
Getting Acquainted with 
Intersection Forms 

Chapter 3 

W E define the intersection form of a 4-manifold, which governs inter­
sections of surfaces inside the manifold. We start by representing ev­

ery homology 2-class by an embedded surface, then, in section 3.2 (page 
115), we explore the properties of the intersection form. Among them is 
unimodularity, which is essentially equivalent to Poincare duality. An im­
portant invariant of an intersection form is its signature, and we discuss 
how its vanishing is equivalent to the 4-manifold being a boundary of a 
5-manifold. After listing a few simple examples of 4-manifolds and their 
intersection form, in section 3.3 (page 127) we present in some detail the 
important example of the K3 manifold. 

Given any closed oriented 4-manifold M, its intersection form is the sym­
metric 2-form defined as follows: 

QM: H2(M;Z) x H2(M;Z) ~ Z 

QM(a:, {3) = (a: U ,B)[MJ . 

This form is bilinear1 and is represented by a matrix of determinant ± 1 . 
While over 1R this is a recipe for boredom, since this intersection form is 
defined over the integers (and thus changes of coordinates must be made 
only through integer-valued matrices), our QM is a quite far-from-trivial 
object. 

1. Notice that QM vanishes on any torsion element, and thus can be thought of as defined on the free 
part of H2 (M; Z); since our manifolds are assumed simply-connected, torsion is not an issue. 
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For convenience, we will often denote QM (LX, f3) by LX • f3. Further, we will 
identify without comment a cohomology class LX E H2(M~ Z) with its Poin­
care-dual homology class LX E H 2 (M ~ Z) . 

For defining QM more geometrically,2 we will represent classes LX and f3 
from H2(M;Z) by embedded surfaces SIX and Sf3' and then equivalently 
define QM (LX, f3) as the intersection number of SIX and Sf3: 

QM (LX, f3) = SIX . Sf3 . 

First, though, we need to argue that any class LX E H2 (M; Z) can indeed be 
represented by a smoothly embedded surface Sa: 

3.1. Preparation: representing homology by surfaces 

It is known from general results3 that every homology class of a 4-manifold 
can be represented by embedded submanifolds. Nonetheless, we present 
a direct argument for the case of 2-classes, owing to the useful techniques 
that it exhibits. 

Simply-connected case. Assume first that M is simply-connected. Then by 
Hurewicz's theorem 712(M) ~ H2(M~Z), and hence all homology classes 
of M can be represented as images of maps f: 52 -4 M. The latter can 
always be perturbed to yield immersed spheres, whose only failures from 
being embedded are transverse double-points. These double-points can be 
eliminated at the price of increasing the genus. 

For example, by using complex coordinates, a double-point is isomorphic 
to the simple nodal singularity of equation 2122 = 0 in C2: the complex 
planes 21 = 0 and 22 = 0 meeting at the origin. It can be eliminated 
by perturbing to 2122 = E, as suggested in figure 3.1 on the facing page. 
(A simple change of coordinates transforms the situation into perturbing 
wi + w~ = 0 to wi + w~ = E.) 

More geometrically, imagine two planes meeting orthogonally at the origin 
of IR4. Their traces in the 3-sphere 53 are two circles, linking once.4 We can 
eliminate the singularity if we discard the portions contained in the open 4-
ball bounded by 53 , and instead connect the two circles in 53 by an annular 

2. 'Think with intersections, prove with cup-products." 

3. For example, for any smooth oriented XIII and any Cl: E H*(X;Z), there is some integer k so that 
ka can be represented by an embedded submanifold; if IX has dimension at most 8 or codimension at 
most 2, then it can be represented directly by a submanifold; if XIII is embedded in lR",+2, then X is 
the boundary of an oriented smooth (m + 1 )-submanifold in IRI1l+2. These results were announced 
in R. Thorn's Sous-varietes et classes d'homologie des varieUs differentiables [Tho53a] and proved in 
his celebrated Quelques proprieUs globales des varieUs differentiables [Tho54]. 

4. Think: fibers of the Hopf map 53 -t CJP 1 
; the Hopf map will be recalled in footnote 34 on page 129. 
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> 

3.1. Eliminating a double-point, 1: complex coordinates 

sheet, as suggested in figureS 3.2. Thus, we replaced two disks meeting at 
the double-point by an annulus. A 4-dimensional image is attempted in 
figure6 3.3 on the following page. 

3.2. Eliminating a double-point, 11: annulus 

5. On the left of figure 3.2, one circle is drawn as a vertical line through 00, after setting 53 = IR J U 00. 

6. As usual, in figure 3.3, dotted lines represent creatures escaping in the fourth dimension. 
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.... 

) 

3.3. Eliminating a double-point, III 

Either way, we can eliminate all double-points of the immersed sphere, and 
the result is then an embedded surface representing that homology class. 
Thus, all homology classes can be represented by embedded surfaces, but 
rarely by spheres. 

The failure to represent homology classes by smoothly embedded spheres is 
of course related to the failure of smoothly embedding disks. The natural 
question to ask is then: what is the minimum genus needed to represent a 
given homology class? We will come back to this question later.7 

In general. The method above only works for simply-connected M4 ,s. An 
argument for general 4-manifolds has two equivalent versions: 

(1) Since (]POO is an Eilenberg-Maclane K(Z,2)-space,s it follows that 
the elements of H2(M; Z) correspond to homotopy classes of maps M ~ 
(]poo. Since M is 4-dimensional, such maps can be slid off the high-dimen­
sional cells of ClPoo and thus reduced to maps M ~ ClP2 . For any class 
lX E H2 (M; Z), pick a corresponding fa: M ~ ClP2 and arrange it to be 
differentiable and transverse to (::Jpl C (]p2. Then fa- l [CPI] is a surface 
Poincare-dual to lX. 

(2) Equivalently, since ClPoo coincides with the classifying space9 ~U(I) 
of the group U(I), classes in H2(M;Z) correspond to complex line bun­
dles on M, with lX being paired to La whenever Cl (La) = lX. If we pick a 

7. See ahead, chapter 11 (starting on page 481). 

S. An Eilenberg-Maclane K(G,m)-space is a space whose only non-zero homotopy group is 7r17l = 
G; such a space is unique up to homotopy-equivalence. It can be used to represent cohomology as 
H m (X; G) = [X; K( G, In)] ,where [A; B] denotes the set of homotopy classes of maps A -t B. 

9. A classifying space ~G for a topological group G is a space so that [X; .@G] coincides with the 
set of isomorphisms classes of G-bundles over X. A bit more on classifying spaces is explained in the 
end-notes of the next chapter (page 204). 
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generic section (J' of LIX , then its zero set (J'-l [0] will be an embedded surface 
Poincare-dual to a. 

3.2. Intersection forms 

Given a closed oriented 4-manifold M, we defined its intersection form as 

where SIX and Sf3 are any two surfaces representing the classes a and [3. 

Notice that, if M is simply-connected, then H2(M; Z) is a free Z-module 
and there are isomorphisms H2 (M; Z) ~ EB m Z, where m = b2 (M). If M 
is not simply-connected, then H2(M; Z) inherits the torsion of Hi (M; Z), 
but by linearity the intersection form will always vanish on these torsion 
classes; thus, when studying intersection form, we can safely pretend that 
H2(M; Z) is always free. 

Lemma. The form QM(a, (3) = SIX . Sf3 on H2(M; Z) coincides modulo Poincare 
duality with the pairing QM(a*, f3*) = (a* U f3*)[M] on H2(M; Z). 

Proof Given any class a E H2(M;Z), denote by a* its Poincare-dual 
from H2(M;Z); we have a* n [M] = a. We wish to show that the 
pairing 

QM(a*,[3*) = (a* U [3*)[M] 

on H2 (M; Z) defines the same bilinear form as the one defined above. 

We use the general formula1o (a* U [3*) [M] = a* [[3*n [M]J, from which 
it follows that QM(a*,[3*) = a*[f3], or 

QM(a*,f3*) = a*[Sf3] . 

Therefore, we need to show that 

a*[Sf3] = SIX . Sf3 . 

Since QM vanishes on torsion classes, it is enough to check the last 
formula by including the free part of H2(M; Z) into H2(M; R) and by 
interpreting the latter as the de Rham cohomology of exterior 2-forms. 

Moving into de Rham co homology translates cup products into wedge 
products and cohomology I homology pairings into integrations. We 
have, for example, 

QM(a*,[3*) = iM a* 1\f3* 

for all2-forms a*, f3* E f(A2(TMJ)· 

and 

10. More often written in terms of the Kronecker pairing as (IX'" U f3"', [MD = (IX*, f3'" n [MD. 
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In this setting, given a surface Sa, one can find a 2-form a* dual to SIX 
so that it is non-zero only close to SIX' Further, one can choose some 
local oriented coordinates {Xl, X2, Yl, Y2} so that Sa coincides locally 
with the plane {Yl = 0; Y2 = O}, oriented by dXl 1\ dX2. One can 
then choose a* to be locally written a* = f(Xl, X2) dYl 1\ dY2, for some 
suitable bump-function f on R2, supported only around (0,0) and 
with integral fR2 f = 1. 

If Sf3 is some surface transverse to SIX and we arrange that, around 
the intersection points of SIX and Sf3' we have Sf3 described by {XI 
0; X2 = O}, then clearly 

r a* = Sa . Sf3 ' 
JS{3 

with each intersection point of SIX and Sf3 contributing ± 1 depending 
on whether dYI 1\ dY2 orients Sf3 positively or not.u 0 

Unimodularity and dual classes 

The intersection form QM is Z-bilinear and symmetric. As a consequence of 
Poincare duality, the form QM is also unimodular, meaning that the matrix 
representing QM is invertible over Z. This is the same as saying that 

detQM = ±l . 
Unimodularity is further equivalent to the property that, for every Z-linear 
function f: H2(M;Z) ~ Z, there exists a unique a E H2(M;Z) so that 
f(x)=a.x. 

Lemma. The intersection form QM of a 4-manifold is unimodular. 

Proof. The intersection form is unimodular if and only if the map 

QM: H2(M;Z) ---+ HOffiZ (H2(M;Z), Z) 

IX ~ x~a'x 

is an isomorphism. We will argue that this last map coincides with 
the Poincare duality morphism. Indeed, Poincare duality is the isomor­
phism 

IX ~ a* , 

with a* characterized by a* n [M] = a. Assume for simplicity that 
H2 (M; Z) is free.12 Then the universal coefficient theorem13 shows that 

11. See R. Bott and L. Tu's Differential forms in algebraic topology [BT82] for more such play with 
exterior forms. 

12. If not free, a similar argument is made on the free part H2(M; Z) / Ext(H\ (M; Z); Z) of H2(M; Z), 
which is all that matters since QM vanishes on torsion. 

13. The universal coefficient theorem was recalled on page 15. 
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we have an isomorphism 

H2(M;Z) ~ Hom(H2(M;Z), Z) 
IX* X I---t IX*[X] . 

Combining Poincare duality with the latter yields the isomorphism 

H2(M;Z) ~ Hom(H2(M;Z), Z) 

X I---t IX* [x] . 
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However, as argued in the preceding subsection, we have QM (IX, x) = 
IX* [x], and therefore the above isomorphism coincides with the map 
QM' That proves that the intersection form QM is unimodular. 0 

Further, the unimodularity of QM is equivalent to the fact that, for every 
basis {IX I, ... , IXm} of H2 (M; Z), there is a unique dual basis {,B I, ... ,,Bm} 
of H2(M;Z) so that IXk·,Bk = +1 and lXi' {3j = 0 if i i- j. 

To see this, start with the basis {aI, ... , am} in H2 (M; Z) / pick the familiar 
dual basis14 {a7, ... ,lt~} in the dual Z-module Hom(H2(M;Z), Z), then 
transport it back to H2(l\1; Z) by using Poincare duality (or QM) and hence 
obtain the desired basis {,sI, ... , ,sm}. 

In particular, for every indivisible class IX (i.e., not a multiple), there exists 
at least one dual class ,B such that IX . {3 = + 1: complete IX to a basis and 
proceed as above. (Of course, such ,B'S are not unique: once you find one, 
you can obtain others by adding any / with IX'/ = 0.) 

lntersection forms and connected sums 

The simplest way of combining two 4-manifolds yields the the simplest 
way of combining two intersection forms. First, a bit of review: 

Remembering connected sums. The connected sum of two manifolds M 
and N, denoted by N M# , 

is the simplest method for combining M and N into one connected man­
ifold, by joining them with a tube as sketched in figure 3.4 on the next 
page. Notice that the 4-sphere is an identity element for connected sums: 
M#S4 ~ M. 

:onnected sums are described more rigorously by choosing in each of M 
lnd N a small open 4-ball and removing it to get two manifolds MO and 
rvo, each with a 3-sphere as boundary, then identifying these 3-spheres to 
)btain the closed manifold M # N . 

l4. Recall that, given a basis {el, ... , em} in a module Z, the dual basis {er, ... , e~,} in Z* is specified 
'Y setting e;(ek) = 1 and ej(ej) = 0 for i t= j. 
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J[ > 

3.4. The connected sum of two manifolds, I 

More about connected sums. The identification of the two 3-spheres must 
be made through an orientation-reversing diffeomorphism a MO ~ a N°, as 
was mentioned on page 13. Indeed, if M and N are oriented, then the new 
boundary 3-spheres will inherit orientations. In order that the orientations of 
M and N be nicely compatible with an orientation of M # N, we must identify 
the 3-spheres with an orientation flip. 

Furthermore, to ensure that M # N is a smooth manifold, this gluing must be 
done as follows: Choose open 4 -balls in M and N, then remove them. Embed 
copies of 53 x [0, I] as collars to the new boundary 3-spheres. Take care to 
embed these collars so that, on the side of M, the sphere 53 x I be sent onto 
a MO, with 53 x [0,1) going into the interior of MO. On the N side, 53 x ° 
should be sent onto a N° and 53 x (0, 1] into the interior of N° . Now identify 
the two collars 53 x [0, I] in the obvious manner and thus obtain M # N, as 
in figure 3.5. This automatically forces the boundary-spheres to be identified 
Hinside-out", reversing orientations, and further makes it clear that M # N is 
smooth.1S See figure 3.6 on the next page. The equivalence of this procedure 
with 'Joining by a tube" is explained in figure 3.7 on the facing page. 

_M_O ~I I~_N_O > MUN I 
3.5. Gluing by identifying collars 

Sums and forms~ This connected sum operation is nicely compatible with 
intersection forms: 

Lemma. If M and N have intersection forms QM and QN' then their connected 
sum M # N will have intersection form 

QMUN = QM EB QN . 

Proof. Since MO and N° can be viewed as M and N without a 4-
handle (or a 4-cell), and since 2-homology is influenced only by 1-, 2-
and 3-handles, it follows that the 2-homologyof M # N will merely be 
the friendly gathering of the 2-homologies of M and N, intersections 
and all. 0 

15. In fact, each time you read" A Imd B both have the same boundary, so we glue A and B along if', you 
should understand that the "gluing" is done via an orientation-reversing diffeomorphism a A ~ aB, 
and that a collaring procedure as above is used. This was already explained on page 13. For more on 
the foundation of these gluings, read from M. Hirsch's Differential topology [Hir94, sec 8.2]. 
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3.6. The connected sum of two manifolds, II 

J[ ) ) 

3.7. The connected sum of two manifolds, III 

Topological heaven. For topological 4-manifolds a converse is true: 

Theorem (M. Freedman). If M is simply-connected and QM splits as a direct 
sum QM = Q' EB Q", then there exist topological 4-manifolds N' and N" with 
intersection forms Q' and Q" such that M = N' # N" . 0 

This is a direct consequence of Freedman's classification that we will present 
later.16 Such a result certainly fails in the smooth case, and its failure spawns 
exotic17 R4 's. 

Invariants of intersection forms 

To start to distinguish between the various possible intersection forms, we 
define the following simple algebraic invariants: 

16. See ahead section 5.2 (page 239). For a more refined topological sum-splitting result, we refer to 
M. Freedman and F. Quinn's Topology of 4-manifolds [FQ90, ch to]. 

17. See ahead section 5.4 (page 250). 
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- The rank of QM : 

It is the size of QM 's domain, defined simply as 

rank QM = rankz H2(M;Z) I 

or rank QM = dim IR H2(M; R). In other words, the rank is the second 
Betti number b2 (M) of M. 

- The signature of QM: 
It is obtained as follows: first diagonalize QM as a matrix over R (or 
Q), separate the resulting positive and negative eigenvalues, then sub­
tract their counts; that is 

sign QM = dim H! (M; R) - dim H: (M; R) I 

where Hi are any maximal positive/negative-definite subspaces for 
QM' We can set partial Betti numbers b~ = dim Hi, and thus we can 
read sign QM = bi (M) - b2 (M). 

- The definiteness of QM (definite or indefinite): 

If for all non-zero classes it we always have QM (it, it) > 0, then QM is 
called positive definite. 

If, on the contrary, we have QM (iX, iX) < 0 for all non-zero it'S, then 
QM is called negative definite. 

Otherwise, if for some it+ we have QM(it+, it+) > 0 and for some it_ 

we have QM (it_, it_) < 0, then QM is called indefinite. 

- The parity of QM (even or odd): 

If, for all classes it, we have that QM(iX, IX) is even, then QM is called 
even. Otherwise, it is called odd. Notice that it is enough to have one 
class with odd self-intersection for QM to be called odd. 

Signatures and bounding 4-manifolds 

A first remark is that signatures are additive: sign( Q' EB Q") = sign Q' + 
sign Q" . In particular,18 

sign(M # N) = sign M + sign N . 

Another remark is that changing the orientation of M will change the sign 
of the signature: 

sign M = - sign M I 

since it obviously changes the sign of its intersection form: QM = - QM . 

18. The additivity of signatures still holds for gluings M Ua N more general than connected sums. 
This result (Novikov additivity) and an outline of its proof can be found in the the end-notes of the next 
chapter (pa~e 224). 
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The signature vanishes for boundaries. More remarkably, the vanishing of 
the signature of a 4-manifold M has a direct topological interpretation: 

Lemma. If M4 is the boundary of some oriented 5-manifold W5 , then 

signQM = o. 

Proof. Since the signature appears after diagonalizing over some field, 
we will work here with homology with rational coefficients. Thus, de­
note by t: H2 (M;Q) ~ H2 (W;Q) the morphism induced from the 
inclusion of M4 as the boundary of W5 . 

If bounding. First, we claim that if both IX, f3 E H2 (M; Q) have tIX = 0 
and tf3 = 0 then their intersection must be IX . f3 = O. Indeed, since IX 
and f3 are rational, some of their multiples mlX and n f3 will be integral. 
Then nllX and nf3 can be represented by two embedded surfaces Smo: 
and 5 11 /3 in M. Since ux = 0 and lf3 = 0, this implies that Smo: and 
511 /3 will bound two oriented 3-manifolds Ymo: and Ynf3 inside W. The 
intersection number IX . f3 is determined by counting the intersections 
of the surfaces Smo: and Snf3' then dividing by mn. However, the inter­
section of Y,~a: and Y~f3 inside W5 consists of arcs, which connect pairs 
of intersection points of Smo: and Snf3 with opposite signs, as pictured 
in figure 3.8. It follows that Sma: . Sna: = 0, and therefore lX . f3 = 0, as 
claimed. 

M 

3.8. Bounding surfaces have zero intersection 

If not bounding. Second, we claim that for every lX E H2 (M; Q) with 
tIX f=. 0 there must be some f3 E H2(M; Q) so that lX . {3 = + 1 but l{3 = O. 
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To see that, we notice that, since ux i= 0 in H2 (W;Q), there exists a 3-
class B E H3 (W, a W; Q) that is dual19 to our ux E H2(W; Q), i.e., has 
tx· B = + 1 in W5. Its boundary aB = f3 is a class in H2(M; Q), and we 
have that a . f3 = la . B = + 1 and also that lf3 = O. See figure 3.9. 

". . .... ..................... 

3.9. A non-bounding class has a bounding dual 

Unravel the form. Finally, we are ready to attack the actual intersection 
form of M. Any class a that bounds in W, i.e., has la = 0, must have 
zero self-intersection tx . a = O. We are thus more interested in classes 
tx that do not bound. 

Assume we choose some a E H2(M; Q) so that la i= O. Then there 
is some f3 E H2 (M;Q) so that a· f3 = +1, while lf3 = 0, and thus 
f3 . f3 = O. Therefore the part of QM corresponding to {a, f3} has matrix 

Q.p = [; ~] , 

which has determinant -1 and diagonalizes over Q as [+ 1 J EB [- I] . 

Since QM is unimodular, this means that QM must actually split as a 
direct sum QM = QIX{3 EB Q..l for some unimodular form Q-L defined 
on a complement of Q{tx,f3} in H2 (M;Q). Since the signature is addi­
tive and one can see that sign QIX f3 = 0, we deduce that we must have 
sign QM = sign Q..l . 

We continue this procedure for Q..l , splitting off 2-dimensional pieces 
until there are no more classes a with ltx i= 0 left. Then whatever is still 
there has to bound in W, and hence c~ot contribute to the signature. 
Therefore sign QM = O. 0 

19. A reasoning analogous to the one we made earlier for QM applies to the intersection pairing 
H2(W;Z) x H3(W,aW; Z) -7 Z. Inparticular,itisunimodular, and thus we have dual classes; since 
we work over O. the indivisibility of IX is not required. 
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A consequence of this result is that, whenever two 4-manifolds can be 
linked by a cobordism, they must have the same signature. Indeed, if 
a w = MU N, then 0 = sign(M UN) = - sign M + sign N. That is: 

Corollary. If two manifolds are cobordant, then they have the same signature. 
Signature is a cobordism invariant. 0 

The signature vanishes only for boundaries. A result quite more difficult to 
prove is the following: 

Theorem (V Rokhlin). If a smooth oriented 4-manifold M has 

signQM = 0, 

then there is a smooth oriented 5-manifold W such that a W = M. 

Idea of proof. A classic result of Whitney assures that any manifold 
X I11 can be immersed in 1R 2m -1 ; in particular, our M4 can be immersed 
in JR.7. By performing various surgery modifications, we then arrange 
that M be cobordant to a 4-manifold M' that embeds in JR.6. Further­
more, a result of R. Thom20 implies that M' must bound a 5-manifold 
W' inside JR.6. Attaching W' to the earlier cobordism from M to M' 
creates the needed W5 . A few more details for such a proof will be 
given in an inserted note on page 167. 0 

Therefore, the signature of M is zero if and only if M bounds. And hence: 

Corollary ( Cobordisms and signa tures). Two 4-manifolds have the same sig­
l1ature if and only if they are cobordant. Signature is the complete cobordism in-
pariant. 0 

A consequence is that, unlike h-cobordisms, simple cobordisms are not 
very interesting: Every 4-manifold M is cobordant to a connected sum of {]p2'S 
or of {]p2's or to 54. Indeed, assume that sign M = m > 0; then, since 
sign (]p2 = I, it follows that M and #m Cp2 must be cobordant; if m < 0, 
use Cp2's instead. 

Simple examples of intersection forms 

Since the first example of a 4-manifold that comes to mind, namely the 
sphere 54, does not have any 2-homology, it has no intersection form worth 
mentioning. Thus, we move on: 

20. The result was quoted back in footnote 3 on page 112. 
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The complex projective plane. The complex projective plane (]p2 has inter­
section form 

Indeed,since H2 ({]P2 ;Z) = Z{[ClPl]} where [ClPl] isthedassofaprojec­
tive line, and since two projective lines always meet in a point, the equality 
above follows. 

The oppositely-oriented manifold ClP2 has 

QClP2 = [-1] 

Sphere bundles. The manifold 52 x 52 has intersection form 

Q s' x s' = [1 1]. 
We will denote this matrix by H (from ''hyperbolic plane"). 

Reversing orientation does not exhibit a new manifold: there exist orienta­
tion-preserving diffeomorphisms 52 x 52 ~ 52 X 52, and they correspond 
algebraically to isomorphisms H :::::: - H. 

The twisted product 52 X 52 is the unique nontrivial sphere-bundle21 over 
52. It is obtained by gluing two trivial patches (hemisphere) x 52 along the 
equator of the base-sphere, using the identification of the 52-fibers that 
rotates them by 2n as we travel along the equator. The intersection form is 

Qs' xs' = [: 1]. 
A simple change of basis in H2 (52 X 52; Z) exhibits the intersection form 
as 

QS2 "S2 = [
1 -1] = [+1] Ell [- 1] . 

Even more, it is not hard to argue that in fact we have a diffeomorphism22 

52 x 52 ~ ClP2 #ClP2 , 

and so we have not really encountered anything essentially new. 

21. Since an S2 -bundle over S2 = [)21 U [)22 is described by an equatorial gluing map Si -,> 50(3), 
and 7I1 50( 3) = 'Z2, it follows that there are only two topologically-distinct sphere-bundles over a 
sphere. 

