bonnet Theorem gives a straightforward relationship between the area of
∆ and the sum of the interior angles:

area(∆) = π − sum of interior angles of ∆

It follows that there is a fundamental inequality

area(∆) < π

A geodesic triangle in H2 is semi-ideal if some of its vertices lie at infinity, and
ideal if all three vertices are at infinity. If we allow ∆ to be semi-ideal above, the
inequality becomes

area(∆) ≤ π
with equality if and only if ∆ is ideal.

Similar inequalities hold in every dimension; that is, for every dimension m
there is a constant cm > 0 such that every geodesic hyperbolic m-simplex has
volume ≤ cm, with equality if and only if the simplex is ideal and regular (Haagerup
and Munkholm [101]). Note that every ideal 2-simplex is regular.

A fundamental insight, due originally to Thurston, is that in a hyperbolic
manifold Mm, a singular chain can be replaced by a (homotopic) chain whose
simplices are all geodesic. Applying this observation to the fundamental class [M ]
of M , and observing that there is an upper bound on the volume of a geodesic
simplex in each dimension, we see that the complexity (in a suitable sense) of a
chain representing [M ] can be bounded from below in terms of cm and vol(M).
That is, one can use (hyperbolic) geometry to estimate the complexity of an a
priori topological quantity. Technically, the right way to quantify the complexity
of [M ] is to use bounded (co-)homology, which we will study in detail in Chapter
2.

Definition 1.10. Let M be a hyperbolic m-manifold, and let σ : ∆n →M be
a singular n-simplex. Define the straightening σg of σ as follows. First, lift σ to a
map from ∆n to Hm which we denote by σ̃.

Let v0, · · · , vn denote the vertices of ∆n. In the hyperboloid model of hyper-
bolic geometry, Hm is the positive sheet (i.e. the points where xm+1 > 0) of the
hyperboloid ‖x‖ = −1 in Rm+1 with the inner product

‖x‖ = x2
1 + x2

2 + · · ·+ x2
m − x2

m+1
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If t0, · · · , tn are barycentric co-ordinates on ∆n, so that v =
∑
i tivi is a point in

∆n, define

σ̃g(v) =

∑
i tiσ̃(vi)

−‖∑i tiσ̃(vi)‖
and define σg to be the composition of σ̃ with projection Hm →M .

Since the isometry group of Hm acts on Rm+1 linearly preserving the form ‖ ·‖,
the straightening map σ → σg is well-defined, and independent of the choice of lift.

Let M be a hyperbolic manifold. Define

str : C∗(M)→ C∗(M)

by setting str(σ) = σg, and extending by linearity.
By composing a linear homotopy in Rm+1 with radial projection to the hy-

perboloid, one sees that there is a chain homotopy between str and the identity
map.

1.2.5. The Gromov norm. We now return to hyperbolic surfaces. Let S
be conformally finite, possibly with boundary. If S is closed and oriented, the
fundamental class of S, denoted [S], is the generator of H2(S, ∂S) which induces
the orientation on S.

Definition 1.11. Define the L1 norm, also called the Gromov norm of S, as
follows. Consider the homomorphism

i∗ : H2(S, ∂S; Z)→ H2(S, ∂S; R)

induced by inclusion Z→ R, and by abuse of notation, let [S] denote the image of
the fundamental class. Let C =

∑
i riσi represent [S], where the coefficients ri are

real, and denote

‖C‖1 =
∑

i

|ri|

Then set

‖[S]‖1 = inf
C
‖C‖1

The following lemma, while elementary, is very useful in what follows.

Lemma 1.12. Let S be an orientable surface with p boundary components. If
p > 1 then for any integer m > 1 with m and p−1 coprime there is an m-fold cyclic
cover Sm with p boundary components, each of which maps to the corresponding
component of ∂S by an m-fold covering.

Proof. The inclusion ∂S → S induces a homomorphism H1(∂S) → H1(S)
whose kernel is 1-dimensional, and generated by the homology class represented by
the union ∂S. In particular, if p > 1, then we can take p− 1 boundary components
to be part of a basis for H1(S). Denote the images of the boundary components
in H1(S) by e1, · · · , ep, and let e1, · · · , ep−1 be part of a basis for H1(S). If m and
p − 1 are coprime, let α ∈ H1(S; Z/mZ) = Hom(H1(S); Z/mZ) satisfy α(ei) = 1
for 1 ≤ i ≤ p− 1. Then α(ej) is primitive for all 1 ≤ j ≤ p. The kernel of α defines
a regular m-fold cover Sm with the desired properties. �
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Remark 1.13. A surface with exactly one boundary component has no regular (nontrivial)
covers with exactly one boundary component. However irregular covers with this property
do exist. For example, let S be a genus one surface with one boundary component, so
π1(S) is free on two generators a, b. Let φ : π1(S)→ S3 be the permutation representation
defined by φ(a) = (12) and φ(b) = (23). Then φ([a, b]) = (312), which is a 3-cycle. This
representation determines a 3-sheeted (irregular) cover of S with one boundary component.

It is straightforward to generalize this example to show that every connected oriented
surface with χ ≤ 0 admits a connected cover of arbitrarily large degree with the same
number of boundary components.

Theorem 1.14 (Gromov norm of a hyperbolic surface). Let S be a compact
orientable surface with χ(S) < 0, possibly with boundary. Then

‖[S]‖1 = −2χ(S)

Proof. Let S be a surface of genus g with p boundary components, so that

χ(S) = 2− 2g − p
The surface S admits a triangulation with one vertex on each boundary component,
and no other vertices. Any such triangulation has 4g+ 3p− 4 triangles. Figure 1.2
exhibits the case g = 1, p = 2. By Lemma 1.12, there is an m-fold cover Sm of S
with p boundary components.

Figure 1.2. A triangulation of a surface with g = 1, p = 2 by 6 triangles

Since χ is multiplicative under covers, χ(Sm) = 2m− 2gm−mp and it can be
triangulated with p+m(4g+ 2p− 4) triangles. Projecting this triangulation under
the covering map Sm → S gives an integral chain representing m[S] with L1 norm
equal to p + m(4g + 2p − 4). Dividing coefficients by m and taking the limit as
m→∞, we get

‖[S]‖1 ≤ −2χ(S)

To obtain the other inequality, let C be any chain representing [S]. Then str(C)
has L1 norm no greater than that of C, and also represents [S]. On the other hand,
since every geodesic triangle has area ≤ π, and area(S) = −2πχ(S), we obtain

‖[S]‖1 ≥ −2χ(S)

�

Remark 1.15. If χ(S) ≥ 0 then S admits a proper self map f : S → S of any degree. By
pushing forward a chain under this map and dividing coefficients, one sees that ‖[S]‖1 = 0.

If X is any topological space and α is a class in H2(X ; R) the Gromov norm
of α, denoted ‖α‖1, is the infimum of the L1 norm over all (real valued) 2-cycles
representing the homology class α. If α is rational, any real 2-cycle representing
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α can be approximated in L1 by a rational 2-cycle representing α. By multiplying
through to clear denominators, some multiple nα can be represented by a map of a
surface S → X . For such a surface S, let χ−(S) denote the Euler characteristic of
the union of the non-spherical components of S. Then Theorem 1.14 implies that

‖α‖1 = inf
S

−2χ−(S)

n(S)

where the image of the fundamental class of S under the map S → X represents
n(S)α in homology, and the infimum is taken over all maps of (possibly discon-
nected) closed oriented surfaces into X .





CHAPTER 2

Stable commutator length

Many natural problems in topology and geometric group theory can be formu-
lated as a kind of genus problem. In the absolute version of this problem, one is
given a space X and tries to find a surface in X with prescribed properties, of least
genus. Examples of the kind of properties one wants for the surface are that it
represent a given class in H2(X), that it is a Heegaard surface (in a 3-manifold),
that π1(X) splits nontrivially over its image, that it is pseudoholomorphic, etc. In
the relative version one is given X and a loop γ in X and tries to find a surface
(again with prescribed properties) of least genus with boundary γ. In its purest
form, the analogue of this second problem in group theory asks to determine the
commutator length of an element in the commutator subgroup of a group, and it
is this problem (or rather its stabilization) with which we are preoccupied in this
chapter (we give precise definitions in § 2.1). We will use the algebraic and geomet-
ric language interchangeably in what follows; however our methods and arguments
are mostly geometric.

There is a dual formulation of these problems, in terms of (bounded) cohomol-
ogy and quasimorphisms — real-valued functions on a group which are additive,
up to bounded error. This duality is expressed in the fundamental Bavard Duality
theorem from [8], which gives a precise relationship between (stable) commutator
length and bounded cohomology, and reconciles the homotopy theoretic and the
(co)-homological points of view of surfaces and the genus problem. The main goal
of this chapter is to give a self-contained exposition of this fundamental result and
some generalizations, including all the necessary background and details. Our aim is
to keep the presentation elementary wherever possible, although certain arguments
are streamlined by using the language of abstract functional analysis.

In many places we follow Bavard’s original paper [8], though occasionally our
emphasis is different. We also enumerate and prove some useful properties of scl
and bounded cohomology which are used in subsequent chapters.

2.1. Commutator length and stable commutator length

Definition 2.1. Let G be a group, and a ∈ [G,G]. The commutator length of
a, denoted cl(a), is the least number of commutators in G whose product is equal
to a.

By convention we define cl(a) =∞ for a not in [G,G].

Definition 2.2. For a ∈ [G,G], the stable commutator length, denoted scl(a),
is the following limit:

scl(a) = lim
n→∞

cl(an)

n

13
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For each fixed a, the function n → cl(an) is non-negative and subadditive;
hence this limit exists. If a is not in [G,G] but has a power an which is, define
scl(a) = scl(an)/n, and by convention define scl(a) =∞ if and only if a represents
a nontrivial element in H1(G; Q).

Remark 2.3. Computing commutator length is almost always difficult, even in finite
groups. Ore [164] famously conjectured in 1951 that every element of a finite non-cyclic
simple group is a commutator, and proved his conjecture for alternating groups An where
n ≥ 5. After receiving considerable attention (see e.g. [72, 121]), Ore’s conjecture was
finally proved in 2008 by Liebeck–O’Brien–Shalev–Tiep [135].

Commutator length in free groups has been studied by many people, with effective
(though inefficient) procedures for calculating commutator length first obtained by Ed-
munds [68, 69]. The use of geometric methods to study genus was pioneered by Culler
[59]. Several authors ([98, 99, 178]) used minimal surface techniques to obtain estimates
of commutator length under geometric hypotheses.

Thurston [196], studied the absolute genus problem in the context of embedded sur-
faces in 3-manifolds, and showed how a stabilization of this problem gives rise to a norm
on homology with several remarkable properties. Gromov [99] also emphasized the impor-
tance of stabilization, and posed a number of very general problems about genus and stable
genus, especially their interaction with negative curvature. Gromov further stressed the
relationship between the stable genus problem and bounded cohomology, which he system-
atically introduced and studied in [97]. This connection was also studied by Matsumoto
and Morita; the paper [150] describes a fundamental relationship between homological
“filling” norms and the kernel of the natural map from bounded to ordinary cohomology.

The most important property of cl and scl is their monotonicity under homo-
morphisms:

Lemma 2.4 (monotonicity). Let ϕ : G → H be a homomorphism of groups.
Then sclH(ϕ(a)) ≤ sclG(a) for all a ∈ G and similarly for cl.

Proof. The image of a commutator under a homomorphism is a commutator.
It follows that both cl and scl are monotone decreasing. �

The following corollaries are immediate:

Corollary 2.5 (retraction). Let ϕ : G → H be a monomorphism with a left
inverse; i.e. there is ψ : H → G with ψ ◦ ϕ : G→ G the identity. Then

scl(ϕ(a)) = scl(a)

for all a ∈ G.

Corollary 2.6 (characteristic). The functions cl and scl are constant on orbits
of Aut(G).

Remark 2.7. Corollary 2.6 is especially interesting when Out(G) is large.

For most interesting phenomena concerning scl, it suffices to restrict attention
to countable groups, as the following Lemma shows.

Lemma 2.8 (countable). Let G be a group, and a ∈ G an element. Then there
is a countable subgroup H < G containing a, such that sclH(a) = sclG(a).

Proof. For each n, exhibit an as a product of cl(an) commutators in G, and
let Hn be the subgroup generated by the elements appearing in these commutators.
Then let H be the subgroup generated by ∪nHn. �
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The algebraic definitions of cl and scl are almost useless for the purposes of
computation. Products and powers of commutators satisfy many identities which
at first glance might appear quite mysterious.

Example 2.9 (Culler [59]). For any elements a, b in any group, there is an
identity

[a, b]3 = [aba−1, b−1aba−2][b−1ab, b2]

These properties are often more clear from a geometric perspective (for in-
stance, Example 2.9 is really just Remark 1.13 in disguise). Given a group G, one
can construct a space X (for example, a CW complex) with π1(X) = G. A conju-
gacy class a ∈ G corresponds to a free homotopy class of loop γ in X . From the
definitions and the discussion in § 1.1.5 it follows that the commutator length of a
is the least genus of a surface with one boundary component mapping to X in such
a way that the boundary represents the free homotopy class of γ, and the stable
commutator length of a may be obtained by estimating the genus of surfaces whose
boundary wraps multiple times around γ.

Once we have recast this problem in geometric terms, a number of facts become
immediately apparent:

(1) genus is not multiplicative under coverings whereas Euler characteristic is
(2) there is no good reason to restrict attention to surfaces with exactly one

boundary component

As in § 1.2.5, given a (not necessarily connected) compact oriented surface S,
let −χ−(S) denote the sum of max(−χ(·), 0) over the components of S. Given a
space X and a loop γ : S1 → X we say that a map f : S → X is admissible if there
is a commutative diagram:

S∂S

S1 X

................................................................................................................................................................... ............
i

.........................................................

......

......
......

∂f
.........................................................
......
......
......

f

................................................................................................................................................................... ............

γ

Since S is oriented, the boundary of S inherits an orientation, and it makes sense
to define the fundamental class [∂S] in H1(∂S). Similarly, one has a fundamental
class [S1] ∈ H1(S

1). Define n(S) by the formula

∂f∗[∂S] = n(S)[S1]

Note that by orienting S appropriately, we can ensure that n(S) ≥ 0. The number
n(S) is just the (total algebraic) degree of the map ∂S → S1 between oriented
closed manifolds.

With this notation, one can give an intrinsically geometric definition of scl,
which is contained in the following proposition.

Proposition 2.10. Let π1(X) = G, and let γ : S1 → X be a loop representing
the conjugacy class of a ∈ G. Then

scl(a) = inf
S

−χ−(S)

2n(S)

where the infimum is taken over all admissible maps as above.
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Proof. An inequality in one direction is obvious: cl(an) ≤ g if and only
if there is an admissible map f : S → X , where S has exactly one boundary
component and satisfies n(S) = n and 2g − 1 = −χ−(S). Hence limn cl(an)/n ≥
infS −χ−(S)/2n(S).

Conversely, suppose f : S → X is admissible. If S has multiple components,
at least one of them Si satisfies −χ−(Si)/2n(Si) ≤ −χ−(S)/2n(S), so without
loss of generality we can assume S is connected. Since −χ−(·) and 2n(·) are both
multiplicative under covers, we can replace S with any finite cover without changing
their ratio, so we may additionally assume that S has p ≥ 2 boundary components.

As in Lemma 1.12, we can find a finite cover S′ → S of degree N ≫ 1 such
that S′ also has p boundary components. Observe that −χ−(S′) = −Nχ−(S) and
n(S′) = Nn(S). We may modify S′ by attaching 1-handles to connect up the
different boundary components, and extend ∂f ′ over these 1-handles by a trivial
map to a basepoint of S1. Adding a 1-handle increases genus by 1 and reduces the
number of boundary components by 1, so it increases −χ− by 1. The result of this
is that we can find a new surface S′′ with exactly one boundary component and a
map f ′′ satisfying −χ−(S′′) = −χ−(S′) + p− 1 and n(S′′) = n(S′). We estimate

−χ−(S′′)

2n(S′′)
=
p− 1−Nχ−(S)

2Nn(S)

Since S is arbitrary, and given S the number p is fixed but N may be taken to
be as large as desired, the right hand side may be taken to be arbitrarily close to
infS −χ−(S)/2n(S). On the other hand, since the genus of S′′ may be chosen to
be as large as desired, and since S′′ has exactly one boundary component, we have
cl(an(S′′)) ≤ −χ−(S′′)/2 + 1. The proof follows. �

Notice that for any element a of infinite order, we have an inequality scl(a) ≤
cl(an)/n − 1/2n. It follows that no surface can realize the infimum of cl(an)/n.
On the other hand, it is entirely possible for a surface to realize the infimum of
−χ−(S)/2n(S). Such surfaces are sufficiently useful and important that they de-
serve to be given a name.

Definition 2.11. A surface f : S → X realizing the infimum of −χ−(S)/2n(S)
is said to be extremal.

We will return to extremal surfaces in § 4.1.10.
At this point it is convenient to state and prove another proposition about the

kinds of admissible surfaces we need to consider.

Definition 2.12. An admissible map f : S, ∂S → X, γ is monotone if for every
boundary component ∂i of ∂S, the degree of ∂f : ∂i → S1 has the same sign.

Proposition 2.13. Let S be connected with χ(S) < 0, and let f : S, ∂S → X, γ
be admissible. Then there is a monotone admissible map f ′ : S′, ∂S′ → X, γ with
−χ−(S′)/2n(S′) ≤ −χ−(S)/2n(S).

Proof. Each boundary component ∂i of ∂S maps to S1 with degree ni (which
may be positive, negative or zero), where

∑
i ni = n(S). If some ni is zero, the

image f(∂i) is homotopically trivial in X , so we may reduce −χ− by compressing
∂i. Hence we may assume every ni is nonzero.

If S is a planar surface, then since χ(S) < 0, there is a finite cover of S with
positive genus. If S is a surface with positive genus and negative Euler characteris-
tic, there is a degree 2 cover S′ → S such that each boundary component in S has
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exactly two preimages. Hence, after passing to a finite cover if necessary, we can
assume that the boundary components ∂i come in pairs with equal degrees ni.

Now let N be the least common multiple of the |ni|. Define φ as a function
on the set of boundary components with values in Z/NZ as follows. For each pair
of boundary components ∂i, ∂j with ni = nj , define φ(∂i) = ni and φ(∂j) = −ni.
Then

∑
i φ(∂i) = 0, so φ extends to a surjective homomorphism from π1(S) to

Z/NZ. If S′ is the cover associated to the kernel, then each component of ∂S′ has
degree ±N . Pairs of components for which the sign of the degree is opposite can
be glued up (which does not affect χ or n(·)) until all remaining components have
degrees with the same signs. �

Consequently it suffices to take the infimum of −χ−/2n over monotone surfaces
to determine scl.

Remark 2.14. Note that the surface constructed in Proposition 2.13 is not merely mono-
tone, but has the property that all boundary components map with the same degree.

2.2. Quasimorphisms

We now have two different definitions of stable commutator length: an algebraic
definition and a (closely related) topological definition. It turns out that one can
also give a functional analysis definition, couched not directly in terms of groups
and elements, but dually in terms of certain kinds of functions on groups, namely
quasimorphisms. This particular form of duality is known as Bavard duality; the
precise statement of this duality is Theorem 2.70.

2.2.1. Definition.

Definition 2.15. Let G be a group. A quasimorphism is a function

φ : G→ R

for which there is a least constant D(φ) ≥ 0 such that

|φ(ab)− φ(a)− φ(b)| ≤ D(φ)

for all a, b ∈ G. In words, a quasimorphism is a real-valued function which is
additive up to bounded error. The constant D(φ) is called the defect of φ.

Example 2.16. Any bounded function is a quasimorphism. A quasimorphism
has defect 0 if and only if it is a homomorphism.

Lemma 2.17. Let S be a (possibly infinite) generating set for G. Let w be a
word in the generators, representing an element of G. Let |w| denote the length of
w, and let wi denote the ith letter. Then

∣∣φ(w) −
|w|∑

i=1

φ(wi)
∣∣ ≤ (|w| − 1)D(φ)

Proof. This follows from the defining property of a quasimorphism, the tri-
angle inequality, and induction. �

The set of all quasimorphisms on a fixed group G is easily seen to be a (real)

vector space; we denote this vector space by Q̂(G). In anticipation of what is to
come, we denote the space of (real-valued) bounded functions on G by C1

b (G), and

observe that C1
b is a vector subspace of Q̂.
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2.2.2. Antisymmetric and homogeneous quasimorphisms. Some quasi-
morphisms are better behaved than others.

Definition 2.18. A quasimorphism φ is antisymmetric if

φ(a−1) = −φ(a)

for all a. Any quasimorphism φ can be antisymmetrized φ→ φ′ by the formula

φ′(a) =
1

2
(φ(a) − φ(a−1))

Lemma 2.19. For any quasimorphism φ, the antisymmetrization φ′ satisfies

D(φ′) ≤ D(φ)

Proof. We calculate

D(φ′) = sup
a,b
|φ′(ab)− φ′(a)− φ′(b)|

= sup
a,b

1

2
|φ(ab)− φ(a)− φ(b) − φ(b−1a−1) + φ(a−1) + φ(b−1)| ≤ D(φ)

�

Observe that for any antisymmetric quasimorphism φ there is an inequality

|φ([a, b])| = |φ(aba−1b−1)− φ(a)− φ(b)− φ(a−1)− φ(b−1)| ≤ 3D(φ)

and in general (by Lemma 2.17), |φ(
∏n
i=1[ai, bi])| ≤ (4n− 1)D(φ).

Definition 2.20. A quasimorphism is homogeneous if it satisfies the additional
property

φ(an) = nφ(a)

for all a ∈ G and n ∈ Z. Denote the vector space of homogeneous quasimorphisms
on G by Q(G).

Lemma 2.21. Let φ be a quasimorphism on G. For each a ∈ G, define

φ(a) := lim
n→∞

φ(an)

n

The limit exists, and defines a homogeneous quasimorphism. Moreover, for any
a ∈ G there is an estimate |φ(a)− φ(a)| ≤ D(φ)

Proof. For each positive integer i, there is an inequality

|φ(a2i

)− 2φ(a2i−1

)| ≤ D(φ)

dividing by 2i and applying the triangle inequality and induction, we see that for
any j < i,

|φ(a2i

)2j/2i − φ(a2j

)| ≤ D(φ)

so φ(a2i

)2−i is a Cauchy sequence. Define φ(a) to be the limit limi→∞ φ(a2i

)2−i

and observe that |φ(a)− φ(a)| ≤ D(φ) for all a.
Since φ − φ is in C1

b , we conclude that φ is a quasimorphism. It remains to

show that φ is homogeneous. For any j, by the definition of φ we have

|φ(aj)− jφ(a)| = lim
i→∞

2−i|φ(aj2
i

)− jφ(a2i

)| ≤ lim
i→∞

(j − 1)D(φ) · 2−i = 0

where the last inequality follows from Lemma 2.17. �
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Remark 2.22. Since |φ(a)−φ(a)| ≤ D(φ) for any element a, the triangle inequality implies

that D(φ) ≤ 4 ·D(φ). In fact, a more involved argument (Lemma 2.58) will give a better
estimate of the defect.

Homogeneous quasimorphisms are often easier to work with than ordinary
quasimorphisms, but ordinary quasimorphisms are easier to construct. We use this
averaging procedure to move back and forth between the two concepts. Note that
a homogeneous quasimorphism is already antisymmetric, and that homogenization
commutes with antisymmetrization.

Remark 2.23. If φ takes values in some additive subgroup R ⊂ R then the antisym-
metrization may take values in 1

2
R, and the homogenization may take arbitrary values in

R.

2.2.3. Commutator estimates. If φ is homogeneous, then

|φ(aba−1)− φ(b)| = 1

n
|(φ(abna−1)− φ(bn))| ≤ 2D(φ)

n

Hence φ is constant on conjugacy classes; i.e. homogeneous quasimorphisms are
class functions. It follows that for any commutator [a, b] ∈ G and any homogeneous
quasimorphism φ we have an inequality

|φ([a, b])| ≤ D(φ)

In fact, this inequality is always sharp:

Lemma 2.24 (Bavard, Lemma 3.6. [8]). Let φ be a homogeneous quasimorphism
on G. Then there is an equality

sup
a,b
|φ([a, b])| = D(φ)

Proof. First we show that we can write a2nb2n(ab)−2n as a product of n
commutators. If n = 1 this is just the identity

a2ba−1b−1a−1 = a[a, b]a−1 = [a, aba−1]

Also,

a2nb2n(ab)−2n = a(a2n−1b2n−1(ba)−2n+1)a−1

so it suffices to show that a2n−1b2n−1(ba)−2n+1 can be written as a product of n
commutators.

We proceed by induction, and assume we have proved this for n ≤ m. Then

[a−2m+1b−2ma−2, ab−1a2m−1] = a−2m+1b−2ma−1b−1a2m+1b2m+1a−1

= a(a−2mb−2ma−1b−1a2m+1b2m+1)a−1

By induction, and after interchanging a and b for a−1 and b−1, the expression
a−2mb−2m can be written as a product of m commutators times (a−1b−1)2m. It
follows that (a−1b−1)2m+1a2m+1b2m+1 can be written as a product of m+ 1 com-
mutators, and the induction step is complete, proving the claim.

Now let a, b be chosen so that |φ(ab)− φ(a)− φ(b)| ≥ D(φ)− ǫ for some small
ǫ (to be chosen later). Since φ is homogeneous, for any n we have

|φ((ab)2n)− φ(a2n)− φ(b2n)| ≥ 2n(D(φ)− ǫ)
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On the other hand, we have shown that (ab)2n can be expressed as a product of n
commutators ci (which depend on a and b) times a2nb2n. Hence by Lemma 2.17,

|φ((ab)2n)− φ(a2n)− φ(b2n)−
n∑

i=1

φ(ci)| ≤ (n+ 1)D(φ)

By the triangle inequality,

|
n∑

i=1

φ(ci)| ≥ (n− 1)D(φ)− 2nǫ

Since φ(ci) ≤ D(φ) for every commutator, taking n to be big, and then ǫ small
compared to 1/n, we see that some commutator ci has φ(ci) as close to D(φ) as we
like. �

2.2.4. Graphical calculus. The argument that a2nb2n(ab)−2n can be written
as a product of n commutators can be expressed more simply in the form of a
graphical calculus.

A word w in F2 determines a path in the square
lattice Z2. Such a path corresponds to a reduced
word if and only if it has no backtracking. It rep-
resents a commutator in F2 if and only if it closes
up to a loop. If one disregards basepoints, loops
correspond to cyclic conjugacy classes of elements
in [F2, F2].

In this calculus, the word a2nb2n(ab)−2n is
represented by the loop indicated in the figure.
Note that this word is unreduced: there are two
spurious backtracks, each of length 1. After re-
moving these backtracks, one obtains a loop rep-
resenting the word a2n−1b2n−1(ba)−2n+1

Informally, the word a2n−1b2n−1(ba)−2n+1 is a “staircase” of height 2n − 1.
In this language, the induction step can be expressed as saying that a staircase
of height 2n − 1 can be written as the product of a commutator with a staircase
of height 2n − 3. Since a staircase of height 1 is just the commutator [a, b], this
completes the proof. This can be expressed graphically in the following way:

[ ], = =
1

1

2n− 3

2

2n− 2

2n− 3

◦

2.3. Examples

In this section we discuss some fundamental examples of quasimorphisms.
These examples can all be generalized considerably, as we shall see in later Chapters.
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2.3.1. de Rham quasimorphisms. The following construction is due to
Barge–Ghys [6].

Let M be a closed hyperbolic manifold, and let α be a 1-form. Define a quasi-
morphism qα : π1(M) → R as follows. Choose a basepoint p ∈ M . For each
γ ∈ π1(M), let Lγ be the unique oriented geodesic arc with both endpoints at p
which as a based loop represents γ in π1(M). Then define

qα(γ) =

∫

Lγ

α

If γ1, γ2 are two elements of π1(M), there is a geodesic triangle T whose oriented
boundary is the union of Lγ1 , Lγ2 , Lγ−1

2
γ−1

1

. By Stokes’ theorem we can calculate

qα(γ1) + qα(γ2)− qα(γ1γ2) =

∫

T

dα

A geodesic triangle in a hyperbolic manifold has area at most π. It follows that the
defect of qα is at most π · ‖dα‖.

Note that the homogenization qα satisfies

qα(γ) =

∫

lγ

α

where lγ is the free geodesic loop corresponding to the conjugacy class of γ in π1(M).
For, changing the basepoint p changes qα by a bounded amount, and therefore does
not change the homogenization. Then this formula is obviously true when p is
chosen (for each γ) so that Lγ = lγ .

A similar construction makes sense for closed manifolds M of variable negative
curvature.

2.3.2. Counting quasimorphisms.

Definition 2.25. Let F be a free group on a symmetric generating set S. Let
w be a reduced word in S. The big counting function Cw(g) is defined by

Cw(g) = number of copies of w in the reduced representative of g

and the little counting function cw(·) is defined by

cw(g) = max. number of disjoint copies of w in the reduced representative of g

A big counting quasimorphism is a function of the form

Hw(g) := Cw(g)− Cw−1(g)

and a little counting function is a function of the form

hw(g) = cw(g)− cw−1(g)

Big counting functions were introduced by Brooks in [27]. We sometimes refer
to Cw or Hw (and even cw or hw) as Brooks functions or Brooks quasimorphisms.
The little counting functions, and variations on them, were introduced by Epstein–
Fujiwara [78], who generalized them to arbitrary hyperbolic groups (although the
big counting functions also generalize easily to hyperbolic groups). These two func-
tions are related, but different, and have different advantages in different situations.
We shall see that the big counting quasimorphisms are computationally simpler,
and easier to deal with, whereas the little counting quasimorphisms (and their
generalizations) have uniformly small defects, and are therefore more “powerful”.
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Remark 2.26. Suppose no proper suffix of w is equal to a proper prefix. Then copies of
w in any reduced word are necessarily disjoint, and hw = Hw. Grigorchuk [95] uses the
terminology “no overlapping property” to describe such words.

Every Hw and hw is a quasimorphism. In fact, we will explicitly calculate their
defects in what follows. First we must prove some preliminary statements.

Lemma 2.27. Let u ∈ F be reduced. Copies of w in u are disjoint from copies
of w−1.

Proof. Suppose not, so that without loss of generality some suffix of w is
equal to some prefix of w−1. But in this case w = w1w2 where w2 = w−1

2 which is
impossible. �

Let u ∈ F be reduced, and let u = u1u2 as a reduced expression (i.e. there
is no cancellation of the suffix of u1 with the prefix of u2). Say that a copy of w
intersects the juncture of u if it overlaps both the suffix of u1 and the prefix of u2.
By Lemma 2.27, at most one of w,w−1 can intersect the juncture of u.

Definition 2.28. Given a reduced expression u = u1u2 and a reduced word
w, the sign of the expression, denoted s, is

s =





1 if w intersects the juncture

−1 if w−1 intersects the juncture

0 otherwise

Lemma 2.29. Let u = u1u2 be a reduced expression with sign s. Then

hw(u)− hw(u1)− hw(u2) = 0 or s

and

0 ≤ s(Hw(u)−Hw(u1)−Hw(u2)) ≤ |w| − 1

Proof. At most |w|−1 copies of w or w−1 can intersect the juncture, proving
the second inequality.

To prove the first equality, for i = 1, 2 let Ui be a maximal disjoint configuration
of copies of w in ui. Then U1∪U2 is contained in u1u2, so cw(u)−cw(u1)−cw(u2) ≥
0. Conversely, let U be a maximal disjoint configuration of copies of w in u1u2. Then
either U contains one copy of w which intersects the juncture, or else it is disjoint
from the juncture and decomposes as U = U1∪U2. Hence cw(u)−cw(u1)−cw(u2) ≤
1 if s = 1 and cw(u)− cw(u1)− cw(u2) ≤ 0 otherwise. �

It follows that D(Hw) ≤ 3(|w| − 1). One cannot do better than O(|w|) in
general, as an example like w = abababababa shows. However, for little counting
quasimorphisms, one obtains D(hw) ≤ 3, and with more work one can find an even
sharper estimate.

Proposition 2.30. Let w be a reduced word. Then

(1) D(hw) = 0 if and only if |w| = 1
(2) D(hw) = 2 if and only if w is of the form w = w1w2w

−1
1 , w = w1w2w

−1
1 w3

or w = w1w2w3w
−1
2 as reduced expressions

(3) D(hw) = 1 otherwise
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Proof. If |w| = 1, the subgroup 〈w〉 generated by w is a Z summand of F ,
and hw is just projection from F onto this summand; i.e. it is a homomorphism.
Otherwise, if w = w1w2 is a reduced expression, hw(w) = 1 whereas hw(w1) =
hw(w2) = 0. This proves the first statement.

Let u, v ∈ F be reduced. Then we can uniquely write u = u′x, v = x−1v′ where
u′v′ is the reduced representative of uv. Let s1, s2, s3 be the signs of the reduced
expressions u′x, x−1v′, u′v′ respectively. We calculate

hw(uv)− hw(u)− hw(v) = hw(uv)− hw(u)− hw(v)

− hw(u′) + hw(u′)− hw(v′) + hw(v′) + hw(x) − hw(x−1)

= (0 or s3)− (0 or s1)− (0 or s2)

After possibly replacing w with w−1 and reversing the order of the strings, there
are only nine possibilities for (s1, s2, s3):

|hw(uv)− hw(u)− hw(v)| ≤





0 for (0, 0, 0)

1 for (1, 0, 0), (0, 0, 1), (1,−1, 0), (1, 0, 1)

2 for (1, 1, 0), (1, 1, 1), (1, 0,−1)

3 for (1, 1,−1)

Case ((1, 0,−1)). If w overlaps u′x and w−1 overlaps u′v′ then either some
prefix of w is equal to a substring of w−1 or some prefix of w−1 is equal to a
substring of w. In either case w has the form asserted by bullet (2).

Case ((1, 1, s)). Since w overlaps both u′x and x−1v′ we can write w = w1w2w3

where either w2w3 is the prefix of x and w1w2 is the suffix of x−1 or w3 is the prefix
of x and w1 is the suffix of x−1. In the first case, w−1

2 w−1
1 is the prefix of x so

w2 = w−1
2 which is absurd. Hence we must be in the second case, and one of

w−1
1 , w3 is a prefix of the other.

In either case w has the form asserted by bullet (2), so we are done unless
s = −1.

Subcase ((1, 1,−1)). Without loss of generality, we can assume w is of the
form w = w1w2w3w

−1
2 where w1w2w3 is the terminal string of u′ and w3w

−1
2 is

the initial string of v′. By hypothesis, a copy of w−1 = w2w
−1
3 w−1

2 w−1
1 overlaps

y := w1w2w3w3w
−1
2 .

By Lemma 2.27, the subword w−1
3 w−1

2 w−1
1 cannot overlap w1w2w3 in y. Also,

the subword w2w
−1
3 of w−1 cannot overlap w3w

−1
2 in y. Hence the w−1

3 in w−1

cannot overlap w1w2w3w3w
−1
2 at all. So if there is any overlap, either the suffix

w−1
2 w−1

1 of w−1 intersects the prefix w1w2 of y or the prefix w2 of w−1 intersects

the suffix w−1
2 of y. But neither case can occur, again by Lemma 2.27. Hence this

subcase cannot occur.

One can check that if w has the form asserted by bullet (2) then D(hw) ≥ 2 by
example. This completes the proof. �

Example 2.31 (monotone words).

Definition 2.32. A word w is monotone if for each a ∈ S, at most one of a
and a−1 appears in w.
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By Proposition 2.30, for any reduced monotone word w, there is an inequality
D(hw) ≤ 1 where D(hw) = 1 whenever |w| > 1. Notice that any reduced word of
length 2 is monotone.

It is also interesting to study linear combinations of counting quasimorphisms.
If wi is a sequence of words, and ti is a sequence of real numbers with

∑
i |ti| <∞

then
∑

i tihwi is a quasimorphism with defect at most 2
∑
i |ti|. However, even if∑

i |ti| is infinite, the function
∑

i tihwi might still be a quasimorphism.

Definition 2.33. A family of reduced words W is compatible if there are words
u, v (possibly left- and right-infinite respectively) so that for each w ∈W there is a
factorization w = uv (not necessarily unique) for which each u is a suffix of u and
each v is a prefix of v.

Proposition 2.34. Let φ =
∑

w∈W t(w)hw for some real numbers t(w). Sup-
pose there is a finite T such that for every compatible family V ⊂ W there is an
inequality ∑

w∈V

|t(w)| ≤ T

Then φ is a quasimorphism with D(φ) ≤ 3T .

Proof. Given u = u′x and v = x−1v′, the size of φ(u) + φ(v) − φ(uv) can
be estimated by counting copies of words w ∈ W which overlap u′x, x−1v′ or u′v′.
The family of words which contribute at each overlap is a compatible family, so the
claim follows. �

Example 2.35. The function

H := Haba +Habba +Habbba + · · ·
satisfies D(H) = 1 (by monotonicity, and the fact that the big and small counting
quasimorphisms are equal for these particular words).

Example 2.36. Let W be the family of all words in a, b (but not their inverses).
There are 2n words of length n. Define φ =

∑
w∈W 2−|w||w|−1hw. In a compatible

family, there are at most n words of length n for each n, so D(φ) ≤ 3. On the other
hand,

∑
w 2−|w||w|−1 =

∑
n n
−1 =∞.

Remark 2.37. Similar examples and a discussion of limits of sums of quasimorphisms are
found in [95].

2.3.3. Rotation number. Poincaré [167] introduced rotation numbers in his
study of 1-dimensional dynamical systems. Let Homeo(S1) denote the group of
homeomorphisms of the circle, and Homeo+(S1) its orientation-preserving sub-

group. Let G be a subgroup of Homeo+(S1). Let Ĝ be the preimage of G in
Homeo+(R) under the covering projection R→ S1.

Note that Ĝ is a (possibly trivial) central extension of G, and is centralized (in
Homeo+(R)) by the subgroup generated by a translation Z : x→ x+ 1.

Definition 2.38 (Poincaré’s rotation number). Given g ∈ Ĝ, define the rota-
tion number to be

rot(g) = lim
n→∞

gn(0)

n

Remark 2.39. Many authors also use the terminology “translation number” or “transla-

tion quasimorphism” for rot on bG.
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Rotation number is a quasimorphism:

Lemma 2.40. rot is a quasimorphism on Ĝ.

Proof. Since Z is central, rot(Zna) = n + rot(a) for all a. Given arbitrary
a, b, write a = Zna′, b = Zmb′ where 0 ≤ a′(0) < 1 and 0 ≤ b′(0) < 1. Of course
this implies ab = Zm+na′b′. Then

0 ≤ rot(a′) + rot(b′) ≤ 2, 0 ≤ rot(a′b′) ≤ 2

and one obtains the estimate D(rot) ≤ 2. �

In fact, one can obtain more precise information.

Lemma 2.41. For all p ∈ R and a, b ∈ Ĝ there is an inequality

p− 2 < [a, b](p) < p+ 2

Proof. For any p, after multiplying a, b by elements of the center if necessary
(which does not change [a, b]) we can assume p ≤ a(p), b(p) < p+1. Then we obtain
two inequalities

p ≤ a(p) ≤ ab(p) < a(p+ 1) < p+ 2

p ≤ b(p) ≤ ba(p) < b(p+ 1) < p+ 2

Let q = ba(p). Then from the second inequality we obtain

p ≤ q < p+ 2

and therefore from the first inequality,

q − 2 < p ≤ ab(p) = aba−1b−1(q) < p+ 2 ≤ q + 2

Since p was arbitrary, so was q (up to multiplication by an element of the center).
But the center commutes with aba−1b−1, so we obtain an inequality

q − 2 < aba−1b−1(q) < q + 2

valid for any q ∈ R. This proves the Lemma. �

Remark 2.42. Lemma 2.41 is well-known; the proof given above is essentially the same
as that of Proposition 3.1 from [197].

It follows that there is an estimate scl(a) ≥ |rot(a)|/2 for any a ∈ Ĝ. It turns
out that this estimate is sharp.

Theorem 2.43. Let Homeo+(R)Z denote the full preimage of Homeo+(S1) in
Homeo+(R). Then scl(a) = |rot(a)|/2 in Homeo+(R)Z.

Proof. Let b be an element which translates some elements in the positive
direction and some elements in the negative direction. Then for any p ∈ R and any
small ǫ > 0, some conjugate of b takes p to p+ 1 − ǫ. Similarly, some conjugate of
b−1 takes b(p) to b(p) + 1 − ǫ. It follows that for any p ∈ R and any small ǫ > 0
there is a commutator which takes p to p+ 2− 2ǫ.

Given a with |rot(a)| = r, the power an moves every point a distance less than
nr + 1. It turns out that the estimate in Lemma 2.41 is sharp, in the sense that
for any p ∈ R and any |s| < 2 one can find a commutator g such that g(p)− p = s.
Therefore an can be written as a product of at most ⌊(nr+ 1)/2⌋+ 1 commutators
with an element a′ which fixes some point. The dynamics of a′ on every comple-
mentary interval to fix(a′) is topologically conjugate to a translation of R, which is
the commutator of two dilations. Therefore any element a′ of Homeo+(R)Z with a
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fixed point is a commutator. So cl(an) ≤ ⌊(nr + 1)/2⌋+ 2. Dividing both sides by
n, and taking the limit as n→∞ we get an inequality scl(a) ≤ |rot(a)|/2.

On the other hand, since an moves every point a distance at least nr + 1, and
by Lemma 2.41 every commutator moves every point a distance at most 2, we get
an inequality n|rot(a)| ≤ 2 ·cl(an)+1 and therefore |rot(a)|/2 ≤ scl(a). This proves
the Theorem. �

See e.g. [70] for more details and an extensive discussion.

Remark 2.44. Note that the group Homeo+(S1) is uniformly perfect — every element can
be written as a product of at most two commutators. For, every element can be written as
a product of two elements both of which have a fixed point, and (as observed in the proof
of Theorem 2.43) every element of Homeo+(S1) with a fixed point is a commutator. In
fact, a more detailed argument shows that every element of Homeo+(S1) is a commutator.

2.4. Bounded cohomology

2.4.1. Bar complex.

Definition 2.45. Let G be a group. The bar complex C∗(G) is the complex
generated in dimension n by n-tuples (g1, . . . , gn) with gi ∈ G and with boundary
map ∂ defined by the formula

∂(g1, . . . , gn) = (g2, . . . , gn)+

n−1∑

i=1

(−1)i(g1, . . . , gigi+1, . . . , gn)+(−1)n(g1, . . . , gn−1)

For a coefficient group R, we let C∗(G;R) denote the terms in the dual cochain
complex Hom(C∗(G), R), and let δ denote the adjoint of ∂. The homology groups
of C∗(G;R) are called the group cohomology of G with coefficients in R, and are
denoted H∗(G;R).

If R is a subgroup of R, a cochain α ∈ Cn(G) is bounded if

sup |α(g1, . . . , gn)| <∞

where the supremum is taken over all generators. This supremum is called the norm
of α, and is denoted ‖α‖∞. The set of all bounded cochains forms a subcomplex
C∗b (G) of C∗(G), and its homology is the so-called bounded cohomology H∗b (G).

The norm ‖ · ‖∞ makes Cnb (G) into a Banach space for each n. There is a
natural function on H∗b (G) defined as follows: if [α] ∈ H∗b (G) is a cohomology class,
set

‖[α]‖∞ = inf ‖σ‖∞
where the infimum is taken over all cocycles σ in the class of [α]. If the bounded
coboundaries Bnb (G) are a closed subspace of Cnb (G), this function defines a Banach
norm on Hn

b (G). However, it should be pointed out that Bnb (G) is not typically
closed in Cnb (G).

There is an obvious L1 norm on C∗(G; R) defined in the same way as the
Gromov norm for singular chains from Definition 1.11, so these chain groups may
be thought of as (typically incomplete) normed vector spaces.
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2.4.2. Amenable groups. Let G be a group. Recall that a mean on G is a
linear functional on L∞(G) which maps the constant function f(g) = 1 to 1, and
maps non-negative functions to non-negative numbers.

Definition 2.46. A group G is amenable if there is a G-invariant mean π :
L∞(G)→ R where G acts on L∞(G) by

g · f(h) = f(g−1h)

for all g, h ∈ G and f ∈ L∞(G).

Examples of amenable groups are finite groups, solvable groups, and Grig-
orchuk’s groups of intermediate growth.

Bounded cohomology behaves well under amenable covers:

Theorem 2.47 (Johnson, Trauber, Gromov). Let

1→ H → G→ A→ 1

be exact, where A is amenable. Then the natural homomorphisms H∗b (G; R) →
H∗b (H ; R)A are isometric isomorphisms in each dimension.

Here H∗b (H ; R)A denotes the A-invariant part of H∗b (H ; R) under the action
of A on H by outer automorphisms. In particular, if H∗b (H ; R) vanishes, so does
H∗b (G; R). We give the sketch of a proof (also see Proposition 2.65):

Proof. Replace groups by spaces, so that X is a K(G, 1), and X̃ is a K(H, 1)
thought of as a covering space of X with deck group A. The complex of singular
bounded cochains C∗b (X) on X can be naturally identified with the complex of A-

invariant singular bounded cochains C∗b (X̃)A on X̃ . Since A is amenable, averaging

over orbits defines an A-invariant projection π : C∗b (X̃)→ C∗b (X). The projection π
commutes with the coboundary, and is a left inverse to the pullback homomorphism
defined by X̃ → X , and therefore the pullback homomorphism induces an isometric
embedding H∗b (X) → H∗b (X̃). The image is clearly contained in H∗b (X̃)A, and in
fact by averaging can be shown to coincide with it.

The proof is completed by showing that bounded group cohomology H∗b (G; R)
is isometrically isomorphic to bounded singular cohomologyH∗b (K(G, 1); R) for any
G. �

See [117] or [97] pp. 38–44 for more details.

Remark 2.48. Theorem 2.47 is only valid for R coefficients, since the maps depend on
averaging, which does not make sense over other coefficient groups. In particular, bounded
cohomology over other coefficient groups (e.g. Z) can be nontrivial, and even quite inter-
esting, for some amenable groups.

An important corollary is the case that G = A amenable. Since H∗b of the
trivial group is trivial, this implies that H∗b (A; R) vanishes identically when A is
amenable.

Fibrations with amenable fiber are not so well-behaved, since spectral sequences
for bounded cohomology are complicated. However, in dimension two, one has the
following useful theorem of Bouarich [19]:

Theorem 2.49 (Bouarich [19]). Let

K → G→ H → 1
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be exact. Then the induced sequence on second bounded cohomology is (left) exact:

0→ H2
b (H ; R)→ H2

b (G; R)→ H2
b (K; R)

In particular, if K is amenable, H2
b (H) → H2

b (G) is an isomorphism. We will
give a proof of this theorem in § 2.7.2.

For a more detailed introduction to bounded cohomology, see Gromov’s paper
[97] or either of the references [115], [157].

2.4.3. Exact sequences and filling norms. I am grateful to Shigenori Mat-
sumoto who provided elegant proofs of many results in this section. In the sequel,
we use some of the elements of abstract functional analysis; Rudin [180] is a general
reference.

Recall our notation Q̂(G) for the vector space of all quasimorphisms on G,
and Q(G) for the vector subspace of homogeneous quasimorphisms. Recall that

D(·) defines pseudo-norms on both Q̂(G) and Q(G) which vanish exactly on the
subspace spanned by homomorphisms G → R. This subspace may be naturally
identified with H1(G; R).

A real-valued function ϕ on G may be thought of as a 1-cochain, i.e. as an
element of C1(G; R). The coboundary δ of such a function is defined by the formula

δϕ(a, b) = ϕ(a) + ϕ(b)− ϕ(ab)

At the level of norms, there is an equality, ‖δϕ‖∞ = D(ϕ). It follows that the
coboundary of a quasimorphism is a bounded 2-cocycle.

Theorem 2.50 (Exact sequence). There is an exact sequence

0→ H1(G; R)→ Q(G)→ H2
b (G; R)→ H2(G; R)

Proof. There is an exact sequence of chain complexes

0→ C∗b → C∗ → C∗/C∗b → 0

and an associated long exact sequence of cohomology groups. A bounded homo-
morphism to R is trivial, hence H1

b (G; R) = 0 for any group G. A function ϕ on

G is in Q̂(G) if and only if δϕ is in C2
b . Moreover, any two quasimorphisms which

differ by a bounded amount have the same homogenization. Hence

H1(C∗/C∗b ) = Q̂/C1
b
∼= Q

�

Example 2.51. Recall from § 2.3.3 that rot is a homogeneous quasimorphism
on the group Homeo+(R)Z, which is our notation for the group of homeomorphisms
of R which are periodic with period 1. Further recall that this group is the uni-
versal central extension of Homeo+(S1). The function rot does not descend to
a well-defined real-valued function on Homeo+(S1), but it is well-defined mod Z.
However, the coboundary [δrot], as a class in H2

b (Homeo+(R)Z), can be pulled back

from a class in H2
b (Homeo+(S1)). By Theorem 2.50, the image of this class in

H2(Homeo+(S1)) is a nontrivial class, called the Euler class. The L∞ norm of this
class is 1/2 (compare with Theorem 2.43). This fact is otherwise known as the
Milnor–Wood inequality ([154],[204]), and is usually stated in the following way:



2.4. BOUNDED COHOMOLOGY 29

Theorem 2.52 (Milnor–Wood inequality). Let S be a closed, oriented sur-
face of genus g, and let ρ : π1(S) → Homeo+(S1) be an action of π1(S) on a
circle by homeomorphisms. Let [e] ∈ H2(S) be the pullback of the generator of
H2(Homeo+(S1); Z). Then there is an inequality

|[e](S)| ≤ −χ−(S)

For ease of notation, we abbreviate C∗(G; R) in what follows by C∗. Similarly,
denote cycles and boundaries with real coefficients by Z∗ and B∗ respectively. Then

0→ Z2 → C2 → B1 → 0

is exact. Since C2 is normed, and Z2 is a normed subspace, B1 inherits a quotient
norm.

Observe that if a ∈ [G,G] then a ∈ B1 when thought of as a generator of C1.
For example, if a = [x, y] then

∂((xyx−1, x) + ([x, y], y)− (x, y)) = [x, y]

In general, a one-vertex triangulation of a surface of genus g with one boundary
component exhibits a product of g commutators as an element of B1.

Definition 2.53. Let a ∈ B1(G; R). The Gersten boundary norm (or just the
Gersten norm or the boundary norm) of a, denoted ‖a‖B, is defined by

‖a‖B = inf
∂A=a

‖A‖1

where the infimum is taken over all 2-chains A ∈ C2(G; R) with boundary a, and
‖A‖1 denotes the usual L1 norm.

Remark 2.54. Gersten calls his norm a filling norm in [90]. However, we reserve this
name for a suitable homogenization of ‖ · ‖B .

It is important to note that this quotient is really a norm and not just a pseudo-
norm, since ∂ is a bounded operator on C2 of norm 3, and therefore ‖a‖1 ≤ 3‖a‖B.
In particular, Z2 is closed in C2 in the L1 norm.

Remark 2.55. We can define Cl1∗ to be the completion of C∗ with respect to the L1 norm.
The boundary map ∂ extends continuously to Cl1∗ , and we let Zl1∗ and Bl1∗ denote the
kernel and image of ∂ respectively. The exact sequence

0→ Zl12 → Cl12 → Bl11 → 0

defines a quotient norm on Bl11 and thereby on B1 under inclusion B1 → Bl11 . However, in

general there is a strict inclusion Z2 ⊂ Zl12 , where Z∗ denotes the completion of Z∗ in the

L1 norm, and therefore the norm B1 inherits as a subspace of Cl12 /Z
l1
2 will be typically

smaller than ‖ · ‖B .
In fact there is an important special case in which the two norms on B1 are the same.

Matsumoto–Morita [150] say that the chain complex C∗ satisfies condition 1-UBC if there
is a positive constant K > 0 such that K‖a‖B ≤ ‖a‖1 for all a ∈ B1. Note that this is
equivalent to the condition that the norms ‖ · ‖1 and ‖ · ‖B induce the same topology on

B1. Under this circumstance, there is an equality Z2 = Zl12 . In fact, Theorem 2.8 from
[150] implies that condition 1-UBC is equivalent to injectivity of the map H2

b → H2.
By Theorem 2.50, this is equivalent to Q(G)/H1(G) = 0, a situation which is largely
orthogonal to the focus of this book.

We now identify the dual space of B1 with respect to the norm ‖ · ‖B.
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Lemma 2.56. The dual of B1 with respect to the ‖·‖B norm is Q̂(G)/H1(G; R),
and the operator norm on the dual is equal to D(·) = ‖δ · ‖∞.

Proof. In the sequel, if V is a normed vector space, we denote the space of
bounded linear functionals on V with the operator norm by V ′.

By definition of the quotient norm, an element f of B′1 determines F ∈ C′2 with
the same operator norm, vanishing on Z2, by the formula F (A) = f(∂A). Since F
vanishes on Z2, it is a coboundary; hence F = δφ where φ ∈ C1 is unique up to
an element of H1. Since F is bounded, φ is a quasimorphism, and we have defined

B′1 → Q̂/H1 (note that the restriction of φ to B1 is equal to f). This map is
evidently injective and surjective, and is therefore an isomorphism of vector spaces.

It remains to identify the norm. Let b ∈ B1 be an element with ‖b‖B = 1, so
there is A ∈ C2 with ∂A = b and ‖A‖1 − 1 < ǫ. Express A as A =

∑
j rj(gj, hj)

with rj ∈ R, and
∑
j |rj | − 1 < ǫ. By the triangle inequality,

|F (A)|/(1 + ǫ) ≤ sup
j
|F (gj , hj)| = sup

j
|δφ(gj , hj)| = sup

j
|φ(∂(gj , hj))|

= sup
j
|φ(gjhj)− φ(gj)− φ(hj)| ≤ D(φ)

so we deduce that the operator norm of F (and therefore that of f) is ≤ D(φ).
Conversely, let g1, g2 ∈ G be arbitrary. Then (except in degenerate cases)

∂(g1, g2) = g1 + g2 − g1g2 has L1 norm equal to 3, and therefore

1 ≥ ‖∂(g1, g2)‖B ≥
1

3
‖∂(g1, g2)‖1 = 1

But F (g1, g2) = φ(g1)+φ(g2)−φ(g1g2), so by the definition of the defect there are
g1, g2 ∈ G with ‖∂(g1, g2)‖B = 1 for which |F (g1, g2)| is arbitrarily close to D(φ).
This implies that the operator norm of F is at least equal to D(φ), and together
with the previous inequality, this shows that the operator norm of F is exactly
equal to the defect of φ, as claimed. �

We deduce the following corollary:

Corollary 2.57. The space Q̂/H1 with its defect norm is a Banach space,

and is isometric to the dual of Cl12 /Z2 with its L1 norm.

Proof. By Lemma 2.56, we know that Q̂/H1 with its defect norm is the dual
of B1 with its ‖ ·‖B norm, which by definition is equal to the dual of C2/Z2 with its
L1 norm. If X is a normed vector space, and Y is a closed normed vector subspace,
the dual (X/Y )′ is isometrically isomorphic to the dual (X/Y )′ where the overline

denotes completion with respect to the norm. In our case, Cl12 and Z2 are the
completions of C2 and Z2 in the L1 norm, so the second claim of the corollary
follows.

The dual space of a normed vector space is always a Banach space. Hence the
first claim follows already from Lemma 2.56. �

Since homogeneity is a closed condition, the quotient Q/H1 is a Banach sub-

space of Q̂/H1. We refer to the Banach topology on this space as the defect topol-
ogy. A priori, there is a natural pseudo-norm on H2

b . We will see shortly that
this pseudo-norm is actually a norm (this fact is due to Matsumoto–Morita [150]).
Theorem 2.50 shows that δ is an injection of Q/H1 into H2

b . The next lemma
describes how the norm behaves under δ :
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Lemma 2.58. Let φ ∈ Q(G). Then

D(φ) ≥ ‖[δφ]‖∞ ≥
1

2
D(φ)

Proof. By definition, ‖[δφ]‖ is the infimum of the L∞ norm of all bounded
2-cocycles A which are cohomologous to δφ. Now any such A is of the form δf for
some unique (not necessarily homogeneous) quasimorphism f for which f−φ ∈ C1

b .
In particular, φ is the homogenization of f , and we have an inequality

‖[δφ]‖∞ = inf
f−φ∈C1

b

D(f) ≤ D(φ)

Since any quasimorphism can be antisymmetrized without increasing its defect, it
suffices to take the infimum over antisymmetric f .

Let a, b ∈ G be such that |δφ(a, b)| is very close to D(φ). Recall from the
proof of Lemma 2.24 that a2nb2n(ab)−2n can be written as a product of at most
n commutators. Since f is antisymmetric, it follows that |f(a2nb2n(ab)−2n)| ≤
(4n − 1)D(f). Since f − φ ∈ C1

b , there is a constant C, independent of a, b and
n, so that |f(a2nb2n(ab)−2n)− φ(a2nb2n(ab)−2n)| ≤ C. Moreover, by homogeneity,
|φ(a2nb2n(ab)−2n)− 2nδφ(a, b)| ≤ 2D(φ) and therefore

lim
n→∞

|φ(a2nb2n(ab)−2n)|
2n

= |δφ(a, b)|

which is arbitrarily close to D(φ). Putting this together, we get an estimate

D(φ) ≤ 2D(f)

and the lemma is proved. �

It is convenient to explicitly record the following corollary:

Corollary 2.59. Let f ∈ Q̂(G) with homogenization φ ∈ Q(G). Then

D(f) = ‖δf‖∞ ≥ ‖[δφ]‖∞ ≥
1

2
D(φ)

Remark 2.60. Lemma 2.58 and its Corollary can be restated in homological language.
The following argument is due to Shigenori Matsumoto. Since C1

b ∩H1 = 0, we can think

of C1
b as a subspace of bQ/H1. We have already shown in Corollary 2.57 that bQ/H1 can

be identified with the dual (Cl12 /Z2)
′. What is the image δ(C1

b ) in this dual space? First
we make an observation.

Lemma 2.61. The boundary map ∂ : Cl12 → Cl11 has a (bounded) cross-section σ
defined by the formula

σ(g) =
1

2
(g, g) +

1

4
(g2, g2) + · · ·

Proof. The proof is immediate. �

From this it follows that Bl11 = Cl11 as abstract vector spaces. Moreover, Lemma 2.61

shows that ‖b‖B ≤ ‖b‖1 for b ∈ Cl11 . Since we also have ‖b‖B ≥ 1
3
‖b‖1, this shows that the

quotient norm and the L1 norm on Cl11 are equivalent (though not necessarily isometric).

The dual of Cl11 with its L1 norm is C1
b with its L∞ norm. Dualizing Zl12 → Cl12 → Cl11

shows that the image δ(C1
b ) is equal to (Cl12 /Z

l1
2 )′. Since bQ/H1 = (Cl12 /Z2)

′, if we give
bQ/(C1

b ⊕H1) = ( bQ/H1)/C1
b its quotient norm, we obtain an isometric isomorphism

bQ/(C1
b ⊕H1)

δ−→ (Zl12 /Z2)
′
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As vector spaces, Q/H1 and bQ/(C1
b ⊕ H1) are naturally isomorphic; in this language,

Lemma 2.58 says that their norms differ at most by a factor of 2.

Unfortunately, the Banach space Q(G)/H1(G; R) is typically very big, even if
G is finitely presented. We give some examples to illustrate this phenomenon for
the case that G is free.

Example 2.62 (Free group). Let F denote the free group on two generators
a, b. Let wn = abna for each positive integer n. For each f : N→ {0, 1} define

Hf =
∑

n

f(n)Hwn

where each Hwn is the big counting function (see Definition 2.25), and the overline
denotes homogenization. Since the words are not nested, D(Hf ) = 1 for each f

(compare with Example 2.35), and therefore D(Hf ) ≤ 2 by Corollary 2.59. If f 6= g
then if n is in the support of f but not g (say), we have

(Hf −Hg)(ab
na) = 1

so the difference is nontrivial. On the other hand, since Hf and Hg vanish on both

a and b, they are not in H1. It follows that D(Hf −Hg) is positive, and since they
are both integer valued, the defect is at least 1. In other words, we have constructed
a subset of Q(F )/H1(F ) of cardinality 2ℵ0 which is discrete in the defect topology.
In particular, Q/H1 is not separable.

Example 2.63 (Density). Jason Manning constructed an explicit example of
a vector in Q(F )/H1(F ) which is not in the closure (in the defect topology) of
the span of Brooks quasimorphisms. For each n let wn = [anbna−n, b−n]. Then
Hv(wn) = hv(wn) = 0 where Hv and hv denote the homogenizations of the big
and small counting functions, whenever v is a word of length ≤ n. Now, define

H =
∑

i

Hwi

Since the wi and their inverses do not overlap, one can estimate D(H) ≤ 6. Now

suppose H
′
is a finite linear combination of homogenized counting quasimorphisms

(of either sort). Then there is an n such that H
′
(wn) = 0 but H(wn) = 1. Since

each wn is a commutator, by Lemma 2.24 it follows that D(H
′ −H) ≥ 1.

Example 2.64 (Pullbacks). Let F3 = 〈a, b, c〉 and F2 = 〈a, b〉. Let p : F3 → F2

be the obvious retraction, obtained by killing c. Let h ∈ Q(F2) be the homogeniza-
tion of the Brooks function hab, and let p∗h ∈ Q(F3) denote the pullback. Then p∗h
is not in the closure of the span of Brooks quasimorphisms. To see why, consider the
elements wn := anca−nb−1anc−1a−nb and w′n := an−1ca−nb−1anc−1a1−nb. The el-
ement wn is in the kernel of p, but p(w′n) = a−1b−1ab so p∗hab(wn) = 0 whereas
p∗hab(w

′
n) = 1. Note further that each wn is a commutator, and each w′n is a

product of two commutators, and therefore satisfies scl(w′n) ≤ 3/2. Notice that for
any word v we must have hv(wn) = hv(w

′
n) for sufficiently large n (and similarly

for Hv). It follows that p∗h cannot be approximated in defect by the homogeniza-
tion of a finite linear combination of Brooks quasimorphisms (of either kind). This
example is obviously not sporadic; a similar argument shows that if p : F → G is
surjective with nontrivial kernel, and h ∈ Q(G) is not in H1(G), then p∗h is never
in the closure of the span of Brooks quasimorphisms.
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If G is amenable, Theorem 2.47 shows that H2
b (G; R) = 0 and therefore Q(G) =

H1(G; R); in other words, every homogeneous quasimorphism on an amenable group
is a homomorphism to R. For completeness, we give a self-contained proof of this
fact.

Proposition 2.65. Let G be amenable. Then every homogeneous quasimor-
phism on G is a homomorphism to R.

Proof. Let φ : G → R be a quasimorphism. We will construct a homomor-
phism which differs from φ by a bounded amount; this is enough to prove the
proposition. Let RG×G be the space of real valued functions on G × G, with the
topology of pointwise convergence. A function φ : G → R determines an element
Φ : G×G→ R by the formula

Φ(a, b) = φ(a) − φ(b)

The group G acts on G ×G diagonally: g(a, b) = (ga, gb) and thus on RG×G. For
any g ∈ G, we have gΦ(a, b) = φ(ga)− φ(gb) and therefore

|gΦ(a, b)− Φ(a, b)| ≤ 2D(φ)

Hence the convex hull of the orbit GΦ is a compact, convex, G-invariant subset
of RG×G. Note that Φ has the property that Φ(a, b) + Φ(b, c) = Φ(a, c) for any
a, b, c ∈ G. In particular, Φ vanishes on any (a, a) and is antisymmetric in its
arguments. This property is invariant under the action of G, and preserved under
linear combinations and limits, and therefore holds for any element of the closed
convex hull of GΦ. This part of the argument does not use the fact that G is
amenable.

If G is amenable, any linear action by G on a topological vector space which
leaves invariant a compact, convex subset must have a global fixed point in that
set; basically, the barycenter of any bounded orbit, weighted by the invariant mean,
is G-invariant. If Ψ is such a G-invariant function we can define ψ : G → R by
ψ(a) = Ψ(a, id). Since Ψ is G-invariant, ψ(ab) = Ψ(ab, id) = Ψ(b, a−1). But
Ψ(b, a−1) + Ψ(a−1, id) = Ψ(b, id) so ψ(ab) = ψ(b)− ψ(a−1). Since

ψ(a−1) = Ψ(a−1, id) = Ψ(id, a) = −Ψ(a, id) = −ψ(a)

we are done. �

2.4.4. Antisymmetrization and orientations. In singular homology, sim-
plices are marked by a total ordering of the vertices. Similarly, in group homology,
generators of the bar complex are ordered tuples of group elements. Given a simplex
∆n, the symmetric group Sn+1 acts on ∆n by permuting the vertices. There is a
chain map s : C∗ → C∗ ⊗Q defined on a generator σ of Cn by

s(σ) =
1

(n+ 1)!