22. Quick argument: The equatorial gluing map Si -,> 50(3) of 52 x S~ can be imagined as follows: 
as we travel along the equator of the base-sphere, it fixes the poles of the fiber-sphere and rotates the 
equator of the fiber-sphere by an angle increasing from 0 to 2n. Then these fiber-equators describe 
a circle-bundle of Euler number 1, which thus has to be the Hopf circle-bundle S3 -,> S2. Hence 
the sphere-bundle is cut into two halves by a 3-sphere. Each of these halves is a disk-bundle of Euler 
number 1 and can therefore be identified with a neighborhood of CIP I inside OP2, but the complement 
of such a neighborhood is just a 4- ball. Taking care of orientations yields the splitting S2 x S2 = ClP2 # 

CIP 2 . 
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Connected sums. Of course, through the use of connected sums we can 
build a lot of boring examples, such as C1P2 # C1P2 # 52 X 52, whose in­
tersection form is the sum [+ 1] EB [-1] EB H. (Incidentally, notice that this 
manifold has signature zero, and thus must be the boundary of some 5-
manifold.) 

The Es-manifold. More interesting, though rather exotic, is Freedman's 
Eg-manifold MEs = PEsUr;p.1. This topological 4-manifold was built ear­
lier23 by plumbing on the Eg diagram and capping with a fake 4-ball. Its 
intersection form can be read from the plumbing diagram to be 

2 1 
1 2 

2 
2 

2 
2 1 

2 
2 

From now on, we will denote this matrix24 by Eg, and succinctly write 
Q.M = Eg. The Eg-manifold does not admit any smooth structures.25 

2 2 2 2 2 2 2 

3.10. The E8 diagram, yet again 

An alternative algebraic description of this most important £8 -form is the 
following: Consider the form Q = [-1] ED 8 [+ 1], with corresponding basis 
{eO,el, ... ,e8}. The vector K = geo + Cl + ... + Cs has K· K = -1; therefore 
its Q-orthogonal complement must be unimodular. This complement is the 
£8 -form. In particular, we have £8 EB [- I] ~ [- I] Efl 8 [+ 1] . 

Lemma. The Eg -form is positive-definite, even, ([nd of signature 8. 

Unexpectedly, proof We will perform elementary operations on the 
rows and columns of the Eg-matrix. This will be fun. 

23. See section 2.3 (page 86). 

24. Various people have slightly different favorite choices for their E8 -matrix, for example, the nega­
tive of the above matrix. A brief discussion is contained in the end-notes of this chapter (page 137). 

25. This is a consequence of Rokhlin's theorem, see section 4.4 (page 170) ahead. 
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First off, notice that these operations must be applied symmetrically, cor­
responding to changes of basis in H2(M; Z). That is to say, when for 
example we subtract 3/2 times the first row from the third, we must 
afterwards also subtract 3/2 times the first column from the third col­
umn. Indeed, since the matrix A of a bilinear form acts on H2 x H2 
by (x,y) ~ xt Ay, any elementary change of basis 1+ AEij on H2 will 
transform A into (I + AEji)A(I + AEij)' 

Denote by (1), (2), (3), (4), (5), (6), (7), (8) the eight rows/columns of 
the E8-matrix, and let us start: We write down the E8-matrix, then 
subtract 1/2 x (1) from (2): 

2 1 2 
1 2 1 3/2 1 

I 2 1 I 2 I 
I 2 1 

I 2 1 
then 1 2 I 

1 2 1 1 • 

1 2 1 1 2 I 
1 2 I 2 

2 2 

Subtract 2/3 X (2) from (3), then subtract 3/4 x (3) from (4): 

2 2 

4/3 1 
1 2 1 

I 2 1 
then 5/4 I 

I 2 I 1 • 

1 2 1 1 2 1 
I 2 1 2 

2 2 

Subtract 4/5 x (4) from (5), then subtract 1/2 x (8) from (5): 

2 2 
3/2 

6/5 1 
then 

7/10 1 
1 2 1 1.· 2 1 

1 2 1 2 
2 2 

Subtract 10/7 x (5) from (6), then subtract 7/4 x (6) from (7): 

2 2 

7/10 
then 5/4 

7/10 

4/7 1 
1 2 

2 2 

We have diagonalized E8, and its signature is 8. It is positive-definite. 
Its determinant is detEs = 2.3/2.4/3.5/4.7/10.4/7.1/4' 2 1 and 
hence ER is unimodular, as claimed. 0 



3.3. Essential example: the K3 surface 127 

A few more examples. ( 1) The intersection form of MEs # MEs is Eg EB - Eg . 
Algebraically, we ha ve Eg EB - Eg :::::: EB 8 H through a suitable change of basis. 
As it turns out, this corresponds to an actual homeomorphism26 

- 2 2 
MEs # MEs ~ # 8 5 x 5 . 

Hence the smooth manifold # 8 52 X 52 can be c~t into two non-smoothab1e 
topological4-manifolds, along a topo1ogically-embedded 3-sphere. 

(2) The intersection form of MEs#Cp2 is [- 1] EB 8 [+ 1], same as the intersec­
tion form of CP2 # 8 CP2. The two 4 -manifolds, though, are not homeomor­
phie, and the manifold MEs#Cp2 does not admit any smooth structures.27 

(3) The manifold MEs#MEs' with intersection form Eg EB Eg, is not smooth.28 

Neither is MEs # MEs # 52 x 52, nor is MEs # MEs # 2 52 X 52. However, sud­
denly MEs # MEs # 3 52 X 52 does admit smooth structures, and in what fol­
lows we will display such a smooth structure: 

3..3. Essential example: the K3 surface 

A less exotic example (than the E8-manifold) of a 4-manifold whose inter­
section form contains E8 's is the remarkable K3 complex surface that we 
build next: 

The Kummer construction 

Take the 4-torus 

and think of each SI-factor as the unit-circle inside C. Consider the map 

given by complex-conjugation in each circle-factor, as in figure 3.11 on the 
next page. The involution er has exactly 16 = 24 fixed points, and thus the 
quotient 

will have sixteen singular points where it will fail to be a manifold. Small 
neighborhoods of these singular points are cones29 on lR1P3. 

We wish to surger away these singular points of 1[4/ er in order to obtain an 
actual 4-manifold. For that, we consider the complex cotangent bundle T;2 
26. This homeomorphism follows from Freedman's classification, see section 5.2 (page 239). A direct 
argument can also be made, starting with the observation that .A.!lEg# MEs is the boundary of (MEs \ 
ball) x [0, IJ. 
27. This follows, again, from Freedman's classification. 

28. This is a consequence of Donaldson's theorem, section 5.3 (page 243). 

29. Remember that the cone CA of a space A is simply the result of taking A x [0,1] and collapsing 
A x 1 to a single point (the "vertex"). 
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3.11. Conjugation, acting on Si 

of the 2-sphere. It is the 2-plane bundle over 52 with Euler number -2 (it 
has opposite orientation30 to the tangent bundle T51 , whose Euler number is 
+ 2). Its unit-disk subbundle DT;2 is a 4-manifold bounded by lR1P3. 

Since a neighborhood of a singular point in 1['4/ (J" has the same boundary as 
DT;2' we can cut the former out of 1['4/ (J" and replace it by a copy of DT;2 . 
The result of this maneuver is essentially to remove the singular point and 
replace it with a sphere of self-intersection - 2 (the zero-section of DT;2). 
We do this for all sixteen singular points. 

Such a desingularization of 1['4/ eT yields a simply-connected smooth 4-mani­
fold. This manifold admits a complex structure (thus it is a complex sur­
face) and is called the K3 surface. The name comes from Kummer-Kahler­
Kodaira.31 The construction above is due to Kummer, which is why this 
manifold used to be known merely as the Kummer surface. 

Homology. The K3 surface has homology H2(K3; Z) = 61 22Z (superfi­
cially, from 6 tori surviving from 1['4, plus the 16 desingularizing spheres). 
Its intersection form is 

2 2 1 
2 2 
1 2 1 2 

QK3 
1 2 2 1 

1 2 1 
61-

1 2 1 
1 2 1 2 

1 2 1 2 
1 2 2 

ill [I 1]E9[1 1]E9[1 1] 
and clearly it is better kept abbreviated as 

QK3 = 61 2( -E8) ffi 3H . 

30. For a discussion of orientations for complex-duals, see the end-notes of this chapter (page 134). 

31. A. Weil wrote that, besides honoring Kummer, Kodaira and Kahler, the name" K3" was also chosen 
in relation to the famous K2 peak in the Himalayas: "[Surfaces] ainsi 110mmeeS en l'honneur de Kummer, 
Kiihler, Kodaira, et de la belle montagne K2 au Cachemire." 
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Even if this manifold does not seem simple at all, it is in many ways as 
simple as it gets. We will see that K3 is indeed the simplest32 simply-connec­
ted smooth 4-manifold that is not S4 nor a boring sum of (]p2, (]p2 and 
S2 x 52's. 

The desingularization, revisited. Let us take a closer look at the desingular­
ization of ']['4/ (J that created K3 and try to better vi~ualize it. 

Consider first a neighborhood inside ']['4 of a fixed point Xo of (J. It is merely 
a 4-ball, which can be viewed as a cone over its boundary 3-sphere S3, 
with vertex at Xo. The action of (J on this cone can itself be viewed as being 
the cone33 of the antipodal map S3 ~ S3 (which sends w to -w). Therefore, 
the quotient of this neighborhood of Xo by (J must be a cone on the quotient 
of 53 by the antipodal map, in other words, a cone on IRIP3. 

Furthermore, S3 is fibrated by the Hopf map,34 which makes it into a bun­
dle with fiber S' and base S2. Then its quotient lRIP3 inherits a structure of 
IRIP' -bundle over S2: 

Si C S3 ~ S2 

11 

IRIPI C IR1P3 ~ S2. 

However, IRIP' is simply a circle, so in fact we exhibited IRIP3 as an SI­
bundle over S2. 

Now let us look back at the neighborhood of a singular point of ']['4/ (J. It 
is a cone on IRIP3, and we can think of it as being built by attaching a disk 
to each circle-fiber of IRIP3 , and then identifying all their centers in order to 
obtain the vertex of the cone, the singular point. When we desingularize, 
we replace this cone-neighborhood in ']['4/ (J with a copy of DT;2' This can 
be viewed simply as not identifying the centers of those disks attached to 
the fibers of IRIP3, but keeping them disjoint. The space of the circle-fibers 
of lRIP3 is the base S2 of the fibration. Thus the space of the attached disks is 
52 as well, and thus their centers (now distinct) will draw a new 2-sphere, 
which replaced the singular point. 

We can thus think of our desingularization as simply replacing each of the 
sixteen singular points of ']['4/ (J by a sphere with self-intersection -2. 

32. We take "simple" to include "simple to describe". Smooth manifolds with simpler intersection forms 
already exist (e.g., exotic #m 52 x 52 's, see page 553), and exotic 54 's could always appear. 

33. Remember that the cone Cf of a map f: A -> B is the function Cr CA ---t CB defined by first 
extending f: A ---t B to f x id: A x [0, I] -; B x [0, I], then collapsing A x I to a point and B x I to 
another, with the the resulting function er: CA -; CB sending vertex to vertex. 

34. Remember that the Hopf map is defined to send a point x E 53 C (:2 to the point from 52 = (:1P I 
that represents the complex line spanned by x inside (:2. Topologically, the Hopf bundle 53 -> 52 is 
a circle-bundle of Euler class + 1. Two distinct fibers will be two circles in 53 linked once (a so-called 
Hopf link, see figure 8.16 on page 318). The Hopf map 53 -> 52 represents the generator of 7t352 = Z. 



130 3. Getting Acquainted with Intersection Forms 

Holomorphic construction 

A complex geometer would construct the Kummer K3 in a way that visibly 
exhibits its complex structure. Specifically, she would start with ']['4 being 
a complex torus-for example the simplest such, the product of two copies 
of C / (Z EB iZ). Such a ']['4 comes equipped with complex coordinates 
('WI' 'W2), and the involution (7 can be described as (7( WI, W2) = (-WI' -W2) 

(which is obviously holomorphic). 

As before, the action of (7 has sixteen fixed points, but, before taking the 
quotient, the complex geometer will blow-up35 ']['4 at these sixteen points. 
This has the result of replacing each fixed point of (7 with a sphere of self­
intersection -1 (a neighborhood of which looks like a neighborhood of 
CIP I inside CIP 2). The map (7 can be extended across this blown-up 4-
torus: since she replaced the fixed points of (7 by spheres, she can extend (7 

across the new spheres simply as the identity, thus letting the whole sphe­
res be fixed by the resulting (7. 

Only now will the complex geometer take the quotient by (7 of the blown­
up 4-torus. The result is the K3 surface. The spheres of self-intersection 
- 1 created when blowing-up the torus will project to the quotient K3 as 
themselves (they were fixed by (7), but their neighborhoods are doubly­
covered through the action of (7; thus these spheres inside K3 have now 
self-intersection -2. 

Many K3's. This is the place to note that a complex geometer will in fact 
see a multitude of K3 surfaces. Indeed, "K3" is not the name of one complex 
surface, but the name of a class of surfaces.36 Any non-singular simply-con­
nected complex surface with Cl = 0 is a K3 surface. 

For example, in the construction above, if we start with a different complex 
structure on ']['4 (from factoring C2 by a different lattice), then we will end 
up with a different K3 surface. All K3' s that result from such a construc­
tion are called Kummer surfaces. However, K3 surfaces can be built in 
many other ways. One example is the hypersurface of ClP3 given by the 
homogeneous equation 

zt + zi + zj + z1 = 0 

(or any other smooth surface of degree 4). Another is the E(2) elliptic 
surface that we will describe in chapter 8 (page 301). 

This whole multitude of complex K3 surfaces, through the blinded eyes of 
the topologist, are just one smooth 4-manifold: any two K3's are complex­
deformations of each other, and thus are diffeomorphic. Hence, in this book 
we will carelessly be saying "the K3 surface". 

35. For a discussion of blow-ups, see ahead section 7.1 (page 286). 

36. For instance, the moduli space of all K3 surfaces has dimension 20. 
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K3 as an elliptic fibration 

The K3 surface can be structured as a singular fibration over S2, with gene­
ric fiber a torus. A (singular) fibration by tori of a complex surface is called 
an elliptic fibration (because a torus in complex geometry is called an elliptic 
curve). A complex surface that admits an elliptic fibration is called an ellip­
tic surface. The Kummer K3 is such an elliptic surface. Other examples of 
elliptic surfaces, as well as a different elliptic fib ration on the K3 manifold, 
will be discussed later.37 

In any case, describing the elliptic fibration of K3 will help us better visual­
ize this manifold. To exhibit it, we start with the projection 

SI x SI X SI X SI ---+ SI X SI 

of ']['4 onto its first two factors. After taking the quotient by the action of (T, 

this projection descends to a map 

1[4/ (T ---+ 1[2/ (T • 

Its target ']['2 / (T is a non-singular sphere S2, as suggested in figure 3.12 (it 
seems like it has four singular points at the corners, but these are merely 
metric-singular, and can be smoothed over). 

> 

3.12. Obtaining the base sphere: ']['2/ eT = 52 

Aside from the corner-points of the base-sphere ']['2 / (T, each of its other 
points comes from two distinct points (p, q) and (p, q) of ']['2 identified by 
(T. Thus, the fiber of the map 1[4/ (T ~ 1[2 / (T over a generic point appears 
from (T'S identifying two distinct tori p x q X SI X SI and p x q X SI X SI 
from ']['4. The resulting fiber will itself be a torus. This is the generic fiber 
of ']['4/ er ~ ']['2/ (T. See also figure 3.13 on the following page. 

On the other hand, each of the four corner-points of the sphere 1[2 / (T comes 
from a single fixed point (Po, qo) of (T on 1[2. Thus, the fiber of ']['4/ (T ~ 
']['2/ (T over such a corner appears from (T'S sending a torus po x qo X SI X SI 
to itself. The quotient of this torus is again a cornered-sphere (just as before, 
in figure 3.12), but now its corners coincide with the sixteen global fixed 
points of (T on 1[4. In other words, each such sphere-fib er contains four 

37. See chapter 8 (starting on page 301), which is devoted to these creatures. 
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of the sixteen singular points of the quotient 1'4/ (J", points where the latter 
fails to be a manifold. See again figure 3.13. 

1 

3.13. The map 1[4/ er --> 1[2/ er and its fibers 

This might be a good moment to notice that 1[4/ (J is simply-connected. It 
fibrates over 52, which is simply-connected, and any loop in a generic torus 
fiber can be moved along to one of the singular sphere-fibers and contracted 
there. The desingularization of 1[4/ (J into K3 does not create any new loops, 
and therefore the K3 surface is, as claimed, simply-connected. 

As explained before, we cut neighborhoods of the singular points out of 
'f4 / (J" and glue a copy of lDTs2 in their stead, thus replacing each singular 
point by a sphere; the result is the K3 surface. The projection 'f4 / (J" -7 

'f2 / (J" survives the desingularization as a map 

K3 ---t 52 . 

Indeed, since 'we only replaced sixteen points by sixteen spheres, we can 
send each of these spheres wherever the removed point used to go in 52. 

The generic fiber of K3 ~ 52 is still a torus. However, there are now also 
four singular fibers, each made of five transversely-intersecting spheres: 
the old singular sphere-fiber of 'f4 / (J, together with its four desingulariz­
ing spheres. A symbolic picture of this fib ration is figure 3.14. 
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-2 -2 -2 -2 

! 
3.14. K3 as the Kummer elliptic fibration 

Observe that the main sphere of the singular fiber must have self-intersection 
- 2. This can be can argued as follows: Denote by 5 the main sphere of a 
singular fiber and by 51,52,53,54 the desingularizing spheres. Recall how 
the main sphere 5 appeared from factoring by eT: doubly-covered by a torus. 
Imagine a moving generic torus-fiber F of K3 approaching our singular fiber: 
it will wrap around the main sphere twice, covering it. Also, the approaching 
fiber will extend to cover the desingularizing spheres once, and so in homol­
ogy we have F = 25 + 51 + 52 + 53 + 54. We know that F· F = 0 (since it is 
a fiber), and that each 5k . 5k = -2; then one can compute that we must also 
have5·5=-2. 

Finally, note that a neighborhood of the singular fiber inside K3 can be 
obtained by plumbing five copies of lOT;2 following the diagram from fi­
gure 3.15. 

-2 -2 

X 
-2 -2 

3.15. Plumbing diagram for neighborhood of singular fiber 
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Note: Duals of complex bundles and orientations 

The pretext for this note is to explain why the cotangent bundle T;2 (used earlier 
for building K3) has Euler class -2 rather than +2; that is to say, why T;2 and 
TS2 have opposite orientations. 

Let V be a real vector space, endowed with a complex structure. There are two 
ways to think of such a creature: (1) we can view V as a complex vector space, 
in other words, think of it as endowed with an action of the complex scalars C x 
V ----t V that makes V into a vector space over the field of complex numbers; or 
(2) we can view V as a real space endowed with an automorphism I: V ----t V 
with the property that I 0 I = - id. One should think of this I as a proxy for the 
multiplication by i. The two views are clearly equivalent, related by 

J(v)=i·v. 

Nonetheless, they naturally lead to two different versions of a complex structure 
for the dual vector space. 

The real version. Let us first discuss the case when we view V as a real vector space 
endowed with an anti-involution I. As a real vector space, the dual of V is 

V* = HOl11lR (V; JR) . 

A vector space and its dual are isomorphic, but there is no natural choice of iso­
morphism. To fix a choice of such an isomorphism, we endow V with an auxiliary 
inner-product ( ., . )lR . Then V and V* are naturally isomorphic through 

V ~ V*: V 1-----7 v* = ( . ,v)lR . 

If V is endowed with a complex structure I, then it is quite natural to restrict the 
choice of inner-product to those that are compatible with I. This means that we 
only choose inner-products that are invariant under I: we require that 

(Iv, l'w)n<. = (v, w)n<. . 

An immediate consequence is that we have (Iv, w)lR = - (v, lw)n<. . 

We now wish to endow the dual V* with a complex structure of its own. In other 
words, we want to define a natural anti-involution J*: V* ----t V* induced by I. 
Since an isomorphism V ~ V* was already chosen, it makes sense now to sim­
ply transport I from V to V* through that isomorphism. Namely, we define the 
complex structure J* of V* by 

]*(v*) = (Jv)* . 
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More explicitly, if f E V* is given by f(x) = (x,vh~ for some v E V, then 
(J*f)(x) = (x, JV)IR' However,thismeansthat (J*f) (x) = -(Ix, v)IR ,andsowe 
have 

J* f = - fU 0 ) • 

Notice that we ended up with a formula that does not depend on the choice of 
inner-product. Hence we have defined a natural complex structure J* on the real 
vector space V* = HomIR (V, 1R) . 

The complex version. If, on the other hand, we think of the complex structure of V 
as an action of the complex scalars that makes V into a vector space Vc over the 
complex numbers, then a different notion of dual space comes to the fore. We must 
define the dual as 

Vc = HoIl1c: (V, C) . 
This vector space comes from birth equipped with a complex structure, namely 

(i· f)(x) = i f(x) 

for every f E Vc' To better grasp what this Vc looks like, we will endow Vc with 
an auxiliary inner-product. The appropriate notion of inner-product for complex 
vector spaces is that of Hermitian inner-products. This differs from the usual inner 
products by the facts that it is complex-valued, and it is complex-linear in its first 
variable, but complex anti-linear in the second. We have (0, ° )c : V x V ~ C 
with (zv, w)c = z(v, w)c ' but (v, zW)c = z(v, w}c for everyl Z E C. 

Any Hermitian inner product can then be used to define a complex-isomorphism 
of Vc' though not with Vc' but with its conjugate vector space Vc. The latter 
is defined as being the real vector space V endowed with an action of complex 
scalars that is conjugate to that of Vc. That is to say, in Vc we have i . v = - iv. 
The complex-isomorphism with the dual is: 

Vc ~ Vc: v~v* = (o,v)c 

Notice that in the definition of v* we must put v as the second entry in ( ., . )c ' 
so that v* be a complex-linear function and thus indeed belong to Vc' 

If f E Vc is given by f(x) = (x, v)c for some v E V, then we have (if)(x) 
i f(x) = i(x, v)c = (x, -iv)c . This means that we have 

i· v* = (-iv)* , 

which shows that the complex-isomorphism above is indeed between the dual Vc 
and the conjugate vector space Vc. 

Comparison. In review, if we view a complex vector space as (V, J), then its dual 
is (V*, J*) and the two are complex-isomorphic. If we view a complex vector 
space as Vc' then its dual is Vc' which is complex-isomorphic to Vc. To compare 
the two versions, it is enough to notice that Vc translates simply as (V, - n. In­
deed, as real vector spaces (i.e., ignoring the complex structures) V* and Vc are 

1. It is worth noticing that the concept of a real inner product compatible with a complex structure, 
and the concept of Hermitian inner product are equivalent: one can go from one to the other by using 
(v, w)c = (v, w)1R - i (iv, ?,u)1R and (v, w)1R = Re (v, w)c . 
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naturally isomorphic. Specifically, the isomorphism HOffilR (V, 1R) ~ Holl1c (V, C) 
sends f: V ~ 1R to the function f c: V ~ C given by 

f c (x) = ~ (f ( x) - if (J x)) . 

The duals (V*, /*) and Vc thus differ not as real vector spaces, but because their 
complex structures are conjugate. This could be checked directly against the iso­
morphism above, or, in the simplifying presence of an inner-product, we could 

simply write: J*(v*) = (iv)* and i.v*=(-iv)*. 

Usage. We should emphasize that, while the "complex" version of dual is certainly 
the most often used, nonetheless both these versions are important. 

As a typical example, consider a complex manifold X I which is endowed with a 
tangent bundle T x and a cotangent bundle Tx. Owing to the complex structure of 
X, the tangent bundle has a natural complex structure on its fibers. The complex 
structure on Tx is always taken to be dual to the one on T x in its "complex" ver­
sion: as complex bundles, we have Tx ~ T x. In general for vector bundles with 
complex structures, the dual is usually taken to be the "complex" dual. 

The "real" version of dual is also used in complex geometry. Thinking now of the 
complex structure of T x as J: T x -t T x, we let it induce its own dual complex 
structure /* on Tx. We then extend /* by linearity to the complexified vector 
space Tx 01R C. The advantage of such an extension is that now J* has eigenval­
ues ±i, and thus splits the bundle Tx ':?:Q C into its ±i-eigenbundles as 

Tx ,~C = 1\ 1,0 EB 1\0, 1 I 

and hence separates complex-valued I-forms on X into type (1,0) and type (0, I). 
This is simply a splitting into complex-linear and complex-anti-linear parts: in­
deed /* (a:) = -ia: if and only if a:(/x) = +ia:(x) I and then a: E 1\1,0. 

The advantage of using J lies in part with clarity of notation: for a complex-valued 
creature, J will denote the complex action on its arguments (living on X), while i 
denotes the complex action on its values (living in C). 

More on complex-valued fonns. Every complex-I.<'alued function f: X ~ C has its differential 
df E f(Tx ® C) split into its (l, 0) -part a f E [(AI,O) and its (0,1) -part a f E [(Ao. I ). Hence, 

a f = ° means that f's deri\'ative is complex-linear, df(Jx) = i df, and thus that f is holomor­
phic. 