∑

g∈Sn+1

sign(g)σ ◦ g

where sign(g) is ±1 depending on whether g : ∆n → ∆n is orientation preserving
or reversing. We can define a similar chain map from the bar complex C∗(G) ⊗ Q

to itself.
The chain map s is chain homotopic to id, and therefore induces an isomorphism

in homology over Q or R. Moreover, this chain map has operator norm 1 in each
dimension with respect to the L1 norm.
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In dimension 1, the map s replaces an element a ∈ G with the sum

s : a→ 1

2
(a− a−1)

It follows that if f ′ is the antisymmetrization of a 1-cochain f , there is an equality

f ′(a) = f(s(a))

that is, f ′ = s∗f where s∗ is the adjoint of s in dimension 1. The observation in
§ 2.2.2 that antisymmetrization of quasimorphisms does not increase defect is dual
to the the observation that s has operator norm 1.

This discussion is most relevant when one considers bounded cohomology over
other coefficient groups, for instance over Z. One can neither (anti)symmetrize
chains nor cochains over Z, and therefore some of the estimates we obtain in this
section are no longer valid in greater generality.

2.5. Bavard’s Duality Theorem

2.5.1. Banach duality and filling norms. In the last section, we defined
the Gersten boundary norm, and identified its dual space. By an application of
the Hahn–Banach Theorem, Lemma 2.56 lets us reinterpret the Gersten boundary
norm in terms of quasimorphisms.

Corollary 2.66. Let a ∈ [G,G] so that a ∈ B1 as a cycle. Then

‖a‖B = sup
φ∈ bQ(G)/H1(G;R)

|φ(a)|
D(φ)

To relate the Gersten norm to stable commutator length, we must homogenize.

Definition 2.67. Define the filling norm, denoted fill(a) to be the homoge-
nization of ‖a‖B. That is,

fill(a) = lim
n→∞

‖an‖B
n

Remark 2.68. Some authors refer to fill(·) as the stable filling norm, to distinguish it from
the Gersten filling norm.

It is not quite true that the function ‖an‖B is subadditive in n. However, for
any r, s there is an identity ∂(ar, as) = ar + as − ar+s and therefore ‖ar+s‖B ≤
‖ar‖B + ‖as‖B + 1. This is enough to show that the limit exists in Definition 2.67.

Using the estimates proved in Chapter 1, we can relate scl and fill(·) in a
straightforward manner:

Lemma 2.69 (Bavard, Prop. 3.2. [8]). There is an equality

scl(a) =
1

4
fill(a)

Proof. An expression of an as a product of commutators lets us construct
an orientable surface S with one boundary component, and a homomorphism ϕ :
π1(S) → G with ϕ∗∂S = an in π1. We can find a triangulation of S with 4 ·
genus(S)− 1 triangles, where one edge maps to the boundary, and therefore

‖an‖B ≤ 4 · cl(an)− 1

Dividing both sides by n, and taking the limit as n→∞ gives the inequality

fill(a) ≤ 4 · scl(a)
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Conversely, let A be a chain with ∂A = a with ‖A‖1 close to ‖a‖B. Let V
be the finite dimensional subspace of C2(G; R) consisting of 2-chains with support
contained in the support of A. Since V is a rational subspace, and a is a rational
chain, the subspace V ∩∂−1(a) contains rational points arbitrarily close to A (com-
pare with Remark 1.5). So we may assume A is rational, after changing its norm
an arbitrarily small amount. After scaling by some integer, we may assume A is an
integral chain with ∂A = na for which the ratio ‖A‖1/n‖a‖B is very close to 1.

As in Example 1.4, there is an orientable surface S and a chain AS representing
the fundamental class of S, and a map ϕ : π1(S)→ G sending boundary components
to powers of conjugates of a, and such that ϕ∗(AS) = A. Moreover, by construction,
‖AS‖1 = ‖A‖1.

By Theorem 1.14 and Lemma 2.10 we have an inequality

‖AS‖1
n

≥ −2χ(S)

n
≥ 4 · scl(a)

But ‖AS‖1/n may be taken to be arbitrarily close to ‖a‖B. Homogenizing the left
hand side (and using the fact that the right hand side is homogeneous by definition)
we obtain

fill(a) ≥ 4 · scl(a)
Putting this together with the earlier inequality, we are done. �

2.5.2. Bavard’s Duality Theorem. We are now in a position to relate quasi-
morphisms and stable commutator length by means of Bavard’s Duality Theorem:

Theorem 2.70 (Bavard’s Duality Theorem, [8]). Let G be a group. Then for
any a ∈ [G,G], we have an equality

scl(a) =
1

2
sup

φ∈Q(G)/H1(G;R)

|φ(a)|
D(φ)

Proof. For the sake of legibility, we suppressG in our notation in what follows.
By Corollary 2.66 there is a duality

‖a‖B = sup
φ∈ bQ/H1

|φ(a)|
D(φ)

Homogenizing and applying Lemma 2.69, we obtain an equality

scl(a) =
1

4
lim
n→∞

(
sup

φ∈ bQ/H1

|φ(an)|
nD(φ)

)

Recall that in Lemma 2.21 we obtained the estimate |φ(an)−φ(an)| ≤ D(φ) where

φ denotes the homogenization of φ. It follows that for each n and any φ ∈ Q̂ there
is an inequality

|φ(an)− φ(an)|
nD(φ)

≤ n−1

Parsing this, for each n let φni be a sequence of elements in Q̂(G) such that

φnm(an)/nD(φnm) is within m−1 of the supremum. Then φnm
(an)/nD(φnm) is

within m−1 + n−1 of the supremum. Using φ(an)/n = φ(a) and passing to a
diagonal subsequence, we obtain

scl(a) =
1

4
sup

φ∈ bQ/H1

|φ(a)|
D(φ)
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By Corollary 2.59, we get an inequality

scl(a) ≤ 1

2
sup

φ∈Q/H1

|φ(a)|
D(φ)

On the other hand, for any homogeneous quasimorphism φ, if an is a product of m
commutators then

|φ(an)| ≤ 2mD(φ)

so we get an inequality in the other direction, and the theorem is proved. �

2.6. Stable commutator length as a norm

In this section we show that scl can be extended in a natural way to a pseudo-
norm on (a suitable quotient of) B1. Moreover Bavard duality holds more generally
in this broader context, thus revealing it as a genuine duality theorem (in the usual
sense of functional analysis).

2.6.1. Definition.

Definition 2.71. Let G be a group, and ai ∈ G for 1 ≤ i ≤ m a finite collection
of elements. If the product of the ai is in [G,G], then define cl(a1 + a2 + · · ·+ am)
to be the smallest number of commutators whose product is equal to an expression
of the form

a1t1a2t
−1
1 · · · tm−1amt

−1
m−1

for some elements ti ∈ G. Then define

scl(
∑

i

ai) = lim
n→∞

cl(
∑

i a
n
i )

n

Geometrically, if π1(X) = G, and γi is a loop in X representing the conjugacy
class of ai, then cl(

∑
i ai) is the least genus of a surface with m boundary compo-

nents which maps to X in such a way that the ith boundary component wraps once
around γi.

Remark 2.72. If the product of the ai has order n in H1(G; Z), define scl(
P
ai) =

1
n
scl(

P
ani ), and otherwise define scl(

P
ai) =∞.

In fact, it it not immediately obvious that the limit in Definition 2.71 exists,
since the function cln(

∑
ai) := cl(

∑
ani ) is not subadditive as a function of n. We

address this issue in the next lemma.

Lemma 2.73. The limit in Definition 2.71 exists when it is defined (i.e. when
the product of the ai are in [G,G]).

Proof. If
∑
ai hasm terms, define cln,m = cl(

∑
ani )+(m−1). Then (for fixed

m) the function cln,m is subadditive as a function of n. For, if Sn1
, Sn2

are surfaces
with m boundary components, each of which wraps n1 and n2 times respectively
around each of m loops, then they can be tubed together by adding m rectan-
gles to produce a surface S′ with m boundary components, each of which wraps
n1 + n2 times around each of the m loops, and satisfies genus(S′) = genus(Sn1

) +
genus(Sn2

) + (m− 1). On the other hand, for fixed m, there is an equality

lim
n→∞

cl(
∑
ani )

n
= lim
n→∞

cl(
∑
ani ) + (m− 1)

n
the right hand limit exists by the subadditivity of cln,m, and therefore the left hand
side does too. �
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Given a space X and loops γi : S1 → X we say that a map f : S → X is
admissible if there is a commutative diagram:

S∂S

∐
i S

1 X

................................................................................................................................................................... ............
i

.........................................................

......

......
......

∂f
.........................................................
......
......
......

f

......................................................................................................................................................... ............∐
γi

for which there is an integer n(S) such that

∂f∗[∂S] = n(S)[
∐

i

S1]

(note that the existence of an integer n(S) is not automatic from the commutativity
of the diagram, when there is more than one γi).

One has the following analogue of Proposition 2.10.

Proposition 2.74. Let π1(X) = G, and for 1 ≤ i ≤ m, let γi : S1 → X be a
loop representing the conjugacy class of ai ∈ G. Then

scl(
∑

i

ai) = inf
S

−χ−(S)

2n(S)

where the infimum is taken over all admissible maps as above.

Proof. The proof is almost identical to that of Proposition 2.10. An inequality
in one direction follows from the definition, at least if one uses the “corrected”
function cln,m in place of cln (see Lemma 2.73). To obtain the inequality in the
other direction, let f : S → X be an admissible map of a surface. Without loss
of generality, one may restrict attention to the case that each component of Si
has at least one boundary component mapping with nontrivial degree to some γi.
Fix some big (even) integer N , and construct connected covers Ti of each Si of
degree 2N , each with at most twice as many boundary components as Si. The
Ti may be surgered to have exactly m boundary components, each mapping to
some γi with degree 2Nn(S) by gluing on only a constant number of rectangles,
and thereby raising −χ by an amount which is independent of N . The reverse
inequality follows. �

A surface realizing the infimum in Proposition 2.74 is called extremal (compare
with Definition 2.11).

From the geometric perspective it is clear that scl(
∑
ai) depends only on the

conjugacy class of each term ai, and is commutative in its arguments.

Lemma 2.75. scl satisfies the identity

scl(an +
∑

ai) = scl(a+ · · ·+ a︸ ︷︷ ︸
n

+
∑

ai)

for any non-negative integer n and any a, ai ∈ G.

Proof. We use Proposition 2.74. Let X be a space with π1(X) = G and let γ
be a loop representing the conjugacy class of a. Let S be a surface mapping to X ,
with n boundary components each wrapping around γ a total of m times, for some
large m, and the rest wrapping around loops γi corresponding to the conjugacy
classes of the ai. The distinct boundary components wrapping around γ can be
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tubed together at the cost of raising −χ−(S) by n − 1, which can be taken to be
arbitrarily small compared to m. This establishes an inequality in one direction.

Conversely, if S is a surface mapping to X with one boundary component
wrapping some number of times around γn and the rest around the γi, take n
copies of S to obtain the inequality in the other direction. �

Similarly we have the following.

Lemma 2.76. scl satisfies the identity

scl(a+ a−1 +
∑

ai) = scl(
∑

ai)

for any a, ai ∈ G.

Proof. Let X, γ, γi be as before. Let S be a surface whose boundary wraps
around the various γi. Let A be an annulus from γ to γ−1 and let S′ be the disjoint
union of S with some number of parallel copies of A. Then −χ−(S) = −χ−(S′).

Conversely, suppose S is a surface with one boundary component ∂1 bounding
γm and one component ∂2 bounding γ−m. Glue ∂1 to ∂2 to obtain a surface S′

with −χ−(S) = −χ−(S′). �

By abuse of notation we define scl(
∑

i ai − a) := scl(
∑

i ai + a−1). It follows
from Lemma 2.75 and Lemma 2.76 that for any a, ai and for any equality n =

∑
i ni

over Z there is a corresponding equality

scl(an +
∑

j

aj) = scl(
∑

i

ani +
∑

j

aj)

Moreover, for any integer n, there is an equality

|n| scl(
∑

ai) = scl(
∑

nai) = scl(
∑

ani )

Consequently scl can be extended by linearity on rays to rational chains
∑
i riai

representing 0 in H1(G; Q). Since scl is subadditive on rational chains, it extends
continuously in a unique way to a pseudo-norm on the real vector space B1(G).

Recall from § 2.5.1 that we defined the Gersten norm ‖ · ‖B on B1 by the
equality

‖a‖B = inf
∂A=a

‖A‖1
where a ∈ B1 and A ∈ C2. Then for an element g ∈ [G,G] we defined the (stable)
filling norm by the formula

fill(g) = lim
n→∞

‖gn‖B
n

One can extend fill to all of B1. First extend fill to integral chains:

fill(
∑

i

gi) = lim
n→∞

‖∑i g
n
i ‖B

n

and then by linearity to rational chains, and by continuity to arbitrary chains
in B1. To see that a continuous extension exists, observe that for each n, there
is an inequality ‖∑i g

n
i +

∑
j f

n
j ‖B ≤ ‖

∑
i g
n
i ‖B + ‖∑j f

n
j ‖B and therefore fill

is subadditive. Since fill is homogeneous, it is evidently a class function in each
argument.

With this definition, one obtains the following analogue of Lemma 2.69:
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Lemma 2.77. For any finite linear chain
∑
i tiai ∈ B1 there is an equality

scl(
∑

i

tiai) =
1

4
fill(
∑

i

tiai)

Proof. It suffices to prove the result for integral chains; i.e. chains of the form∑
i ai for 1 ≤ i ≤ m.

The proof is very similar to that of Lemma 2.69; the only complication is the
issue of basepoints. A surface S realizing cl(

∑
i a
n
i ) can be efficiently triangulated,

as in Theorem 1.14, with 4cl(
∑

i a
n
i ) + 3m − 4 triangles, with exactly one vertex

on each boundary component. Let T be an embedded spanning tree in the 1-
skeleton, connecting up the boundary vertices (T has m − 1 edges). We obtain a
simplicial 2-complex with one vertex by collapsing T to a point, and then further
collapsing degenerate triangles. Denote this 2-complex by S/T . The triangulation
of S determines a triangulation of the complex S/T , with fewer triangles. Since
this complex has only one vertex, it determines a (group) 2-chain A with ‖A‖1 ≤
4cl(

∑
i a
n
i ) + 3m− 4, and satisfying ∂A =

∑
i b
n
i where each bi is conjugate to ai.

Since m is fixed, and fill is a class function in each argument, as n→∞ we obtain
an inequality in one direction.

Conversely, a 2-chain A with ∂A =
∑

i a
n
i and ‖A‖1 close to ‖∑i a

n
i ‖B can

be approximated by a rational chain. After multiplying through by a big integer
to clear denominators one obtains an (approximating) integral chain. Gluing up
triangles, one obtains a “collapsed surface” of the form S/T as above, with one
vertex on each boundary component. This collapsed surface can be thickened to a
genuine surface by adding a cylindrical collar to each boundary component, at the
cost of adding a further 2m triangles. Since m is fixed but n is arbitrarily large,
the desired inequality follows by applying Proposition 2.74, and Theorem 1.14. �

2.6.2. Generalized Bavard duality.

Definition 2.78. Let G be a group. Let H(G) (for “homogeneous”) be the
subspace of B1(G) spanned by elements of the form g − hgh−1 and gn − ng for
g, h ∈ G and n ∈ Z. Denote the quotient space as BH1 (G) := B1(G)/H(G) or BH1
for short, if G is understood.

By construction, scl vanishes on the subspace H(G), and therefore descends to
a pseudo-norm on BH1 . With this notation, we obtain the following statement of
generalized Bavard duality:

Theorem 2.79 (Generalized Bavard Duality). Let G be a group. Then for any∑
i tiai ∈ BH1 (G) there is an equality

scl(
∑

i

tiai) =
1

2
sup

φ∈Q/H1

∑
i tiφ(ai)

D(φ)

Proof. The proof is the same as that of Theorem 2.70 with Lemma 2.77 in
place of Lemma 2.69. �

This mixture of group theoretic and homological language is convenient for
deriving some interesting corollaries.

Proposition 2.80 (Finite index formula). Let G be a group, and H a subgroup
of finite index. Let g1, · · · , gm ∈ G. Suppose π1(X) = G, and let γ1, · · · , γm be
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loops in X representing the conjugacy classes of the gi. Let p : X̂ → X be a finite
cover corresponding to the subgroup H. Let β1, · · · , βl be the covers of the γi which

lift to X̂, and h1, · · · , hl the corresponding conjugacy classes in H. Then

sclG(
∑

i

gi) =
1

[G : H ]
· sclH(

∑

i

hi)

Proof. We use Proposition 2.74. Given a map of a surface f : (S, ∂S) →
(X,∪iγi) there is a finite covering map π : (Ŝ, ∂Ŝ) → (S, ∂S) such that fπ lifts to

f̂ : (Ŝ, ∂Ŝ)→ (X̂,∪iβi) in such a way that pf̂ = fπ. One way to construct such a

π is to let K < H be normal in G of finite index, and then take Ŝ to be the regular
cover of S corresponding to the kernel of the map π1(S)→ G/K. Conversely, given

g : (S, ∂S) → (X̂,∪iβi) the composition pg maps S to X , wrapping the boundary
around the various γi. The result follows. �

In the case that H is normal and g is a single element in H , the finite index
formula takes the following form:

Corollary 2.81. Let G be a group, and let H be a normal subgroup of finite
index, with (finite) quotient group A = G/H. Let h ∈ H. Then

sclG(h) =
1

|A| · sclH(
∑

a∈A

aha−1)

where for each a ∈ A, the expression aha−1 represents the corresponding (well-
defined) conjugacy class in H.

Remark 2.82. One can give a more algebraic proof of Corollary 2.81 as follows. By
Theorem 2.47, and the fact that finite groups are amenable, the map H2

b (G)→ H2
b (H) is

an isometric embedding with image equal to the A-invariant part of H2
b (H). If ψ ∈ Q(H)

then the projection ψA of ψ to Q(H)A is the sum 1/|A|Pa a
∗ψ. Here the group A acts

on H by outer automorphisms: if a = aH is a left coset of H , then aha−1 is a well-defined
element of H up to an inner automorphism. In other words, a∗ψ(h) = φ(aha−1).

It follows that

sclG(h) = sup
φ∈Q(G)

φ(h)

2D(φ)
= sup
ψ∈Q(H)

ψA(h)

2D(ψA)

Now for any ψ ∈ Q(H), one has

ψA(h) =
1

|A|
X

a

ψ(aha−1) =
1

|A|
X

a

ψA(aha−1)

Furthermore, D(ψA) ≤ D(ψ) by convexity. It follows that

1

|A| sclH(
X

a

aha−1) = sup
ψ∈Q(H)

1

|A|

P
a ψ(aha−1)

2D(ψ)
= sup
ψ∈Q(H)

1

|A|

P
a ψ

A(aha−1)

2D(ψA)

proving the formula.

Remark 2.83. Corollary 2.81 is useful even (especially?) when an element h ∈ H is in
[G,G] but not in [H,H ].

One advantage of working with the space BH1 over B1 is that while scl is, except
in trivial cases, never a genuine norm on B1, it is sometimes a genuine norm on
BH1 .

Proposition 2.84. Let F be a free group. Then scl is a genuine norm on the
vector space BH1 (F ).
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Proof. A chain c in BH1 (F ) has a representative of the form
∑
i tiwi where

each wi is a cyclically reduced primitive word in F , where all coefficients ti are
nonzero, and where no two w±1

i , w±1
j are conjugate for distinct i, j. After reordering,

assume that the length of w := w1 is at least as big as that of any wi. Let N be
a sufficiently big integer (to be determined), and let ϕ be the homogenization of
the big Brooks counting quasimorphism HwN associated to wN . We claim that for
sufficiently big N , there is equality ϕ(wi) = 0 for any i 6= 1. Since ϕ(w) = 1/N ,
this shows that scl(c) ≥ |t1|/2ND(ϕ) > 0.

To prove the claim, suppose to the contrary that for some i 6= 1 the infinite
product w∞i contains an arbitrarily big power wN as a subword, where without loss
of generality, we may assume N is positive. If N = lcm(|w|, |wi|)/|w| then wN is
conjugate to wMi for some M . But elements in free groups have unique primitive
roots, up to conjugacy, so this implies M = N and wi is conjugate to w, contrary
to hypothesis. This establishes the claim, and the proposition. �

Remark 2.85. A similar argument using de Rham quasimorphisms in place of Brooks
quasimorphisms works whenever G is equal to π1 of a closed hyperbolic manifold. In
fact, using generalized counting quasimorphisms § 3.5 one can show that scl is a norm on
BH1 (G) whenever G is a hyperbolic group.

Remark 2.86. It is not true that fill is equal to the quotient norm on BH1 under the exact
sequence

H → B1 → BH1

where B1 and H have the ‖ · ‖B norm. For instance, in a free group, a (nontrivial)
commutator ghg−1h−1 has scl norm 1/2, and therefore fill norm 2. On the other hand,
the chains ghg−1h−1 and ghg−1h−1 + hgh−1 − g differ by an element of H , and

∂(ghg−1h−1, hgh−1) = ghg−1h−1 + hgh−1 − g

so ‖ghg−1h−1 + hgh−1 − g‖B ≤ 1.

2.7. Further properties

In this section we enumerate some further properties of scl which will be used
in the sequel.

2.7.1. Extremal quasimorphisms. Theorem 2.70 provides a method of cal-
culating scl in some cases, especially when the dimension of Q(G) is small. Given
an element a ∈ [G,G], it is natural to ask whether the supremum of φ(a)/D(φ) is
realized by some φ ∈ Q(G).

Definition 2.87. Let a ∈ [G,G]. An element φ ∈ Q(G) is extremal for a if

scl(a) =
φ(a)

2D(φ)

The union of 0 with the set of homogeneous quasimorphisms on G which are ex-
tremal for a is denoted Qa(G).

The next Proposition shows that extremal quasimorphisms always exist.

Proposition 2.88. Let a ∈ [G,G]. Then Qa(G) is a nontrivial convex cone in
Q(G) which is closed both in the defect and the weak∗ topology.
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Proof. Recall from Remark 2.60 that there is an isomorphism of vector spaces
Q/H1 ∼= (Z l12 /Z2)

′. As a dual space, we can endow Q/H1 with the weak∗ topology.
A subset closed in the weak∗ topology is also closed in the defect topology.

The space

K := {ϕ ∈ Q/H1 such that D(φ) ≤ 1/2}
is convex, closed and bounded with respect to the defect norm and therefore also
with respect to the operator norm (since these two norms differ by a factor of at
most 2). Hence K is weak∗ compact.

Fix an element a ∈ [G,G] and for each n, define

Kn := {ϕ ∈ K such that ϕ(a) ≥ scl(a)− 1/n}
Let us show that Kn is weak∗ closed. Since [G,G] ⊂ B1, there is A ∈ C2 such that
dA = a. The element A−σ(a), where σ is the section defined in Lemma 2.61, satis-

fies A− σ(a) ∈ Z l12 and further satisfies δϕ(A− σ(a)) = ϕ(a) for any homogeneous
ϕ. This together with the defining property of Kn shows that Kn is weak∗ closed.

The Kn are closed and contained in K and are therefore weak∗ compact. By
Bavard duality (Theorem 2.70), each Kn is nonempty, and therefore their inter-
section is nonempty. Any element ϕ ∈ ∩nKn has ϕ(a) = scl(a) and D(ϕ) = 1/2.
Conversely any ϕ ∈ Qa(G) can be scaled to have D(ϕ) = 1/2, and therefore Qa(G)
is exactly equal to the cone on the weak∗ compact set ∩nKn. This completes the
proof. �

Remark 2.89. In a similar way we may define Qa(c) for any chain c ∈ B1. The proof of
Proposition 2.88 extends easily to this case.

2.7.2. Left exactness and Bouarich’s Theorem. For the convenience of
the reader, we provide a proof of Bouarich’s Theorem 2.49. Recall that Bouarich’s
Theorem says if

K
ι−→ G

ρ−→ H → 0

is an exact sequence of groups then the induced sequence

0→ H2
b (H ; R)

ρ∗−→ H2
b (G; R)

ι∗−→ H2
b (K; R)

is left exact. In fact, it is no more difficult to give a proof of Bouarich’s theorem
which is valid for any Abelian coefficient group; in particular, the proof we give
below applies to bounded cohomology with Z coefficients.

Proof. Without loss of generality, we can replace K by its image ι(K). So
we can assume K is a subgroup of G, and ι is the inclusion homomorphism. Since
ρι is the zero map, the composition H2

b (H)→ H2
b (G)→ H2

b (K) is zero. So we just
need to check that ρ∗ is injective, and that everything in ker(ι∗) is in the image of
the map ρ∗.

Claim. The map ρ∗ : H2
b (H)→ H2

b (G) is an injection.

Proof. Suppose ψ be a bounded 2-cocycle on H whose image in H2
b (H) is

nonzero, but for which ρ∗ψ = δφ on G, where φ is bounded. Observe that for all
a1, a2 ∈ G and k1, k2 ∈ K that

φ(a1) + φ(a2)− φ(a1a2) = φ(a1k1) + φ(a2k2)− φ(a1k1a2k2)

In particular, φ(kn+1)− φ(kn) = φ(akn+1)− φ(akn) for any a ∈ G, k ∈ K. Taking
a = k this implies φ(kn) = n(φ(k) − φ(id)) + φ(id). But φ is bounded, so φ(k) −
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φ(id) = 0 for all k ∈ K, and more generally, φ is constant on left cosets. This implies
that φ descends to a bounded function φH on H = G/K which by construction
satisfies δφH = ψ. �

Claim. Let [ψ] ∈ H2
b (G) be in the kernel of ι∗ : H2

b (G)→ H2
b (K). Then [ψ] is

in the image of H2
b (H).

Proof. By hypothesis, for any representative ψ of [ψ] there is a bounded
function φ on K such that δφ = ψ on K. If ψ(id, id) = c 6= 0 then we replace
ψ by ψ − δhc where hc is the constant bounded 1-cochain hc(g) = c. So without
loss of generality, we can assume that ψ(id, id) = 0. This leads to the convenient
normalization φ(id) = 0.

We want to extend φ in a suitable way to a function φG on all of G. For each
hi ∈ H , choose a left coset representative gi of hi in G. For each hi we define
φG(gi) = 0. Then for each k ∈ K we set φG(gik) = ψ(gi, k)− φ(k). Since φ and ψ
are bounded, φG is bounded. Now define ψ′ = ψ + δφG. Since φG is bounded, ψ′

and ψ represent the same cohomology class. Moreover, for any g in G and k ∈ K
we write g = giki and calculate

ψ′(g, k) = ψ(giki, k) + φG(giki) + φG(k)− φG(gikik)

= ψ(giki, k) + ψ(gi, ki)− φ(ki) + ψ(id, k)− φ(k)− ψ(gi, kik) + φ(kik)

Since φ(id) = 0, we have ψ(id, k) = δφ(id, k) = φ(id) + φ(k)− φ(k) = 0. Moreover,
−φ(ki)− φ(k) + φ(kik) = −δφ(ki, k) = −ψ(ki, k). Therefore we can write

ψ′(g, k) = ψ(giki, k) + ψ(gi, ki)− ψ(ki, k)− ψ(gi, kik) = −δψ(gi, ki, k) = 0

We claim that ψ′ can be obtained by pulling back a bounded 2-cocycle from
H . Let g1, g2 ∈ G and k ∈ K. Since δψ′(g1, g2, k) = 0, we calculate

ψ′(g1, g2k)− ψ′(g1, g2) = ψ′(g1g2, k)− ψ′(g2, k) = 0

and therefore ψ′(g1, g2k) = ψ′(g1, g2) for any g1, g2 ∈ G and any k ∈ K.
Similarly, since δψ′(g1, k, g2) = 0 we have

ψ′(g1, kg2)− ψ′(g1, k) = ψ′(g1k, g2)− ψ′(k, g2)
We have shown that ψ′(g1, k) = 0. Moreover, ψ′(g1, kg2) = ψ′(g1, g2(g

−1
2 kg2))

which is equal to ψ′(g1, g2) by our earlier calculation. Rearranging, we obtain

ψ′(g1k, g2)− ψ′(g1, g2) = ψ′(k, g2)

and therefore

ψ′(g1k
n, g2) = ψ′(g1, g2) + nψ′(k, g2)

for any integer n. Since n is arbitrary but ψ′ is bounded, we see that ψ′(k, g2) = 0
for any g2 ∈ G and k ∈ K and therefore also ψ′(g1k, g2) = ψ′(g1, g2). In particular,
ψ′ is constant on left cosets of K, and descends to a cocycle on H . �

This completes the proof of Bouarich’s Theorem. �

Remark 2.90. A similar but more straightforward argument proves the left exactness of
Q.

Remark 2.91. There is a more direct proof of Bouarich’s Theorem using spectral se-
quences. In fact, the astute reader will recognize that the proof given above is really a
spectral sequences argument in disguise, together with the observation that H1

b is always
zero. However one must be careful in general, since bounded cohomology is typically not
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separated in degree 3 and higher (see the end of § 2.4.1 and § 2.5.1). This is a point
which is sometimes overlooked in the literature on bounded cohomology. Nevertheless, in
sufficiently low dimensions, such an argument can be made to work. See e.g. Chapter 12
of [157], especially Example 12.4.3.

2.7.3. Rotation numbers. As an application of Theorem 2.70 we obtain a
precise estimate of the defect of rotation number.

Proposition 2.92. Let G be a subgroup of Homeo+(S1) and let Ĝ be the
preimage in Homeo+(R). Then D(rot) ≤ 1 as a homogeneous quasimorphism on

Ĝ.

Proof. For the sake of brevity, let T = Homeo+(S1) and let T̂ = Homeo+(R)Z.

By Remark 2.44 we see that Q(T ) = 0. The exact sequence Z → T̂ → T to-
gether with Bouarich’s Theorem 2.49 and the vanishing of H∗b for amenable groups

implies that H2
b (T ) → H2

b (T̂ ) is an isomorphism. On the other hand, the map

H2(T ) → H2(T̂ ) is not injective, and the kernel is generated by the class of the

(universal) central extension T̂ → T . It follows that Q(T̂ ) is 1-dimensional, and
generated exactly by rot. By Theorem 2.43 there is an equality scl(a) = |rot(a)|/2
for every a ∈ T̂ and therefore D(rot) = 1, by Bavard’s Theorem 2.70. It follows

that D(rot) ≤ 1 on any subgroup of T̂ . �

2.7.4. Free products. Bavard Prop. 3.7.2 [8] asserts that if G1 and G2 are
two groups, and G = G1 ∗G2 is their free product, then for all nontrivial elements
gi ∈ Gi, there is an equality scl(g1g2) = scl(g1)+scl(g2)+1/2. This assertion is not
quite true as stated. Nevertheless, it turns out that Bavard’s assertion is true when
g1 and g2 have infinite order, and can be suitably modified when one or both of
them are torsion. We give the correct statement and proof, and defer a discussion
of Bavard’s argument and what can be salvaged from it to the sequel.

Theorem 2.93 (Product formula). Let G1, G2 be groups, and for i = 1, 2 let
gi be a nontrivial element in Gi of order ni. Let G = G1 ∗ G2. Then there is an
equality

sclG(g1g2) = sclG1
(g1) + sclG2

(g2) +
1

2

(
1− 1

n1
− 1

n2

)

where 1/ni may be replaced by 0 when ni =∞.

Proof. Build a space X as follows. Let X1, X2 be spaces with π1(Xi) = Gi,
and let γi be a loop in Xi representing the conjugacy class of gi. Let P be a pair of
pants. Let X = X1 ∪X2 ∪ P be obtained by gluing two boundary components of
P to γ1 and γ2 respectively, and let γP denote the unglued boundary component
of P .

Let S be a surface with one boundary component, and f : S → X a map sending
∂S to γP with degree n. We have scl(g1g2) ≤ −χ(S)/2n. Make f transverse to
the γi. The surface is decomposed into pieces, which are the closures, in the path
topology, of S− f−1(γ1 ∪ γ2). We say that f is efficient if no piece has a boundary
component which maps with degree zero to a γi, and if no piece is an annulus with
both boundary components mapping to the same γi with opposite degree.

If S is not efficient, the Euler characteristic of S can be increased by surgering S
along a circle which maps to some γi with degree 0 (and is therefore null-homotopic),
or simplified by homotoping a trivial annulus. So without loss of generality, it
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suffices to consider the case that f is efficient. Let Si denote the union of the pieces
mapping to Xi, and SP the union of pieces mapping to P . Let f1, f2, fP be the
restrictions of f to these unions. These maps are all proper. Since f is efficient, no
piece mapping to P is a disk or annulus. In other words, SP admits a hyperbolic
metric. Moreover, the only disk pieces are components of Si mapping with degree
a multiple of ni to γi, in the case gi is torsion.

Since fP is proper, it has a well-defined degree. Since f−1
P (γP ) is equal to

∂S, the degree is n. By the definition of degree, the union of components of ∂SP
mapping to each γi maps with degree n, and therefore n(S1) = n(S2) = n in the
notation of Proposition 2.10. By replacing fP by a pleated map (with respect to a
choice of hyperbolic structures on SP and on P ) and Gauss–Bonnet, we obtain an
inequality −χ(SP )/2n ≥ −χ(P )/2 = 1/2.

If each g1, g2 has infinite order, no component of Si is a disk. In this case,
−χ−(S) = −χ−(S1)− χ−(S2)− χ−(SP ), and therefore

−χ−(S)

2n
=
−χ−(S1)

2n
+
−χ−(S2)

2n
+
−χ−(SP )

2n
≥ scl(g1) + scl(g2) +

1

2

Since S was arbitrary, we obtain an inequality

scl(g1g2) ≥ scl(g1) + scl(g2) +
1

2

Conversely, by the proof of Lemma 2.24 the elements (g1g2)
2n and g2n

1 g2n
2 differ

by at most n commutators, and therefore we obtain the first inequality

scl(g1g2) ≤ scl(g1) + scl(g2) +
1

2

This proves the theorem when the gi have infinite order.

If gi is torsion of order ni, then Si may have disk components whose boundaries
map to gi with degree a multiple of ni. In this case, Si might have as many as
n/ni disk components, and therefore χ(Si) might be as big as n/ni, so we obtain
an inequality

−χ−(S) ≥ −χ−(S1)− χ−(S2)− χ−(SP )− n

n1
− n

n2

which, after dividing by 2n, and taking the infimum over all S, gives

scl(g1g2) ≥ scl(g1) + scl(g2) +
1

2

(
1− 1

n1
− 1

n2

)

To obtain the reverse inequality, replace P by an orbifold with a cone point of
order ni in place of the γi boundary component(s) and take a finite cover which is
a smooth surface. This completes the proof. �

Remark 2.94. The use of geometric language is really for convenience of exposition rather
than mathematical necessity. A similar argument could be made by replacing maps to X
with equivariant maps to a suitable Bass–Serre tree.

One drawback of the method of proof is that it does not exhibit an extremal
homogeneous quasimorphism for the element g1g2. In the next section we show
how to construct such an extremal quasimorphism in the case that G1 and G2 are
left orderable.
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Remark 2.95. Bavard, in [8], exhibits a nontrivial quasimorphism for g1g2 arising from
the structure of G1 ∗ G2 as a free product and its action on a Bass–Serre tree, which is
a special case of a construction that will be discussed in more detail in § 3.5. One can
estimate the defect of the quasimorphism constructed in this way, but the estimate is not
good enough to establish Theorem 2.93.

2.7.5. Left-orderability.

Definition 2.96. Let G be a group. G is left orderable (LO for short) if there
is a total ordering < on G which is invariant under left multiplication. That is, for
all a, b, c ∈ G, the inequality a < b holds if and only if ca < cb.

Right orderability is defined similarly. A group is left orderable if and only if
it is right orderable. The difference is essentially psychological.

Example 2.97 (Locally indicable). A group is locally indicable if every non-
trivial finitely generated subgroup admits a surjective homomorphism to Z. For ex-
ample, free groups are locally indicable. A more nontrivial example, due to Boyer–
Rolfsen–Wiest [22] says that if M is an irreducible 3-manifold, and H1(M) 6= 0
then π1(M) is locally indicable.

A theorem of Burns–Hale [36] says that every locally indicable group is left
orderable.

Left orderability is intimately bound up with 1-dimensional dynamics. The
following “folklore” theorem is very well-known.

Theorem 2.98 (Action on R). A countable group G is left orderable if and
only if there is an injective homomorphism G→ Homeo+(R).

We give a sketch of a proof. For more details, see [40].

Proof. Suppose G acts faithfully on R by homeomorphisms. Suppose p ∈ R

has trivial stabilizer. Then define a > id if and only if a(p) > p. Conversely,
suppose G is left orderable. The order topology on G makes G order-isomorphic to
a countable subset of R. Include G →֒ R in an order-preserving way, compatibly
with the order topology. Then the action of G on itself extends to an action on the
closure of its image. The complement is a countable union of intervals; the action
of G extends uniquely to a permutation action on these intervals. �

The first part of the next proposition is a special case of Theorem 2.93; however,
the proof is different, and shows how to construct an explicit extremal quasimor-
phism for g1g2.

Proposition 2.99. Let G1, G2 be left orderable, and suppose gi ∈ Gi are non-
trivial. Then there is an equality

scl(g1g2) = scl(g1) + scl(g2) +
1

2

Moreover there is an explicit construction of an extremal quasimorphism for g1g2
in terms of extremal quasimorphisms for g1 and g2.

Proof. Assume first that G1, G2 are countable. Using Theorem 2.98, con-
struct an orientation-preserving action of G1 ∗ G2 on S1 where G1 fixes the point
−1 and G2 fixes the point 1 (here we think of S1 as the unit circle in C). Since g1, g2
are nontrivial, without loss of generality we can assume g1(i) = −i and g2(−i) = i.



2.7. FURTHER PROPERTIES 47

But then g1g2 has a fixed point, and therefore its rotation number is trivial (in
R/Z). We lift the action to an action on R, which can be done by lifting each Gi
individually to have a global fixed point. Then rot is a homogeneous quasimor-
phism on G1 ∗ G2, which vanishes on G1 and on G2, and satisfies rot(g1g2) = 1.
Proposition 2.92 shows that D(rot) ≤ 1. Adding to rot pullbacks of extremal quasi-
morphisms with defect 1 for g1 and g2 under the surjections G1 ∗ G2 → G1 and
G1 ∗G2 → G2, one obtains an explicit extremal quasimorphism for g1g2 which, by
Bavard duality, proves the proposition.

If G1, G2 are not countable, one substitutes actions on circularly ordered sets for
actions on circles. The distinction between these two contexts is more psychological
than substantial. See e.g. [40], especially Chapter 2, for a discussion. �

Example 2.100 (Bavard, p. 146 [8]). In F2 = 〈u, v〉 the element [u, v] satisfies
scl([u, v]) = 1/2, by Theorem 1.14 and Theorem 2.70. Let G = 〈u1, v1, · · · , uk, vk〉.
Then by Proposition 2.99 and induction,

scl(
∏

i

[ui, vi]
pi) =

1

2

∑
|pi|+

k − 1

2

since free groups are locally indicable and therefore left orderable (see Exam-
ple 2.97).

The interaction of left orderability and scl (especially in order to obtain sharp
estimates in free groups) will be discussed again in § 4.3.4.

2.7.6. Self-products. There is an analogue of Theorem 2.93 with (free) HNN
extensions in place of free products. For convenience, we state and prove the
theorem only in the case that the elements in question are torsion free.

Theorem 2.101 (Self-product formula). Let G be a group, and g1, g2 ∈ G two
elements of infinite order. Let G′ = G ∗ 〈t〉. Then there is an equality

sclG′(g1tg2t
−1) = sclG(g1 + g2) +

1

2

Proof. Let X be a space with π1(X) = G. Let γ1, γ2 be loops representing the
conjugacy classes of g1, g2 respectively. Let P be a pair of pants, and let Y = X∪P
be obtained by gluing two boundary components of P to γ1 and γ2 respectively,
and let γP denote the unglued boundary component of P .

Notice that π1(Y ) = G′ and γP represents the conjugacy class of g1tg2t
−1.

If f : S → Y sends ∂S to γP with degree n, then after making f efficient, S
decomposes into fX : SX → X and fP : SP → P . The degree of fP is n, so
−χ−(SP )/2n ≥ 1/2, and −χ−(SX)/2n is an upper bound for scl(g1 + g2). Since
the gi have infinite order, no component of SX is a disk, and therefore −χ−(S) =
−χ−(SP )−χ−(SX). The proof now follows, as in the proof of Theorem 2.93, from
Proposition 2.10 and Proposition 2.74. �

Remark 2.102. Note that the same proof shows

sclG′(g1tg2t
−1 +

X
tigi) = sclG(g1 + g2 +

X
tigi) +

1

2

for any
P
tigi ∈ BH1 where we sum over i ≥ 3.

Remark 2.103. By Remark 2.102 and by the linearity and continuity of scl on BH1 , the
calculation of scl on BH1 can be reduced to calculations of scl on “ordinary” elements of
G ∗ F for sufficiently large free groups F .



48 2. STABLE COMMUTATOR LENGTH

2.7.7. LERF and injectivity. Recall Proposition 2.10, which says that if X
is a space with π1(X) = G, and γ is a loop in X representing the conjugacy class
of a, then

scl(a) = inf
S

−χ−(S)

2n(S)

where the infimum is taken over all maps of oriented surfaces f : S → X whose
boundary components all map to γ with sum of degrees equal to n(S). Recall
(Definition 2.11) that f, S is said to be extremal if it realizes the infimum. The
following proposition says that extremal surfaces must be π1-injective.

Proposition 2.104 (injectivity). Let X, γ be as above. Suppose f, S as above
is extremal. Then the map f : S → X induces a monomorphism π1(S)→ π1(X).

Before we prove the proposition, we must discuss the property LERF for surface
groups.

Definition 2.105. Let G be a group. Then G is locally extended residually
finite (or LERF for short) if all of its finitely generated subgroups are separable.
That is, for all finitely generated subgroups H and all elements a ∈ G−H there is
a subgroup H ′ of G of finite index which contains H but not a.

Example 2.106 (Malcev; polycyclic groups). A solvable group is polycyclic if
all its subgroups are finitely generated. Malcev [142] showed that polycyclic groups
are LERF.

Example 2.107 (Hall; free groups). Marshall Hall [102] showed that free
groups are LERF. In fact, he showed that free groups satisfy the stronger property
that finitely generated subgroups are virtual retracts. We sketch an illuminating
topological proof of this fact due to Stallings [191].

Let F be free, and let G be a finitely generated proper subgroup. Represent
F = π1(X) where X is a wedge of circles, and let X̃ be a cover of X corresponding
to the subgroup G. Since G is a finitely generated subgroup of a free group, it
is free of finite rank, so X̃ deformation retracts to a compact subgraph XG with
π1(XG) = G. Each directed edge of XG is labeled by a generator of F . Let
X ′G be another copy of XG with each directed edge labeled by the inverse of the
corresponding label in XG. For each vertex v of XG, let v′ be the corresponding
vertex of X ′G. Join v to v′ by a collection of edges, one for each generator of π1(X)
not represented by an edge in XG with a vertex at v. Let the result be X ′′G. Then
by construction, X ′′G is a finite covering of X , and therefore corresponds to a finite
index subgroup H of F . Moreover, by construction, G is a free summand of H .

Example 2.108 (Scott; surface groups). Peter Scott [185] showed that surface
groups are LERF. For surfaces with boundary, this is a special case of Exam-
ple 2.107, but even in this case, Scott’s proof is different and illuminating.

Let S be a surface with χ(S) < 0. Observe that S can be tiled by right-angled
hyperbolic pentagons, for some choice of hyperbolic structure on S. Let G be a
finitely generated subgroup of π1(S), and let S̃ be the covering corresponding to G.

The surface S̃ deformation retracts to a compact subsurface X with π1(X) = G.
This subsurface can be engulfed by a convex union Y of right-angled hyperbolic
pentagons. Since all the pentagons are right-angled, Y is a surface with right-angled
corners. There is a hyperbolic orbifold obtained from Y by adding mirrors to the
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non-boundary edges. This orbifold has a finite index subgroup, containing G, which
is also finite index in π1(S).

A geometric corollary of property LERF for free and surface groups is the fact
that for any hyperbolic surface S and any geodesic loop γ in S there is a finite
cover S̃ of S to which γ lifts as an embedded loop. Using this fact, we now prove
Proposition 2.104:

Proof. Suppose S minimizes −χ(S)/2n(S) but f : S → X is not injective
in π1. Let a ∈ π1(S) be in the kernel. Choose a hyperbolic structure on S, and
represent the conjugacy class of a by a geodesic loop γ in S. If γ is embedded,
compress S along γ to produce a surface S′ satisfying −χ(S′) < −χ(S). The
compression factors through f , and there is a map f ′ : S′ → X satisfying n(S′) =
n(S), contrary to the minimality of S.

If γ is not embedded, let S̃ be a finite cover of S to which γ lifts as an embedded
loop. Let π : S̃ → S be the covering map. Since both χ and n(·) are multiplicative

under covers, there is an equality −χ(S)/2n(S) = −χ(S̃)/2n(S̃). But S̃ can be

compressed along γ to produce a new surface S̃′. The compression factors through
fπ, contradicting the minimality of S, as before. This contradiction shows that f
is injective on π1(S), as claimed. �

This lets us give a short proof of the following corollary. Note that this corollary
is easy to prove in many other ways. For instance, it follows from the fact that
every subgroup of a free group is free, and from the theorem of Malcev [141] that
free groups are Hopfian (i.e. surjective self-maps are injective).

Corollary 2.109. Let ρ : F2 → F be a homomorphism from F2, the free group
on two elements, to F , a free group. If the image is not Abelian, ρ is injective.

Proof. LetX be a wedge of circles with π1(X) = F . Let F2 = 〈a, b〉. The map
ρ defines a map from a punctured torus S into X , taking the boundary to ρ([a, b]).
By hypothesis, this element is nontrivial in F . If ρ is not injective, Proposition 2.104
implies scl(ρ([a, b])) < 1/2. But we will show in § 4.3.4 that every nontrivial element
in a free group satisfies scl ≥ 1/2. �





CHAPTER 3

Hyperbolicity and spectral gaps

There are two main sources of quasimorphisms: hyperbolic geometry (i.e. nega-
tive curvature) and symplectic geometry (i.e. partial orders and causal structures).
In this chapter we study scl in hyperbolic manifolds, and more generally, in word-
hyperbolic groups in the sense of Rips and Gromov [98] and groups acting on
hyperbolic spaces (we return to symplectic geometry, and quasimorphisms with a
dynamical or causal origin in Chapter 5). The construction of explicit quasimor-
phisms is systematized by Bestvina–Fujiwara ([13]), who show that in order to
construct (many) quasimorphisms on a group G, it suffices to exhibit an isometric
action of G on a δ-hyperbolic space X which is weakly properly discontinuous (see
Definition 3.51). It is crucial for many important applications that X need not be
itself proper.

The relationship between negative curvature and quasimorphisms is already
evident in the examples from § 2.3.1. If M is a closed hyperbolic manifold, the
space of smooth 1-forms Ω1M injects into Q(π1(M)). Evidently, quasimorphisms
are sensitive to a great deal of the geometry of M ; one of the goals of this chapter
is to sharpen this statement, and to say what kind of geometry quasimorphisms are
sensitive to.

A fundamental feature of the geometry of hyperbolic manifolds is the thick-thin
decomposition. In each dimension n there is a universal constant ǫ(n) (the Margulis
constant) such that the part of a hyperbolic n-manifold M with injectivity radius
less than ǫ (i.e. the “thin” piece) has very simple topology — each component
is either a neighborhood of a cusp, or a tubular neighborhood of a single short
embedded geodesic. Margulis’ observation implies that in each dimension, there is
a universal notion of what it means for a closed geodesic to be short.

In this chapter we prove fundamental inequalities relating length to scl in hy-
perbolic spaces and to show that there is a universal notion of what it means for a
conjugacy class in a hyperbolic group to have small scl. We think of this as a kind
of homological Margulis Lemma. These inequalities generalize to certain groups
acting on hyperbolic spaces, such as amalgamated free products and mapping class
groups of surfaces.

Much of the content in this chapter is drawn from papers of Bestvina, Calegari,
Feighn, and Fujiwara (sometimes in combination), especially [82, 83, 13, 42, 49,

12].

3.1. Hyperbolic manifolds

We start with the simplest and most explicit examples of groups acting on
hyperbolic spaces, namely fundamental groups of hyperbolic manifolds. In this
context, scl can be controlled by directly studying maps of surfaces to manifolds.

51
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When we come to study more general hyperbolic spaces, the use of quasimorphisms
becomes more practical.

3.1.1. Margulis’ Lemma. The most straightforward formulation of Mar-
gulis’ Lemma is the following:

Theorem 3.1 (Margulis’ Lemma [123]). For each dimension n there is a posi-
tive constant ǫ(n) (called a Margulis constant) with the following property. Let Γ be
a discrete subgroup of Isom(Hn). For any x ∈ Hn the subgroup Γx(ǫ) of Γ generated
by elements which translate x less than ǫ is virtually Abelian.

Here a group is said to virtually satisfy some property P if it contains a subgroup
of finite index which satisfies P . If Γ is torsion-free, Γx(ǫ) is free Abelian. If Γ is co-
compact, Γx(ǫ) is either trivial or isomorphic to Z. If M is a hyperbolic manifold,
there is a so-called thick-thin decomposition of M into the thin part, namely the
subset M<ǫ consisting of points where the injectivity radius is less than ǫ, and the
thick part, namely the subset M≥ǫ which is the complement of M<ǫ. Margulis’
Lemma implies that if M is complete with finite volume, M<ǫ is a disjoint union
of cusps and solid torus neighborhoods of short simple geodesics.

Remark 3.2. Good estimates for ǫ(n) are notoriously difficult to obtain. In dimension
2 there is an elementary estimate ǫ(2) ≥ arcsinh(1) = 0.8813 · · · due to Buser [37].

Meyerhoff [152] showed ǫ(3) ≥ 0.104, and Kellerhals [124, 125] showed ǫ(n) ≥
√

3/9π =
0.0612 · · · for n = 4, 5, and obtained an explicit estimate [126] for arbitrary n:

ǫ(n) ≥ 2

3ν+1πν

Z π/2

0

sinν+1 tdt

where ν = [n−1
2

]. The same paper gives explicit lower bounds on the diameter of an
embedded tube around a sufficiently short geodesic.

3.1.2. Drilling and Filling. In 3-dimensions, Margulis’ Lemma implies that
a sufficiently short geodesic is simple, and it can be drilled to produce a cusped
hyperbolic 3-manifold. That is, the open manifold M − γ admits a complete finite-
volume hyperbolic structure, defining a hyperbolic manifold Mγ . We denote this
suggestively by

M
drill−−→Mγ

Conversely, M can be obtained from Mγ by adding a solid torus under hyperbolic
Dehn surgery

Mγ
fill−→M

The geodesic γ is the core of the added solid torus.

Let T = ∂N(γ) be the torus cusp of Mγ . Choose meridian-longitude generators
m, l for H1(T ; Z) so that the longitude is trivial in H1(Mγ ; Q), and the meridian
intersects the longitude once. Note that the meridian is ambiguous, and different
choices differ by multiples of the longitude.

Some multiple n of the longitude l is trivial in H1(Mγ ; Z) and bounds a surface
S. Let p and q be coprime integers, and let Mp/q be the result of p/q Dehn surgery
on Mγ ; i.e. topologically, Mp/q is obtained from Mγ by adding a solid torus in such
a way that the meridian of the added solid torus represents a primitive class pm+ql
in H1(T ; Z). The p, q co-ordinates depend on the choice of meridian m. A change
of basis m→ m+ l induces p→ p and q → q − p.
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Thurston’s hyperbolic Dehn surgery Theorem ([198, 10]) says that except for
finitely many choices of p/q, the manifold Mp/q is hyperbolic. Moreover, as p or
q or both go to infinity, length(γ) → 0, and the geometry of Mp/q converges on
compact subsets (in the Gromov–Hausdorff sense) to that of Mγ .

The longitude wraps p times around the core γ of the added solid torus in
Mp/q. Hence ∂S wraps np times. If a denotes the conjugacy class in π1(Mp/q)
corresponding to the free homotopy class of γ, we obtain an estimate

scl(a) ≤ −χ(S)

2np

In particular, for fixed Mγ , and for any positive constant δ, away from finitely many
lines in Dehn surgery space (corresponding to choices p, q for which |p| is small)
the core of the added solid torus has scl < δ. Heuristically, most sufficiently short
geodesics in hyperbolic 3-manifolds have arbitrarily small scl.

Conversely, we will see that conjugacy classes in π1(M) with sufficiently small
scl are represented by arbitrarily short geodesics.

3.1.3. Pleated surfaces. To study scl in π1(M), we need to probe M topo-
logically by maps of surfaces S → M . Under suitable geometric hypotheses, it
makes sense to take representative maps of surfaces which are tailored to the ge-
ometry of M . For M hyperbolic, a very useful class of maps of surfaces into M are
so-called pleated surfaces.

Pleated surfaces were introduced by Thurston [198].

Definition 3.3. Let M be a hyperbolic manifold. A pleated surface is a com-
plete hyperbolic surface S of finite area, together with an isometric map f : S →M
which takes cusps to cusps, and such that every p ∈ S is in the interior of a straight
line segment which is mapped by f to a straight line segment.

Note that the term “isometric map” here means that f takes rectifiable curves
on S to rectifiable curves in M of the same length.

The set of points L ⊂ S where the line segment through p is unique is called the
pleating locus. It turns out that L is a geodesic lamination on S; i.e. a closed union
of disjoint simple geodesics. Moreover, the restriction of f to each component of
S − L is totally geodesic.

Since S has finite area, L is nowhere dense, and S − L has full measure in S.

Example 3.4 (Thurston’s spinning construction; § 8.8 and § 8.10 [198]). The
most important and useful method of producing pleated surfaces is Thurston’s
spinning construction.

Let P be a pair of pants; i.e. a hyperbolic surface with three boundary com-
ponents. Let f : P → M be a relative homotopy class of map sending the three
boundary components by maps of nonzero degree to three (not necessarily simple)
geodesics in M . The class of f determines a homomorphism from π1(P ) to π1(M)
up to conjugacy.

We give P a hyperbolic structure, and let ∆ be a geodesic triangle in P with one
vertex on each boundary component. As we move the vertices around on ∂P , the
geodesic triangle deforms continuously. Spinning ∆ involves dragging the vertices
around and around the components of ∂P . The sides of ∆ get longer and longer,
and accumulate on ∂P . The Hausdorff limit of ∂∆ is a geodesic lamination L in P
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with three infinite leaves spiraling around ∂P , and whose complement consists of
two (open) ideal triangles. See Figure 3.1.

spin−−→

Figure 3.1. Spinning produces an ideal triangulation of a pair of pants

We can build a pleated surface f : P → M in the homotopy class of f with
pleating locus contained in L as follows. First, f takes components of ∂P to the
unique closed geodesics in the homotopy class of f(∂P ). For each infinite geodesic
l ∈ L, the ends of f(l) spiral around f(∂P ). Except in degenerate cases, the image
of f(l) is a quasigeodesic which can be straightened to a unique geodesic l which
spirals around two components of f(∂P ). This defines the map f on L. Each

component of P −L is an ideal triangle, and we define f on each such triangle ∆ to
be the unique totally geodesic map which extends f (after possibly reparameterizing
by a translation on each edge) on ∂∆ ⊂ L.

Remark 3.5. If M has parabolic elements, the construction in Example 3.4 must be
modified very slightly.

Suppose f : P →M takes some boundary component ∂0 of P to a free homotopy class
in M corresponding to a parabolic conjugacy class α in π1(M). After lifting f̃ : P̃ → M̃ ,
each conjugate of α fixes a unique point in the sphere at infinity S2

∞. If ∆ is a triangle
with a vertex v on ∂0, and ∆̃ is a lift of ∆ to P̃ , straighten f̃ on ṽ by sending this vertex to
the unique fixed point of the corresponding conjugate of α. The rest of the construction
is as before.

Lemma 3.6 (Thurston, § 8.10 [198]). A map f : P →M from a pair of pants
into a hyperbolic manifold M can be straightened to a pleated surface unless it
factors through a map to a circle.

Proof. The map f : P → M determines an equivariant map P̃ → Hn from
the universal cover P̃ of P . A lift of the triangle ∆ has vertices on three distinct
edges e1, e2, e3 of P̃ . Spinning drags the vertices of ∆ to endpoints of the ei, so f
can be straightened on ∆ providing the endpoints of the ei are distinct for different
i. If α, β ∈ π1(M) don’t commute, their axes have disjoint endpoints at infinity.
Commuting elements in a closed hyperbolic manifold group generate a cyclic group.
So the straightening can be achieved if and only if the image of π1(P ) in π1(M)
does not factor through a cyclic group. �

Using this lemma, we show that a map f : S → M either admits an obvious
simplification which reduces the genus, or has a pleated representative.

Lemma 3.7. Let M be a hyperbolic manifold, and let a be a nontrivial conjugacy
class in π1(M). Let S be a compact oriented surface with exactly one boundary
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component. If f : S → M is a map sending the class of ∂S in π1(S) to a then
there is another map f ′ : S′ →M where the genus of S′ is no more than that of S,
and where f ′ sends the class of ∂S′ in π1(S

′) to a, which is homotopic to a pleated
representative.

Proof. We decompose S into subsurfaces S = S1 ∪ S2 ∪ · · · ∪ Sg where each
Si is a twice-punctured torus for i < g, and Sg is a once-punctured torus. For each

i denote the two boundary components of Si by γ±i where γ+
i is glued to γ−i+1 in

S, and γ−1 maps to a by f .
If any γ±i maps by f to an inessential loop in M , we can compress f, S along

the image of this curve, sewing in two disks, to produce a map f ′ : S′ →M where
S′ is of smaller genus than S, and for which f ′(∂S′) is in the class of a. After
finitely many compressions of this kind, we assume that every γ±i maps by f to an
essential loop in M .

For each i < g, let α±i , βi be embedded essential loops in Si as in Figure 3.2:

α+
i

α−

i

βiγ−

i γ+
i

Figure 3.2. The curves α±i and β in Si

The loops α+
i , βi intersect in one point p+

i . Their images under f define el-
ements a+, b of π1(M) based at f(p+

i ). If [a+, b] = id then we can compress S,
cutting out a neighborhood of α+

i ∪βi in Si, and sewing in a disk, thereby reducing
the genus of S. So without loss of generality, we assume the elements a+, b do not
commute.

The curves α−i and βi intersect at a different point. By sliding this point half
way around βi and mapping by f , we obtain an element a− ∈ π1(M) based at
f(p+

i ) if we slide in one direction, and ba−b−1 if we slide in the other direction.
Also without loss of generality, we assume a−, b do not commute.

Let P−i , P
+
i be the two pairs of pants obtained from Si by cutting along α+

i ∪α−i .
Suppose f : P−i → M factors up to homotopy through a map to a circle. This
happens if a+, a− as above generate a cyclic subgroup of π1(M). In this case, we
replace α±i by their images under a Dehn twist around βi (see Example 3.59 for a
definition). At the level of π1, this replaces a+, a− by a+b, b−1a−, and defines a new
pair of pants decomposition in which f : P−i →M does not factor up to homotopy
through a map to a circle. Of course, now f : P+

i → M might factor through a
circle, in which case we do another Dehn twist, replacing the original a+, a− by
a+b2, b−2a−. In this way we obtain a decomposition of Si into two pairs of pants
such that the restriction of f to either does not factor up to homotopy through a
map to a circle. By Lemma 3.7 f can be replaced by a pleated representative on
each such pair of pants, and we are done.

The construction of a pleated representative on Sg is similar but simpler, with

α±i being replaced by a single αg. �
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Remark 3.8. Other surfaces which perform a similar function include harmonic (maps
of) surfaces and minimal surfaces. The use of one kind of surface or the other is often
a matter of taste. One technical advantage of pleated surfaces is that they generalize in
some sense to arbitrary δ-hyperbolic groups; see Definition 3.39.

3.2. Spectral Gap Theorem

Let M be a closed hyperbolic manifold. There is a natural bijection between
the set of conjugacy classes in π1(M) and the set of closed geodesics in M . It is a
fundamental fact that the function

{closed geodesics} length−−−−→ R

which assigns to a closed geodesic its length, is proper; i.e. there are only finitely
many closed geodesics with length bounded above by any constant. By contrast, if
G = π1(M), the function

{conjugacy classes in [G,G]} scl−→ R

which assigns to a (homologically trivial) conjugacy class its stable commutator
length, is not proper: i.e. there are always infinitely many distinct conjugacy
classes with uniformly bounded stable commutator length. However, some vestige
of properness holds in this context. If the stable commutator length of a conjugacy
class is sufficiently small, the length of the corresponding geodesic must also be
(comparably) small. This implies that at least for sufficiently small ǫ, the preimage
scl−1([0, ǫ]) is finite. One can define δ∞ to be the supremum of the set of ǫ with
this property; it turns out that there is a universal estimate 1

12 ≤ δ∞ ≤ 1
2 .

3.2.1. Length inequality. We now show that in a hyperbolic manifold group,
a conjugacy class with sufficiently small stable commutator length is represented
by an arbitrarily short geodesic. The material in this section is largely drawn from
§ 6 of [42].

Theorem 3.9 (Length inequality). For every dimension m and any ǫ > 0 there
is a positive constant δ(ǫ,m) such that if M is a complete hyperbolic m-manifold,
and a is a conjugacy class in π1(M) with scl(a) ≤ δ(ǫ,m) then if a is represented
by a geodesic γ, we have

length(γ) ≤ ǫ
Proof. Let S be a surface of genus g with one boundary component, and

f : S → M a map wrapping ∂S homotopically n times around γ. By Lemma 3.7,
after possibly reducing the genus of S if necessary, we can assume without loss of
generality that f, S is a pleated surface. This determines a hyperbolic structure
on S with geodesic boundary for which the map f is an isometry on paths. In
particular, length(∂S) = n · length(γ) and area(S) = −2πχ(S) = (4g − 2)π by
Gauss–Bonnet.

Choose ǫ which is small compared to the 2-dimensional Margulis constant ǫ(2).
We defer the precise choice of ǫ for the moment. Consider the thick-thin decompo-
sition of S with respect to 2ǫ in the sense of § 3.1.1. More precisely, let DS denote
the double of S (which is a closed hyperbolic surface), Let DSthick and DSthin de-
note the subsets of DS where the injectivity radius is ≥ 2ǫ and < 2ǫ respectively,
and define Sthick and Sthin to be equal to DSthick ∩ S and DSthin ∩ S respectively.
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The set Sthin is a union of open embedded annuli around very short simple
geodesics, together with a union of open embedded rectangles which run between
pairs of segments of ∂S which are distance < ǫ apart at every point. Each rectangle
doubles to an annulus in DSthin. If there are s annuli and r rectangles in Sthin,
then there are 2s + r annuli in DSthin. Components of DSthin are disjoint and
pairwise non-isotopic. Any maximal collection of disjoint pairwise non-isotopic
simple closed curves in a closed orientable surface of negative Euler characteristic
must decompose the surface into pairs of pants. Since the genus of DS is 2g, we
estimate 2s+r ≤ − 3

2χ(DS) = 6g−3. Hence r, the number of rectangle components
of Sthin, is at most 6g − 3.

By abuse of notation, we add to Sthick the annulus components of Sthin (if any),
so that Sthin consists exactly of the set of thin rectangles running between pairs of
arcs in ∂S. With this new definition, a point p ∈ ∂S is in Sthick if and only if the
length of an essential arc in S from p to ∂S is at least ǫ. In particular, the ǫ/2
neighborhood of ∂S ∩ Sthick is embedded, and there is an estimate

(4g − 2)π = area(S) ≥ area(Sthick) ≥
ǫ

2
length(∂S ∩ Sthick)

Since there are at most 6g− 3 components of Sthin, and each component intersects
∂S in two arcs, there are at most 12g − 6 components of ∂S ∩ Sthin. But

length(∂S ∩ Sthin) = length(∂S)− length(∂S ∩ Sthick) ≥ n · length(γ)− (8g − 4)
π

ǫ

where we used length(∂S) = n · length(γ) and the previous inequality. It follows
that there is at least one arc σ of ∂S ∩ Sthin satisfying

length(σ) ≥ n · length(γ)− (8g − 4)π/ǫ

12g − 6
=
n · length(γ)

12g − 6
− 2π

3ǫ

Hence Sthin contains a component R which is a rectangular strip of thickness
≤ ǫ with σ on one side. We denote the side opposite to σ by σ′. We call σ and σ′

the long sides of R. Because S is oriented, the orientations on opposite sides of R
are “anti-aligned”. We lift R to the universal cover Hn, and by abuse of notation
refer to the lifted rectangle as R. The sides σ, σ′ of R are contained in geodesics
l, l′ that cover γ. Without loss of generality, we can suppose that l is an axis for a,
and l′ is an axis for bab−1 where b(l) = l′. Moreover, the action of a on l and a′ on
l′ move points is (nearly) opposite directions.