By using local real coordinates (XI. YI ... " XIII. ~f,II) on X such that Zk = Xk + iYk are local complex 
coordinates on X, we can define dZ k = dXk + i dYk and dZk = dXk - i dYb and write Al.o = 
C{dz l , ... ,dz",} and AO. I = C{dz l ... .. dzlII }. Indeed, !*(dzk) = +idzk. 

The split AI ® C = Al.o ffi AO. 1 further leads to a splitting of all complex-valued forms into 
(p, q) -types, as in Ak @C = Ak.O '1' i\h--1. 1 ·r, ... (d~ AI.k-1 $ AO,k. Specifically, NJ·q is made of all 
complex-valued forms that can be written using p of the dzk's and q of the dzk's. For example, 
A2,0 contains all complex-bilinear 2 -forms. 

The exterior differential d: f(Ak) -- r( ;\""-1) splits, after complexification, as d = d + a with 
d: f(AP,q) ~ f(AI1+I.I/) and a: [(N'·I/) - r(;\I'·q+I). Since aa = 0, trus can be llsed to de­
fine cohomology groups HP·q(X) = Kerd / Ima (called Dolbeault cohomology), which offer 
a cohomology splitting Hk(X; C) = I-lk.O(X) ,f) Hk- I, I (X) Ef) • " Ef) HI,k-1 (X) Ef) HO.k(X), \,vith 

HP,q(X) :::::: Hq,P(X); further, if X is Kahler, then the Hodge duality operator2 * will take 

2. The Hodge operator will be recalled in section 9.3 (page 350). 
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(p,q)-forms to (m - q, m - p)-forms, and lead into complex Hodge theory, to just drop some 
names. Any complex geometry book will explain these topics properly, for example P. Griffiths 
and J. Harris's Principles of algebraic geometry [GH7S, GH94j; we ourselves will make use of 
(p, q) -forms for some technical points later on.3 Part of this topic will be explained in more detail 
in the end-notes of chapter 9 (page 365). 

Orientations. Every vector space with a complex structure (defined either way) is 
naturally oriented by any basis like {el, iel, ... ,eb iek} (or {Cl, lel, ... ,eb lek} ). 
Thus its dual vector space, getting a complex structure itself, will be naturally 
oriented as well. However, the choice of duality matters: if our vector space V is 
odd-dimensional (over C), then the two versions of dual complex structure lead 
to opposite orientations of V's dual. Specifically, the real-isomorphism V ~ Vc 
reverses orientations, while V ~ (V*, J*) preserves them. 

For complex manifolds and their tangent/cotangent bundles, as we mentioned 
above, one uses the "complex" version of duality. Therefore, for a complex curve 
C (for example, 52) we have that the tangent bundle Tc and the cotangent bundle 
Tc' while isomorphic as real bundles, are naturally oriented by opposite orienta­
tions. In particular, the tangent bundle TS2 is the plane bundle of Euler class +2, 
while the cotangent bundle T;2 is the plane bundle with Euler class - 2. 

For a complex surface M (for example, K3), the tangent and cotangent bundles 
do not have opposite orientations. Nonetheless, their complex structures are con­
jugate, and this leads to phenomena like Cl (TNt) = -Cl (TM)' 

Note: Positive ESf negative Es 

In some texts, the Eg-forrn is sometimes described by the matrix 

2 -I 
-I 2 -I 

-I 2 -1 

Ex ;:::; 
-I 2 -1 

-1 2 -1 -I 

-1 2 -1 
-1 2 

-1 2 

Correspondingly, the negative-E8-form is sometimes written 

-2 1 
-2 1 

-2 1 
-2 

-2 
1 -2 

1 -2 
-2 

These alternative matrices are in fact equivalent with the ones presented earlier, 
because one can always find an isomorphism between the two versions: simply 
change the sign of "every other" element of the basis. Then the self-intersections 

3. In section 6.2 (page 278), the end-notes of chapter 9 (connections and holomorphic bundles, page 
365) and the end-notes of chapter 10 (Seiberg-Witten on Kahler and symplectic, page 457). 
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are preserved, but, if done properly, the intersections between distinct elements 
will all change signs. Peek back at the Eg diagram for inspiration. 

Complex geometers always prefer to have + 1 's off the diagonal (thinking in terms 
of complex submanifolds, which always intersect positively), and so they will 
write - Eg in the version displayed above. 

More than this, certain texts prefer to switch the names of the Eg- and negative­
Eg -matrices. Since what we denote here by - Eg appears quite more often than 
Eg, calling it Eg does save some writing. 

Pick your own favorites. 
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Intersection Forms and 
Topology 

Chapter 4 

lATE explore in what follows the topological ramifications of a 4-mani­
V V fold having a certain intersection form. The results discussed are classi­
cal, such as Whitehead's theorem, Wall's theorems, and Rokhlin's theorem. 
All classification results are postponed until the next chapter. 

We start by showing that the intersection form determines the homotopy 
type of a 4-manifold. This theorem of Whitehead is argued in two ways, 
once by using homotopy theory and once through a Pontryagin-Thorn ar­
gument. The end-notes (page 230) contain a more general discussion of the 
Pontryagin-Thorn technique. 

In section 4.2 (page 149) we explain the results of C.T.C. Wall: first, if two 
smooth 4-manifolds are h-cobordant, then they become diffeomorphic af­
ter summing with enough copies of 52 x 52; second, if two smooth 4-mani­
folds have the same intersection form, then they must be h-cobordant. No­
tice that this last result can be combined with M. Freedman's h-cobordism 
theorem to show that two smooth 4-manifolds with the same intersection 
forms must be homeomorphic. 

In section 4.3 (page 160) we discuss the characteristic classes of the tangent 
bundle of a 4-manifold. Most important among these is the second Stiefel­
Whitney class w2(TM). Its vanishing is equivalent, on one hand, to the 
intersection form being even, and on the other hand, to the existence of 
a spin structure on M. Various definitions of spin structures and related 
concepts are explained in the end-notes, and we refer to their introduction 
on page 173 for an outline of their contents. 

-139 
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Section 4.4 discusses the integral lifts of W2 (T M)' called characteristic ele­
ments. These always exist, and their self-intersections are congruent mod­
ulo 8 to the signature of M. A striking result of Rokhlin's states that if 
w2(TM ) vanishes and M is smooth, then the signature of M is not merely 
a multiple of 8, but of 16; the consequences of this fact pervade all of topol­
ogy. For us, an immediate consequence is that E8 can never be the intersec­
tion form of a smooth simply-connected 4-manifold. 

Finally, we should also mention that the end-notes contain a discussion of 
the theory of smooth structures on topological manifolds of high dimen­
sions (page 207). 

4.1. Whitehead's theorem and homotopy type 

It is obvious that, if two 4-manifolds are homotopy-equivalent, then their 
intersection forms must be isomorphic. A first hint of the overwhelming 
importance that intersection forms have for 4-dimensional topology comes 
from the following converse: 

Whitehead's Theorem. Two simply-connected 4-manifolds are homotopy-equi­
valent if and only if their intersection forms are isomorphic. 

The result as stated was proved by J. Milnor, based on J.H.C. Whitehead's 
work. The rest of this section is devoted to a proof of this result.1 

Start of the proof. Take a simply-connected 4-manifold M: it has homol­
ogy only in dimensions 0, 2 and 4. Therefore, by Hurewicz's theorem, 

7I2(M) ~ H2(M;Z) . 

Since M is simply-connected, the latter has no torsion and thus is isomor­
phic to some EEl 111 Z. Hence the isomorphism 7I2 ~ H2 can be realized by 
amap2 

Such f induces an isomorphism on 2-homology, and thus on all homology 
groups but the fourth. 

To remedy this defect, we can cut out a sma1l4-ball from M and thus anni­
hilate its H4. The remainder, denoted by MO, is now homotopy-equivalent 
to 52 V· .. V 52: Indeed, the map f can be easily arranged to avoid the miss­
ing 4-ball, and it then induces an isomorphism of the whole homologies of 

1. The next section starts on page 149. 

2. Remember that A V B is obtained by identifying a random point of A with a random point of B. 
(One can realize A V B as A x b U a x B inside A x B.) Thus, 52 V· .. V 52 is a bunch of spheres with 
exactlv one DOint in common; it is called a bouquet of spheres. 



4.1. Whitehead's theorem and homotopy type 141 

the two spaces. Invoking a celebrated result of Whitehead3 implies that f 
is in fact a homotopy equivalence 

MO rv 52 V ... V 52 . 

Since M can be reconstructed by gluing the 4-ball back to MO, we deduce 
that the homotopy type of M can equivalently be obtained from V m 52 by 
gluing a 4-ball H)4 to it: 

M rv V m 52 Ucp H)4 . 

The attachment of the ball is made through some suitable map 

cp: aH)4 --* Vm 52 . 

In conclusion, the homotopy type of M is completely determined by the 
homotopy class of this cp; this class should be viewed as an element of 
7I} ( V m 52). 

To prove Whitehead's theorem, we need only show that the homotopy class 
of cp is completely determined by the intersection form of M. This can be 
seen in two ways, an algebro-topologic argument and a more geometric 
(but longer) argument. We present both of them: 

Homotopy-theoretic argument 

For the following proof, the reader is assumed to have a friendly relation­
ship with algebraic topology; if not, skip to the alternative argument. 

At the outset, it is worth noticing that, through the homotopy equivalence 
M rv V 111 52 U cp H)4, the fundamental class [M] E H4 (M; Z) corresponds 

to the class of the attached 4-ball H)4; indeed, since the latter has its bound­
ary entirely contained in the 2-skeleton V m 52, it represents a 4-cycle. 

Think of each 52 as a copy of (:Jpl inside (]poo. Then embed 

52 V ... V 52 C {]POO X ... x {::Ipoo , 

and consider the exact homotopy sequence 

7I4 ( X m (:JpOO) -7 7I4 ( X m (]POO, Vm 52) -7 7I3 ( V 111 52) -7 7I3 ( X In (]POO) . 

Since (:Jpoo is an Eilenberg-MacLane K (Z, 2) -space, the only non-zero ho­
motopy group of X m (]POO is 7I2, and thus the above sequence exhibits an 
isomorphism 

3. The statement is: If between two simply-connected CW -complexes there exists a map that induces iso­
morphisms 011 all homology groups, then this map must be a homotopy equiul1lel1ce. Note that an abstract 
isomorphism of homologies is not sufficient. 
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The above 7I4 is made of maps ][)4 --? X m (]POO that take a][)4 to V m 52. 

The isomorphism associates to cp: a][)4 --? V m 52 in 7I3 the class of any of 
its extensions ~ 4 00 

cp:][) -----* X m ClP . 

Further, since the inclusion V m 52 C X m ClPoo induces an isomorphism 
on 7(2' s, a different portion of the same homotopy exact sequence implies 
that both 7I2 and 7I3 of the pair (Xm ClPoo

, Vm 52) must vanish. Therefore, 
Hurewicz's theorem shows that we have a natural identification 

7I4( X m ClPoo
, Vm 52) ~ H4( X m ClPoo

, Vm 52; Z) . 

Through this identification, the class of (f from 7I4 is sent to the class 

(f*[][)4] E H4( X m ClPoo
, Vm 52; Z) , 

where (f* is the morphism induced on homology by the map (f. 

Moreover, since both H4 and H3 of V m 52 vanish, the homology exact 
sequence makes appear the isomorphism 

H4( X m ClPoo
, Vm 52; Z) ~ H4( X m ClPoo

; Z) . 

For example, since (f* [][)4] represents a 4-class and its boundary is in­
cluded in the 2-skeleton of X m ClPoo

, it follows that (f* [[)4] can be viewed 
as a 4-cycle directly in H4 ( X m ClPoo

; Z). 

Owing to the lack of torsion, we also have a natural duality 

H4( X m ClPoo
; Z) = Hom(H4( X m ClPoo

; Z), Z) . 

This shows that, in order to determine (f* [][)4] in H4, it is enough to eval­
uate all classes from H4 on it. In other words, the class cp E 7I3 ( V m 52) 
(and thus the homotopy type of M) are completely determined by the set 
of values LXk ((f* [][)4]) for some basis {LXk} k of H4 ( X m ClPoo

; Z). 

Such a basis can be immediately obtained by cupping the classes dual to 
each 52, that is to say, we have 

H4( X m ClPoo
; Z) = Z{ Wi U Wj L,j' 

where Wk denotes the 2-class dual to ClP 1 inside the kth copy of ClPoo
• 

Furthermore, since 

H2( X m ClPoo
; Z) ~ H2( Vm 52; Z) ~ H2(MO; Z) ~ H2(M;Z) , 

we see that each class Wk of X m ClPoo can in fact be viewed as a 2-class 
Wk of M itself. 

Specifically, the inclusion I: V m 52 C X m ClPoo extends by (f to the map 

M rv Vm 52 U(f)][)4 l+ip) X m ClPoo • 
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The Wk'S appear as the pull-backs Wk = (l + ip)*Wk and make up a basis of 
H2(M;Z). 

Evaluating Wi U Wj on ip* [D4] inside X rn (]POO yields the same result as 
pulling Wi and Wj back to M, cupping there, and then evaluating on [D4]: 

(Wi U W j) ( ip * [D4] ) ( (l + ip) * ( W i U W j ) ) [D4] 

( (l + ip) * W i) U (( l + ip) * W j ) [D4] 

(Wi U wk)[D4
] . 

However, as we noticed at the outset, the class [D4] coincides with the 
fundamental class [M] of M, and hence 

(Wi U wk)[D4
] = QM(Wi, Wk) . 

Since {W 1, ... , wm } is a basis in H2 (M; Z) , we deduce that the set of values 
QM(Wi, Wk) fills-up a complete matrix for the intersection form QM of M. 

On the other hand, as we have argued, by staying in X m (Jpoo and eval­
uating all the Wi U w/s on ip* [D4] we fully determine the class of cp in 
7t3 ( V m 52) and thus fix the ham atopy type of M. 

This concludes one proof of Whitehead's theorem. o 

Pontryagin-Thom argument 

We have seen that the homotopy type of M can be represented as the result 
of gluing a 4-ball D4 to a bouquet of spheres 52 V ... V 52 by using some 
map cp: a D4 ---7 V m 52. Thus, the homotopy type of M corresponds to 
the homotopy class of cp. We need to argue that cp is determined by the 
intersection form of M. 

A geometric way of seeing how the intersection form QM determines the 

attaching map cp: 53 ~ Vrn 52 

comes from what is known as the Pontryagin-Thorn construction. The lat­
ter technique will be detailed in more generality in the end-notes of this 
chapter (page 230). 

The framed link. Pick some points PI, ... ,pm, one from each 2-sphere of 
V m 52. Arrange by a small homotopy that cp be transverse to these points. 

Also, wiggle cp until each pre-image cp-l [Pk] is connected.4 Then each Lk = 
cp-l [Pk] is an embedded circle in 53 (a knot), and so the union 

L = LIU···ULm 

is a link in 53, as suggested in figure 4.1 on the following page. 

4. If "wiggle" is not convincing, read from the end-notes of this chapter (pa2:e 230). 
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4.1. Framed link, from attaching a 4-ball to 52 V ... V 52 

The way this link L appears out of the map cp endows it with an extra 
bit of structure, namely a framing: For each Lk , embed its normal bundle 
N Ld9 as a subbundle of T53 over Lk. Since cp is transverse to Pk and can 
be assumed to be differentiable all around Lkt it follows that dcp: T531Lk ~ 

TS21 Pk restricts to a map NLd53 ~ T521Pk that is an isomorphism on fibers, 
see figure 4.2 on the next page. The effect is that the normal bundle NLK / 53 

is thus trivialized. Such a trivialization of the normal bundle of Lk is called 
a framing of the knot Lk . Doing this for each Pk results in a framed link 
L = L 1 U ... U Lm. Also notice that each component of the link gains a 
naturalorientation.5 

5. We have Ts~ ILk = hk EB NLkIS3; since 53 is oriented and NLklS3 lifts an orientation from 52 (at the 

same time with the framing), this induces an orientation of h" . 
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4.2. Pulling-back a framing 

The linking matrix. We now focus on some simple numerical data that is 
expressed by our L. On one hand, for every two components Li and Lj , we 
have the linking numbers 

This integer measures how many times Li twists around Lj . 

More rigorously, one chooses in 53 an oriented surface Fj bounded bY' Lj 
and counts the intersection number of Fj with Li in 53 / as in figure 4.3. The 
linking number does not depend on the choice of Fj and is symmetric on link 
components: Ik(L j , Lj) = Ik(Lj' Lj). 

4.3. Linking number of two knots 

We also have the self-linkings numbers lk(Lk , Lk ), induced from the fram­
ing. These count the twists of the trivialization of Lk'S normal bundle. 

6. Such a surface always exists and is called an (orientable) Seifert surface for Lj ; we will say a bit 

more in a second. 
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The self-linking number can be defined by picking some section of NLk / S3 

that follows the trivialization of NLds3 given by the framing, then thinking 
of that section as drawing a parallel copy L~ of Lk in S3, and finally setting 
Ik(Lb Lk ) to equal the linking number Ik(L~, Lk) of Lk with this parallel copy, 
as suggested in figure 4.4. In our context, this self-linking number can also be 
defined directly: since Lk = cp-l [Pk], pick a point P~ close to Pk, and define 
Ik(Lb Lk) = lk( cp-l [Pk], cp-l [p~]) . 

4.4. Self-linking number of a framed knot 

All these self/linking numbers can be fit together into a matrix 

[Ik( Lj , Lj ) L,j , 
which is called the linking matrix of the framed link L. 

On one hand, it turns out that this linking matrix is exactly the matrix of 
the intersection form of M, as we will argue shortly. On the other hand, 
a Pontryagin-Thom framed-bordism argument1 can be used to show that 
the homotopy class of cp is entirely determined by this linking matrix. 

The intersection form. To see that the linking matrix of L indeed governs 
intersections in M, start by choosing for each Lk an oriented surface Sk 
inside U 4 that is bounded by Lk , as in figure 4.5. 

4.5. Building intersections out of a link. 

7. See the end-notes of this chapter (page 230). 
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Such Sk'S exist because, as we mentioned before, every knot K in R3 bounds 
an orientable surface that is bounded by K, called a Seifert surface for K. (If 
not convinced, draw a knot, then try to draw its Seifert surface.s Take a peek 
at figure 4.6 for inspiration. In any case, this is merely a particular case of 
the general fact that homologically-trivial codimension-2 submanifolds must 
bound codimension-l submanifolds.) To get the Sk'S above, one can start 
with Seifert surfaces in S3 for each Lk , then push their interiors into D4 . 

4.6. A Seifert surface for the trefoil knot 

The fundamental fact to notice is that Ik(Li' Lj ) is in fact the intersection 
number Si . S j of the corresponding surfaces in D4: 

Ik(Li' Lj) = Si' Sj . 

See figure 4.7 on the following page for an argument. 

Therefore, when rebuilding the homotopy type of M through attaching D4 
to V m 52 via the map cp, each Sk has its boundary Lk collapsed to the point 
Pkl and thus creates a closed surface Sk' Since the intersection numbers 
Si ·Sj in (the homotopy type of) M are exactly Ik(Li' Lj), we conclude that 
the linking matrix captures part of the intersection form of M. 

To conclude the proof, all we need to do is argue that the intersections of the 
Sk 's in fact exhaust the whole intersection form of M. In other words, we 
need to argue that the Sk's represent a basis for H2(M;Z). For this, recall 
that the homology H2(M; Z) was generated by the classes of the spheres of 
V m 52. The classes Sk intersect the classes of those spheres exactly once. 

Since the intersection form of M is unimodular, this implies that the Sk's 
make up the dual basis9 to the basis exhibited by the spheres of V m 52. 

This concludes the alternative proof of Whitehead's theorem. o 

S. Be careful to not draw a non-orientable surface. 

9. Two classes ex. and (3 were called dual to each other if a . (3 = 1; see back on page 117. 
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1 

4.7. Linking numbers are intersection numbers of bounded surfaces 

Example. Let us conclude the discussion of Whitehead's theorem with a 
very simple example. If we take cp: S3 -t S2 to be the Hopf map,10 then its 
link is the unknotll with framing + 1, and the homotopy type obtained by 
attaching ][)4 to S2 using this cp is none other than (:lp2,S. 

Upside-down handle diagrams. In a certain sense, the whole procedure from 
the above proof is an upside-down version of a handle decomposition: the 
framed link L is nothing but a Kirby diagram 12 for attaching 2-handles to 
U 4

. The closing of Sk into S; by collapsing Lk to Pk is homotopy-equiva­
lent to gluing along Lk a disk with center Pk: the core of a 2-handle. Then the 
framings can be used to thicken this disk to an actual2-handle and eventually 
transform the whole procedure from gluing U-+ to V m S2 into attaching 2-
handles to U 4 along the link L in a u4 . 

10. The Hopf map was recalled back in footnote 34 on page 129. 

11. A knot K is called the unknot if it is trivial, or not knotted. Specifically, this means that K bounds 
some embedded disk. 

12. Kirbv dia£rams were explained back in the end-notes of chapter 2 (page 91). 
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However, the framed link L is just one of many Kirby diagrams that can be 
obtained through homotopies of cp. The intersection form (i.e., the homotopy 
class of cp) is far from determining precisely the shape of this link. Most 
of these links will not even lead to constructions that close-up to a smooth 
closed 4-manifold. (They always close-up as topological 4-manifolds by us­
ing Freedman's fake 4-balls, since if one starts with a unimodular matrix, 
then the resulting boundary will be a homology 3 -sphere. 13 ) The framed link 
L is just one of many diagrams for a handle decomposition of a creature ho­
motopy-equivalent to M, but rarely of M itself. 

4.2. Wall's theorems and h-cobordisms 

We will now present a series of results due to C.T.C. Wall, which culmi­
nates with the statement that, if two smooth simply-connected 4-manifolds 
have isomorphic intersection forms, then they are not merely homotopy­
equivalent, but in fact are h-cobordant. Combining this with Freedman's 
topological h-cobordism theorem will yield immediately that, if two smo­
oth simply-connected 4-manifold have the same intersection form, then 
they must be homeomorphic. 

Sum-stabilizations 

Two smooth 4-manifolds M and N are often h-cobordant without being 
diffeomorphic. To obtain a diffeomorphism, we can first Ifstabilize" the 
manifolds. A sum-stabilization 14 of a 4-manifold means connect-summing 
with copies of 52 x 52. The world of smooth 4-manifolds considered up to 
such stabilizations is considerably simplified: 

Wall's Theorem on Stabilizations. If M and N are smooth, simply-connected 
and h-cobordant, then there is an integer k such that we have a diffeomorphism 

M # k 52 X 52 ~ N # k 52 X 52 . 

Proof Adding 52 x 52's essentially allows us to go through with the 
h-cobordism theorem's program. This is owing to the fact that the new 
spheres can be used to undo unwanted intersections of surfaces, such 
as self-intersections of immersed Whitney disks. 

Imagine that two surfaces P and Q have an intersection point that we 
want to be rid of. First, since 52 x 52 contains two spheres meeting 
in exactly one point, we can join P with one such sphere by using a 
thin tube, as in figure 4.8 on the next page; the result is that P is now 

13. This last fact will be proved in the the end-notes of the next chapter (page 261). 

14. The name "stabilization" is in tune with, for example, stable properties of vector bundles-those pre­
served after adding trivial bundles; or stable homotopy groups-the part preserved after suspensions. 
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meeting the other sphere in exactly one point. (A sphere meeting a 
surface P in exactly one point is sometimes called a transverse sphere 
for P.) 

Q Q 

> 

p 

4.8. Joining a sphere 

Second, we pick a path in P from the intersection point with Q to the 
intersection point with the transverse sphere. Then, using a thin tube 
following this chosen path, we can connect Q to a parallel copy of the 
sphere, as in figure 4.9. The intersection point of P and Q has vanished. 

Q 

p 
> Q 0-0-----

0 
4.9. Eliminating an intersection by sliding over a sphere 

Notice that none of these maneuvers changed the genus of either P or 
Q. Thus, one can use this procedure to eliminate self-intersections of 
immersed Whitney disks and proceed with the h-cobordism program. 

Finally, for dealing with the framing obstruction for the Whitney trick 
in dimension 4, which was observed back in the end-notes of chapter 1 
(page 57), one can connect-sum the Whitney disk with the diagonal or 
anti-diagonal sphere15 of an extra S2 x S2, which changes the framing 
of the disk by ±2. Since having intersection points of opposite signs 
guarantees that the framing of a Whitney disk is even, summing with 
enough such diagonal spheres achieves the vanishing of the framing, and 
hence allows us to proceed with the Whitney trick. 

15. The diagonal sphere in 52 x 52 is the image of the embedding 52 -+ 52 X 52: x 1---+ (x, x) and has 
self-intersection +2. The anti-diagonal sphere is the image of x 1---+ (x, -x), with self-intersection -2. 
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With luck, a same 52 x 52-term could be used for eliminating several 
(if not all) intersections.16 If not, add more. 0 

An alternative argument (more economical with 52 x 52-terms) will be en­
countered on page 157, in the middle of the proof of Wall's theorem on 
h-cobordisms. 