Let p be the midpoint of σ, and let q be a point on the opposite side of R with
d(p, q) < ǫ. Suppose further that

length(σ) = length(σ′) > 2 · length(γ) + 4ǫ

It follows that bab−1(q) ∈ σ′ and there is r ∈ σ with d(bab−1(q), r) ≤ ǫ and therefore
d(bab−1(p), r) ≤ 2ǫ. Since d(q, bab−1(q)) = length(γ),

|d(p, r) − length(γ)| ≤ 2ǫ

and therefore d(p, a(r)) ≤ 2ǫ and we can estimate

d(p, abab−1(p)) ≤ 4ǫ

Similarly we estimate d(p, bab−1a(p)) ≤ 4ǫ. See Figure 3.3. In the figure, the
axes l and l′ are both roughly vertical. The element a translates points roughly
downwards along l, and bab−1 translates points roughly upwards along l′.
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pq

bab−1(q)
bab−1(p) r

a(r)

abab−1(p)

Figure 3.3. The composition abab−1 translates the midpoint p a
small distance

If we choose 4ǫ less than an m-dimensional Margulis constant ǫ(m) then abab−1

and bab−1a must commute. There are two possibilities, which break up into sub-
cases.

Case (abab−1 and bab−1a are hyperbolic with the same axis). In this case,
since they are conjugate, they are either equal or inverse.

Subcase (abab−1 = bab−1a). In this case a and bab−1 commute, and since
they are conjugate, they are equal or inverse. But a and bab−1 translate their
respective axes in almost opposite directions, so they cannot be equal; hence we
must have bab−1 = a−1 and therefore b has order 2, which is impossible in a
hyperbolic manifold group.

Subcase (abab−1 = a−1ba−1b−1). In this case a2 = ba−2b−1 and therefore b
has order 2, which is impossible as we already remarked.

Case (abab−1 and bab−1a parabolic with the same fixed point). z ∈ Sn−1
∞ . In

this case, a−1(abab−1)a is parabolic with fixed point a−1(z). But a−1(abab−1)a =
bab−1a which has fixed point z, so a−1(z) = z. Since a translates along an axis, it
is hyperbolic, and we have obtained a hyperbolic and a parabolic element in π1(M)
with a common fixed point at infinity. This is well-known to violate discreteness,
see for instance Maskit [147], p. 19 for details.

In every case we obtain a contradiction, and therefore we must have

2 · length(γ) + 4ǫ ≥ length(σ)

Putting this together with our earlier inequality, we obtain

2 · length(γ) + 4ǫ ≥ n · length(γ)

12g − 6
− 2π

3ǫ

Rearranging this gives

length(γ) ·
(

n

12g − 6
− 2

)
≤ 4ǫ+

2π

3ǫ
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The right hand side is a constant which depends only on the size of a Margulis
constant in dimension n. If scl is very small, we can make n/g very large, and
therefore obtain an upper bound on length(γ) which goes to 0 as scl→ 0 as claimed.

�

Remark 3.10. Note that when m < n a hyperbolic m-manifold group is also a hyperbolic
n-manifold group, and therefore δ(ǫ,m) ≥ δ(ǫ, n). In § 3.3 we will see that for small ǫ
there are estimates

δ(ǫ, 3) = O(ǫ1/2)

and

δ(ǫ, 3) ≥ δ(ǫ, n) ≥ O(ǫ(n−1)/(n+1))

in any fixed dimension n.

On the other hand, the dependence of δ on ǫ is not proper. In particular, as
ǫ → ∞, the constant δ(ǫ, n) is bounded above by some finite bound, independent
of dimension n. This universal upper bound should be thought of as a kind of
homological Margulis constant. In the next subsection, we will give an explicit
estimate for this constant.

3.2.2. Spectral Gap.

Theorem 3.11 (Spectral Gap Theorem). Let M be a closed hyperbolic mani-
fold, of any dimension ≥ 2. Let δ∞(M) be the first accumulation point for stable
commutator length on conjugacy classes in π1(M). That is, δ∞(M) is the small-
est number such that for any δ < δ∞(M), there are only finitely many conjugacy
classes a in π1(M) with scl(a) ≤ δ. Then

1

12
≤ δ∞(M) ≤ 1

2

Proof. We use the same setup and notation as in the proof of Theorem 3.9.
Since M is a closed hyperbolic manifold, there are only finitely many conjugacy
classes represented by geodesics shorter than any given length. So we suppose a
is a conjugacy class represented by a geodesic γ which is “sufficiently long” (in a
sense to be made precise in a moment). We choose ǫ and find a segment σ, as in
the proof of Theorem 3.9, and suppose we have

length(γ) + 4ǫ < length(σ)

(note the missing factor of 2). We choose p to be one of the endpoints of σ, so that

d(p, abab−1(p)) ≤ 4ǫ

Since M is fixed, there is some ǫ such that 4ǫ is smaller than the translation
length of any nontrivial element in π1(M). Hence abab−1 = id. But this means
bab−1 = a−1, and b has order 2, which is impossible in a manifold group.

Contrapositively, this means that we must have

length(γ) + 4ǫ ≥ length(σ)

and therefore, just as in the proof of Theorem 3.9, we obtain

length(γ) ·
(

n

12g − 6
− 1

)
≤ 4ǫ+

2π

3ǫ

In contrast to the case of Theorem 3.9, the right hand side definitely depends on
the manifold M . Nevertheless, for fixed M , it is a constant, and we see that for γ
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sufficiently long, g/n cannot be much smaller than 1/12. This establishes the lower
bound in the theorem.

We now establish the upper bound. M is a closed hyperbolic manifold, and
therefore π1(M) contains many nonabelian free groups. In fact, if a, b are arbitrary
noncommuting elements of π1(M), sufficiently high powers of a and b generate a free
group, by the ping-pong lemma. This copy of F2 is quasi-isometrically embedded,
and by passing to a subgroup, one obtains quasi-isometrically embedded copies of
free groups of any rank.

For each n, the element [an, bn] is in the commutator subgroup. In fact, it is a
commutator, and therefore satisfies scl([an, bn]) ≤ 1/2. In a free group, the words
xnynx−ny−n are cyclically reduced of length 4n. Since the embedding is quasi-
isometric, the geodesic representatives of [an, bn] have length which goes to infinity
linearly in n. It follows that these elements fall into infinitely many conjugacy
classes, and the upper bound is established. �

Remark 3.12. From the method of proof one sees for sufficiently long γ that if no translate
l′ of l is ǫ-close and anti-aligned with l along segments σ, σ′ whose length is at least
(λ+ ǫ) · length(γ) then scl(a) ≥ 1

12λ
.

For example, in a free group, a cyclically reduced word w and a conjugate of its inverse
cannot share a subword of length longer than 1

2
length(w). This leads to an estimate

scl(a) ≥ 1/6 in a free group, which is not yet optimal, but is still an improvement (a sharp
bound scl(a) ≥ 1/2 in a free group will be established in Theorem 4.111).

An estimate on the size of anti-aligned translates is essentially a kind of macroscopic
small cancellation property. One can give an alternative proof of Theorem 3.11 along these
lines using generalized small cancellation theory (see [65] for more details). For certain
groups, ordinary small cancellation theory can be applied, leading to sharp results; we
will discuss this approach in § 4.3.

3.3. Examples

3.3.1. Hyperbolic Dehn surgery. We elaborate on the discussion in § 3.1.2.

Lemma 3.13. Let M be a hyperbolic 3-manifold, and let γ be a geodesic loop
which is the core of an embedded solid torus of radius T . Then there is a 1-form
α supported in the tube of radius T about γ, with

∫
γ
α = length(γ) sinh(T ) and

‖dα‖ ≤ 1 + 1/(T − ǫ) for any ǫ > 0.

Proof. Let S be the solid torus of radius T about γ. On S, let r : S → R be
the function which measures distance to γ. Denote radial projection to γ by

p : S → γ

Parameterize γ by θ, so that dθ is the length form on γ, and
∫
γ dθ = length(γ).

Pulling back by p extends θ and dθ to all of S. We define

α = dθ · (sinh(T )− sinh(r))

on S, and extend it by 0 outside S. Notice that

‖dθ‖ = 1/ cosh(r)

on S. By direct calculation, dα = cosh(r)dθ ∧ dr on S, so ‖dα‖ = 1 at every point
of S.

The form α is not smooth along ∂S, but it is Lipschitz. Let βǫ(r) be a C∞

function on [0, T ] taking the value 1 in a neighborhood of 0 and the value 0 in a
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neighborhood of T , and with |β′ǫ| < 1/(T − ǫ) throughout, for some small ǫ. The
product αǫ := βǫ(r)α is C∞ and satisfies

dαǫ = dθ ∧ dr(βǫ(r) cosh(r) + β′ǫ(r) sinh(r))

so ‖dαǫ‖ ≤ 1 + 1/(T − ǫ). �

As in § 2.3.1 there is a de Rham quasimorphism qα associated to α by inte-
gration over based geodesic representatives of elements, after choosing a basepoint.
The homogenization of qα is obtained by integrating α over free geodesic loops.
A limit of such quasimorphisms as ǫ → 0 has defect at most 2π(T + 1)/T by
Lemma 2.58.

In order for Lemma 3.13 to be useful, we need a good estimate of T in terms
of length(γ).

Lemma 3.14 (Hodgson–Kerckhoff, p. 403 [111]). Let S be a Margulis tube in
a hyperbolic 3-manifold. Let T be the radius of S and length(γ) the length of the
core geodesic. Then there is an estimate

length(γ) ≥ 0.5404
tanh(T )

cosh(2T )

Note for γ sufficiently small this implies eT ≥ 1.03 length−1/2(γ).

Remark 3.15. In any dimension n a much cruder argument due to Reznikov [177] shows

that for sufficiently small γ there is a constant Cn such that eT ≥ Cn length−2/(n+1)(γ).

Now fix M , a 1-cusped hyperbolic 3-manifold. Fix generators m, l for H1(∂M)
for which l generates the kernel of H1(∂M ; Q)→ H1(M ; Q). Let Mp/q denote the
result of p/q Dehn surgery on M in these co-ordinates, and let γ(p/q), or just γ for
short, denote the core geodesic of the filled solid torus.

Theorem 3.16. Let Mp/q be the result of p/q surgery on M . Suppose Mp/q is
hyperbolic. When the core geodesic γ is contained in a Margulis tube of radius at
least T then

length(γ) ≤
(

7.986π scl(l)(T + 1)

Tp

)2

Proof. By Lemma 3.13 there is a homogeneous quasimorphism qα on π1(Mp/q)
with defect at most 2π, and satisfying

qα(γ) ≥ length(γ) sinh(T )
T

T + 1

On the other hand, the conjugacy class of γp contains the image of l under the
surjective homomorphism π1(Mγ)→ π1(Mp/q) induced by Dehn surgery, so by the
easy direction of Bavard’s Duality Theorem 2.70, we estimate

qα(γ)

4π
≤ scl(γ) ≤ scl(l)

p

Using the estimate from Lemma 3.14, a straightforward calculation gives the desired
conclusion. �

Neumann–Zagier [161] introduce the following quadratic form Q:

Q(p, q) =
(length of pm+ ql)2

area(∂S)
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Here ∂S is the horotorus boundary of the cusp of M , and pm+ ql is a straight
curve on the horotorus (in the intrinsic Euclidean metric) representingmplq. Equiv-
alently, if we scale the Euclidean cusp to have area 1, the form just becomes
Q(p, q) = length2(pm+ ql).

Lemma 3.17 (Neumann–Zagier, Prop. 4.3 [161]). With notation as above, in
the manifold Mp/q there is an estimate

length(γ) = 2πQ(p, q)−1 +O

(
1

p4 + q4

)

In particular, for q fixed, there is an estimate

lim
p→∞

(pm)2length(γ)/2π = 1

where m is the length of the meridian in the Euclidean cusp, normalized to have
area 1.

Remark 3.18. We see from Lemma 3.17 that the estimates obtained in Theorem 3.16 are
sharp, up to an order of magnitude. Together with Remark 3.15, this justifies the claims
made in Remark 3.10.

Theorem 3.19. Let M be a 1-cusped hyperbolic manifold, with notation as
above. Normalize the Euclidean structure on the cusp ∂S to have area 1, and let m
be the length of the shortest curve on ∂S which is homologically essential in M . If
length(m) < 1 then

scl(l) ≥ 1

4π length(m)2

Proof. For brevity, we denote (normalized) length(m) by m. We expand S
to a maximal horotorus. For a maximal horotorus, every essential slope on ∂S
has length at least 1, by Jørgensen’s inequality [147]. It follows that if m <
1, then area(∂S) ≥ 1/m2. Under p/q surgery for very large p, the area of the
boundary of a maximal embedded tube around γ is almost equal to that of area(∂S).
The boundary of such a tube is intrinsically Euclidean in its induced metric, and
is isometric to a torus obtained from a product annulus by gluing the two end
components with a twist. The boundary components of the annulus have have
length equal to the circumference of a circle in the hyperbolic plane of radius T ,
which is 2π sinh(T ). By elementary hyperbolic trigonometry, the height of the
annulus is equal to length(γ) cosh(T ). Hence the area of the boundary of the tube
is 2π length(γ) sinh(T ) cosh(T ).

So we can estimate

area(∂S) = lim
p→∞

2π length(γ) sinh(T ) cosh(T )

and therefore

eT ≥
√

2

m
√
π

length−1/2(γ)

Using this estimate in the place of Lemma 3.14 in Theorem 3.16, and applying
Lemma 3.17, we obtain

2π

(pm)2
= lim

p→∞
length(γ) ≤

(
4scl(l)mπ

√
2π

p

)2
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and therefore

scl(l) ≥ 1

4πm2

as claimed �

In other words, one can estimate scl(l) from below from the geometry of the
cusp.

3.3.2. Manifolds with small δ∞. Note that the proof of Theorem 3.11 actu-
ally shows that if M is any closed hyperbolic manifold, and a is a conjugacy class in
π1(M) represented by a geodesic γ, then if length(γ) is sufficiently long, scl(a) ≥ δ
for any δ < 1/12.

Example 3.20. Let S be a closed nonorientable surface with χ(S) = −1. A
presentation for π1(S) is

〈a, b, c | [a, b] = c2〉
so the conjugacy class of c satisfies scl(c) ≤ 1/4. On the other hand, for a suitable
choice of hyperbolic structure on S, the geodesic in the free homotopy class of c
can be arbitrarily long.

Question 3.21. What are the optimal constants in Theorem 3.11?

We will see in § 4.3.4 that the upper bound of 1/2 is sharp, and is realized in
free and orientable surface groups.

Example 3.22. For any group G and any elements a, b ∈ G the element [a, b]
satisfies scl([a, b]) ≤ 1/2. Moreover, by Proposition 2.104, if a and b do not generate
a free rank 2 subgroup of G, we must have scl([a, b]) < 1/2.

However, a theorem of Delzant [64] shows that in any word-hyperbolic group
G (see § 3.4 for a definition) there are only finitely many conjugacy classes of non-
free 2-generator subgroups. Note that this class of groups includes fundamental
groups of closed hyperbolic manifolds of any dimension. Therefore only finitely
many conjugacy classes of elements [a, b] with scl([a, b]) < 1/2 can be constructed
in a fixed hyperbolic group G this way.

3.3.3. Complex length. If M is a closed hyperbolic 3-manifold, a conju-
gacy class a ∈ π1(M) determines a geodesic γ which has a complex length, de-
noted lengthC(γ), defined as follows. The hyperbolic structure on M determines
a representation ρ : π1(M) → PSL(2,C). The trace tr(a) is well-defined up to
multiplication by ±1. We set

lengthC(γ) = cosh−1(tr(a)/2)

which is well-defined up to integral multiples of 2πi. The real part of lengthC is the
usual length of γ, and the imaginary part is the angle of rotation on the normal
bundle νγ to γ induced by parallel transport around γ.

If γ is trivial in H1(M ; Q) there is a slightly different C-valued complex length,
denoted lengthH(γ), and defined as follows. Let N(γ) be an open solid torus
neighborhood of γ, and let T be the torus boundary of M − N(γ). Let l be the
slope on T which generates the kernel of the map H1(T ; Q)→ H1(M−N(γ); Q). If
M is obtained fromM−N(γ) by p/q filling with respect to some basis (q is arbitrary,
depending on a choice of meridian m, but p is well-defined) then l determines a
framing of νγp, the normal bundle of the p-fold cover of γ. This framing determines
the imaginary part of lengthH(γ); in words, minus the imaginary part is the angle
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that the framing l twists relative to parallel transport around γ. Note that the
imaginary part of lengthH(γ) and the imaginary part of lengthC(γ) will only agree
up to integral multiples of 2πi/p. Note that for a fixed choice of meridian m one
can estimate

imaginary part of lengthH(γ) = some function of p, q +O(1)

In terms of differential forms: near γ we can define cylindrical co-ordinates
θ, φ, r where θ parameterizes the length along γ and r is distance to γ, as in
Lemma 3.13, and where φ is the angular co-ordinate, taking values (locally) in
R/2πZ. The co-ordinate φ is not globally well-defined unless lengthC(γ) has imag-
inary part which is a multiple of 2πi, but the forms dφ and dθ are well-defined.
With respect to this co-ordinate system,

lengthH(γ) =
1

p

∫

l

dθ + idφ

In analogy to the construction in Lemma 3.13, define β = dφ(cosh(T ) − cosh(r))
and observe that

‖d(α+ iβ)‖ = 1

on T − γ. One must be careful, since dφ does not extend over γ. Nevertheless, if S
is a surface in M −N(γ) of genus g whose boundary wraps m times around l, we
can represent S by a pleated surface in M . For sufficiently large p or q the length
(in the usual sense) of γ will be very short, and any surface S which intersects
γ transversely will have area at least eT . In particular, for all but finitely many
surgeries, a pleated representative of S in M is disjoint from γ, and we obtain an
estimate of the form

|lengthH(γ)| ≤ some function of scl(l), p, q

valid for large p or q, which refines the inequality in Theorem 3.16.

3.4. Hyperbolic groups

We would like to generalize Theorem 3.9 and Theorem 3.11 beyond fundamental
groups of hyperbolic manifolds to more general (word) hyperbolic groups. There
are two essential ingredients in the proof of these theorems:

(1) the existence of a pleated surface representative in each homotopy class
(2) the existence of a Margulis constant in each dimension n

In fact, the proof of Theorem 3.11 only uses the existence of a Margulis constant
in dimension 2, and the fact that in a given closed hyperbolic manifold there is a
uniform positive lower bound on the translation length of any element.

We will see that both of these ingredients have acceptable generalizations to
the context of hyperbolic groups, and therefore we obtain generalizations of these
theorems with similar (geometric) proofs.

Alternatively, these theorems can be proved by explicitly constructing quasi-
morphisms with suitable properties and appealing to (the easy direction of) Bavard
duality. The construction of quasimorphisms on hyperbolic groups extends to
groups acting (weakly properly discontinuously) on hyperbolic spaces, such as map-
ping class groups, groups acting on trees, Out(Fn) and so on, as we shall see in
subsequent sections.

Where it pertains to quasimorphisms and stable commutator length, the ma-
terial in the remainder of this chapter draws substantially on [13, 12, 49]. We also
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appeal to [98, 24, 156] for facts about hyperbolic spaces and groups, and [21, 148]
for facts about the geometry of the curve complex.

3.4.1. Definitions and basic properties. Let G be a group with a finite
symmetric generating set A. Let CA(G) be the Cayley graph of G with respect to
A. In other words, CA(G) is the graph with one vertex for each element of G, and
one edge from vertices g to g′ for each pair of elements g, g′ ∈ G and each a ∈ A
for which g′ = ga. We make CA(G) into a path metric space by declaring that the
length of every edge is 1. The left action of G on itself extends to a simplicial (and
therefore isometric) action of G on CA(G). Providing A contains no elements of
order 2, the action is free and cocompact, with quotient a wedge of |A| circles.

Definition 3.23. A path metric space is δ-hyperbolic for some δ ≥ 0 if for
every geodesic triangle abc, every point in the edge ab is contained in the union of
the δ-neighborhoods of the other two edges:

ab ⊂ Nδ(bc) ∪Nδ(ca)
A group G with a finite symmetric generating set A is δ-hyperbolic if CA(G) is
δ-hyperbolic as a path metric space.

G is word-hyperbolic (or simply hyperbolic) if there is a δ ≥ 0 and a finite
symmetric generating set A for which CA(G) is δ-hyperbolic.

Remark 3.24. Note that our definition of a δ-hyperbolic space requires it to be a path
metric space; other definitions (e.g. in terms of the Gromov product) do not require this.

Example 3.25. Finitely generated free groups are hyperbolic. Fundamental
groups of compact surfaces with χ < 0 are hyperbolic.

Example 3.26. Let M be a closed Riemannian manifold with sectional curva-
ture uniformly bounded above by a negative number. Then π1(M) is hyperbolic.

Example 3.27. A group with a presentation satisfying the small cancellation
condition C(7) (see § 4.3) is hyperbolic.

Example 3.28. A group G = 〈Xm | R〉 on a finite generating set Xm with
a “random” set of relations R, drawn according to a suitable probability law (see
[163]) is hyperbolic with probability 1.

In some sense, “most” groups are hyperbolic. On the other hand, many nat-
urally occurring classes of groups (e.g. amenable groups, SL(n,Z) for n ≥ 3, fun-
damental groups of cusped hyperbolic manifolds of dimension at least 3) are not
hyperbolic. Nevertheless, hyperbolic groups are central in geometric group theory.

Remark 3.29. If G is δ-hyperbolic with respect to a generating set A, there is an n
depending only on δ so that if An denotes the set of elements in G of word length at most
n, then G is 7-hyperbolic with respect to the generating set An. Hence δ may be taken to
be some fixed small number at the expense of possibly increasing |A|. On the other hand,
δ cannot be made arbitrarily small: a graph is 0-hyperbolic if and only if it is a tree. If
CA(G) is a tree, then G is free, and A is a free generating set for G.

We assume the reader is familiar with basic elements of coarse geometry: (k, ǫ)-
quasi-isometries, quasigeodesics, etc. We summarize some of the main properties
of δ-hyperbolic spaces below (see [98] or [24] for details):

Theorem 3.30 (Basic properties of hyperbolic spaces). Let X be a δ-hyperbolic
path metric space.
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(1) Morse Lemma. For every k, ǫ there is a universal constant C(δ, k, ǫ)
such that every (k, ǫ)-quasigeodesic segment with endpoints p, q ∈ X lies
in the C-neighborhood of any geodesic joining p to q.

(2) Quasigeodesity is local. For every k, ǫ there is a universal constant
C(δ, k, ǫ) such that every map φ : R→ X which restricts on each segment
of length C to a (k, ǫ)-quasigeodesic is (globally) (2k, 2ǫ)-quasigeodesic.

(3) Ideal boundary. There is an ideal boundary ∂X functorially associated
to X, whose points consist of quasigeodesic rays up to the equivalence rela-
tion of being a finite Hausdorff distance apart. There is a natural topology
on ∂X for which it is metrizable. If X is proper, ∂X is compact. More-
over, any quasi-isometric embedding X → Y between hyperbolic spaces
induces a continuous map ∂X → ∂Y .

If G is hyperbolic, we denote the ideal boundary of its Cayley graph by ∂G.
As a topological space, this does not depend on the choice of a generating set, so
we call it the ideal boundary (or just the boundary) of G. The left action of G on
itself induces an action of G on ∂G by homeomorphisms. Every element g ∈ G is
either finite order (i.e. is elliptic), or fixes two points p± in ∂G with “source-sink”
dynamics (i.e is hyperbolic). That is, for any q ∈ ∂G − p± and any neighborhood
U of p+, the translate gn(q) lies in U for all sufficiently large positive n. The point
p+ is called the attracting fixed point of g, and p− is called the repelling fixed point.
Note that p− is the attracting fixed point and p+ the repelling fixed point for g−1.

In fact, hyperbolic groups are completely characterized by the dynamics of their
action on the boundary. The following characterization is due to Bowditch.

Theorem 3.31 (Bowditch, [20]). Let M be a perfect metrizable compact Haus-
dorff space. Let G be a group acting faithfully on M by homeomorphisms. Let M3

denote the space of distinct ordered triples of elements of M ; i.e. the open subset of
M ×M ×M consisting of triples which are pairwise distinct. If the induced action
of G on M3 is properly discontinuous and cocompact, then G is hyperbolic, and
there is a G-equivariant homeomorphism from M to ∂G.

It is straightforward to show that a hyperbolic group acts on its boundary as
in Theorem 3.31 and therefore this theorem gives a complete characterization of
hyperbolic groups. IfG is hyperbolic and ∂G contains more than two points, Klein’s
ping-pong argument applied to the action of G on ∂G shows that G contains many
(quasi-isometrically embedded) nonabelian free groups of arbitrary finite rank. A
hyperbolic group for which ∂G contains at most two points is said to be elementary;
a group is elementary hyperbolic if and only if it is virtually cyclic.

Definition 3.32. If X is a metric space, and g ∈ Isom(X), the translation
length of g, denoted τ(g), is the limit

τ(g) = lim
n→∞

dX(p, gn(p))

n
where p ∈ X is arbitrary.

The triangle inequality implies that this limit exists and is independent of p
(and is therefore a conjugacy invariant). If X is a path metric space, and g fixes
some geodesic l and acts on it as a translation, then τ(g) = dX(q, g(q)) for any q ∈ l.
If G is a word-hyperbolic group and A is a generating set, then for any g ∈ G the
translation length τA(g), or just τ(g) if A is understood, is the translation length
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of g thought of as an element of Isom(CA(G)) under the natural left action of G on
itself. Algebraically, τ(g) = limn→∞ ‖gn‖A/n where ‖ · ‖ denotes word length with
respect to the generating set A.

Example 3.33. Let G be any group, and let S denote the set of commutators
in G. Then the commutator subgroup [G,G] acts on CS([G,G]) by isometries, and
for every g ∈ [G,G] there is an equality scl(g) = τ(g).

The following Lemma is an easy consequence of the local finiteness of CA(G),
the fact that quasigeodesity is local, and the Morse Lemma.

Lemma 3.34 (Axes in hyperbolic Cayley graphs). Let G be δ-hyperbolic with
respect to the generating set A. Then there is a positive constant C(δ, |A|) such that
every g ∈ G either has finite order, or there is some n ≤ C such that gn fixes some
bi-infinite geodesic axis lg and acts on it by translation.

For a proof, see Theorem 5.1 from [78], or [24].

Corollary 3.35. Let G be δ-hyperbolic with respect to the generating set A.
Then there is a positive constant C′(δ, |A|) such that every g ∈ G either has finite
order, or satisfies τ(g) ≥ C′.

Proof. Since CA(G) is a graph in which every edge has length 1, elements
of Isom(CA(G)) act on CA(G) simplicially. It follows that if an element γ ∈
Isom(CA(G)) acts on some geodesic l by translation, then τ(γ) is an integer. Now
apply Lemma 3.34. �

Remark 3.36. The same argument shows that for a fixed hyperbolic group G, there is a
constant n(δ, |A|) so that τ (g) ∈ 1

n
Z for all g ∈ G.

3.4.2. Mineyev’s flow space. The main difference between hyperbolic man-
ifolds and Cayley groups of hyperbolic groups is synchronous exponential conver-
gence of asymptotic geodesics. Two asymptotic geodesic rays in the hyperbolic
plane have parameterizations by length such that the distance between correspond-
ing points goes to 0 like e−t. In a word-hyperbolic group, asymptotic geodesic
rays eventually come within distance δ of each other, but may not get any closer.
It is this synchronous exponential convergence which lets one estimate area from
topology in hyperbolic surfaces, and it is crucial for our applications.

It is a fundamental insight due originally to Gromov that the geometry of a
δ-hyperbolic space becomes much more tractable when one considers as primitive
elements not points, but (bi-infinite) geodesics. Mineyev gave a precise codification
of this insight, and constructed a geometric flow space associated to a δ-hyperbolic
metric space, in which synchronous exponential convergence of asymptotic geodesics
is restored.

A bi-infinite geodesic in a δ-hyperbolic space X contains two distinct geodesic
rays, which are asymptotic to distinct points in ∂X . Conversely, if X is a proper
metric space (i.e. the closed balls of any radius are compact) then any two distinct
points in ∂X are the endpoints of some infinite geodesic.

We use the abbreviation ∂2X to denote the space of ordered pairs of distinct
points in ∂X :

∂2X = {(a, b) ∈ ∂X × ∂X for which a 6= b}
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Mineyev’s flow space is not quite a metric space but rather a pseudo-metric
space, i.e. a space together with a non-negative function d(·, ·) on pairs of points
which satisfies all the axioms of a metric space except that d(p, q) should be strictly
positive for distinct points p and q. The reason is that Mineyev’s space is a union
(in a suitable sense) of oriented geodesics. Two geodesics with opposite orientation
corresponding to the same (equivalence class of) geodesic in X cannot be distin-
guished by the distance function. However, there is a natural quotient of Mineyev’s
flow space in which these distinct oriented geodesics are identified, and the function
d descends to a genuine metric on the quotient.

Theorem 3.37 (Mineyev’s flow space [156]). Let X, dX be a δ-hyperbolic graph
whose vertices all have valence ≤ n. Then there exists a pseudo-metric space
F(X), d× called the flow space of X with the following properties:

(1) F(X) is homeomorphic to ∂2X×R. The factors (p, q, ·) under this home-
omorphism are called the flowlines.

(2) There is an R-action on F(X) (the geodesic flow) which acts as an iso-
metric translation on each flowline (p, q, ·).

(3) There is a Z/2Z action x → x∗ which anti-commutes with the R action,
which satisfies d×(x, x∗) = 0, and which interchanges the flowlines (p, q, ·)
and (q, p, ·).

(4) There is a natural action of Isom(X) on F(X) by isometries. If g ∈
Isom(X) is hyperbolic with fixed points p± in ∂X then g fixes the flowline
(p−, p+, ·) of F(X) and acts on it as a translation by a distance which
we denote τ(g). This action of Isom(X) commutes with the R and Z/2Z

actions.
(5) There are constants C ≥ 0 and 0 ≤ λ < 1 such that for all triples

a, b, c ∈ ∂X, there is a natural isometric parameterization of the flow-
lines (a, c, ·), (b, c, ·) for which there is exponential convergence

d×((a, c, t), (b, c, t)) ≤ Cλt

Explicitly, (a, c, 0) is the point on (a, c, ·) closest to b, and similarly for
(b, c, 0) and a (as measured by suitable horofunctions).

(6) If X admits a cocompact isometric action, then up to an additive error,
there is an Isom(X) equivariant (k, ǫ) quasi-isometry between F(X), d×

and X, dX .

Moreover, all constants as above depend only on δ and n.

This theorem conflates several results and constructions in [156]. The pseudo-
metric d× is defined in § 3.2 and § 8.6 on a slightly larger space which Mineyev
calls the symmetric join. The flow space, defined in § 13, is a natural subset of this
space. The basic properties of the R,Z/2Z and Isom(X) action are established in
§ 2. The remaining properties are subsets of Theorem 44 (p. 459) and Theorem 57
(p. 468).

There are a number of subtle details in the statement of this theorem, which
require some discussion.

Bullet (3) implies that after quotienting F(X) by Z/2Z, the flowlines (p, q, ·)
and (q, p, ·) become identified, and we can speak of the (unparameterized) geodesic

joining p and q in the quotient which we denote F(X). By abuse of notation, for
each pair of distinct points p, q ∈ ∂X , let (p, q, ·) denote a particular isometric

parameterization of the unique geodesic in F(X) joining p to q.
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Bullet (5) is precisely the synchronous exponential convergence of flowlines
which is achieved in hyperbolic space, but which is not achieved in hyperbolic
groups. We refer to the special isometric synchronous parameterizations of asymp-
totic geodesics in this bullet as nearest point parameterizations. Note that nearest
point parameterizations also make sense for ideal triangles in hyperbolic space, or
hyperbolic space scaled to have constant curvature K for any K < 0. We define an
ideal triangle in F(X) to be the union of three (unparameterized) geodesics joining
distinct a, b, c ∈ ∂X in pairs.

The additive error in Bullet (6) spoiling genuine equivariance is necessary in
case Isom(X) is indiscrete or does not act freely on X . If X is the Cayley graph of
a torsion-free hyperbolic group G, then G acts freely on both F(X) and on X , and
therefore the quasi-isometry can be chosen to be truly G-equivariant.

Lemma 3.38. Let ∆ be an ideal triangle in F(X). For each K < 0, let ∆K

be the edges of an ideal triangle in the complete simply-connected 2-manifold of
constant curvature K. For each K, let ι be the map ι : ∆K → ∆, unique up to
permutation of vertices, which is an isometry on each edge, and which is compatible
with the nearest point parameterizations. Then for suitable K depending only on n
and δ, the map ιK is Lipschitz, with Lipschitz constant depending only on n and δ.

Proof. Multiplying distances by K−1/2 scales curvature by K. On an ideal
triangle in H2, with the nearest point parameterization, there is an estimate

d((a, c, t), (b, c, t)) ≤ e−t

So it suffices to make K big enough so that e−|K|
−1/2 ≤ λ. Since λ depends only

on n and δ, so does K. Since C depends only on n and δ, so does the Lipschitz
constant. �

3.4.3. Spectral gap theorem. With a suitably modified definition, we can
construct pleated surfaces in F(X) just as we did in hyperbolic manifolds.

Definition 3.39. A pleated surface (possibly with boundary) in F(X) consists
of the following data:

(1) a hyperbolic surface S containing a geodesic lamination L whose comple-
mentary regions are all ideal triangles, and for which ∂S ⊂ L

(2) a homomorphism ρ : π1(S)→ Isom(F(X))

(3) if L̃ denotes the preimage of L in the universal cover S̃, a map ι : L̃ →
F(X), equivariant with respect to the covering space action of π1(S) on

L̃ and the action of π1(S) on F(X) by ρ, which multiplies distances by
a fixed constant on each edge, and is compatible with the nearest point
parameterizations.

Notice that with this definition, the image of an element of π1(∂S) under ρ
has infinite order, and fixes two points in ∂X . Notice too that the map ι is not
typically an isometry on leaves of L̃, but is rather an isometry after the metric on
S has been scaled by some factor. The reason is so that we can insist that the map
ι is Lipschitz, as in Lemma 3.38.

For a given ρ : π1(S)→ Isom(F(X)) it is by no means clear which laminations L
on S are realized by pleated surfaces for some hyperbolic structure on S. However,
if L is proper (i.e. every leaf accumulates only on the boundary) then the natural
analogues of Lemma 3.6 and Lemma 3.7 are valid, with essentially the same proof, at
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least in the case where ρ(π1(S)) does not contain any elliptic or parabolic elements.
For the sake of simplicity therefore, we state our theorems below for torsion free
hyperbolic groups.

Lemma 3.40. Suppose Isom(X) is torsion-free and cocompact, and ρ : π1(S)→
Isom(X) is incompressible (i.e. injective on essential simple loops). Then there is
a pleated surface in the sense of Definition 3.39 compatible with ρ.

Proof. We show how to choose a hyperbolic metric on S so that ι as in
Definition 3.39 exists. Explicitly, choose K as in Lemma 3.38. We will construct a
metric on S of constant curvature K; scaling this metric completes the proof.

Let g ∈ π1(S) be in the conjugacy class of the loop ∂S. If l is a geodesic

whose ends spiral around ∂S, the ends of a lift l̃ are asymptotic to two fixed points
of conjugates of g. Using ρ and equivariance, the images of these fixed points
in ∂X are well-defined and distinct. As in Lemma 3.7, we can choose a proper
full lamination L on S (i.e. one for which every complementary region is an ideal
triangle, and each geodesic spirals around ∂S at both ends) for which the three
points in ∂π1(S) associated to each ideal triangle are mapped to three distinct
points in ∂X .

For each edge of L̃ there is a corresponding flowline of F(X) we would like to
map it to. If we fix an ideal triangle of constant curvature K, there is a unique
map ι from its boundary to F(X) which is isometric on each edge and compatible
with the nearest point parameterizations at each of the three endpoints.

An edge in L̃ contained in two distinct triangles in S̃ inherits two different
parameterizations; glue the corresponding ideal triangles in S̃ with a shear which is
the difference of these two parameterizations. Then ι as defined on the two triangles
is compatible on this edge. Since L is proper, the result of this gluing is connected,
and determines a (scaled) hyperbolic structure on S̃ and a Lipschitz map ι : L̃ →
F(X) which is an isometry on each edge. This construction is equivariant, and

therefore the scaled hyperbolic structure on S̃ covers a scaled hyperbolic structure
on S. �

From this fact we can deduce analogues of Theorem 3.9 and Theorem 3.11.

Theorem 3.41 (Calegari–Fujiwara [49], Thm. A). Let G be a torsion-free group
which is δ-hyperbolic with respect to a symmetric generating set |A|. Then there
is a positive constant C(δ, |A|) > 0 such that for all nontrivial a ∈ G there is an
inequality scl(a) ≥ C.

Proof. Let a ∈ G be given. Let X denote the Cayley graph CA(G), and

construct F(X) and F(X). Let S be a surface of genus g with one boundary
component, and ρ : π1(S) → G a homomorphism taking the generator of π1(∂S)
to an. By Lemma 3.40, after reducing the genus of S if necessary, we can find a
pleated surface (S,L) and ι : L̃→ F(X) with notation as in Definition 3.39. Let C
be such that ι is C-Lipschitz.

As in the proof of Theorem 3.9, for any ǫ > 0, we can find a component σ of
∂S ∩ S<ǫ of length at least

length(σ) ≥ length(∂S)

12g − 6
− 2π

3ǫ

and a rectangular strip R of thickness ≤ ǫ with σ on one side. For the sake of
notation, and by analogy with Theorem 3.9, we define length(γ) = length(∂S)/n.
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If τ denotes the translation length of ρ(a) on a flowline of F(X), then τ ≤
C · length(γ). Assume length(σ) > length(γ) + 4ǫ and let p be one endpoint of

σ. Let σ̃ ⊂ L̃ be a lift of σ to S̃ and let p̃ be the corresponding lift of p. Let
a, bab−1 ∈ π1(S) be as in the proof of Theorem 3.9. Then we have

d×(ι(p̃), ρ(abab−1)(ι(p̃))) ≤ 4Cǫ

This implies that the translation length of ρ(abab−1) on F(X) is at most 4Cǫ, and
therefore, by bullet (6) of Theorem 3.37 the translation length of ρ(abab−1) on X is
at most 4Ckǫ. On the other hand, by Corollary 3.35, since G is torsion free, there
is a positive lower bound C′ on the translation length of any nontrivial element of
G. So if we choose ǫ so that 4Ckǫ < C′ we can conclude that ρ(bab−1) = ρ(a)−1;
which implies ρ(b) has finite order in G, contrary to the hypothesis that G is torsion
free.

This contradiction implies that length(σ) ≤ length(γ) + 4ǫ and therefore

length(γ) ·
(

n

12g − 6
− 1

)
≤ 4ǫ+

2π

3ǫ

On the other hand, since a is nontrivial, Ck · length(γ) ≥ τ(a) ≥ C′ (note that ad-
ditive constants in quasi-isometries disappear when comparing translation lengths).
Putting this together with our earlier estimate, and rearranging gives

scl(a) ≥ 1

12

(
C′

C′ + Ck ·
(
kǫ+ 2π

3ǫ

)
)

Finally, all constants which appear depend only on δ and |A|. �

Theorem 3.42 (Calegari–Fujiwara [49], Thm. B). Let G be a torsion-free
nonelementary word hyperbolic group. Let δ∞(G) be the first accumulation point
for stable commutator length on conjugacy classes in G. Then

1

12
≤ δ∞(G) ≤ 1

2

Proof. With setup and notation as in Theorem 3.41 we obtain the estimate

length(γ) ·
(

n

12g − 6
− 1

)
≤ 4ǫ+

2π

3ǫ

If γ is sufficiently long, this implies n/(12g − 6) is arbitrarily close to 1, so scl(a)
cannot be much smaller than 1/12. This establishes the lower bound.

The upper bound follows exactly as in the proof of Theorem 3.11 by finding
a quasi-isometrically embedded copy of F2, the free group of rank 2, in G (which
exists because G is nonelementary). �

3.5. Counting quasimorphisms

The geometric methods we have used to this point can be pushed only so
far. The construction of Mineyev’s flow space and the fine properties of its metric
are very delicate and involved, and there are no realistic prospects of extending
them more generally (e.g. to non-proper δ-hyperbolic spaces). Instead we turn to
a generalization of Brooks’ counting quasimorphisms (see § 2.3.2) due to Epstein–
Fujiwara [78] for hyperbolic groups, and Fujiwara [82] in general.
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3.5.1. Definition and properties. Let G be a group acting simplicially on
a δ-hyperbolic complex X (not assumed to be locally finite).

Definition 3.43. Let σ be a finite oriented simplicial path in X , and let σ−1

denote the same path with the opposite orientation. A copy of σ is a translate a ·σ
where a ∈ G.

If we fix a basepoint p ∈ X , then for any a ∈ G there is a geodesic γ from p
to a(p). It is no good to try to define a counting function by counting (disjoint)
copies of σ in γ, since γ is in general not unique. Instead, one considers a function
which is sensitive to all possible paths from p to a(p).

Definition 3.44. Let σ be a finite oriented simplicial path in X , and let
p ∈ X be a base vertex. For any oriented simplicial path γ in X , let |γ|σ denote
the maximal number of disjoint copies of σ contained in γ. Given a ∈ G, define

cσ(a) = d(p, a(p))− inf
γ

(length(γ)− |γ|σ)

where the infimum is taken over all oriented simplicial paths γ in X from p to a(p).
Define the (small) counting quasimorphism hσ by the formula

hσ(a) = cσ(a)− cσ−1(a)

Since length and | · |σ take integer values on simplicial paths, the infimum of
length(γ)− |γ|σ is achieved on some path γ. Any path with this property is called
a realizing path for cσ.

One may similarly define a “big” counting function Cσ which counts all copies
of σ in each path γ, and a “big” counting quasimorphism Hσ. For the moment
these are just names; we will show that hσ is a quasimorphism, and estimate its
defect in terms of δ.

If p, q are any two vertices in X , one can define

cσ([p, q]) = d(p, q)− inf
γ

(length(γ)− |γ|σ)

where the infimum is taken over all paths from p to q.

Lemma 3.45. One has the following elementary facts:

(1) cσ([p, q]) = cσ−1([q, p])
(2) |cσ([p, q])− cσ([p, q′])| ≤ d(q, q′)
(3) If q is on a realizing path for σ from p to r, then

cσ([p, r]) ≥ cσ([p, q]) + cσ([q, r]) ≥ cσ([p, r])− 1

Proof. Reversing a realizing path for cσ gives a realizing path for cσ−1 . A
realizing path from p to q can be concatenated with a path of length d(q, q′) to
produce some path from p to q′, and vice versa. If q is on a realizing path from p
to r, then it can intersect at most one copy of σ in that path. �

In the sequel, we always assume that the length of σ is at least 2. It follows
that length(γ)−|γ|σ ≥ length(γ)/2 for any path γ, and we obtain an a priori upper
bound on d(p, a(p))− length(γ) + |γ|σ.

Realizing paths have the following universal geometric property:

Lemma 3.46 (Fujiwara, Lemma 3.3 [82]). Suppose length(σ) ≥ 2. Any realizing
path for cσ is a (2, 4)-quasigeodesic.
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Proof. Let γ be a realizing path, and q, r points on γ. Let α be the subpath
of γ from q to r, and let β be a geodesic with the same endpoints. Then β intersects
at most two disjoint copies of σ in γ. Let γ′ be obtained from γ by cutting out the
subpath from q to r and replacing it with β. We have

|γ′|σ ≥ |γ|σ − 2− |α|σ ≥ |γ|σ − 2− length(α)/2

since each copy of σ in α has length at least 2 by assumption. On the other hand,
since γ is a realizing path,

length(γ′)− |γ′|σ ≥ length(γ)− |γ|σ
Since length(γ′) − length(γ) = length(β) − length(α), putting these estimates to-
gether gives

length(β) ≥ length(α)/2 − 2

�

Remark 3.47. More generally, one can obtain better constants

K =
length(σ)

length(σ)− 1
, ǫ =

2 · length(σ)

length(σ)− 1

which depend explicitly on the length of σ. The argument is essentially the same as that
of Lemma 3.46.

By bullet (1) from Theorem 3.30 (i.e. the “Morse Lemma”), there is a constant
C(δ) such that any realizing path for cσ from p to a(p) must be contained in the
C-neighborhood of any geodesic between these two points. In particular, we have
the following consequence:

Lemma 3.48. There is a constant C(δ) such that for any path σ in X of length
at least 2, and for any a ∈ G, if the C-neighborhood of any geodesic from p to a(p)
does not contain a copy of σ, then cσ(a) = 0.

Finally, the defect of hσ can be controlled independently of length(σ):

Lemma 3.49 (Fujiwara, Prop. 3.10 [82]). Let σ be a path of length at least 2.
Then there is a constant C(δ) such that D(hσ) ≤ C.

Proof. It is evident from the definitions that hσ is antisymmetric, so it suffices
to bound |hσ(a) + hσ(b) + hσ(b

−1a−1)|. More generally, let p1, p2, p3 be any three
points in X . We will bound |∑i hσ([pi, pi+1])| where here and in the sequel, indices
are taken mod 3.

Let αi and α′i be realizing paths for cσ and cσ−1 respectively from pi to pi+1.
By δ-thinness and Lemma 3.46, we can find points qi, q

′
i in each αi, α

′
i so that all 6

points are mutually within distance N = N(δ) of each other.
By definition, |∑i hσ([pi, pi+1])| = |

∑
i cσ(αi)− cσ−1(α′i)|. By Lemma 3.45

cσ(αi) ≥ cσ([pi, qi]) + cσ([qi, pi+1]) ≥ cσ(αi)− 1

and

cσ−1(α′i) ≥ cσ−1([pi, q
′
i]) + cσ−1([q′i, pi+1]) ≥ cσ−1(α′i)− 1

By Lemma 3.45 again, |cσ([qi, pi+1])− c−1
σ ([pi+1, q

′
i+1])| ≤ N for each i, and there-

fore D ≤ 6 + 6N by the triangle inequality and the estimates above. �
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3.5.2. Weak proper discontinuity. Lemma 3.49 is not by itself enough to
deduce the existence of nontrivial quasimorphisms on a group G acting simplicially
on a δ-hyperbolic complex X , as the following example shows.

Example 3.50. Let G = SL(2,Z[1/2]). The ring Z[1/2] admits a discrete 2-
adic valuation, with valuation ring Z. Let A = SL(2,Z) thought of as a subgroup
of G, and let B be the group of matrices of the form

B =

{(
a 2−1b
2c d

)}

where
(
a b
c d

)
is in SL(2,Z). The intersection C = A∩B is the subgroup of SL(2,Z)

consisting of matrices of the form
(
a b
c d

)
where c is an even integer, and the group

G is abstractly isomorphic to A ∗C B.
There is a natural simplicial action of G on the Bass–Serre tree associated to

its description as an amalgamated free product. Note that C has index 3 in both
A and B, and therefore the Bass–Serre tree is regular and 3-valent. The action of
G on this tree is simplicial and minimal. Nevertheless, Q(G) = 0, as follows from
a Theorem of Liehl (see Example 5.38).

In order to show that hσ is nontrivial, one wants to use Lemma 3.48. To apply
this lemma, it is only necessary to find elements g such that if l is an axis for g
on X , there are no translates of l−1 (i.e. l with the opposite orientation) which
stay almost parallel to l on a scale large compared to the translation length of
g, say of size Nτ(g) where τ(g) is the translation length of g. Informally, such a
pair of translates are said to be “anti-aligned”. If p is in the midpoint of such a
pair of anti-aligned axes l and l′ = h(l), the element hgnh−1gn translates gm(p) a
uniformly short distance, for all n,m with |n|+ |m| small compared to N .

This discussion motivates the following definition, introduced in the paper [13]
by Bestvina–Fujiwara:

Definition 3.51. Suppose a group G acts simplicially on a δ-hyperbolic com-
plex X . The action of an element g ∈ G is weakly properly discontinuous if for
every x and every C > 0 there is a constant N > 0 such that the set of elements
f ∈ G for which

dX(x, fx) ≤ C and dX(gNx, fgNx) ≤ C
is finite.

To see how this addresses the issue of anti-aligned axes, suppose hi are a se-
quence of elements for which hi(l) is anti-aligned with l (i.e. the axes are C apart
with opposite orientation) on bigger and bigger segments centered at x ∈ l, and
where C is as in Lemma 3.48. Then every fi of the form fi = hig

nh−1
i gn satisfies

dX(x, fix) ≤ C and dX(gNx, fig
Nx) ≤ C for any fixed N,n providing i is suffi-

ciently big. If there are only finitely many distinct fi, then for some i and for some
distinct n,m we conclude

hig
nh−1

i gn = hig
mh−1

i gm

and therefore
hig

n−mh−1
i = gm−n

In other words, some nontrivial power of g is conjugate to its inverse.
Conversely, suppose no nontrivial power of g is conjugate to its inverse, and

suppose that the action of g on X is weakly properly discontinuous. Let σ be a
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fundamental domain for the action of g on an axis, and let σN be a fundamental
domain for gN . Then for sufficiently big n, no translate of σ−N is contained in any
realizing path for gn, and therefore the homogenization of hσN is nontrivial on g.

Remark 3.52. To make this discussion rigorous, one must replace “axis” throughout by
“quasi-axis”. This extension is routine and does not lead to any more substantial difficul-
ties. See [13] for details.

3.5.3. Crossing number and growth in surface groups. We briefly men-
tion a nontrivial application of counting quasimorphisms. Let S be a closed, ori-
entable surface of genus at least 2.

Definition 3.53. If a ∈ π1(S) is primitive, the crossing number of a, denoted
cr(a), is the number of self-intersections of the geodesic representative of the free
homotopy class of a in S. If b = an then define cr(an) = n2cr(a).

Actually, crossing number is a somewhat subtle notion. For precise definitions,
see § 4.2.1.

Remark 3.54. Note that the function cr(·) is characteristic (i.e. constant on orbits of
Aut(G)).

For each non-negative integer n let Sn ⊂ π1(S) denote the set consisting of
elements with cr(a) ≤ n. Note that Sn generates π1(S) for all n ≥ 0. For each
a ∈ π1(S), let wn(a) denote the word length of a in the generators Sn.

The following is the main theorem of [44]:

Theorem 3.55 (Calegari [44], Thm. A). Let S be a closed, orientable surface
of genus at least 2. Then there are constants C1(S), C2(S), C3(S) such that for any
non-negative integers n,m and any a ∈ π1(S) with cr(a) > 0 there is an inequality

wn(am) ≥ C1m√
n+ C2

− C3

A rough outline of the proof is as follows. Fix a finite generating set A for
π1(S), and consider the Cayley graph CA(S). For each a, we build a counting
quasimorphism h associated to a multiple of a which has an axis in CA(S). If
b ∈ π1(S) satisfies h(b) 6= 0, then an axis for b contains a long segment which
is close to the axis of a. This implies that the geodesic representative of b has
a long segment which is close to the geodesic representative of a, and therefore
b has a definite number of self-intersections. More precisely, if a realizing path
for b contains p copies of a fundamental domain for the axis of a, the geodesic
representative of b contains at least p2 self-intersections. In particular, one obtains
an estimate |h(b)| . O(

√
n)+O(1). Since the defect of h is independent of a, b, the

proof follows.

3.5.4. Separation theorem. If G is δ-hyperbolic with finite generating set
|A|, the action of G on the Cayley graph CA(G) is properly discontinuous (and
therefore certainly weakly properly discontinuous). It follows that there are many
nontrivial counting quasimorphisms on G. In fact, one has the following theorem,
which generalizes Theorem 3.41:

Theorem 3.56 (Calegari–Fujiwara [49], Thm. A′). Let G be a group which is
δ-hyperbolic with respect to some symmetric generating set A. Let a be nontorsion,
with no positive power conjugate to its inverse. Let ai ∈ G be a collection of
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elements with T := supi τ(ai) finite. Suppose that for all nonzero integers n,m and
all b ∈ G and indices i we have an inequality

ami 6= banb−1

Then there is a homogeneous quasimorphism φ ∈ Q(G) such that

(1) φ(a) = 1 and φ(ai) = 0 for all i

(2) The defect satisfies D(φ) ≤ C(δ, |A|)
(

T
τ(a) + 1

)

Proof. By Lemma 3.34, after replacing each ai by a fixed power whose size
depends only on δ and |A|, we can assume that each ai acts as translation on some
geodesic axis li. Similarly, let l be a geodesic axis for a. Choose some big N (to
be determined), and let σ be a fundamental domain for the action of aN on l. The
quasimorphism φ will be a multiple of the homogenization of hσ, normalized to
satisfy φ(a) = 1. We need to show that if N is chosen sufficiently large, there are
no copies of σ or σ−1 contained in the C-neighborhood of any li or l−1, where C is
as in Lemma 3.48.

Suppose for the sake of argument that there is such a copy, and let p be the
midpoint of σ. The segment σ is contained in a translate b(l). The translation
length of ai on li is τ(ai) ≤ T , and the translation length of bab−1 on b(l) is τ(a)
(the case of l−1 is similar and is omitted). For big N , we can assume the length of
σ is large compared to τ(a) and τ(ai). Then for each n which is small compared to
N , the element wn := aiba

nb−1a−1
i ba−nb−1 satisfies d(p, wn(p)) ≤ 4C. Since there

are less than |A|4C elements in the ball of radius 4C about any point, eventually
we must have wn = wm for distinct n,m. But this implies

aiba
nb−1a−1

i ba−nb−1 = aiba
mb−1a−1

i ba−mb−1

and therefore a−1
i and ban−mb−1 commute. Since G is hyperbolic, commuting

elements have powers which are equal, contrary to the hypothesis that no conjugate
of a has a power equal to a power of ai.

This contradiction implies that τ(ai) + |A|4Cτ(a) ≥ Nτ(a). On the other
hand, D(hσ) is uniformly bounded, by Lemma 3.49, and satisfies hσ(a

Nn) ≥ n.
Homogenizing and scaling by the appropriate factor, we obtain the desired result.

�

In fact, let
∑
niai be any integral chain which is nonzero in BH1 . Without

loss of generality, we may replace this chain by a rational chain with bounded
denominators, with the same scl, and such that no distinct ai, aj have conjugate
powers. After reordering, suppose τ(a1) ≥ τ(ai) for all i, and let φ be as in
Theorem 3.56, so that φ(a1) = 1 and φ(ai) = 0 for i 6= 1. The defect D(φ) is
bounded above by a constant depending only on δ and |A|. The coefficient of a1

is bounded below by a positive constant depending only on δ and |A|. Hence by
Bavard duality, scl(

∑
niai) is bounded below by a positive constant depending only

on δ and |A|. In other words we have proved:

Corollary 3.57. Let G be hyperbolic. Then scl is a norm on BH1 (G). More-
over, the value of scl on any nonzero integral chain in BH1 (G) is bounded below by
a positive constant that depends only on δ and |A|.
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3.6. Mapping class groups

In this section we survey some of what is known about scl in mapping class
groups. Our survey is very incomplete, since our main goal is to state an analogue
of Theorem 3.41 for mapping class groups, and to give the idea of the proof.

Definition 3.58. Let S be an oriented surface (possibly punctured). The
mapping class group of S, denoted MCG(S), is the group of isotopy classes of
orientation-preserving self-homeomorphisms of S.

Example 3.59 (Dehn twist). Let γ be an essential simple curve in S. A
right-handed Dehn twist in γ is the map tγ : S → S supported on an annulus
neighborhood γ × [0, 1] which takes each curve γ × t to itself by a positive twist
through a fraction t of its length. If the annulus is parameterized as R/Z × [0, 1],
then in co-ordinates, the map is given by (θ, t)→ (θ + t, t).

By abuse of notation, we typically refer to both a specific homeomorphism and
its image in MCG(S) as a Dehn twist.

Remark 3.60. The inverse of a right-handed Dehn twist is a left-handed Dehn twist.
Sometimes, right-handed Dehn twists are called positive Dehn twists. Notice that the
handedness of a Dehn twist depends on an orientation for S but not on an orientation for
γ.

The mapping class group is a fundamental object in 2-dimensional topology,
and the literature on it is vast. Our treatment of it in this section is very cursory,
and intended mainly just to introduce definitions and notation. For simplicity,
we restrict attention throughout this section to mapping class groups of closed,
orientable surfaces, although most of the results generalize to mapping class groups
of surfaces with boundary or punctured surfaces. We refer the interested reader to
[16] or [80] for background and details.

An element of MCG(S) induces an outer automorphism of π1(S) (outer, be-
cause homeomorphisms are not required to keep the basepoint fixed). This fact
connects geometry with algebra. In fact, the connection is more intimate than it
may appear at first glance, because of

Theorem 3.61 (Dehn–Nielsen). The natural map MCG(S) → Out(π1(S)) is
an injection, with image equal to subgroup consisting of automorphisms which per-
mute the peripheral subgroups.

In particular, for S closed, MCG(S) is isomorphic to Out(π1(S)). For each S,
the group MCG(S) is finitely presented. A finite generating set consisting of Dehn
twists was first given by Dehn; a description of a finite set of relations (with respect
to a slightly different generating set) was first given by Hatcher–Thurston [106].

The mapping class group of any closed orientable S is generated by finite order
elements; in particular, its Abelianization is finite. If the genus of S is at least 3,
the Abelianization is trivial:

Theorem 3.62 (Powell, [171]). Let S be a closed, orientable surface of genus
at least 3. Then MCG(S) is perfect.

A short proof of this theorem is due to Harer:

Proof. It is well-known that MCG(S) is generated by Dehn twists about
nonseparating curves (e.g. Lickorish’s generating set [134]). By the classification of
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surfaces, any two nonseparating curves may be interchanged by a homeomorphism
of S; it follows that H1(MCG(S); Z) is generated by the image t of a twist about
any nonseparating curve.

If the genus of S is at least 3, then S contains a non-separating four-holed
sphere. The lantern relation, in MCG(4-holed sphere), says that the product of
Dehn twists in the boundary components of a 4-holed sphere is equal to the product
of twists in three curves in the sphere which separate the boundary components
in pairs, and intersect each other in two points. The image of this relation in
H1(MCG(S); Z) is t4 = t3, so MCG(S) is perfect. �

3.6.1. Right-handed Dehn twists. Interesting lower bounds in scl can be
obtained using gauge theory. This is a subject which has been pioneered by
Kotschick, in [130, 131] and Endo–Kotschick [73, 74].

The following theorem is essentially due to Endo–Kotschick [73] although for
technical reasons, the result is stated in that paper only for powers of a single
separating Dehn twist. This technical assumption is removed in [23], and the
result extended to products of positive twists in disjoint simple curves in [131].

Theorem 3.63 (Endo–Kotschick [73], Kotschick [131]). Let S be a closed
orientable surface of genus g ≥ 2. If a ∈ MCG(S) is the product of k right-handed
Dehn twists along essential disjoint simple closed curves γ1, · · · , γk then

scl(a) ≥ k

6(3g − 1)

It is beyond the scope of this survey to give a complete proof, but the way in
which gauge theory enters the picture is the following. The product a = tγ1tγ2 · · · tγk

lets one build a Lefschetz fibration E over the disk with fiber S which is singular
over k distinct points, and such that the restriction of E to ∂D is a surface bundle
with monodromy a. Over each singular point pi, the fiber is a copy of S “pinched”
along the curve γi, and such that the monodromy of a small loop around pi is the
twist tγi . Since the curves γi are all disjoint, we can adjust the fiber structure on E
so there is only one singular fiber, which degenerates along all the γi simultaneously.
Since the twists are all right-handed, E admits a symplectic structure. Take an n-
fold branched cover of the disk over the singular point, and pull back the fibration.
After a suitable resolution, we get a new symplectic Lefschetz fibration E′ over D
with one singular fiber, such that the monodromy around the boundary is an, and
such that the singular fiber has kn vanishing cycles, which come in parallel families
of the γi.

An expression of an as a product of commutators in MCG(S) defines a nonsin-
gular S bundle E′′ over a once-punctured surface F , and by gluing E′′ to E′ along
their boundaries in a fiber-respecting way, one obtains a closed symplectic mani-
fold W . Then the engine of the proof is the well-known theorem of Taubes [194] in
Seiberg–Witten theory which shows that for a minimal symplectic 4-manifold with
b+2 > 1 the canonical class is represented by a symplectically embedded surface
without spherical components. From this one derives inequalities on intersection
numbers of certain surfaces in W and the result follows.

It is crucial in Theorem 3.63 that the twists in the different curves should all
have the same handedness.
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Example 3.64 (Kotschick, Endo–Kotschick [131, 74]). Let α be an essential
simple closed curve, and let g ∈ MCG(S) be such that g(α) ∩ α = ∅, and g(α) is
not isotopic to α. Let h = tαt

−1
g(α). Since α and g(α) are disjoint,

hn = tnαt
−n
g(α) = tnαgt

−n
α g−1 = [tnα, g]

so scl(h) = 0. Note in this case that there is always some f ∈ MCG(S) which
interchanges α and g(α). For such an f we have fhf−1 = h−1, so that h = 0 in
BH1 .

As another example, let α, β, γ be disjoint nonseparating non-isotopic simple
closed curves, and define h = t−1

α t−1
β t2γ . If g interchanges α and γ, and g′ inter-

changes β and γ, then hk = [tkγ , g][t
k
γ , g
′]. In this case, all powers of h are in distinct

conjugacy classes, and h is not in BH1 . This example shows that H is not closed in
B1(MCG(S)).

Interesting upper bounds on scl can be obtained by explicit examples.

Example 3.65 (Korkmaz [129]). Let a ∈ MCG(S) be a Dehn twist in a non-
separating closed curve. Then a10 can be written as a product of two commutators.

Let a1, · · · , a5 be curves on S as in Figure 3.4, where a4, a5 are nonseparating.
For each i, let ti denote a positive Dehn twist in ai. Notice that t1, t3, t4, t5 all

a1

a3

a2a4 a5

Figure 3.4. The curves a1, · · · , a5 in S

commute. Moreover, a neighborhood of a1 ∪ a2 is a once-punctured torus. An
element of the mapping class group of a punctured torus is determined by its
action on homology, and one may verify that the relation t1t2t1 = t2t1t2 holds
by an elementary calculation, and similarly with t3 in place of t1. The relation
t4t5 = (t1t2t3)

4 is a little harder to see, but still elementary.
Following [129], we calculate

t4t5 = (t1t2t3)(t1t2t3)(t1t2t3)(t1t2t3)

= (t1t2t1)(t3t2t3)(t1t2t1)(t3t2t3)

= (t2t1t2)(t2t3t2)(t2t1t2)(t2t3t2)

Since t2 commutes with both t4 and t5, this gives

t4t5 = t1(t
2
2t3t

−2
2 )t42t1t

−1
2 (t32t3t

−3
2 )t−1

2 t62

If α = t22(a3) and β = t32(a3) then this yields

(t4t
−1
α t5t

−1
1 ) = t42(t1t

−1
2 tβt

−1
2 )t62

Each bracketed expression is of the form tat
−1
b tct

−1
d for simple curves a, b, c, d. It

can be verified in each case that the curves a∪ b lie in S in the same combinatorial
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pattern as d ∪ c. Therefore there is g ∈ MCG(S) for which g(a) = d and g(b) = c.
But this means

tat
−1
b tct

−1
d = tat

−1
b gtbt

−1
a g−1 = [tat

−1
b , g]

That is, each of the two bracketed expressions are commutators, and the proof
follows.

In case genus(S) = 2, one obtains

1

30
≤ scl(t) ≤ 3

20

where the first inequality comes from Theorem 3.63.

Let t denote a Dehn twist in a nonseparating curve (for concreteness). One
may ask to what extent scl(t) depends on genus(S). In fact, it turns out that
Theorem 3.63 gives the correct order of magnitude. This follows from a general
phenomenon, especially endemic in transformation groups, which we describe.

Example 3.66 (Münchhausen trick). Suppose we are given a group G acting
on a set Y . Suppose further that there is an identity a =

∏n
i=1[bi, ci] in G where

a, bi, ci all have support in some subset X ⊂ Y . Suppose finally that there is g ∈ G
such that X ∩ gi(X) = ∅ for 0 < i ≤ m.

If H is a subgroup of G consisting of elements with support in X , define ∆ :
H → G by

∆(h) = hhghg
2 · · ·hgm−1

where the superscript notation denotes conjugation. The condition on g ensures
∆ is a homomorphism, and therefore cl(∆(a)) ≤ n. Now define an element j =

a(a2)g(a3)g
2 · · · (am)g

m−1

. We have the identity [j, g] = ∆(a)(a−m)g
m

, which ex-
hibits am as a product of at most n+ 1 commutators. If m is large compared to n,
then scl(a) is small.

Corollary 3.67 (Kotschick). If t is a Dehn twist in a non-separating curve,
there is an estimate scl(t) = O(1/g).

Proof. The lower bound is Theorem 3.63. The upper bound follows by ex-
hibiting t as a product of commutators of elements bi, ci supported in some fixed
surface T with boundary, which can be included into a surface S of arbitrary genus.
Then apply the Münchhausen trick. �

Remark 3.68. Many variations on Corollary 3.67 are proved in [132] and [29], and the
same trick appears in the proof of Theorem 5.13. The trick works whenever there is
“enough room” in Y for many disjoint copies of X; in many important applications, X is
(in some sense) a copy of Y . The terminology “Münchhausen trick” is taken from [118],
and “refers to the story about how the legendary baron allegedly succeeded in pulling
himself out of a quagmire by his own hair”. This trick goes back at least to [81] (in fact
one could argue it goes back to Zeno of Elea).

3.6.2. The complex of curves. For most surfaces S, the group MCG(S)
is not word-hyperbolic. Nevertheless, it acts naturally on a certain δ-hyperbolic
simplicial complex, called the complex of curves. This complex was first introduced
by Harvey [103], but it was Masur–Minsky [148] who established some of its most
important basic properties. A similar complex was also introduced by Hatcher–
Thurston [106]. A good introductory reference to the complex of curves is [182].
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Definition 3.69 (Harvey [103]). Let S be a closed, orientable surface of genus
at least 2. The complex of curves, denoted C(S), is the simplicial complex whose k
simplices consist of isotopy classes of pairwise disjoint non-parallel essential simple
closed curves on S.

With this definition, C(S) is a simplicial complex of dimension 3g − 4. The
natural permutation action of MCG(S) on the set of isotopy classes of essential
simple curves on S induces a simplicial action of MCG(S) on C(S).

Remark 3.70. Similar definitions can be made when S has smaller genus, or has punctures
or boundary components. See [148].

We can think of C(S) as a metric space, by taking every edge to have length 1
and every simplex to be equilateral. In the sequel, we are typically interested not
in C(S) itself, but in its 1-skeleton. Usually, by abuse of notation, when we talk
about C(S) we really mean its 1-skeleton. It should be clear from context which
sense is meant in each case.

The main property of C(S) from our point of view is the following theorem:

Theorem 3.71 (Masur–Minsky [148]). Let S be as above. Then C(S) is δ-
hyperbolic for some δ(S).

An element a ∈ MCG(S) is reducible if it permutes some finite set of isotopy
classes of disjoint, non-parallel essential simple closed curves. It turns out that an
element a ∈MCG(S) has a finite orbit in C(S) if and only if a is either finite order
or reducible. An element which is neither finite order nor reducible is said to be
pseudo-Anosov.

Theorem 3.72 (Masur–Minsky [148]). Let a ∈ MCG(S) be pseudo-Anosov.
Then every orbit of a on C(S) is a quasigeodesic.

In particular, every pseudo-Anosov element has a positive translation length
τ(a). In fact, Bowditch [21] proves the following analogue of Lemma 3.34:

Theorem 3.73 (Bowditch, Theorem 1.4 [21]). Let S be a closed, orientable
surface of genus at least 2. Then there is a constant C(S) such that for every
pseudo-Anosov a ∈ MCG(S), there is n ≤ C such that an fixes some bi-infinite
geodesic axis la and acts on it by translation.

3.6.3. Acylindricity. The action of MCG(S) on C(S) is not proper; the sta-
bilizer of a vertex is isomorphic to a copy of MCG(S′) for some smaller surface S′.
Nevertheless, Bestvina–Fujiwara ([13]) show that every pseudo-Anosov element of
MCG(S) acts weakly properly discontinuously on C(S). As a corollary, they deduce
the following theorem:

Theorem 3.74 (Bestvina–Fujiwara, [13], Theorem 12). Let G be a subgroup
of MCG(S) which is not virtually Abelian. Then the dimension of Q(G) is infinite.

In particular, if φ is pseudo-Anosov, and p, q are sufficiently far apart on an
axis for φ, only finitely many elements of MCG(S) move both p and q a bounded
distance. This is enough to show that every pseudo-Anosov element either has a
(bounded) power conjugate to its inverse, or has positive scl. To obtain uniform
estimates on scl, one needs a slightly stronger statement, captured in the following
theorem of Bowditch:
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Theorem 3.75 (Bowditch, Acylindricity Theorem [21]). Let S be a closed
orientable surface of genus g ≥ 2. For any t > 0 there exist positive constants
C1(t, S), C2(t, S) such that given any two points x, y ∈ C(S) with d(x, y) ≥ C1 there
are at most C2 elements a ∈MCG(S) such that d(x, ax) ≤ t and d(y, ay) ≤ t.
Remark 3.76. A similar theorem is also proved by Masur–Minsky [148].

We are now in a position to state the analogue of Theorem 3.41 and Theo-
rem 3.56 for mapping class groups.

Theorem 3.77 (Calegari–Fujiwara [49], Thm. C). Let S be a closed orientable
surface of genus at least 2. Then there are constants C1(S), C2(S) > 0 such that for
any pseudo-Anosov element a ∈ MCG(S) either there is a positive integer n ≤ C1

for which an is conjugate to its inverse, or else there is a homogeneous quasimor-
phism φ ∈ Q(MCG(S)) with φ(a) = 1 and D(φ) ≤ C2.

Moreover, suppose ai ∈ MCG(S) are a (possibly infinite) collection of elements
with T := supi τ(ai) finite. Suppose that for all nonzero integers n,m and all
b ∈ MCG(S) and indices i we have an inequality

ami 6= banb−1

Then there is a homogeneous quasimorphism φ ∈ Q(MCG(S)) such that

(1) φ(a) = 1 and φ(ai) = 0 for all i

(2) The defect satisfies D(φ) ≤ C2(S)
(

T
τ(a) + 1

)

Proof. The proof is essentially the same as the proof of Theorem 3.56, with
Theorem 3.73 used in place of Lemma 3.34. After replacing a and ai by (bounded)
powers, one assumes that they stabilize axes l and li respectively. For each n, let
wn := aiba

nb−1a−1
i ba−nb−1. If b(l) is close to li on a segment σ which is long

compared to τ(a), τ(ai) and C1 (as in Theorem 3.75), then one can find points p
and p′ on li with d(p, p′) ≥ C1 such that d(p, wn(p)) ≤ t and d(p′, wn(p′)) ≤ t for
all n small compared to length(σ).

One needs to know that two pseudo-Anosov elements in MCG(S) which com-
mute have powers which are proportional (the pseudo-Anosov hypothesis cannot
be omitted here); see e.g [198]. Otherwise, the remainder of the proof is copied
verbatim from the proof of Theorem 3.56. �

Remark 3.78. In contrast with the case of word-hyperbolic groups, it should be noted that
there are infinitely many conjugacy classes of pseudo-Anosov elements in MCG(S) with
bounded translation length. In fact, the first accumulation point for translation length in
MCG(S) is O(1/g log(g)), where g is the genus of S; see Theorem 1.5 of [79].

The separation property of the quasimorphisms produced by Theorem 3.77 is
very powerful, and has a number of consequences, including the following.

Corollary 3.79. Let Σ be a subset of MCG(S) consisting only of reducible
elements, and let G be the subgroup it generates. Suppose G contains a pseudo-
Anosov element a with no power conjugate to its inverse. Then the Cayley graph
of G with respect to the generating set Σ has infinite diameter.

Proof. By Theorem 3.77 there is a homogeneous quasimorphism φ defined on
MCG(S) with φ(an) = n which vanishes on Σ. If b is an element of G with length
at most m in the generators Σ, then φ(b) ≤ (m− 1)D(φ). �



3.7. Out(FN ) 83

The hypotheses of this Corollary are satisfied whenever G is not reducible or
virtually cyclic.

Example 3.80 (Broaddus–Farb–Putman [25]). The Torelli group, denoted
I(S), is the kernel of the natural map MCG(S) → Aut(H1(S)) = Sp(2g,Z). It
is not a perfect group; the kernel of the map

I(S)→ H1(I(S); Z)/torsion

is denoted K(S), and is generated by Dehn twists about separating simple closed
curves. This is an infinite (in fact, characteristic) generating set. On the other
hand, by Corollary 3.79 the diameter of the Cayley graph of K with respect to this
generating set is infinite.

3.7. Out(Fn)

Very recently, the methods discussed in this chapter have been used to construct
many nontrivial quasimorphisms on Out(Fn), the group of outer automorphisms of
a free group. The main results described in § 3.7.2 were announced by Hamenstädt
in May 2008, and first appeared in (pre-)print in Bestvina–Feighn [12]. In what
follows we restrict ourselves to describing the construction of suitable δ-hyperbolic
simplicial complexes on which Out(Fn) acts, and summarizing the important prop-
erties of these complexes and the action without justification.

3.7.1. Outer space. In what follows, Out(Fn) denotes the outer automor-
phism group of the free group Fn of rank n ≥ 2. The modern theory of Out(Fn) is
dominated by several deep analogies between this group and mapping class groups.
The cornerstone of these analogies is Culler–Vogtmann’s construction [61] of Outer
space, which serves as an analogue of Teichmüller space.

Definition 3.81. Fix Fn, a free group of rank n. An action of Fn on an R-tree
T is minimal if there is no proper Fn-invariant subtree of T . Let ρ : Fn → Isom(T )
be an action which is minimal, free and discrete. Associated to any such ρ there is
a length function ℓρ ∈ RFn where ℓρ(g) is the translation length of ρ(g) on T .

Outer space, denoted in the sequel PT, is the projectivization of the space of
length functions of minimal, free, discrete actions of Fn on R-trees, with the weak
topology. Its compactification PT is obtained by adding weak limits of projective
classes of length functions.

If ρ : Fn → Isom(T ) is a minimal, free, discrete action of Fn on an R-tree,
and ϕ : Fn → Fn is an automorphism, then ρ ◦ ϕ−1 : Fn → Isom(T ) is another
action. If ϕ is inner, the length functions ℓρ and ℓρ◦ϕ−1 are equal. Hence the group
Out(Fn) acts in a natural way on PT, and this action extends continuously to its
compactification.

Outer space has a natural cellular structure, which can be described as follows.
For each action ρ : Fn → Isom(T ), let Γρ be the quotient of T by ρ(Fn), thought
of as a metric graph together with an isomorphism of its fundamental group with
Fn (i.e. a marking), which is well-defined up to conjugacy. The cells of PT are the
actions which correspond to a fixed combinatorial type of Γρ, together with a choice

of marking. This cellular structure extends naturally to PT.
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3.7.2. Fully irreducible automorphisms.

Definition 3.82. An element ϕ ∈ Out(Fn) is fully irreducible if for all proper
free factors F of Fn and all k > 0 the subgroup ϕk(F ) is not conjugate to F .

The main result of [12] is as follows:

Theorem 3.83 (Bestvina–Feighn [12], p.11). For any finite set ϕ1, · · · , ϕk of
fully irreducible elements of Out(Fn) there is a connected δ-hyperbolic graph X
(depending on the ϕi) together with an isometric action of Out(Fn) on X such that

(1) the stabilizer in Out(Fn) of a simplicial tree in PT has bounded orbits
(2) the stabilizer in Out(Fn) of a proper free factor F ⊂ Fn has bounded orbits
(3) the ϕi all have nonzero translation lengths

The construction of the graph X is somewhat complicated, and follows a tem-
plate developed by Bowditch [20] to study convergence group actions. A fully
irreducible automorphism ψ has one stable and one unstable fixed point in the
boundary of PT, which we denote T±ψ . A tree T is irreducible if it is of the form

T+
ψ for some fully irreducible ψ.

Choose sufficiently small closed neighborhoods D±i of T±ϕi
. In PT, let M be the

subspace of all irreducible trees. Define an annulus to be an ordered pair of closed
subsets of M either of the form (ψ(D−i )∩M, ψ(D+

i )∩M) or (ψ(D+
i )∩M, ψ(D−i )∩M),

where ψ ∈ Out(Fn) and D±i are as above. Denote the set of annuli (defined as
above) by A. The pair (M,A) depends on the choice of the ϕi, and both M and A

admit natural actions by Out(Fn).
For any subset K ⊂ M and any annulus A = (A−, A+) write K < A if K ⊂

intA−, and write A < K if K ⊂ intA+. If A = (A−, A+) and B = (B−, B+) are
two annuli, write A < B if intA+ ∪ intB− = M. Then for any pair of subsets K,L
of M, define (K|L) ∈ [0,∞] to be the biggest number of annuli Ai in A such that

K < A1 < A2 < · · · < An < L

Let Q denote the set of ordered triples of distinct points in M. If A = (a1, a2, a3)
and B = (b1, b2, b3) are elements of Q, then define

ρ(A,B) = max({ai, aj}|{bk, bl})
where the maximum is taken over all i 6= j and k 6= l. The Bowditch complex of
the pair (M,A), is the graph whose vertices are the elements of Q and whose edges
are the pairs of elements A,B ∈ Q with ρ(A,B) ≤ r for some sufficiently big r.
Bowditch [20] gives certain axioms for an abstract pair (M,A) which ensure that
the associated Bowditch complex is δ-hyperbolic. The substance of Theorem 3.83
is the proof that (M,A) as above satisfies Bowditch’s axioms.

In order to construct quasimorphisms, one must also know that many elements
of Out(Fn) act weakly properly discontinuously. This is the following proposition,
also from [12]:

Proposition 3.84 (Bestvina–Feighn [12], p.24). For ϕi and X as in Theo-
rem 3.83, the action of each ϕi on X is weakly properly discontinuous; i.e. for
every x ∈ X and every C > 0 there is a constant N > 0 such that the set of
ψ ∈ Out(Fn) for which

dX(x, ψx) ≤ C and dX(ϕNi x, ψϕ
N
i x) ≤ C

is finite.
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Theorem 3.83 allows one to construct many quasimorphisms on Out(Fn) by the
method of § 3.5. Proposition 3.84 implies that these quasimorphisms are nontrivial
and independent. Consequently, one concludes that Q(Out(Fn)) is infinite dimen-
sional; in fact ([12] Corollary 4.28), for any subgroup Γ of Out(Fn) which contains
two independent fully irreducible automorphisms, Q(Γ) is infinite dimensional.





CHAPTER 4

Free and surface groups

In this chapter we study scl in free groups, and some related groups. The
methods are largely geometric and depend on realizing the groups in question as
fundamental groups of particularly simple low-dimensional manifolds.

The first main theorem proved in this chapter is the Rationality Theorem (The-
orem 4.24), which says that in a free group F , the unit ball of the scl norm on
BH1 (F ) is a rational polyhedron; i.e. scl is a piecewise linear rational function on
finite dimensional rational subspaces of BH1 (F ). It follows that scl takes on only
rational values in free groups. The method of proof is direct: we show how to explic-
itly construct extremal surfaces bounding finite linear combinations of conjugacy
classes. As a byproduct, we obtain a polynomial-time algorithm to calculate scl in
free groups, which can be practically implemented, at least in some simple cases.
This algorithm gives an interesting conjectural picture of the spectrum of scl on
free groups, and perhaps some insight into the spectrum of scl on word-hyperbolic
groups in general.

The polyhedrality of the unit ball of the scl norm is related to certain rigidity
phenomena. Each nonzero element in BH1 (F ) projectively intersects the boundary
of the unit ball of the scl norm in the interior of some face. The smaller the codi-
mension of this face, the smaller the space of quasimorphisms which are extremal
for the given element. The situations displaying the most rigidity are therefore
associated to faces of the unit ball of codimension one. It turns out that for a free
group, such faces of codimension one exist, and have a geometric meaning. In § 4.2
we discuss the Rigidity Theorem (Theorem 4.78), which says that if F is a free
group, associated to each isomorphism F → π1(S) (up to conjugacy), where S is a
compact oriented surface, there is a top dimensional face πS of the unit ball of the
scl norm on F , and the unique homogeneous quasimorphism φS dual to πS (up to
scale and elements of H1) is the rotation quasimorphism associated to a hyperbolic
structure on S.

Finally, in § 4.3, we discuss diagrammatic methods to study scl in free groups.
In particular, we discuss a technique due to Duncan–Howie which uses left-invariant
orders on one-relator groups to obtain sharp lower bounds on scl in free groups.

Some of the material in this chapter is developed more fully in the papers
[47, 43, 45, 46].

4.1. The Rationality Theorem

The goal of this section is to prove the Rationality Theorem for free groups.
Essentially, this theorem says that the unit ball in the scl norm on BH1 (F ) is a
rational polyhedron. Polyhedral norms occur in other contexts in low-dimensional
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topology, and the best-known example is that of the Thurston norm on the 2-
dimensional homology of a 3-manifold. We briefly discuss this example.

4.1.1. Thurston norm. Let M be a 3-manifold. Thurston [196] defined a
pseudo-norm on H2(M,∂M ; R) as follows.

For each properly embedded surface S in M , define ‖S‖T = −χ−(S). For each
relative class A ∈ H2(M,∂M ; Z), define

‖A‖T = inf
S
−χ−(S)

where the infimum is taken over all properly embedded surfaces S for which [S]
represents the class A. Thurston shows that this function satisfies the following
two crucial properties:

• it is linear on rays; that is, ‖nA‖T = n‖A‖T for any integral class A and
any non-negative integer n
• it is subadditive; that is, ‖A+B‖T ≤ ‖A‖T +‖B‖T for all integral classes
A,B.

By the first property, ‖·‖T can be extended by linearity to all ofH2(M,∂M ; Q).
By the second property, it can be extended to a unique continuous function on
H2(M,∂M ; R), which is linear on rays and subadditive. Such a function satisfies
the axioms of a (pseudo)-norm, and is called the Thurston norm on homology.
Note that this function is generally only a pseudo-norm; it takes the value 0 on the
span of integral classes which can be represented by surfaces of non-negative Euler
characteristic. If M is irreducible and atoroidal, ‖ · ‖T is a genuine norm.

By construction, ‖A‖T ∈ Z for all A ∈ H2(M,∂M ; Z). A norm on a finite
dimensional vector space which takes integer values on integer vectors (with respect
to some basis) can be characterized in a finite amount of data, as follows.

Lemma 4.1. Let ‖ · ‖ be a norm on Rn which takes integer values on the lattice
Zn. Then the unit ball of ‖ · ‖ is a finite sided polyhedron whose faces are defined
by integral linear equalities.

Proof. Let U be any open set in Rn containing 0. We claim that there are
only finitely many integral linear functions φ on Rn such that the subspace φ ≤ 1

contains U . Let φ be such a linear function.
Then there is a (unique) integral vector vφ
such that φ(w) = 〈vφ, w〉 where 〈·, ·〉 denotes
the ordinary inner product on Rn. Since U
is open, there is some positive number ǫ such
that the ball of radius ǫ in the (ordinary) L1

norm is contained inside U . Hence if φ is as
above, every co-ordinate of vφ has absolute
value at most 1/ǫ. On the other hand, since
vφ is integral, there are only finitely many
functions φ with this property (the adjacent
Figure shows all level sets φ = 1 in 2 dimen-
sions for ǫ = 1/5). This proves the claim.

Let B denote the unit ball in the ‖ · ‖ norm. For the remainder of the proof
we assume n = 3 (the general case is not significantly more complicated). For
each integral basis {v1, v2, v3}, there is a unique integral linear function on R3 that
agrees with ‖·‖ on the elements of the basis. Pick some primitive integral vector v1,
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and then extend v1 to an integral basis {v1, v2, v3}. For each pair of integers i, j let

vi2 = v2+iv1 and vi,j3 = v3+iv1+jv2, and let φi,j denote the integral linear function

that agrees with ‖ · ‖ on the basis {v1, vi2, vi,j3 }. Fix a small open set U containing
0 as above, whose closure is contained in the interior of B. For each sufficiently
large fixed j, the functions φi,j for i big compared to j satisfy φi,j ≤ 1 on U . By
convexity of B and the discussion above, for each fixed j there is a ψj such that
ψj = φi,j for all sufficiently large i (depending on j). The plane ψj = 1 intersects

∂B in two straight lines joining v1/‖v1‖ to each of vi2/‖vi2‖ and vi,j3 /‖vi,j3 ‖. Since
ψj ≤ 1 on U for each j, there are distinct j, j′ for which ψj = ψj′ . Consequently
the plane ψj = 1 intersects ∂B in three straight lines meeting at acute angles,
and therefore (by convexity of B) intersects ∂B in a subset with nonempty interior
whose closure contains v1/‖v1‖.

Since v1 was arbitrary, we conclude that B is the intersection of the half spaces
φ ≤ 1 where φ is integral and linear and satisfies φ ≤ 1 on B. Since there are only
finitely many such φ, the lemma follows. �

Remark 4.2. The proof of Lemma 4.1 is Thurston’s proof of the polyhedrality of his
norm. Oertel’s proof [162], using branched surfaces, is closer in spirit to the methods in
this chapter, but requires more prerequisites from 3-manifold topology.

There is a similar definition of a norm on H2(M), defined by restricting at-
tention to closed embedded surfaces representing absolute homology classes. Note
that the value of ‖ · ‖T on any absolute class in H2(M ; Z) is an even integer.

The crucial property of the Thurston norm, for our purposes, is its relation
to the (Gromov) L1 norm ‖ · ‖1 on H2(M,∂M ; R). Thurston already showed that
a compact leaf of a taut foliation is minimizing in its homology class in both the
Thurston and the Gromov norms, and therefore the two norms are proportional on
the projective homology classes realized by such surfaces. Conversely, Gabai [84]
showed that every Thurston norm minimizing surface is a compact leaf of a taut
foliation. From this he deduced the following proportionality theorem, conjectured
by Thurston:

Theorem 4.3 (Gabai, Corollary 6.18. [84]). Let M be a compact oriented
3-manifold. Then on H2(M) or H2(M,∂M),

‖ · ‖T =
1

2
‖ · ‖1

From this we can deduce the following fact:

Proposition 4.4. Let M be a compact oriented 3-manifold. Let γ ⊂ ∂M be
an embedded, oriented loop. Let a be the conjugacy class in π1(M) represented by
γ. Suppose a ∈ [π1(M), π1(M)]. Then scl(a) ∈ Q. Furthermore, if H2(M ; R) = 0
then scl(a) ∈ 1

2 + Z.

Proof. Let A be a regular annulus neighborhood of γ, and let N be obtained
by doubling M along A. We write N = M ∪M where M ∩M = A. By Mayer–
Vietoris there is an exact sequence

0→ H2(M)⊕H2(M)→ H2(N)
∂−→ H1(A)→ 0

where exactness at the last term follows because the inclusion map of H1(A) into
both H1(M) and H1(M) is zero, because a ∈ [π1(M), π1(M)]. Let V ⊂ H2(N) be
the integral affine subspace V = ∂−1([γ]) where [γ] ∈ H1(A) is the generator. If C
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is a 2-chain in M with the support of ∂C mapping into γ, and [∂C] = [γ] in H1(A),
then C −C is a 2-cycle in N representing an element of V . It follows that there is
an inequality

2 fill(a) ≥ inf
v∈V
‖v‖1

Conversely, let S be a Thurston norm minimizing surface in N representing an
integral class which is projectively close to an element of V . By making S transverse
to A, and isotoping it so that no component of S∩M or S∩M is a disk, one obtains
an inequality

scl(a) ≤ 1

4
inf
v∈V
‖v‖T

Using scl(a) = 1
4fill(a) one therefore obtains an equality

scl(a) =
1

4
inf
v∈V
‖v‖T

Since the Thurston norm takes even integral values on integer lattice points, and
since V is an integral affine subspace, the infimum is rational.

In the special case that H2(M ; R) = 0, the subspace V is 0 dimensional, and
consists of a single integral class v. If S is a norm minimizing surface representing
v, make S transverse to A and efficient. If S1 and S2 are the intersections S1 ∩M1

and S2 ∩ M2 then χ(S1) = χ−(S1) = χ−(S2) = χ(S2) or else by replacing S1

by S2 (for example) one could reduce the norm. Since each Si is embedded, the
intersection S1∩A consists of a union of embedded loops. Norm minimizing surfaces
are incompressible, so each oriented boundary component of S1 is isotopic in A
to γ or γ−1. Moreover by the definition of ∂, there is an equality [∂S1] = [γ]
in H1(A). It follows that S1 has an odd number of boundary components, and
therefore ‖v‖T = 4n+ 2 for some integer n. Consequently in this case we have an
equality

scl(a) =
1

4
‖v‖T ∈

1

2
+ Z

�

Example 4.5. A word w in a free group F is geometric if there is a handlebody
H with π1(H) = F such that a loop γ in H in the conjugacy class of w is homotopic
to an embedded loop in ∂H . For such a w, one has scl(w) ∈ 1

2 + Z (if w ∈ [F, F ]).
A word w in F is virtually geometric if there is a finite cover H ′ → H such that

the total preimage of γ in H ′ is homotopic to a union of embedded loops in ∂H ′.
If w is virtually geometric, then scl(w) ∈ Q.

Example 4.6 (Gordon–Wilton [94]). In F2 = 〈a, b〉, the Baumslag–Solitar
words w = b−1apbaq are virtually geometric (but not geometric).

Example 4.7 (Manning [144]). Jason Manning gives a criterion to show that
certain words in free groups are not virtually geometric. For example, in F3 =
〈a, b, c〉, many words, including b2a2c2abc and ba2bc2a−1c−1b−2c−1a−1, are not vir-
tually geometric. Similar examples exist in nonabelian free groups of any rank.

A corollary of Theorem 4.3 is that the unit ball of the dual Thurston norm is
the convex hull of the set of cohomology classes which are in the image of elements
of H2

b whose (L∞) norm is equal to 1/2. It is natural to try to find explicit bounded
2-cocycles whose cohomology classes correspond to the vertices of the dual norm,
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and which therefore can be used to certify that a given surface is Thurston norm
minimizing. It is a highly nontrivial fact that for every irreducible, atoroidal 3-
manifold, one may find a finite collection of classes [e] ∈ H2 in the image of H2

b ,
whose convex hull is equal to the unit ball of the dual norm, and such that every
[e] is obtained by pulling back the Euler class (i.e. the generator of H2) from the
group Homeo+(S1) under some faithful homomorphism π1(M)→ Homeo+(S1).

In fact, this characterization of the Thurston norm is unfamiliar even to many
people working in 3-manifold topology, and deserves some explanation. A homo-
morphism π1(M) → Homeo+(S1) is the same thing as an action of π1(M) on a
circle. Gabai’s main theorem from [84] (Theorem 5.5) says that every embedded
surface S realizing ‖·‖T in its homology class is a leaf of a finite depth taut foliation
F on M . To every taut foliation of an atoroidal 3-manifold one can associate a uni-
versal circle S1

univ, which monotonely parameterizes the circle at infinity of every

leaf of F̃, the pullback of F to the universal cover M̃ . See [40] Chapter 7 for a proof,
and an extensive discussion of universal circles. The construction of S1

univ is natu-

ral, so the action of π1(M) as the deck group of M̃ induces an action on S1
univ by

homeomorphisms, and therefore a representation ρuniv : π1(M)→ Homeo+(S1
univ).

Associated to this representation there is a foliated circle bundle E over M , which
one can show is isomorphic (as a circle bundle) to the unit tangent bundle to the
foliation UTF. In particular, the pullback [e] of the Euler class is the obstruction
to finding a section of UTF, and [e](S) = ±χ(S) by construction. On the other
hand, the Milnor–Wood inequality (Theorem 2.52) implies that ‖[e]‖∞ = 1/2, so
this class is in the boundary of the convex hull of the dual norm.

In light of this fact, it is natural to wonder whether the unit ball of the scl norm
on BH1 (π1(M)) for M an irreducible, atoroidal 3-manifold is cut out by hyperplanes
determined by rotation quasimorphisms. In fact, it turns out that this is not the
case. A counterexample is the Weeks manifold W , which can be obtained by
(5/1, 5/2) surgery on the components of the Whitehead link in S3, and is known (see
e.g. Milley [153]) to be the smallest volume closed orientable hyperbolic 3-manifold.
In [48] it is shown that every homomorphism π1(W ) → Homeo+(S1) must factor
through Z/5Z, and therefore there are no nontrivial rotation quasimorphisms on
π1(W ). To reconcile this with the assertions in the previous paragraph, note that
W is a rational homology sphere, so H2(W ) is trivial.

It should be clear from this example that the relationship between the scl
norm and rotation quasimorphisms (at least in 3-manifold groups) cannot be as
straightforward as one might naively guess, based on familiarity with the Thurston
norm (also, see Example 4.35). Thus, although in the next few sections we give
a direct proof that the scl norm on free groups is piecewise rational linear, our
argument does not suggest a natural family of extremal quasimorphisms which
define the faces of the unit ball (however, see § 4.2).

4.1.2. Branched surfaces. It is convenient to introduce the language of
branched surfaces. For a reference, see [160] or § 6.3 of [40].

Definition 4.8. A branched surface B is a finite, smooth 2-complex obtained
from a finite collection of smooth surfaces by identifying compact subsurfaces.

The branch locus of B, denoted br(B), is the set of points which are not 2-
manifold points. The components of B−br(B) are called the sectors of the branched
surface. The set of sectors of B is denoted S(B). A simple branched surface is a
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branched surface for which the branch locus is a finite union of disjoint smoothly
embedded simple loops and simple proper arcs.

In a simple branched surface, local sectors meet along segments of the branch
locus. The local sheets approach the branch segment from one of two sides (distin-
guished by the smooth structure along br(B)). In a generic branched surface, three
sheets meet along each component of the branch locus, two on one side and one
on the other. However, the branched surfaces we consider in this section are not
generic, and any (positive) number of sheets may meet a segment of branch locus
on either side. See Figure 4.1 for an example.

Figure 4.1. An example of a local model for a simple branched
surface. In this example, five sheets meet along the branch locus,
two on one side and three on the other.

Branched surfaces can have boundary or not. The branched surfaces considered
in this section have boundary. We require that the branched locus intersect the
boundary transversely. Note that the sectors of a simple branched surface B are
themselves surfaces, perhaps with boundary, and possibly with corners where arcs
of the branch locus intersect ∂B. A branched surface B is oriented or not according
to whether the sectors can be compatibly oriented. We are exclusively interested
in oriented branched surfaces.

Definition 4.9. Let B be a simple branched surface. A weight on B is a
function w : S(B) → R such that for each component γ of br(B), the sum of the
values of w on the sectors which meet γ on one side is equal to the sum of the
values of w on the sectors which meet γ on the other side. A weight is rational if
it takes values in Q, and integral if it takes values in Z.

It follows from Definition 4.9 that the set of weights on B is a subspace of
R|S(B)| defined by a finite family of integral linear equalities, one equality for each
component of br(B).

Notation 4.10. Let W (B) denote the (finite dimensional) real vector space
of weights on B, and W+(B) the convex cone of weights which take non-negative
values on every sector. If B is understood, abbreviate these spaces by W and W+.

There is a close relationship between (non-negative integral) weights on a
branched surface B and surfaces mapping to B in a particularly simple way. Since
B has a smooth structure, it makes sense to say that a map f : S → B is an
immersion, when S is a smooth surface.
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Definition 4.11. Let B be an oriented simple branched surface, possibly with
boundary. A carrying map is a proper, orientation-preserving immersion f : S → B
from some compact oriented surface S (possibly with boundary) to B. By abuse of
notation we say that B carries S.

A carrying map f : S → B determines a non-negative integral weight w(f),
whose value on each sector σ ∈ S(B) is the local degree of f along σ. Since
a carrying map is an orientation-preserving immersion, the local degree along a
sector σ is equal to the number of preimages of any point in the interior. In other
words,

w(f)(σ) = #{f−1(p)} for p ∈ σ
Lemma 4.12. Let B be a simple branched surface. Every non-negative integral

weight on B is represented by a carrying map. Conversely, if f : S → B represents
a weight w, then χ(S) depends only on w, and is a rational linear function of the
co-ordinates of w ∈W .

Proof. Let w be a non-negative integral weight. For each sector σ ∈ S(B),
take w(σ) copies of σ. At each γ ∈ br(B), the sum of the weights on the sectors
on one side is equal to the sum of the weights on sectors on the other side. Choose
a bijection between the two sets of copies of sectors, and glue the copies according
to this bijection along their edges corresponding to γ. The result of this gluing
is a surface S, which comes together with a tautological orientation-preserving
immersion to B, realizing the weight w. Moreover, all surfaces representing w arise
this way, for various choices of bijections as above.

Each sector σ ∈ S(B) can be thought of as a surface with corners. The corners
are the points where arcs of br(B) run into ∂B. Each such surface σ has an orbifold
Euler characteristic χo(σ) defined by the formula

χo(σ) = χ(σ)− c(σ)/4

where χ(·) denotes ordinary Euler characteristic of the underlying surface, and c(·)
denotes the number of (boundary) corners. If a smooth surface S is obtained by
gluing surfaces Si with corners, then χ(S) =

∑
i χo(Si). Hence if S is a surface with

weight w, then χ(S) =
∑

σ w(σ)χo(σ), which depends only on w, as claimed. �

Remark 4.13. Lemma 4.12, though simple to state and prove, is actually surprisingly
delicate. The reader whose intuitions have been honed by exposure to train-tracks in
surfaces, or embedded branched surfaces in 3-manifolds, may not appreciate how subtle
such objects really are.

In great generality, a compact Riemann surface lamination is carried by an abstract
branched surface, and the space of weights on such a surface is finite dimensional (see
[160]). For a branched surface embedded in a 3-manifold, a non-negative integral weight
determines a unique embedded surface which maps to the branched surface by an immer-
sion. However the construction of such a surface depends on the local transverse order
structure on branches inherited by codimension 1 objects in a 3-manifold.

If B is an abstract (not necessarily simple) branched surface, and w a non-negative
integral weight on B, then from w one can construct a surface S mapping to B, but
the map is in general a branched immersion, branched over the vertices of br(B), and χ
depends not only on w but on the way S branches at each such point.

To associate an (unbranched) carrying map to a weight one must solve a holonomy
problem. Moreover, it might be the case that this holonomy problem can be solved for
nw but not for w, where w is a non-negative integral weight, and n is a positive integer.
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A similar, and completely analogous phenomenon occurs when one tries to do im-
mersed normal surface theory in 3-manifolds.

By contrast, the function χ− might well depend on the choice of a surface S
representing a weight w. For, the number of disk components of S might depend
on the way in which sectors are glued up. This motivates the following definition.

Definition 4.14. An oriented simple branched surface is essential if it does
not carry a disk or sphere.

Example 4.15. If every sector satisfies χo(σ) ≤ 0 then χ(S) ≤ 0 for any surface
carried by B. Consequently in this case, B is essential.

If S is carried by an essential simple branched surface, then every component of
S has non-positive Euler characteristic. Consequently χ(S) = χ−(S), and therefore
we obtain the following corollary:

Corollary 4.16. Let B be an essential simple branched surface. Then −χ−(S)
is a linear function of w, where S is a surface realizing a (non-negative integral)
weight w.

4.1.3. Alternating words. As a warm-up, we prove rationality of scl on
certain special elements in the free group of rank 2, where the argument is especially
transparent. Throughout the sequel we fix notation F = 〈a, b〉.

Definition 4.17. A word w ∈ F is alternating if it has even length, and the
letters alternate between one of a±1 and one of b±1.

Every alternating word is cyclically reduced. An alternating word is in [F, F ]
if there are the same number of a’s as a−1’s, and similarly for b’s and b−1’s. Hence
an alternating word in [F, F ] has length divisible by 4.

Example 4.18. aba−1b−1 and aba−1b−1a−1bab−1 are examples of alternating
words in [F, F ].

Example 4.19. A word is alternating if and only if in the graphical calculus
(see § 2.2.4) it is represented by a loop without backtracks in which every straight
segment has length 1.

In what follows, let H be a handlebody of genus 2. We think of H as the union
of two solid handles H+, H−, glued along a disk E which we call the splitting disk.
For psychological convenience, we think of H embedded in R3 in such a way that
E is horizontal, H+ is above, and H− is below. Let D± be compressing disks for
the meridians of H±; psychologically, we think of these disks as vertical.

Identify π1(H) with F in such a way that b is represented by the core of the
handle H+ and a is represented by the core of the handle H−. An alternating word
is represented by a particularly simple free homotopy class of loop in H , namely as
a union of arcs from E to itself which wind once around either H+ or H−, crossing
D+ or D− transversely in a single point; say that such a representative is in bridge
position. By convention we assume that a loop in bridge position is embedded in H .
This is mainly for psychological rather than logical convenience; the isotopy class
of γ in H is not relevant in the sequel, only its homotopy class.

In what follows, fix an alternating word w and let γ be a corresponding loop
in H in bridge position. Without loss of generality, we can write

w = ae1bf1ae2bf2 · · · aembfm
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where each ei, fi is ±1, and m is even, and equal to half the word length of w. Then
γ is a union of arcs

γ = α1 ∪ β1 ∪ · · · ∪ βm
where αi is properly embedded in H−, and winds in the positive direction if e1 = 1,
and the negative direction otherwise, and βi is properly embedded in H+ and winds
similarly according to the sign of fi. Note that the αi, βi are oriented arcs, and the
end point of αi is equal to the initial point of βi for each i, while the end point of
βi is equal to the initial point of αi+1 (indices taken cyclically) for each i.

Let f : S, ∂S → H, γ satisfy f∗[∂S] = n[γ]. Recall, by Proposition 2.10 that
scl(w) is equal to the infimum of −χ−(S)/2n(S) over all such surfaces. We will
show that after possibly replacing S with a simpler surface S′ with n(S′) = n(S)
and −χ−(S′) < −χ−(S), we can homotope f into a particularly simple form.

Assume without loss of generality that S has no disks or closed components,
or simple compressing loops, or else −χ− could be reduced without affecting n.
If some boundary component of S maps to γ with degree 0, we can compress it,
reducing −χ−. So assume that every boundary component maps with nonzero
degree, and homotope f so that the restriction of f to each component of ∂S is
a covering map to γ. Then perturb f rel. boundary to an immersion in general
position with respect to D±.

After this perturbation, the preimage f−1(D+) ∩ S is a union of disjoint, em-
bedded proper arcs and loops in S. Since by hypothesis S has no simple compressing
loops, all the loops are inessential in S, and can be pushed off D+ by a homotopy of
f . Since the restriction of f to ∂S is a covering map, there are no inessential arcs in
f−1(D+), so we may assume that f−1(D+) consists of a union of disjoint essential
embedded proper arcs in S. Do the same for f−1(D−). After this modification,
f−1(D+ ∪D−) is a union δ of disjoint essential embedded proper arcs. Let R be a
union of (relatively) open regular neighborhoods in S of the components of δ. The
components of R are called rectangles.

The complement of tubular neighborhoods of the D± in H deformation retracts
down to the splitting disk E. In fact, there is a deformation retraction of pairs

H −N(D±), γ − (γ ∩N(D±))→ E,E ∩ γ
Drag f by this deformation retraction, so that after a homotopy, R is exactly equal
to f−1(H − E).

Now consider the components of S −R. Each such component P is a compact
surface, whose boundary is broken up into vertices (points in ∂S in the closure of
a rectangle of R) and two different kinds of edges: components of P ∩ ∂S, and
components of P in the closure of a rectangle. We refer to the first kind of edges
as boundary edges and the second kind as branch edges. After the homotopy, each
boundary edge maps by f to a single point of γ ∩E, and each branch edge maps to
an arc in E. Since E is a disk, if P is not a disk, it contains an essential embedded
loop which maps to a null-homotopic loop in E and can therefore be compressed.
Since by hypothesis S contains no simple compressing loops, every component P of
S−R is topologically a disk. Since its boundary has a natural cellulation into edges
and vertices, we think of P as a polygon, whose edges alternate between boundary
edges and branch edges. Let P denote the union of these polygons, and let Pi
denote a typical polygon.
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For each Pi, let |Pi| denote the number of branch edges of Pi. Observe that
the branch edges alternate between arcs bounding rectangles mapping to H+ and
rectangles mapping to H−. Consequently, each Pi has an even number of branch
edges; denote this number by |Pi|. Say that a branch edge of Pi faces up if it bounds
a rectangle mapping to H+, and it faces down otherwise. There are twice as many
corners of Pi as branch edges, hence 2|Pi| corners.

Since each Pi is topologically a disk, we can compute χo(Pi) = 1− |Pi|/2 ≤ 0.
Similarly, each rectangle of R has χo = 0. Hence

−χ−(S) = −χ(S) =
∑

i

|Pi| − 2

2

Now fix a single polygon Pi. Suppose that there is a point p of γ ∩ E and two
distinct boundary edges e1, e2 of Pi which both map to p. Let β be an embedded
arc in Pi joining e1 to e2. Doing a boundary compression along β reduces −χ−
by 1. Hence after repeatedly performing such compressions, we can assume (at
the cost of replacing the original surface with another of smaller −χ−) that every
polygon Pi has at most |w| boundary edges, which map to distinct points of γ ∩E.

Notice what we have achieved in this discussion. Starting with an arbitrary
map f : S, ∂S → H, γ we obtained (after homotopy, compression and boundary
compression) a new surface and a new map (which by abuse of notation we still
denote S, f) such that S is decomposed into two kinds of pieces: rectangles which
map over the handles of H , and which run between a pair of arcs of γ, and polygons
which map to the splitting disk E. Each rectangle is determined, up to homotopy,
by the pair of arcs of γ that it runs between. Each polygon is determined up to
homotopy by a cyclically ordered list of distinct elements of γ∩E that the boundary
edges map to in order, and by the data of whether each branch edge faces up or
down. There are only finitely many combinatorial possibilities for each rectangle
and for each polygon. Thus the surface S is built from finitely many pieces, all
drawn from a finite set of combinatorial types.

This last observation is crucial, and reduces the computation of scl(w) to a
finite integer linear programming problem. We explain how.

Build an oriented essential simple branched surface B as follows. The sectors of
B are the disjoint union of all possible polygons (with boundary edges mapping to
distinct points of E∩γ) and all possible rectangles. Glue up rectangles to polygons
in all possible orientation-preserving ways, ensuring that branch edges that face up
and down are only glued to rectangles in H+ and H− respectively. The result is
an abstract branched surface B and a homotopy class of map ι : B → H taking ∂B
to γ.

There are two components of the branch locus for each pair of distinct points
in E ∩ γ, distinguished by whether such components bound rectangles in H+ or in
H−. In particular, the branch locus is a 1-manifold, and therefore the branched
surface is simple. Furthermore, each polygon contributes non-positively to χo and
each rectangle contributes 0, so the branched surface is essential.

Since every surface f : S, ∂S → H, γ can be compressed, boundary compressed
and homotoped until it is made up of rectangles and polygons, we conclude the
following:
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Lemma 4.20. Let B denote the essential simple branched surface, constructed
as above. Then every f : S, ∂S → H, γ can be compressed, boundary compressed
and homotoped without increasing −χ−, to a map which is carried by B.

Notice that the branched surface B can be constructed effectively from the
word w. Let w ∈ W+ be a non-negative integral weight on B. Let f : S → B
be a carrying map with weight w. The composition ι ◦ f : S → H takes ∂S → γ.
Define ∂(w) = n(S), and extend by linearity and continuity to a rational linear
map ∂ : W+ → R. By construction,

scl(w) = inf
w∈W+∩∂−1(1)

−χ−(w)

2

But W+ ∩ ∂−1(1) is a closed rational polyhedron, and −χ− is a rational linear
function which is non-negative on the cone W+, and therefore achieves its infimum
on a closed rational polyhedron Q in W+∩∂−1(1). It follows that scl(w) is rational.
Moreover, given W+ and the functions −χ− and ∂, computing the polyhedron Q is
a finite linear programming problem which can be solved by any one of a number
of methods. Thus there is an effective algorithm to compute scl(w).

4.1.4. Bridge position. We extend the arguments in § 4.1.3 in several ways:
to free groups of arbitrary rank, and to arbitrary finite integral linear combinations
of arbitrary elements.

Let F be a free group with generators ai. For each i, let Hi denote a solid
torus with a marked disk Ei in its boundary, and let H be obtained from the Hi

by identifying the Ei with a single disk E. If the rank of F is 2, this is an ordinary
genus 2 handlebody, and H1, H2 are H+, H− from the last section. For each i, let
Di be a decomposing disk for the handlebody Hi, disjoint from E, and denote the
union of the Di by D. Let w ∈ F be cyclically reduced. The conjugacy class of w
determines a free homotopy class of loop in H ; we will choose a representative γ in
this free homotopy class whose intersection with E and D is simple.

A vertical arc is an arc with endpoints on E whose interior is properly embedded
in some Hi − E. A horizontal arc is an arc embedded in E. The representative γ
will have one vertical arc in Hi for each appearance of a±i in w, and one horizontal
arc between any two consecutive appearances of a±i (notice, since w is cyclically
reduced, that consecutive appearances of a±i have the same sign). This uniquely
determines the homotopy class of γ.

Definition 4.21. A representative γ in the free homotopy class corresponding
to the conjugacy class of w, constructed as above, is said to be in bridge position.

Remark 4.22. For rank 2 and for alternating words, this agrees with the definition from
§ 4.1.3.

Let w1, · · · , wn be a finite collection of elements which are cyclically reduced
in their conjugacy class, and γ1, · · · , γn loops in bridge position in H . Denote the
union of the γi by Γ. Let f : S, ∂S → H,Γ be given, and assume that S has
no disk or closed components, or simple compressing loops. As in § 4.1.3, after a
homotopy we can assume that f−1(D) is a union of disjoint essential embedded
proper arcs, and R = f−1(H − E) is a union of disjoint embedded rectangles with
the components of f−1(D) as their cores. Since S has no simple compressing loops,
as in § 4.1.3 we can conclude that every component Pi of S − R is a polygon.
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The branch edges of the Pi are edges in the closure of components of R, but
there are two kinds of boundary edges: those which map to a single endpoint of a
vertical arc of some γi, and those which map to a horizontal edge. As before, if some
polygon has boundary edges ei, ej mapping to the same point or horizontal arc of
E ∩ Γ, we can do a boundary compression of S to reduce −χ−. So without loss
of generality, we conclude that distinct boundary edges ei, ej of the same polygon
map to different points or arcs of E ∩ Γ.

Let |Pi| denote the number of branch edges of Pi. As a surface with corners,
we have c(Pi) = 2|Pi| so χo(Pi) = 1− |Pi|/2. Rectangles contribute 0 to χo, so

−χ−(S) = −χ(S) =
∑

i

|Pi| − 2

2

One can build a simple essential branched surface B as before, together with a
homotopy class of map ι : B → H with ι(∂B) = Γ. Every map f : S, ∂S → H,Γ
can be compressed, boundary compressed and homotoped until it factors through
a carrying map to B.

Let K be ker : H1(Γ) → H1(H) induced by inclusion. The vector space K
is isomorphic to the intersection B1(F ) ∩ 〈w1, · · · , wn〉. The inclusion map on
homology is defined over Z, so K is a rational subspace of H1(Γ). With notation
as in § 4.1.3, there is a surjective rational linear map ∂ : W+ → K. For each k ∈ K
there is an equality

scl(k) = inf
w∈W+∩∂−1(k)

−χ−(w)

2

Now, W+ is a finite dimensional rational convex polyhedron with finitely many
extremal rays, each passing through a rational point vi, and −χ− is a rational
linear function. Therefore

scl(k) = inf

∑
i−tiχ−(vi)

2

where the infimum is taken over all non-negative ti for which
∑

i ti∂(vi) = k.
Explicitly, each basis S of elements vi determines a rational linear function fS on
W+ whose value is −χ−(vi)/2 on vi ∈ S, and scl ◦ ∂ is the minimum of this finite
collection of functions. In other words, scl◦ ∂ is a piecewise rational linear function
on W+ and therefore scl is piecewise rational linear on K.

Recall that a map f : S → H is extremal if it realizes the infimum, over all
surfaces without closed or disk components, of −χ−(S)/2n(S). If w is a non-
negative rational weight realizing the infimum of −χ−(w)/2 on ∂−1(k) for some
rational class k ∈ BH1 (F ), then some integral multiple of w is integral. Any carrying
map realizing this weight gives rise to an extremal surface, and all extremal surfaces
arise in this way.

We have now completed the proof of the Rationality Theorem. In order to
state the theorem precisely, we must first say what we mean for a function on an
infinite dimensional vector space to be piecewise rational linear.

Definition 4.23. Let V be a real vector space. A function φ on V is piecewise
linear if for every finite dimensional subspace W of V , the restriction of φ to W
is piecewise linear. If V = VQ ⊗ R where VQ is a (given) rational vector space, a
subspace W ⊂ V is rational if it is of the form W = WQ ⊗ R for some subspace
WQ = VQ ∩W . A function φ on V is piecewise rational linear if for every finite
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dimensional rational subspace W of V , the restriction of φ to W is piecewise linear,
and rational on WQ.

Recall from § 2.6.2 that for any group G, the space B1(G) is the vector space of
real (group) 1-boundaries, and BH1 (G) is the quotient of B1(G) by the subspace H
spanned by elements of the form gn−ng and g−hgh−1. In general, scl is a pseudo-
norm on BH1 , but when G is hyperbolic, scl is a genuine norm (Corollary 3.57).

The results of this section prove the following theorem.

Theorem 4.24 (Rationality Theorem). Let F be a free group.

(1) scl(g) ∈ Q for all g ∈ [F, F ].
(2) Every g ∈ [F, F ] bounds an extremal surface.
(3) The function scl is a piecewise rational linear norm on BH1 (F ).
(4) Every nonzero finite rational linear chain A ∈ BH1 (F ) projectively bounds

an extremal surface
(5) There is an algorithm to calculate scl on any finite dimensional ratio-

nal subspace of BH1 (F ), and to construct all extremal surfaces in a given
projective class.

Remark 4.25. Note by Proposition 2.104 that every extremal surface as above is π1-
injective.

4.1.5. PQL groups. Motivated by the results of the previous section, we
define the following class of groups.

Definition 4.26. A group G is PQL (pronounced “pickle”) if scl is piecewise
rational linear on BH1 (G).

Example 4.27. An amenable group is trivially PQL, by Theorem 2.47 and
Theorem 2.79.

Example 4.28. Theorem 4.24 implies that finitely generated free groups are
PQL. Suppose F is an infinitely generated free group. Since any finite subset of
BH1 (F ) is contained in the image of BH1 (Fn) for some finitely generated summand
Fn, we conclude that F is also PQL.

There are a few basic methods to derive new PQL groups from old.

Proposition 4.29. Let H be a subgroup of G of finite index. Then if H is
PQL, so is G.

Proof. Let X be a space with π1(X) = G. Let g1, · · · , gm be elements of G

whose conjugacy classes are represented by loops γ1, · · · , γm. Let X̂ be a finite cover

of X with π1(X̂) = H . For each i, let βi,j be the preimages of γi in X̂ , and let hi,j ∈
H be elements whose conjugacy classes represent the βi,j . By Proposition 2.80, for
any integers n1, · · · , nm we have

sclG(
∑

i

nigi) =
1

[G : H ]
· sclH(

∑

i,j

nihi,j)

and the proposition follows. �

Hence virtually free groups are PQL. This class of groups includes fundamental
groups of non-compact hyperbolic orbifolds.
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Proposition 4.30. Let A
i−→ G

q−→ H → 1 be an exact sequence, where A is
amenable and H is PQL and satisfies H2(H ; R) = 0. Then G is PQL.

Proof. Since A is amenable, Theorem 2.47 says that the bounded cohomology
of A vanishes in each dimension. By Theorem 2.50 and Theorem 2.49 one obtains a
commutative diagram as in Figure 4.2 with exact rows and columns. Let α ∈ Q(G)

H1(A)

H1(G)

H1(H)

Q(A)

Q(G)

Q(H)

0

H2
b (G)

H2
b (H)

H2(G)

0

.................................................................... ............ .......................................................................................... ............

.................................................................... ............ .................................................................... ............
δ

.................................................................... ............

.................................................................... ............ .................................................................... ............
δ

.......................................................................................... ............

.....................................................................
......
......
......

.....................................................................
......
......
......

.....................................................................
......
......
......

q∗

.....................................................................
......
......
......

.....................................................................
......
......
......

q∗

.....................................................................
......
......
......

Figure 4.2. This diagram has exact columns (by Theorem 2.49)
and exact rows (by Theorem 2.50).

be given. Then δα ∈ H2
b (G) is equal to q∗β for some β ∈ H2

b (H), since H2
b (H)→

H2
b (G) is surjective. Since H2(H) is zero, there is some γ ∈ Q(H) with δγ = β,

and therefore α− q∗γ ∈ Q(G) is in the image of H1(G). Since α was arbitrary, this
says that the composition Q(H)→ Q(G)→ Q(G)/H1(G) is surjective.

It is a general fact that for any surjection of groups q : G → H , and any
quasimorphism φ on H , there is an equality D(φ) = D(q∗φ) where the left side is
the defect of φ on H , and the right side is the defect of q∗φ on G. For,

D(q∗φ) = sup
a,b,∈G

|φ(q(a)) + φ(q(b))− φ(q(ab))| = D(φ)

where the second equality follows from the definition of D(φ) and surjectivity. By
Theorem 2.79, for any

∑
tiai ∈ BH1 (G) we have

sclG(
∑

tiai) =
1

2
sup

φ∈Q(G)/H1(G)

∑
i tiφ(ai)

D(φ)

=
1

2
sup

φ∈Q(H)/H1(H)

∑
i tiq

∗φ(ai)

D(q∗φ)

=
1

2
sup

φ∈Q(H)/H1(H)

∑
i tiφ(q(ai))

D(φ)

= sclH(
∑

tiq(ai))

It follows that G is PQL if H is, as claimed. �

Remark 4.31. If H2(H) is nonzero, there might be elements in Q(G)/H1(G) which are
not in the image of Q(H). If H is finitely presented, H2(H) is finitely generated, so
Q(G)/(H1(G) + q∗Q(H)) is finite dimensional and is generated by a finite number of
quasimorphisms φ1, · · · , φn. If one can find generators φi as above which take on rational
values on rational elements of BH1 (G), then if H is PQL, so is G.
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Corollary 4.32. Let M be a noncompact Seifert-fibered 3-manifold. Then
π1(M) is PQL.

Proof. For M as above there is a central extension Z → π1(M) → G where
G is the fundamental group of a noncompact surface orbifold. If G is amenable, so
is π1(M), and π1(M) is trivially PQL. Otherwise G is virtually free. In this case
there is a finite index subgroup H of π1(M) which is a product Z⊕ F where F is
free. By Proposition 4.30, the group H is PQL, and therefore by Proposition 4.29,
so is π1(M). �

Example 4.33. Let M be homeomorphic to S3−K where K is the trefoil knot.
Then M is Seifert fibered and noncompact, so π1(M) is PQL. It is well-known that
π1(M) is isomorphic to the braid group B3 (see e.g. [16]).

4.1.6. Implementing the Algorithm. In this section we discuss in more
explicit terms the algorithm described implicitly in the last few sections. Propo-
sition 2.13 implies that we can restrict attention to monotone admissible maps in
order to calculate scl. If f : (S, ∂S)→ (H, γ) is monotone, the restriction ∂S → γ
is orientation-preserving. This reduces the number of rectangle types that must
be considered by roughly a factor of 4, and concomitantly reduces the number of
polygon types.

We show how the algorithm runs in practice. For convenience, we restrict
attention to alternating words in F2. In what follows, for the sake of legibility, we
denote a−1 by A and b−1 by B.

Example 4.34. Let w = abABAbaB. The loop γ is a union of 8 arcs, each
arc corresponding to a letter in w. The initial vertex of each arc is a point on
E; denote these points v0, v1, · · · , v7. An admissible arc is an arc that might be
contained in a polygon in a monotone extremal surface. Such an arc is given by an
ordered pair (vi, vj) where vi is the initial vertex of an arc corresponding to some
letter x or X and vj is the terminal vertex of an arc corresponding to a letter X or
x. Since w is alternating, there are |w|/4 = 2 copies of each of the letters a,A, b, B
and consequently there are |w|2/4 = 16 admissible arcs (the arc (vi, vj) is denoted
ij for brevity):

03, 21, 14, 32, 05, 41, 10, 72, 27, 63, 54, 36, 47, 65, 50, 76

A polygon is a cyclically ordered list of vertices, where no vertex appears more
than once, and each consecutive pair of vertices is an admissible arc. There are 18
polygons:

03214765, 0321, 03276541, 032765, 036541, 03654721, 0365, 2147, 214763,

210547, 21054763, 14, 3276, 0541, 05, 72, 63, 5476

(note that each polygon has an even number of vertices). Each rectangle bounds two
admissible arcs, but there is a relation between these two arcs: if a rectangle bounds
ij at one end, it bounds (j − 1)(i + 1) at the other end. The linear programming
problem takes place in the vector space P ∼= R18 spanned by a basis pi whose
co-ordinates count the number of polygons of type i. Each rectangle imposes one
equation, of the form

∑
pk =

∑
pl where the left hand side counts the number

of polygons that contain an admissible edge ij and the right hand side counts the
number of polygons that contain an admissible edge (j − 1)(i + 1) (note that a



102 4. FREE AND SURFACE GROUPS

polygon type might contain both or neither). There are twice as many admissible
edges as equations, and hence |w|2/8 = 8 equations:

p0 + p1 + p2 + p3 + p4 + p5 + p6 = p0 + p1 + p5 + p7 + p8 + p9 + p10

p0 + p7 + p8 + p11 = p0 + p1 + p2 + p3 + p8 + p10 + p12

and so on.
Restricting to geometrically sensible answers imposes the conditions that each

pi ≥ 0. For each i, let li denote the number of branch edges in the polygon of type
i. In this example, li is equal to the length of the corresponding string of vertices;
hence l0 = 8, l1 = 4, l2 = 8, l3 = 6 and so on. To normalize the solution so that
the boundary represents [γ] in homology, we need to impose the equation

∑

i

lipi = |w| = 8

Subject to this list of constraints, scl(w) is the minimum of the objective function

−χ−
2

=
∑

i

(li − 2)pi
4

This linear programming problem can be solved using exact arithmetic, for
instance using the GNU package glpsol ([140]) and Masashi Kiyomi’s program
exlp ([128]), returning the answer scl(w) = 0.5. Moreover, an extremal solution
describes how to construct an extremal surface consisting of one 4-gon and two
bigons 0541 + 72 + 63 and four rectangles. This exhibits γ as the boundary of a
once-punctured torus, and shows that w is a commutator (which is easily seen in
any case: abABAbaB = [a, bAB]).

See e.g. Dantzig [62] for an introduction to linear programming.

Example 4.35. Bavard [8] p. 148 asked whether scl in the commutator sub-
group of free group takes on values in 1

2Z. This should be viewed in some sense as
the natural analogue of the fact that in a 3-manifold M , the (Gromov-)Thurston
norm takes on values in 2Z on the integral lattice H2(M ; Z) (also compare with
Proposition 4.4). In fact, the answer to Bavard’s question is negative: there are
many elements in free groups whose scl is not a half-integer. One explicit example
is w = baBABAbaBabA; the identity

[abaB,ABAbaBabAbaBABAbaBababABB] · [ABAba,BabAbaBABAbba]
· [BabABababA, aaBAAb] = a(baBABAbaBabA)3A

expresses a conjugate of w3 as a product of three commutators, and defines an
extremal surface virtually bounding w. Consequently scl(w) = 5/6. On the other
hand, it turns out that elements in free groups with half-integral scl are very com-
mon; see § 4.1.9 and § 4.2.

The algorithm as described above is hopelessly inefficient for all but a handful
of words. In the next section we will describe a much more dramatic improvement,
resulting in a polynomial time algorithm.
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4.1.7. A polynomial time algorithm to calculate scl in free groups. An
extremal surface is built from rectangles and polygons. The number of rectangle
types is quadratic in the length of w, but the number of polygon types is usually
of the order |w|! so a naive implementation of the algorithm described in § 4.1.6 is
useless for words of length 20 or more. The problem is the explosion of combinatorial
types of polygons with large numbers of sides.

A polygon with many sides is the combinatorial analogue of a critical point of
high index — a region in a surface with a high concentration of negative curvature.
The basic idea is that a polygon with more than 4 branch edges can be split up,
in a natural way, into polygons with 4 or fewer branch edges. For simplicity, in
this section we restrict attention to alternating words in F2, so that the cores of
rectangles attached to consecutive branch edges alternate between a± or b±. As an
added simplification, shrink boundary edges to points, so that every (remaining)
edge is a branch edge. Hence all polygons in question have an even number of sides.

split−−−→

Figure 4.3. A hexagon can be split up into two quadrilaterals

Let P be a polygon. The (oriented) rectangles attached to P come in four
kinds, depending on whether the core of the rectangle, when it moves away from
P , wraps around a,A, b, B; hence if P has more than 4 sides, there are at least two
pairs of rectangles of the same kind attached to P . Two (nonadjacent) rectangles of
the same combinatorial kind cobound a quadrilateralQ in P . The basic idea is that
the polygon P can be split up into Q and (the components of) P−Q; see Figure 4.3
for an example. Since the two rectangles which attach to Q wrap around the same
handle of the handlebody H , we can “slide” the quadrilateral Q one third of the
way around H . After a judicious sequence of slides of this kind, every remaining
polygon is a quadrilateral or a bigon.

More precisely, let P be a polygon. The edges of P are labeled by a,A, b, B.
All but at most one of the a edges can be paired up, resulting in a union of pairwise
disjoint a-quadrilaterals Qa ⊂ P . Do this pairing in such a way that each region
of P − Qa has at most two boundary edges in ∂Qa, or else one boundary edge in
∂Qa and at most one unpaired a edge, then slide the Qa quadrilaterals 1/3 of the
way around the a handle. For each component P ′ of P −Qa, pair up all but one of
the A edges, resulting in a union of pairwise disjoint A-quadrilaterals Q′A ⊂ P ′. Do
this pairing in such a way that each region of P ′ −Q′A has at most two boundary
edges in ∂Q′A, or else one boundary edge in ∂Q′A and at most one unpaired A edge,
then slide the Q′A quadrilaterals 1/3 of the way around the A handle.
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By construction, each component P ′′ of P ′ −Q′A has at most 8 edges, half of
which are b or B edges. If P ′′ has 4 or 2 edges, we leave it alone. If it has 6 edges,
there are (without loss of generality) at least 2 b edges which span a quadrilateral
Q′′b . In this case, slide the Q′′b quadrilateral 1/3 of the way around the b handle
and observe that P ′′ −Q′′b is the union of a quadrilateral and a bigon. Otherwise,
suppose P ′′ has 8 edges. Suppose there are a pair of antipodal b or B edges. Then
these span a quadrilateral Q′′b or Q′′B, and the complement in P ′′ is a union of
two quadrilaterals. Otherwise, there are a pair of adjacent b edges and a pair of
adjacent B edges spanning disjoint quadrilaterals Q′′b and Q′′B so that P ′′−Q′′b −Q′′B
is a single quadrilateral and two bigons. In every case, after sliding Q′′b and Q′′B
quadrilaterals 1/3 of the way around the b and B handles, we have achieved the
desired reduction.

The final result is a surface (homotopic to the original extremal surface) made
up of quadrilaterals and bigons in E, quadrilaterals 1/3 or 2/3 of the way around
the handles, and (parts of) rectangles joining them up. The number of combina-
torial types of (sub-) rectangles is still quadratic in |w|, but now the number of
polygon types is of order O(|w|4). This data can be turned into a linear program-
ming problem in O(|w|4) variables, with O(|w|2) equations. Each equation is linear
in the variables, with coefficients in the finite set {±1,±1/2, 0}, so the data of the
problem can be encoded with O(|w|6) bits. There are several well-known polyno-
mial time methods of exactly solving a linear programming problem. For example,
Karmarkar’s projective method [122] takes time O(n3.5L) to exactly solve a linear
programming problem in n variables encoded in L bits.

For non-alternating words, or free groups of higher rank, one must allow a larger
(but still finite) set of combinatorial polygon types; the details are very similar to
the alternating case. Hence we have the following:

Proposition 4.36. Let F be a free group. There is an algorithm to compute
scl(w) for w ∈ F whose running time is polynomial in the word length |w|.