Of course 52 x 52 is not the only summand that can be used with similar 
effects as above. One might imagine that, for example, the twisted prod­
uct 52 X 52 would work just as well. However, on one hand, summing 
with 52 x 52ts preserves the parity and signature of M, which is usually 
desirable; and, on the other hand, in many cases summing with 52 X 52 is 
nothing different, since one can prove directly that: 

Lemma. If M4 has odd intersection form, then there is a diffeomorphism 

M # 52 X 52 ~ M # 52 X 52 . 

Idea of proof Consider the simple case when M is (]p2. For brevity, 
we use Kirby calculus, as outlined in the end-notes of chapter 2 (page 
91). Then, after two handle slides and a bit of clean-up, it is done, as 
shown in figure 4.10. For the general case, one would slide over some 
odd-framed handle of lvI, then use similar tricks to untangle and sepa-
rate 52 X 52 from M. 0 

o 0 o 

m 
1 o 

handle slide 

---+ 
o 
(6 

handle slide 

---+ 

o 1 m 
1 

o 
16. It is worth noting that in all known cases summing with just one copy of 52 x 52 is enough. Currently, 
there are no devices able to detect cases when more than one copy of 52 x 52 would be necessary. 
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Automorphisms of the intersection form 

Wall also investigated algebraic automorphisms of intersection forms, and 
the question of their realizability by self-diffeomorphisms of an underlying 
4-manifold. 

Algebraic automorphisms. Let us consider for a moment the intersection 
form as an abstract algebraic creature, a symmetric bilinear unimodular 
form 

Q:ZxZ-----tZ, 

defined on some finitely-generated free Z-module Z. An automorphism 
of Q is a self-isomorphism cp: Z ~ Z that preserves the values of Q; that 
is to say, Q (x, y) = Q ( cp x, cpy). 

The divisibility of an element x of Z is the greatest integer d such that x can 
be written as x = dxo for some non-zero Xo E Z. An element of divisibility 
1 is called indivisible. 

An element w of a Z-module endowed with a symmetric bilinear unimo­
dular form Q is called characteristic if it satisfies 

Q(w, x) = Q(x, x) (mod 2) 

for all x E Z. Notice that, if Q is even, then the divisibility of any character­
istic element must be even; further, if Q is even, then w = 0 is characteristic. 
An element is called ordinary if it is not characteristic. Whether some x E Z 
is characteristic or ordinary is called the type of x. 

Wall's Theorem on Automorphisms. If rank Q - Isign QI 2:: 4, then, given 
any two elements x', x" E Z with the same divisibility, self-intersection and type, 
there must exist an automorphism cp of Q so that cp(x') = x". 0 

Since rank Q - sign Q is always even, the condition rank Q -Isign QI ~ 4 only 
excludes definite forms (when sign Q = ± rank Q) and forms with rank Q -
Isign QI = ±2 (which Wall calls near-definite). As we will see later,17 the only 
excluded forms are Hand [+ 1] ffi 111 [ -1] and [-1] EB m [+ 1] and all definite 
forms. Further, as far as smooth 4-dimensional topology is concerned, the 
only relevant definite forms are 18 En 111 [+ 1] and EB m [-1] . 

The characteristic elements of an intersection form will continue to play an 
important role and will be visited again in section 4.4 (page 168) ahead. 

17. From Serre's classification of indefinite forms; see section 5.1 (page 238). 

18. This follows from Donaldson's theorem; see section 5.3 (page 243) ahead. 
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Automorphisms and diffeomorphisms. It is obvious that any self-diffeomor­
phis m of a 4-manifold induces an automorphism of its intersection form. 
The converse is true, but only after stabilizing once: 

Wall's Theorem on Diffeomorphisms. Let M be a smooth simply-connected 
4-manifold with QM indefinite.19 Then any automorphism of the intersection 
form of M # 52 X 52 can be realized by a self-diffeomorphism of M # 52 X 52 . 

Idea of the proof. One identifies a concrete set of generators for the 
group of automorphisms of QM EB H, then one shows directly that each 
of these generators corresponds to a self-diffeomorphism. 0 

Topological heaven. It should no longer come as a surprise that, if we weaken 
to the realm of topologica14-manifolds, stabilization is no longer necessary: 

Theorem (M. Freedman). Any automorphism of QM can be realized by a self­
homeomorphism of M, unique up to isotopy. 0 

Of course, the smooth version of such a result fails. 2o 

Self-diffeomorphism from spheres. For amusement, we briefly mention a cou­
ple of examples of self-diffeomorphisms of a 4-manifold. These are built 
around an embedded sphere 5 of self-intersection21 ± 1 or ±2, and act on 
homology by [5] I---> -[5] and by fixing the Q-complement of [5]; in other 
words, they act as reflections on the homology lattice. Of course, finding such 
spheres is an endeavor in itself and often they do not exist.22 

Reflection on a (± 1) -sphere. A neighborhood of a (+ 1) -sphere 5 in M is 
diffeomorphic to a neighborhood of ClP I in (:Jp2, and furthermore M = 

M' # ClP2, with 5 appearing as ClP I in ClP2 . Our diffeomorphism acts on 
ClP2 and fixes M'. We take coordinates [zo : ZI : Z2] on ClP2 and consider the 
complex conjugation 0/0: ClP2 --+ C1P2, with % [zo : ZI : Z2] = [2\ : 22 : 22]' 
Away from the projective line ClP I = {zo = O}, on ClP2 \ ClP i = C2, this con­
jugation acts as (Z\,Z2) I---> (2\,22), or, in real coordinates, (Xi,Y\, X2,Y2) I---> 

(Xl, -Yi, X2, -Y2). We pick a sma1l4-ball n4 around 0 E C2 and modify 0/0 

as we approach D4 by increasingly rotating the (YI,Y2)-plane by an angle 
growing from 0 to 7t, until % becomes the identity on all n4; see figure 4.11 
on the following page. We have built a self-diffeomorphism rp of ClP2 that 
flips ClP I but fixes a small 4-ball n4. If we think of M = M' #ClP2 as being 
built by cutting out D4 from ClP2, then 0/ extends from ClP2 to the whole M 
by the identity. (For a (-1) -sphere, reverse orientations.) 

19. Requiring that the intersection form of a smooth 4-manifold be indefinite is not a strong restriction, 
since in fact the only excluded forms are 11 m [± 1] ; see section 5.3 (page 243) ahead. 

20. For example, a simple obstruction is that any automorphism of QM that can be realized by diffeo­
morphisms must send Seiberg-Witten basic classes to basic classes (for these notions, see chapter 10, 
starting on page 375 ahead), but even that in general is not sufficient. 

21. For the extent of this inserted note, we will call such spheres (± 1) - and (±2) -spheres. 

22. Nonetheless, recall that we did identify twenty (-2)-spheres inside the K3 surface, see page 133. 
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4.11. Modification toward reflection on a (-I)-sphere 

Reflection on a (±2)-sphere. A neighborhood of a (+2)-sphere S in M is dif­
feomorphic to the unit-disk bundle DTs2. We think of DTs2 as {(v, w) E 

JR.3 X JR.3 I Ivl = 1, Iwl ::; 1, v ..1 w} and define a self-diffeomorphism 
cp: D Ts2 --+ DTs2 by 

cp( v, w) = { (cos t9 . v + sin t9 . Il~1 w, cos t9 . w + sin t9 . Iwl (-v)) if w ~ 0 

(-v,O) ifw = 0 

with 19 = (1 - Iwl)71. Specifically, each tangent vector w determines a great 
circle in 52 and we slide w along this circle by a distance depending on I tu I : 
the shorter w is, the more we travel; see figure 4.12. The resulting cp restricts 
as the antipodal map on the sphere S = {(v; 0) } , but as the identity on a DTS2 
and thus can be extended by the identity to the rest of M, yielding a self­
diffeomorphism cp of M. (For a (-2) -sphere, reverse orientations.) 

4.12. Reflection on a (+2)-sphere 
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Walr s theorem on diffeomorphisms plays an essential role in proving the 
fundamental result that we present next. 

Intersection forms and h-cobordisms 

Going quite further than Whitehead's theorem, C.T.C. Wall proved that two 
smooth manifolds with the same intersection form are more than merely 
homotopy-equivalent: 

Wall's Theorem on h -Cobordisms. If M and N are smooth, simply-connec­
ted/ and have isomorphic intersection forms, then M and N must be h-cobordant. 

If we combine with the earlier theorem on stabilizations, this yields: 

Corollary. If M and N are smooth, simply-connected, and have the same inter­
section form, then there is an integer k such that we have a diffeomorphism 

o 

On the other hand, if we combine the above theorem on h -cobordisms with 
M. Freedman's topological h-cobordism theorem, then we deduce the fol­
lowing most remarkable result: 

Corollary (M. Freedman). If two smooth simply-connected 4-manifolds have 
isomorphic intersection forms, then they must be homeomorphic. 0 

This came almost twenty years after Wall's results. Even today the attempt 
to strengthen the above to diffeomorphisms does not get farther than the 
preceding direct combination of Wall's old results. 

Because of this striking consequence, in what follows we will present a 
fairly complete proof of Wall's theorem on h-cobordisms; it will take the 
rest of this section.23 

Proof of Wall's theorem on h-cobordisms 

Since M and N have the same signature, M U N has signature zero, and 
thus it must bound some 5-manifold; in other words, there is some ori­
ented W5 that establishes a cobordism between M and N. 

The proof of the theorem consists in modifying this W (without changing 
its boundary) until it becomes simply-connected and homologic ally-trivial, 
in other words, until it becomes an h-cobordism from M to N. 

23. The next section starts on page 160. 
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Kill the fundamental group. The first step is to modify W5 to make it sim­
ply-connected. We choose a set of generating loops RI, ... ,Rn for 7tJ (W), 
realized as disjointly embedded circles. We will add disks to kill these ho­
motopy classes. Specifically, for each Rk we take a tubular neighborhood 
SI x 104 of Rk and cut it out. This leaves a hole with boundary SI x 53, which 
we fill by gluing-in a copy of D2 x 53. In the resulting 5-manifold, the class 
of fk is trivial. Repeating for all Rk's yields a new cobordism between M 
and N, still denoted by W, that is simply-connected. 

Divide and conquer. Choose now a handle decomposition of W5 . Since 
W is connected, we can cancel all 0- and 5 -handles. Further, since W 
is simply-connected, all its I-handles can be traded for 3-handles, and, 
upside-down, all 4-handles for 2-handles. We end up with a handle de­
composition of W that only contains 2- and 3-handles, and view W as 

W5 = M4 x [0, 10 1 U {2-handles} U {3-handles} U N4 x [-10,01 , 

which we split into the two obvious halves: on one side, M and the 2-
handles, on the other, N and the 3-handles, as on the left of figure 4.13. 
Looking upside-down at the upper half of W, instead of seeing the 3-
handles as glued to the lower half, we can view them as 2-handles glued 
upwards to N x [-10,01. 

VVVVV 
f\f\f\f\f\ , 

4.13. The two halves of a simply-connected cobordism 

Hence the middle level M'/2t in between the 2- and the 3-handles, is a 4-
manifold that can be obtained either from M by adding regular 2-handles 
attached downwards, or from N by adding upside-down 2-handles at-

. tached upwards. 

The strategy for the remainder of the proof is the following: We will cut 
W into its two halves, then glue them back after twisting by a suitable self­
diffeomorphism 4> of M'h' as in figure 4.14 on the next page. This cut-and­
reglue procedure will create a new cobordism from M to N. If we choose 
the right diffeomorphism 4>, then the 3-handles from the upper half will 
cancel algebraically the 2-handles from the lower half. This means that 
the newly created cobordism between M and N will have no homology 
relative to its boundaries, and so will indeed be an h-cobordism from M 
to N. 
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4.14. Modifying a cobordism into an h-cobordism 
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On the frontier. Let us first clarify the shape of MI/2. Think of it as obtained 
from M after adding the 2-handles of W. 

A 5-dimensional 2-handle is a copy of [)2 x [)3, to be attached by glu­
ing SIX [)3 to M4. To attach such a 2-handle to M, we need to specify 
where the attaching circle 51 x 0 is being sent, but a circle in a 4-manifold 
is isotopic to any other embedded circle. We also need to specify how the 
"thickening" of the attaching circle is to be glued to M. Since24 7t l SO(3) = 
7L2 , there are only two ways of doing that, depending on whether the 3-
disk [)3 in M twists an even or an odd number of times around the attach­
ing circle.25 Therefore, to fully describe MI/2 all we need is to specify how 
many "odd" and how many "even" 2-handles are to be attached. 

Attaching a 2-handle [)2 x [)3 deletes a copy of 51 x ID3 from M and, as 
a step toward MI/2' replaces it with a copy of [)2 x s~. On one hand, if 
the 2-handle is even, then the disk [)2 from [)2 x 52 can be closed to a 2-
sphere of self-intersection 0: unite the disk with a small Seifert disk of the 
attaching circle in M; the self-intersection of such a Seifert disk in M is the 
same with the framing modulo 2 (compare with page 148 earlier). Hence, 
the result of adding this even 2-handle is the same as connect-summing 
with 52 x 52. On the other hand, if the 2-handle is odd, then the disk closes 
to a sphere of self-intersection + 1, and one can see that attaching it is the 
same as connect-summing with 52 X 52. In conclusion, we have 

MI/2 = M4 # rn' 52 x 52 # rn" 52 X 52 . 

We will assume in the sequel that no 52 X 52-terms are present. 

No twists, and a proof of Wall's theorem on stabilizatiol1s. The assump­
tion that there are no 52 X 52 -summands can be argued quite rigorously: 

24. Think of 50(3) as the space of all oriented orthonormal frames in IR3. Thus, 7!1 50(3) will measure 
how many distinct trivializations of the 3-plane bundle 51 x JR.3 exist. Some comments on 7! 150(m) 
will be made in the the end-notes of this chapter (page 177). 

25. Contrast this with what happens when, instead of building a 5-manifold as above, we build a 
4-manifold. The framing for attaching a 2-handle is then determined by an element of 7!1 50(2) = Z, 
an integer. 
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On one hand, if the intersection form of M is odd, then adding 52 X 52 or 
adding 52 x 52 produces the same result, as we mentioned a bit earlier.26 

On the other hand, if the intersection form of M is even, then a deeper 
result shows that MU N can be safely assumed to bound a 5-manifold 
that does not contain any odd handles.27 This odd-less manifold should 
then be the one used as our W right back from the start of the argument. 

By the way, if we accept that we can indeed avoid 52 X 52-summands, then 
we have stumbled upon another proof for Wall's theorem on stabilizations: 
from the lower half of W we have M 1/2 = M # m 52 x 52, while from the 
upper half we have M1/2 = N # m 52 x 52, since MI/2 can also be obtained 
by attaching even 2-handles upwards to N. Therefore 

M # m 52 x 52 ~ N # m 52 x 52 . 

This was, in fact, C.T.C. Wall's original argument for this result. 

In any case, getting back to proving Wall's theorem on h-cobordisms, in 
what follows we assume that we have M 1/2 = M4 # m 52 x 52. 

Negotiating the reunification. We are trying to find a self-diffeomorphism 
cP of MI/2 such that, after re-gluing W through it, the homology of W dis­
appears. In other words, we wish to arrange cP so that the 3-handles from 
the upper half cancel algebraically the 2-handles of the lower half. 

Whether a certain cP is good or not for this purpose is entirely determined 
by the self-isomorphism cP* that cP induces on the 2-homology of M 1/2' 

Therefore, for finding a good diffeomorphism CP, we will proceed by rever­
se-engineering: we will determine a good algebraic automorphism 

q5: H2 (M1/ 2 ; Z) ~ H2 (M1/2; Z), 

preserving the intersection form of M 1/ 2f and then use Wall's earlier the­
orem on diffeomorphisms to claim that q5 can be realized as c:]>* of some 
self-diffeomorphism c:]> of M 1/2' Wall's theorem on diffeomorphisms might 
require that we add an extra copy of 52 x 52, but that can be achieved im­
mediately by the creation in W5 of a (geometrically) canceling pair of a 2-
and a 3-handle-the trace of such a pair in M 1/2 is exactly the required 
extra 52 x 52-summand. 

Each 52 x 52-summand in M 1/2 appears from a 2-handle D2 x [)3, attached 
to M along 5 I X [)3. The belt sphere of this 2-handle is 0 x 52. The homo­
logical hole created by the addition of the 2-handle is represented by the 

26. Back on page 151. 

27. This result is due to V. Rokhlin, and states: Any spin 4-manifold with zero signature must bound a spin 
5-manifold. For the concept of spin manifold, look ahead at section 4.3 (page 162); the result itself will 
be restated on page 165. 
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first sphere-factor of 52 x 52 in M 1/ 2f while the belt sphere of the handle 
survives as the second factor of 52 x 52 and is filled by the handle itself. 

Looking now at the upper half of W5 , a 3-handle is a copy of BJ3 x 1)2, 

attached to the lower half through 52 x 1)2. The attaching sphere of the 
3-handle is 52 x o. Therefore, if the 3-handle is to algebraically cancel a 2-
handle from the lower half, then the attaching sphere 52 x 0 of the 3-handle 
must intersect the belt sphere 0 x 52 of the 2-handle algebraically exactly 
once.28 Indeed, in ''handle homology", we would then have a(3-hilndle) = 
(2-handle). (Intuitively, view the 3-handle as algebraically filling the ho­
mological hole 52 x 1 created by the 2-handle.) 

Algebraization. To translate everything into algebra, we proceed as fol­
lows: We view M 1/2 as 

Ml/2 = M # m 52 x 52 , 

and we denote by lXk the class of 52 x 1 and by ak the class of 1 x 52 in the 
'k th 52 x 52-summand. The classes ak are the classes of the belt spheres of 
the lower 2-handles, and they bound in the lower cobordism. We write 

H2 (M1/2;'z) = H2(M;,Z) EB,Z{a),a), ... ,lXm,am} , 

with corresponding intersection form QM1/
2 

= QM EB m H. 

Now we look at M 1/2 from upwards as 

M1/ 2 = N # m 52 x 52 . 

This decomposition is obtained by adding upside-down 2-handles to N in 
the upper half of W. For trivial algebraic reasons, the 52 x 52-summands 
added to N are just as many as those added to M, but the respective sum­
mands in the two decompositions do not correspond by, say, a diffeomor­
phism (unless M ~ N). 

Denote by f3k the class of 52 x 0 and by ~k the class of 0 x 52 in the kth 

52 x 52 -summand of this latter splitting. The classes f3k are the classes of 
the attaching spheres of the upper 3-handles, and they bound in the upper 
cobordism. And we write 

H2(Ml/2;'z) = H2(N;'z) ffi'z{f3I'~I' ... ,f3m'~m}' 
with corresponding intersection form Q

M'
/2 = QN EB m H. 

A good self-diffeomorphism <P of Ml/2 will be one that sends the class f3k 
onto lXk, thus guaranteeing that the attaching sphere f3k of each 3-handle 
has algebraic intersection + 1 with the belt sphere ak of the corresponding 
2-handle. 

28. Requiring more, such as only one geometric intersection, i.e., that 52 x 0 from the 3-handle be sent 
to 52 x 0 from the 2-handle, implies that these 3- and 2-handles cancel. However, if we could do that 
for all handles, we would end with a diffeomorphism M S:! N, which cannot happen in general. 
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The final dance. The hypothesis of this theorem states that the intersection 
forms of M and N are isomorphic. Denote by 

such an intersections-preserving isomorphism. Then we can extend cp to 

by setting 

and 

This extended cp is easily seen to still preserve intersections. Therefore, by 
Wall's theorem on diffeomorphisms, there must exist an actual self-diffeo­
morphism 4> of Ml/2 that realizes cp as 4>* = cp. 

Then, if we cut our W5 into its two halves and glue them back using this 
<P, then the resulting cobordism will be simply-connected and with no 2-
homology. That is to say, an h-cobordism between M and N. 0 

4.3. Intersection forms and characteristic classes 

Time has come to comment on the other classical invariants of a 4-mani­
fold, specifically on the characteristic classes of its tangent bundle. Only 
W2 (T M)' e (T M) and PI (T M) are actually relevant in this realm. After first 
reviewing these, we will relate them to intersection forms. 

We start with the Stiefel-Whitney classes 

The class Wk ( T M) measures the obstruction to finding a field of 4 - k + 1 
linearly-independent vectors over the k-skeleton of M. 

Skeleta. Remember that/ for a cellular complex/ its k-skeleton is the union of 
all its cells of dimension::; k/ as in figure 4.15 on the facing page-similarly, 
for simplicial complexes (triangulations).29 For a manifold M/ one can also 
think in thickened terms and view the k -skeleton of M as the union of all the 
handles of order::; k/ in some handle decomposition of M; see figure 4.16 on 
the next page. Of course/ the skeleta depend on the choice of cellular Ihandle 
decomposi tions. 

29. Simplices and triangulations are briefly recalled in footnote 5 on page 182 ahead. 
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• 

• 

O-skeleton l-skeleton 2-skeleton 

4.15. Skeleta of a torus, I: the cells 

o 

o 

O-skeleton l-skeleton 2-skeleton 

4.16. Skeleta of a torus, II: the handles 

Orientations and the first Stiefel-Whitney class 

The class Wl (TM) measures the obstruction to finding a trivialization TM 
over the I-skeleton of M. It can be defined directly30 by its values on 
embedded circles C in M, namely by setting 

Wl (TM) . C = 0 if and only if TMlc is trivial; 

WI (TM ) . C = 1 if and only if TMlc is not trivial. 

Since a 4-plane bundle over a circle is either trivial or non-orientable, we 
observe that the first Stiefel-Whitney class merely detects orientation-rever­
sing loops in M. Therefore Wl is the obstruction to M being orientable. 

Along these lines, it is not hard to see that an orientation of M is equivalent 
to a choice of trivialization of TM over the O-skeleton that can be extended 
over the I-skeleton, considered up to homotopies. 

Since we restricted our attention to oriented 4-manifolds, this class is not 
very interesting to us. Quite the opposite, though, can be said about the 
next Stiefel-Whitney class: 
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Spin structures and the second Stiefel-Whitney class 

The second Stiefel-Whitney class 

measures the obstruction to finding a 3-frame over the 2-skeleton. If WI 

was trivial and we picked an orientation of M, then by using this orienta­
tion we can complete any 3-frame to a 4-frame. Therefore we can say that, 
for oriented manifolds, w2(TM) is the obstruction to trivializing TM over 
the 2-skeleton31 of M. 

The origin of the Z2 -coefficients of W2 is in32 711 SO( 4) = Z2. The generator 
of the latter is any path of rotations of angles increasing from 0 to 271; if the 
angle keeps further increasing to 471, then the resulting loop will be null­
homotopic in SO( 4). For trivializations of T M, it is best to think of SO( 4) 
as the space of orienting orthonormal frames in ]R4. The class w2(TM ) is 
obtained by patching together local obstructions over each 2-cell D of M: 
a trivialization of T M over the I-skeleton induces a map cp: a D ---+ SO( 4); 
the trivialization extends across D if and only if cp extends over D, in other 
words, if cp represent the trivial element of 711 SO( 4). 

Displaying w2(TM) as a cochain. Given a random trivialization of TM over 
the I-skeleton of M, we can define a cellular cochain 19 for W2 (T M) by as­
signing I E Z2 to any 2-cell D across which the chosen trivialization can­
not be extended. This cochain will be trivial if and only if the trivialization 
extends over the 2-skeleton. Of course, one can try to go back and change 
the trivialization over the I-skeleton, then check again. It turns out that all 
such changes modify our cellular cochain (J by the addition of a coboundary. 
Further, our cochain turns out to be a cocycle. Therefore, the existence of a 
trivialization that extends is equivalent to the cohomology class of a being 
trivia1.33 (Observe that such a discussion can very well be carried out with 
2-handles instead of 2-cells; the cocyc1e above assigns to each 2-handle the 
framing coefficient34 modulo 2 of its attaching circle. ) 

Look at surfaces. Since "2-skeleton" might not be your friendliest of no­
tions, we can also rely upon 

Lemma. The second 5 tiefel-Whitney class W2 (T M) E H2 (M; Z2) is the obstruc­
tion to trivializing T M over the oriented surfaces embedded in M. 

31. Keep in mind that, the manifold being oriented, T M can already be trivialized over the I-skeleton. 

32. The group SO( 4) is the group of orientation-preserving isometries of 1R4 , i.e., its group of rotations. 

33. This is obstruction theory and is better explained in the end-notes of this chapter (page 197). 

34. Compare also with Kirby calculus, in the end-notes of chapter 2 (page 91). 
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Proof On one hand, we have H2(M;Z2) = Hornz2 (H2(M;Z2), Z2), 
and thus W2 is completely determined by its values W2 . x on all mod­
ulo 2 classes x E H2(M;Z2). On the other hand, when H1(M;Z) 
has no 2-torsion (for example when M is simply-connected), we fur­
ther have that H2(M; Z2) = H2(M; Z) 0 z Z2, or, in other words, clas­
ses in H2(M;Z2) are just modulo 2 reductions of integral classes from 
H2 (M; Z). Therefore W2 is completely determined by its values W2 . 5 
on the oriented surfaces 5 of M. Furthermore, w2(TM) ·5 = w2(TMls) 
is precisely the obstruction to trivializing T M over S. 0 

Thus, when M is simply-connected, we can define w2(TM) directly by 

w2(TM)·S = 0 

w2(TM) ·5= 1 

if and only if T M I S is trivial, 

if and only if T M I S is not trivial, 

for each oriented surface 5 embedded in M. 