4.1.8. Foldings. In fact, for alternating words, even more simplification is
possible. The basic idea is as in the previous section. Suppose S is an extremal
surface with boundary on γ which contains a polygon P with more that 4 sides
(after collapsing boundary edges). Then we can split off a quadrilateral and slide it
around a handle. Instead of sliding it only a third of the way, slide the quadrilateral
all the way around the handle. The fact that S is π1-injective ensures that the
quadrilateral does not run into another polygon when it gets all the way around
the handle. However it might easily join up with some other polygon P ′ along an
edge, and it is not clear that the result of this quadrilateral slide has made things
less complicated rather than more.

The problem can be simplified using graphs, and a procedure due to Stallings
[191] called folding. We replace the map of spaces f : S → H by a map of graphs
g : Γ → X where X is a wedge of two circles (i.e. the core of the handlebody H)
and Γ is the graph with one vertex for every polygon in S and one edge for every
rectangle. The map g is simplicial, taking edges to edges and vertices to vertices.
Let X ′ → X be the two-fold covering which unwraps each handle, and g′ : Γ′ → X ′

the map induced by g on a suitable covering space Γ′ of Γ. Note that Γ and X are
homotopy equivalent to S and H respectively; since extremal maps are π1-injective,
the map g is π1-injective, and so is g′.
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The graph X ′ is 4-valent, with two vertices. Make X ′ a directed graph in the
following way. At each vertex of X ′ there are four edges, labeled a,A, b, B. Orient
the edges of X ′ so that at one vertex, the a,A edges are outgoing, and at the other
vertex the b, B edges are outgoing.

Stallings calls a simplicial map between graphs an immersion when it is injective
on the star of every vertex. If p : G1 → G2 is a simplicial map between graphs
which is not an immersion, Stallings shows how to modify G1 by a sequence of
moves called folds which do not change the image of π1(G1) under p∗, so at the
end of the sequence of folds the resulting map is an immersion. If p is π1-injective,
each fold is an elementary collapse: two edges of G1 which share one endpoint in
common, and map to the same edge of G2, are identified. The result of a maximal
sequence of folds is well-defined independent of the choice of the sequence of folds.
In fact, let G̃2 denote the universal cover of G2, which is a tree. Then p∗(π1(G1))

acts on G̃2, and there is a unique minimal invariant subtree, whose quotient is
isomorphic to the maximal folding of G1.

In our case, since the map g′ : Γ′ → X ′ is already π1-injective, each fold is an
elementary collapse. There are two kinds of folds, distinguished by the orientation
on X ′: graphically, we can perform a fold when a ∨ subgraph of Γ′ maps to a single
edge of X ′, by identifying the two edges of the ∨. If the vertex of the ∨ maps to
the initial vertex of the directed edge of X ′, we say this is a positive fold, otherwise
a negative fold; by abuse of notation, we say that a ∨ admits a positive fold, and
a ∧ admits a negative fold. Since g′ is π1-injective, a ∨ and a ∧ can share at most
one edge in common, and therefore consecutive positive and negative folds can be
performed in either order. Hence we can arrange to perform all positive folds first,
then all negative folds, in some maximal sequence of folds.

Let f ′ : S′ → H ′ be the associated maps of double covers. Note that the
composition S′ → H ′ → H is extremal if S is. The orientation on X ′ gives an
unambiguous sense to what it means to slide a quadrilateral of S′ over a handle
of H ′ in the positive direction. If S′ has a polygon P with at least 6 edges, then
we can slide some sub-quadrilateral Q of P in the positive direction. The effect
of this on the graph X ′ is to perform a positive fold and then the inverse of a
negative fold. In other words, after sliding finitely many quadrilaterals of S′, we
can arrange matters so that the graph Γ′ admits a maximal folding sequence with
no positive folds. But such a graph admits no positive folds at all, and therefore
Γ′ represents a surface S′ in which no polygon has more than 4 edges. In words: if
w is an alternating word in F2, some extremal monotone surface for w contains no
polygons with more than 4 branch edges.

In the case that the rank is bigger than 2, replace H by a union of genus 1 solid
handlebodies glued along their splitting disks as in § 4.1.4. The associated graph
X is a wedge of n circles, and X ′ is a 2n-valent directed graph with two vertices,
at each of which there are n incoming edges and n outgoing edges. If S as above
contains a polygon P with at least 2n+2 edges, we can slide a sub-quadrilateral in
the positive direction, thus performing a positive fold and the inverse of a negative
fold on Γ. After sliding all quadrilaterals as far as they will go in the positive
direction, the resulting graph Γ′ admits no positive folds, and therefore the surface
S′ contains no polygons with more than 2n branch edges.

Hence we have proved:
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Proposition 4.37. Let w be an alternating word in Fn. Then some extremal
surface for w contains no polygons with more than 2n branch edges.

This proposition leads to a further dramatic reduction in the time needed to
compute scl on alternating words, especially in F2. The resulting algorithm has
been implemented in the program scallop, whose source is available from [39]. In
practice the runtime is quite modest, taking on average about 6 seconds on a late
2008 MacBook Pro to compute scl on an alternating word of length 60 in F2.

Remark 4.38. A decomposition of a surface into rectangles and polygons determines a
vector field on the surface with a saddle singularity for every 4-gon, and an n-prong monkey
saddle singularity for every 2n+2-gon. Such data defines a branched Euclidean metric on
the surface where the negative curvature is concentrated at the singularities. Bounding
the number of sides of the polygons is the combinatorial equivalent of finding two sided
curvature bounds for a smooth surface. A closed least area surface in a non-positively
curved 3-manifold has two sided curvature bounds, but for a surface with boundary, there
are no such a priori lower bounds. Thus it is perhaps somewhat surprising that such
uniform lower bounds on the complexity of the polygons in an extremal surface can be
obtained, independent even of γ.

4.1.9. Gaps, limits, tongues. An alternating word in F2 has length 4n for
some n. There are 2 ·(2n!)2/(n!)4 alternating words of length 4n, but after applying
conjugation and anti-involutions a ↔ A and b ↔ B if necessary, we may assume
the word starts with ab.

Computer experiments using scallop reveal unexpected structure in the scl
spectrum of F2.
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Figure 4.4. Values of scl on 50,000 random alternating words
of length 36. The horizontal axis is scl and the vertical axis is
frequency (the spike at 3/2 is attenuated to fit in the figure).

Figure 4.4 is a histogram of values of scl on random alternating words of length
36. There are several conspicuous features of this plot, including:

(1) the existence of a spectral gap between 0 and 1/2 (discussed in § 4.3.4)
(2) the indiscreteness of the set of values attained
(3) the relative abundance of elements whose scl has a small denominator

The self-similarity of the histogram suggests the existence of a power law for the
frequency of elements with scl a given rational, of the form freq(p/q) ∼ q−δ where
δ ∼ 2 in this example. This self-similarity persists on a fine scale (see Figure 4.5).
Co-ordinates of the spikes are obtained by Farey addition of nearest spikes, after
multiplying numerators by 2.

Similar power laws occur in dynamical systems, e.g. in the phenomenon of “fre-
quency locking” for coupled nonlinear oscillators. One of the best-known examples
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Figure 4.5. A stretched scaled excerpt from Figure 4.4.

is that of Arnold tongues (see [2]). For K ∈ [0, 1] and ω ∈ S1 define a function
fK,ω : S1 → S1 by

fK,ω(θ) = θ + ω −K sin 2πθ

This is a homeomorphism for K ≤ 1, and one can look at the rotation number
rot(fK,·) as a function of ω for varying K. In fact, for K > 0, the set of ω for
which this rotation number is a given rational is a nonempty closed interval, and
these intervals expand as K → 1 to completely fill out the circle (in measure).
Following [116] we define ∆(p/q) to be the length of the interval of values ω for
which the rotation number is equal to p/q for K = 1. Jensen et. al. [116] found
experimentally that the heights ∆(p/q) obey a power law, with ∆(p/q) ∼ q−δ for
δ = 2.292± 3.4× 10−3.

The indiscreteness of the spectrum is more evident when one includes non-
alternating words.

Example 4.39. For positive integers n,m define s(n,m) = scl([a, bn][a, b−m]).
Then s(n,m) = s(m,n), and s(n,m) = 1− 1/t(n,m) where t(n,m) = t(n/d,m/d)
if gcd(n,m) = d, and

t(n,m) = max(2n− 2m,n) if gcd(n,m) = 1 and n > m

In particular, every value of Q mod Z is achieved in scl of F2 (and therefore in any
nonabelian free group).

For a proof and a (partial) explanation, see [46]. On the other hand, not every
positive rational number occurs as a value of scl in a free group. As has been
remarked before, scl(w) ≥ 1/2 for all nontrivial w ∈ [F2, F2], and the value of 1/2
is realized on every commutator. Experimentally, there appears to be another gap
in the spectrum between 1/2 and 7/12, then a gap between 7/12 and 5/8, with
the first accumulation point of the set scl([F2, F2]) at 3/4 (of course, each nonzero
value is achieved on infinitely many conjugacy classes; compare with Theorem 3.11).
Finally, experiments suggest that every rational number ≥ 1 is in the scl spectrum.

4.1.10. Injective, extremal, isometric maps. A map f : π1(S) → G of a
surface group into a group G is injective if it is a monomorphism, and extremal if
it realizes the infimum of −χ−(S)/2n(S) for its boundary. Say it is isometric if
scl(f(a)) = scl(a) for all a ∈ [π1(S), π1(S)] (note that injective and isometric maps
make sense between arbitrary groups). There are inclusions

isometric ⊂ extremal ⊂ injective

It is an interesting problem to delineate precisely the difference between these three
natural classes of surfaces.
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Example 4.40. Any automorphism is isometric.

Example 4.41. If an inclusion f : G→ H splits, then f is isometric.

Example 4.42. For any nonzero integers n,m the map F2 → F2 sending a→
an and b→ bm is isometric (see [46] for a proof).

Example 4.43 (once punctured torus). Any map f : F2 → F2 has image which
is either cyclic or injective. Furthermore, since 1/2 is a lower bound on nontrivial
elements for scl in a free group, every injective map from F2 to itself (or to any free
group) is extremal.

Example 4.44 (high distance Heegaard splittings). The following example was
inspired by an idea of Geoff Mess. A Heegaard splitting exhibits a closed 3-manifold
M as a union of two handlebodies H1, H2 glued along a surface S. Recall (Def-
inition 3.69) the definition of the complex of curves C(S). Each handlebody Hi

determines a subcomplex C(Hi) in the complex of curves C(S) consisting of iso-
topy classes of essential simple closed curves in S which bound disks in Hi. The
distance of a Heegaard splitting is the length of the shortest path in the 1-skeleton
of C(S) from a vertex in C(H1) to a vertex in C(H2). 3-manifolds with Heegaard
splittings of arbitrarily high distance and genus exist, and are easy to construct
(see e.g. Hempel [108]). Let M be a 3-manifold with a Heegaard splitting of genus
at least 3 and distance at least 2. Let α ⊂ S bound a disk in H1, and separate
S into two subsurfaces of different genus. Since the distance of the splitting is at
least 2, every simple essential loop in S which bounds a disk in H2 must intersect
α non-trivially. Hence, by the loop theorem (see [107] p. 39) the components of
S − α are π1-injective in H2. Since H2 is a handlebody, π1(H2) is free (of rank
≥ 3). This example shows that there are (many) injective surfaces in free groups
which are not extremal. Note that a free group of any rank can be included into
a free group of rank 2, so there are examples of injective, non-extremal surfaces in
free groups of any rank.

Example 4.45. Another example is due to Justin Malestein, based on Witt
identities. Let F be a free group with generators x1, x2, · · · , xn for some large n.
Define

si =





x1 if i = 1, 2

x2+(i−1)/2x1+(i−1)/2x
−1
2+(i−1)/2 if i > 2 is odd

x1+i/2[[· · · [x1, x2], x3], · · · , x−1+i/2]x
−1
1+i/2 if i > 2 is even

Then one can verify that for each g ≤ n/2, the elements s1, s2, · · · , s2g generate a
free subgroup of F of rank 2g, and moreover that there is an identity

[s1, s2] · · · [s2g−1, s2g] = [[x1, · · · , [xg−1, xg] · · · ], xg+1]

thus exhibiting a genus g surface group and a genus 1 surface subgroup of F with
the same boundary.

For example, if g = 2, one has the identity

[s1, s2][s3, s4] = [x1, x2]x3[x2, x1]x
−1
3 = [[x1, x2], x3]

Since every subgroup of a free group is free, there are no injective maps from
closed surface groups to free groups. However, we can use extremal surfaces to
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construct injective maps from closed surface groups to many groups obtained from
free groups by simple procedures.

A well-known question due to Gromov [98] is the following:

Question 4.46 (Gromov). Does every 1-ended word-hyperbolic group contain
a closed hyperbolic surface subgroup?

This question seems to be far beyond the reach of current technology. Never-
theless, as an application of the Rationality Theorem, we can find such surfaces in
certain groups, obtained as graphs of free groups amalgamated along cyclic sub-
groups (for an introduction to the theory of graphs of groups, see e.g. Serre [187],
especially Chapter 1).

Theorem 4.47. Let G be a finite graph of free groups, amalgamated along
cyclic subgroups.

(1) Every α ∈ H2(G; Z) has a multiple which is represented by a π1-injective
map of a closed surface (which may be disconnected).

(2) The unit ball of the Gromov (pseudo-)norm on H2(G; R) is a finite sided
rational polyhedron.

(3) Let g1, g2, · · · , gn ∈ G be conjugate into (free) vertex subgroups of G. Then
scl is piecewise rational linear on 〈g1, · · · , gn〉∩BH1 (G), and every rational
chain in this subspace rationally bounds an extremal surface.

Remark 4.48. If some homology class in G is represented by a Z⊕Z, the Gromov pseudo-
norm on H2(G; R) is degenerate. In this case, the proposition should be construed as
saying that ‖ · ‖1 is a non-negative convex piecewise rational linear function. On the other
hand, if G is word-hyperbolic, ‖ · ‖1 is a genuine (polyhedral) norm.

Remark 4.49. In contrast with the case of a 3-manifold, the norm ‖·‖1 does not generally
take integral values on H2(G; Z).

We give the sketch of a proof; for details, see [43].

Proof. Since G is a graph of free groups amalgamated along cyclic subgroups,
there is a K(G, 1), denoted X , obtained as a union X = H ∪ A, where H is a
disjoint union of handlebodies, and A is a disjoint union of annuli attached along
their boundary to essential loops in H (in fact, this can be taken to be the definition
of a graph of free groups amalgamated over cyclic subgroups). If Hi is a component
of H , let Fi denote the corresponding (free) vertex subgroup of G. Furthermore,
for each i, let ∂iA denote the components of ∂A attached to Hi. We think of each
∂iA either as a set of free homotopy classes of loops in Hi, or as a set of conjugacy
classes in Fi.

Let α ∈ H1(G; Z) be given, and let f : S → X be a map of a surface representing
α. After compression and a homotopy, we can insist that f−1(A) is a union of
annuli, each of which maps to some component of A by a covering map. Write S
as a union S = T ∪U , where U = f−1(A), and T = ∪iTi where Ti = f−1(Hi). The
image f∗(∂T ) is a chain C which can be written as a formal sum C =

∑
Ci where

each Ci has support in Hi. By construction, Ci ∈ 〈∂iA〉 ∩BH1 (Fi).
For each i, let T ′i be an extremal surface in Hi virtually bounding the chain Ci.

By passing to common covers if necessary, we can assume that T ′ = ∪T ′i virtually
bounds C. We would like to build a surface S′ by gluing up boundary components
of the T ′i along covers of the cores of the annuli A. This can be accomplished by
passing to a further finite cover, by Proposition 2.13. The resulting surface S′ is
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Gromov norm minimizing in its (projective) homology class, and is therefore π1-
injective. This proves bullet (1). Bullet (2) follows from the piecewise rational
linearity of the scl norm on each 〈∂iA〉 ∩BH1 (Fi).

The proof of bullet (3) is similar. Let Γ be a collection of loops representing the
conjugacy classes gi. Any admissible surface f : S, ∂S → X,Γ can be homotoped
and compressed until f−1(A) is a union of annuli, each of which maps to some
component of A by a covering map. Then the claim follows as above by the fact
that scl is piecewise rational linear on each subspace of the form 〈∂iA∪ (Γ∩Hi)〉 ∩
BH1 (Fi). �

Example 4.50. Let F be a free group and Z a nontrivial cyclic subgroup,
contained in [F, F ]. Let G be obtained from two copies of F by amalgamating
them along Z; i.e. G = F ∗Z F . Topologically, if γ is a loop in H representing the
conjugacy class of a generator of Z, the group G is the fundamental group of the
spaceX obtained by gluing two copies ofH together along γ. There is an involution
ι onX which exchanges the two copies ofH , and fixes γ. If f : S → H is an extremal
surface which (rationally) bounds some cover of γ, there is a map Df from the
double DS to X obtained by reflecting f across γ using ι. By construction, the
map is injective, and realizes the Gromov norm on some multiple of the generator
of H2(G; Z).

Example 4.51. Let S be a closed orientable surface, and let A ⊂ S be an
essential annulus in S. Let g1, · · · , gn ∈ π1(S) be conjugacy classes represented by
loops γi in S−A. Then scl is piecewise rational linear on the subspace 〈g1, · · · , gn〉∩
BH1 (π1(S)).

Example 4.52. Let G be a graph of free groups amalgamated along cyclic
subgroups. Then every finite index subgroup G′ is also a graph of free groups
amalgamated along cyclic subgroups. So if some finite index G′ as above has non-
trivial H2, it contains a closed surface subgroup, and therefore so does G. Cameron
Gordon and Henry Wilton [94] have several interesting criteria to guarantee this
condition.

Remark 4.53. Compare the proof of Theorem 4.47 with the proofs of Theorem 2.93 and
Theorem 2.101.

4.2. Geodesics on surfaces

The results of § 4.1 let us compute scl and construct extremal surfaces for
arbitrary elements and chains in BH1 (F ) where F is a free group. Bavard duality
implies the existence of extremal quasimorphisms with rational values and rational
defects, but such quasimorphisms are apparently quite elusive, and it remains a
challenging problem to try to construct them. The most constrained extremal
quasimorphisms (and therefore the easiest to find) should be those dual to top
dimensional faces of the scl polyhedron; but for an infinite dimensional polyhedron,
it becomes complicated even to give a precise definition of a top dimensional face.

However, it turns out that there are some naturally occurring top dimensional
faces of the scl polyhedron for F a free group. More precisely, for each realization
of F as π1(S) where S is an oriented surface (necessarily of negative Euler char-
acteristic), there is a top dimensional face πS of the scl norm ball. Moreover, the
projective class of the chain ∂S in BH1 (F ) intersects this face in its interior, and
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the unique homogeneous quasimorphism dual to this face (up to scale and elements
of H1(F )), is the rotation quasimorphism associated to the natural action of π1(S)
on the circle at infinity of hyperbolic space coming from any choice of hyperbolic
structure on S. This is Theorem 4.78, to be proved in the sequel.

4.2.1. Self-intersections. Fix the following conventions. Let S be an ori-
entable surface of finite type (usually compact and connected with nonempty geo-
desic boundary) with χ(S) < 0. If we fix a hyperbolic structure on S, then every
free homotopy class of loop has a unique (unparameterized) geodesic representa-
tive. If a ∈ π1(S), and [a] denotes the conjugacy class of a, then we let γ(a) denote
the geodesic in the free homotopy class determined by [a]. If we want to refer
specifically to the hyperbolic metric g on S, we write γ(a, g).

We recall from § 3.5.3 the notation cr(a) for the number of self-intersections
of γ(a) in S (i.e. the crossing number). Our discussion in § 3.5.3 was brief and
somewhat sketchy; we are more careful now.

The combinatorics of the geodesic γ(a) in S does not depend on the choice of
hyperbolic structure when cr(a) ≤ 2. But when γ has 3 or more self-intersections
the combinatorics of γ may (and usually will) depend on the geometry of S. In par-
ticular, three local sheets might undergo a “Reidemeister 3” move; see Figure 4.6.

←−−→

Figure 4.6. A Reidemeister 3 move

More subtly, a geodesic representative might not be in general position, and
a “coincidental” triple point might be stable under deformations of the hyperbolic
structure.

Example 4.54 (Hass–Scott [104]). This example is a straightforward variation
on Example 5 from [104]. A hyperbolic once-punctured torus T has an isometric
involution which fixes the boundary and three interior (Weierstrass) points. A
suitable free homotopy class of loop in T invariant by this involution has a geodesic
representative which is forced to go through some or all of these points, an arbitrary
number of times. This example can be inserted into any non-planar hyperbolic
surface.

Self-intersections and crossing number are more properly defined in terms of
linking data at infinity. Let S1

∞ denote the circle at infinity of the hyperbolic plane.
Two disjoint pairs of points in S1

∞ are said to be linked if each separates the other
in S1

∞. Formally, we define a self-intersection of γ as follows. Let s : S1 → γ ⊂ S
be a parameterization of γ. By abuse of notation, we say that a lift of s is a map
s̃ : R→ H2 which intertwines the covering projections R→ S1 and H2 → S. A self-
intersection of γ is an unordered pair of lifts s̃1, s̃2 for which the endpoints of the
geodesics s̃1(R), s̃2(R) are linked in S1

∞, up to the action of the deck group π1(S)
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on such pairs. Then define cr(a) to be the cardinality of the set of self-intersections
of γ(a).

Linking number is well-defined independent of the hyperbolic structure on S,
so this notion is purely topological. For primitive geodesics in general position,
the cardinality of the set of self-intersections agrees with the naive (geometric)
definition of crossing number, and satisfies the desirable property cr(an) = n2cr(a).

If γ is not generic, we distinguish the abstract set of self-intersections (as defined
above) from the support of the self-intersections, which is a finite subset of γ, and
whose cardinality might depend on the hyperbolic structure on S.

4.2.2. Bounding surfaces. Assume now that S is compact, possibly with
boundary. Fix a hyperbolic structure on S and an element a ∈ π1(S), and let γ
denote the (oriented) geodesic corresponding to the conjugacy class of a.

For a given hyperbolic structure, γ decomposes S − γ into a finite collection of
complementary regions Ri. Each region inherits an orientation from S. Moreover,
γ is decomposed by its own self-intersections into a collection of oriented segments
γj . Finally the support of the self-intersections is a collection of oriented points vi.

Definition 4.55. Let C∗(γ) be the chain complex (over Z) generated by the
oriented polyhedra Ri, γi, vi together with the boundary components of S, with
boundary maps the usual boundaries for polyhedra. LetH∗(γ) denote the homology
of this complex.

We let SC denote the element of C2 which is just the sum of the oriented gen-
erators of C2, and γC the element of C1 which is the sum of the oriented generators
of C1, excluding the boundary components.

Fix an open covering of S whose open sets are regular open neighborhoods Ui
of the regions Ri. At least when S is closed, the Čech cohomology of the nerve
of this covering (with constant coefficients) is canonically (because of orientations)
Poincaré dual to C∗. In particular, there is a canonical surjective homomorphism
from ordinary (Čech) homology H∗(S; Z) → H∗(γ), and the classes [SC ], [γC ] ∈
H∗(γ) are the images of the corresponding elements in H∗(S; Z). There is a similar
interpretation of H∗(γ) in Čech homology when S has boundary.

Lemma 4.56. The kernel of ∂ : C2(γ) → C1(γ) is generated by SC if S is
closed, and is zero otherwise.

Proof. This follows by the remarks in the paragraph above, together with
the fact that S is connected and orientable, and therefore H2(S; Z) is at most 1
dimensional, and is 0 dimensional unless S is closed. �

Since γ is closed, γC is a cycle. If a ∈ [π1(S), π1(S)] then [γ] = 0 ∈ H1(S),
so γC = ∂Aγ for some Aγ ∈ C2. If S is not closed, ∂ is injective on C2 by
Lemma 4.56, and therefore Aγ is uniquely defined. For each region Ri, let wi
denote the coefficient of the generator Ri in Aγ , so that Aγ =

∑
i wiRi.

Let T be a compact orientable surface, possibly with multiple boundary com-
ponents, and let f be a map of pairs f : (T, ∂T ) → (S, γ). If we put f in general
position, f restricts to a proper map between open surfaces T − f−1(γ) → S − γ.
The orientations on T and S determine a degree, denoted deg(f), which is an as-
signment of an integer to each region Ri; i.e. an element of C2(γ). If f is smooth,
the degree of f on Ri is the signed sum of preimages of a generic point in Ri. One
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way of thinking of the degree is as the image of the fundamental class of the pair
(T, ∂T ) in a suitable relative homology group.

Enumerate the components of ∂T as ∂iT , and suppose that f(∂iT ) represents
γni in π1(S). We define the degree of f |∂T similarly, and write deg(∂if) = niγC
and deg(∂f) =

∑
i niγC . Write n(T ) =

∑
ni as above. From the definition we

have

∂ deg(f) = deg(∂f)

and so from Lemma 4.56, we deduce

deg(f) = n(T ) ·Aγ
providing S has nonempty boundary.

4.2.3. Area norm. Throughout this section, all surfaces under discussion are
assumed to have nonempty boundary, unless we explicitly say to the contrary.

Definition 4.57. For a ∈ [π1(S), π1(S)] and for a fixed choice of hyperbolic
metric g on S, define the area of γ(a, g) by

area(γ(a, g)) =
∑

i

wiarea(Ri)

where Aγ =
∑
wiRi, and

area+(γ(a, g)) =
∑

i

|wi|area(Ri)

If g and a are understood, we abbreviate this to area(γ) and area+(γ) respectively.

From the definition there is an inequality area+(γ) ≥ |area(γ)| with equality if
and only if all the wi have the same sign.

Definition 4.58. If all the wi have the same sign, then γ is monotone.

Lemma 4.59. Let a, γ be as above. Then for any hyperbolic structure g on S
there is an inequality

scl(a) ≥ area+(γ(a, g))

4π

Proof. For each surface (Si, ∂Si) → (S, γ) we either compress Si along an
essential embedded loop or arc, or else we can find a pleated representative. The
pleated representative defines a hyperbolic structure on Si with totally geodesic
boundary. Moreover, by definition, we have

area(Si) =
∑

i

∫

Ri

#{f−1}darea ≥
∑

i

∫

Ri

| deg(f) on Ri|darea = n(Si)area+(γ)

By Gauss–Bonnet, area(Si) = −2πχ(Si). By Proposition 2.10, scl(a) is the infimum
of −χ(Si)/2n(Si) over all such Si. �

Values of area(γ) are quantized:

Lemma 4.60. For any a ∈ π1(S) and any hyperbolic metric g,

area(γ(a, g)) ∈ 2πZ

In particular, area(γ) does not depend on g.
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Proof. Let (S′, ∂S′) → (S, γ) be a pleated surface for which n(S′) = 1. The
pleated surface structure determines a decomposition of S′ into an even number
of ideal triangles, whose areas sum to area(S′). The Jacobian J(f) is constant on
each ideal triangle, and takes values in ±1. We calculate

area(γ) =
∑

i

∫

Ri

deg(f) on Ri darea =

∫

S′

J(f) darea

which is a sum of an even number of π’s and −π’s. �

In fact, the relationship between area and scl is precise enough to detect a
significant amount of topological information. An immersion f : T → S between
oriented surfaces is positive if it is orientation-preserving on each component, and
negative if it is orientation-reversing on each component. Note that if S and T are
both connected, every immersion between them is either positive or negative.

For the moment we are considering immersed loops in surfaces S. In the sequel
we will consider immersed 1-manifolds. In anticipation therefore, we make the
following definition.

Definition 4.61. An immersed oriented 1-manifold Γ :
∐
i S

1 → S bounds a
positive immersion f : T → S if there is a commutative diagram

T∂T

∐
i S

1 S

................................................................................................................................................................... ............
i

.........................................................
......
......
......

∂f
.........................................................
......
......
......

f

......................................................................................................................................................... ............

Γ

for which ∂f : ∂T → ∐
i S

1 is an orientation-preserving homeomorphism. The
1-manifold Γ virtually bounds (or rationally bounds) a positive immersion as above
if there is a positive integer n so that ∂f : ∂T →∐

i S
1 is an orientation-preserving

covering satisfying ∂f∗[∂T ] = n[
∐
i S

1] in homology.

The property of virtually bounding an immersed surface can be detected by
stable commutator length:

Lemma 4.62. Let a ∈ π1(S) be represented by a geodesic γ ⊂ S. Suppose γ
virtually bounds a positive immersed surface T . Then T is extremal, and

scl(a) = area(γ)/4π = −χ(T )/2n

Conversely, if γ does not virtually bound a positive immersed surface, then scl(a) >
area(γ)/4π.

Proof. Under the hypotheses of the Lemma, narea(γ) = area(T ). If γ virtu-
ally bounds a positive immersed surface T , then scl(a) ≤ −χ(T )/2n. This gives an
upper bound on scl which is equal to the lower bound in Lemma 4.59.

Conversely, let T be extremal for a (such a T exists by Theorem 4.24). If T is
not homotopic to an immersion, then a pleated representative of T maps at least one
ideal triangle with degree −1 and therefore scl(a) = −χ−(T )/2n > area(γ)/4π. �

Remark 4.63. By changing the orientation on γ, one sees that γ virtually bounds a
negative immersed surface if and only if scl(a) = −area(γ)/4π.

Remark 4.64. We will see in Example 4.72 that there are examples of curves γ which
do not bound an immersed surface, but have finite (disconnected) covers which do bound
immersed surfaces.



4.2. GEODESICS ON SURFACES 115

Remark 4.65. One direction of Lemma 4.62 is easy: an immersed surface is evidently
extremal, by Bavard duality. The other direction of the proof really uses the existence of
extremal surfaces, and therefore depends on Theorem 4.24.

Corollary 4.66. Let a ∈ π1(S) be represented by a geodesic γ. Suppose a
finite cover of γ bounds a (positive or negative) immersed surface in S. Then
scl(a) ∈ 1

2Z.

Proof. By Lemma 4.62, there is an equality scl(a) = |area(γ)|/4π. On the
other hand, by Lemma 4.60, area(γ) ∈ 2πZ. �

Remark 4.67. Although area(γ) does not depend on the hyperbolic metric g, the quantity
area+(γ(a, g)) might. By Gauss–Bonnet, the area of a hyperbolic polygon P is

area(P ) = π(n− 2)−
X

i

αi

where n is the number of vertices, and the αi are the internal angles. Summing contribu-
tions of this kind, we see that area+(γ(a, g)) is an integral linear combination

area+(γ(a, g)) =
X

p

n(p, g)α(p, g) + topological term

where the topological term is in πZ, where the sum is taken over points p at which γ
crosses itself, where α(p, g) is the angle γ makes with itself at p, and where each n(p, q) is
an integer. The n(p, q) are not constant, since they might change sign under a deformation
in which some (necessarily simply-connected) region becomes degenerate and changes
orientation.

It would be interesting to study area+(γ(a, ·)) for each a ∈ π1(S) as a function on
Teichmüller space, and to characterize its range algebraically.

4.2.4. Area and rotation number. We give a reinterpretation of area(γ) in
terms of rotation numbers which gives another explanation of the quantization of
area proved in Lemma 4.60.

A hyperbolic structure and an orientation on S determines a representation
ρ : π1(S) → PSL(2,R) which is unique up to conjugacy. There is a universal
central extension

0→ Z→ S̃L(2,R)→ PSL(2,R)→ 0

with extension class [e] ∈ H2(PSL(2,R); Z).
If G is any group, and ρ : G → PSL(2,R) is a representation, [e] pulls back

by ρ∗ to define an element ρ∗([e]) of H2(G; Z). If ρ is understood, we abbreviate
this by [e] where no confusion can arise. There is an elegant description of e at
the level of chains, due to Thurston [197]. The group PSL(2,R) acts on S1

∞ by
orientation-preserving homeomorphisms. Let p ∈ S1

∞ be arbitrary. If g1, g2 ∈ G
then define

e(g1, g2) =





1
2 if p, g1(p), g2(p) is positively ordered

− 1
2 if p, g1(p), g2(p) is negatively ordered

0 if p, g1(p), g2(p) is degenerate

More geometrically, e is 1
2π times the (signed) hyperbolic area of the ideal triangle

spanned by p, g1(p), g2(p). Note that e is a bounded 2-cocycle, with norm 1/2.
If f : (S′, ∂S′) → (S, γ) is a pleated surface with n(S′) = 1, then f∗(∂S

′) fixes
points in S1

∞, and therefore there is a well-defined relative cocycle f∗e whose eval-
uation f∗e([S′]) is 1

2π times the signed sum of areas of the ideal triangles of S′; i.e.
f∗e([S′]) = area(γ)/2π.
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If ρ∗e is trivial in H2(G; Z) then ρ lifts to ρ̃ : G→ S̃L(2,R). As in § 2.3.3 there
is a well-defined homogeneous quasimorphism rot on G determined by the choice
of a lift ρ̃. Different lifts are parameterized by choices of H1(G). In particular,
ρ̃ is well-defined on [G,G]. As bounded cohomology classes, −[δ rot] = [e] in
H2
b (G; R). Here the minus sign appears because of the negative curvature of a

hyperbolic surface. In fact, for any closed hyperbolic surface T , there is an equality
e([T ]) = −χ(T ).

Lemma 4.68. With definitions as above, for each a in the commutator subgroup
there is an equality

area(γ(a)) = −2π rot(a)

Proof. Let f : (S′, ∂S′)→ (S, γ) be a pleated surface with n(S′) = 1. Then

area(γ(a))/2π = e(f∗[S
′]) = −(δrot)(f∗[S

′]) = −rot(f∗[∂S
′]) = −rot(γ)

�

Since S is a complete hyperbolic surface, every element is either hyperbolic or
parabolic, and therefore has a fixed point in S1

∞. This implies that rot takes on
only integral values. This explains the quantization observed earlier.

Remark 4.69. Lemma 2.58 says that for any homogeneous quasimorphism φ, there is
an inequality D(φ) ≤ 2‖[δφ]‖∞. The discussion above shows that this inequality is an
equality when φ is the rotation quasimorphism associated to a hyperbolic structure on a
noncompact surface.

In fact, for any group G and any representation ρ : G → Homeo+(S1), we can pull
back the Euler class to obtain [eρ] ∈ H2

b (G; R). After passing to a central extension if nec-
essary, we can assume [eρ] is trivial in ordinary H2, and obtain a rotation quasimorphism
rotρ with [δrotρ] = [eρ].

Proposition 4.70. With notation as above, there is an equality D(rotρ) = 2‖[eρ]‖∞.

Proof. We give the sketch of a proof. If G has a finite orbit, then it preserves an
invariant probability measure concentrated on this orbit, and therefore rotρ is a homo-
morphism, and [eρ] is trivial in H2

b (G; R). Otherwise, the action is semi-conjugate to a
minimal action (i.e. one in which every orbit is dense). A minimal action is either con-
jugate to an action by rotations (in which case rotρ is a homomorphism) or has a finite
cyclic centralizer. Quotienting S1 by the action of the centralizer produces a new minimal
action, and multiplies both [eρ] and rotρ by the same number.

So assume the action is minimal with trivial centralizer. The Milnor–Wood inequality
gives ‖[eρ]‖∞ ≤ 1/2 for any action. On the other hand, such an action has the following
compressibility property: for any closed interval I ⊂ S1 and any nonempty open set
U ⊂ S1, there is g ∈ G for which g(I) ⊂ U ; a proof of this fact (and the nontrivial
assertions in the previous paragraph) follows from Thurston [197], Theorem 2.7. Choose
disjoint nonempty connected open sets U1, U2, V1, V2 for which a pair of points in U1 and V1

link a pair of points in U2 and V2. Let g take S1−V1 into U1, and let h take S1−V2 into U2.
Then the action of 〈g, h〉 is semi-conjugate to an action arising from a hyperbolic structure
on a once-punctured torus. Consequently rotρ([g, h]) = 1 and therefore D(rotρ) ≥ 1.

Hence

1 ≥ 2‖[eρ]‖∞ ≥ D(rotρ) ≥ 1

and the Proposition is proved. �

Note that the method of proof shows that any group acting on a circle either preserves
a probability measure, or contains a nonabelian free subgroup. In the literature this fact
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is frequently attributed to Margulis [145], who seems not to have been aware of the work
of Thurston and others.

Lemma 4.62 and Lemma 4.68 taken together show that an element a in the
commutator subgroup of π1(S) is represented by a geodesic which virtually bounds
an immersed surface in S if and only if rot is an extremal quasimorphism for a. It
is convenient to extend this observation to rational chains in BH1 .

Let F = π1(S), and let C =
∑
tiai be a chain in BH1 (F ). Each ai is represented

by a geodesic γi in S, so the chain C is represented by a “weighted” union Γ of
geodesics in S. The support of Γ decomposes S into regions Ri. For each region Ri,
choose an arc αi from ∂S to Ri, and look at the (weighted) algebraic intersection
αi ∩ Γ. The condition that C is homologically trivial implies that this algebraic
intersection number is independent of the choices involved. In the special case that
C consists of a single element a, this intersection number is equal to the weight wi
as defined in Definition 4.57. Then define

area(Γ) =
∑

i

(αi ∩ Γ)area(Ri)

Then one has the analogue of Lemma 4.68, namely area(Γ) = −2π
∑
tirot(ai). If

the coefficients of C are rational, then after multiplying through by a large integer
we can assume that the coefficients are integers, and we can think of Γ as a signed
sum of simple geodesics. Lemma 4.62 holds for such Γ, and with the same proof;
i.e. a weighted union of geodesics Γ representing a chain C virtually bounds a
positive immersed surface if and only if area(Γ) = 4π scl(C). Putting these two
facts together gives the following proposition:

Proposition 4.71. Let S be an oriented surface with boundary. Let C be a
rational chain in BH1 (F ) represented by a weighted sum of geodesics Γ. Then Γ
virtually bounds a (positive or negative) immersed surface in S if and only if rotS
is an extremal quasimorphism for C; i.e. if and only if scl(C) = |rotS(C)|/2.

Example 4.72. “Virtually bounds” in Proposition 4.71 cannot in general be
improved to “bounds”. Consider the immersed curve γ ⊂ S in Figure 4.7, where S
is a once-punctured surface of genus 2. The curve γ can be realized by a geodesic
in any hyperbolic structure on S.

γ

Figure 4.7. The loop γ does not bound an immersed surface, but
two copies of γ do

The disconnected cover consisting of two copies of γ bounds an immersed sur-
face of genus 4 with two boundary components, which each wrap once around γ.
By Lemma 4.62 there is an equality scl([a1, b1]

2[a2, b2]) = 2 in F4 (note that this
also follows as a special case of the (free) product formula, i.e. Theorem 2.93). Since



118 4. FREE AND SURFACE GROUPS

the value of scl is not of the form 1/2 + integer, γ does not bound an immersed
surface.

4.2.5. Rotation number and counting quasimorphisms. In this section,
let S1,1 denote a once-punctured torus, so that π1(S1,1) = F2, with standard gen-
erators a, b. The function rot1,1 : F2 → Z is defined as above, with respect to some
complete hyperbolic structure on S1,1, and some choice of lift on the generators.
Since different lifts agree on the commutator subgroup, the function rot1,1 is well-
defined in Q/H1. One way to fix a lift is to insist that the lifts of a and b fix points,
and therefore satisfy rot1,1(a) = rot1,1(b) = 0. We follow this convention in the
sequel.

It turns out that we can give a simple formula for rot1,1 in terms of the Brooks
counting quasimorphisms (see § 2.3.2). Recall that for each string σ, the function
Hσ counts the number of copies of σ minus the number of copies of σ−1, and Hσ

denotes its homogenization.

Remark 4.73. In fact, in this section we only consider strings σ of length 2 with distinct
letters. For such strings, the “little” and the “big” counting functions and their associated
quasimorphisms hσ and Hσ are equal.

Lemma 4.74.

rot1,1 =
1

4

(
Hab +Hba−1 +Ha−1b−1 +Hb−1a

)

Proof. The proof is a modification of Klein’s ping-pong argument, lifted from
the circle to the line. The disk D can be decomposed into 5 regions, one of which,
P , is an ideal square which is a fundamental domain for F2, and the other 4 are
neighborhoods of the attracting fixed points of the elements a, b, a−1, b−1 respec-
tively. Call these neighborhoods Na, Nb, NA, NB. Given a reduced word σ ∈ F2,
and a point p ∈ P , the image σ(p) ∈ Nw where w is the last letter of σ. We can
glue Z copies of each of the regions Na etc. onto R in such a way that the union of
R with these regions is the universal cover of D − P . Denote this union by E. See
Figure 4.8.

These lifted neighborhood regions break up R into “units”, with four units to
each lift of a fundamental domain for S1. We can lift the itinerary of p (except for
p itself) under the subwords of σ to an itinerary in E. One sees that every time
the letter b appears in σ, the itinerary moves up one unit if the preceding letter
was a, and down one unit if the preceding letter was a−1, and similarly for other
allowable 2-letter combinations. The rotation number is 1/4 the number of units,
proving the formula. �

This has a particularly simple and interesting interpretation in terms of the
graphical calculus introduced in § 2.2.4. A cyclically reduced element in [F2, F2]
determines a loop in the square lattice without backtracking. Such a loop may be
“smoothed” at the corners to determine an immersed curve in the plane. Every an-
ticlockwise turn contributes 1/4 to rot1,1, whereas every clockwise turn contributes
−1/4. Hence rot1,1 is just the winding number of the immersed curve associated to
an element.

The following corollary illustrates the power of this technique.

Corollary 4.75. Let g ∈ F2 be a commutator, and let γg be the geodesic
representative of the conjugacy class of g in T , a hyperbolic once-punctured torus.
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PNa NA

Nb

NB

Ña

Ñb

ÑB

ÑA

ÑA

a

a

a−1

a−1

a−1

a−1

Figure 4.8. a moves points in Ñb regions up one unit, and a−1

moves such points down one unit. Furthermore, a moves points
in ÑB regions down one unit, and a−1 moves such points up one
unit. A similar relation holds with a and b interchanged.

Let wg be the loop in the square lattice in R2 corresponding to the (cyclically) reduced
representative of g. Then γg bounds an immersed surface in T if and only if the
winding number of wg is ±1.

Proof. Since g is a commutator, there is a map f : T → T taking the bound-
ary to γg. Replace f by a pleated representative. The (algebraic) area of f(T )
is −2π rot1,1(g) = −2π wind(wg), so if the winding number is ±1, this pleated
representative is an immersion. Conversely, if wind(wg) = 0, the algebraic area is
zero, so no map f as above can be an immersion. �

A similar argument lets one give a formula for rotation numbers associated to
a hyperbolic structure on any noncompact hyperbolic surface in terms of Brooks
functions on the associated (free) fundamental group. As before, let P be a fun-
damental domain for the surface, so that D− P decomposes into regions on which
the generators do ping-pong. Then each allowable pair xy of distinct letters in a
reduced word moves up some fixed number nxy of units. If Sg,p is the surface of
genus g with p punctures, then π1(Sg,p) is free of rank 2g+p−1 and we can take as
generators a1, b1, · · · , ag, bg, c1, · · · , cp−1. We thereby obtain the following theorem.

Theorem 4.76 (Rotation number formula). Let C denote the following cycli-
cally ordered set:

C = (a1, b1, a
−1
1 , b−1

1 , · · · , ag, bg, a−1
g , b−1

g , c1, c
−1
1 , · · · , cp−1, c

−1
p−1)
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For each pair x, y in C with x 6= y, y−1 let mxy be the integer 0 < mxy < 4g+2p−2
such that y is mxy elements to the right of x in C. Define

nxy =

{
mxy if (y−1, x, y) is positive in the circular order

mxy − (4g + 2p− 2) otherwise

Then there is an equality

rotg,p =
1

4g + 2p− 2


 ∑

x 6=y or y−1

nxyCxy




where for each string σ, we let Cσ denote the counting function that counts copies
of σ, and Cσ denotes its homogenization.

For example, let S0,3 be the thrice punctured sphere, and let π1(S0,3) = 〈a, b〉
where a and b are loops around the punctures. Then if rot0,3 denotes the homoge-
neous quasimorphism associated to the hyperbolic structure, there is a formula

rot0,3 =
1

2

(
Ha−1b +Hba−1

)

Remark 4.77. In fact, the formula from Theorem 4.76 gives (after collecting terms)

rot0,3 =
1

4

`
2Ha−1b + 2Hba−1 + Cab + Cb−1a−1 − Ca−1b−1 − Cba

´

However, the function Cab+Cb−1a−1−Ca−1b−1−Cba is uniformly bounded on any reduced
word, as can be verified by a calculation, and therefore its homogenization is trivial.

Theorem 4.76 gives similar necessary and sufficient criteria in terms of counting
quasimorphisms for geodesics in hyperbolic surfaces S corresponding to commuta-
tors in π1(S) to bound an immersed surface.

4.2.6. Rigidity Theorem. The content in the next few sections is taken
largely from [45]. The main goal is to prove the following theorem:

Theorem 4.78 (Rigidity Theorem). Let F = π1(S) where S is a compact
oriented surface with χ(S) < 0 and nonempty boundary.

(1) The projective class of the chain ∂S in BH1 (F ) intersects the interior of a
codimension one face πS of the unit ball in the scl norm.

(2) The unique element of Q(F )/H1 dual to πS (up to scale) is the rotation
quasimorphism associated to the action of π1(S) on the ideal boundary of
the hyperbolic plane, coming from a hyperbolic structure on S.

Theorem 4.78 reveals how surface topology and hyperbolic geometry are man-
ifested in the bounded cohomology of a free group.

The proof is entirely elementary modulo Proposition 4.71, and depends only
on constructing immersed surfaces in S with prescribed boundary. Technically, the
result we prove is the following:

Theorem 4.79 (Immersion Theorem). Let S be a compact oriented hyperbolic
surface with (possibly empty) geodesic boundary. Let C be a homologically trivial
rational chain, represented by a weighted union Γ of geodesics. Then for all suffi-
ciently large N (depending on Γ), the chain Γ +N∂S virtually bounds a (positive)
immersed surface.

We show how to deduce Theorem 4.78 from Theorem 4.79.
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Proof. Let C be any rational chain in BH1 (F ). By Theorem 4.79 and Propo-
sition 4.71, for all sufficiently large N the chain C +N∂S in BH1 (F ) satisfies

scl(C +N∂S) = rotS(C +N∂S)/2

Hence the ray through ∂S intersects the interior of an edge of the unit ball of the
scl norm restricted to the subspace 〈C, ∂S〉. Since C was arbitrary, the projective
class of ∂S intersects the interior of a codimension one face πS of the unit ball in
the scl norm. By construction, this face is dual to rotS (up to scale and H1). �

Remark 4.80. Proposition 4.71 says that a rational chain C virtually bounds a positive
immersed surface in S if and only if scl(C) = rot(C)/2. By Theorem 4.78, this holds if
and only if the projective class of C intersects the face πS. If the support of C does not
include ∂S, then C− ǫ∂S cannot virtually bound a positive immersed surface in S for any
positive ǫ. Consequently the projective class of such a C does not intersect the interior of
πS, but only its boundary.

Remark 4.81. One still has a version of the Rigidity Theorem for closed surfaces. Let S
be a closed, oriented hyperbolic surface. The hyperbolic structure lets us think of π1(S)

as a subgroup of PSL(2,R). Denote by G the preimage of this subgroup in fSL(2,R). The
group G is isomorphic to the fundamental group of the unit tangent bundle of S. There
is a nontrivial central extension

Z→ G→ π1(S)

associated to the class of the generator of H2(S; Z). Let rotZ denote the pullback of the

rotation quasimorphism on fSL(2,R) to G, and let Z denote the generator of the center of
G. Theorem 4.79 and some elementary homological algebra implies that for any element
g ∈ [G,G], the quasimorphism rotZ is extremal for g+nZ whenever n is sufficiently large.
Hence there is a codimension one face πZ of the unit ball of the scl norm on BH1 (G), and
the projective class of Z intersects the interior of this face.

By continuity, for any g ∈ [G,G], the projective class of g + nZ also intersects the
interior of πZ whenever n is sufficiently large (depending on g). Since Z is central, scl(g+
nZ +C) = scl(Zng+C) for any g and any chain C. Consequently, the projective class of
the element Zng also intersects the interior of πZ whenever n is sufficiently large. Dually,
rotZ is the unique extremal homogeneous quasimorphism for Zng, up to scale and elements
of H1.

4.2.7. Proof of the immersion theorem. In this section we fix a surface S
with π1(S) = F and a chain C ∈ BH1 (F ) represented by a weighted sum of geodesics
Γ(C). Where there is no confusion, we abbreviate Γ(C) to Γ. By LERF for surface
groups (see Example 2.108) we can pass to a finite cover in which each component
of the preimage of Γ is embedded (though of course the union will typically not
be embedded). Let Γ′ be the total (weighted) preimage of Γ in the cover S′. If Γ′

cobounds a positively immersed surface with some multiple of ∂S′, this immersed
surface projects to S and shows that the same is true of Γ. So without loss of
generality, we can assume that every component of Γ is embedded.

If Γ1 and Γ2 virtually bound positive immersed surfaces, the same is true of
Γ1+Γ2, by Proposition 4.71 and the linearity of rotS onBH1 . The only homologically
trivial chains in BH1 represented by weighted sums of geodesics supported in ∂S
are the multiples of ∂S, so to prove the theorem, it suffices to find any weighted
collection of geodesics ∂ with support in ∂S so that Γ+∂ virtually bounds a positive
immersed surface. By abuse of notation, we say that Γ + ∂ virtually bounds a
positive immersed surface if there is some (unspecified) ∂ with this property.
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Suppose Γ1 and Γ2 are such that Γ1 − Γ2 + ∂ virtually bounds a positive
immersed surface for some ∂. Let i : T → S be such an immersed surface. Then
(again by LERF for surface groups) there are finite covers T ′, S′ so that i′ : T ′ → S′

is an embedding. The difference S′− i′(T ′) projects to S and shows that Γ2−Γ1 +∂
also virtually bounds a positive immersed surface (here ∂ typically stands for a
different weighted collection of geodesics with support in ∂S). Define a relation ∼
on weighted collections of geodesics, where Γ1 ∼ Γ2 if Γ1−Γ2 + ∂ virtually bounds
a positive immersed surface for some ∂ with support in ∂S. By the arguments
above, this relation is reflexive, symmetric and transitive, and is consequently an
equivalence relation. To prove the theorem therefore, we need only show that Γ =
Γ(C) satisfies Γ ∼ 0.

Lemma 4.82. Let S′ ⊂ S be a subsurface with geodesic boundary, and let S′′ be
obtained from S′ (topologically) by adding disks to close up some of the boundary
components. Suppose that every boundary component of S′ is either a boundary
component of S, or is separating in S. Suppose further that γ and γ′ are simple
geodesics in S′ that are homotopic in S′′. Then γ ∼ γ′.

Proof. Homotopic simple loops in S′′ are isotopic in S′′. Such an isotopy can
be taken to be a sequence of simple moves which “push” γ over a single boundary
component of S′. The result is realized at each stage by an embedded geodesic in
S′. Every boundary component ∂i of S′ is either a boundary component of S, or
is separating, and in either case ∂i ∼ 0. Hence γ ∼ γ′ as claimed. �

Let δ be a family of pairwise disjoint essential separating geodesics which de-
compose S into a union of genus one subsurfaces Si. There is a graph dual to this
decomposition, with one vertex for each component of S− δ, and one edge for each
component of δ. Since each δ is separating, this dual graph is a tree. There are
several possible such decompositions; for concreteness, choose a decomposition for
which this dual graph is an interval. Note that a separating geodesic δi necessarily
satisfies δi ∼ 0.

Lemma 4.83. Let γ be an embedded geodesic in S, and let δ as above separate
S into genus 1 subsurfaces. Suppose γ intersects δ. Then there is an embedded
geodesic 1-manifold γ′ with at most two components, such that γ ∼ γ′, and such
that γ′ intersects δ in fewer points than γ.

Proof. Every component of δ satisfies δi ∼ 0, so without loss of generality
we can assume γ intersects δ transversely. There is at least one component Si of
S − δ such that γ intersects exactly one boundary component δi of Si. Since δi
is separating, the algebraic intersection number of γ with δi is zero, and therefore
γ must intersect δi in at least two points with opposite signs. Let α be an arc of
δi whose interior is disjoint from γ, and whose endpoints intersect γ with opposite
signs. Build an embedded thrice punctured sphere in S by thickening γ, and at-
taching a 1-handle with core α. Isotope the boundary components of this thrice
punctured sphere until they are (embedded, disjoint) geodesics. One component is
γ; the other two components are γ′. �

By repeatedly applying Lemma 4.83, we can construct Γ′ with Γ ∼ Γ′, such
that each geodesic in Γ′ is embedded and contained in a genus one subsurface
S′ of S satisfying the hypothesis of Lemma 4.82. Let S′′ be obtained from S′

topologically by filling in all but one boundary component. Fix a standard basis
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α, β of embedded geodesics in S′ generating the homology of S′′. Then γ represents
pα+ qβ in homology. Since γ is embedded, p, q are coprime. We would like to show
γ ∼ pα + qβ. By induction, it suffices to show that the chain a + b + a−1b−1 ∼ 0
in a once-punctured torus, or equivalently that the chain a + b + a−1b−1 + [a, b]n

virtually bounds a positive immersed surface for some n. This can be proved by an
explicit construction.

Example 4.84. The chain a+ b+ a−1b−1 + [a, b]2 bounds an immersed surface
in a once-punctured torus. One way to see this is to compute, using scallop to
show scl(a+b+a−1b−1+[a, b]2) = 1 and then verifying equality in Proposition 4.71,
using the formula in Lemma 4.74 for rot. Another way is by explicit construction.
There is an immersed four-holed sphere, found by Matthew Day, whose boundary
is the chain a+ b+a−1b−1 +[a, b]2. This surface is depicted in Figure 4.9 (compare
with Figure 5 from [45]).

a b

A B a b

B
b a

A

A B

Figure 4.9. A 4-holed sphere that immerses in a once-punctured
torus, with four boundary components (indicated by thin curves)
in the conjugacy classes of a, b, a−1b−1 and [a, b]2.

We now explain how to put these pieces together to prove the theorem.

Proof. Let Γ in S be homologically trivial, with every component embedded.
Decompose S along embedded separating geodesics δ as above into genus one sub-
surfaces. By Lemma 4.83, we can find Γ′, a weighted sum of embedded geodesics,
such that Γ ∼ Γ′, and Γ′ is disjoint from δ. For each component S′ of S − δ,
let Γ′(S′) be the components of Γ′ in S′. For each γ in Γ′(S′) there are coprime
integers p(γ) and q(γ) so that γ ∼ p(γ)α + q(γ)β. But Γ is homologically trivial,
and therefore the same is true of Γ′ and Γ′(S′). Hence

∑
γ p(γ) =

∑
γ q(γ) = 0

and therefore Γ′(S′) ∼ 0. Since S′ was arbitrary, Γ′ ∼ 0 and therefore Γ ∼ 0. This
completes the proof of Theorem 4.79 (and of Theorem 4.78). �

See [45] for more details and discussion.

4.2.8. Infinite dimensional faces. Theorem 4.78 can be “bootstrapped” in
an interesting way. Let C be a rational chain in BH1 (F ). The chain C is rep-
resented by a weighted collection Γ of geodesic loops in S where π1(S) = F .
By Theorem 4.24, there is an extremal surface T for C, i.e. a π1-injective map
f : T, ∂T → S,Γ realizing the infimum of −χ−(T )/2n(T ). Now, let C′ be an arbi-
trary chain in BH1 (π1(T )), and Γ′ a weighted collection of geodesic loops in T that it
represents. By Theorem 4.78, for sufficiently large m the chain Γ′ +m∂T virtually
bounds an immersed surface. That is, there is an immersion g : U, ∂U → T,Γ′∪∂T
for which g(∂U) = n′(Γ′ +m∂T ) for some n′.
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Lemma 4.85 (Bootstrap Lemma). The surface f ◦ g : U, ∂U → S, f(Γ′) ∪ Γ is
extremal for some multiple of the chain f(C′) +mC in BH1 (F ).

Proof. By LERF, there are finite covers T ′ → T and U ′ → U so that g
lifts to an embedding g′ : U ′ → T ′. Clearly, it suffices to show that f ′ ◦ g′ is
extremal for some multiple of f(C′) +mC. Since g′ is an embedding, we can write
T ′ as a union T ′ = g′(U ′) ∪ T ′′. If f ′ ◦ g′ is not extremal, there is some other
h : V, ∂V → S, f(Γ′) ∪ Γ which is extremal for a (possibly different) multiple of
f(C′) + mC, and satisfies −χ−(V )/2n(V ) < −χ(U ′)/2n(U ′). By the argument
of Proposition 2.13, suitable covers of V and T ′′ can be glued up to produce a
surface W which is extremal for Γ but satisfies −χ−(W )/2n(W ) < −χ−(T )/2n(T ),
contrary to the hypothesis that T is extremal. This contradiction shows that no
such surface V exists, and therefore f ◦ g is extremal, as claimed. �

The following corollary is immediate:

Corollary 4.86. Let F be a free group, and C ∈ BH1 (F ) a rational chain.
The projective class of C in BH1 (F ) intersects the interior of an infinite dimensional
face πC of the unit ball in the scl norm. If f : π1(T )→ F is any extremal surface
for C, then f∗(πT )→ πC is isometric, in the sense that sclπ1(T )(C

′) = sclF (f∗(C
′))

for all chains C′ in the cone on πT ⊂ BH1 (π1(T )).

Proof. All that needs to be shown is that πC is infinite dimensional, and to
establish this it suffices to show that the image of BH1 (π1(T )) in BH1 (F ) is infinite
dimensional. Since T is extremal, f∗(π1(T )) is a nontrivial finitely generated free
subgroup of F . By Hall, free groups are virtual retracts (Example 2.107), so one can
find infinitely many elements in f∗(π1(T )) which are independent in BH1 (F ). �

By convexity of the norm, the face πC is well-defined. Note that Corollary 4.86
shows that extremal maps are norm-preserving on a nonempty open subset of BH1
(compare with § 4.1.10).

Remark 4.87. Lemma 4.85 and Corollary 4.86 can also be deduced using quasimorphisms.
Suppose f : T → S is extremal for some chain C. Let φ be an extremal quasimorphism for
C with defect 1. Then f∗φ is an extremal quasimorphism for ∂T with defect 1 because T
is extremal. By Theorem 4.78, f∗φ is equal to rotT on BH1 (π1(T )). But rotT is extremal
on BH1 (π1(T )). Hence for every C′ ∈ πT , we have

sclF (f∗(C
′)) ≤ sclπ1(T )(C

′) = rotT (C′)/2 = φ(f∗(C
′))/2 ≤ sclF (f∗(C

′))

where the first inequality is monotonicity of scl, and the last inequality is Bavard duality.

One might wonder whether every face πC has finite codimension. In fact, this
is not the case. The following example is taken from [45].

Example 4.88. By Bavard duality, the codimension of πC is one less than
the dimension of the space of extremal quasimorphisms for C (mod H1). Hence
to exhibit a rational chain (in fact, an element of [F, F ]) whose projective class
intersects the interior of a face of infinite codimension, it suffices to exhibit a chain
that admits an infinite dimensional space of extremal quasimorphisms.

Let F = F1 ∗ F2 where F1 and F2 are both free of rank at least 2, and let
g ∈ [F1, F1] be nontrivial. Let φ1 ∈ Q(F1) be extremal for g, and let φ2 ∈ Q(F2)
be arbitrary with D(φ2) ≤ D(φ1). By the Hahn–Banach Theorem, there exists
φ ∈ Q(F ) that agrees with φi on Fi, and satisfies D(φ) = D(φ1).
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Example 4.89. Let ρt be a continuous family of (nonconjugate) indiscrete
representations of F2 into PSL(2,R). For a typical family ρt, the image ρt(F2) is
dense in PSL(2,R) for all t, and therefore we can find (many) elements g, h ∈ F2

generating a subgroup Γ so that ρt(Γ) is discrete and purely hyperbolic, and the
axes of ρt(g) and ρt(h) cross, for all t in some nontrivial interval I. Let rott
be the homogeneous quasimorphism on F2 (well-defined up to an element of H1)
associated to the representation ρt. Without loss of generality, we can choose rott
to vary continuously as a function of t on every element of F2. By construction,
rott is an extremal quasimorphism for [g, h], for all t ∈ I. On the other hand, for a
suitable (indiscrete) family of representations ρt, for every nonempty interval I we
can find a subinterval J , a point p ∈ J , and an element f ∈ F2 for which rott(f)
is elliptic for all t ∈ J with t < p, and hyperbolic for all t ∈ J with t > p. The
quasimorphisms rott are constant on f for t > p and nonconstant for t < p, so they
span an infinite dimensional subspace of Q(F2). Hence the codimension of the face
π[g,h] is infinite (compare with Burger–Iozzi [30]).

See [45] for more corollaries and discussion.

4.2.9. Discreteness of linear representations. Theorem 4.78 has applica-
tions to the study of symplectic representations of free and surface groups. For
a basic reference to the theory of symplectic groups and representations, see [31]
(we also return to this subject in more detail in § 5.2.3). We give a new proof of
a relative version of rigidity theorems of [93] and [31], at least in an important
special case. Roughly speaking, Goldman observed (in the case of PSL(2,R)) that
representations of surface groups of maximal Euler class are discrete. Burger–Iozzi–
Wienhard extended this observation to symplectic groups, and characterized such
representations geometrically.

The context is as follows. Let S be a compact oriented surface with bound-
ary, and let ρ : π1(S) → Sp(2n,R) be a symplectic representation for which the
conjugacy classes of boundary elements fix a Lagrangian subspace. This condition
ensures that there is a well-defined relative Euler class (usually called the Maslov
class for n > 1) which we denote eρ ∈ H2(S, ∂S; Z) associated to ρ (compare
with § 4.2.4). The cohomology class eρ is bounded, with norm n/2, and therefore
|eρ([S])| ≤ −nχ(S). A representation is said to be maximal (and eρ is maximal) if
equality is achieved.

The following corollary says that maximal Zariski dense representations are
discrete. We restrict to Zariski dense representations for simplicity; this condition
is not necessary (see [93, 31, 32]).

Corollary 4.90 (Goldman, Burger–Iozzi–Wienhard). Let S be a compact ori-
ented surface with boundary. Let ρ : π1(S)→ Sp(2n,R) be Zariski dense, and sup-
pose that conjugacy classes of boundary elements fix a Lagrangian subspace. If eρ
is maximal, ρ is discrete.

Proof. For the remainder of the proof, denote π1(S) by F and its commutator
subgroup by F ′. Since S has boundary, eρ = [δφ] where φ is in Q(F ), and is unique
up to elements of H1. For each g ∈ F , the value φ(g) (mod Z) is the symplectic
rotation number, and depends only on the image ρ(g). Since eρ is maximal, φ is
extremal for ∂S ∈ BH1 (F ). Hence, by Theorem 4.78, it follows that the symplec-
tic rotation number is zero on every g ∈ F ′; in particular, ρ(F ′) is not dense in
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Sp(2n,R). Since Sp(2n,R) is simple, every Zariski dense subgroup is either dis-
crete or dense (in the ordinary sense). If ρ(F ) is dense, then the closure of ρ(F ′) is
normal in Sp(2n,R). But Sp(2n,R) is simple, and the closure of ρ(F ′) is a proper
subgroup; hence ρ(F ) is discrete. �

Remark 4.91. The condition that boundary element fix Lagrangian subspaces is only
included so that the Corollary can be phrased in terms of an integral Euler (Maslov)
class. If ρ : π1(S)→ Sp(2n,R) is any Zariski dense representation for which the pullback
of the symplectic rotation quasimorphism (i.e. the quasimorphism φ above) is extremal
for ∂S, then ∂S necessarily fixes a Lagrangian subspace.

4.2.10. Character Varieties. Any representation of a free group ρ : F →
PSL(2,R) lifts to S̃L(2,R) and defines an associated homogeneous quasimorphism
rot : F → R unique up to a homeomorphism. Given a ∈ [F, F ] one can ask what
values this function can take as ρ varies over all homomorphisms.

We restrict attention to the case that F is free of rank 2, generated by elements
a, b. The function rot only depends on the conjugacy class of ρ, and therefore we
consider representations up to conjugacy. In fact, since ρ can typically be recovered
just from the traces of elements, it makes sense to consider the character variety,
consisting of the set of functions on F which are traces of some representation.
For simplicity, it makes sense to study the SL(2,R) character variety instead, since
traces are well defined there.

Definition 4.92. Let G be a finitely generated group. The character variety
of G, denoted X(G), is the set of functions χ : G→ R for which χ = tr(ρ) for some
representation ρ : G→ SL(2,R).

Characters with representations in a fixed algebraic group satisfy many non-
trivial (polynomial) relations, and a character is determined by its values on finitely
many elements. This gives X(G) the structure of a (real) algebraic variety. See [60]
for an introduction to SL character varieties, and their applications to 3-manifolds.

Example 4.93. Let G = F2, the free group on generators a, b. Since SL(2,R)
is 3-dimensional, the space of SL(2,R) representations of F2 is 6 dimensional, and
the space of characters is 3-dimensional. If χ is a character, the co-ordinates
(x, y, z) = (χ(a), χ(b), χ(ab)) defines a map from X(F2) to R3. In fact, this map is
an isomorphism onto the subset of R3 consisting of the union of the complement of
the open cube (−2, 2)3 together with the subset of triples inside the cube satisfying

x2 + y2 + z2 − xyz ≥ 4

Theorem 4.94. Let g ∈ [F2, F2]. Then the set of values of rot(g) as one
varies over all SL(2,R) representations of F2 is a closed, connected interval, whose
endpoints have the property that their image under cos(2π·) is algebraic.

Proof. Example 4.93 shows how to identify X(F2) with a semi-algebraic sub-
set of R3. For every g ∈ F2, the value of χ(g) is an integral polynomial in the values
of χ(a), χ(b), χ(ab).

The function χ(g) : X(G) → R is therefore an integral polynomial on R3.
An extremal value is a zero of a system of integral polynomial equations, and is
therefore realized at an algebraic point. Since 2 cos(2π rot(g)) = χ(g), the result
follows. �
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Remark 4.95. A similar theorem can be proved with a similar proof with Sp(2n,R) or
SO0(n, 2) in place of SL(2,R)

4.3. Diagrams and small cancellation theory

The proof of Proposition 4.36 shows that in a fixed free group, every extremal
surface can be built up from pieces (polygons and rectangles) of bounded complex-
ity. A representation of a surface (with prescribed boundary) as a union of simple
pieces drawn from some finite set is sometimes called a diagram. Diagrams can be
represented graphically, and can be combined, composed and manipulated accord-
ing to certain sets of rules. They have psychological value, as a way to represent
algebraic information in geometric terms (e.g. as in Figure 4.9); and computational
value. There are many different conventions for diagrams, depending on function
and context.

Example 4.96. The conjugacy class w = [a2, b2][a, b] has scl = 1 in F2. Let
S be a hyperbolic once-punctured torus with basis a, b, and let γ be the geodesic
associated to w. Then two copies of γ bound an immersed genus 2 surface T
with two boundary components. Figure 4.10 depicts the surface T as a diagram,
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Figure 4.10. The surface T is obtained by thickening a graph
with a cyclic ordering at the vertices. Edges of ∂T on opposite
sides of each edge of the underlying graph are labeled by inverse
elements of F2. Each boundary component of ∂T is labeled by a
cyclic conjugate of w.

obtained by thickening a graph whose vertices correspond to polygons, and edges
to rectangles. The two copies of γ are indicated by thinner lines.

Remark 4.97. Any extremal surface obtained from the proof of Theorem 4.24 retracts
in an obvious way to a graph with one edge for each rectangle, and one vertex for each
polygon. To recover the surface (and therefore its boundary) from the graph, we need to
specify a cyclic ordering of the edges at each vertex. A graph together with the choice of
a cyclic ordering on the edges at each vertex is sometimes called a ribbon graph or a fat
graph. Such objects appear in the study of dynamical systems, Hopf algebras, statistical
mechanics, combinatorics, and many other fields; see [17].

4.3.1. Diagrams. Diagrams (sometimes called van Kampen diagrams) were
introduced by van Kampen in [200].

Let G be a group given by a presentation G = 〈X | R〉. Let F be the free group
on X , and N the normal closure of R in X , so that G = F/N . The set R is said to
have been symmetrized if all elements are cyclically reduced, and R is closed under
taking cyclic permutations and inverses.

Definition 4.98. Let w ∈ F be cyclically reduced. A diagram is a finite
connected planar graph in which directed edges are labeled by elements of F , the
boundary of each interior region is labeled by an element of R, and the boundary
of the exterior region is labeled by a cyclic conjugate of w.
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Since the graph associated to a diagram is assumed to be connected, interior
regions are all homeomorphic to open disks. The boundary of a region is allowed
to bump up against itself.

Note that the boundary label of a region depends on a choice of basepoint and
a choice of orientation, or else the result differs by cyclic permutation or inverse.
However, since R is symmetrized, membership in R is not affected by this ambiguity.

Remark 4.99. A finite connected planar graph together with the regions it bounds is a
simply-connected planar 2-complex. By abuse of notation we sometimes think of this
2-complex as the diagram.

If we assume elements of R are cyclically reduced, a map has no 1-valent ver-
tices. Furthermore, if e1, e2 share a 2-valent vertex in common, we can replace
e1 ∪ e2 by e1e2. Therefore in the sequel we assume every vertex is at least 3-valent.

Lemma 4.100. An element w ∈ F admits a diagram if and only if it is in N .

Proof. There is a tautological cellular map from a diagram (thought of as a
2-complex) to a 2-complex associated to the presentation of G. Since the underlying
2-complex of a diagram is simply-connected, the boundary of the exterior region
maps to a homotopically trivial loop. This exhibits w as an element of N .

Conversely, express w as a product of conjugates of elements of R. Denote
this expression by a bunch of balloons in the plane tied by strings to a common
basepoint, where each balloon is an element of R, and the string is the conjugating
element. Then cancel adjacent edges whenever possible. The result is a finite
connected planar graph whose boundary is a cyclically reduced word which is equal
in F to w (after choosing a suitable basepoint and orientation), and therefore must
be equal to w by uniqueness of reduced representatives in free groups. �

Definition 4.101. A diagram is reduced if no two adjacent regions have bound-
aries which represent inverse elements of R, where the basepoint is taken to be some
common vertex, and the orientations on the boundaries disagree (when compared
with some orientation inherited from the plane).

Any diagram may be replaced by a reduced one, by collapsing nonreduced pairs
of adjacent regions, thereby reducing the number of regions in the diagram until
the process terminates.

Definition 4.102. A word b ∈ F is called a piece (relative to R) if there are
distinct relations ba1, ba2 ∈ R.

An edge of a diagram between adjacent regions is a piece.

4.3.2. Small cancellation theory. In full generality, the theory of van Kam-
pen diagrams is essentially combinatorial. However, when applied to groups with
presentations that obey certain conditions (of a geometric nature), it makes contact
with the theory of hyperbolic groups, negative curvature, regular languages, and
so on. The geometric theory of diagrams arising from groups with presentations
satisfying such conditions is called small cancellation theory.

Small cancellation theory has its origins in the work of Dehn [63], in which he
posed the word and conjugacy problems for finitely presented groups, and solved
these problems for fundamental groups of closed orientable 2-manifolds.

Dehn’s insight was that surface groups have presentations with a single relator
r with the property that for any cyclic conjugate s of r or r−1 with s 6= r−1, the
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product sr has very little cancellation. Thus if a word in a surface group is trivial,
it can be simplified immediately by finding a big subword consisting of more than
half of some s.

It was not until the work of Lyndon [138] and Weinbaum [203] that the impor-
tance of geometry in Dehn’s work was properly appreciated, and small cancellation
theory began to be systematically applied to combinatorial group theory.

The hypotheses of small cancellation theory are conditions which a given sym-
metrized presentation might satisfy. Some of these conditions are as follows:

C′(λ): every piece has length less than λ times the length of a relation it appears
in.

C(p): no relation is a product of fewer than p pieces. Equivalently, every region
in a reduced diagram with no edges in common with the exterior region
has at least p sides.

T (q): any interior vertex in a reduced diagram has at least q incident edges.

Note that C′(λ) implies C(p) for λp < 1.
Let D be a reduced diagram for an element w ∈ G. We can make D into a

metric space by choosing a polygonal structure on each region and gluing these
polygons together. The small cancellation conditions and the Gauss–Bonnet Theo-
rem give upper bounds on the (distributional) curvature in D for a suitable choice
of structure.

Example 4.103. Condition C(6) implies that every polygon has at least 6 sides.
Choose a metric for which each region is a constant curvature regular polygon with
side lengths 1 and all angles 2π/3. If a region has 6 sides, it will be a Euclidean
hexagon with this metric. If it has more than 6 sides, it will be hyperbolic. At every
3-valent vertex these polygons fit together. At every vertex of valence more than
3, there is an “atom” of negative curvature. In particular, D with such a metric is
locally non-positively curved, at least in the interior of D.

Similarly, condition C(7) lets one construct a metric on D which is strictly
negatively curved everywhere.

Remark 4.104. The local curvature conditions satisfied by D in Example 4.103 are some-
times expressed in terms of a (local) CAT(κ) condition, where κ = 0 under the hypothesis
C(6) (at least in the interior of D), and κ = −1 under the hypothesis C(7). See [24] for
a definition, and a discussion of the relationship between CAT(κ) and (δ-)hyperbolicity.

4.3.3. Diagrams on surfaces. Schupp [184] generalized small cancellation
theory to diagrams on closed surfaces.

Definition 4.105. Let Φ be a free group of countably infinite rank. A quadratic
word in Φ is a word w in which every generator which occurs in w occurs exactly
twice (possibly with opposite signs).

If we write this word on the boundary of a polygon, then after gluing edges in
pairs we get a closed (orientable or non-orientable) surface. After composing with
a suitable automorphism of Φ, the word w can be put in a canonical form

w = [a1, b1] · · · [ag, bg]
if the resulting surface is orientable, or

w = a2
1 · · · a2

g
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otherwise, where each ai, bi is a generator in Φ.

Now let F be a free group on a generating set X , and let G be a quotient of
F , given by some presentation G = 〈X | R〉. A solution of the equation w = 1 in
G is a collection of words αi, βi in F for which the image of w under composition
Φ→ F → G sending each ai → αi and bi → βi, is trivial in G.

We restrict attention in what follows only to quadratic words that represent
orientable surfaces. Let w be a quadratic word in Φ, and v a word in the generators
of F representing 1 in G. Let D be a (planar) diagram whose boundary is v,
corresponding to an expression of v as a product of conjugates of relations in R.
After gluing up the boundary of D compatibly with w, we obtain a diagram on a
closed orientable surface. This new diagram may not be reduced, because pairs of
canceling regions which were not adjacent in D may now be adjacent in S. We can
try to cancel regions which become adjacent in S as we did before; the result might
cause the surface to undergo a compression in an essential simple closed curve, and
we will obtain a finite set of simpler surfaces. It is possible that after finitely many
such reductions, the entire surface is compressed away. This happens, for example,
when the word v was already trivial in F . Schupp obtains a kind of converse:

Theorem 4.106 (Schupp [184], Thm. 1). Let w be an orientable quadratic
word in Φ, and let v be a solution to w = 1 in G = 〈X | R〉. If v is nontrivial in
F = 〈X〉, then there is a reduced diagram on an orientable surface defined by some
endomorphic image of w.

If the presentation of G satisfies suitable small cancellation conditions, one
obtains an upper bound on the Euler characteristic of any surface containing a
reduced diagram.

Example 4.107 (Culler [59]). Let F be free on a set X , and let g ∈ F be
nontrivial and cyclically reduced. Let n be a positive integer and consider the
group Gn with presentation Gn = 〈X | gn〉.

Suppose some cyclic conjugate of g−1 shares a common initial word v of g of
length more than 1/2 length(g). Write g = vw and g−1 = w−1v−1. Since v is
an initial word of some cyclic conjugate of g−1, it is also a subword of g−2. Since
length(v) > length(w), there must be a nontrivial overlap of v and v−1. Without
loss of generality, v = v1v2 and v−1 = v2v3. By comparing lengths, v2 = v−1

2 which
cannot happen in a free group.

Now, exhibit gn as a product of commutators gn = [b1, c1] · · · [bm, cm] in F .
Let v (not the same v as above) be the (typically non-reduced) word in F obtained
by concatenating words representing the bi, ci and their inverses. Notice that v is
the image of an orientable quadratic word w in Φ. Schupp shows how to obtain
a reduced surface diagram as follows. First start with a single planar region with
boundary labeled by v. The word v is typically not cyclically reduced, so the
boundary of the region can be inductively “folded” until the result is a cactus; i.e. a
single innermost disk region with boundary labeled by gn, and a forest attached to
its outside boundary, so that the outer boundary is labeled by v. This cactus may
be glued up according to the quadratic structure of w. The result is a “cactoid”,
i.e. a finite union of closed oriented surfaces and graphs. Throwing away the graph
pieces, one obtains a surface of genus at most m, with a single tile whose boundary
is labeled by gn (for details, see [184], especially § 3).
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Since the surface is oriented, the only pieces that appear correspond to common
subwords in cyclic conjugates of gn and g−n. By the argument above, each such
piece has length at most half of the length of g. Consequently we obtain a surface,
and a tessellation on it containing one disk region with at least 2n edges, and
with vertices each of valence at least 3. If we denote the number of faces, edges,
vertices in the tessellation by f, e, v then f = 1, e ≥ n, v ≤ 2e/3. In other words,
χ(S) ≤ 1 − 2n/3. On the other hand, the genus of S is at most m which can be
taken to be equal to cl(gn). Taking n→∞, we obtain an estimate scl(g) ≥ 1/6.

Remark 4.108. The methods of § 4.1, especially the proof of Theorem 4.24, gives another
construction of a reduced surface. With notation as in the proof of Theorem 4.24, let
f : S, ∂S → H,γ be a surface with one boundary component wrapping n times around
γ, where γ is in the free homotopy class associated to a cyclically reduced word g. After
compression and homotopy, the surface S is obtained by gluing rectangles and polygons.
A decomposition of S as a union of rectangles and polygons determines a graph Γ ⊂ S to
which S deformation retracts, with one vertex for every polygon, and one edge for every
rectangle (compare with Figure 4.10). One may obtain a reduced oriented surface diagram
as a union P ∪ Γ where P is a disk whose boundary is labeled gn.

Notice that one should not perform boundary compressions, but only compressions
and homotopy. The reason is that boundary compressions might change the number of
boundary components of S (though not the total degree with which they map to γ). So
one can not apply the full power of the arguments of § 4.1 and assume that there is an a
priori bound on the valence of the vertices (equivalent to a bound on the complexity of
polygon types).

4.3.4. Right orderability. The lower bounds from the previous section can
be improved by using orderability properties of free groups and their one-relator
quotients. In fact a sharp lower bound on scl in free groups can be obtained along
these lines, by the method of Duncan–Howie [67].

The proof depends on a well-known theorem of Brodskii:

Theorem 4.109 (Brodskii [26]). Let F be a free group, and let g be a primitive
element of [F, F ]. Then the one-relator group G := 〈F | g〉 is right orderable.

It also makes use of a Lemma of Howie:

Lemma 4.110 (Howie [114] Cor. 3.4). Let g ∈ F be primitive and cyclically
reduced. Then no proper subword h of g represents the identity in G := 〈F | g〉.

We are now in a position to obtain a sharp lower bound on scl in free groups.
Duncan–Howie use the language of reduced pictures, which are very similar to
Schupp’s reduced diagrams (see § 4.3.3). The main theorem of Duncan–Howie,
i.e. Theorem 3.3 [67], is an inequality about the combinatorics of such pictures,
which implies the desired estimate on scl.

The argument given below is essentially a paraphrase of much of the material
on pp. 229–233 of [67], with a few simplifications appropriate for our context.

Theorem 4.111 (Duncan–Howie [67], Thm 3.3). Let F be a free group. Then
scl ≥ 1/2 for every nontrivial element.

Proof. Free groups of every countable rank embed in the free group of rank
2, so by monotonicity of scl it suffices to prove the theorem in rank 2. Fix notation
F = 〈a, b〉. Let g be an element of [F, F ]. Since scl is characteristic, without loss
of generality we take g to be cyclically reduced. Furthermore, we may assume that
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g is not a proper power, since scl is multiplicative under powers. Since g ∈ [F, F ],
the word length of g is at least 4, since both a and a−1 must appear in g with equal
multiplicity, and similarly for b and b−1.

Let G = 〈F | g〉. Fix an integer n, and let Gn = 〈F | gn〉. There is a natural
surjective homomorphism Gn → G. Exhibit gn as a product of commutators in F .
As in Example 4.107 (also see Remark 4.108) we can find a reduced diagram on a
surface S with genus(S) ≤ cl(gn), containing a single tile R. Let P be a polygonal
disk mapping surjectively and cellularly onto R by ϕ : P → R. We think of S as
being obtained from P by gluing up edges in its boundary. The boundary of P is
labeled by gn.

Since g is cyclically reduced and primitive, there is a natural partition of ∂P
into n copies of g. We label the vertices of ∂P by the image of the corresponding
subword of g in G. In other words, if |g| = m, and if id = g0, g1, · · · , gm−1 are the
proper prefixes of g, then each vertex of ∂P is labeled by an element ḡi which is the
image of gi in G, where consecutive vertices are labeled ḡi, ḡi+1 with indices taken
mod m. By Lemma 4.110, the ḡi are all distinct for different values of i. Note that
what is labeled is a vertex of P ; each vertex in R is in the image of at least two
vertices of P , and the labels are typically different.

Let σ be a piece in S, and let σ± be the two preimages in ∂P . The map ϕ
gives an orientation-reversing identification of σ+ and σ−. If there is a vertex v ∈ σ
for which the preimages v+, v− in σ± have the same label ḡi, there is an adjacent
vertex w ∈ σ for which the preimages w+, w− get the labels ḡi+1 and ḡi−1 (labels
taken mod m). But this means ḡ−1

i ḡi+1 = ḡ−1
i ḡi−1 and therefore ḡi−1 = ḡi+1. But

|g| ≥ 4 so this contradicts Lemma 4.110.
By Theorem 4.109, the group G is right orderable. Fix a right ordering <. If

σ is a piece in S, we have seen that the labels of corresponding vertices in σ+ and
σ− are all different. Let u and v be adjacent in σ, and u±, v± the corresponding
adjacent pairs of vertices in σ±. Suppose u+ has the label ḡi and u− has ḡj . Then
(without loss of generality), v+ has the label ḡi+1 and v− has ḡj−1. Moreover,

x := ḡ−1
i ḡi+1 = ḡ−1

j ḡj−1

by the defining property of (surface) diagrams. Since G is right orderable,

ḡi > ḡj if and only if ḡi+1 = ḡix > ḡjx = ḡj−1

in other words, either the labels on vertices of σ+ are all (unambiguously) greater
than the labels on the corresponding vertices of σ−, or they are all less than the
labels on the corresponding vertices of σ−. We may therefore unambiguously define
a co-orientation on σ, pointing from the side corresponding to the edge in P with
bigger labels, to the side corresponding to the edge in P with smaller labels.

Now, suppose v is a vertex at which at least three pieces meet. There are some
finite collection vi of preimages of v in ∂P . There is a connected graph Γv, whose
vertices are the vi, and whose edges correspond to pairs of points in the boundary
of edges in ∂P that map to the same piece in S. Topologically, Γv is homeomorphic
to a circle, which can be thought of as the link of the vertex v. The co-orientation
on pieces determines an orientation on Γv. Since this orientation is compatible with
the ordering on the labels of the vi, there is no oriented cycle in Γv. If vi is neither
a source nor a sink, say that it is a cusp. Notice that for every vertex v, the graph
Γv contains at least one source and one sink, so there are at least two vi that are
not cusps.
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On the other hand, if g+ and g− are the highest and lowest labels which appear
anywhere, then there are n vertices of ∂P labeled g+ and n vertices labeled g−,
appearing in alternating order. The co-orientation on ∂P must change at least once
between consecutive copies of g+ and g−, and therefore ∂P has at least 2n cusps.

Give P the structure of an ideal polygon, with an ideal vertex at each cusp.
At every vertex v of the diagram, at least two of the preimages vi are not cusps. If
exactly two vi are not cusps, then v is a smooth point. Otherwise, v has an atom of
negative curvature of weight (q − 2)π, where q is the number of vi in the preimage
of v which are not cusps. Since P has at least 2n ideal vertices, it has area at least
(2n− 2)π. Atoms of negative curvature reduce the area of S, so by Gauss–Bonnet,
area(P ) = area(S) ≤ −2πχ(S). Hence

(2n− 2)π ≤ area(P ) ≤ −2πχ(S)

where χ(S) = 2− 2 · genus(S), and genus(S) ≤ cl(gn).
Rearranging this and taking the limit as n→∞ gives scl(g) ≥ 1/2. �

Remark 4.112. Duncan–Howie state and prove their theorem in the more general context
of an element g in a free product A ∗ B of locally indicable groups. The analogues of
Theorem 4.109 and Lemma 4.110 are true for products of locally indicable groups, with
essentially the same proofs.

Also compare with the discussion in § 2.7.5.

Corollary 4.113. Let S be an orientable surface. Then scl ≥ 1/2 for every
nontrivial element of π1(S).

Proof. If S is not closed, π1(S) is free, so this follows from Theorem 4.111.
If S is closed of genus 0 or 1, every element is either trivial or essential in H1,
so scl is infinite for nontrivial elements. Closed surface groups of genus at least
2 are residually free; i.e. for any a ∈ S there is a homomorphism to a free group
ϕa : π1(S)→ F for which ϕa(a) is nonzero (see e.g [139] for a proof). Since scl is
monotone under homomorphisms, the corollary follows. �

4.3.5. An example. As explained in Remark 4.108, the construction of ex-
tremal surfaces from branched surfaces in § 4.1 can be reformulated in the language
of surface diagrams. Let w be a cyclically reduced element of a free group F , and
let S be a surface bounding some multiple of w, built from rectangles and poly-
gons. Let T be the surface obtained from S by gluing in a disk to each boundary
component. Then there is an associated diagram on T , whose edges are strings of
consecutive rectangles and bigons in S, whose vertices are polygons in S with at
least 3 ordinary arcs, and whose cells have boundaries which are labeled by finite
powers of w.

We give an explicit construction of extremal surfaces for words of the form
[a, b][a, b−m] for positive integers m. As asserted in Example 4.39, there is an
equality

scl([a, b][a, b−m]) =
2m− 3

2m− 2
for m ≥ 2. An inequality in one direction can be established by an explicit
construction. In fact, for each m ≥ 2 we will construct a genus m − 1 surface
with 2m − 2 boundary components, each of which wraps exactly once around
[a, b][a, b−m]. Hence there is a surface S with −χ− = 4m− 6 and n(S) = 2m− 2,
so scl([a, b][a, b−m]) ≤ (2m− 3)/(2m− 2).
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We begin by defining two tiles. The X tile has bm−1abA on the top, Bm on the
bottom reading from left to right, and bA on the left, Ba on the right reading from
top to bottom. The Y tile has bm on the top, Bm−1aBA on the bottom reading
from left to right, and AB on the left, ab on the right reading from top to bottom.
Note the X tile has m + 2 letters on the top edge and m on the bottom edge,
while the Y tile has m letters on the top edge, and m+ 2 on the bottom edge. See
Figure 4.11.

b b · · · b a b A

B B B · · ·B B B

B

a

b

A

B B · · · B a B A

b b b · · · b b b a

b

A

B

Figure 4.11. The tiles X and Y

Reading clockwise around each tile is a cyclic copy of the word [a, b][a, b−m].
Tiles can be glued by gluing segments of their boundaries with opposite labels
(where a and A are considered opposite labels, and similarly b and B). The left
side of an X tile glues to the right side, and similarly the left side of a Y tile glues
to the right side. Moreover, the bottom of an X tile glues to the top of a Y tile.
Take m− 1 copies of the X tile XXXX · · ·X and glue left to right sides cyclically
to make an annulus. Take a further m − 1 copies of the Y tile Y Y Y Y · · ·Y and
glue left to right sides cyclically to make another annulus. Then glue the bottom
of the X annulus to the top of the Y annulus to make a thicker annulus. The
resulting labels, reading clockwise in each case, are (bm−1abA)m−1 on the top and
(Bm−1ABa)m−1 on the bottom. We glue these two components together in stages.
At each stage, there are two boundary components, and we proceed to the next
stage by gluing two disjoint segments in one component to disjoint segments in the
other component with opposite labels. For clarity, let n = m−1 so that at the first
stage the top is labeled (bnabA)n and the bottom is labeled (BnABa)n.

The result of gluing two segments in the top component to two segments in the
bottom component has the effect of gluing on a four-times punctured sphere to the
surface built so far. We indicate which segments are glued up at each step by using
braces. The first two pairs of segments to be glued are bn ↔ Bn and bAb↔ BaB:

(bnabA)n−2 bn︸︷︷︸ a
︷︸︸︷
bAb bn−1abA and (BnABa)n−2 Bn︸︷︷︸A

︷ ︸︸ ︷
BaB Bn−1ABa

After gluing, this produces a new surface with two boundary components whose
labels are

(bnabA)n−2Abn−1abA and (BnABa)n−2aBn−1ABa

The next two pairs of segments to be glued are:

(bnabA)n−3 bn︸︷︷︸ a
︷ ︸︸ ︷
bAAb bn−2abA and (BnABa)n−3 Bn︸︷︷︸A

︷ ︸︸ ︷
BaaB Bn−2ABa
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which, after gluing, produces a new surface with two boundary components whose
labels are

(bnabA)n−3Abn−2abA and (BnABa)n−3aBn−2ABa

Proceed inductively, gluing up a bn and a bAAb in one boundary component to a
Bn and a BaaB in the other boundary component at each stage, until we are left
with two boundary components labeled AbabA and aBABa which can be glued up
completely. The final result is obtained from an annulus by attaching n−1 = m−2
pairs of 1-handles, and then gluing up a pair of circles at the end. The genus of the
surface is therefore m − 1. Moreover, it is tiled by 2m − 2 tiles, half of which are
X tiles and half are Y tiles.

Example 4.114. Let h denote the following linear combination of (small)
counting quasimorphisms:

h = habAB + haBBB + hAbbb +
1

2
(hbABa + hABaB

+ hBaBB + hBBBA + hBBAb + hBAbb + hbbba + hbbab + hbabA)

A (tedious) computation shows that D(h) = 7/2. It follows that D(h) ≤ 7 for the
homogenization h. Moreover, h([a, b][a, b−m]) = 15/2 for all m ≥ 3, so by Bavard
duality we get a lower bound

scl([a, b][a, b−m]) ≥ 15/28 = 0.535714 . . .

We do not know whether a sharp lower bound can be achieved using counting
quasimorphisms alone.

4.3.6. van Kampen soup, and thermodynamics of DNA. There is a
curious diagrammatic relationship between scl and (a simplified model of) certain
thermodynamic quantities associated to DNA (note that there is no suggestion that
this model is physically realistic).

Deoxiribonucleic acid (DNA) is a nucleic acid that contains the genetic blue-
print for all known living organisms. A molecule of DNA is a long polymer strand
of simple units called nucleotides. The nucleotides in DNA (usually) come in four
kinds, known as Adenine, Thymine, Guanine, and Cytosine (or A, T, G, C for
short). Hence a molecule of DNA can be thought of as a (very) long string in this
4-letter alphabet, typically of length ∼ 108.

C T G T G A C C A G A C T T

G A C A C T G G T C T G A A

A
A
G

T
T
C

Figure 4.12. A 3-valent junction; figure adapted from [186]

These long strands tend to come in tightly bound oppositely aligned pairs,
which match up nucleotides on the two molecules in complementary base pairs.
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Each kind of nucleotide pairs with only one complementary kind: A with T, and
C with G. The bonds joining base pairs are not covalent, and can be broken and
rejoined easily.

Sometimes, “junctions” of three or more strands will form; see Figure 4.12.
Three-valent junctions are the most common, but four-valent “Holliday junctions”
can also form. There is an energy cost to forming such junctions, which in an
idealization can be taken to be of order (valence− 2), and is therefore proportional
to −χ. A reference for this material is [186].

Let F = 〈a, b〉 be the free group on two generators. A word in F can be
“encoded” as a molecule of DNA by the encoding a → T, a−1 → A, b → C,
and b−1 → G. If w is a cyclically reduced word in F , we can imagine preparing
a “soup” of DNA containing many copies of the strand corresponding to ẇ =
· · ·www · · · . In thermodynamic equilibrium, the partition function has the form
Z =

∑
i e
−Ei/kBT where kB is Boltzmann’s constant, T is temperature, and Ei is

the energy of a configuration. At low temperature, minimal energy configurations
tend to dominate; so scl(w) can be computed from the energy per unit volume of a
van Kampen soup at low temperature.



CHAPTER 5

Irrationality and dynamics

The set of values of scl on all conjugacy classes in all finitely presented groups is
a countable set. It is natural to try to characterize this set of real numbers, and to
understand what kinds of arithmetic constraints exist on the values of scl in certain
classes of groups.

As discussed in Chapter 4, the Rationality Theorem (i.e. Theorem 4.24) shows
that for free groups (and more generally, for PQL groups) the scl norm is rational,
and in particular, scl takes on values in Q in free groups. More generally, we saw
that the unit ball of the scl norm on BH1 (F ) is a rational polyhedron, and discussed
the relationship of this example to the (polyhedral) Thurston norm on H2 of an
atoroidal irreducible 3-manifold.

It is natural to ask for which groups G the stable commutator length is ratio-
nal on [G,G]. In fact, Gromov ([99], 6.C) explicitly asked whether scl is always
rational, or at least algebraic, in general finitely presented groups. In the next
section we describe an unexpected and elegant example due to Dongping Zhuang
[205] of a finitely presented group in which the stable commutator length achieves
transcendental values, thus answering Gromov’s question in the negative.

There are two essential ingredients in Zhuang’s examples: the groups he consid-
ers are transformation groups (i.e. groups of automorphisms of some geometric ob-
ject), and they have an arithmetic origin. It is a general phenomenon, observed ex-
plicitly by Burger–Monod, Carter–Keller–Paige (as exposed by Dave Witte-Morris)
and others, that (especially arithmetic) lattices in higher rank Lie groups generally
admit no (nontrivial) quasimorphisms. On the other hand, such groups sometimes
have nontrivial 2-dimensional bounded cohomology classes, which typically have a
symplectic (or “causal”) origin, which can be detected dynamically by realizing the
groups as transformation groups. A central extension of such a group admits a non-
trivial, but finite dimensional space of homogeneous quasimorphisms, and one may
compute scl on such a group directly by Bavard duality, relating scl to dynamics.

In § 5.1 we discuss Zhuang’s examples, which in some ways are the most ele-
mentary. In § 5.2 we discuss lattices in higher rank Lie groups from several different
perspectives, eventually concentrating on lattices in symplectic groups as the most
interesting examples. Finally, in § 5.3, we discuss some nonlinear generalizations of
these ideas, which leads to the construction of quasimorphisms on braid groups and
certain (low-dimensional) groups of area-preserving diffeomorphisms of surfaces.
References for this chapter include [28, 192, 205, 33, 34, 53, 159, 7, 86, 87].

5.1. Stein–Thompson groups

In 1965, Richard Thompson [195] defined three groups F ⊂ T ⊂ V . Two of
these (the groups T and V ) were the first examples of finitely-presented, infinite
simple groups. They can be defined as transformation groups (i.e. as groups of

137
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homeomorphisms of certain topological spaces): F is a group of homeomorphisms
of an interval, T is a group of homeomorphisms of a circle, and V is a group of
homeomorphisms of a Cantor set. Our interest in this section is on the groups F
and T , and their generalizations. A basic reference for Thompson’s groups is [52].

Definition 5.1. F is the group of orientation-preserving piecewise-linear (here-
after PL) homeomorphisms of the closed unit interval that are differentiable except
at finitely many dyadic rational numbers (i.e. numbers of the form p/2q for inte-
gers p, q), and such that away from these discontinuities, the derivative is locally
constant, and is equal to a power of 2.

T is the group of orientation-preserving PL homeomorphisms of the unit circle
S1 (thought of as R/Z) that maps dyadic rationals to dyadic rationals, has deriva-
tives that are discontinuous at finitely many dyadic rationals, and are elsewhere
equal to powers of 2.

Remark 5.2. All three groups can be defined as groups of rotations (in the sense of
computer science) of infinite trivalent trees. In the case of F , the tree is rooted and
planar; in the case of T , the tree is planar; in the case of V , the tree is neither rooted nor
planar. See e.g. [52] § 2 or [189].

In this section we are interested in generalizations of the groups F and T due
to Melanie Stein [192].

Definition 5.3. Let P be a multiplicative subgroup of the positive real num-
bers, and let A be a ZP -submodule of the reals with P ·A = A. Choose a positive
number l ∈ A. Define F (l, A, P ) to be the group of PL homeomorphisms of the
interval [0, l] taking A ∩ [0, l] to itself, whose derivatives have finitely many singu-
larities in A, and take values in P .

Similarly, define T (l, A, P ) to be the group of PL homeomorphisms of the circle
R/〈l〉 taking A/〈l〉 to itself, whose derivatives have finitely many singularities in A,
and take values in P .

Informally, we say that elements of F (l, A, P ) or T (l, A, P ) have breakpoints in
A, and slopes in P .

Example 5.4. In this notation, Thompson’s groups F and T are F (1,Z[ 12 ], 〈2〉)
and T (1,Z[ 12 ], 〈2〉) respectively.

Stein showed in [192], following published and unpublished work of Brown
[28], that for l ∈ Z, for A = Z[1/n1n2 · · ·nk] and for P = 〈n1, · · · , nk〉, the groups
F (l, A, P ) and T (l, A, P ) are finitely presented, and in fact FP∞ (i.e. there is a
K(G, 1) for these groups with only finitely many cells in each dimension). The
method of proof is to explicitly find such aK(G, 1). This is done by finding an action
of these groups on suitable (explicitly described) contractible cubical complexes,
such that the quotient complexes are homotopy equivalent to complexes with only
finitely many cells in each dimension.

Example 5.5. A presentation for Thompson’s group F is

F = 〈A,B | [AB−1, A−1BA], [AB−1, A−2BA2]〉
A presentation for T is

T = 〈A,B,C | [AB−1, A−1BA], [AB−1, A−2BA2], C−1B(A−1CB),

((A−1CB)(A−1BA))−1B(A−2CB2), (CA)−1(A−1CB)2, C3〉
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These presentations are not terribly useful in practice, except that they do indicate
algebraically how F is included as a subgroup of T . See [52], § 3 and § 5.

Zhuang’s examples are central extensions of T (l, A, P ) for certain A and P as
above. The remainder of this section is taken more or less verbatim from [205].

5.1.1. Factorization lemma. With notation as above, let IP ∗A denote the
submodule of A generated by elements of the form (1−p)a where a ∈ A and p ∈ P .
In the sequel we sometimes abbreviate T (l, A, P ) by T for the sake of legibility (but
T used in this sense should not be confused with Thompson’s T ).

Lemma 5.6 (Stein [192]). There is a natural homomorphism

ν : T (l, A, P )→ A/〈IP ∗A, l〉
defined by ν(f) = f(a)− a for f ∈ T and a ∈ [0, l] ∩A. If B denotes the kernel of
ν, then B′ = T ′′, the second commutator subgroup of T .

We use the following criterion of Bieri–Strebel (a proof appears in the appendix
to [192]):

Lemma 5.7 (Bieri–Strebel [14]). Let a, c, a′, c′ ∈ A with a < c, a′ < c′. There
is a PL homeomorphism of R, with slopes in P and finitely many singularities in
A, mapping [a, c] onto [a′, c′] iff c′ − a′ is congruent to c− a modulo IP ∗A.

Lemma 5.6 and Lemma 5.7 together let one construct elements of T with desired
properties. Let f ∈ B be arbitrary. Zhuang proves the following factorization
lemma.

Lemma 5.8 (Zhuang [205], Lem. 3.4). For any f ∈ B there is a factorization
f = g1g2 in B where g1 and g2 both fix nonempty open arcs.

Proof. Note that any element which fixes a nonempty open arc fixes some
point a in A, and is therefore in B by Lemma 5.6.

Let f ∈ B be arbitrary. Choose points a < b < a1 < b1 < c < d ∈ [0, l] ∩ A
such that f([a, b]) = [a1, b1]. Since a1 − a, b1 − b ∈ IP ∗ A (by the definition of
B), Lemma 5.7 implies that there are PL homeomorphisms h1, h2 with slopes in P
and singularities in A, sending [b, c] to [b1, c] and [d, a] to [d, a1] respectively. Now
define

g =





f if x ∈ [a, b]

h1 if x ∈ [b, c]

id if x ∈ [c, d]

h2 if x ∈ [d, a]

Set g1 = fg−1 and g2 = g. Then f = g1g2, and both g1 and g2 fix nonempty open
arcs. �

Remark 5.9. Factorization or “fragmentation” lemmas, together with Mayer–Vietoris and
Künneth formulae, are generally the key to computing the (bounded co-) homology of
transformation groups. Such techniques are used pervasively in the theory of foliations;
see e.g. Tsuboi’s survey [199].

For each θ ∈ IP ∗ A the rotation Rθ is in B. The set of such θ is dense in
[0, l]. So for i = 1, 2, let gi be as in Lemma 5.8, and choose θi so that Rθi ∈ B, and
hi := RθigiR

−1
θi

has support contained in (0, l).
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5.1.2. Calculation of commutator subgroup. Let F (l, A, P ) denote the
subgroup of T (l, A, P ) fixing 0. We abbreviate F (l, A, P ) by F , and think of F as
a group of PL homeomorphisms of the interval [0, l]. Notice that F ⊂ B. There is
a natural homomorphism

ρ : F → P × P
defined by ρ(f) = (f ′(0+), f ′(l−)); i.e. the image of ρ is the pair of elements of P
consisting of the derivative of f at 0 from the right, and the derivative of f at l from
the left. Let B1 = ker ρ. Note that h1, h2 ∈ B1, since their support is contained
strictly in the interior of [0, l].

Theorem 5.10 (Stein [192]). With notation as above, the commutator subgroup
B′1 is simple, and B′1 = F ′.

On the other hand, one has the following theorem of Brown (see [192] for a
proof):

Theorem 5.11 (Brown). With notation as above, there is an isomorphism

H∗(F ) ∼= H∗(B1)⊗H∗(P × P )

We now specialize to the case that l = 1, A = Z[ 1
pq ], P = 〈p, q〉. Here p and q

are arbitrary integers which form a basis for 〈p, q〉 (this is satisfied for example if p
and q are distinct primes). We write Tp,q, Fp,q for T (l, A, P ), F (l, A, P ) in this case.

In [192], Stein explicitly calculates the homology of such Fp,q.

Lemma 5.12 (Stein, [192] Thm. 4.7). With notation as above, H1(Fp,q) is free
Abelian with rank 2(d+1) where d is the greatest common divisor of p−1 and q−1.

If d = 1 (for instance if p = 2, q = 3), Lemma 5.12 implies that H1(Fp,q) =
Z4 = H1(P × P ). Theorem 5.11 therefore implies that H1(B1) = 1 and therefore
B1 = B′1 = F ′p,q. By Lemma 5.8 and the definition of the hi, we see that every
element of B can be written as a product of conjugates of commutators in B1 ⊂ B.
In particular, B is perfect.

By Lemma 5.6, B = B′ = T ′′p,q. Since T ′p,q ⊂ B (because B is the kernel of ν,
which is a map from T to an Abelian group) we get B = T ′p,q. Furthermore, when
l = 1 and d = 1, the submodule 〈IP ∗A, 1〉 is actually equal to A, so ν is the zero
map. Hence Tp,q is perfect in this case.

5.1.3. Calculation of scl. The final ingredient we need is the following:

Theorem 5.13 (Calegari [41], Thm. A). Let G be a subgroup of PL+(I). Then
scl vanishes on [G,G].

Proof. Let g ∈ [G,G], and let H be a finitely generated subgroup so that
g ∈ [H,H ]. The fixed point set of any element of PL+(I) is a finite union of points
and closed intervals, so the same is true for the common fixed point set of a finitely
generated group. Let fix(H) denote this common fixed point set, and enumerate
the (finitely many) complementary open intervals as I1, I2, · · · , Im.

For each interval Ij there is a homomorphism ρj : H → R ⊕ R defined by
ρj(h) = (log dh+(I−j ), log dh−(I+

j )) where I+
j denotes the positive endpoint of the

interval Ij , and I−j denotes the negative endpoint, and dh+, dh− denotes derivative

from the right and from the left respectively. Let ρ : H → R2m be the direct sum of
these homomorphisms, and let H0 denote the kernel. Suppose h ∈ [H0, H0], and let
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K be a finitely generated subgroup of H0 with h ∈ [K,K]. Then fix(K) contains a
neighborhood of each endpoint of each interval Ij , so there are closed intervals I ′j
contained in the interior of the Ij such that the support of K is contained in the
union of the I ′j .

For each closed interval J contained in the interior of some Ii, there is j ∈ H
with j(J) ∩ J = ∅. By replacing j by its inverse if necessary, there is such a j
which moves J to the right. We assume by induction that for any set of intervals Ji
closed in the interior of each Ii, there is j ∈ H with j(Ji)∩ Ji = ∅ for all 1 ≤ i ≤ r.
Let k satisfy k(Jr+1) ∩ Jr+1 = ∅ and k moves Jr+1 to the right. Let J ′i be the
smallest closed interval in the interior of Ii containing Ji ∪ k(Ji). By the induction
hypothesis there is j′ ∈ H with j′(J ′i) ∩ J ′i = ∅ for 1 ≤ i ≤ r. Replacing j′ by
its inverse if necessary, we may further assume that j′ moves the leftmost point of
Jr+1 to the right. Then j′k(Ji) ∩ Ji = 0 for 1 ≤ i ≤ r + 1. It follows that we can
find a single element j ∈ H such that j(I ′i) ∩ I ′i = ∅ for all i simultaneously.

For any n there is an injection ∆n : K → H defined by

∆n(c) =

n∏

i=0

cj
i

where j is as above, and the superscript denotes conjugation. Define

h′ =

n∏

i=0

(hi+1)j
i

Then [h′, j] = ∆n(h)(h−n−1)j
n+1

. On the other hand, if h = [a1, b1][a2, b2] · · · [as, bs]
with ai, bi ∈ K then ∆n(h) = [∆n(a1),∆n(b1)] · · · [∆n(as),∆n(bs)]. It follows that
cl(hn+1) ≤ s+ 1 in H and therefore scl(h) = 0, also in H . Since h ∈ [H0, H0] was
arbitrary, it follows that scl in H vanishes identically on [H0, H0]. On the other
hand, H/[H0, H0] is two-step solvable, and therefore amenable. Since scl vanishes
in the commutator subgroup of an amenable group, for every element g ∈ [H,H ]
there is a power n such that

gn = [a1, b1] · · · [as, bs]c
where s/n is as small as we like, and c ∈ [H0, H0]. If φ is a homogeneous quasimor-
phism on H of defect 1, then φ vanishes on c, and therefore has value ≤ 2s on gn.
Hence scl(g) = 0 in H , and therefore also in G. Since g ∈ [G,G] was arbitrary, the
theorem is proved. �

Remark 5.14. Notice the use of the Münchhausen trick (i.e. Example 3.66) in the con-
struction of ∆n.

We are now in a position to determine scl in Tp,q.

Lemma 5.15 (Zhuang [205], Lem. 3.8). Let Tp,q be as above where d = gcd(p−
1, q − 1) = 1. Then scl vanishes on T ′p,q = Tp,q.

Proof. Let φ be a homogeneous quasimorphism on Tp,q, and let f ∈ Tp,q be

arbitrary. By Lemma 5.8 we can write f = g1g2 and hi = RθigiR
−1
θi

where each

hi ∈ B1. Since B1 is a perfect subgroup of PL+(I), Theorem 5.13 implies that
scl(hi) = 0 in B1. Note that φ restricts to a homogeneous quasimorphism on B1,
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and therefore by Bavard’s Duality Theorem 2.70 we have φ(hi) = 0, and therefore
φ(gi) = 0. But f = g1g2, so

|φ(f)| ≤ D(φ)

by the definition of the defect. Since f was arbitrary, φ is uniformly bounded on
Tp,q. A bounded homogeneous quasimorphism is identically zero. Since φ was
arbitrary, scl is identically zero on Tp,q by another application of Bavard’s Duality
Theorem. �

There is a natural central extension

0→ Z→ T̂p,q → Tp,q → 0

where T̂p,q is the subgroup of Homeo+(R) which cover elements of Tp,q under the

covering projection R→ S1. Note that T̂p,q is finitely presented, since Tp,q is. The
class of this central extension is the Euler class of the natural action of Tp,q on
S1. Since Z is amenable, Theorem 2.49 shows that the exact sequence induces an

isomorphism H2
b (Tp,q; R)→ H2

b (T̂p,q; R).
On the other hand, by construction, the kernel of the map in ordinary cohomol-

ogy H2(Tp,q; R)→ H2(T̂p,q; R) is 1-dimensional, generated by the Euler class. The
usual five term exact sequence in cohomology for an extension (i.e. the Hochschild–

Serre sequence; see § 1.1.6) implies that H1(T̂p,q; R) vanishes. By Theorem 2.50 the

space Q(T̂p,q) is 1-dimensional, and generated by rotation number, as in § 2.3.3.
As in Proposition 2.92, D(rot) = 1. By Bavard’s Duality Theorem we have the
following:

Theorem 5.16 (Zhuang [205], Thm. 3.9). With notation as above, and for p, q

satisfying gcd(p− 1, q − 1) = 1, for any element f ∈ T̂p,q there is an equality

scl(f) =
|rot(f)|

2

We will see more examples of such an intimate relationship between scl and
dynamics in the sequel.

5.1.4. Rotation numbers in Stein–Thompson groups. Rotation num-
bers in Stein–Thompson groups have been well-studied by Isabelle Liousse [137].
She proves the following:

Theorem 5.17 (Liousse [137], Thm. 2.C′). Any number of the form logα
log β

mod Z where α, β ∈ 〈p, q〉 can be realized as the rotation number of an element
of the group T (d,Z[ 1

pq ], 〈p, q〉) where d = gcd(p− 1, q − 1).

For concreteness, take p = 2, q = 3. An example is the following:

Example 5.18 (Liousse [137]). Define a ∈ T2,3 by

a =

{
2
3x+ 2

3 if x ∈ [0, 1
2 ]

4
3x− 2

3 if x ∈ [12 , 1]

Then any lift â of a to T̂2,3 has rotation number log 3
log 2 (mod Z), and consequently

scl(â) is irrational in T̂2,3. In fact, scl in this case is transcendental, by the celebrated
theorem of Gelfond and Schneider ([89],[183]). The graph of a is illustrated in
Figure 5.1.
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2
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2
3

1
2

1
2

Figure 5.1. Graph of the homeomorphism a ∈ T2,3

The map h : x → 2 − 21−x for x ∈ [0, 1] conjugates a to a rigid rotation
by log 3/ log 2. This example is very closely related to examples studied also by
Boshernitzan [18]. For a full discussion, and an explanation of this and related
phenomena, see Liousse [137], § 3.

Corollary 5.19 (Zhuang [205]). There exists a finitely presented group con-
taining elements with transcendental scl.

This answers in the negative question (c) in Gromov [99], page 142.

Remark 5.20. Work of Ghys–Sergiescu [92] already shows that the classical Thompson

group T is uniformly perfect, and therefore its central extension bT satisfies dim(Q( bT )) = 1,
spanned by rotation number. However, [92] show that every element of T has a periodic

point in S1, and therefore rotation number (and consequently scl) is rational in bT . In any

case, bT is an example of a finitely presented group whose scl spectrum is exactly equal to
the non-negative rational numbers.

5.2. Groups with few quasimorphisms

The examples in § 5.1 suggest that it is fruitful to study examples of groups
with H2

b finite dimensional. If G is a finitely presented group with scl identically
zero, then H2

b (G) injects into the finite dimensional space H2(G) by Theorem 2.50.

If Ĝ is a central extension of G, then Q(Ĝ) is finite dimensional, and scl in Ĝ can
be computed by Bavard duality. The Stein–Thompson groups discussed in § 5.1
are examples of this kind. It is psychologically useful to think of such groups as
“lattices” (in a certain sense) in the group of PL homeomorphisms of S1. Thinking
of these groups in this way connects them to a wider class of examples which we
now discuss.

5.2.1. Higher rank lattices. The main references for this section are [33, 34]
and [66]. Using tools from the theory of continuous bounded cohomology (see
[157]), Burger–Monod show that the natural map from bounded cohomology to
ordinary cohomology in dimension 2 is injective for a large class of important groups,
namely lattices in higher rank Lie groups.

The main theorems of [33, 34] are stated in very general terms; we state
these theorems for lattices in real Lie groups, for simplicity. First we recall some
definitions.

Definition 5.21. Let G be a closed subgroup of SL(m,R) for some m. A
closed, connected subgroup T of G is a torus if T is diagonalizable over C; i.e. if
there is g ∈ GL(m,C) such that g−1Tg consists entirely of diagonal matrices. A
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torus T in G is R-split if T is diagonalizable over R; i.e. if there is g ∈ GL(m,R)
such that g−1Tg consists entirely of diagonal matrices.

Example 5.22. The subgroup SO(2,R) in SL(2,R) is a torus, but not an
R-split torus, since the eigenvalues of most elements are not real. On the other
hand, the subgroup consisting of matrices of the form

(
λ 0
0 λ−1

)
where λ ∈ R∗ is a

(maximal) R-split torus.

For G a real Lie group (not necessarily a matrix group), a closed, connected
subgroup T is an R-split torus if for every x ∈ T , the conjugation action of x on
the Lie algebra of G is diagonalizable, with all real eigenvalues.

Definition 5.23. Let G be a real Lie group. The real rank of G, denoted
rankRG, is the dimension of any maximal R-split torus of G.

Definition 5.24. A Lie group is said to be simple if it has no nontrivial, closed,
proper, normal subgroups, and is not Abelian. It is almost simple if the only closed,
proper, normal subgroups are finite.

Remark 5.25. With this definition, the Lie group SL(2,R) is almost simple, since the only

closed proper normal subgroup is the center ±id, but its universal cover fSL(2,R) is not
almost simple, since its center is Z.

A lattice Γ in a Lie group G is a discrete subgroup such that Γ\G has finite
volume. A lattice is uniform (or cocompact) if Γ\G is compact, and nonuniform
otherwise. A lattice Γ in a Lie group which is a nontrivial product G =

∏
aGa is

irreducible if the projection of Γ to each proper product of factors is dense.
The following

Theorem 5.26 (Burger–Monod [34], Thm. 21, Cor. 24). Let Γ be an irreducible
lattice in a finite product G =

∏
aGa where Ga are connected, almost-simple non-

compact real Lie groups. If ∑

a∈A

rankRGa ≥ 2

then H2
b (Γ; R)→ H2(Γ; R) is injective.

Remark 5.27. When Γ as above is uniform, this is contained in Theorem 1.1 from [33].

Example 5.28. As an example we can take G = SL(2,R) × SL(2,R). There
is a well-known construction of lattices in SL(2,R) × SL(2,R) using quaternion
algebras, which we now describe. A standard reference for this material is Vignéras
[202].

Let F be a number field (i.e. a finite algebraic extension of Q), all of whose
embeddings in C are contained in the real numbers. Such a field is said to be
totally real and can be obtained, for instance, by taking a polynomial with rational
coefficients all of whose roots are real, and adjoining to Q all of these roots. A
quaternion algebra A over F is an algebra which as a group is a 4-dimensional vector
space over F generated by elements 1, i, j, k with an associative and distributive
multiplication law satisfying i2 = a, j2 = b, k = ij = −ji for some a, b ∈ F . Such
an algebra is typically denoted

A =

(
a, b

F

)
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A (Galois) embedding of F into R induces an inclusion of A into a quaternion
algebra over R. The only two such algebras, up to isomorphism are the matrix
algebraM2(R), and the ring of Hamilton’s quaternions H. An embedding σ : F → R

is ramified if A ⊗σF R ∼= H. Let OF denote the ring of algebraic integers in F . It
is finitely generated over Z. An order O in A is a subring of A containing 1 that
generatesA over F , and is a finitely generated OF -module. If x = x0+x1i+x2j+x3k
is an arbitrary element of A, where the xi ∈ F , the norm of x is x2

0−x2
1a−x2

2b+x
2
3ab

and the trace is 2x0. The norm is a multiplicative homormorphism from A to F . If
O is an order in A, the elements O1 of norm 1 are a group under multiplication.

Suppose that A is ramified at all but exactly two real embeddings of F . Con-
sider the diagonal embedding

ρ : A→M2(R)×M2(R)×H× · · · ×H

where each term is the embedding of A into A⊗σiF R associated to an embedding
σi : F → R.

Theorem 5.29. With notation as above, the image Γ := ρ(O1) is an irreducible
lattice in the product

ρ(O1) ⊂ SL(2,R)× SL(2,R)× SU(2)× · · · × SU(2)

Moreover, if the degree of F is at least 3, the lattice Γ is uniform.

See e.g. [202] for a proof. Since the SU(2) factors are all compact, the image
of Γ in SL(2,R)× SL(2,R) is also a lattice.

If x ∈ A and σ : F → R is an unramified embedding inducing ρσ : A→M2(R),
the trace of the matrix ρσ(x) is equal to the image under σ of the trace of x. In
particular, these traces are algebraic numbers, contained in σ(F ). If x ∈ O1 and
g = σ(x) ∈ SL(2,R), we can think of SL(2,R) acting on a circle, factoring through
SL(2,R)→ PSL(2,R). The rotation number of g under this action is

rot(g) =
cos−1(trace(g)/2)

π

mod Z, providing |trace(g)| ≤ 2. By Gelfond–Schneider, these rotation numbers
are transcendental when they are not rational. Moreover, they are rational for only
finitely many conjugacy classes in O1.

Let Γ be such a lattice, and consider the preimage Γ̂ in SL(2,R) × S̃L(2,R).
The group Γ is finitely presented, since it has a compact fundamental domain for

its action on the contractible space H2 ×H2. Since Γ̂ is a central Z extension, it is

also finitely presented. As in § 5.1 the group Q(Γ̂) is one dimensional, generated

by rotation number on the S̃L(2,R) factor. Hence for g ∈ Γ̂, scl(g) = |rot(g)|/2. As
observed above, many of these numbers are transcendental.

5.2.2. Bounded generation. For many specific (mostly nonuniform) lat-
tices, the conclusion of Theorem 5.26 can be obtained directly by quite different
methods.

Definition 5.30. A group G is boundedly generated by a symmetric subset
H = H−1 if every element of G can be written as a product h1h2 · · ·hn where each
hi ∈ H .

For this definition to be useful, the subset H should be small compared to G.
The prototypical example of a boundedly generated group is SL(n,Z) where n ≥ 3,
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or more generally SL(n,O) where O is the ring of integers of a number field (this
fact is due to Carter–Keller). We do not state their theorem in full generality.

Definition 5.31. For n ≥ 3 and i 6= j ≤ n the elementary matrix eij is the
element of SL(n,Z) having 1’s down the diagonal and in the ij location, and 0’s
elsewhere. An elementary matrix more generally is a power emij of some eij .

Theorem 5.32 (Carter–Keller [53]). The group SL(n,Z) for n ≥ 3 is boundedly
generated by elementary matrices. In other words, there is a uniform bound N(n)
such that every element g ∈ SL(n,Z) can be written as a product of at most N
elementary matrices.

Example 5.33 (SL(n,Z) for n ≥ 3). The stable commutator length vanishes
identically on SL(n,Z) for n ≥ 3. For, there is an identity

enij = [enik, ekj ]

provided i, j, k are distinct (which can be verified by direct calculation), and there-
fore cl(enij) = 1 for all eij and all nonzero n. Since every g ∈ SL(n,Z) can be
written as a product of a bounded number of powers of the eij , it follows that cl is
uniformly bounded on SL(n,Z) and therefore scl vanishes identically.

In unpublished work, Carter–Keller and E. Paige extended these results con-
siderably; Dave Witte-Morris [159] has obtained a very nice proof of their results
using the Compactness Theorem of first-order logic. A special case of particular
relevance is the following:

Theorem 5.34 (Carter–Keller–Paige [159] Thm. 6.1). Let A be the ring of
integers in a number field K (i.e. a finite algebraic extension of Q) containing
infinitely many units. Let T be an element of SL(2, A) which is not a scalar matrix
(i.e. not of the form λ · id). Then SL(2, A) has a finite index normal subgroup which
is boundedly generated by conjugates of T .

Remark 5.35. If A is the ring of integers in a number field K, and A has only finitely
many units, then K must be either Q or Q(

√
−d) for some positive integer d. Every other

A as above satisfies the hypothesis of the theorem.

Remark 5.36. The hypotheses of this theorem are equivalent to the property that SL(2, A)
is isomorphic to an irreducible lattice in a higher rank semisimple Lie group. So the
conclusion that scl vanishes identically also follows from Theorem 5.26.

Example 5.37. Let A = Z[
√

2], the ring obtained from Z by adjoining
√

2.
Then Γ = SL(2, A) is boundedly generated by conjugates of T =

(
1 1
0 1

)
. Since

H1(SL(2,Z); Z) = Z/6Z, the matrix T has a power which is a product of commuta-
tors in SL(2,Z), hence also in Γ. Let H < Γ be a finite index normal subgroup of Γ
which is boundedly generated by conjugates of T . Then cl is uniformly bounded on
H , and therefore scl vanishes identically on H . Since H is finite index on Γ, every
element of Γ has a power which is contained in H , hence scl vanishes identically on
all of Γ.

The inclusion Z[
√

2]→ R induces an inclusion of Γ into SL(2,R) whose image is

dense. Let Γ̂ be the preimage in S̃L(2,R). As in § 5.1 we conclude that Q(Γ̂) is one-

dimensional, spanned by rotation number. Hence in Γ̂ we have scl(g) = |rot(g)|/2.
By Gelfond–Schneider, these values are transcendental when they are not rational.
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Example 5.38. Another example, due to Liehl [136], says that SL(2,Z[1/2])

is boundedly generated by elementary matrices. As above, Q(Γ) = 0, and Q(Γ̂) is
one-dimensional, generated by rotation number, where Γ denotes SL(2,Z[1/2]) and

Γ̂ its central extension. An element of Γ with trace 2−n has transcendental rotation
number when n is positive.

Remark 5.39. If G is boundedly generated, so is a central extension bG. Thus there are
many examples of finitely presented groups which are boundedly generated, but for which

Q( bG) is nontrivial. This observation is made by Monod–Rémy in an appendix to [143].

They also observe that many of the groups G and bG furthermore have Kazhdan’s property
(T).

5.2.3. Symplectic groups. One class of Lie groups deserving special atten-
tion are the symplectic groups. As remarked earlier, there are two main sources of
quasimorphisms. The first source, hyperbolic geometry, was studied systematically
in Chapter 3. The second source is symplectic geometry (or more generally, causal
or ordered structures); we turn to this subject in this section and the next. Basic
references for symplectic geometry and topology are [151] and [112]. The material
and exposition in this section borrows heavily from Barge–Ghys [7].

Given a vector space V (over R for simplicity), let V ∗ denote its dual. The
nth exterior product ΛnV ∗, whose elements are called n-forms on V is the vector
space generated by terms v1 ∧ v2 ∧ · · · ∧ vn with the vi ∈ V ∗, which is linear in each
factor separately, and subject to the relation that interchanging the order of two
adjacent factors is multiplication by −1. With this notation, Λ1V ∗ = V ∗, and we
make the convention that Λ0V ∗ = R. The sum ⊕iΛiV ∗ is a graded algebra, where
multiplication is given by

v1 ∧ · · · ∧ vn × u1 ∧ · · · ∧ um = v1 ∧ · · · ∧ vn ∧ u1 ∧ · · · ∧ um
and extended by linearity. If x ∈ ΛiV ∗ and y ∈ ΛjV ∗, then by counting signs, one
sees that xy = (−1)ijyx. If the dimension of V ∗ is m, then the dimension of ΛiV ∗

is equal to
(
m
i

)
. Hence ΛmV ∗ ∼= R, and ΛiV ∗ = 0 for all i > m.

Definition 5.40. If V has dimension 2n, a form ω ∈ Λ2V ∗ is symplectic if
ω ∧ ω ∧ · · · ∧ ω 6= 0 for any r-fold product, where r ≤ n. Equivalently, ωn 6= 0 ∈
Λ2nV ∗.

If G acts on V linearly, there is an induced action on V ∗ by the formula

g(v)(g(u)) = v(u)

for all v ∈ V ∗ and u ∈ V . This lets us define a diagonal action of G on each ΛiV ∗

given by the formula

g(v1 ∧ · · · ∧ vn) = g(v1) ∧ · · · ∧ g(vn)
and extended by linearity.

Definition 5.41. Let V be a vector space and ω ∈ Λ2V ∗ a symplectic form.
The symplectic group of V, ω, denoted Sp(V, ω), is the subgroup of GL(V ) which
fixes ω.

Remark 5.42. When V has even dimension, the action of GL(V ) on Λ2V ∗ has a unique
open dense orbit which consists exactly of the set of all symplectic elements of Λ2V ∗. It
follows that any two groups Sp(V, ω) and Sp(V, ω′) are conjugate as subgroups of GL(V ),
and their isomorphism class depends only on the dimension of V .
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A vector space with an inner product may be identified with its dual. On R2n

with orthonormal basis x1, x2, · · · , xn, y1, y2, · · · , yn there is a “standard” symplec-
tic element given by the formula

ω = x1 ∧ y1 + x2 ∧ y2 + · · ·+ xn ∧ yn
Using the orthonormal basis to identify R2n with its dual, this defines a symplectic
form on R2n.

The symplectic group of R2n with respect to ω is usually called the symplectic
group, and denoted Sp(2n,R). If J denotes the 2n × 2n matrix whose four n × n
blocks have the form

J =

(
0 id
−id 0

)

then Sp(2n,R) is the group of matrices A for which ATJA = J .
Let U(n) denote the unitary group, i.e. the group of n × n complex matrices

which preserve the standard Hermitian inner product on Cn. If we think of R2n as
the underlying real vector space of Cn, then the inclusionMn(C)→M2n(R) realizes
U(n) as a compact subgroup of Sp(2n,R). In fact, U(n) is a maximal compact
subgroup, and the coset space X := Sp(2n,R)/U(n) admits an Sp(2n,R)-invariant
Riemannian metric of non-positive curvature. The space X is usually called the
Siegel upper half-space, and has several equivalent descriptions. One well-known
description says that X is the space of n × n complex symmetric matrices whose
imaginary part is positive definite. If n = 1, this is the set of complex numbers
with positive imaginary part, which is the upper half-space model of the (ordinary)
hyperbolic plane.

Since X is non-positively curved and complete, it is contractible, so the inclu-
sion U(n)→ Sp(2n,R) is a homotopy equivalence. The group U(n) acts transitively
on the unit sphere S2n−1 in Cn, with stabilizer U(n− 1), so there is a fibration

U(n− 1)→ U(n)→ S2n−1

By the homotopy exact sequence of a fibration, it follows that π1(U(n)) = Z,
generated by the inclusion S1 = U(1)→ U(n), and therefore π1(Sp(2n,R)) = Z.

Let S̃p(2n,R) denote the universal covering group. In the case n = 1 this is

just S̃L(2,R).

A closed differential 2-form ω on a manifold M2n of dimension 2n is symplectic
if the 2n-form ωn is nonzero at every point. It turns out that there is a natural sym-
plectic form ω on the Siegel upper half-space X which is invariant under Sp(2n,R).
If Γ is a (torsion-free) lattice in Sp(2n,R), then ω descends to a symplectic form on
X/Γ. If Γ is cocompact, the cohomology class [ω] ∈ H2(X/Γ) = H2(Γ) is nonzero,
since the integral of the top power of ω over X/Γ is nonzero. In fact, it turns out
that the class of [ω] is in the image of H2

b (Γ). Moreover, Domic and Toledo [66]
calculate the norm of this class, and show that it is equal to nπ.

If we let Γ̂ denote the preimage of Γ in S̃p(2n,R), then [ω] pulls back to a

class [ω̃] in H2
b (Γ̂) whose image in H2(Γ̂) is trivial, and therefore comes from a

homogeneous quasimorphism ρ, which we normalize by scaling to have D(ρ) = n.
Evidently, in the case n = 1, the quasimorphism ρ is just rotation number. Barge–
Ghys [7] call this quasimorphism the symplectic rotation number. In fact, since
the form ω is invariant under the action of Sp(2n,R) on X , there is a well-defined
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homogeneous quasimorphism ρ defined on the entire group S̃p(2n,R), and ρ ∈ Q(Γ̂)
is just pulled back by inclusion.

Barge–Ghys give an explicit description for this quasimorphism, as follows.

Definition 5.43. A subspace π of R2n of real dimension n is Lagrangian if the
symplectic form ω restricts to zero on π. That is, if ω(u, v) = 0 for all u, v ∈ π.

A subspace π of R2n of real dimension n is Lagrangian if and only if it is
totally real when considered as a subspace of Cn. It follows that the subgroup
U(n) of Sp(2n,R) acts transitively on the space Λn of Lagrangian subspaces of
R2n, with stabilizer the subgroup O(n,R). In other words, there is an isomorphism
U(n)/O(n,R) = Λn as principal U(n)-spaces. Note that we are thinking here of
O(n,R) firstly as a subgroup of GL(n,C) by the inclusion R→ C, and then secondly
as a subgroup of Sp(2n,R) by the inclusion GL(n,C) → GL(2n,R) coming from
the identification of Cn with R2n.