Look at self-intersections. By using the obvious splitting of T M over any 
surface 5 as TMls = Ts Efl NS/M' we compute 

w2(TM) ·5 = w2(TMls) 

= w2(Ts Efl NS/M ) 

= w2(Ts ) + w2(Ns/ M ) + wl(Ts ) ·wl(Ns/M)· 

Since both Ts and NS/M are orientable, the last term vanishes. More, since 
w2(Ts ) is the modulo 2 reduction of the Euler class X(S) = 2 - 2 genus(S) , 
the first term on the right vanishes as well. We are left with w2(Ns/M), 
which is the modulo 2 reduction of e(Ns/ M). The latter measures the self­
intersection of 5 in M. We have proved: 

Wu's Formula. For all oriented surfaces 5 embedded in M, we have: 

o 

This is the 4-dimensional case of the general Wu formula.35 A verbose but 
more concrete alternative proof will appear on page 168 in the next section. 

A nice consequence of Wu's formula is: 

Corollary. If w2(TM) = 0, then the intersection form of M is even. 0 

The converse is true whenever HI (M; Z) has no 2-torsion. 

35. Wu's formula is a general statement about Stiefel-Whitney classes; see for example J. Milnor and 
J. Stasheff's Characteristic classes [MS74]. 
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Spin structures. Since w2(TM) is the obstruction to trivializing TM over the 
2-skeleton of M, in the spirit of the earlier re-definition of orientations, we 
can define the concept of spin structure: 

A spin structure on M is a choice of trivialization of T M over the I-skele­
ton that can be extended over the 2-skeleton, considered up to homotopies. 
Various alternative ways of defining spin structures and related matters are 
contained in the end-notes of this chapter.36 A manifold endowed with a 
spin structure is called a spin manifold.37 

Then we can state that w2(TM) = 0 if and only if M admits a spin struc­
ture. The simplest examples of spin 4-manifolds are S4, S2 X S2, and the 
K3 surface. In general: 

Corollary (Spin structures and even forms). Any 4-manifold without 2-tor­
sion, for example simply-connected, admits spin structures if and only if its inter-
section form is even. 0 

Action of Hl(M;Z2) on spin structures. Let 5 be a spin structure on M, 
described by a trivialization of T M over the l-skeleton of M (for some fixed 
triangulation of M). Choose a class a E HI (M; 7L2 ) and represent it by its 
dual unoriented 3-submanifold Ya in M. Arrange that Yt\: does not touch 
any vertex of M's triangulation and is transverse to all its edges. Then one 
can define a new spin structure a . 5 on M by twisting 5's trivialization over 
each edge E that meets Ya through the addition of a 27t-twist each time E 

meets Ya . For every loop f. in the 1 -skeleton tha t bounds a 2 -simplex D, the 
intersection of Ya and D occurs along arcs linking the intersections points of 
e and Ya ; therefore there must be an even number of such intersection points, 
and so the trivialization offered by a . 5 along £ differs from 5 's by an even 
number of 2n-twists; hence the trivialization of a . 5 still extends across D-it 
is indeed a spin structure. 

The resulting action of HI (M; 7L2) on the set of all spin structures of M is 
free and transitive.38 Therefore, after fixing a spin structure on M, this action 
establishes a bijective correspondence between the elements of HI (M; 7L2) 
and the set of all spin structures on M (the correspondence depends on the 
choice of '1Jase" spin structure). In particular, if M is simply-connected and 
has W2 (T M) = 0, then M admits a unique spin structure. 

36. For the more usual, differentia i-geometric definition, see the end-notes of this chapter (page 174); 
see also section 10.2 (page 383) ahead. A homotopy-theoretic definition is presented in the end-notes 
of this chapter (page 204). . 

37. Often, one calls "spin manifold" any manifold that admits a spin structure, even if no specific 
structure has been chosen, instead of more honestly naming it, for example, "spinnable manifold". 

38. The action of a group G on a set 5 is called transitive if for every two elements Sf and s" of 5 there 
is some g E G so that g. Sf = s". The action is called free if we can have g . s = s for some s E 5 only 
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Signatures and bounding spin-manifolds. In the context of spin structures, 
an important result is the spin version of the bounding theorem from sec­
tion 3.2 (page 123). The latter stated that all zero-signature 4-manifolds 
must bound some oriented 5-manifold. For spin 4-manifolds, the follow­
ing refinement is true: 

Theorem (V. Rokhlin). If a closed 4-manifold M is endowed with a spin struc­
ture and has 

sign QM = 0, 

then there exists a spin 5-manifold W5 that is bounded by M so that the spin 
structure of W induces the spin structure of M. 0 

Spin structures on 5-manifolds are defined exactly as for manifolds of di­
mension 4: they are trivializa tions of T lA' over the I-skeleton that extend 
over the 2-skeleton.39 A spin structure on W5 induces a spin structure 
on a W by using an outward-pointing trivialization of the normal bundle 
Na W jW to obtain a trivialization of Ta W over its I-skeleton, etc. 

In particular, it follows that: 

Corollary (Spin cobordism). If two spin 4-manifolds M and N have the same 
signature, then they can be linked by a cobordism W5 that is a spin 5-manifold, 
and its spin structure induces on M mzd N their respective spin structures. 0 

Notice that we have already relied on this result in the proof of Wall's theo­
rem on h--cobordisms (page 157). 

Third Stiefel-Whitney class 

ThethirdStiefel-Whitneydass w2(TM ) E H:'(M;'Z2) turns out to be rather 
uninteresting: 

On one hand, if M is orientable and admits spin structures, equivalently 
if both WI (TM) and w2(TM) vanish, then w3(TM) must vanish as well. In­
deed, any spin structure offers a trivialization of T M over the 2-skeleton, 
and since the group 7t2S0( 4) is trivial, this trivialization can always be ex­
tended across the whole 3-skeleton40 of M. 

~9. More geometrically, a 5-manifold W admits spin structures if and only if every surface embedded 
in W has trivial normal bundle. As we saw, a 4-manifold M i1dmits spin structures if and only if every 
;urface embedded in M has normal bundle of even ElIler class. 

10. Indeed, think of 50(4) as the space of orthonormi11 fra mes in JR4. Take a 3 -cell E with T M 10E 
Tivialized. The trivialization determines a map aE ~ SO(4), which, since 7T2 50(4) = 0, must be 
1UU-homotopic and thus extend to a map E -> SO(4); but the latter is just a trivialization of TMIE' 
rhe relation between the 7Tk 50(m) 's and Wk 's is probably best viewed under the light of the concepts 
)resented in the end-notes of this chapter, on page 197 and page 204. 
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Since we can always choose handle decompositions of M with exactly one 
4-hand1e and then shrink that 4-hand1e toward a point, we deduce that ev­
ery spin 4 -manifold M has T M trivial over M \ {point}; such manifolds are 
called almost-parallelizable.41 

In general, the values of w3(TM) E H3(M; Z2) do not matter-they are 
determined by the other characteristic classes of M, as will become clear a 
bit ahead, from the Dold-Whitney theorem. 

The Euler class 

The fourth and last Stiefel-Whitney class w 4 (T M) E H4 (M; Z2) is not the 
only remaining obstruction to trivializing T M over the whole M. In fact, if 
M is oriented, then w4(TM) can be refined to the integral Euler class 

e(TM) E H4(M; Z) = Z . 

The Euler class counts the self-intersections of M, viewed as the zero-sec­
tion inside the manifold T M. Equivalently, it counts the zeros of a generic 
vector field on M, and we have e(TM) = X(M). If e(TM) = 0, then TM 
admits a nowhere-zero section. Clearly though, all simply-connected 4-
manifolds have e(TM) = 2 + rank QM and hence e(TM) > 0. 

Signatures and the Pontryagin class 

Another relevant class is the Pontryagin class 

PI (T M) E H4 (M; Z) = Z . 

It is defined in terms of Chern classes as PI (TM ) = -c2(TM 0 C) and can 
be interpreted as the obstruction to finding three C-linearly-independent 
global sections in T M 0 C. 

More obscurely, the Pontryagin number also coincides with - 3 times the al­
gebraic count of triple-points of a generic immersion 42 M4 ~ lR6 . 

On a 4-manifold the Pontryagin class is completely determined by its in­
tersection form, owing to the 4-dimensional instance of F. Hirzebruch's 
celebrated signature theorem: 

Hirzebruch's Signature Theorem. For every closed 4-manifold M we have 

Pl(TM )=3signQlv/. 0 

41. A manifold is called parallelizable if its tangent bundle is trivial over the whole manifold. An 
example of parallelizable 4-manifold is SI X S3; there are no simply-connected examples. 

42. See R. Herbert's Multiple points of immersed manifolds [Her81]; also proved in R. Kirby's The 
tonoloe:v of 4-manifolds rKir89, ch IV]. 
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Signatures and bounding manifolds, revisited. We quoted earlier43 the fact 
that, if a 4-manifold has vanishing signature, then it must bound an oriented 
5-manifold. A proof of that statement can be assembled by using the signa­
ture theorem, together with the above interpretation of PI in terms of triple­
points of immersions. 

First, one builds an immersion of M into 1R6 (by using immersion theory, it 
is enough to build a candidate for the normal bundle of the immersed M 
inside lR6 , and thus the problem is reduced to a characteristic class compu­
tation). Such an immersion will have double-points, forming surfaces in M, 
and will have isolated triple-points. Since 3 sign QM = PI (M), and the latter 
is an algebraic count of these triple-points, we conclude that the triple-points 
cancel algebraically. Furthermore, there is a modification of M inside 1R6 that 
geometrically eliminates all these triple-points44 and changes M merely by a 
cobordism inside 1R6. After that, the double points can be eliminated without 
obstruction (think of our method for eliminating double-points of surfaces in 
4-space45 and cross with 1R2), and this further changes M by a cobordism 
inside 1R6. We end up with a 4-manifold embedded in 1R6. Since the result 
is homologically-trivial and embedded, it must bound a 5 -manifold W in­
side46 1R6. Putting together the cobordislTIs used to modify M with this last 
5-manifold yields a filling 5-manifold for our initia14-manifold.47 

That's it, the bundle is done 

The above-mentioned characteristic classes completely determine TM as a 
vector bundle. In fact, only W2 I C and P I are needed: 

Dold-Whitney Theorem. If two oriented 4-plane bundles over an oriented 4-
manifold have the same second Sthiel-Whitney class W2, Pontryagin class PI and 
Euler class e, then they must be isomorphic. 0 

All these three characteristic classes can be related to intersection forms. In 
review, by using the partial Betti nUlubers b~ we can write, for every sim­
ply-connected 4-manifold M I 

e(TM) = bI(M) + b2(M) + 2 I 

PI(TM ) = bi(M) - b2(M) I 

and recall that 'W2(TM) vanishes exactly when QM is even. 

43. See back in section 3.2 (page 123). 

44. Somewhat in the spirit of figure 11.7 on page 4R6. 

45. Look back at figure 3.1 on page 113. 

46. Owing to a general result of R. Thom, stated back in footnote 3 on page 112. 

47. See R. Kirby's The topology of 4-manifolds [Kir89, ch VIII] for the full argument. 
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4.4. Rokhlin's theorem and characteristic elements 

We continue the story of the second Stiefel-Whitney class W2 (T M)' but this 
time by focusing on the integral classes that reduce to it. Afterwards, we 
state a fundamental theorem for topology in general, namely Rokhlin's the­
orem: a smooth spin 4-manifold can only have a multiple of 16 as its sig­
nature. 

Characteristic elements of the intersection form 

We defined W2 (T M) E H2 (M; Z2) as the obstruction to trivializing T M over 
the 2-skeleton of M. We now look at representations of the class W2 (T M) 
by oriented surfaces and integral classes. 

Make it a surface. Assume that W2 (T !vf) can be realized as an oriented sur­
face 1: embedded in M. In other words, assume that [1:] E H2 (M; Z) is 
(Poincare-dual to) an integral lift w of the class W2. Such a surface 1: with 

1: = w2(TM ) (mod 2) 

is called a characteristic surface of M, while its class w E H2 (M;Z) is 
called a characteristic element.48 Characteristic elements are certainly not 
unique: just add to such a w any even class 2, to obtain another integral 
lift of W2. Remember that we encountered characteristic elements before, 
in Wall's theorem on the automorphisms of an intersection form. 49 

Wu, again. Take now a random surface 5 in M. The obstruction to trivial­
izing T M over S is then given by W2 (T!VI) . 5 (mod 2) or, in other words, by 
1:·5 (mod 2). We have already seen that this coincides modulo 2 with the 
self-intersection 5 . 5, but we prove it once again using a slightly different 
argument. 

Wu's Formula. Let M be a simply-connected 4-manifold. An oriented swface 
1: is characteristic if and only if 

1: ·5 = 5 . 5 (mod 2) 

for all oriented surfaces 5 inside M. 

Proof. Let T E f(Ts) be a vector field tangent to 5, and let v E 

f(Ns/ M) be a field normal to S. If T and v are generic, then they are 
zero only at isolated points of S. Arrange that T and v are never zero at 
a same point of 5. Pick a vector field T* complementary to T in Ts, so 

48. Another customary name is characteristic class, but we will use "characteristic element" throughout, 
to avoid any chance of confusion with characteristic classes of the tangent bundle. 

49. See back in section 4.2 (page 152). 
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that T* is zero only at the zeros50 of T. Also pick a complement v* to v 
in Ns/ M that is zero only at the zeros of v. Then the vector field T* + v* 
is nowhere-zero on S. The 3-frame {T, v, T* + v*} can be completed 
to a full 4-frame of T M, well-defined on 5 away from the zeros of T 

and the zeros of v. 

Against extending this frame across the remaining points of 5 lies a 
'Z2 -obstruction: indeed, a neighborhood of a singularity is a copy of 
D2 \ 0, and the frame-field around 0 defines a map f: SI -+ SO( 4) ; the 
frame-field can be extended across 0 if and only if f is homotopically­
trivial in 7II SO( 4) = Z2. It is not hard to argue that the obstructions at 
various singularities can be added together,51 and thus yield a global 
'Z2 -obstruction to extending the frame-field over the whole surface S. 
Since T* + v* is nowhere-zero, this obstruction comes entirely from the 
zeros of T and v. 

Since T and v were chosen generic, their zeros are simple, and thus the 
obstruction can be computed as 

obstruction = # { zeros of T} + # { zeros of v } (mod 2) . 

However, the number of zeros of a tangent vector field like T is equiva­
lent modulo 2 to X( 5), which is always even and thus disappears from 
the above formula. \lVe are left with the number of zeros of the normal 
vector field v, which is equivalent modulo 2 to 5 ·5. In conclusion, 

obstruction = 5 . 5 (mod 2) . 

However, the same obstruction can also be seen to be W2 (T M I 5) 

w2(TM ) ·5 = L· 5 (mod 2), and this concludes the proof. 0 

It might be amusing to look back at page 163 and compare the two proofs 
that relate W2 to self-intersections-the version above is essentially just a 
more concrete version of the cOlnputations made there. 

In any case, the property that W2 . x = x· x (mod 2) for all x E H2(M; Z) 
completely determines the class w2(TM) inside H2(M; 'Z2). In particular, if 
we find an integral class W E H2(M; Z) satisfying 

W . x = x . x (mod 2) , 

then the modulo 2 reduction of w must be w2(TM): we have found a char­
acteristic element of the intersection form. 

50. For example, pick a complex structure on Ts and define T* = iT. 

51. For example, by using an argument similar to the classic Poincare-Hopf theorem on indices of 
vector fields: if the sum of indices is zero, then there is a nowhere-zero vector field. Here, since T and 
1/ are generic, the indices are ± I; further, since we are dealing with a 4-plane bundle over a surface, 
the sum of indices only matters modulo 2. 
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They do exist. Characteristic elements (and hence characteristic surfaces) 
exist in all 4-manifolds: 

Lemma. On every 4-manifold M, there always exist integral classes !Q such that 

for all x E H2(M; Z). 
w . x = x . x (mod 2) 

Proof. This is a purely algebraic argument. Let Q: Z x Z --t Z be a 
symmetric bilinear unimodular form, defined over a free Z-module Z. 
We can build its modulo 2 reduction by taking Z" = Z/2Z and Q" = 

Q (mod 2). We obtain a symmetric Z2 -bilinear unimodular form 

Q": Z" x Z" ------7 Z2 . 

The unimodularity of Q" over Z2 translates as the following property: 
for every Z2-linear function f: Z" --t Z2 there must be some element 
xf E Z" so that f(·) = Q"(xf' . ). However, since (a + b)· (a + b) = 
a . a + b . b + 2a . b == a· a + b . b (mod 2), we notice that the corre­
spondence x ~ Q" (x, x) is additive, and thus is Z2 -linear. Therefore 
there must exist an element w" E Z" so that Q"(x,x) = Q"(W", x); in 
other words, we have 

w" . x = x . x (mod 2) for all x E ZII . 

Since the element W" E Z" = Z/2Z represents a coset of Z, there must 
be integral elements w E Z whose modulo 2 reduction is w". In other 
words, there always exist characteristic elements for Q, i.e., elements 
W E Z with w . x = x . x (mod 2) for all x E Z. 0 

The existence of integral lifts of W2 (T M) is important also because of spinC 
structures (complexified spin structures). As we will see later52 the exis­
tence of w's is equivalent to the existence of spinC structures on M; the 
latter will play an essential role in Seiberg-Witten theory. 

Rokhlin's theorem 

First, an algebraic argument shows that: 

Van der Blij's Lemma. For every characteristic element w we must have 

signQM = W·W (mod8). 0 

We prove this statement in the end-notes of the next chapter (page 263).53 

In particular, it follows that every spin manifold (for which we can always 
pick w = 0) must have signature multiple of 8. Surprisingly, more is true: 

52. In section 10.2 (page 382). 

53. The reason for this postponement is not the difficulty of the argument, but merely its reliance on 
the classification of algebraic forms, which is discussed in the next chapter. 
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Rokhlin's Theorem. If M4 is smooth and has w2(TM ) = 0, then its intersec­
tion form must have 

signQM = 0 (mod 16) . o 

In part for reasons of space, proofs of this theorem are exiled to the end­
notes of chapter 11 (one proof starting on page 507, another starting on 
page 521). 

Three's company. Notice that we have already encountered several statements 
due to V. Rokhlin: one from page 123 (about zero-signature manifolds bound­
ing), one from a few pages back (about zero-signature spin-manifolds spin­
bounding), and the one right above.54 In this volume, only the last result will 
be called #Rokhlin's theorem". 

Smooth exclusions. A first consequence of Rokhlin's theorem is that E8 can 
never be the intersection form of a smooth simply-connected 4-manifold: 
indeed, E8 is an even form with signature 8. In particular it follows that, 
as we claimed earlier, the E8-manifold M Eg does not admit any smooth 
structures at all. 

Historically, we should note that, even though it was clear from Rokhlin's 
theorem that the £8 -form would never appear as the intersection form of a 
smooth 4-manifold, it was not known until Freedman's work that the £8-
form does nonetheless appear as the intersection form of a topological 4-
manifold. Indeed, reca1l 55 that the definition of M Eg involves Freedman's 
contractible L1 's, whose construction in turn needs Freedman's major result 
on Ca ss on handles. 

More generally, since E8 has signature 8 and H has signature 0, we deduce: 

Corollary. If M is smooth and has no 2-torsion, for example when M is simply­
connected, and its intersection form is 

QM = EB ±m E8 EB n H , 
then m must be even. o 

As we will see shortly, all even indefinite intersection forms do in fact fall 
under the jurisdiction of this corollary. 

We should note that the absence of 2-torsion is essential: the complex En­
riques surface (doubly-covered by K3) has intersection form -E8 '-S H but 
fundamental group TIt = Z2; its 2-torsion allows the intersection form 
to be even without 'W2 vanishing, and hence Rokhlin's theorem does not 
apply. 

54. Furthermore, all three results appeared in the samefour-pages-Iong paper, New results in the theory 
of four-dimensional manifolds [Rok52}. 

55. From section 2.3 (page 86). 
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It is also worth noting the fact that, for the thirty years between Rokhlin's 
and Donaldson's work, no new methods of excluding intersection forms 
from the smooth realm were discovered. Indeed, Rokhlin in the 1950s ex­
cluded E8 from ever being the intersection form of a smooth 4-manifold, 
but the form E8 EB E8 was only excluded by Donaldson in the 1980s. 

Other consequences. Rokhlin's theorem is a fundamental result in topology. 
Its consequences extend quite far, as we will comment in the various notes 
at the end of this chapter. For example, Rokhlin's theorem sends its ten­
tacles into dimension 3 (the Rokhlin invariant, defined in the end-note on 
page 224), as well as into high dimensions (the Kirby-Siebenmann invari­
ant, governing whether a topological manifold admits smooth structures, 
see the end-note on page 207); the theorem is essentially equivalent to the 
fact that for big n we have 7[11+3 SI! = Z24 instead of Z12. 

Rokhlin's theorem also admits generalizations in dimension 4, such as: 

Corollary (M. Kervaire & ]. Milnor). Let M be any smooth 4-manifold. If I: 
is a characteristic sphere in M, then we must have: 

sign M = .E . .E (mod 16) . o 

This last result was put to use for determining which characteristic ele­
ments cannot be represented by embedded spheres, and a fuller discussion 
will be carried through in section 11.1 (page 482). 

An even further generalization of Rokhlin's theorem, due to M. Freedman 
and R. Kirby, is the formula 

sign M = .E . .E + 8 Arf(M,.E) (mod 16) , 

involving general characteristic surfaces .E and needing a correction tenn 
Arf( M, .E), with values in Z2 and depending only on the homology class 
of 2:. This last statement will be fully explained and proved in the end­
notes56 of chapter 11. Since the Freedman-Kirby formula will be proved 
from scratch, in particular it will offer a complete proof of Rokhlin's theo­
rem. If one wishes so, one can skip ahead and read it right now.57 

56. Statement and heuristics starting on page 502 and detailed proof starting on page 507. An alterna­
tive spin-flavored proof starts on page 52l. 

57. It is recommended, though, to first visit with the end-notes of chapter 10 (the characteristic cobor­
dism group, page 427) and the end-notes of chapter 11 (the Arf invariant, page 501). This late placement 
of the proof of Rokhlin's theorem owes more to reasons of space organization of this volume, than to 
lno-irrt 1 ,<;tn )('hlTe. 
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Introduction 

Half of the following notes car.. be viewed as comments on the concept of spin 
structure. Part of this emphasis can be justified by the foundational role that their 
complex cousins-spine structures-play in the definition of the Seiberg-Witten 
invariants that we will encounter in chapter 10. Another (non-disjoint) half of the 
notes can be viewed as comments on Rokhlin's theorem. 

In the main text we defined spin structures as extendable trivializations. The more 
usual definition is in terms of a reduction of the structure group of T M to the group 
Spin ( 4). The first note (page 174) is devoted to explaining this definition. For this 
purpose, the concept of cocycle defining a vector bundle is first introduced. The 
note ends with a comment on the non-spin case and with the definition of principal 
bundles and their relation to spin structures. 

The second note (page 181) contains a hands-on proof that the two definitions of 
spin structures are indeed equivalent. It is a direct argument involving triangula­
tions and cover spaces, and was included owing to its absence from the standard 
literature. 

The third note (page 189) develops the concept of cocycle for a bundle in its natu­
ral context: Cech cohomology. We develop this notion just enough to encompass 
bundle cocycles, but not general sheaf-cohomology. This leads in particular to 
concrete representations of the Chern class of a complex line bundle and of the sec­
ond Stiefel-Whitney class of an oriented vector bundle, together with its relation 
to spin structures. 

The fourth note (page 197) is a quick presentation of obstruction theory for bun­
dles; this is a method for encoding the obstacles to building a section of a fiber 
bundle into suitable cohomology classes. To this is added, in the fifth note (page 
204), the concept of classifying spaces for G-bundles. Besides relating these to 
spin structures and W2 (T M)' both obstruction theory and classifying spaces are 
needed in the subsequent note. 
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The sixth note (page 207) presents the theory of endowing topological manifolds 
with smooth structures, as developed among others by S. Cairns, J. Munkres, J. Mil­
nor, M. Hirsch, B. Mazur, R. Kirby, and L. Siebenmann. For this, tangent bundles 
for topological manifolds are defined. In dimensions at least 5, a suitable reduc­
tion of their structure group (a smoothing of the bundle) can be integrated to a 
smooth structure on the manifold itself. The obstacles toward this group reduc­
tion are investigated using classifying spaces and obstruction theory, and lead to 
the Kirby-Siebenmann invariant as primary obstruction, as well as to higher ob­
structions. This theory is weak in dimension 4, but the Kirby-Siebenmann invari­
ant is still defined, and we conclude the note (page 221) by commenting on its 
4-dimensional behavior, its strong relation to Rokhlin's theorem, and with a nod 
toward exotic ]R.4' s. 

We should mention that this note on smoothing theory is a node in the parallel threads of this 
volume. Inwards, it is a far-reaching consequence of Rokhlin's theorem; a full understanding of 
it is helped by reading the earlier note on exotic spheres, at the end of chapter 2 (page 97), and 
the notes ahead on obstruction theory (page 197) and on classifying spaces (pag~ 204). Outwards, 
it underlies Freedman's classification to be presented in the next chapter. It offers the right con­
trasting background for the results on smooth 4-manifolds that come from gauge theory, starting 
with Donaldson's theorem in section 5.3 (page 243) and passing through the exotic JR4 's of sec­
tion 5.4 (page 250); and it further motivates the Freedman-Kirby generalized Rokhlin theorem to 
be explained at the end of chapter 11 (page 502). 

The seventh note (page 224) presents briefly the Rokhlin invariant of 3-manifolds 
that appears as a consequence of Rokhlin's theorem. Along the way, the Novikov 
additivity of signatures for 4-manifolds glued along their boundaries is stated. 

The eighth note (page 227) presents the groups that appear by considering two 
manifolds equivalent if they are cobordant. The oriented cobordism group and 
the spin cobordism group are displayed. 

The ninth note (page 230) explains the Pontryagin-Thorn construction. This tech­
nique was already used during the geometric proof of Whitehead's theorem and 
is placed here in its proper place, as a framed cobordism theory. Relations with 
homotopy groups of spheres are outlined. 

Finally, on page 234 are gathered the usual end-of-chapter bibliographical com­
ments. The next chapter starts on page 237; for the sake of continuity the reader is 
strongly recommended to skip all these notes at a first reading and resume reading 
there. 

Note: Spin structures, the structure group definition 

The customary definition of a spin structure is in terms of the Spin group, namely 
as reduction of the structure group of T M from SO( 4) to its simply-connected 
double-cover Spin ( 4). In this note we discuss this definition. The equivalence 
with the definition presented in the main text will be detailed in the next note 
(page 181). The structure group approach will also be taken up in section 10.2 
(page 382), where we will present spine structures in order to define the Seiberg­
Witten invariants. 
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Describing vector bundles by using cocycles. A vector bundle E of rank k over xm 
(also called a k-plane bundle over X) is an open (m + k)-manifold E together 
with a map p: E ~ X such that its fibers p-! [x] are vector spaces isomorphic to 
Rk, and p locally looks like projections U x Rk ---7 U. In other words, there is an 
open covering {Ua } of X and an atlas of maps 

{<pa: p-l [Ua] ~ Ua x JRk } , 

with pr! 0 <po: = p, and so that the overlaps <pa 0 <p~l are described by 

(x, w) ~ (x, gaf3(x) . w) 

for some suitable change-of-coordinates functions l 

gaf3: Ua n Uf3 ~ GL(k) , 

thus ensuring that the Rk-factors are identified linearly. 

The maps g(tf3 are in fact all that is needed to describe E: One can just glue-up 
E from trivial patches Ua x ]Rk by identifying (x, wo:) from Uo: x ]Rk with (x, wf3) 
from Uf3 x JRk whenever Wa = gaf3(x) . wf3. 

For an open covering {Ua } of X together with a random collection of maps 

{gaf3: Ua n Uf3 ~ GL(k) } 

to actually define a k-plane bundle, certain simple compatibility relations need to 
be satisfied. These are: 

These three can be contracted into just one condition: 

gaf3(x) . gf3ry(x) . grya(X) = id . 

The latter is call~d the co cycle condition. Any collection {U{t\,Sa/3} satisfying it 
will be called a cocycle. (The name of "cocycle" comes from Cech cohomology; 
this setting will be detailed in the note on page 189 ahead.) 

As a simple example of cocycle defining a bundle, if {<Po:: Uct ::: U~ C ]Rm} is an 
atlas of charts for the smooth manifold Xm , then the cocycle 

gaf3(x) = d(<Pao<Pjl)lx, 

made from the derivatives of the overlaps, defines the tangent bundle T x of X. 

Sections. Given a section s: X ---> E of some bundle E -+ X, we can use the charts {rpa:: El u" ;:::: 

Ua: x JRk } to express S in coordinates. We obtain a collection of maps {sa:: UIt ---> JRk } given by 
Sit = rplt os. The various local maps Sa are compatible through the relations 

sa(x) = gaf3(x) . sf3(x) . 

Conversely, in terms of cocyc1es alone, given a set of maps {Sit: Ua: ---> JRk }, if they satisfy the 
above compatibility with some cocyc1e {gaf3}, then they define a section in the vector bundle 
described by {ga:,d. 

Morphisms. Bundle morphisms can be described in terms of cocycJes as well. Consider two 
bundles E' -> X and E" ---> X with fibers JRI1l and JRn, both over a same base X endowed with 

1. In case one finds the notations GL(m) and SO(m) somewhat obscure, they are reviewed later, in 
section 9.2 (page 333). 
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a covering {U",}. Let E' be described by charts {cp~} and E/I by {cp~} , inducing corresponding 
cocycles {g~f3: Uti n Up ~ GL(m)} and {g~ll: Ua n Uf3 -+ GL(n)}. Consider any linear bundle 
morphism I: E' ~ E", ccH'ering the identity X -+ X. The morphism I can be expressed as a 
collection of maps {It I : Uti ~ Hom(JRII1, JRH)} obtained by writing I in coordinates through the 
formulae cp~ (j(ZI')) = /:, (x) . cp~ (w) for all WEE' and x = p(w) EX. These J.I 's satisfy the 

relations () '() /I () () It I X • g"'f3 x = gall X . 1f3 X • 

Converserj~ in terms of cOL~\'cles alone, given a set of maps {f",: U", ---> Hom(JRIII,!R H
)}, if they 

satisfy the above compatibility with some cocycles {g~p} and {g:p}' then they must define Cl 

bundle morphism from the bundle defined by {g~ll} to the one defined by {g~p} . 

Two GL( k) -valued cocycles {g~{3} and {g:,,}, associated to a same covering {Uit }, 

describe the same bundle (up to isomorphIsms) if and only if there exists a collec­
tion of maps {fit: UI\ ~ GL(k)} such that 

g~f3(x) = fa(x) . g~{3(x) . f{3(x)-1 . 

Indeed, these fl\ 's are just a description in local coordinates of a vector-bundle 
isomorphism between the bundles defined by {g~{3}' and {g:f3}' 

By ignoring the underlying vector bundles, we will say directly that two cocycles 
{g~{3} and {g~f3} are isomorphic whenever they can be linked with fit'S as above. 

For comparing two cocycles {g:, {3'} and {g:/1 {3/1} associated to two different cov­
erings {U~,} and {U~I/} of M, we can first move to the common subdivision 
{U~, n U~II } , then proceed as above. 

Keep in mind that any bundle over a contractible set must be trivial, and thus, if 
one starts with a covering {Uit } of X by, say, disks, then such a covering can alone 
be used to describe 0/1 bundles over X. 

Reductions of structllre groups. Let E be a k-plane bundle, and let G be some sub­
group of GL(k). If we manage to describe E using a G-valued cocycle g~/): ULt n 
Uf3 ---+ G, then we say that we have reduced the structure group of E from GL(k) 
to its subgroup G. 

This notion can also be described in terms of cocydes alone: Given some cocyde 
gal): Ua n U{3 ----'> GL(k) , we say that we reduced its structure group to G if we can 
find a G-valued cocycle g~/): U(I; n Up ----'> G so that {g~f3} is isomorphic to {g/tp}. 

For example, every vector bundle E can be endowed with a fiber-metric (i.e., an 
inner product in each fiber, varying smoothly from fib er to fiber). Then, by restrict­
ing our choice of charts CPt': El U,I ~ Ua x Rk to those <pa 's that establish isotlzeiries 
between the fibers of E and Rk (with its standard inner product), we are led to a 
description of E by an O(k)-valued cocyde 

gClfl : Ua n U{3 -----+ O(k) . 

We then say that a fiber-metric has reduced the structure group of E from GL(k) 
to its subgroup 0 (k ) . 

If our bundle is orientable and we choose an orientation, then, by further restrict­
ing the <pa's to those providing orientation-preserving isometries from the fibers of 
E to Rk, we obtain a SO(k)-valued cocyde for E 

g(tf3: Ua n Uf3 -----+ SO(k) . 
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We say that an orientation has further reduced the structure group of E from O(k) 
to its subgroup SO(k). 

A spin structure on E can itself be described as a further "reduction" of the struc­
ture group of E from SO(k) to the group Spin(k). However, since Spin(k) is not a 
subgroup of GL(k), this "reduction" has to be developed abstractly, at the level of 
cocycles and not directly on the vector bundles. 

Definition of a spin structure. While the notion of spin structure can be developed 
for general vector bundles E, for concreteness in what follows we will restrict to 
the case of the tangent bundle of a 4-manifold. The extension to the general case 
should be obvious enough. 

Start with an oriented 4-manifold M and pick a random Riemannian metric on it. 
This reduces the structure group of TM to SO(4), and thus TM can be described 
by an SO(4)-valued cocycle {Ua, gaf3} with 

gaf3: Ua n Uf3 ~ SO(4) . 

The group SO( 4) is connected, but has fundamental group 

7tJ SO(4) = 'Z2 . 

This fundamental group is generated by a path of rotations of angles increasing 
from 0 to 27t. On the other hand, if one keeps rotating until reaching 47t, then the 
resulting loop in SO(4) will be null-homotopic; this can be observed in figure 4.17 
on the following page, if properly interpreted. In conclusion, a loop f: SI -+ SO( 4) 
is homotopically-trivial if and only if it twists JR4 by an even multiple of 27t, and 
nontrivial if it twists by an odd multiple. 

The fundaluental group is unfolded in SO( 4) 's universal cover, specifically in the 
Lie group 

Spin ( 4) , 

which double-covers2 SO( 4) . 

Ledger. One can think of the Spin group as a method for bookkeeping 2TC-rotations; Consider 
Cl random loop (: [0, I] --; SO( 4), with £(0) = e( 1). On one hand, if e is homotopically-trivial, 

then it CilIl be lifted to a loop C in Spin(4) , with £(0) = C( I). On the other hand, if e describes a 
rotation of2TC, then it can only be lifted to an open path lA/ith £(0) = -7(1). 

A spin structure on M is defined as a lift of the SO(4)-cocycle {gaf3} of TM to 
a Spin ( 4) -valued cocycle, considered up to isomorphisms. Specifically, given the 
SO( 4) -cocycle 

of T!vJ, we lift these maps against the projection Spin ( 4) -+ SO( 4) to get maps3 

gaf3: Ua n U;f3~ Spin(4) . 

2. As a bit of help in visualizing Spin(4) --; SO(4) with its TC,SO( 4) = Z2, one can invoke for a moment 
the thought of 52 --; IRlP2 . Or, even better, of 53 --; IRlP3. "Better", because in fact 53 = Spin(3) and 
IRlP3 = SO(3). In dimension 4, we have Spin(4) = 53 X 53 and SO(4) = 53 x 53/±I. 

3. Such a lift is always possible: choose the covering {U" } so that all LT" nUt, 's are simnlv-connp.ch>cI. 
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8--1 

4.17. 7t1S0(n) = 7L2 (when n 2 3) 

The problem is that, since Spin ( 4) ---7 SO( 4) is a double-cover, on triple-intersec­
tions Ua n U{3 n U')' such lifts a priori satisfy merely the conditions 

ga{3 . g{3')' . g')'a = ± id . 

The appearance of an actual minus-sign makes {ga{3} fail from being a cocyde. 

Hence, the manifold M is said to admit spin structures if and only if one can find 
a good SO( 4) -cocyde {Ua , go:{3} of T M that can be lifted to Spin (4) -valued maps 
{Uo:, ga{3} for which 110 minus-signs appears in the equality above, and which thus 
make up a Spin(4)-cocyde. 

No oddities. Intuitively, a Spin( 4) -valued cocycle {gald for T M exists if and only jf odd mul­
tiples of 21£ can be avoided when gluing up TM. Explicitly, take a circle C bounding a disk in 
M and imagine that there are a few localJy-triviaJized patches Ua X JR4 of TAl covering C that, 
when matched up, describe a rotation of 21£ when travelling along C (see figure 4.18 on the next 
page). Then, since these patches describe the nontrivial class in 1£1 SO( 4) = Zz, they and their 



4.5. Notes 179 

4.18. A non-extendable trivialization of T!vI over the circle C 

gluing maps ga/3 call1lot be used toward lifting to a 5pin(4) -cocycle. This will be made more 
dear later. 

Homotopic simplifications. Choosing an orientation on M reduces the structure group of T M 

hom the disco1lnected group 0(4) to the connected group 50(4). Choosing a spin structure on 
M reduces the structure group of TM to the simply-collnected group 5pin(4). This process of 
homotopy-simplification of the structure group ends here. We already have 712 SO( 4) = 0 (and 
thus 712 Spin(4) = 0). Further asking of a Lie group G to ha,·c TrJ G = 0 would force G to be 
contractible, and thus the bundle to be topologically trivial. 

In the remainder of this note, we will comment on what happens when M does 
not admit spin structures and explain the principal bundle point-of-view on spin 
structures. The latter will help us argue in the next note (page 181) that the two def­
initions of spin structures, the one with co cycles and the one with trivializations, 
are indeed equivalent. The third note (page 189) will develop bundle cocycles in 
their natural habitat, Cech cohomology. The fourth note (page 197) will present 
a smattering of obstruction theory and apply it to spin structures, while the fifth 
note (page 204) will present the homotopy-theoretic point-of-view on spin struc­
tures. SOlne consequences of the cocycle definition of spin structures (spinor bun­
dles, Dirac operators) will be outlined in section 10.2 (page 382), as a quick prelude 
to the introduction of spine structures. The standard reference for spin structures 
is B. Lawson and M-L. Michelson's Spin geometry [LM89]. 

When Hot spinnable. The existence of a spin structure is equivalent to the vanish­
ing of "(02 (T M). We wish to note wha t happens when no spin structures exist, that 
is, ,,,,hen w2(T M) f= o. In the cocycle point-of-view, this means that every Spin(4)­
valued maps {ga:t3} ,lifted from the SO( 4)-cocycle of T M, must have triples It, (3, ')' 
with U(( n Uf3 n Ury non-empty and such that g((f3(x) . iIlh'(x) . grya:(x) = - id. 

We pick an integral lift JQ E H2(M;Z) of "W2(TM ) and represent JQ by an embed­
ded oriented surface 1: in M. Since the characteristic surface 1: is the incarna­
tion of the obstruction to the existence of a spin structure on M, there exist spin 
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structures away from L" on the complement M \ I:. None of these outside spin 
structures can be extended across L,. (In terms of co cycles, we can arrange that the 
failing triples iX, {3, I' occur when and only when we go around I:.) 

In the trivializations point-of-view, such an outside spin structure on M \ L, offers 
a trivialization of T M over the I-skeleton, which restricts to a trivialization of T M 

over small circles surrounding I: (e.g., fibers of the normal circle-bundle SNI'./ M 

of I: in M). Since the outside spin structure cannot extend across I:, it follows 
that the trivialization of T M over each such circle around I: must describe a twist 
of 27t, as in figure 4.19. In the note ahead on Cech cohomology (page 196), this 
description will be made rigorous by using a concrete represen ta tion of 'W2 (T M) . 

. 4.19. Outside spin structure, not extending across a characteristic surface I: 

PJ'il1cipal bundle point-DJ-view. For any group G, a principal G-bundle is a lo­
cally-trivial fiber bundle with fiber G and structure group G. In other words, a 
principal G -bundle over X is a space Pc together with a projection map p: Pc ~ 
X so that there is some covering {Ua:} of X and maps (PI\: p-I [Ua ] ~ Uo; X C, 
with prl 0 CPet = p and so that the overlaps CPf3 0 cP;; I are described by formulae 
(x, 1') r-----:; (x, get~ . 1') for suitable functions ga{ Uet n Ur) --'" G, acting on G by 
lTIultiplication. Hence Pc ~ X can be obtained by gluing tri\Oial pieces Ua x G ~ 
U(l using the G-cocycle {go;f3} , identifying (x, I'a) E U(l x G with (x,I'f3) E Uf3 x 
G if and only if I'It = gltf3(x) .1'f3. 

Notice that, unlike a vector bundle, a principal G-bundle does not admit any 
global sections, unless it is trivia1.4 

Bll11dlc of f rmlll'so For example, the SO( 4)-valued cocycle {g,\~d of T'vl acts directly 
on the group SO( 4) itself. Then, by gluing trivial pieces U/\ x SO( 4), one obtains 
from {get/)} a principal SO(4)-bundle 

PSO(4)~ M. 

4. The fibers of Pc may look like G, and G itself acts on them, but they a re merely "affine" copies of 
G, without, for example, a specified identity element. A global section in~; can be viewed as offering 
a coherent choice of identity element, and thus yields an isomorphism Pc; ::::: X x G. 
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The bundle PSO(4) depends only on TM , not on the particular choice of SO(4)­
cocycle {ga!'}. Geometrically, one should think of PSO (4) ~ M as the bundle of 
orienting orthonormal frames of T M . 

A local section T: U ~ PSO (4) is a frame-field in TM over U. It is thus equivalent 
to a trivialization of T M over U. In particular, a trivialization of T M over the 1-
skeleton M/I of M is the same as a section M/I ~ PSO (4). The trivialization is 
extendable over the 2-skeleton M/2 if and only if the corresponding section of 
PSO (4) can be extended across M/ 2 . 

Spin structures. Assume now that the SO(4)-cocycle {gap} lifts to some Spin(4)­
valued maps {gap} that satisfy the cocycle condition. Then we can use this lifted 
co cycle to glue a principal Spin(4)-bundle 

PSpill (4) -; M 

from trivial pieces Ua x Spin ( 4). More, the double-cover Spin ( 4) ~ SO( 4) defines 
fiber-to-fiber a natural map PSpin (4) ~ PSO (4) ' fitting in the diagram 

Spin(4) C Psp in(4) M 

21 21 11 

SO(4) C PsO(4) ----. M. 

The map PSpin (4) ~ PSO (4) is itself a double-cover of P.50(4). 

A.. spin structure can thus be redefined as a principal Spin(4)-bundle PSpin(4) that 
:iouble-covers the bundle PSO(4) (and fits in the diagram above). 

'Jote: Equivalence of the definitions of a spin structure 

n what follows, we will prove hands-on the equivalence between defining spin 
,tructures as extendable trivializations of T M and defining them as lifted Spin ( 4)­
:ocycles. Reading the preceding note is, obviously, a requisite. 

)f course, more streamlined arguments exist. (Here is the best one: both the exis­
"ence of an extendable trivialization and of a Spin ( 4) -co cycle are equivalent with 
he vanishing of w2(TM); the end.) Nonetheless, in what follows we favor a con­
:rete approach, which is rather expensive; we choose to present it here owing to 
ts absence from the literature. 

)ur argument is rather long and involves some careful play with triangulations, 
)rincipal bundles and double-covers, but the basic idea is pretty straightforward: 
Jet E ~ D2 be a vector bundle over a disk, with fiber JR4. Since D2 is contractible, 
:: must be trivial; for definiteness fix a reference trivialization E ~ D2 X ]R4. 

=onsider some other random trivialization cP: E/sl :::::::; 5' X JR4 over the bound­
ry of the base. Think of cp as a field of frames in E over a D2, that is to say, 
s a map CPf: 5 I ~ SO( 4) . The trivialization cP will extend across all D2 if 
nd only if the frame-field CPf can be extended over D2. That happens if and 
nly if the loop CPf in SO( 4) is homotopically-trivial, that is to say, if and only if 
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CfJr Si ~ SO(4) can be lifted to a closed loop o/r Si ~ Spin(4) (and not to an 
open path ?Pr [0, 1] ~ Spin (4) , with o/f(O) = -?Pf(1)). 

Throughout this note, assume that M has been triangulated, in other words, ex­
hibited as a simplicial complex.s Denote by Mll the I-skeleton of M, by MI2 
the 2-skeleton, and so on. Further, for any bundle E over M, denote by Elk the 
restriction of E to the k-skeleton of M (and not the k-skeleton of the manifold E). 

From co cycles to trivializations. Assume first that a SO( 4) -co cycle {ga:{3} of T M 

lifts to some maps {ga:{3} that actually satisfy the cocycle condition. Then a cor­
responding principal Spin(4)-bundle PSpin (4) is well-defined. We will show that 
the existence of the bundle PSpin (4) implies that T M can be trivialized over the 2-
skeleton Mb. Specifically, we will show that the frame-bundle PSO (4) admits a 
section over M12' For that, we define a section T of PSpin (4) over Mb and project 
it to a section of PsO(4)' The section T is defined using a simplex-by-simplex con­
struction.6 

We start with the vertices of M and define each T(vertex) in some random manner 
as an element of PSpin (4) in the fiber above it. 

Any edge E of M is contractible, and thus PSpill (4) lE is trivial. Choose some triv­
ialization PSpin(4) lE ~ E x Spin ( 4). The section T is already defined at the end­
points (vertices) of E. By looking through the trivialization, we see that the fact 
that Spin(4) is connected implies that T can always be extended over E, and thus 
eventually across the whole I-skeleton M11' 

There remain the 2-simplices. Any 2-simplex 0 is contractible and thus PSpin (4) ID 
can be trivialized as D x Spin ( 4). The section T is already defined over the edges 
that make up the boundary aD. Looking through the trivialization and using that 
Spin( 4) is simply-connected allows us to extend T over D, and eventually across 
the whole 2-skeleton Mb. 
The resulting section T: Mb ~ PSpin (4) can be projected through the double-cover 
PSpin (4) ~ PSO(4) to a section T: MI2 ~ PSO (4)' The latter is a field of frames in 
TM that trivializes TM over Mb. 

Notice that, since we have 7t2S0(4) = 0 (and thus 7t2Spin(4) = 0), a bit more can be done: the 
section T of PSpin (4) can be further extended across the 3 -skeleton of M, yielding a trivialization 
of TM over M13, which can be viewed as a trivialization over M \ {point}. 

5. A triangulation is a decomposition of M into simplices. A O-simplex, or vertex, is a point. A 1-
simplex, or edge, is a copy of [0, 1]; its faces are its endpoint-vertices. A 2-simplex is a triangle (interior 
included); its faces are its three edges. A 3-simplex is a tetrahedron (interior induded); its faces are 
the obvious four 2-simplices. A 4-simplex is whatever you want to call what follows; its faces are 3-
simplices. If a simplex is part of a triangulation, then all its faces must be simplices of the triangulation. 
All simplices of a triangulation of M must be embedded in !vI and must either have exactly a whole 
sub-simplex (= face, or face-of-face, or ... ) in common with another simplex or be disjoint from it. In 
short, a triangulation of M means making M look like a polyhedron with simple "triangular" faces. 

6. This simplex-by-simplex method is just a most simple application of the method of obstruction theory, 
which will be explained in generality in the note on page 197 ahead. If you do not like the word 
"simplex", you can substitute "handle" or "cell" throughout. 



4.5. Notes 183 

Uniqueness. It is worth noting that the trivialization y of Tt.1/I that we obtained above is uniquely 
determined, up to homotopies, by the spin structure PSpill (4)' Indeed, assume two random sec­

tions if and i" of PSpill (4) are given o\'er M/I' We will define a homotopy between them over 
the i-skeleton of M. For that, we view a homotopy as a section of the bundle PSpin (4) X [0, 1] ---> 

M x [0, 1 J that limits to if over M x ° and to 'i" over M xl. Since if and i" are given, such 
a section is already defined over the vertices of M x [0, 1 J. It can be extended across the edges 
connecting M x ° with M x I, using as aboFe tha t Spin ( 4) is connected. Then it can be ex­
tended over the 2-simplices of M x [0, i] by llsing that 711 Spin (4) = 0. Thus, we have defined 
a homotopy between if and i" over M/ 1 . This descends to a homotopy between the induced 
trivializations yf and yll of TM, proving uniqueness. 

In conclusion, a spin structure defined via cocycles determines an extendable trivi­
alization of T M 11, unique up to homotopies. 

From trivializations to cocycles: Preparation. The converse argument involves a 
rather cumbersome setup that will allow us to link I-skeletons and trivializations 
to cocycles and their lifts. It will take the rest of this note (through page 189). 

Assume that M has been endowed with a fixed triangulation !Y. For definiteness, 
fix a Riemannian metric on M. We will prove that any trivialization of TMll that 
extends across MI2 defines a Spin(4)-cocycle for TM. 

First, remember that any triangulation g admits a dual cellular decomposition !Y*. 