Let ∗ ∈ Λn be some basepoint, for example corresponding to the Lagrangian
subspace Rn in Cn. For each g ∈ Sp(2n,R), there is a unique coset u(g)O(n,R) ∈
U(n)/O(n,R) with g(∗) = u(g)(∗) for any element of the coset. The homomorphism
det2 : U(n)→ S1 factors through the quotient U(n)/O(n,R), and defines a function

det2 : Sp(2n,R) → S1. This map is a double covering, restricted to the subgroup
S1 = U(1), so we get a covering map

µ : S̃p(2n,R)→ R

which turns out to be a quasimorphism.
The quasimorphism µ is not homogeneous. However, Barge–Ghys derive a

formula for its homogenization ρ, at least mod Z. To state their theorem we must
first recall some standard facts about the spectrum of a symplectic matrix. Let
A ∈ Sp(2n,R) and suppose for simplicity that A is diagonalizable over C. The
spectrum of A (i.e. the set of complex eigenvalues with multiplicity) is invariant
under conjugation, since A is a real matrix. Moreover, it is invariant with respect
to inversion in the unit circle in C. Hence if λ is an eigenvalue, then λ, λ−1, λ, λ−1

are all eigenvalues. The case that λ is real or on the unit circle is naturally rather
special. It turns out that eigenvalues λ which are not on the unit circle do not
contribute to ρ.

Suppose A is diagonalizable over C, and H is the subspace of R2n of dimension
2k spanned by the 2 × 2 Jordan blocks of A (over R) corresponding to pairs of
complex eigenvalues λ, λ with λ on the unit circle. Then H is a symplectic subspace
of R2n, and the restriction of A to H is orthogonal, and therefore unitary; hence
A|H is conjugate in the symplectic group to a unitary matrix B ∈ U(k). The
complex eigenvalues of B are called the proper values of A of absolute value 1.

Barge–Ghys’ theorem gives a formula for ρ in terms of the proper values of
absolute value 1.

Theorem 5.44 (Barge–Ghys [7], Thm. 2.10). Let g be an element of Sp(2n,R),
and let λ1, · · · , λk be the proper values of g of absolute value 1, listed with multi-
plicity. Then

ρ(g) =
1

π

∑
arg(λi) (mod Z)

Remark 5.45. If we deform a matrix in Sp(2n,R) so that some set {λ, λ−1, λ, λ−1} of
eigenvalues is deformed onto the unit circle, one obtains for the deformed matrix two
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proper values of absolute value one, which are equal to λ and λ respectively, and therefore
the sum of their arguments vanishes. This explains why ρ is continuous on Sp(2n,R),
which is otherwise not obvious.

Remark 5.46. If we think of R2n with its standard symplectic form as a product of n
copies of R2 with its standard symplectic form, we get a natural inclusion

SL(2,R)× SL(2,R)× · · · × SL(2,R)→ Sp(2n,R)

The symplectic rotation number restricts to Poincaré’s rotation number on each SL(2,R)
factor, and is equal to the sum of rotation numbers on the factors on the image of the
product of SL(2,R)’s.

Theorem 5.26 shows that H2
b (Γ) includes into H2(Γ), when n is at least 2.

Since the defect of ρ is n, there is a formula

scl(g) = |ρ(g)|/2n =
1

2nπ

∑
arg(λi) (mod

1

2n
Z)

for g ∈ Γ̂. Lattices in Sp(2n,R) for n at least 2 have algebraic entries. Hence by

Gelfond–Schneider, scl is transcendental on Γ̂ when it is irrational.

Obviously the examples above can be generalized tremendously. However in
every case, the irrational values of scl obtained appear to be transcendental. Hence
we pose the following question.

Question 5.47. Is there a finitely presented group G in which scl takes on an
irrational value that is algebraic?

More generally, one can ask for a complete characterization of the values of scl
that can occur in finitely presented groups.

Question 5.48. What real numbers are values of scl on elements in finitely
presented groups?

This seems like a difficult question.

5.2.4. Causal structures and quasimorphisms. In this section we give a
more topological definition of the symplectic rotation quasimorphism ρ defined in
§ 5.2.3 which “explains” the integral value of D(ρ). The construction makes use of
the causal structure on Λn. This point of view is particularly explicit in [3]. Also
compare [54].

Definition 5.49. Let V be a real vector space. A cone C in V is a subset of
the form R ·K where K is compact and convex with nonempty interior, and disjoint
from the origin. A vector v ∈ V is timelike if it is in the interior of C, is lightlike if
it is in the frontier of C, and is spacelike otherwise.

Example 5.50. Let V be an (n + 1)-dimensional real vector space, and q :
V × V → R a symmetric bilinear pairing of signature (n, 1) (i.e. with n positive
eigenvalues and one negative eigenvalue). The set of vectors v with q(v, v) ≤ 0 is a
cone in V .

If M is a smooth manifold, a cone field is a continuously varying choice of cone
in the tangent space at each point. The set of timelike vectors at a point has two
components; a causal structure on M is a cone field together with a continuously
varying choice of one of these components (the positive cone) at each point. Two



5.2. GROUPS WITH FEW QUASIMORPHISMS 151

points p, q are causally connected, and we write p ≺ q, if there is a nontrivial smooth
curve from p to q whose tangent vector at every point is positive and timelike. The
relation≺ is transitive (but not typically reflexive or symmetric). A causal structure
is recurrent if p ≺ q for all p and q.

Remark 5.51. Some authors use the notational convention that p ≺ q means either that
p = q or that p is causally connected to q in the sense above. We denote this instead by
p � q.

Let M be a closed manifold which admits a recurrent causal structure, and let S
be a non-separating codimension one submanifold whose tangent space is spacelike.
Then S is essential in homology, and is dual to an element of H1(M ; Z). Let M ′

denote the infinite cyclic cover of M dual to S. The causal structure on M lifts to
one on M ′ (where it is no longer recurrent).

Let C+(M) denote the group of diffeomorphisms of M which preserve the
causal structure, and C+(M ′)Z the preimage of this group in Homeo+(M ′). There
is a central extension

0→ Z→ C+(M ′)Z → C+(M)→ 0

where Z is the deck group. We write the action of the deck group on points in M ′

by p→ p+ n.
For any p, q ∈M ′, define d(p, q) to be the greatest integer n ∈ Z such that p ≺

q−n. Pick a basepoint ∗ in M ′, and for any α ∈ C+(M ′)Z, define φ(α) = d(∗, α(∗))
and ρ(α) = limn→∞ φ(αn)/n. Since the causal structure on M is recurrent, there
is a least positive integer w such that any two points p and q are contained in a
closed timelike curve which intersects S at most w times.

Lemma 5.52. The function φ as above is a quasimorphism, and ρ is its homog-
enization. Moreover, the defect of ρ is at most w.

Proof. For any α there is equality φ(α − φ(α)) = 0. Let α, β be arbitrary,
and denote α′ = α−φ(α) and β′ = β−φ(β). Then ∗ ≺ α′(∗) ≺ ∗+w and similarly
for β′(∗). We calculate

∗ ≺ α′(∗) ≺ α′β′(∗) ≺ α′(∗+ w) ≺ ∗+ 2w

and therefore

|φ(αβ) − φ(α) − φ(β)| = |φ(α′β′)| ≤ 2w

This shows that φ is a quasimorphism; evidently ρ is its homogenization.
To estimate the defect of ρ we repeat the argument of Lemma 2.41. For any

p ∈ M ′ and any elements α, β ∈ C+(M ′)Z, after multiplying by elements of the
center if necessary, we can assume

p � α(p) � αβ(p) ≺ α(p+ w) ≺ p+ 2w

p � β(p) � βα(p) ≺ β(p+ w) ≺ p+ 2w

Set q = βα(p). Then p � q ≺ p+ 2w and therefore

q − 2w ≺ p � αβ(p) = [α, β](q) ≺ p+ 2w � q + 2w

Since p was arbitrary, so was q, and we have shown that q−2w ≺ [α, β](q) ≺ q+2w
for any q and any commutator [α, β].

It follows that if γ is a product of m commutators, then |ρ(γ)| ≤ 2w(m + 1).
Taking m large, the argument of Lemma 2.24 shows D(ρ) ≤ w. �



152 5. IRRATIONALITY AND DYNAMICS

Remark 5.53. Essentially the same construction is described in [54], § 7–8.

Causal structures arise naturally in certain contexts.

Example 5.54. Let G be a simple Lie algebra with Lie group G. An Ad(G)-
invariant cone in G exponentiates to a G-invariant cone field on G. This determines
a causal structure either on G or on a double cover, which is invariant under the
action of the group on itself. Let K be a maximal compact subgroup of G, with Lie
algebra k. It turns out (Paneitz [165], Cor. 3.2) that there is an Ad(G)-invariant
cone in G if and only if k has nontrivial center.

If G = Sp(2n,R), then

G =

(
A B
C −At

)
where A,B,C are n× n blocks, and B,C are symmetric

k =

(
A −B
B A

)
where A is skew, and B is symmetric

The center of k is nontrivial, and spanned by the matrix
(

0 −Id
Id 0

)
. If ω denotes the

standard (and Ad(G)-invariant) symplectic form on R2n, define C to be the cone
of vectors X ∈ G for which ω(ad(X)v, v) ≥ 0 for all v ∈ R2n. This is nonempty
and invariant, and defines a (recurrent) causal structure on Sp(2n,R).

Example 5.55. Let G = SO(n, 2), the group of linear automorphisms of Rn+2

which preserve the quadratic form q(x) = x2
1 + · · ·+ x2

n − x2
n+1 − x2

n+2. Let H be
the hyperboloid of vectors x for which q(x) = −1. Then G acts transitively on H .
At a point x ∈ H , the tangent space TxH is naturally isomorphic to the orthogonal
subspace of Rn+2 to x with respect to the form q. Since q(x) = −1, the restriction
of q to this subspace has signature (n, 1), and therefore G preserves a cone field on
H as in Example 5.50. There is a subgroup SO0(n, 2) of index 2 which preserves
the orientation on the cone field, and therefore a causal structure on H .

When n = 1, the group SO(1, 2) is isomorphic to PSL(2,R), the group of
isometries of the hyperbolic plane. In the Klein (projective) model, the hyperbolic
plane is identified with the interior of a round disk D in RP2, and the exterior
RP

2 − D (which is homeomorphic to an open Möbius strip) is equal to H/ ± 1
where H is as in Example 5.55. If p is a point in RP

2 −D, there are two straight
lines through p which are tangent to ∂D. The cone at p is the set of tangents to
straight lines through p which do not intersect D. A smooth curve in RP2 − D
is timelike if every tangent line to the curve is disjoint from D. Evidently, the
causal structure on H is recurrent; in fact, one sees that any two points in H are
contained in a closed timelike loop with winding number at most 2. By rotational
symmetry, it follows that the same is true for arbitrary n ≥ 2 and therefore one

obtains a homogeneous quasimorphism on the universal covering group S̃O0(n, 2)
with defect at most 2. When n ≥ 2, this estimate can be seen to be sharp by an
explicit construction (compare with Domic–Toledo [66] and [55]).

Causal structures on noncompact manifolds often extend to causal structures on
certain natural boundaries. A symmetric bounded domain is a complex symmetric
space that is isomorphic to a bounded domain in Cn for some n. It is irreducible if its
universal cover is not a nontrivial direct product of symmetric spaces. By a theorem
of Harish-Chandra, every irreducible complex symmetric space of noncompact type
is bounded. An irreducible symmetric bounded domain is said to be of tube type
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if it is isomorphic to a domain of the form V + iΩ where Ω ⊂ V is a proper open
cone in the real vector space V .

A realization of a bounded symmetric domain defines a natural compactifi-
cation. The group G of holomorphic automorphisms of the domain extends to
the compactification, and the Shilov boundary is the unique closed G-orbit in the
compactification. It is known (see e.g. [120], § 5) that the Shilov boundary of a
symmetric bounded domain of tube type admits a natural causal structure.

Example 5.56. The Siegel upper half-space Sp(2n,R)/U(n) is a symmetric
bounded domain of tube type. Its Shilov boundary is the space Λn of Lagrangians
in R2n.

The causal structure on Λn can be given a very geometric definition, as observed
by Arnold [3]. If π is a Lagrangian subspace of R2n (and therefore corresponds to
a point in Λn) the train of π is the set of Lagrangian subspaces of R2n which are
not transverse to π.

Fix a Lagrangian π and a transverse Lagrangian σ, and let πt be a 1-parameter
family of Lagrangians with π0 = π. For small t, the Lagrangians πt and σ are still
transverse, and span R2n. For each v ∈ R2n and each such t, there is a unique
decomposition v = v(πt) + v(σ) where v(πt) ∈ πt and v(σ) ∈ σ (note that for a
fixed v, the vector v(σ) typically depends on t). Define a 1-parameter family of
bilinear forms qt on R2n by the formula

qt(v, w) = ω(v(πt), w(σ))

where ω is the symplectic form. In this way, a tangent vector π′0 := d
dt

∣∣
0
πt to π

determines a symmetric bilinear form q′0 := d
dt

∣∣
0
qt which vanishes identically on σ,

and can be thought of as a symmetric bilinear form on π. The map π′0 → q′0 is
an isomorphism from the tangent space TπΛn to the space of symmetric bilinear
forms on π (to see this, observe that it is linear and injective, and is surjective
by a dimension count, since both U(n)/O(n) and the space of symmetric n × n
matrices have dimension n(n + 1)/2). Note that q′0 is degenerate precisely along
the subspace π′0∩π. Hence the tangent cone to the train at π corresponds precisely
to the degenerate bilinear forms. Exponentiating, we see that in a neighborhood of
π, the train separates Λn into chambers, corresponding to nondegenerate quadratic
forms on Rn of a fixed signature. The positive cone corresponds (infinitesimally) to
positive definite quadratic forms on π.

Example 5.57. The space Λ2 = U(2)/O(2) is diffeomorphic to the nonori-
entable sphere bundle over S1. Fix co-ordinates Λ2 = S2 × [0, 1]/ ∼ where (θ, 0) ∼
(−θ, 1). Fix a basepoint ∗ to be the north pole of the sphere S2 × 0 in these co-
ordinates. The train of ∗ intersects each sphere S2×t in a circle of constant latitude
which decreases monotonically with t, until it converges to the south pole in S2× 1
(which is identified with ∗ by the holonomy map).

Example 5.58. Let G = SO(n, 2), and recall the notation from Example 5.55.
The projectivization of the cone q = 0 is an Sn−1 bundle over S1 that we denote by
E (this bundle is twisted by the antipodal map, so E is topologically a product if
and only if n is even). Then E is a Shilov boundary for G. In the projectivization,
E divides RPn+1 into two components, one of which is H/ ± 1. The cone field
on H limits to a cone field on E, where the cone at a point e ∈ E is the set
of tangent lines to E which point into H/ ± 1. The group SO0(n, 2) preserves
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the causal structure on E. When n = 1, E is a circle, which can be thought
of as the circle at infinity of the hyperbolic plane. When n = 2, E is a torus,
and the cone structure determines a pair of transverse foliations on this torus by
circles. SO0(2, 2) acts on the leaf spaces of these foliations (which are themselves
circles) by projective transformations, exhibiting the exceptional 2-fold covering
SO0(2, 2) → PSL(2,R) × PSL(2,R). When n = 3, E is a twisted S2 bundle over
S1, and is equal to the space Λ2 as described in Example 5.57; this reflects the
exceptional isomorphism SO0(3, 2) = Sp(4,R)/± 1.

Causal structures become very rigid in high (≥ 3) (real) dimensions. For ex-
ample, one has the following:

Theorem 5.59 (Kaneyuki [120], Thm. 6.2). Let D be an irreducible symmetric
bounded domain of tube type, and G(D) the group of holomorphic automorphisms of
D. Let S be the Shilov boundary of D with its natural causal structure. Let C+(S)
be the group of causal homeomorphisms of S. Suppose (complex) dim(D) > 1.
Then C+(S) = G(D).

5.3. Braid groups and transformation groups

5.3.1. Braid groups.

Definition 5.60. The braid group Bn on n strands is generated by elements
σi for i = 1, 2, · · · , n− 1 and relations [σi, σj ] = 1 when |i− j| 6= 1, and σiσi+1σi =
σi+1σiσi+1.

These groups were introduced by Emil Artin in 1925 [5].
A word in the generators is represented pictorially by a projection of a tangle

of n arcs running between two parallel vertical lines, where no arc has any vertical
tangencies. Braids are composed by “gluing” pictures; see Figure 5.2. A generator

◦ =

Figure 5.2. Braids are represented by pictures; composition is
performed by gluing adjacent pictures. This picture illustrates the
composition of σ1 with σ−1

2 in B3.

σi is represented by a crossing, where the ith strand crosses over the (i + 1)st
strand, and σ−1

i is represented by a crossing where the (i+ 1)st strand crosses over
the ith strand. Equivalence in Bn corresponds to equivalence of pictures up to
“isotopy”. The relation [σi, σj ] = 1 when |i − j| 6= 1 corresponds to the fact that
crossings on disjoint pairs of strands can be performed in either order. The group
law σ−1

i σi = σiσ
−1
i = id corresponds to the Reidemeister 2 move on diagrams,

and the relation σiσi+1σi = σi+1σiσi+1 corresponds to the Reidemeister 3 move on
diagrams; see Figure 5.3.

Another way to think of Bn is as a mapping class group. A diagram of a braid
can be thought of as a tangle in a product D2 × [0, 1] transverse to the foliation by
vertical disks. In this way, an element in Bn determines a loop in the configuration
space of distinct n-tuples of points in the disk. Isotopy of braids corresponds to
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=

Figure 5.3. The relation σiσi+1σi = σi+1σiσi+1 in the braid
group corresponds to the Reidemeister 3 move on diagrams.

homotopy of loops, so Bn can be thought of as the fundamental group of the
space of distinct n-tuples in D2. Equivalently, Bn is just the mapping class group
rel. boundary of a disk with n punctures. Braid groups, as examples of mapping
class groups, admit a very large space of homogeneous quasimorphisms, by the
construction described in § 3.5.

Gambaudo–Ghys [87] use symplectic geometry to define some quite different
quasimorphisms. Many interesting representations of Bn can be derived from their
geometric description as mapping class groups. Let Dn denote the disk with n
points removed. There is an isomorphism π1(Dn) → Fn, the free group on n gen-
erators, and the generators may be taken to be loops, each of which winds around
one puncture. Let ǫ : π1(Dn) → Z take each generator to 1. This homomorphism

defines a cyclic cover D̃n, whose first homology H1(D̃n) can be thought of as a
Z[q, q−1]-module, where q generates the deck group of the covering. The first ho-
mology group is free as a module of rank (n−1). If ei is a based loop in Dn winding
positively once around the ith puncture, the loops αi := ei+1e

−1
i for 1 ≤ i ≤ (n−1)

all lift to D̃n, and freely generated H1(D̃n) as a Z[q, q−1]-module.
If we fix some basepoint p ∈ Dn, every braid ψ ∈ Bn is represented by a

homeomorphism which fixes p, and is covered by a unique homeomorphism ψ̃ of

D̃n which fixes the preimages of p pointwise. Hence there is an induced action of Bn
on H1(D̃n) by Z[q, q−1]-module automorphisms, and thereby a representation β :
Bn → GL(n− 1,Z[q, q−1]). This representation is called the Burau representation.
See e.g. [15] for an elegant geometric interpretation of this action, and [16] as a
general reference for braid groups. As matrices, this representation has the form

σ1 →
(
−q−1 q−1

0 1

)
⊕ Idn−3, σn−1 → Idn−3 ⊕

(
1 0
1 −q−1

)
,

and

σi → Idi−2 ⊕




1 0 0
1 −q−1 q−1

0 0 1


⊕ Idn−i−2 for 1 < i < n− 1

where the notation A⊕B stands for the block matrix
(
A 0
0 B

)
.

Remark 5.61. Several different conventions exist in the literature, depending on whether
one takes σi or σ−1

i as the generators of Bn, and whether one studies the action on
homology or cohomology.

Squier [190] showed that the image of the Burau representation is unitary,
in the following sense. It turns out that there is a nonsingular matrix J0 defined
over Z[q, q−1] such that for each w ∈ Bn, one has β(w)∗J0β(w) = J0 (here ∗ is
the conjugate transpose, where conjugation interchanges q with q−1). In fact, over
Z[s, s−1] where s2 = q, a change of basis replaces J0 by a matrix J satisfying
J∗ = J .
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If σ : Z[s, s−1] → C takes s to an element of norm 1, the matrix J(s) is
Hermitian (in the usual sense) and one obtains a representation βσ : Bn → U(J),
the unitary group of the form J . If J is nondegenerate, its imaginary part is
a nondegenerate antisymmetric form, and one therefore obtains a representation
βσ : Bn → Sp(2n − 2; R). It turns out that the forms J are degenerate exactly
when s is a (2n)th root of unity different from ±1 (so that q is an nth root of unity
different from 1). When s is sufficiently close to 1, the form J is positive definite.
Each time q crosses an nth root of unity, the number of positive eigenvalues changes
by −1. So when q is specialized to an mth root of unity with m < n and m,n
coprime, the form is nondegenerate, the signature is indefinite, and the image of βσ
in Sp(2n− 2; R) typically has noncompact closure.

Another way to obtain these representations of Bn is by using surface topology.
For each m, let Dn,m be the surface obtained by taking an m-fold branched cover
of the disk over n points. The induced action of Bn on Dn,m is well-defined up to
homotopy, and we get a representation on the vector space H1(Dn,m, ∂Dn,m; R).
The deck group Z/mZ acts onDn,m. If ω is anmth root of unity, the ω-eigenspace of
this action is real, and Bn-invariant. There is thus an action of Bn on the invariant
vector space H1(Dn,m, ∂Dn,m; R)ω . It turns out this representation is isomorphic
to the Burau representation evaluated at q = ω (see e.g. [87], Prop. 2.2). The
ordinary intersection pairing on H1 is nondegenerate on this subspace when n and
m are coprime, and one sees in another way the symplectic structure.

Remark 5.62. When n and m are not coprime, the imaginary part of J is degenerate on
a subspace, and one obtains a symplectic action of Bn on the quotient by this subspace.

The cohomology of classical braid groups was computed by Arnold [1] (also see
[201], Thm. 4.1). He showed the following:

Theorem 5.63 (Arnold [1]). For n ≥ 2, there are isomorphisms H0(Bn; Z) =
H1(Bn; Z) = Z. Otherwise, Hi(Bn; Z) is finite when i ≥ 2 and zero when i ≥ n.

We are concerned with the case i = 2. Theorem 5.63 says that H2(Bn; Z)
is torsion. Consequently, each representation βσ : Bn → Sp(2n − 2,R) defines a
quasimorphism ρ on Bn (well-defined up to elements of H1), whose coboundary is
the pullback of the generator of H2

b (Sp(2n− 2)) under β∗σ.

Example 5.64. The braid group B3 is discussed in Example 4.33. In the
special case of B3, the image of the Burau representation evaluated at −1 is equal to
SL(2,Z), and ρ is the rotation quasimorphism coming from the action of PSL(2,Z)
on S1. A slightly different normalization of this quasimorphism is sometimes called
the Rademacher function on SL(2,Z); see § 4 of [87], and § 6.1.7.

Example 5.65. The Burau representation of B4 evaluated at ω = e2πi/3 is 3
(complex) dimensional, and has matrix entries in the discrete subring Z[ω] of C. The
form J has signature (1, 2). Projectivizing, one obtains a discrete representation
of B4 into PU(1, 2), the group of isometries of the complex hyperbolic plane. One
may therefore obtain interesting de Rham quasimorphisms on B4, as in § 2.3.1.

5.3.2. Area-preserving diffeomorphisms of surfaces. Gambaudo–Ghys
[86] showed how to use quasimorphisms on discrete groups to obtain nontrivial
quasimorphisms on certain transformation groups.
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Similar ideas appeared earlier in work of Arnold [4], Ruelle [181], Gambaudo–
Sullivan–Tresser [88] and others. A given (continuous) dynamical system is ap-
proximated (in some sense) by a discrete combinatorial model. Associated to the
discrete approximation is some numerical invariant, which can then be integrated
over the degrees of freedom of the continuous system. For this integration to make
sense and have useful properties, the continuous dynamical system must be (at
least) measure preserving, and of sufficient regularity that the integral converges.

The case presenting the fewest technical details is that of a group of area-
preserving diffeomorphisms of a (finite area) surface.

Definition 5.66. For any surface S, let Diff∞(S, ∂S, area) (or omit the ∂S
in the notation if S has no boundary) denote the group of diffeomorphisms of
S, fixed pointwise on the boundary, that preserve the (standard) area form, and
let Diff∞0 (S, ∂S, area) denote the subgroup of such diffeomorphisms isotopic to the
identity.

There is an exact sequence

Diff∞0 (S, ∂S, area)→ Diff∞(S, ∂S, area)→ MCG(S, ∂S)

Quasimorphisms on mapping class groups can be pulled back to Diff∞(S, ∂S, area).
Therefore we focus on the construction of quasimorphisms on Diff∞0 (S, ∂S, area).
A key case to consider is S = D, the closed unit disk.

Definition 5.67. Fix some n, and let µ be a quasimorphism on Bn. Fix n
distinct points x0

i in D for 1 ≤ i ≤ n. Given g ∈ Diff∞0 (D, ∂D, area), let gt be an
isotopy from id to g. For a generic ordered n-tuple of distinct points x1, · · · , xn
in D, let γ(g;x1, · · · , xn) ∈ Bn be the braid obtained by first moving the x0

i in a
straight line to the xi, then composing with the isotopy gt from xi to g(xi), then
finally moving the g(xi) in a straight line back to the xi.

Now define

Φµ(g) =

∫

D×···×D

µ(γ(g;x1, · · · , xn))darea(x1)× · · · × darea(xn)

and Φµ(g) = limn→∞
1
nΦµ(g

n).

Lemma 5.68. For any quasimorphism µ on Bn, the function Φµ is a homoge-
neous quasimorphism on Diff∞0 (D, ∂D, area).

Proof. For any two diffeomorphisms g, h, and generic x1, · · · , xn there is
equality

γ(gh;x1, · · · , xn) = γ(h;x1, · · · , xn) · γ(g;h(x1), · · · , h(xn))

in Bn. Homogenizing removes the dependence on the choice of x0
i . Integrating over

D × · · · ×D and using the fact that µ is a quasimorphism, we obtain the desired
result. �

Example 5.69. In case n = 2, the group B2 is isomorphic to Z and we can take
µ to be an isomorphism. In this case, the resulting function Φµ is a homomorphism
from Diff∞0 (D, ∂D, area) to R, which is equal (after normalization) to the well-
known Calabi homomorphism.

Calabi [38] constructed an invariant for any symplectic diffeomorphism with
compact support of a symplectic manifold without boundary. Calabi’s construction
can be translated into the case of area-preserving diffeomorphisms of the disk as
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follows. Let θ be a 1-form on D whose exterior derivative dθ is the area form. If
g is an area-preserving diffeomorphism of D fixing ∂D pointwise, then g∗θ − θ is
closed, and there is a function f on D satisfying df = g∗θ − θ. The function f is
unique up to addition of a constant; normalize f so that it is zero on ∂D. Calabi’s
homomorphism is defined by the formula

Ψ(g) =

∫

D

fdθ

Changing θ to θ′ = θ+dh changes f to f ′ = f+(h−hg); since g is area-preserving,
the integral of (h− hg) is zero, so Ψ does not depend on the choice of θ.

If g1 and g2 are two diffeomorphisms, then

(g1g2)
∗θ − θ = g∗2g

∗
1θ − g∗1θ + g∗1θ − θ

so Ψ(g1g2) = Ψ(g1) + Ψ(g2). The interpretation of Calabi’s homomorphism as an
“average braiding number” of pairs of points in the disk is due to Fathi (unpub-
lished); see [85].

To define quasimorphisms on Diff∞0 (S2, area), we need to construct quasimor-

phisms on B̂n, the braid group of n-points in the sphere. One way to construct

such quasimorphisms is to think of B̂n as the mapping class group of a sphere with
n punctures, and use the methods of § 3.5, for instance Theorem 3.74. Another,

more explicit method is to use the relationship between B̂n and Bn−1. By thinking
of the disk as the once-punctured sphere, one sees that there is a homomorphism

Bn−1 → B̂n. The kernel of this map is Z, generated by a “full twist” of all strands;

and the image has finite index in B̂n, and contains the kernel of the permuta-

tion map from B̂n to the symmetric group Sn. For example, B̂4 contains the free
group F2 with finite index, and therefore admits an infinite dimensional family of
homogeneous quasimorphisms.

Given a (homogeneous) quasimorphism µ on B̂n, we can construct a homo-
geneous quasimorphism Φµ on Diff∞0 (S2, area) as in Definition 5.67. In a similar
way Gambaudo–Ghys show ([86], Theorem 1.2) that for every closed oriented sur-
face S there exist an infinite dimensional space of homogeneous quasimorphisms on
Diff∞0 (S, area).

5.3.3. Higher genus. When S has higher genus, one can construct quasi-
morphisms on Diff∞0 (S, area) from a hyperbolic structure on S, by a variation of
the construction of de Rham quasimorphisms in § 2.3.1.

Definition 5.70 (de Rham quasimorphism). Let S be a closed surface with
χ(S) < 0. Fix a hyperbolic structure on S, and let α be a 1-form on S. Given
f ∈ Diff∞0 (S, area), let ft be an isotopy from id to f . For each x ∈ S, define γ(x, f)
to be the unique geodesic in S from x to f(x) in the relative homotopy class of the
path ft(x). Then define

φα(f) =

∫

S

(∫

γ(x,f)

α

)
darea

Lemma 5.71. The function φα is a quasimorphism on Diff∞0 (S, area) with defect
at most ‖dα‖π · area(S).
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Proof. For any point x and any two elements f, g there is a geodesic triangle
with edges γ(x, f), γ(f(x), g), and γ(x, gf). By Stokes’ theorem,

∣∣∣∣∣

∫

γ(x,f)

α+

∫

γ(f(x),g)

α−
∫

γ(x,gf)

α

∣∣∣∣∣ ≤ ‖dα‖π

Now integrate over x ∈ S, and use the fact that f is area-preserving to change
variables in the second term on the left hand side. One obtains the estimate

|φα(f) + φα(g)− φα(gf)| ≤ ‖dα‖π · area(S)

as claimed. �

The homogenizations of φα are typically nontrivial, and generate an infinite
dimensional subspace of Q. When α is a closed 1-form, φα depends only on the
cohomology class [α] ∈ H1(S), and is evidently equal to the flux homomorphism
(Poincaré) dual to [α].

Example 5.72 (Ruelle’s rotation number [181]). The same method does not
work directly on Diff∞0 (T 2, area). Nevertheless, Ruelle showed how to define a
“rotation quasimorphism” on this group as follows. First, trivialize the tangent
bundle; for example, we can choose a Euclidean metric on T 2, and use the flat
connection to trivialize the bundle. Given x ∈ T 2 and f ∈ Diff∞0 (T 2, area), choose
an isotopy ft from id to f . Given a point x, the trivialization lets us canonically
identify tangent spaces Tft(x) and Tx, so we can think of dft as a path in GL(Tx).

Projectivizing gives a path in PSL(Tx); lifting to S̃L(Tx) and composing with the
rotation quasimorphism defines a number ρ(x, f). A different but homotopic path
f ′t determines a homotopic path in PSL(Tx). Since π1(Diff∞0 (T 2, area)) is generated
by loops of translations, ρ(x, f) does not depend on any choices. Now define

R(f) =

∫

T 2

ρ(x, f)darea

Similar arguments to those above show that R is a (nontrivial) quasimorphism.

Remark 5.73. If G is a subgroup of Diff∞

0 (T 2) and µ is any G-invariant probability mea-
sure on T 2, there is a Ruelle quasimorphism Rµ on G. Similar constructions also make
sense on groups of Hamiltonian symplectomorphisms (or on their universal covers) of
certain symplectic manifolds.

Remark 5.74. There is a section from SL(2,Z) to Diff∞(T 2, area) whose image consists
of the linear automorphisms of T 2 fixing a basepoint. This group acts by conjugation on
Diff∞

0 (T 2, area), and the Ruelle quasimorphism is constant on orbits. Consequently, the
Ruelle quasimorphism admits an extension to all of Diff∞(T 2, area).

Also see work of Py, e.g. [173, 172, 174] and Entov–Polterovich [75] for many
more examples of quasimorphisms on various transformation groups.

5.3.4. C0 case. The material in this section is taken from [76].
The quasimorphisms discussed in § 5.3.2 and § 5.3.3 are evidently continuous in

the C1 topology, and therefore extend continuously to quasimorphisms on groups
of the form Diff1

0(S, area). If a quasimorphism on Diff1
0(S, area) is continuous in the

C0 topology, it extends to Homeo0(S, area); this property is more delicate.
The following characterization of continuous quasimorphisms on topological

groups is due to Shtern:
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Theorem 5.75 (Shtern [188], Thm. 1). Let G be a topological group. A homo-
geneous quasimorphism φ on G is continuous if and only if it is bounded on some
neighborhood of id.

Proof. One direction follows from the definition of continuity. Conversely,
suppose there is a neighborhood U of id and a constant C so that |φ(k)| ≤ C for
k ∈ U . For any g ∈ G and n ∈ N, define U(g, n) to be the set of h ∈ G such that
hn = gnk for some k ∈ U . Evidently, U(g, n) is a neighborhood of g. Moreover, if
h ∈ U(g, n), then by homogeneity,

|φ(h) − φ(g)| = 1

n
|φ(hn)− φ(gn)− φ(k) + φ(k)|

where k = g−nhn. Since k ∈ U , there is an estimate |φ(k)| ≤ C. Hence one can
estimate

|φ(h)− φ(g)| ≤ 1

n
(D(φ) + C)

Taking n large shows that φ(h)→ φ(g) as h→ g, so φ is continuous. �

Using this characterization, Entov–Polterovich–Py derive the following theorem
in the context of transformation groups. Given a surface S, let Ham(S, area) denote
the subgroup of Diff∞0 (S, area) consisting of Hamiltonian diffeomorphisms (i.e. those
in the kernel of every flux homomorphism).

Theorem 5.76 (Entov–Polterovich–Py). Let φ be a homogeneous quasimor-
phism on Ham(S, area). Then φ is continuous in the C0 topology if and only if
there is some positive constant a so that if D → S is any embedded disk of area at
most a, then φ vanishes identically on the subgroup G(D) of elements supported in
D.

Proof. We give the sketch of a proof; for details, see [76]. Suppose φ is
continuous, and let U be a neighborhood of id (in the C0 topology) for which there
is a constant C as in the conclusion of Theorem 5.75. If D0 is sufficiently small in
diameter, then G(D0) ⊂ U , and therefore φ is bounded on G(D0). But since φ is
a homogeneous quasimorphism, and G(D0) is a group, φ must vanish identically
on G(D0). Now, if D is any other disk with area(D) ≤ area(D0), there is an
area-preserving Hamiltonian isotopy from D to D0. Hence G(D0) and G(D) are
conjugate, and the conclusion follows.

Conversely, suppose there is a positive constant a with the desired properties.
There is a neighborhood U of the identity so that S can be covered with finitely
many disks Di for i ≤ N , each of area at most a, so that any f ∈ U can be written
as a product f = g1g2 · · · gN where the support of each gi is contained in Di (and
therefore gi ∈ G(Di)). Since φ vanishes identically on each G(Di), the value of φ on
f is bounded by (N − 1)D(φ), and therefore φ is continuous, by Theorem 5.75. �

A homogeneous quasimorphism on Diff∞0 (S, area), continuous on Ham(S, area),
and linear on every one-parameter subgroup, is continuous in the C0 topology, and
therefore extends to Homeo0(S, area).

Remark 5.77. The most delicate aspect of Theorem 5.76 is the fragmentation lemma (i.e.
to show that one can express a Hamiltonian diffeomorphism sufficiently C0 close to the
identity as a product of boundedly many diffeomorphisms supported in small disks). This
depends on work of Le Roux [133]. Note that the assumption that the diffeomorphism
be Hamiltonian is essential.
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Example 5.78. When the genus of S is large, the homogenizations of the de
Rham quasimorphisms (Definition 5.70) vanish on G(D) for any embedded disk D.
Hence they are continuous in the C0 topology, and extend to quasimorphisms on
Homeo0(S, area).

It is still unknown whether Homeo0(S
2, area) admits any nontrivial quasimor-

phism.

Remark 5.79. The study of quasimorphisms on (mostly 2-dimensional) transformation
groups is an active and fertile area. In addition to the work of Entov–Polterovich [75] and
Gambaudo–Ghys referred to above, we mention only the survey [169] by Polterovich, and
[175] by Py, discussing relations of this material to Zimmer’s program.





CHAPTER 6

Combable functions and ergodic theory

In this chapter we study quasimorphisms on hyperbolic groups, especially
counting quasimorphisms, from a computational perspective. We introduce the
class of combable functions (and the related classes of weakly combable and bi-
combable functions) on a hyperbolic group, and show that the Epstein–Fujiwara
counting functions are bicombable.

Conversely we show that bicombable functions satisfying certain natural con-
ditions are quasimorphisms; thus quasimorphisms and bounded cohomology arise
naturally in the study of automatic structures on hyperbolic groups, a fact which
might at first glance seem surprising.

The (asymptotic) distribution of values of a combable function may be de-
scribed very simply using stationary Markov chains. Consequently, we are able to
derive a central limit theorem for the distribution of values of counting quasimor-
phisms on hyperbolic groups.

The main reference for this section is Calegari–Fujiwara [50], although Picaud
[166] and Horsham–Sharp [113] are also relevant.

6.1. An example

6.1.1. Random walk on Z.

Definition 6.1. A sequence of integers x = (x0, x1, · · · ) is a walk on Z if it
satisfies the following two properties:

(1) (initialization) x0 = 0
(2) (unit step) for all n > 0, there is an equality |xn − xn−1| = 1

The length of a walk x is one less than the number of terms in the sequence x.
So, for example, (0, 1, 2) has length 2, while (0, 1, 0,−1,−2) has length 4.

0 1−1

Figure 6.1. Walks on Z of length n are in bijection with walks
on Γ of length n.

Knowing the successive differences xn − xn−1 ∈ {−1, 1} determines x, so there
is a bijection between walks of length n, and strings of length n in the alphabet

163
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{−1, 1}. This correspondence may be encoded graphically as follows. Let Γ be the
directed graph depicted in Figure 6.1. A walk x on Z “determines” a corresponding
walk x′ on Γ starting at the initial vertex (labeled 0) where the labels on the vertices
in the itinerary of x′ are exactly the sequence of successive differences xn − xn−1.
In other words,

x′n = xn − xn−1

Formally, x′ is a kind of discrete derivative of x. The advantage of the corre-
spondence x → x′ is that it replaces a random walk on an infinite (but homoge-
neous) graph (i.e. Z) with a random walk on a finite graph.

Let Xn denote the set of walks on Z of length n, and let v : Xn → Z be the
function which takes each walk to the last integer in the sequence. For example,
v(0, 1, 2, 1) = 1 and v(0,−1,−2,−3,−2) = −2.

Figure 6.2. histogram showing the frequency of outcomes for all
walks of length 30 on Z

There are 2n walks of length n. The set of values of v on Xn are the integers of
the form 2i− n for 0 ≤ i ≤ n, and the number of elements of Xn taking the value
2i− n is

(
n
i

)
= n!

(n−i)!i! . A histogram of this data for the case n = 30 is contained

in Figure 6.2.
This figure has some significant qualitative features: left-right symmetry, the

fact that all realized values have the same parity, and so forth. Most notable are
the long flat tails on either side. If we rescale the graph horizontally by a factor
of n−1, and vertically so that the total area under the graph is equal to 1, the
distribution becomes more and more peaked and “limits” to a Dirac distribution
with all the mass centered at the origin (technically, this is convergence in the sense
of distribution). However, if we instead rescale the graph horizontally by a factor
of n−1/2, the distribution converges to the familiar “bell curve”, or Gaussian. If
we let v̄n denote the value of v on a random element of Xn (with the uniform
distribution), then v̄ is not a number but rather a (discrete) probability measure
on R. The Central Limit Theorem for binomial distributions (see [96], Thm. 9.1)
says that there is convergence in the sense of distribution

lim
n→∞

P(s ≤ n−1/2v̄n ≤ t) =
1√
2π

∫ t

s

e−x
2/2dx

where P(·) denotes probability, and s ≤ t are any two real numbers.

6.1.2. Random value of a homomorphism. Given a group G and a func-
tion f : G→ R it is natural to ask how the values of f are distributed on G. If G
is finitely generated, we can study statistical properties of the values of f on the set
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of elements of G of (word) length n, as a function of n. This analysis will be most
informative when the function f is adapted to the geometry and algebra of G; the
most important case therefore is when f is a homomorphism.

In order to keep the discussion concrete, we restrict attention in what follows
to free groups. Let F denote the free group generated by two elements a, b, and let
ρ : F → Z be the unique homomorphism which sends a to 1 and b to 0 (writing Z

additively). A basic question is to ask what is the distribution of the values of ρ on
the group F .

If we take S = {a, b, a−1, b−1} to be a symmetric generating set for F , the
Cayley graph CS(F ) is an infinite regular 4-valent tree. Let γ denote a geodesic
in CS(F ) starting at id, and let ρ(γ) denote the corresponding walk in Z, whose
itinerary consists of the values of ρ on successive vertices of γ. As in the case of
a random walk on Z, the situation is clarified by considering, in place of ρ(γ), the
discrete derivative; i.e. by considering how the value of ρ changes on successive
vertices of γ.

6.1.3. Digraphs. Every element of F is represented by a unique reduced word
in the generators, corresponding to the unique geodesic in CS(G) starting at id and
with a given endpoint. Reduced words are certified by local data: a word is reduced
if and only if no a follows or precedes an a−1, and if no b follows or precedes a b−1.
Let S∗ denote the set of all finite words in the generating set S, and let Wn denote
the set of reduced words in S∗ of length n. Let W = ∪nWn.

0 1

0

−1

0

a

b

a−1

b−1

a

b

a−1

b−1

b

a

b−1

a

b

a−1

b−1

a−1

Figure 6.3. The digraph Γ parameterizes the set of reduced words
in F

Elements of F are in bijection with elements of W by taking each element to the
unique reduced word which represents it. Moreover, elements of W are in bijection
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with certain walks on a directed graph Γ, depicted in Figure 6.3 (ignore the numbers
on the vertices for the moment). There is a special initial vertex with no incoming
edges, and four other vertices which have both incoming and outgoing edges. In
computer science and combinatorics, a directed graph is usually called a digraph,
and we use this terminology in what follows. If we need to stress that a particular
digraph has an initial vertex, we call it a pointed digraph. So Γ in Figure 6.3 is a
(pointed) digraph.

A reduced word w ∈ W determines a directed path in Γ starting at the initial
vertex, by reading the letters one by one (from left to right) and traversing at each
stage the edge of Γ labeled by the corresponding letter of w. Conversely, a directed
path in Γ starting at the initial vertex determines a reduced word, determined by
the string consisting of the edge labels visited in the path. Under this bijection,
elements of Wn correspond to directed paths in Γ of length n.

The information in a digraph can be encoded in the so-called adjacency matrix.

Definition 6.2. Let Γ be a digraph with vertices vi. The adjacency matrix of
Γ is the square matrix whose entries are determined by the formula

Mij =

{
1 if there is a directed edge from vi to vj

0 otherwise

Spectral properties of M reflect geometric properties of Γ. The most explicit
example of this is the following Lemma, which says that directed paths in Γ are
counted by the entries of powers of M .

Lemma 6.3. For any n and any vertices vi, vj the number of directed paths in
Γ from vi to vj of length n is (Mn)ij .

Proof. We prove the statement by induction. It is tautologically true for
paths of length 1, so assume it is true for paths of length n− 1. By induction, for
any vk there are (Mn−1)ikMkj paths of length n from vi to vj whose penultimate
vertex is vk. Summing over k gives the desired result. �

The following topological property of digraphs is the analogue of irreducibility
in the algebraic context.

Definition 6.4. A digraph is recurrent if there is a directed path from any
vertex to any other vertex.

By Lemma 6.3, a digraph is recurrent if and only if for any i, j there is some n
(which may depend on i, j) for which (Mn)ij is positive.

Definition 6.5. A matrix with non-negative entries is a Perron–Frobenius
matrix if for any i, j there is some n for which (Mn)ij is positive.

The graph Γ of Figure 6.3 is not recurrent, but the subgraph Γ′ consisting
of vertices and edges disjoint from the initial vertex is recurrent. Let M be the
adjacency matrix of Γ′, so

M =




1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1




Since Γ′ is recurrent, the matrix M is a Perron–Frobenius matrix. In fact, every
entry of Mn is positive whenever n ≥ 2.
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For such matrices, one has the fundamental Perron–Frobenius Theorem:

Theorem 6.6 (Perron–Frobenius). Let M be a real non-negative matrix so that
every entry of Mn is positive for some n > 0. Then the following statements hold.

(1) M has a positive real eigenvalue λ. Every other eigenvalue ξ satisfies
|ξ| < λ.

(2) The algebraic and geometric multiplicities of λ are both equal to 1.
(3) There are left and right eigenvectors of M with eigenvalue λ, spanning

their respective 1-dimensional eigenspaces, with positive entries.

See for example [11] for a proof. A matrix M with the property above is
sometimes called regular.

If M is symmetric, the left and right λ-eigenvectors of M are transposes of each
other, but for general M this need not be the case.

For the case of Γ′ as above, the matrix M is symmetric, and the vector
v = (1/4, 1/4, 1/4, 1/4) (resp. vT ) is a left (resp. right) eigenvector for M with
eigenvalue 3 and L1 norm equal to 1.

If M is merely non-negative (with no assumption that there is a power all of
whose entries are strictly positive), the situation is more complicated. Since we will
need to study this case in the sequel, we state the following proposition.

Proposition 6.7 (Weak Perron–Frobenius). Let M be a real non-negative ma-
trix. Then M has a positive real eigenvalue λ with left and right eigenvectors, and
every other eigenvalue ξ satisfies |ξ| ≤ λ.

If for every i, j there is an n (possibly depending on i, j) for which (Mn)ij is
positive, then every eigenvalue ξ with |ξ| = λ has the form ωλ for some root of unity
ω. Moreover, for every ξ with |ξ| = λ the algebraic and geometric multiplicities of
ξ are equal, and there are left and right λ eigenvectors for ξ with positive entries.

See [11]. A matrix with the property that for all i, j there is n depending on
i, j such that (Mn)ij is positive, is sometimes said to be ergodic or irreducible. An
ergodic matrix which is not regular is sometimes called cyclic.

To say that the algebraic and geometric multiplicities of an eigenvalue ξ are
equal just means that the Jordan block of the eigenvalue ξ is diagonal; i.e. that
the generalized ξ-eigenspace is a genuine eigenspace. The weak Perron–Frobenius
Theorem can be deduced from the (ordinary) Perron–Frobenius Theorem by ap-
proximating a non-negative matrix by a positive matrix.

6.1.4. Random walks on Γ′. For each integer n ≥ 0, let Xn denote the set
of walks on Γ′ of length n starting at any vertex. For each m < n there is a prefix
function pn,m : Xn → Xm which just forgets the last n−m terms in the sequence.
Each map Xn → Xn−1 is finite to one. The inverse limit

X := lim
←
Xn

is topologically a Cantor set, and parameterizes the set of right-infinite walks on Γ′.
We write a typical x ∈ Xn as a finite sequence x = (x0, x1, · · · , xn) and an element
x ∈ X as an infinite sequence x = (x0, x1, · · · ). It comes together with prefix maps
pn : X → Xn satisfying pn,mpn = pm for all m < n.

Definition 6.8. The shift map S : X → X takes a walk to the suffix consisting
of all but the first vertex. In co-ordinates,

S(x0, x1, · · · ) = (x1, x2, · · · )
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Definition 6.9. A cylinder is an open subset of X determined by fixing a
finite number of the co-ordinates xi of an element x.

Let B denote the σ-algebra on X generated by all cylinders. Note that B is
the Borel σ-algebra on X associated to its natural inverse limit topology.

The shift map S acts continuously onX , and therefore measurably with respect
to B. Any measurable map on a compact space preserves some probability measure.
In our example, there is a unique probability measure µ on X which is invariant
under S, with the property that for all n, the pushforward (pn)∗µ is equal to the
uniform probability measure on Xn.

If π : X → Γ′ takes an element to its initial vertex, and x ∈ X is chosen at
random, the sequence

π(x), π(Sx), π(S2x), · · ·
is an infinite random walk on Γ′, where the transition probabilities to move from
vertex to vertex at each stage are given by the matrix

N =




1/3 1/3 0 1/3
1/3 1/3 1/3 0
0 1/3 1/3 1/3

1/3 0 1/3 1/3




N is a stochastic matrix, meaning that the entries are non-negative, and the vector
1 := (1, · · · , 1)T is a right eigenvector with eigenvalue 1. The uniform probability
measure on Γ′ is stationary for N , meaning that 1T is a left eigenvector with
eigenvalue 1. Again, in general, a left eigenvector for a stochastic matrix will not
correspond to the uniform measure, however a stationary measure exists by the
Perron–Frobenius Theorem 6.6.

The essential property of the process (x0, x1, · · · ) corresponding to a random
x ∈ X (with respect to the uniform measure) is that for each i, the probability
that xi+1 will be in a given state depends only on xi, and not on xj for any j < i.
Informally, this can be summarized by saying that future states depend only on
the present, and are independent of the past. This property of a random process
is generally called the Markov property, and the usual terminology for this is that
a random walk on Γ′ is (governed by) a stationary Markov chain. The Perron–
Frobenius property of the transition matrix N is summarized by saying that this
Markov chain is ergodic.

For each n, let Yn be the subspace of Xn consisting of walks that begin at the
initial vertex. Elements of Yn are in bijection with elements of F of word length n.
Each element of Yn corresponds to a cylinder in X consisting of infinite walks that
begin with a given prefix. The measure µ induces in this way a measure on each
Yn; after scaling, this is the uniform measure in which each element has probability
1/(4 · 3n−1). The homomorphism ρ determines a function dρ from Γ′ to Z by the
formula

dρ(s(ws)) = ρ(ws)− ρ(w)

where s : Yn → Γ′ sends a (finite) walk to its terminal vertex. In other words, the
function dρ measures how much the value of ρ changes on the increasing prefixes of
a reduced word. If a vertex vi of Γ′ is encoded as a column vector, the function dρ
can be encoded as a row vector of the same length, and evaluation of the function
amounts to contraction of vectors. In our example, dρ is the vector (1, 0,−1, 0).
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Let S̄n be a random variable whose value is

S̄n =

n∑

i=1

dρ(xi)

where x = (x0, x1, · · · , xn) is a random element of Yn. In other words, S̄n is the
value of ρ on a random element of F of word length n.

Technically, S̄n should be thought of as a probability measure on R, supported
in Z. Every x ∈ Yn determines an integer

∑
dρ(xi), and this determines a map

Yn → Z. The (uniform) measure on Yn pushes forward under this map to a measure
on Z, which by definition is S̄n.

The Central Limit Theorem for ergodic stationary Markov chains (see [179]
p. 231) says that there is a convergence in the sense of distribution

lim
n→∞

P

(
s ≤ S̄n − nE√

σ2n
≤ t
)

=
1√
2π

∫ t

s

e−x
2/2dx

where E is the mean of dρ on Γ′ with respect to the stationary measure (which is
equal to 0 in this case) and σ2 is an algebraic number which can be determined
from N , µ and dρ.

6.1.5. More complicated examples. The homomorphism ρ in the example
above is a very simple example of a big counting quasimorphism; explicitly, ρ = Ha

in the notation of Definition 2.25. We would like to study the distribution of Hw

on F for an arbitrary reduced word w ∈ F . The problem is that the digraph Γ
defined in the last section is not adequate for our purpose. A reduced word in F
determines a walk in Γ, but the vertex at each step only “remembers” one letter
at a time. In order to count occurrences of a word w or its inverse w−1 we need
a more complicated digraph whose vertices remember enough information to keep
track of each occurrence of w or w−1.

Definition 6.10. Let Γ be a pointed digraph. Define Γ0 = Γ. For each n > 0,
define inductively a pointed digraph Γn as follows.

The vertices of Γn consist of an initial vertex, together with one vertex for
every directed path in Γn−1 of length 1 (with any starting vertex). The edges of Γn
(except for those which start at the initial vertex) correspond to pairs of composable
paths; i.e. pairs of paths of length 1 which can be concatenated to form a path of
length 2.

Finally, for every path of length 1 in Γn−1 starting at the initial vertex, add a
directed edge in Γn from the initial vertex to the corresponding vertex of Γn.

Γn is called the nth refinement of Γ.

Remark 6.11. The construction of a refinement makes sense for any pointed digraph.

Remark 6.12. Notice that each Γn is finite if Γ is, and contains a unique maximal recurrent
subgraph Γ′

n if Γ does.

See Figure 6.4 for an example of the first refinement Γ1, where Γ is the example
from Figure 6.3. For the sake of legibility, labels on the arrows (which are elements
of the generating set S) have been suppressed. Note how complicated this example
is, with 17 vertices and 52 edges. In general, the graph Γn contains O(λn) vertices
and O(λn+1) edges, where λ is the Perron–Frobenius eigenvalue of the transition
matrix of Γ, so actually constructing Γn is typically not practical, even for moderate
values of n.
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Figure 6.4. The digraph Γ1 is the (first) refinement of Γ. dHab

is a function from the states of Γ1 to Z.

By induction, the stationary measure for each Γn is the uniform measure on
the subgraph Γ′n, and the transition matrix has equal probability for each edge of
Γ′n.

For any n,m ≥ 0 there is an equality (Γn)m = Γn+m. Moreover, by induction,
Γ′n = (Γ′)n. Vertices in Γ′n correspond to paths of length n in Γ′. Let w ∈ F
be a reduced word of length n, and let Hw = Cw − Cw−1 be the big counting
quasimorphism. Define dHw : Γ′n → Z by setting dHw equal to 1 on the vertex
corresponding to the path w in Γ′, and −1 on the vertex corresponding to the
path w−1 in Γ′. The Central Limit Theorem for ergodic stationary Markov chains
implies the following theorem.

Theorem 6.13 (Calegari–Fujiwara). Let Hw be a big counting quasimorphism
on a free group. If H̄w(n) denotes the value of Hw on a random word in F of length
n (in a standard symmetric generating set), then there is convergence in the sense
of distributions

n−1/2H̄w(n)→ N(0, σ)

for some σ depending on w.

It is one of the goals of this chapter to generalize this theorem to a broader
class of quasimorphisms on arbitrary word hyperbolic groups.

6.1.6. Hölder quasimorphisms. The property of big counting quasimor-
phisms described in Theorem 6.13 holds for other interesting classes of quasimor-
phisms on free groups, including those with the so-called Hölder property.

Definition 6.14. For any g ∈ F , and any function ψ on F , define

∆aψ(g) = ψ(g)− ψ(ag)

For x, y ∈ F let (x|y) denote the Gromov product; i.e.

(x|y) = (|x|+ |y| − |x−1y|)/2
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In other words, (x|y) is the length of the biggest common prefix of the words x, y.
Say that a quasimorphism ψ ∈ Q(F ) is Hölder if for any a ∈ F there are

constants C, c > 0 such that for any x, y ∈ F there is an inequality

|∆aψ(x) −∆aψ(y)| ≤ Ce−c(x|y)

Note that the constants C, c depend on a, but not on x or y.
Horsham and Sharp [113], extending some results in Matthew Horsham’s PhD

thesis, prove the following theorem:

Theorem 6.15 (Horsham–Sharp). Let ψ be a Hölder quasimorphism on a free
group. If ψ̄(n) denotes the value of ψ on a random word in F of length n (in
a standard symmetric generating set), then there is convergence in the sense of
distributions

n−1/2ψ̄(n)→ N(0, σ)

for some σ.

The argument involves (nonstationary) Markov chains obtained from subshifts
of finite type, and the associated thermodynamic formalism. These results can also
be generalized to surface groups.

Big counting quasimorphisms are trivially seen to be Hölder, since ∆aψ(x) =
∆aψ(y) whenever (x|y) is bigger than |a|. But small counting quasimorphisms are
not, as the following example (from [50]) shows.

Example 6.16. Let h := habab. Then

h(babab · · ·ab︸ ︷︷ ︸
4n+1

) = n, h(ababab · · ·ab︸ ︷︷ ︸
4n+2

) = n

but
h(babab · · ·ab︸ ︷︷ ︸

4n+3

) = n, h(ababab · · ·ab︸ ︷︷ ︸
4n+4

) = n+ 1

Although small counting quasimorphisms are not Hölder, they nevertheless
have a great deal in common with big counting quasimorphisms: both are examples
of bicombable functions, to be defined in § 6.3.2. Ultimately, we will prove a version
of the Central Limit Theorem valid for all bicombable functions on arbitrary word-
hyperbolic groups.

6.1.7. Rademacher function. There are natural ways to filter elements in
free groups other than by word length. If one thinks of a (virtually) free group as the
fundamental group of a cusped hyperbolic surface (orbifold), it is natural to count
conjugacy classes (which correspond to closed geodesics) and sort them by geodesic
length. The noncompactness of the surface leads to quite distinctive features of
the theory. In this context, we mention a result of Peter Sarnak, showing that the
Rademacher function on conjugacy classes in the group PSL(2,Z) has values which
obey a Cauchy distribution, in contrast to the Gaussian distributions discussed
above.

Ghys [91] gave an elegant topological definition of the Rademacher function.
The group PSL(2,Z) acts on the hyperbolic plane H2 by isometries, with quotient
the (2, 3,∞)-triangle orbifold ∆. Each element A of PSL(2,Z) whose trace has
absolute value > 2 fixes a unique axis in H2, which covers a geodesic in ∆. This
geodesic lifts to an embedded loop γA in the unit tangent bundle UT∆ which is
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homeomorphic to the quotient PSL(2,R)/PSL(2,Z). As is well known, UT∆ is
homeomorphic to the complement of the trefoil knot T in S3.

Definition 6.17. For A ∈ PSL(2,Z) with |tr(A)| > 2, define R(A) to be the
linking number of γA and T in S3.

Ghys relates R(A) to the classical Rademacher function, which is defined in
terms of Gauss sums, and is intimately related to the Dedekind η function. If we

think of PSL(2,Z) as a subgroup of Homeo+(S1), and S̃L(2,Z) as its preimage

in Homeo+(R)Z, then there is a rotation quasimorphism rot on S̃L(2,Z). Let ρ :

S̃L(2,Z)→ Z be the unique homomorphism that takes the value 6 on the generator
of the center (i.e. the element that acts on R as z → z+1). Then 6 ·rot−ρ descends
to the quasimorphism R on PSL(2,Z).

Conjugacy classes of elements A in PSL(2,Z) with |tr| > 2 correspond to closed
geodesics γA in ∆. Let |γA| denote the length of γA. For each real number y, define

π(y) := #{A : |γA| ≤ y}

The behavior of π(y) for large y is known; in fact,

π(y) = Li(ey) +O(e7y/10)

where

Li(x) =

∫ x

2

dt

log t
∼ x

log x

Sarnak shows that the Rademacher function R, filtered by geodesic length, satisfies
a Cauchy distribution; i.e.

Theorem 6.18 (Sarnak). With notation as above,

lim
y→∞

1

π(y)
#{A : |γA| ≤ y and a ≤ R(A)

|γA|
≤ b} =

1

π

(
arctan(

bπ

3
)− arctan(

aπ

3
)

)

The “reason” for the difference in observed distributions has to do with the
relationship between word length and geodesic length in PSL(2,Z). The group
PSL(2,Z) is virtually free, containing a subgroup Γ of index 12 which is isomorphic
to F2. The surface ∆ is non-compact, with a cusp. A geodesic γA which winds a lot
around the cusp might have length as small as O(log(n)) where n is the word length
of A. If w is a reduced word in F2 of the form an1bn2 · · ·ankbnk then the length of
w is

∑
ni but the length of the geodesic γw is O(

∑
log(ni)). Since quasimorphisms

are homomorphisms on cyclic subgroups, such a word probably has an unusually
large value of R for its word length, and especially for its geodesic length, thus
giving rise to the fat tails of the Cauchy distribution.

6.2. Groups and automata

Our analysis in § 6.1 depended crucially on the fact that elements in a free
group could be parameterized by directed paths in a digraph, namely the digraph
Γ from Figure 6.3 and its refinements. The proper generalization of this fact for
more complicated groups involves the theory of combings and regular languages.
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6.2.1. Regular languages. Let S be a finite alphabet, and let S∗ denote the
set of all (finite) words in the alphabet S.

Definition 6.19. A language is a subset L ⊂ S∗. A language is prefix closed
if every prefix of an element of the language is also in the language.

Definition 6.20. A finite state automaton on a fixed alphabet is a digraph with
a distinguished initial vertex (the input state), and with oriented edges labeled by
letters of the alphabet, such that at each vertex there is at most one outgoing edge
with any label.

The vertices are also called the states of an automaton. A word w ∈ S∗

determines a directed path in the automaton, which starts at the initial vertex at
time 0, and moves along a directed edge labeled wi at time i, if one exists, or halts
if not. The resulting path in the automaton is said to be obtained by reading the
word w.

Some subset of vertices are labeled accept states. If the automaton reads to the
end of w without halting, the last vertex of the path is the final state and the word
is accepted if the final state is an accept state, and rejected otherwise.

Definition 6.21. A regular language is the set of words in some fixed alphabet
accepted by some finite state automaton.

Remark 6.22. For regular languages which are prefix closed, one can restrict attention to
automata in which every state is an accept state. In the sequel we shall be exclusively
interested in prefix closed regular languages, and therefore every state in our automata
will be an accept state.

The concept of a finite state automaton or a regular language is best understood
by considering some simple examples.

Example 6.23. Let S = {a, b}. The following languages are regular:

(1) The set of all words in S∗

(2) The set of all words in S∗ which contain the string baa but not the string
abba

(3) The set of all words in S∗ with at least 5 a’s
(4) The set of all words in S∗ for which the number of a’s and b’s have different

parities

The following languages are not regular:

(1) The set of all words of the form anbn

(2) The set of all palindromic words
(3) The set of all words with prime length
(4) The set of all words which contain more a’s than b’s

In words, a finite state automaton is a machine with a finite amount of memory.
It reads the letters of w in order, and cannot go back and re-read some subword. In
practice, automata can be described informally in terms of the task they perform,
rather than explicitly in terms of vertices and edges.

Suppose L is regular and prefix closed. Then there is a finite state automaton
A which accepts L and for which every vertex is an accept state. The underlying
digraph Γ of the automaton A parameterizes L, in the sense that there is a natural
bijection

directed paths in Γ starting at the initial vertex←→ elements of L
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Notation 6.24. Suppose Γ parameterizes L. Let w ∈ L and as above, let wi
denote the ith letter of w. We let γi(w) denote the ith vertex of the corresponding
path in Γ, respectively γi if w is understood, and let γ(w) (resp. γ) denote the
endpoint of the path in Γ.

Warning 6.25. For a fixed regular, prefix closed language L there are many
digraphs Γ which parameterize L. For instance, if Γ parameterizes L, then so does
every resolution Γn.

6.2.2. Combings.

Notation 6.26. If G is a group and S is a generating set, there is a natural
evaluation map e : S∗ → G taking a word in the generators to the element in G it
represents. Sometimes, where no confusion can arise, we omit e, so that the same
symbol w may represent a word in S∗ or an element of G. If w is a word in S∗, we
let ei(w) denote the path in G whose ith element is the image under e of the prefix
of w of length i.

Definition 6.27. Let G be a group with finite symmetric generating set S. A
combing of G with respect to S is a regular language L ⊂ S∗ which satisfies the
following conditions:

(1) The evaluation map e : L→ G is a bijection
(2) L is prefix closed
(3) L is geodesic; i.e. elements of L represent geodesic paths in CS(G)

Warning 6.28. Definitions of combings differ in the literature. All three bullets
in Definition 6.27 (and sometimes even the condition that L is regular) are omitted
or modified by some authors!

Let L define a combing of G with respect to S, and let Γ be a digraph which
parameterizes L. Every path in Γ determines a path in CS(G) starting at the
identity. The conditions in Definition 6.27 imply that the union of these paths is
an isometrically embedded maximal spanning tree in CS(G).

One of the principal motivations for studying combings is the following theorem,
first proved by Cannon (though he used different terminology):

Theorem 6.29 (Cannon [51], [77]). Let G be a word-hyperbolic group, and S
a finite symmetric generating set. There is a combing of G with respect to S.