Given a triangulation g of M 4 , its dual cellular decomposition /7* is obtained by taking the 
barycentric subdivision7 /y' of g, then, for each (4 - k) -simplex .d" of ,'7, defining its dual 
k-cell .d~ in g* by taking the union of all k-simplices of .'7' that touch the barycenter of .d,\. 
For example, the vertices of g* are the barycenters of the 4-simplices of <'7, the l-cells of 
g* are arcs normal to the 3-simplices of .'7 (and link the vertices of 3"* ), while the 4-cells of 
,'7* are neighborhoods of the vertices of 3". See figure 4.21 on the following page. The dual 
cellular decomposition is an especially nice cellular decomposition, in that it fails from being a 
triangulation only by using more general "polygonar cells rather than just "triangular" simplices; 
otherwise, all cells are embedded, etc. (On the side, note that dual cellular decompositions can be 
used to offer a nice visualization of Poincare dUc1lit.".) 

..
...................................... 

....... 

4.20. Barycentric subdivision of a 2-sirnplex 

7. The barycenter of a simplex .d is simply a canonical center for it. The barycenter of a vertex is the 
vertex itself. The barycentric subdivision ,5'" of .'7 is obtained by taking as new k-simplices every join 
of the barycenter of an old k-simplex of .Y with the barycenter of a face and the barycenter of a face of 
that face and .. , For example, a 2-simplex in /7' is the triangle that appears by joining the barycenter 
of a triangle of g with the center of one of its edges and with the vertex at one end of that edge. See 
figure 4.20. The join of two subsets A and B of !R" is the union of all segments that start in A and end 
in B. 
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4.21. Cellular decomposition dual to a triangulation 

Since we have to deal with trivializations of T M over the I-skeleton Mll and their 
extendability over the 2-skeleton Mb, we will only use cocycles {Ua, gttf3} of TM 
that are nicely compatible with the chosen triangulation g of M. 

Namely, we will take the Utt's to be small neighborhoods of the 4-cells Ll; of the 
dual decomposition !!/* of M. The 4-cell .1~ is a closed set surrounding a vertex 
Vtt and touching the barycenters of all 4-simplices that contain Vtt . In particular, 
each edge £ of !!/ links the center of Ua with the center of Uf3 and passes through 
the overlap Utt n UJ3. The latter intersection is just a small neighborhood of the 
3-cell (dual to £) that Ll; and .1~ have in common. 

Since each Utt is contractible, TMlua is trivial. Using the Riemannian metric of M, 
we choose trivializations . T I '"'" U JR4 

q>a:. M Uti '"'" l1: x 

that are isometries on the fibers. We compare these trivializations over Uo.: n Uf3 
and obtain transition maps 

with 

These will be the cocycles {Ua , gll:f3} of T M that we will consider. Notice that these 
cocycles depend essentially only on the choice of trivializations q>a over the Ua's. 

Trivializations and partial Spin-bundles. Given any trivialization 

e: TMll ~ Mll X JR-l 

of T M over the l-skeleton of M, we express e in coordinates with respect to the 
charts q>a: TMluLt ~ Ua x R4. Namely, we describe e by a collection of SO(4)­
valued maps To.:, defined on the part of the I-skeleton of M that is included in Ua , 

which we denote by Ua: 11 (see figure 4.22 on the next page). 

Specifically, the maps 

are defined by the equations Ta: (x) . W = q>tt (e- I (x, w)) and will satisfy compati­
bility relations 

Ta = gltf3 . Tf •. 

An alternative view of the Ta'S is as defining a section 

T: Mll ---t PSO(4) 11 , 
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4.22. Open set UCt;, and the I-skeleton of M 

corresponding to the frame-field induced by the trivialization e. 
Consider a random lift of the maps To:: Uo: 11 -+ SO( 4) to some maps 

To:: UIl 11 ----7 Spin ( 4) . 

Given such a collection {Ta}, we can correspondingly choose lifts 

gllpl: UIl n Ut) ----7 Spin (4 ) 

of the ga(3 's in such manner as to fit the various To: 's, namely so that 
- - -
T{l = ga:/3 . T(3 • 
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Since this fitting amounts merely to a choice of sign for each ga:(3 and owing to the 
special shape of our covering {U{l}, such a lift can always be made. 

Of course, {ga/3} is most likely not a cocycle. Whether it is or not depends only on 
the Ta'S, not on the random lifts Tl\. To see this, consider two random lifts {T~} 
and rr:}. They can differ at most by a collection of signs Ea E Z2 = {-I, + I} 
with ::r: = Ea::r~. The corresponding transition maps are then related by g~P = 

-I Cl I h -11 -11 ~II I . f d I' f -I ~I -f 1 Ea E(3 ga{3' ear y, we ave gap' gf,,' . g,'a = + 1 an on y 1 ga/3' g/3ry . g,'{l = + . 
In particular, when one choice of 7;t'S leads to a cocycle, then so will any other 
choice, and the various choices lead to isomorphic cocycles, i.e., a unique spin 
structure. 

By definition, the maps ga/3 satisfy itaf3 = g~al. Therefore, if we avoid all triple 
intersections Ua n Uf3 n Ury, then the lifts ga/3 can be used to define a principal 
Spin(4)-bundle away from the Ul\ n U{l n Ury's. In particular, we get a bundle 

P.5pil1(4) 11 
well-defined over the I-skeleton of M. 

Of course, PSpin (4) 11 is a double-cover of PSO(4) 11, built fiberwise from the projec­
tion Spin ( 4) -+ SO( 4). Furthermore, the maps Ta can be viewed as defining a 
section T: MI1 -+ PSpin (4) 11' 

Trivial versus nontrivial covers. Since the bundle PSpin (4) 11 defined above is Cl 

principal bundle, having a section T implies that it is a trivial bundle over M 11 . 
Nonetheless, it can project in a nontrivial way onto PSO(4) 11' In what follows we 

will investigate how this nontriviality can be detected. Since PSpin(4) 11 -+ P.S'O(4) 11 
is a cover projection, fundamental groups will play a prominent role in the argu­
ment. 
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Restrict to the boundary a 0 of a fixed 2-simplex O. Since both Pso(4)lao and 
PSpin (4) la 0 admit sections T and T, they are triviat and thus PSO(4) la 0 ~ a 0 x 
SO(4) and PSpin(4) laD ~ a 0 x Spin(4). Therefore 

7t) (PSO(4) la D) = Z EB Z2 and 7t) (PSpin (4) la D) = Z . 

Denote by d the double-cover map 

d: PSpill (4) la 0 ---7 PSO (4) la 0 , 

fitting in the diagram 

Psp in(4) la 0 ---7 PsO(4) la 0 Z ---7 ZEB Z 2 
d d* 

1 1 or, on 'Tt) 's: 1 1 prl 

ao ao Z Z 
Being a cover map, d's induced morphism d* must be injective. We deduce that 
there are only two choices: either 

or 

The case d* (1) = 1 EB 0 corresponds to the case when the cover PSpin (4) la 0 ~ 

PSO(4) la 0 is trivial, while d* (I) = I EB 1 happens when the fiber of PSpin(4) la 0 

twists once as we go around a 0, as suggested in figureS 4.23. 

E :5 PSpill (4) la 0 ~ 
t t 

C ~ PSO(4) laD C ~ 
4.23. Trivial and nontrivial covers 

To better visualize how this can happen, consider the trivial bundles Si x S3 and Si x lRIP3 over 
Si. There are two possible double-cover projections d of Si x S3 onto S' x lRIP3 that both com­
mute with the bundle projections and hence fit in a diagram 

Si x S3 ---> Si X lRIP3 

1 
d 

1 
One possible double-cover is the obvious one, the product of the identity on S I with the double­
cover S3 _ lRIP3. The other can be seen as follows: start with [0, 1] x S3 and glue the ends ° x S3 and 1 x S3 using the antipodal map on 53; project each 53 to lRIP3 to get a double-cover 
of Si x lRIP3. However, since the antipodal of 53 is homotopic to the identity, what we glued is 
still Si x S3. The first map has d* (1) = I ffi 0, while the second has d* (1) = 1 E9 1. In fact, this 
example is pretty close to our concerns, since S3 = Spin(3) and lRIP3 = SO(3). 

8. Owing to dimension-reduction, figure 4.23 is misleading: on both sides, the space Pspill(4)iaD should 
hp thp <:::lmp fTivi::ll hnncilp over aD. 
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Detecting nontriviality with cocyde candidates. The two cases d* (1) = I EB 0 and 
d* (1) = 1 EB 1 are detected both by the lifted Spin(4)-valued maps gaf3 and by the 
section T of PSpin (4) 11· We start with the gaf3 'so 

Since D is a 2-simplex of M, it is surrounded by three of the open sets from 
our covering, say Ua , Uf3 and U,,(, with the center of D right in the middle of 
Ua n Uf3 n U"(' as suggested in figures 4.24 and 4.25. 

4.24. Set-up for equivalence argument, I 

4.25. Set-up for equivalence argument, II 

We claim that, for the indices it, (3, 'Y around D, we have 

ga{3 . gf3"f . g,,(a = +1 

if and only if the cover PSpill (4) la 0 -+ PSO(4) la 0 is trivial, that is to say, if and only 
if d*(I) = 1 EB o. 

Assume first that the product of the gaf3 's around D is + 1. Then the gaf3 's can 
safely be used to extend PSpin (4) laD over D as a bundle PSpin (4) ID, fitting in 

Pspin(4) la 0 c 'Pspill(4) I 0 -----t 0 

dl 1 or, on 7tJ 's: 1 . 
~S'o(4)lao c ZEBZ2 ~ Z? 



188 4. Intersection Forms and Topology 

Thus the only possibility for d* is 

d*(l) = I tBO. 

Conversely, assume that d* (1) = I tB o. Then PSpin (4) laD -? PSO(4) laD must be 
the trivial double-cover, with 

PSpill (4)lao ~ 'Ps'o(4 J lao x {-l,+l}. 

Therefore it can be extended to a double-cover P of PSO (4) across the whole D, 
with Pia 0 = PSpil1 (4) la D· Such a double-cover, when projected down to D, can 
only have as fibers copies of Spin ( 4). Moreover, since P projects to PSO( 4) ID, its 
cocycle must project to the cocycle gllP of PSO (4). Further, since P -? D is glued 
over a D by the ga~ 's, it must be that it is glued over the whole D by the glX{3 IS. 

This in particular implies that the gIlP's, since they glue an actual bundle over D, 
must be a genuine co cycle over D, and thus 

In conclusion, ga{3 . g~1' . g,'l1: = + I if and only if d* (1) = 1 tB O. 

Detecting nontriviality with trivializatiol1s. Now we will see how to distinguish 
between the two cases d * (1) = 1 .~:o () and d * ( 1) = 1 tB 1 by using the trivialization 
e: TMl1 ~ Ml1 X ]R4. 

The trivialization e expresses itself through the section T of PSO (4) 11, with local 
coordinates Ta: Uo: -? SO( 4). Recall that \"le chose random lifts TA: UA -? Spin ( 4) 
and then picked the maps gl1:/) in such malmer as to ensure that the TA'S would 
define a section in the partial Spill(-J.) -bundle 'P5pin(4) 11 that is glued by the gl1:l{ 'So 

Over the boundary aD, we have the diagram 

Pspil1 (4) la 0 ----t Pso(4daD 'Z ----t 'ZtB'Z2 
d d* 

il IT or, on 711'S: T* I I T* 

aD ao 'Z= 'Z 

Since from commuting we must ha\'e that T* (1) = d* (1), it follows that either 
T* (1) = 1 EB 0 or T* (I) = 1 !jj 1. 

Trivialize PSO (4) over D as D x SO(4) and use the inclusion 

PSO (4) laD c PS(}(4) ID ~ D x SO(4) 

to obtain from T: aD -? pso(-n la 0 a map TO: aD -? SO( 4). Then the section T 

of PSO(4) la 0 can be extended to a section of PSO(4) over all D if and only if the 
induced map TO: aD -? SO( 4) is homotopically-trivial. In other words, if and 
only if we have T*(l) = 1 EB 0 and not I ,:p I. 

In conclusion, the trivialization e of T M over the I-skeleton can be extended over 
the 2-simplex D if and only if d* (1) = I ·:ri O. 
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Final twirl. Gathering our toys, we notice that we have proved the statement: 

Given a trivialization e of TMll' it can be extended over a 2-simplex 0 surroul1ded by 
the open sets U{l;, Up' Ury ifand only if gaf3· gpry. grya = +1. 

In particular, if e is a trivialization of T M over the I-skeleton that extends across 
the whole 2-skeleton, then it can be used to define lifted maps {gtt~d that will 
constitute a Spin ( 4) -cocycle. 

The proof is concluded: an extendable trivialization defines a unique Spin ( 4)­
cocycle, up to isomorphisms. 

Note: Bundles, cocydes, and Cech cohomology 

In this note we describe the Cech cohomology of a manifold, with constant coef­
ficients in an Abelian group G. Then we extend this concept, on one hand, to 
non-Abelian groups and, on the other hand, to non-constant coefficients. (We will 
not take the next step of defining the general cohomology of a sheaf.) 

This will enable us to present a cocycle defining a bundle as a Cech cocycle that de­
fines a cohomology class in HI (M; cooGL(k)). Consequently, HI (M; cooGL(k)) 
can be viewed as the set of all k-plane bundles over M, up to isomorphisms. This 
approach will allow us to get concrete descriptions of a few characteristic classes 
and will be used to touch upon the obstruction and uniqueness of spin structures 
onM. 

Cech cohomology. One should think of Cech cohomology as a cohomology theory 
that uses open coverings and the way their open sets assemble (intersect) patching­
up the manifold M, in order to detect the topology of M. 

Let {Ua } be a covering of M by open sets, and G an Abelian group. We consider 
collections of G-valued functions defined on intersections of the Ua's. Pick an 
integer 11 and choose a set of locally-constant functions 

<P = {<Ptto ... an : U{l;O n ... n UIXII ----+ G} , 
each defined on the intersection of n + 1 of the open sets Ua:. This collection is 
called a Cech n-cochain with values in G. We denote by 

CIl ({Ua }; G) 

the Abelian group of all such Cech n-cochains. 

The coboundary operator 0: CII 
--7 cn+l sends each cp to an (11 + 1 )-cochain ocp, 

a set of functions defined on intersections of n + 2 of the Ua:' s, each described as 
an alternating sum of restrictions of cp's. Namely, we set 

(oqJ)tlO ... (\'I1+I: Uao n··· n UIX,H1 ----+ G 

(ocp )o:o ... tt l1 +1 (x) = I) -1)k %O ... ttk ... al1+1 (x) 

(where lXk signals the removal of (Xk). 

If an n-cochain <P has oq) = 0, then cp is called a Cech cocycle. If <P = Oit for some 
(n - 1) -chain {x, then qJ is called a Cech coboundarv. The Cech cohomologv group 
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H* ( {Ua }; G) of the covering {Ua } of M is then defined in the usual fashion, as 
cocycles modulo coboundaries: 

Hn({Ua};G) = {cpECn({Ua};G) Ibcp=O} / {balaECn-I({Ua};G)}. 

A priori these groups depend on the chosen open covering {UIX }. Eliminating this 
dependence, the Cech cohomology group of M is defined as the direct limit 

H*(M;G) = ~H*({Ua},G) I 

taken over refinements of the open cover. 

If M is a manifold, then H* (M; G) coincides with the usual singular cohomology 
of M, as we will prove directly in an instant. 

Taking the direct limit is rather unpleasant, and it is almost never done. Indeed, 
it is enough to consider a fine enough covering, for example a covering {UIX } of 
M by contractible open sets, with all intersections UIXO n ... n Uan contractible as 
well.9 For such coverings we have fI*(M; G) = H* ({Ua}; G). 

Simple examples. The group HO( {Ua}; G) comes from O-cocycles, that is to say, 
from collections cP = {cpa: : Ua: ---+ G} of locally-constant functions defined on the 
Ua: 's and satisfying bcp = O. In this case, the cocycle condition is 

bcp = 0 

and therefore immediately 

HO( {Ua }; G) = {locally-constant functions M ---+ G} . 

Hence HO detects the components of M: if M is connected, then fIO(M; G) = G. 

The first group HI ( {U/l: } ; G) comes from l-cocycles, that is to say, from families 
cp = {CPaf3 : Ua: n Uf3 ---+ G} satisfying bcp = 0, where 

bcp = 0 <===? CPIt')' = qJI1:/3 + CPf3ry on UIX n Uf3 n Ury . 

In particular, notice that a l-cocycle must satistz the skew-symmetry CPaf3 = - CPf3a . 
These l-cocycles yield cohomology classes in HO ( {Ua }; G) by considering them 
up to the addition of a coboundary. That is, for any two cocycles cp' and cP" I we 
have: 

[cp'] = [cp"] in HI 

for some O-cochain f = {fIX: UI1: ---+ G}. 

And the usual suspects. We now prove directly that nothing new is obtained: 

Lemma. ~f X is a simplicia/ complex (e.g., a triangulated manifold), then 

H*(X; G) = H*(X; G) , 

where on the right we have the simplicia/ cohomology of x. 

9. A typical geometric method for building such coverings is to pick a Riemannian metric on M and 
choose geodesically convex open sets for the Ut! 's. A more topological method would use a triangulation 
of M and take the Ua: 's to be the stars of the vertices of M. 
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Proof. For every vertex v of X we define its star, denoted by star( v), as the 
union of all simplices of X that contain v. List the vertices of X as {va } and 
define the open sets Ua as 

Ua = interiorofstar{va:). 
Then we have that 

Uao n ... n UCt/l i= 0 if and only if Vao ' ... ' Van span an n-simplex. 

See also figure 4.26. 

4.26. Linking Cech cochains with simpliciaJ cochains 

Each of these intersections is connected, and therefore every Cech n-cochain 
qJ is constant on it. Thus, a Cech n-cochain qJ simply assigns to every n­
simplex (va:() • ...• va:/I) of X an element qJao ... a

n 
of C, and hence corresponds 

bijectively to a simplicial n-cochain. 

Finally, it is not hard to check that the Cech and simplicial coboundary opera­
tors correspond perfectly, and thus 

H* ({Ua }; G) = H*(X; G) . 

Going to the limit with the coverings is not a problem, e.g., by using subdivi-
sions of the simplicial complex. 0 

Even though nothing new appears at the outset, Cech theory admits a remarkable 
extension from coefficients in a group to coefficients in a presheaf and leads to the 
sheaf cohomology that is essential in complex geometry. We will not fully pursue 
that avenue, but the reader is encouraged to consult P. Griffiths and J. Harris's 
Principles of algebraic geometry [GH78, GH94]. 

Another remarkable extension of the theory is to non-commutative groups: 

Non-commutative Cech cohomology. One should notice that the whole cohomol­
ogy apparatus depends on G being Abelian, and thus the extension to the non­
Abelian case will have serious restrictions. Namely, HI (M; G) ceases to be a group 
and H2 (M; G) ceas~s to be altogether. However, since vector bundles are glued 
using non-commutative groups such as GL(k), SO(k), U(k), we do need to pur­
sue this direction. Thus, let C be a non-Abelian 2TOUD. writtpn nwltinlirofi71pl1J Wp 
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can define Cech cochains just as before. However, when it comes to defining the 
coboundary operator, we need to be careful. 

We are only interested in HI (M; G), so let cP = {CPaf3: Ua n Uf3 -7 G} be a G­
valued l-cochain. Switching from additive to multiplicative writing, we write 

(6<p)Cllh' = CPCl{3' CP{31" CP1'a • 

A l-cocycle must then be any <p with (6cp )af31' = 1 for every tt, {3, {. In particular, 
every cocycle has CPa/3 = cP~; . 

Now let f = {fa: Ua ---7 G} be a O-cochain. Its coboundary is, naturally, 

(6f)af3 = fa . fjil . 

Nonetheless, when it comes to defining when two l-cochains cP' and cP" are co­
homologous, that is, when cP' and cP" are considered to differ by 6 f, the non­
commutativityof G makes essential a specific choice of order. The right one is: 

[m'] = [a/'] <==? ' { " f- I .,...,- cP 1Xf3 = J a . cP af3' f3 . 

Then we can define in the usual manner the Cech cohomology set HI ( { UCl } : G) 
of the covering {Ua }, and thereafter its limit HI (M; G) = ~ HI ( {Uet }; G) . Since 
the coboundaries cannot be expected to make up a normal subgroup of the cocy­
cles, this HI is not a group, but merely a set with a distinguished element, the 
class of the trivial cocycle given by let/) = I. 

The similarities with the cocycles that glue bundles should be obvious by now. 
Nonetheless, to fully engulf that case we need to extend the notion of cochain a bit 
to allow for non-Iocally-constant functions. 

Non-constant cochains. We extend the notion of cochain. Namely, given a topo­
logical group G and a covering {Uil:} of M, we define a continuous l1-cochain 
cP = {cpetQ ... et

ll
} as a collection of contil1Llous functions 

<PIl.O""\lI : UI\:O n ... n Uetll ~ G . 

The rest of the theory flows just as before and leads to what one should properly 
call the Cech cohomology with COL1Jicic11tS in the sheaf of continuous G-valued fUllctions, 
and denote it by something like 

f£* (M; CO(G)) . 

Notice that, if G is a discrete group (such as 7L), then the cochains will be forced to 
be locally-constant, and so in particular fI* (M; CO(Z)) = fI*(M; Z). 

Assuming that M is a smooth manifold and G is a Lie group, we can further require 
the cochains to be made of SI1100tl1 functions, thus leading to the Cech collol11%g.11 

with coefficients in the sheaf (:f Slllooth G-valued functions, 

H*(M; C)Q(G)) . 

It is important to note that, if one merely chooses G to be the additive groups IR 
or C, then nothing much happens, since it is proved that fin (M; COO(JR)) = 0 for 
every n ~ 1. 
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Final(~~ note in passing that, if M and G happen to be complex manifolds, then we can require 
the cocycles to be holomorphic. This leads to the Cech cohomology with coefficients in the sheaf 
of holomorphic G -\'alLled bundles, denoted by H* (M; O( G)) . If one then takes G to be the ad­
ditive group C then H"(M; O(C))-usualIy denoted by H"(M;O)-is very mLlch nontriviat 
and plays an essential role in complex geometry 

A further generalization of Cech cohomology allows, in a sense, for the coefficient­
group G to vary from point to point, and that leads to sheaf cohomology, but not 
in this volume. For ramifications in complex geometry, see P. Griffiths and J. Har­
ris's Principles of algebraic geometry [GH78, GH94]. For algebraic topology 
applications, see R. Godement's Topologie algebrique et theorie des faisceaux 
[God58, God73]. For topological use in combination with differential forms, see 
R. Bott and L. Tu's Differential forms in algebraic topology [BT82]. 

Finally, we reached the bundles. We now combine the two extensions above, al­
lowing both non-commutative groups and non-constant cochains. Assume that G 
is a subgroup of GL(k). Then 

fIl (M; ClO( G)) 

is the set of all k-plane bundles with structure group G, up to isomorphisms. Its 
distinguished element [{ lat>} ] is the trivial bundle M x 1R k --- M. 

To convince ourselves, let us notice that a class in fIl (M; COO( G)) is determined 
by a G-valued l-cochain 

that is coclosed, meaning that we must have gat> . gth' . g')'a = 1. Two such cocycles 
g' and g" define a same class if they differ by a coboundary, that is to say, 

[g'] = [g"J ~ g~t> = fCl . g~f3 . f~-; I 
for some collection {fa: Ua --7 G}. However, this defines nothing but a smooth 
vector bundle, unique up to isomorphisms and with structure group G, as was 
explained back on page 176. 

More generally, for any group G the set fII (M; COO(G)) is the set of all principal 
G-bundles, with distinguished element M x G --7 M. 

Let us now look at a few examples: 

Complex line bundles. Since any complex-line bundle can be endowed with a Her­
mitian metric, vvhich reduces its structure group from GLc (I) to U( 1) = SI, it 
becomes clear that 

is the set of all smooth10 complex-line bundles on M. Since SI is Abelian, the 
set HI (M: CCXl(S')) turns out to be a group; its operation corresponds to tensor 
products of line bundles. 

Further, S' = IR/Z fits into the exact sequence of groups 
27[' 

0---+ Z ---+ 1R ~ sI ---+ 0 

10. For flOfolllorpfJic line bundles on a complex manifold M, one would look at fll (M; O(C*)) , usually 
denoted by /-{I (Iv1. 0*). 
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(with the groups Z and lR written additively, but 5 I written multiplicatively). 
This short exact sequence leads, as usual, to a long exact sequence in cohomology, 
part of which is: 

... ~ fIl (M; COO(lR)) ~ fil (M; C'O(SI)) ~ 

~ fI2(M; C'O(Z)) ~ fI2(M; Coo(JR)) ~ ... 

Since fin (M;Coo(lR)) = 0 and fin (M;Coo(Z)) = H Il (M;Z), exactness provides 
an isomorphism 

In terms of bundles, this isomorphism is established by sending a line bundle L to 
its first Chern class: 

In particular, this proves (again) that every 2-dass of M can be represented by a 
smooth complex-line bundle on M, and thus (by taking the zero-locus of a generic 
section) by a surface embedded in M. 