In fact, many natural, explicit combings exist. Choose a total ordering≺ on the
elements of S. This induces a lexicographic ordering (i.e. a dictionary ordering) on
the elements of S∗. The language L of lexicographically first geodesic words in S∗

satisfies the bullet conditions of Definition 6.27; the main content of Theorem 6.29
is that L is regular.

6.3. Combable functions

6.3.1. Left and right invariant Cayley metrics. Let G be a group with
finite symmetric generating set S. There are two natural metrics on G associated
to S — a left invariant metric dL which is just the metric induced by the usual path
metric in the Cayley graph CS(G), and a right invariant metric, where dR(a, b) =
dL(a−1, b−1). If | · | denotes the word length of an element in G, then

dL(a, b) = |a−1b|, dR(a, b) = |ab−1|
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Each metric dL, dR is induced from a path metric. The geometry of a met-
ric space X, dX may be probed effectively by studying the space of all Lipschitz
functions X → R. For G a group, it is natural to probe G by functions which are
Lipschitz with respect to either the dL or dR metric, or both simultaneously.

Note that a function f : G → Z is Lipschitz for the dL metric if and only if
there is a constant C so that for all a ∈ G and all s ∈ S,

|f(as)− f(a)| ≤ C
Similarly, f is Lipschitz for the dR metric if

|f(sa)− f(a)| ≤ C
The properties of being Lipschitz for dL or dR respectively do not depend on a
choice of generating set for S (but the constants will).

Remark 6.30. It is psychologically challenging to find a good way to perceive a group
G simultaneously in both its dL and dR metrics. An analogy is the relationship between
matrices and rooted trees. The elements of a matrix can be thought of as the leaves of
a depth 2 rooted tree in two distinct ways. The depth 1 nodes can either be thought of
as denoting rows or as columns. The two tree structures are obtained by thinking of the
index sets as affine spaces for the action of a group Z, and the two different tree structures
correspond to the actions of Z from the left and from the right.

Any homomorphismG→ Z is Lipschitz in both the dL and dR metrics. But hy-
perbolic groups do not always admit many (or even any) homomorphisms to Z (for
instance, fundamental groups of quaternionic hyperbolic manifolds have Kazhdan’s
property (T), and therefore no subgroup of finite index admits a homomorphism
to Z). However, quasimorphisms are also obviously Lipschitz in both the dL and
dR metrics, and therefore any hyperbolic group is guaranteed a rich family of such
functions.

6.3.2. Combable functions. We now introduce the class of combable func-
tions on a hyperbolic group G.

Definition 6.31. Let G be word-hyperbolic with finite symmetric generating
set S, and let L ⊂ S∗ be a combing of G with respect to S. A function φ : G→ Z

is weakly combable with respect to S, L (or weakly combable if S, L are understood)
if there is a digraph Γ parameterizing L and a function dφ from the vertices of Γ
to Z, such that for any word w ∈ L there is an equality

φ(e(w)) =
∑

i

dφ(γi(w))

(here e(w) on the left denotes an element of G and γi(w) on the right denotes
the vertices in Γ of the path corresponding to w ∈ L). If the maps e and γ are
understood, by abuse of notation we write this formula as

φ(w) =
∑

i

dφ(wi)

A function φ is combable if it is weakly combable and is Lipschitz as a map
from G, dL → Z. It is bicombable if it is weakly combable and is Lipschitz both as
a map from G, dL → Z and from G, dR → Z.

A weakly combable function is ergodic (resp. almost ergodic) if there is an
automaton Γ parameterizing L which has a unique maximal recurrent subgraph
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(resp. with maximal eigenvalue), and is regular if it is ergodic, and its recurrent
subgraph is aperiodic.

Warning 6.32. Remember that a combing L with respect to S can be param-
eterized by many different graphs Γ. If φ is weakly combable with respect to S,L
then there is some digraph Γ parameterizing L for which dφ is a function on Γ.
The particular parameterizing digraph Γ may definitely depend on φ.

Remark 6.33. There is no strict logical necessity to restrict attention to functions with
values in Z. One can vary the definition and for any finitely generated group H define
weakly combable H-functions, by defining dφ : Γ → H and replacing sum by group
multiplication in H . Since H is finitely generated, it makes sense to talk about left
Lipschitz and right Lipschitz functions from G to H and therefore to define combable and
bicombable H-functions. Notice with this definition that any homomorphism G→ H is a
bicombable H-function.

Example 6.34. Word length is bicombable.

Remark 6.35. Theorem 6.29 remains true, and with essentially the same proof, when
S is an asymmetric generating set which generates G as a semigroup. For semigroup
generators, one must slightly change the definition of a combing to say that words in L
represent shortest directed paths to their endpoints, rather than geodesics in CS(G). It
follows that Example 6.34 remains true in the more general context of word length with
respect to an asymmetric set of generators for G (as a semigroup).

The definition of weakly combable depends quite strongly on the choice of the
generating set S, as the following example shows.

Example 6.36. Let G = Z⊕ Z/2Z, and let the factors be generated by a and
b respectively. Define f : G→ Z by

f(w) =

{
n if w = an for some n ≥ 0

0 otherwise

Then f is weakly combable with respect to the generating set a, a−1, b; a digraph to
calculate f is depicted in Figure 6.5. On the other hand, f is not weakly combable

0

0 00

10
aa−1

b

aa−1

a

a

a−1

a−1

Figure 6.5. A digraph to calculate f

with respect to the generating set ab, a−1b, b. Note for this generating set that (ab)n

is the unique geodesic representing its value in G, and therefore (ab)n ∈ L for all
n. Suppose to the contrary that f is weakly combable with respect to ab, a−1b, b,
so there is a finite digraph Γ parameterizing L and a function df : Γ → Z as in
Definition 6.31. Since Γ is finite, there is a constant C such that |f(w)−f(ws)| ≤ C
whenever w and ws are words in L which differ by right multiplication by a single
generator. Yet f((ab)2n) = 2n for n ≥ 0, whereas f((ab)2n+1) = 0, so no such pair
L,Γ can exist.
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Example 6.36 shows that the property of weak combability is contingent, and
perhaps not so useful. By contrast, the Independence Theorem (Theorem 6.39, to
be proved shortly) shows that combability is independent of the choice of generating
set. For this reason, combable functions are much more useful and interesting than
weakly combable functions.

We introduce some definitions which will be useful in what follows.

Definition 6.37. Let G be hyperbolic with finite symmetric generating set S.
Let L be a combing with respect to S. Let B be the ball of radius N about id in G
with the metric inherited from CS(G), and let Σ be a finite set. A tile set is a map

T : B ×G→ Σ

such that for any pair of words w,ws ∈ L where s ∈ S, the map T (·, e(ws)) : B → Σ
depends only on T (·, e(w)) and s.

Definition 6.38. Let T be a tile set, and let Γ be a digraph parameterizing
L. The fiber product is the digraph ΓT parameterizing L defined as follows. The
vertices of ΓT are the functions of the form

(T (·, e(w)), γ(w)) : B → Σ× Γ

and (T (·, e(w)), γ(w)) is joined to (T (·, e(ws)), γ(ws)) by an edge labeled s whenever
w,ws ∈ L.

Geometrically, ΓT can be thought of as a bundle over Γ whose fiber at each
vertex v is the (finite) set of functions of the form T (·, e(w)) : B → Σ for all w
satisfying γ(w) = v.

Theorem 6.39 (Independence of combability). Let φ : G → Z be combable
with respect to some S′, L′. Then for any other generating set S and any combing
L with respect to S, the function φ is combable with respect to S, L.

Proof. If S, S′ are two generating sets, and L,L′ are two bijective geodesic
combings, then every word in L′ is quasigeodesic in CS(G) and by the Morse Lemma
(Theorem 3.30, bullet (1)), (asynchronously) fellow travels the word in L with the
same evaluation. That is, there are constants N and k such that the following is
true:

(1) For all words w′ in L′ and w in L with e(w′) = e(w), the path w′ (i.e.
the set of ei(w

′)) is contained in the N neighborhood of the path w (i.e.
the set of ei(w)) in CS(G). Furthermore, the path w′ intersects the N
neighborhood of every vertex on w (i.e. it comes uniformly close to every
vertex on w)

(2) If ei(w
′) ∈ BN (ej(w)) and el(w

′) ∈ BN (ej+1(w)), then |l − i| < k

Bullet (1) may be restated informally as saying that for every w′ ∈ L′ and w ∈ L
with e(w′) = e(w), the path corresponding to w′ is obtained by concatenating paths
xi of uniformly bounded length, whose endpoints are within a bounded distance of
successive vertices of w.

Now, suppose φ is combable with respect to L′. Let Γ′ be a digraph which
parameterizes words in L′ for which dφ : Γ′ → Z is defined. Let B denote the ball
of radius N around id in G with the metric inherited from CS(G).

We define a tile set T taking values in a certain finite set as follows. For each
g ∈ G and h ∈ B, let w ∈ L and w′ ∈ L′ evaluate to g and gh. That is, e(w) = g



178 6. COMBABLE FUNCTIONS AND ERGODIC THEORY

and e(w′) = gh. If some ei(w
′) is not contained in the N neighborhood of any

ej(w), or if the N neighborhood of some ej(w) does not intersect w′ (i.e. if the
conditions of bullet (1) above are violated), then T (h, g) = E, an “out of range”
symbol. Otherwise set

T (h, g) = (φ(gh)− φ(g), γ(w′))

in other words, the tuple consisting of the difference of φ on gh and g, and the
vertex of Γ′ corresponding to the endpoint of the path w′.

In words, for a fixed g ∈ G, the set of pairs h, g parameterizes the ball of radius
N about g. For every element gh of this ball, there is a unique path in L′ which
evaluates to gh. If this path does not stay in the N neighborhood of the path in L
evaluating to g, the value of T is out of range. Otherwise, T calculates the value of
φ on the element gh (normalized by subtracting the value of φ on g) and the vertex
of Γ′ associated to the word of L′ corresponding to gh.

Since φ is Lipschitz in the CS′(G) metric, it is also Lipschitz in the CS(G)
metric, so the normalized values of φ on BN (g) are uniformly bounded, independent
of g ∈ G. This shows that T takes values in a finite set. This is the only place
where combability (as distinct to weak combability) is used in the proof. We will
show that T is a tile set.

Remark 6.40. In fact, the second factor of T is by itself already a tile set; on a first
reading, it is worth verifying this fact alone, and then seeing how it can be used to deduce
the stronger claim about T .

To verify that T is a tile set, we just need to check that if w,ws ∈ L then
T (·, e(ws)) depends only on T (·, e(w)) and on s.

Let h ∈ B, and suppose w′ ∈ L′ is such that e(w′) = e(ws)h ∈ G. If the
path w′ is contained in the N neighborhood of the path ws, there is a factorization
w′ = v′x in L′ where e(v′) is within distance N of e(w), and where x is a path in Γ′

of length ≤ k. So for each f ∈ B with e(v′) = e(w)f we can enumerate the set of all
paths α in Γ′ of length ≤ k starting at γ(v′), and see whether fe(α) = e(s)h. If no
such f, α exists, then T (h, e(ws)) = E. Otherwise, the state γ(w′) can be deduced
from the state γ(v′) and from x (this shows that the second factor of T is a tile
set), and we can calculate

φ(e(ws)h) − φ(e(w)f) =
∑

i

dφ(αi)

If h = id then some such f, α is guaranteed to exist, by the discussion above. Hence
φ(e(ws))−φ(e(w)f) can be calculated, and therefore for any h ∈ B we can calculate
φ(e(ws)h) − φ(e(ws)) without using w, and therefore T (·, e(ws)) depends only on
T (·, e(w)) and on s, not on ws. This shows that T is a tile set.

If Γ is a digraph parameterizing L, we build the fiber product ΓT . Since
φ(e(ws)) − φ(e(w)f) and φ(e(w)f) − φ(e(w)) depend only on T (·, w) and s, the
value of φ(e(ws)) − φ(e(w)) depends only on s and the vertex γ(w) of ΓT . So we
can define dφ as a function on the resolution (ΓT )1 of ΓT , where the value of dφ
on the vertex of (ΓT )1 corresponding to the edge from γ(w) to γ(ws) is equal to
φ(e(ws)) − φ(e(w)).

By construction, dφ satisfies

φ(e(w)) =
∑

i

dφ(γi(w))
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and therefore φ is combable with respect to S,L. �

Notation 6.41. Denote the class of combable and bicombable functions on G
by C(G) and B(G) respectively.

Lemma 6.42. C(G) and B(G) are free Abelian groups.

Proof. If φ is (bi-)combable, then obviously so is −φ.
Let φ1, φ2 be combable. Then they are combable with respect to some fixed

combing S,L. Let Γ1,Γ2 be digraphs parameterizing L for which dφi : Γi → Z

is defined. Define a new digraph Γ with one vertex for each pair of vertices from
Γ1,Γ2 and with an edge labeled s from (v1, v2) to (v′1, v

′
2) if and only if there is an

edge of Γi from vi to v′i labeled s for i = 1, 2. The initial vertex of Γ is the pair
consisting of the initial vertices of Γ1,Γ2 respectively. Let Γ′ be the subgraph of Γ
consisting of the union of all directed paths starting at the initial vertex. Then Γ′

parameterizes L, and d(φ1 + φ2) is a function on Γ′ defined by

d(φ1 + φ2)(v1, v2) = dφ1(v1) + dφ2(v2)

and therefore φ1 + φ2 is weakly combable. A sum of two functions which are
Lipschitz in the dL (resp. dR) metric is Lipschitz in the dL (resp. dR) metric, so
φ1 + φ2 is (bi-)combable if both φi are.

This shows that C(G) and B(G) are Abelian groups. Since they take values in
Z, they are torsion-free, and not infinitely divisible. �

Example 6.43. Let G = F2 = 〈a, b〉 and let f : G→ Z be defined by

f(w) =

{
|w| if w starts with a

0 otherwise

Then f is weakly combable; a digraph to calculate f is illustrated in Figure 6.6.
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Figure 6.6. A digraph to calculate f

Moreover, f is Lipschitz in the dL metric and therefore combable. However,
f(an) = n whereas f(ban) = 0 so f is not Lipschitz in the dR metric, and is not
bicombable.
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6.3.3. Quasimorphisms. There are several natural operations which can be
defined on functions φ : G→ R, including the following:

(1) The adjoint of φ, denoted φ∗, defined by

φ∗(a) = φ(a−1)

(2) The antisymmetrization of φ, denoted φ′, defined by

φ′(a) =
1

2
(φ(a) − φ(a−1)) =

1

2
(φ − φ∗)(a)

In general, neither operation preserves weak combability, although if both φ
and φ∗ are weakly combable, so is 2φ′.

Lemma 6.44. Suppose φ is weakly combable, and Lipschitz in the dR metric.
Then there is a constant C so that if w ∈ L is expressed as a product of subwords
w = uv then |φ(w) − φ(u)− φ(v)| ≤ C.

Proof. Let Γ be a digraph which parameterizes L. Let u′ ∈ L be any word
such that γ(u) = γ(u′). Then φ(w) = φ(u) + φ(u′v) − φ(u′). Choose u′ so that
|u′| ≤ |Γ|. Since φ is Lipschitz in the dR metric, there is a constant C1 so that
|φ(u′v)−φ(v)| ≤ C1. Since |u′| is bounded, there is a constant C2 so that |φ(u′)| ≤
C2. Hence

|φ(w) − φ(u)− φ(v)| ≤ |φ(u′v)− φ(u′)− φ(v)| ≤ C1 + C2

proving the Lemma. �

In words, Lemma 6.44 says that φ is almost additive under decomposition.

Lemma 6.45. Suppose φ is bicombable. Then there is a constant C so that if
w ∈ L is expressed as a product of subwords w = uv then

|φ∗(w)− φ∗(u)− φ∗(v)| ≤ C
Proof. We have w−1 = v−1u−1 in G but not necessarily in L. Let z ∈ L

represent w−1, and express z as a product of subwords z = xy where dL(v−1, x) ≤ δ
and dR(u−1, y) ≤ δ. By Lemma 6.44, |φ(z)− φ(x) − φ(y)| ≤ C. But φ(z) = φ∗(w)
whereas |φ∗(v) − φ(x)| ≤ δC1 and |φ∗(u) − φ(y)| ≤ δC1 for some C1 because φ is
bicombable (and therefore Lipschitz in both dL and dR). The Lemma now follows
from the triangle inequality. �

Theorem 6.46. Let φ : G→ Z be bicombable. Then the antisymmetrization φ′

is a quasimorphism.

Proof. Let u, v ∈ L be arbitrary, and let w ∈ L satisfy e(w) = e(u)e(v). Then
we can write u = u′x, v = yv′ and w = w1w2 as words in L so that dL(y, x−1) ≤ δ,
dL(u,w1) ≤ δ and dR(v, w2) ≤ δ, by δ-thinness of triangles in CS(G).

Now apply Lemma 6.44, Lemma 6.45 and antisymmetry. �

Remark 6.47. Say that a function φ : G→ R is almost antisymmetric if there is a constant
C so that |φ(a)+φ∗(a)| ≤ C for all a ∈ G. The arguments above can be modified to show
that an almost antisymmetric bicombable function is a quasimorphism.

Theorem 6.46 can be used to give a surprisingly simple construction of non-
trivial quasimorphisms on any hyperbolic group.
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Example 6.48. Let G be hyperbolic, and let T be a finite asymmetric set
which generates G as a semigroup. Let wT : G → Z be word length with respect
to T . Then define

hT (a) = wT (a)− wT (a−1)

for all a ∈ G.
By Remark 6.35, wT is bicombable and therefore hT is a quasimorphism.
In fact, it is straightforward to give a direct proof that hT is a quasimorphism,.

Let S be the symmetrization of T , and construct the Cayley graph CS(G). First
of all, it is obvious that hT is Lipschitz in both the dR and the dL metrics.

Secondly, every word in T is a path in CS(G) (but not conversely). A shortest
path in CS(G) from id to a representing a word in T will be called a realizing path
for a. Since every element in S can be written as a word of bounded length in
T , there are uniform constants k, ǫ so that realizing paths are k, ǫ quasigeodesic in
CS(G). In particular, if la and la−1 are realizing paths for a and a−1 respectively,
then la and ala−1 are δ′ close for some δ′ not depending on a. So if u is arbitrary,
and u = vw where v is on a realizing path for u, then w−1 is within distance δ′ of
a realizing path for u−1. It follows that there is a constant C such that

|hT (u)− hT (v)− hT (w)| ≤ C
for any such factorization. In other words, hT is almost additive under decomposi-
tion.

Now, if a, b are arbitrary, and la, lb, lab are realizing paths for a, b, ab respec-
tively, then la, alb, lab are three sides of a δ′ thin quasigeodesic triangle. This tri-
angle can be decomposed into six segments which are δ′ close in pairs. Since hT
is antisymmetric, and Lipschitz in both dL and dR, the values of hT on paired
segments almost cancel. Since hT is almost additive under decomposition, hT (ab)
and hT (a) + hT (b) are almost equal, and we are done. This shows that hT is a
quasimorphism.

For typical asymmetric T , the function hT is unbounded. This is not completely
trivial, but follows from estimates on the length of anti-aligned translates of an axis
(compare with Remark 3.12). When G is nonelementary, by varying the choice of
generating sets T and taking infinite (L1) linear combinations, one can construct a
subspace of Q(G) with dimension 2ℵ0 , giving a new proof of the main theorem of
Epstein–Fujiwara ([78], Thm. 1.1).

6.4. Counting quasimorphisms

6.4.1. Greedy algorithm. In § 3.5 we discussed Fujiwara’s construction of
counting quasimorphisms associated to an action of a group G on a δ-hyperbolic
graph X . In the special case that G is a hyperbolic group, and X is the Cayley
graph of G with respect to a finite generating set S, such quasimorphisms were
constructed first by Epstein–Fujiwara [78], generalizing Brooks [27]. Our aim in
this section and the next is to show that counting quasimorphisms are bicombable.

For the sake of clarity, we spell out the definition of Epstein–Fujiwara counting
quasimorphisms.

Definition 6.49. Let G be a hyperbolic group with symmetric generating set
S. Let σ be an oriented simplicial path in the Cayley graph CS(G) and let σ−1

denote the same path with the opposite orientation. For γ an oriented simplicial
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path in CS(G), let |γ|σ denote the maximal number of disjoint copies of σ contained
in γ. For a ∈ G, define

cσ(a) = dist(id, a)− inf
γ

(length(γ)− |γ|σ)

where the infimum is taken over all directed paths γ in CS(G) from id to a.
Define a (small) counting quasimorphism to be a function of the form

hσ(a) := cσ(a)− cσ−1(a)

This is a special case of Fujiwara’s construction in § 3.5 and therefore when
|σ| ≥ 2, Lemma 3.46 applies, and realizing paths are (uniformly) quasigeodesic in
CS(G).

Let σ be a string. If w is a word, let |w|σ count the maximal number of disjoint
copies of σ in w. Similarly, let |w|′σ count disjoint copies of σ in w using the greedy
algorithm. In other words, define |w|′σ inductively on the length of w by the equality

|w|′σ = |v|′σ + 1

where v is the word obtained from w by deleting the prefix up to and including the
first occurrence of σ in w.

The advantage of | · |′σ over | · |σ is that it is evident from the definition that
d| · |′ can be calculated by a finite state automaton. On the other hand, we have
the following:

Lemma 6.50 (Greedy is good). The functions | · |σ and | · |′σ are equal.

Proof. Suppose not, and let w be a shortest word such that |w|σ and |w|′σ
are not equal. By definition, |w|′σ < |w|σ, and since w is the shortest word with
this property, by comparing the values of the two functions on prefixes of w, we
conclude |w|′σ = |w|σ−1. Since w is the shortest word with this property, the suffix
of w must be a copy of σ that is counted by | · |σ but not by | · |′σ. Hence the greedy
algorithm must count a copy of σ that overlaps this suffix. Deleting the terminal
copy of σ reduces the values of both | · |σ and | · |′σ by 1, contrary to the hypothesis
that w was shortest. �

6.4.2. Counting quasimorphisms are bicombable.

Theorem 6.51 (Calegari–Fujiwara [50]). Let G be hyperbolic, and let hσ be an
Epstein–Fujiwara counting quasimorphism. Then hσ is bicombable.

Proof. We give a somewhat informal proof, which can be made rigorous by
translating it into the language of tile sets, and following the model of Theorem 6.39.

Fix a hyperbolic groupG and a symmetric generating set S. Let L be a combing
for G. Remember that this means that L is a prefix-closed regular language of
geodesics in G (with respect to the fixed generating set S) for which the evaluation
map is a bijection L → G. If w ∈ L corresponds to w in G, let γw be the path in
CS(G) from id to w.

Let σ be a string. We will show that both cσ and cσ−1 are weakly combable with
respect to the generating set S and any combing L. By bullet (2) of Lemma 3.45,
these functions are Lipschitz in the dL metric, and therefore combable. Lemma 6.42
implies that their difference hσ is also combable; since it is a quasimorphism, it is
bicombable.

In the remainder of the proof, for the sake of clarity, we abbreviate cσ to c.
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Fix a word w ∈ L. By Lemma 3.46, a realizing path α for w is a K, ǫ quasi-
geodesic, and therefore by the Morse Lemma, there is a constant N depending only
on δ,K, ǫ (and not on w) so that α and γw are contained in N -neighborhoods of
each other. Hence every vertex of α is contained in the N -neighborhood of some
vertex of γw and conversely. For each i, let BN (γw(i)) denote the N -neighborhood
of γw(i). By uniform quasigeodesity of α, and geodesity of γ, if p ∈ BN (γw(i)) and
q ∈ BN (γw(i+ 1)) are both on α, then the segment of α from p to q has uniformly
bounded length. Let p ∈ BN (γw(i)) for some i. Say a path γ′ from id to p is admis-
sible if it is K, ǫ-quasigeodesic, and if for all j < i the path γ′ intersects BN (γw(j)).
Thus, an admissible path is obtained by concatenating paths of bounded length
whose endpoints are contained in N -neighborhoods of successive vertices of γw.

For each p ∈ BN (γw(i)) and each path γ′ from id to p, recall that |γ′| is the
maximal number of disjoint copies of σ in γ′. By Lemma 6.50, the greedy algorithm
picks out |γ′| specific disjoint copies which we refer to as the greedy copies of σ in
γ′; let σ(γ′) be the biggest prefix of σ which is a suffix of γ′ and which is disjoint
from the greedy copies of σ in γ′. Let X denote the set of possible values of σ(γ′).
Note that |X | = |σ|, since the values of X are in bijection with proper prefixes of
σ. One can think of the set X as the states of an automaton that reads a word,
and finds the greedy copies of σ in that word.

We define a function T as follows. The domain of T is BN (id) ×X × G. Fix
h ∈ BN (id) and γw(i) ∈ G. Let g = γw(i)h ∈ BN (γw(i)). For each x ∈ X , consider
the set of all admissible paths γ′ from id to g that satisfy σ(γ′) = x. If no such
path exists, define T (h, x, γw(i)) = E, an “out of range” symbol. Otherwise, define

c(g, x) = dist(id, g)− inf
γ′

(length(γ′)− |γ′|)

where the infimum is taken over γ′ as above. Notice that maxx c(g, x) = c(g) if
there is some admissible realizing path. In particular, maxx c(γw(i), x) = c(γw(i)).
If some γ′ exists as above, define

T (h, x, γw(i)) = c(γw(i))− c(g, x)

If there is any admissible path γ′ from id to g that ends in state x, there is such
a path obtained by composing a realizing path for γw(i) with a suffix of bounded
length. Together with bullet (2) of Lemma 3.45, this implies that T takes values in
a finite set.

Suppose we know the value of T on BN (id) × X × γw(i). Let h ∈ BN (id),
and define g′ = γw(i + 1)h. Any admissible path from id to g′ is obtained by
concatenating an admissible path from id to some g ∈ BN (γw(i)) with a path of
bounded length. So if we can compute d(id, g′)−d(id, g) we can compute c(g′, x)−
c(g, y) for any x, y ∈ X . Since G is hyperbolic, and γw is geodesic, we can keep
track of relative distances from id to points in the ball of radius N about points
on γw, and therefore we can compute d(id, g′)− d(id, g) by keeping track of only a
finite amount of information at each stage. We define a digraph parameterizing L
that keeps track at each stage of the following two pieces of information, thought
of as functions on the ball of radius N about the current vertex in CS(G):

(1) The relative distances from id
(2) The value of T
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By the discussion above, this is a finite digraph, and dc is well-defined as a function
on the vertices of its first refinement (cf. Theorem 6.39). Hence cσ and cσ−1 are
combable, and the proof follows. �

Remark 6.52. The pair consisting of T and relative distance to id is almost a tile set,
except that the domain is slightly larger (since T depends, in addition to BN (id) and G,
on the choice of an element in the finite set X). Otherwise, the proof is conceptually very
similar to that of Theorem 6.39.

6.5. Patterson–Sullivan measures

The crucial difficulty in extending Theorem 6.13 to general word-hyperbolic
groups is the fact that the digraphs associated to arbitrary word-hyperbolic groups
are (typically) not recurrent. This means that the stationary Markov chains ob-
tained by generalizing the construction of § 6.1.4 are not typically ergodic, and the
Perron–Frobenius Theorem (i.e. Theorem 6.6) does not directly apply.

The first important result we use in this section is Coornaert’s Theorem, which
says that in a non-elementary word-hyperbolic group G, if we fix a finite generating
set, there are constants λ > 1 and K ≥ 1 so that the number of words of length
n is bounded between K−1λn and Kλn for all n. This implies that one can find a
digraph parameterizing a combing of G which is almost semisimple — that is, the
eigenspace of largest absolute value is diagonalizable, and the system (measurably)
decomposes into a finite number of independent ergodic subsystems. Consequently,
most long geodesics in G can be partitioned into finitely many families, each (more-
or-less) parameterized by random walks on a recurrent digraph whose associated
stationary Markov chain is ergodic, and obeys a central limit theorem.

A priori, there is no apparent way to compare long geodesics in different fami-
lies. However, in place of recurrence of a single digraph, one can use the ergodicity of
the action ofG at infinity, on the boundary ∂G with its Patterson–Sullivan measure.
A typical infinite geodesic in one family can be translated by left-multiplication to
within bounded distance of a typical infinite geodesic in any other family. A bi-
combable function is almost invariant under both left and right multiplication by
elements of bounded size, so the distribution of values on a typical infinite geodesic
in one family is the same as the distribution on a typical infinite geodesic in the
other. In other words, the values of the function on typical paths in one family have
the same distribution as the values of typical paths in any other, and we obtain a
central limit theorem for the group as a whole. The next few sections flesh out the
details of this scheme.

6.5.1. Some linear algebra. Let Γ be a finite pointed digraph. Let V be the
real vector space spanned by the vertices of Γ, and let 〈·, ·〉 be the inner product on
V for which the vertices are an orthonormal basis.

The vertices of Γ are denoted vi for i ∈ {1, · · · , n}. We let v1 denote the initial
vertex. For a vector v ∈ V , let |v| denote the L1 norm of v. That is,

|v| =
∑

i

|〈v, vi〉|

For brevity, let 1 denote the vector with all co-ordinates equal to 1, so for a non-
negative vector v, there is equality |v| = 〈v,1〉.

The digraphs Γ that parameterize combings of hyperbolic groups are not com-
pletely general, but satisfy a number of special properties. We formalize these
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properties as follows. Let M denote the adjacency matrix of Γ, so that the number
of directed paths in Γ of length n from vi to vj is

(vi)
TMnvj = 〈vi,Mnvj〉 = (Mn)ij

Definition 6.53. A digraph Γ is almost semisimple if it satisfies the following
properties.

(1) There is an initial vertex v1
(2) For every i 6= 1 there is a directed path in Γ from v1 to vi
(3) There are constants λ > 1,K ≥ 1 so that

K−1λn ≤ |vT1 Mn| ≤ Kλn

for all positive integers n

In what follows we will assume that Γ is almost semisimple.

Lemma 6.54. Suppose Γ is almost semisimple. Then λ is the largest real eigen-
value of M . Moreover, for every eigenvalue ξ of M either |ξ| < λ or else the
geometric and the algebraic multiplicities of ξ are equal.

Proof. It is convenient to work withMT in place ofM . To prove the lemma, it
suffices to prove analogous facts about the matrixMT . Corresponding to the Jordan
decomposition of MT over C, let ξ1, . . . , ξm be the eigenvalues of the corresponding
Jordan blocks (listed with multiplicity).

Bullet (2) from Definition 6.53 implies that for any vi, there is an inequality
|(Mn)T vi| ≤ Ci|(Mn)T v1| for some constant Ci. Since the vi span V , and since
V is finite dimensional, there is a constant C such that for all w ∈ V there is an
inequality |(Mn)Tw| ≤ C|(Mn)T v1||w|.

For each i, there is some wi in the ξi-eigenspace for which

|(Mn)Twi| ≥ constant · nk−1|ξi|n

where k is the dimension of the Jordan block associated to ξi. Since |(Mn)Twi| ≤
C|(Mn)T v1||wi|, by bullet (3) from Definition 6.53, either |ξ| < λ or |ξ| = λ and
k = 1.

By the Perron–Frobenius theorem for non-negative matrices, MT has a largest
real eigenvalue λ′ such that |ξ| ≤ λ′ for all eigenvalues ξ. We must have λ′ = λ by
the estimates above. Note that M has the same spectrum as MT with the same
multiplicity, and that all the ξ eigenspaces of M are diagonalizable for |ξ| = λ. �

For any vector v ∈ V , decompose v =
∑

ξ v(ξ) into the components in the
generalized eigenspaces of the eigenvalues ξ. Since any two norms on V ⊗ C are
equivalent, there is a constant K > 1 such that

K−1 ≤ |Mnv|∑
ξ |Mnv(ξ)| ≤ K

and similarly for MT .

Lemma 6.55. For any vector v ∈ V , the following limit

ρ(v) := lim
n→∞

n−1
∑

i≤n

λ−iM iv

exists and is equal to v(λ).
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Proof. We suppress v in the notation that follows. For each eigenvector ξ
define

ρn(ξ) = n−1
∑

i≤n

λ−iM iv(ξ)

And set ρn =
∑
ξ ρn(ξ). With this notation, ρ = limn→∞ ρn, and we want to

show that this limit exists.
By Lemma 6.54, for each ξ, either |ξ| < λ or v(ξ) is a ξ-eigenvector. In the first

case, ρn(ξ) → 0. In the second case, either ξ = λ, or else the vectors λ−iM iv(ξ)
become equidistributed in the unit circle in the complex line of V ⊗ C spanned by
v(ξ). It follows that ρn(ξ)→ 0 unless ξ = λ.

So n−1
∑

i≤n λ
−iM iv(ξ) → 0 unless ξ = λ, in which case ρn(λ) = v(λ) is

constant. �

Since every eigenvalue of M with largest (absolute) value has geometric mul-
tiplicity equal to its algebraic multiplicity, the same is true of the transpose MT .
The same argument as Lemma 6.55 implies

Lemma 6.56. For any vector v ∈ V , the following limit

ℓ(v) := lim
n→∞

n−1
∑

i≤n

λ−i(MT )iv

exists, and (ℓ(v))T is the projection of vT onto the left λ eigenspace of M .

For any vi, the partial sums ρn(vi) are non-negative real vectors so if v is
non-negative, so is ρ(v). Similarly, if v is non-negative, so is ℓ(v).

Proposition 6.57. For any v, w ∈ V there is equality

〈ℓ(v), w〉 = 〈ℓ(v), ρ(w)〉 = 〈v, ρ(w)〉
Proof. By definition,

〈ℓ(v), ρ(w)〉 = lim
n→∞


n−1

∑

i≤n

λ−ivTM i




n−1

∑

j≤n

λ−jM jw




= lim
n→∞

n−2
∑

i,j≤n

λ−i−jvTM i+jw

= lim
n→∞

n−2
∑

k≤2n

(n+ 1− |n− k|)λ−kvTMkw

= lim
n→∞

n−2
∑

k≤2n

(n+ 1− |n− k|)λ−kℓ(v)TMkw

= lim
n→∞

n−2n(n+ 1)ℓ(v)Tw = 〈ℓ(v), w〉

where the third last equality follows from the “almost periodicity” of λ−1M so that
all terms except the (left and right) λ-eigenvalues cancel over any long consecutive
sequence of indices. We get 〈ℓ(v), ρ(w)〉 = 〈v, ρ(w)〉 by the same reason. �

Recall that a component of Γ is a maximal recurrent subgraph C; i.e. a subgraph
with the property that there is a directed path from any vertex to any other vertex.
Each component C has its own adjacency matrix, with biggest real eigenvalue ξ(C).
Since C is a subgraph of Γ, we must have ξ(C) ≤ ξ(Γ) = λ for any C.
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Lemma 6.58. Let Γ be almost semi-simple. If C,C′ are distinct components
with ξ(C) = ξ(C′) = λ then there is no directed path from C to C′.

Proof. Recall the Landau notation f(x) = Θ(g(x)) if the ratio f(x)/g(x) is
bounded away from zero and away from infinity.

Let u be a vertex in C and v a vertex in C′ such that there is a directed path
γ from u to v. Since C is recurrent, Proposition 6.7 implies that there are Θ(λn)
directed paths in C starting at u of length n, and similarly for paths in C′ starting
at v. There is a constant k so that each vertex in C can be joined by a path of
length at most k to some v. So for each pair of integers i, n− i consider the set of
paths of length between n and n+ k which consist of an initial segment of length
i in C starting at u, followed by a path of length ≤ k to v, followed by a terminal
segment of length n − i in C. The number of such paths for fixed i is Θ(λn), so
the number of paths for varying i is Θ(nλn). But if Γ is almost semi-simple, the
number of paths of length between n and n+k (of any kind) is Θ(λn), so we obtain
a contradiction. �

6.5.2. Coornaert’s Theorem and Patterson–Sullivan measures. Let G
be a non-elementary word-hyperbolic group with generating set S. For g ∈ G, let
|g| denote word length with respect to S.

Definition 6.59. The Poincaré series of G is the series

ζG(s) =
∑

g∈G

e−s|g|

This series diverges for all sufficiently small s, and converges for all sufficiently
large s. The critical exponent is the supremum of the values of s for which the series
diverges. Similar zeta functions appear in many contexts, for example in number
theory and dynamics. The best results can be expected when the series diverges at
the critical exponent.

Theorem 6.60 (Coornaert, [56] Thm. 7.2). Let G be a non-elementary word-
hyperbolic group with generating set S. Let Gn be the set of elements of word length
n. Then there are constants λ > 1,K ≥ 1 so that

K−1λn ≤ |Gn| ≤ Kλn

for all positive integers n.

It follows from Theorem 6.60 that the critical exponent of the Poincaré series
is equal to log(λ), and the series ζG(log(λ)) diverges.

For each n, let νn be the probability measure on G defined by

νn =

∑
|g|≤n λ

−|g|δg∑
|g|≤n λ

−|g|

where δg is the Dirac measure on the element g. The measure νn extends trivially
to a probability measure on the compact space G∪∂G, where ∂G denotes the ideal
(Gromov) boundary of G.

Definition 6.61. A weak limit ν := limn→∞ νn is a Patterson–Sullivan mea-
sure associated to S.
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Since the Poincaré series diverges at the critical exponent, the support of ν is
contained in ∂G.

It is convenient, for the sake of computations, to work with a slightly different
normalization of ν. For each n, let ν̂n be the measure on G defined by

ν̂n =
1

n

∑

|g|≤n

λ−|g|δg

and let ν̂ := limn→∞ ν̂n be a weak limit. Of course the measures ν̂n and νn are
proportional for each n. Moreover, by Theorem 6.60, the constant of proportionality
is bounded above and below.

Remark 6.62. In fact, the limit of the bνn exists and is well-defined. This is guaranteed
by an explicit formula for bν, which is given in § 6.5.3.

The group G acts on itself by left-multiplication. This action extends continu-
ously to a left action G× ∂G→ ∂G. Patterson–Sullivan measures enjoy a number
of useful properties, summarized in the following theorem.

Theorem 6.63 (Coornaert, [56] Thm. 7.7). Let ν be a Patterson–Sullivan
measure. The action of G on ∂G preserves the measure class of ν. Moreover, the
action of G on (∂G, ν) is ergodic.

The meaning of ergodicity for a group action which preserves a measure class
but not a measure is that for any A,B ⊂ ∂G with positive ν-measure, there is
g ∈ G with ν(gA ∩B) > 0. Since ν and ν̂ are proportional, the action of G on ∂G
is also ergodic for the ν̂ measure.

In fact, Coornaert proves the stronger fact that there is a constant K > 1 so
that for any s ∈ S there is an inequality

K−1 ≤ d(s∗ν)

dν
≤ K

and the same is true for the measure ν̂, though we do not use this stronger fact.

6.5.3. Construction of stationary measure. Throughout the sequel we fix
the following notation.

Let G be word-hyperbolic, and φ : G → Z a bicombable function. Fix a finite
generating set S, and let L ⊂ S∗ be a combing of G with respect to S. Since φ is
bicombable, dφ exists as a map from Γ→ Z for some digraph Γ parameterizing L,
by Theorem 6.39.

Let M denote the adjacency matrix of Γ, acting on V , the space of real-valued
functions on the vertices of Γ. Let v1 ∈ V be the function taking the value 1 on
the initial vertex, and 0 on all other vertices. Let 1 denote the constant function
taking the value 1 on every vertex of Γ.

For each n let Xn denote the set of walks of length n on Γ (starting at an
arbitrary vertex) and Yn the set of walks of length n starting at the initial vertex.
There are restriction maps Xn+1 → Xn and Yn+1 → Yn for each n, with inverse
limits X and Y . Evaluation of words gives rise to bijections Yn → Gn for all n;
taking limits, there is a map Y → ∂G, called the endpoint map, taking an infinite
word to the endpoint of the corresponding geodesic ray in G.

Lemma 6.64 (Coornaert–Papadopoulos). The endpoint map Y → ∂G is sur-
jective, and bounded-to-one.



6.5. PATTERSON–SULLIVAN MEASURES 189

See [57] for a proof.

Remark 6.65. In fact, obtaining a bound on the size of the preimage of a point in ∂G
is straightforward. If γ, γ′ are infinite geodesics corresponding to paths in Y with the
same endpoint in ∂G, then their Hausdorff distance is bounded by δ, the constant of
hyperbolicity of G. For any point γi ∈ γ, let Bi denote the ball of radius δ about γi.
Then γ′ must intersect Bi, and the prefix of γ′ up to this point of intersection is uniquely
determined by the fact that γ′ corresponds to a path in Y . Hence γ′ may be thought of
as an element of the inverse limit of a partially defined system of maps Bi → Bi−1. Since
|Bi| ≤ C for all i for some constant C, the cardinality of this inverse limit is also bounded
by C.

Each g ∈ Gn corresponds to a unique word w ∈ L and a unique path y ∈ Yn.
For each m > n the projection p : Ym → Yn determines a subset p−1(y) ∈ Ym and
a corresponding subset of Gm. The set of h ∈ G corresponding to words z in some
Ym which restricts to a fixed y is called the cone of g, and denoted cone(g). Note
that cone(g) depends on L, but not on Γ. For each fixed n, we can define a measure
ν̂ on Gn by

ν̂(g) = lim
m→∞

ν̂m(cone(g))

(an explicit formula is given below). Identifying Gn with Yn, we obtain a measure
on Yn for each n which by abuse of notation we denote ν̂. Observe that these
measures for different n have the following compatibility property: for each y ∈ Yn
and each m > n, there is an equality ν̂(p−1(y)) = ν̂(y) where p : Ym → Yn is the
restriction map. This compatibility property means that we can define a measure
ν̂ on Y by the formula

ν̂(p−1(y)) = ν̂(y) = lim
n→∞

ν̂n(cone(g))

where p : Y → Yn is restriction. Since the cylinders p−1(y) generate the Borel
σ-algebra of Y , this defines a unique measure ν̂ on Y which by construction pushes
forward under Y → ∂G to the measure ν̂ of the same name on ∂G.

We can obtain an explicit formula for the value of ν̂ on an element g ∈ Gn or
the corresponding element y ∈ Yn or cylinder p−1(y) ⊂ Y . By definition, for any
g ∈ Gn and any m ≥ n we have

ν̂m(cone(g)) =
1

m

∑

h∈cone(g)
|h|≤m

λ−|h|

Let vg ∈ Γ be the last vertex of y. Then we can rewrite this formula as

ν̂m(cone(g)) =
1

m
λ−n

∑

i≤m−n

λ−i〈(M i)T vg,1〉

and therefore by taking limits m→∞ we obtain the formula

ν̂(cone(g)) = λ−n|ℓ(vg)| = λ−n〈ℓ(vg),1〉 = λ−n〈vg, ρ(1)〉
where overline denotes closure in G ∪ ∂G, and where we have used the property
that ℓ(·) of a non-negative vector is non-negative, and Proposition 6.57 for the last
equality.
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The measure ν̂ on Y is typically not invariant under the shift map S : X → X .
In fact, S(Y ) ∩ Y = ∅ if the initial vertex has no incoming edges. We define a
measure µ on X by

µ := lim
n→∞

n∑

i=1

1

n
Si∗ν̂

and observe that the result is manifestly invariant by S. Using the explicit formula
for ν̂ on Yn and Y we can derive an explicit formula for µ, showing that µ is
well-defined.

Let vj ∈ Γ = X0 be an arbitrary vertex. By abuse of notation, we let p : X →
X0 denote the restriction map of an infinite path to its initial vertex (this is similar
to, but should not be confused with, the restriction maps p : Ym → Yn discussed
earlier). We will calculate µ(p−1(vj)). For each n we can calculate

Sn∗ ν̂(p
−1(vj)) = λ−n

∑

y∈Yn

Sny=vj

〈vj , ρ(1)〉

On the other hand, the number of y ∈ Yn with Sny = vj is exactly equal to the
number of directed paths in Γ of length n which end at vj , which is 〈v1,Mnvj〉. It
follows that

µ(p−1(vj)) = lim
n→∞

〈vj , ρ(1)〉〈v1,
1

n

∑

i≤n

λ−nMnvj〉

= 〈vj , ρ(1)〉〈v1, ρ(vj)〉 = 〈vj , ρ(1)〉〈ℓ(v1), vj〉
If we define a measure µ on Γ by µi = ρ(1)iℓ(v1)i (where subscripts denote vector
components) then it follows that the map X → Γ taking each walk to its initial
vertex pushes forward the measure µ on X to the measure µ on Γ.

Define a matrix N with entries

Nij =
Mijρ(1)j
λρ(1)i

if ρ(1)i is nonzero, and set Nii = 1 and Nij = 0 otherwise. Recall that a non-
negative matrix N with the property that

∑
j Nij = 1 for any i is called a stochastic

matrix (compare with the matrix N in § 6.1.4).

Lemma 6.66. The matrix N is stochastic, and satisfies µN = µ.

Proof. For any i not in the support of ρ(1), we have
∑

j Nij = 1 by fiat.
Otherwise,

∑

j

Nij =
∑

j

Mijρ(1)j
λρ(1)i

=
(Mρ(1))i
λρ(1)i

= 1

This shows N is a stochastic matrix. To verify the second formula,

∑

i

µiNij =
∑

i

ρ(1)iℓ(v1)i
Mijρ(1)j
λρ(1)i

=
1

λ
ρ(1)j

∑

i

ℓ(v1)iMij

= ρ(1)jℓ(v1)j = µj

where the sum is over i with µi 6= 0 which implies ρ(1)i 6= 0. �
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By a further abuse of notation, we let p : X → Xn denote the restriction of an
infinite path to a suitable prefix. We can obtain a formula for the measure µ on
cylinders p−1(x) ⊂ X for x ∈ Xn in terms of the measure µ on Γ, and the matrix
N .

Lemma 6.67. For x ∈ Xn, there is equality

µ(p−1(x)) = µi0Ni0i1Ni1i2 · · ·Nin−1in

where x = (xi0 , xi1 , · · · , xin), and xij corresponds to the vertex vij of Γ.

Proof. Let g ∈ Gn. If γg is the corresponding walk in Γ, let vi be the last
vertex of γg. Then ν̂(g) = λ−nρ(1)i. Moreover, for each vertex vj , there are Mij

elements h ∈ cone(g) for which the corresponding walks γh have last vertex vj .
Each h has ν̂(h) = λ−n−1ρ(1)j so given g, the sum over h ∈ Gn+1 with h ∈ cone(g)
which have last vertex vj of ν̂(h) is Mijρ(1)j/λρ(1)i = Nij . In other words, given
any y ∈ Y whose nth vertex is vi, the probability in the ν̂ measure that its (n+1)st
vertex is vj is Nij . Since this formula does not depend on n but just vi and vj , the
lemma is proved. �

We call µ on Γ the stationary measure. It is not necessarily a probability
measure, but it determines a unique probability measure by scaling. By abuse of
notation, we refer to these two measures by the same name. Lemma 6.67 may be
interpreted as saying that a random walk on Γ with initial vertex chosen randomly
with respect to the stationary measure µ and with transition probabilities given by
the stochastic matrix N agrees with a random element of X with respect to the
measure µ.

The next Lemma describes the support of the stationary measure µ on Γ.

Lemma 6.68. The support of the stationary measure is equal to the disjoint
union of the maximal recurrent subgraphs Ci of Γ whose adjacency matrices have
biggest eigenvalue λ.

Proof. Since µi = ρ(1)iℓ(v1)i a vertex vi is in the support of µi if for some
large fixed k there are Θ(λn) paths of length between n and n + k from v1 to vi,
and Θ(λn) paths of length n from vi to some other vertex. It follows that some
path from v1 to vi intersects a maximal recurrent component C whose adjacency
matrix has biggest real eigenvalue ξ(C) = λ, and similarly there is some outgoing
path from vi which intersects a maximal recurrent component C′ with ξ(C′) = λ.
Lemma 6.58 implies that C = C′, and therefore vi ∈ C.

Conversely, let C be a recurrent subgraph of Γ whose adjacency matrix has
eigenvalue λ. Then ρ(1)i and ℓ(v1)i are positive for all vi in C, by counting only
paths which stay in C outside a prefix and suffix of bounded length. �

From the point of view of stationary measure, Γ decomposes into a finite union
of recurrent subgraphs Ci, each with Perron–Frobenius eigenvalue λ. Let N |Ci

denote the restriction of the stochastic matrix N to the subgraph Ci. Then N |Ci

is a stochastic matrix. Let µi denote the measure µ on Γ restricted to Ci, and
rescaled to be a probability measure. Then N |Ci preserves µi, and determines an
ergodic stationary Markov chain on the vertices of Ci.

Let φ be weakly combable. As in § 6.1.4 we can define S
i

n to be equal to the
sum of the values of dφ on a random walk on Ci of length n with respect to the
stationary measure µi and transition probabilities given by N |Ci .
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The Central Limit Theorem for ergodic stationary Markov chains implies

Lemma 6.69. Let φ be weakly combable. With terminology as above, there is
convergence in the sense of distribution

lim
n→∞

n−1/2(S
i

n − nEi)→ N(0, σi)

for some σi ≥ 0 where Ei denotes the average of dφ on Ci with respect to the
stationary measure µi, and N(0, σi) denotes the Gaussian normal distribution with
mean 0 and standard deviation σi.

This theorem is essentially due to Markov [146]. For a proof and more details,
as well as a precise formula for σ, see e.g. [179], Chapter 4, § 46 or [96], § 11.5,
especially Theorem 11.17. An excellent general reference is [127].

Remark 6.70. Note that σ = 0 is possible (for instance, φ could be identically zero), in
which case by convention, N(0, σ) denotes the Dirac distribution with mass 1 centered at
0.

6.5.4. Central Limit Theorem. In order to derive a central limit theorem
for the group G as a whole, we must compare the means Ei and standard deviations
σi associated to distinct components Ci.

For each component Ci in the support of the stationary measure µ, let Y i ⊂ Y
denote the set of infinite paths in Γ which eventually enter Ci and stay there. Note
that the Y i are disjoint, and ν̂(Y −∪iY i) = 0. For each path γ ∈ Y we can consider
the following. Let γi ∈ G be the element corresponding to the evaluation of the
word which is equal to the prefix of γ of length i. We fix the following notation:
if r is a real number, let δ(r) denote the probability measure on R which consists
of an atom concentrated at r. For a given real number A, and for integers n,m we
can consider the following measure.

ω(n,m)(γ) =

m∑

i=1

1

m
δ
(
(φ(γi+n)− φ(γi)− nA)n−1/2

)

and then define ω(γ) = limn→∞ limm→∞ ω(n,m)(γ). Note that the existence of
this limit depends on the “correct” choice of A.

Definition 6.71. Let γ ∈ Y i. We say that γ is typical if ω(γ) exists for A = Ei,
and is equal to N(0, σi). More generally, if γ is an infinite geodesic ray in G, then
γ is E, σ-typical if ω(γ) exists for A = E and is equal to N(0, σ).

From Lemma 6.69 we obtain the following, which does not depend on φ being
bicombable, but only weakly combable:

Lemma 6.72. Almost every γ ∈ Y i with respect to the measure ν̂ is Ei, σi-
typical.

Proof. The following proof was suggested by Shigenori Matsumoto.
We fix the notation below for the course of the Lemma (the reader should be

warned that it is slightly incompatible with notation used elsewhere; this is done
to avoid a proliferation of subscripts). Let Ci be a component of Γ with Perron–
Frobenius root ξ(Ci) = λ. Let Yi be the set of infinite paths in Γ starting at v1
that eventually stay in Ci, and let Xi be the set of infinite paths in Ci. There is a
measure µ̂i on Xi obtained by restricting µ on X . The measure µ̂i is determined
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by a stationary measure µi on Ci and the transition matrix N(i), the restriction of
the measures µ and the matrix N defined in § 6.5.3. The measure µi is stationary
in the sense that µTi N(i) = µTi , so µ̂i is shift invariant. Since Ci is recurrent, µTi
is the only eigenvector of N(i) with eigenvalue 1, so µi is extremal in the space
of stationary measures. Therefore by the random ergodic theorem (see e.g. [168],
Ch. 10) the measure µ̂i on Xi is ergodic.

Now, there is a subset X∗i of Xi of full measure such that for all γ ∈ X∗i ,

1

m

m∑

0

δSkγ → µ̂i

in the weak∗ topology, where S denotes shift map, and δ is a Dirac mass. On
the other hand, on Yi there is a measure ν̂i which is the restriction of ν̂. Define
q : Yi → Xi by

q(γ) = Sn(γ)(γ)

where n : Yi → N satisfies the following condition. Let π : Xi → Ci take each
infinite walk to its initial vertex. Choose n so that π◦q : Yi → Ci sends the measure
ν̂i on Yi to a measure µq on Ci of full support. The measure q∗ν̂i on Xi is obtained
from an initial measure µq and the transition matrix N(i) as in § 6.5.3; it follows
that the measures q∗ν̂i and µi are equivalent (i.e. each is absolutely continuous with
respect to the other).

It follows that Y ∗i := q−1(X∗i ) has full measure with respect to ν̂i, and if γ ∈ Y ∗i ,
then

1

m

m∑

0

δSkγ → µ̂i

This shows that the geodesic ray in G associated to any γ ∈ Y ∗i is Ei, σi-typical,
and the lemma is proved. �

On the other hand, the following Lemma uses bicombability in an essential
way:

Lemma 6.73. Let γ be an E, σ-typical geodesic ray in G. If φ is combable and
if γ′ is a geodesic ray with the same endpoint at γ, then γ′ is also E, σ-typical. If
φ is bicombable then for any g ∈ G, the translate gγ is E, σ-typical.

Proof. Let γ and γ′ have the same endpoint. Then there is a constant C such
that dL(γi, γ

′
i) ≤ C and therefore |φ(γi)−φ(γ′i)| ≤ K for some K independent of i.

This shows that γ′ is E, σ-typical if γ is. Similarly, if g ∈ G then dR(gγi, γi) ≤ C
and therefore |φ(gγi)− φ(γi)| ≤ K for some K independent of i. �

We now come to the crucial point. For each i, let ∂iG denote the image of
the typical elements in Y i under the endpoint map Y → ∂G. Note that ν̂(∂iG)
is strictly positive for each i. By Theorem 6.63, for any i, j there is some g ∈ G
with ν̂(g∂iG ∩ ∂jG) > 0. It follows that there is a typical γ ∈ Y i and a typical
γ′ ∈ Y j such that (identifying elements of Y and geodesic rays in G starting at
id) the translate gγ and γ′ are asymptotic to the same endpoint in ∂G. Since φ is
bicombable, by Lemma 6.73, γ and γ′ are both Ei, σi-typical and Ej , σj-typical.
It follows that Ei = Ej and σi = σj . Together with Lemma 6.69, this proves the
Central Limit Theorem:
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Theorem 6.74 (Central Limit Theorem; Calegari–Fujiwara, [50]). Let φ be a
bicombable function on a word-hyperbolic group G. Let φn be the value of φ on a
random word of length n with respect to the ν̂ measure. Then there is convergence
in the sense of distribution

lim
n→∞

n−1/2(φn − nE)→ N(0, σ)

for some σ ≥ 0, where E denotes the average of dφ on Γ with respect to the sta-
tionary measure.

The following corollary does not make reference to the measure ν̂.

Corollary 6.75. Let φ be a bicombable function on a word-hyperbolic group
G. Then there is a constant E such that for any ǫ > 0 there is a K and an N so
that if Gn denotes the set of elements of length n ≥ N , there is a subset G′n with
|G′n|/|Gn| ≥ 1− ǫ, so that for all g ∈ G′n, there is an inequality

|φ(g)− nE| ≤ K · √n
As a special case, let S1, S2 be two finite symmetric generating sets for G. Word

length in the S2 metric is a bicombable function with respect to a combing L1 for
the S1 generating set. Hence:

Corollary 6.76. Let S1 and S2 be finite generating sets for G. There is a
constant λ1,2 such that for any ǫ > 0, there is a K and an N so that if Gn denotes
the set of elements of length n ≥ N in the S1 metric, there is a subset G′n with
|G′n|/|Gn| ≥ 1− ǫ, so that for all g ∈ G′n there is an equality

∣∣λ1,2|g|S1
− |g|S2

∣∣ =
∣∣λ1,2 · n− |g|S2

∣∣ ≤ K · √n
Remark 6.77. In Corollary 6.76 it is important to note that though a typical geodesic
word of length n in the S1 metric is represented by a geodesic word of length n · λ1,2 in
the S2 metric, with error of order

√
n, the resulting set of geodesic words in the S2 metric

are not themselves typical. Thus λ1,2λ2,1 > 1 in general. We give an example to illustrate
this phenomenon in § 6.5.5.

If φ is a quasimorphism, then |φ(g) + φ(g−1)| ≤ const. so if S is symmetric,
then necessarily E as above is equal to 0. Hence:

Corollary 6.78. Let φ be a bicombable quasimorphism on a word-hyperbolic
group G. Let φn be the value of φ on a random word of length n with respect to the
ν̂ measure. Then there is convergence in the sense of distribution

lim
n→∞

n−1/2φn → N(0, σ)

for some σ ≥ 0.

6.5.5. An example. Let F denote the free group on two generators a, b.
Let S1 denote the symmetric generating set S1 = 〈a, b, a−1, b−1〉 and S2 the sym-
metric generating set S2 = 〈a, b, c, a−1, b−1, c−1〉 where c = ab (and therefore
c−1 = b−1a−1). We compare word length in the S1 and the S2 metrics.

One can verify that a word in the S2 generating set is a geodesic if and only
if it is reduced, and contains no subwords of the form a−1c, cb−1, c−1a, c−1b, and
moreover that geodesic representatives are unique. The language of all geodesics in
the S2 generating set is therefore a combing.

One can build a digraph Γ which parameterizes the language of geodesics in S2

as follows. There are seven vertices, one initial vertex and six other vertices labeled
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by the elements of S2. There is an outgoing edge from the initial vertex to each
other vertex, and one directed edge from x to y for each other vertex if and only
if xy is not one of the four “excluded” words above. See Figure 6.7. The vertices
have been labeled a, b, c, A,B,C and labels have been left off the edges for clarity.

Let Γ′ be obtained from Γ by removing the initial vertex. The adjacency matrix
of Γ′ is

M =




1 0 1 0 1 1
1 1 1 1 0 0
1 1 1 1 0 0
0 1 0 1 1 1
1 0 1 0 1 1
0 1 0 1 1 1




which is Perron–Frobenius with biggest real eigenvalue 4, and 1T ,1 as left and right
eigenvectors. It follows that the stationary measure is just equal to the ordinary
uniform measure. Note that there are 6× 4n−1 words of length n in the S2 metric,
and 4× 3n−1 words of length n in the S1 metric.

Let φSi denote the bicombable function which computes word length in the
Si metric. There are discrete derivatives dφS1

, dφS2
from the vertices of Γ′ to 1.

Here dφS2
is just the constant function Γ′ → 1, whereas dφS1

takes the value 1 on
the vertices labeled a, b, A,B and 2 on the vertices labeled c, C. It follows that a
random word of length n in the S2 metric has length 4n/3 in the S1 metric, with
error of order

√
n.

a

b

A

B

c

C

Figure 6.7. A digraph parameterizing geodesics in the S2 metric

On the other hand, dφS1
and dφS2

exist as functions from the vertices of Γ′1 to
1 where Γ′1 is the digraph in Figure 6.4. In this case, dφS1

is the constant function
Γ′1 → 1 and dφS2

is the function which takes the value 0 on the vertices labeled ab
and b−1a−1, and 1 on all other vertices. It follows that a random word of length n
in the S1 metric has length 5n/6 in the S2 metric, with error of order

√
n. Hence

λ1,2λ2,1 = 5/6× 4/3 = 10/9. with notation as in Corollary 6.76.
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In general, if the growth rate in the Si metric is λni for i = 1, 2 then there is
an inequality λi,j ≥ logλi/ logλj , by counting. In this case, we get the two (easily
verified) inequalities

0.83333 · · · = 5

6
≥ log 3

log 4
= 0.79248 · · ·

and

1.33333 · · · = 4

3
≥ log 4

log 3
= 1.26186 · · ·

Remark 6.79. The numbers λ1,2 where S1 and S2 are a symmetric basis for a free group
Fk, are studied in [119], where it is shown that they are always rational, and satisfy
2kλ ∈ Z[1/(2k − 1)].
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Hamenstädt, 83
Hamiltonian, 160
Harish-Chandra, 153



INDEX 207

Harvey, 80
Hass, 111
Hatcher, 2, 77, 80
Hausdorff, 53
Heegaard splitting, 108
Heegaard surface, 13
Hodgson, 61
Holliday junction, 136
Hopf’s formula, 5
Horsham, 163, 171
Howie, 87, 131
hyperbolic Dehn surgery, 60
hyperbolic Dehn surgery Theorem, 53
hyperboloid model, 8

ideal boundary, 66, 187
Immersion Theorem, 120
integral cycle, 3
Iozzi, 125
irreducible, 144

Jørgensen’s inequality, 62
Johnson, 27
Jordan curve theorem, 2
junction, 136
juncture, 22

Kaneyuki, 154
Karmarkar, 104
Keller, 137, 146
Kellerhals, 52
Kerckhoff, 61
Kiyomi, 102
Korkmaz, 79
Kotschick, 78, 80

Lagrangian, 125, 149, 153
lattice, vii, 137, 143, 144
Le Roux, 160
Lefschetz fibration, 78
length function, 83
LERF, 48, 121, 124
Lickorish, 77
Liehl, 147
lightlike, 150
linear programming, 96, 102
linking number, 112

Liousse, 142, 143
LO, 46
longitude, 52
Lyndon, 129

Malcev, 48
Malestein, 108
Manning, 32, 90
Margulis, 117

constant, 51, 52, 58, 64
Lemma, 51, 52
tube, 61

Markov, 192
Markov chain, 163, 184

ergodic, 168
stationary, 168, 192

Markov property, 168
Maslov class, 125
Masur, 80, 82
Matsumoto, 14, 28, 29
meridian, 52
Mess, 108
Meyerhoff, 52
Milley, 91
Milnor–Wood inequality, vii, 28, 91, 116
Mineyev

flow space, 68, 71
symmetric join, 68

Minsky, 80, 82
Monod, 137, 143, 144
monotone, 113

monotonicity, 14
Moore, 2
Morita, 14, 29
Morse Lemma, 66, 73
Münchhausen trick, 80, 141

Neumann, 61
nonuniform, 144

Oertel, 89
order topology, 46
orderable, 46, 47, 131
Ore, 14
Ore’s conjecture, 14
Outer space, 83

Paige, 137, 146
pair of pants, 53
Paneitz, 152
Papadopoulos, 188
Patterson–Sullivan measure, 184, 187, 188
Perron–Frobenius, 168, 195

matrix, 166
Perron–Frobenius Theorem, 167, 184
Picaud, 163
piece, 128
ping-pong, 60, 66, 118, 119
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Vignéras, 144
virtually bounds, 114, 117
Vogtmann, 83

weakly combable, 175
weakly properly discontinuous, 51, 74, 81,

84
Weierstrass point, 111
weight, 92
Weinbaum, 129
Whitehead link, 91
Wienhard, 125
Wiest, 46
wife

my lovely, ix
Wilton, 90, 110
winding number, 118
Witt identities, 108
Witte-Morris, 137, 146
word

alternating, 94
compatible family, 24
geometric, 90
monotone, 23
reduced, 166

Zagier, 61
Zariski dense, 125
Zariski topology, 1
Zeno of Elea, 80
Zhuang, 137, 139, 143

Zimmer, 161


	Preface
	Acknowledgments
	Chapter 1. Surfaces
	1.1. Triangulating surfaces
	1.2. Hyperbolic surfaces

	Chapter 2. Stable commutator length
	2.1. Commutator length and stable commutator length
	2.2. Quasimorphisms
	2.3. Examples
	2.4. Bounded cohomology
	2.5. Bavard's Duality Theorem
	2.6. Stable commutator length as a norm
	2.7. Further properties

	Chapter 3. Hyperbolicity and spectral gaps
	3.1. Hyperbolic manifolds
	3.2. Spectral Gap Theorem
	3.3. Examples
	3.4. Hyperbolic groups
	3.5. Counting quasimorphisms
	3.6. Mapping class groups
	3.7. Out Fn

	Chapter 4. Free and surface groups
	4.1. The Rationality Theorem
	4.2. Geodesics on surfaces
	4.3. Diagrams and small cancellation theory

	Chapter 5. Irrationality and dynamics
	5.1. Stein--Thompson groups
	5.2. Groups with few quasimorphisms
	5.3. Braid groups and transformation groups

	Chapter 6. Combable functions and ergodic theory
	6.1. An example
	6.2. Groups and automata
	6.3. Combable functions
	6.4. Counting quasimorphisms
	6.5. Patterson--Sullivan measures

	Bibliography
	Index