Cech co cycle for Chem. By explicitly following the isomorphism HI (M; COO(SI)) ~ fI 2(M;Z), 
we obtain a concrete description of a cocycle for Cl (L): Let L be a complex-line bllndle, defined 
by a cocycle {gn:fl} with values in Si. Lift each map gafl: Ua n Ufl --+ S I to some map 19'1,,: Uo. n 
Ufl --+ IR so that gn:fl(x) = e2

7T. t9a/l(x) and tJa{3 = -tJfln:· The cocycle condition gllP . gf31' . g1'lI = I 

only lifts to r9{'({3 + r9{31' + 01'{'( E Z. Then define the Cech 2-cocycle {clI f31': UII nUl> n IT'r ----> Z} 
by setting 

C{'(fl1' = r9a{3 + tJ{3t + tJt {'( • 

Its cohomology class is Cl (L) E H2(M; Z). This exhibits Cl (L) as essentially a cohomological 
bookkeeping of the 2n rotations llsed while building L. (For that matter, so is W2 (Cl, but only 
modulo 2.) 

Orientable vector bundles. Since every k-plane bundle can be endowed with a 
fiber metric, the set 

is still the set of all k-plane bundles on M. A vector bundle is orientable if its 
structure group can be reduced to SO(k). The exact sequence 

o ~ SO(k) ~ O(k) ~ Z2 ~ 0 

(with Z2 = { - 1, + I} written multiplicatively) leads to an exact sequence of setsll 

... ~ HO(M:Z2) ~ fII (M; CooSO(k)) ~ 

~ fII (M; CooO(k)) ~ HI (M;Z2) . 

The map denoted (VI is the assignment of the first Stiefel-Whitney class 

E ~ wI(E). 

By exactness, if a bundle E E fIl (M; CooO(n)) has WI (E) = 0, then E must come 
from fil (M; Coo SO( 11)) , that is to say, E can be oriented. If a bundle is orientable, 
then its various orientations are all classified by the elements of HO(M: Z2)' 

11. An exact sequence of sets (each with a distinguished element) means that the image of one map 
coincides with the preimage of the distinguished element through the next map. 
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Cech co cycle for Wl (E). Specifically, if E is defined by the O(k) -co cycle {g<t,6}, then WI (E) E 

HI (M; Z2) is determined by the Z2 -valued Cech l-cocyc1e {detg<tp} . 

Spin structures. An oriented k-plane bundle (with k at least 3) is said to admit a 
spin structure if its SO(k)-cocycle lifts through the double-cover Spin(k) --7 SO(k) 
to a Spin(k)-valued cocycle. The exact sequence 

o ~ Z2 ~ Spin(k) ~ SO(k) ~ 0 

(with Z2 = { -1, + 1} written multiplicatively) leads to an exact sequence 

... ~ HI(M;Z2) ~ HI (M; COOSpin(k)) ~ 

~ HI (M; COOSO(k)) ~ H2(M;Z2) . 

The map W2 above simply ascribes the second Stiefel-Whitney class 

E f---+ W2 ( E) . 

By exactness, if a bundle E E HI(M; COOSO(k)) has w2(E) = a,then E must come 
from a Spin(k)-cocycle from HI (M; COOSpin(k)). Further, the spin structures on a 
bundle E with w2(E) = 0 are classified by H I(M;Z2). 

Cech cocyclefor w2(E). Let {g«,8: U« n Uf3 --7 SO(k)} be a cocycle for an oriented 
bundle E. Assuming that the U« n Uf3's are all simply-connected, we can always 
lift the maps g(Xf3 to maps 

g«f3: U(X n Uf3 ~ Spin(k) 

with gc.:f3 = g/itxl. The product g«p . gf3'Y . g'Y« will take values in Z2 = {-I, + 1}. 
We can then define a Z2-valued Cech 2-cochain {waf3'Y: UCl n Uf3 n U'Y --7 Z2} by 
setting 

Clearly, the cochain {w(Xf3'Y} measures' the failure of the g{,(,8 's to define a spin struc­
ture on E. Moreover, {w(Xf3'Y} is a cocycle: indeed, it is not hard to check that 

is constantly + 1. The cocycle {w«f3'Y} represents in Cech cohomology the second 
Stiefel-Whitney class of E: 

This can be argued indirectly by using the fact that the vanishing of both W2 (E) 
and of [LV (Xf3'Y] are equivalent to the existence of a spin structure on E --7 X. Indeed, 
if [wa{:h'] = a, that means that w«lh is a coboundary. In other words, there must 
be a Z2 -valued 1-cochain {f.«f3: U« n Uf3 --7 Z2} so that wa{h = f.(Xf3 . f.f3'Y . f.'Y«' 
However, that implies that (f.«f3 . g(Xf3) . (f.f3'Y . gf3'Y) . (f.'Ya . g'Ya) = + 1 or, in other 
words, that the f. a f3's represent the corrections needed to make the gaf3 's into a gen­
uine Spin ( 4) -cocycle. Thus, [w(Xf3'Y] = 0 if and only if E admits a spin structure. 
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Simplicial co cycle fOI' W2 (E). Passing the identity 

W2 ( E) = [w lt~'}' ] 
through the isomorphisms between Cech and simplicial cohomology exhibited 
earlier, leads to the uncovering of a simplicial cocycle f) for W2 (E): 

Triangulate the base X and use for all cocycles the covering Ui\ = star( va:) cor­
responding to the vertices V lt of X. Then a triple intersection Ua: n Uf3 n U'}' is 
non-empty if and only if it corresponds to a 2-simplex (vc.:, vf" v'}') (and in that 
case the interior of (va, vf3, v'}') is included in Ult n U~ nu'}'). 

Choose a random lift of the SO(4)-cocycle {gaf3} of E to some set of Spin(4)­
valued maps tiltf3}. Then the simplicial 2-cocycle f) for w2(E) is defined by as­
signing to every 2-simplex (vlX , vf3, v'}') the Z2-value of the product gap· gf3'}' . g,},lt. 

Switching from writing Z2 = {- 1, + I} multiplicatively to the more fanliliar ad­
ditive writing Z2 = {a, 1 L we translate to having r9 assign ° to 0 if and only if 
gaf3 . gf")' . SI'Lt = + I, and assign 1 if and only if gaf3 . g{3'}' . gilt = -1. 

Around a cizal'actel'istic surface. Let us focus on the case of 4-manifolds M and 
their tangent bundles T M. Using the above description of a simplicial cocycle f) for 
W2 (T M), we can imagine a characteristic surface of M as a surface that manages 
to cross an odd number of times exactly those 2-simplices that r9 assigns to 1. 

An even better way to see this is probably in the slightly different setting used 
in the proof of equivalence of the spin structure definitions (preceding note, page 
181), as is recalled in figure 4.27. Recall that in that case the lla: 's were snlall neigh­
borhoods of the 4-cells dual to the vertices of M. 

4.27. Drawing a characteristic surface 

Assume now that 0 is a 2-simplex, surrounded by the open sets Ul\, Uf3' U'}', 
with gil.f) . gh . gl'l\ = -1. Then the 2-cell 1: dual to 0 is part of a simplicial chain 
that describes a (modulo 2) homology class Poincare-dual to W2 (T M) . 

With a bit of luck in choosing the lifts glt~, the union of all these distinguished 
dual 2-cells will make up an actual (unoriented) embedded surface in M ("luck" 
is needed, because a priori there might be problems at the vertices). With a bit 
more luck, the surface 1: will be orientable, in which case it represents an integral 
homology class dual to W2 (T M), and thus is deserving of the name "characteristic 
surface". 
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This picture also has the advantage of exhibiting a characteristic surface L as sur­
rounded by 27t-twists of TM, as was mentioned earlier (page 179) and is recalled 
here through figure 4.28. Away from L, the maps gCtp are a genuine co cycle and 
thus define a spin structure on the complement M \ L; clearly, this spin structure 
on M \ L cannot be extended across L. 

4.28. Outside spin structure, not extending across a characteristic surface 1: 

Note: Obstruction theory 

In this note, we give a short presentation of obstruction theory. On one hand, this 
will shed light on several constructions already seen in this chapter. On the other 
hand these techniques will be needed in the note on page 207 ahead, where the 
theory of smooth structures on topological manifolds is explained. 

Obstruction theory deals with the problem of existence and uniqueness of sections 
of fiber bundles, encoding it into cohomology classes with coefficients in the ho­
motopy groups of the fiber. At the outset, the case of a vector bundle E is unin­
teresting, since there always exist sections. However, obstruction theory can be 
applied to bundles associated to E, such as its sphere bundle SE (uncovering the 
obstruction to the existence of a nowhere-zero section in E), or the bundle PSO(E) 

of frames in E (uncovering obstructions to the existence of a global frame-field in 
E, that is, obstructions to trivializing E), or bundles of partial frames-the result­
ing obstructions turn out to be the usual characteristic classes of E. In particular, 
from this note we will gain yet another point-of-view on the characteristic classes 
of a 4-manifold. 

The argument to follow has two main components, each propelling the other: on 
one hand, defining things through cell-by-cell extensions and climbing from each 
le-skeleton to the (k + 1 )-skeleton; on the other hand, meshing the issue of extend­
ing sections with the issue of their uniqueness up to homotopy. 

Set-up. A fiber bundle E with fiber F over a manifold X is a space E and a map 
p: E ---'> X so that X is covered by open sets U over which the restriction of p to 
P - I [U] looks like the projection U x F ---'> U. 
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Assume that that the fiber F is connected; furthermore, assume that F's first non­
trivial homotopy group12 is 1tm(F). (If m = 1, assume further that 1tl(F) is 
Abelian.) 

Moreover, choose a random cellular decomposition13 of X. We denote by Xlk the 
k-skeleton of X, and by Elk the restriction of E to Xlk (not the k-skeleton of the 
space E). Also, let (T I k denote the restriction of (T to X I k . 

Free ride, up to the m-skeleton. We try to define a section (J of E by defining it 
over the vertices of X, then try to extend (T over the I-skeleton of X, then over 
the 2-skeleton, and so on, cell-by-cell. This plan proceeds without problems until 
we attempt to extend from the m-skeleton across the (m + 1) -skeleton. 

Indeed, to reach the m-skeleton, we start by defining (T(vertex) in any random 
way. Then, assuming (T was already defined over the k-skeleton of X, we try to 
extend (T across the (k + 1) -cells of X: For every (k + 1) -cell C, we notice that the 
restriction Ele is trivial (since C is contractible)14 and hence Ele ~ C x F. Our 
(T, already defined on the k-sphere ac, induces a map ac -----+ F. Then (Tlae can 
be extended across C if and only if the induced map a c -----+ F is homotopically­
trivial. However, as long as k S m-I, we have 7Tk (F) = 0 and thus every map 
a C -----+ F can be extended over C, and hence so can (J. Therefore, we can always 
define sections (T over the m -skeleton of X. 

Uniqueness so far. Let us investigate for a second the dependence (up to homo­
topy) of the resulting (Tlm on the choices made along the way; again, we split the 
problem in stages between the k- and (k + 1 )-skeletons. 

Take k and assume that (T is fixed over X I k, then let (T' and (T" be two extensions 

of (T from Xlk across Xlk+1' A homotopy between (T'lk+l and (T"lk+l means 
a section <P in the product-bundle p x id: E x [0, 1] -----+ X x [0, 1], defined over 
(Xlk+1) x [0, 1] and limiting to (T' on X x ° and to (T" on X x 1. 

We choose the obvious cellular decomposition of X x [0, 1] induced from the cho­
sen decomposition of X, with each j-cell C of X creating two f-cells C x ° and 
ex 1 in X x [0, 1],anda (j+ l)-cell C x [0,1]. 

Certainly <P must be defined to be (T' x ° on (Xlk+1) x ° and to be (T" x 1 on 
(Xlk+1) x 1. Furthermore, since (T' and (T" were taken to coincide over the k-ske­
leton of X, it follows that, for every j-cell C of X with f S k, we have (T'le = (T"lc. 
We can then extend <P across the (j + 1) -cell C x [0, 1] simply as (T x id. Therefore, 
for fully extending <P across (Xlk+l) x [0,1], we need only extend <P across those 

12. Remember that the homotopy group 7Tk(A) is the set of all homotopy-classes of maps Sk -4 A, with 
a suitable group operation. An element f E 7Tk(F) is trivial if and only if f: Sk ---> A can be extended 
to a map 1: [)k+ I --> A. Whenever k is at least 2, the group 7Tk (A) is Abelian. 

13. Handle decompositions would work just as well. Just substitute the word "handle" for "cell" in all 
that follows. Or one could use a triangulation of X (as recalled back in footnote 5 on page 182) and 
substitute "simplex" for "cell" throughout. 

14. Technically, since the cell C is not necessarily embedded along a C, one should view Elc as the 
pull-back 1* E, where I: C -4 X is the "inclusion" of the cell in X. 
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(k + 2)-cells of X x [0,1] that are of shape D x [0, IJ for some (k + I)-cell D of X. 
Compare with figure 4.29. 

4.29. Toward a hornotopy between two sections 

Notice that cP is already defined over the whole boundary a(D x [0,1]). Thus, cP 
restricted to the (k+ I)-sphere a(D x [0,1]) determines an element of TCk+l(F). 
It follows that cP extends across D x [0, 1] if and only if the class of CPla(ox [0.1]) in 
TCk+ I (F) is trivial. 

Therefore, since all homotopy groups of F were assumed trivial up to dimension 
m, it follows that the extension of lT up to the (m - 1) -skeleton of X must be 
unique up to homotopy. However, when we extend IT from the (m - I)-skeleton 
across the m-skeleton, the various options can differ over each m-cell by elements 
of TCm (F). We will come back to this issue. 

Across the (m + 1) -cells: obstruction co cycles. In any case, our fibre bundle E ---+ 

X admits a section lT defined over the m-skeleton of the base. When attempting 
to extend IT from the m -skeleton across the (m + 1 ) -skeleton, obstructions appear. 
Indeed, if D is a (m + I)-cell, then lTlao might describe a nontrivial element in 
TC171 (F), and then our lT will not extend across D. Compare with figure 4.30 on the 
following page. 
To measure this, we define the function 

tJ (T: {( m + 1) -cells of X} ------1 TC In ( F ) D ~ [lTlao] , 
which takes an (m + I)-cell D to the element of TCm(F) that is determined by 
lTlao through some random trivialization Elo ~ D x F. We can then extend tJ(T 
by linearity, and think of it as a TCm (F)-valued15 cellular (m + 1 )-cochain on X. 

15. In truth, the twists of our fiber bundle E -+ X might twist the way the 7tm 'S of the various fibers 
can be assembled together. Thus, to get a well-defined map 0, one must in fact use twisted coefficients 
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- ----

4.30. Obstruction to extending a section 

This cochain !9(T is in fact coclosed. Indeed, on every (111 + 2) -cell B, we have 

(b19(T)(B) = 19(T(dB) = [O"lddB] = 0, 

where a denotes taking the homological boundary and we use that d d = 0. We 
call !9lr the obstruction co cycle of 0". Our chosen section 0" will extend over the 
(m + I) -skeleton if and only if 19 (J" = 0. 

Even when the cocycle 19cr happens to be nontrivial, we can still try to go back 
and change the way 0" was defined over the m-skeleton of X, and maybe the new 
version 0"' will have tJ (J"' = 0 and hence extend. We need to revisit the issue of 
uniqueness of sections of Elm: 

Uniqueness, revisited: difference cochains. Given any two sections 0"' and 0"" of E 
defined over the m-skeleton, they cannot differ homotopically over the (m - 1)­
skeleton. Therefore there must exist a homotopy K between 0"'lm-1 and U"lm-1' 

We try to extend this K to a homotopy <P between (T'11Il and 0"" I m' As before, we 
vie,,,, <P as a partial section of E x [0,1] -t X x [0, I] and set <P to be O"'lm X ° on 
(XlIII) x 0 and O""lm X 1 on (Xlm) x 1, and thereafter extend it across (Xlm-1) x 
[0, I] by spreading K over it, thus linking 0"'lm-1 X 0 with (7"1111-1 x 1. 

To extend this to a full homotopy between 0"'1 In and 0"" I III ' we need only extend <P 
across every (m + 1)-cell C x [0,1] that corresponds to some m-cell C of X. The 

(better known as local coefficients) that twist 1[m (F) by the action of 1[1 (X) on the fibers of F. Let us 
assume that X is simply-connected and move on as if nothing happened ... 
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homotopic difference between (/ and (/' can be encoded in the obstruction to this 
extension, namely in the function 

d(lT~lT"): {m-cells of X} ----77(m(F) C f-----7 [<Pla(CX[O,Ij)] . 

This d(lT~lT") can be extended by linearity and defines a 7(m(F)-valued16 cellular 
m-cochain on X. It is called the difference cochain of IT' and IT''. 

The homotopy K between IT'lm-l and IT''lm-l can be extended to a full homotopy 
between IT' and IT'' if and only if d(lT~lT") is identically-zero. However, a different 
choice of homotopy K: IT'lm-l rv (T"lm-1 might be a better choice toward obtain­
ing a homotopy between IT' I m and IT'' I m' We will come back to this issue. 

Back to obstruction cocycles: primary obstructions. We return to the extension 
problem, to see how different choices of sections over Xlm influence our chances 
of extension across Xlm+l' Let 0-' and (T" be two sections of Elm and choose 
a random homotopy K between 0-'1 m -1 and (T"I m -1' Consider the bundle E x 
[0, 1] ~ X x [0, 1] and denote by o-~o-" its section defined as 0-' x ° over X I In X 0, 
as 0-" x lover Xlm x I, and as K over (Xlm-l) x [0,1]. 

Notice that this section o-~(T" is defined over the whole m-skeleton of the base 
X x [0,1]. We can therefore define its obstruction cocycle 19£T~£T'" We observe that 
this cocycle is made of three distinct parts: (I) the obstruction to extending 0-' x ° 
across the (m + I)-cells 0 x ° of X x 0, which can be identified with 19£T' (0); (2) 
the obstruction to extending 0-" x 1 across the (In + 1) -cells 0 x 1 of X xl, which 
can be identified with 19£T" (0); finally, (3) the obstruction to extending K across the 
(m + 1) -cells of shape C x [0, 1], which can be identified with d(o-~o-") (C). 

Take any (m + I)-cell 0 of X and consider the (m + 2)-cell 0 x [0,1] of X x [0, 1]. 
Apply the above decomposition of t9£T~£T1I to a (0 x [0, 1]). On one hand, since 19 ~£T" 
is a cocycle, it must vanish on every boundary and in particular on a (0 x [0, 1]) . 
On the other hand, we have a(o x [0,1]) = 0 xl U 0 xo U (a 0) x [0, I], and we 
can evaluate the parts of 19~£T" on these pieces. We end up with 19£T' (0), 19c1' (0), 
and d(o-~lT") (a 0). Gathering up and keeping track of signs, we obtain the equality 
t9£T'(O) -19£T'I(D) = d(o-~o-")(a 0), which translates to 

19£T' - t9£T" = £5 d ([T~o-") . 

The conclusion is that different choices of sections in Elm change the correspond­
ing obstruction cochain by a coboundary. It follows that the obstruction cocycle 
determines a well-defined cohomology class 

[19£T] E H I1l+ I (X; TCIII(F)). 

This class depends only on the bundle E ~ X and not on the choice of section (T. 
Moreover, this class is trivial if and only if there is some m-cochain d such that 
t9£T = bd. In that case, we can change (T over the m-skeleton of X to a section 0-' 
with d(o-o-') = d, and then the new 0-' will have obstruction cocycle 19£T1 = 0: it 
will extend across Xlm+l' 

16. Again, in general one needs twisted coefficients. 
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In conclusion, E ---+ X admits sections over the (m + I)-skeleton of X if and only 
if the class [0] vanishes. We call this class the primary obstruction17 of E ---+ X. 

Back to uniqueness: difference cocycles. If the primary obstruction [0] vanishes, 
then conceivably there exist several distinct sections of Elm that extend across the 
(m + I) -skeleton of X. 

Assume that o-'Im and o-"Im are two such extendable sections of Elm and take K to 

be some homotopy between 0-'1 m -1 and 0-"1 m -1· We have 0 cl - 0 cl' = 6 d ( o-~o-") , 
but since both 0-' and 0-" were assumed extendable, their obstruction co cycles van-

ish, and thus 6 d ( o-~(TII) = 0 . 

In other words, the difference cochain is now in fact a cocycle. 

Further, the difference cochain d ((T~(T") can in this case be understood as represent­
ing the whole obstruction cocycle tJ (T~(T" of the section (T~lT" across the (m + I) -ske­
leton of X x [0, I]. We can then apply the previous results about obstruction cocy­
cles to this d ( ~lT"). It follows that changing the choice of homotopy K: (T' I m -1 r-v 

(T"lm-1 merely modifies d((T~(TIf) by the addition of a coboundary. Therefore, the 
difference cocycle itself determines a well-defined cohomology class 

[d(~(T")J E HtIl(X; 7tm(F)) . 

This class depends only on the extendable sections (T' and IT'' and not on the choice 
of homotopy K. Furthermore, if [d ((T' (T")] = 0, then there exists a choice of K that 
can be extended to a full homotopy 4> between (T'I m and cr" I m . 

Conclusion. For every fiber bundle E ---+ X whose fiber F has its first nontrivial 
homotopy group in dimension m, the primary obstruction 

[0] E H II1 + 1 (X; 7tm(F)) 

vanishes if and only if there are sections of E ---+ X defined over the m-skeleton of 
X that extend across the (m + 1) -skeleton. 

Moreover, if [0] = 0 and one chooses some extendable section (T, then all other 
sections (T' of Elm that extend across Xlm+1 are classified up to homotopy by the 

elements of H/11 (X; 7t
1l1

(F)) 

via their corresponding difference classes (d ( (T (T' ) ] 

Application: trivializing the tangent bundle. We will now apply the method of 
obstruction theory to the problem of trivializing the tangent bundle T M of an ori­
ented 4-manifold M. Since a trivialization of TM over some subset U of M is 
equivalent to a field of frames over U, the problem becomes one of finding sec­
tions in the bundle of frames PSO( 4) of T M . 

The fiber of PSO(4) is the Lie group SO( 4), which is connected and has 

7t1 SO(4) = 7L2 , 712SO(4) = 0, 7t3S0(4) = 7L E9 7L. 

17. "Primary", because the project can conceivably be continued by attempting to further extend across 
higher skeleta, until we exhaust all X. 
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Therefore, when applying the obstruction theory method, we first encounter a pri­
mary obstruction in H2 (M; 7t1 SO( 4)). This obstruction class is none other than 
the Stiefel-Whitney class 

w2(TM) E H2(M;Z2) . 

Hence, if w2(TM) = 0, then PSO(4) admits a section over the 2-skeleton of M, in 
other words, TM can be trivialized over Mb. Two such sections of PSO (4) over 

Mb differ by difference co cycles from HI (M; Z2). Such trivializations of TM over 
MI2 are, of course, spin structures on M. 

Assuming that w2(TM) vanished and we did choose a section of 1's0(4) over MI2, 
we can now try to further extend it over M. Since 7t2 SO( 4) = 0, extending across 
the 3-skeleton encounters no problems. The next significant obstruction appears 
in H4 (M; 7t3S0(4)), and it can be identified as the pair 

( e (T M), PI (T M)) E H4 ( M; Z EB Z) , 

made from the Euler class e(T M) and the Pontryagin class PI (TM)' 

The Euler class appears as the obstruction to extending a nowhere-zero vector field 
over all M, that is to say, e(TM) is the primary obstruction to defining a section in 
the 3-sphere bundle 5TM of TM; thus, it belongs to H4(M; 7(353). 

That the pair (e, PI) fully catches the secondary obstruction can be argued directly 
by computing characteristic classes of 4-plane bundles over 54 that are built using 
equatorial gluing maps from 7t3 SO( 4); an exposition can be found in [Sco03]. 

If, besides W2 (T M) being trivial, we also have that both e(T M) and PI (T M) vanish, 
then the tangent bundle TM can be completely trivialized, TM ~ M X JR4. This 
happens for example with 5 I x 53 I but never for simply-connected 4-manifolds. 

Similar results apply for general oriented 4-plane bundles over 4-manifolds. In 
particular, notice that moving along these lines one can quickly obtain a proof of 
the Dold-Whitney theorem (stated on page 167). 

Application: characteristic classes. The obstruction-theoretic approach was in fact 
the one initially used by E. Stiefel and H. Whitney when they discovered charac­
teristic classes. 

Given a vector bundle E -7 X with fiber JRk, consider the Stiefel bundle Vj(E) -7 

X of all j -frames in E. Then the corresponding primary obstruction [OJ] of Vj ( E) 
appears in Hk- j+ I and determines the Stiefel-Whitney classes by18 

() {[OJ] if k - j + 1 is even and < k E Hk-j+I (X;Z2) . 
Wk-j+I E = [OJ] (mod 2) if k - j + 1 is odd, or j = 1 

Thus, each class wk- j+ I reveals itself as an obstruction to defining a field of j­
frames in E over the (k - j + 1) -skeleton of X. 

18. The modulo 2 reduction in the following formula is done because in those cases f) appears at the 
outset with twisted Z-coefficients. Still, if we know all the Wj'S, no information is lost through this 

reduction. 
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Finally, if E -+ X is oriented, then for j = 1 the full obstruction of VI (E) = SE is 
caught by the Euler class 

e(E) = [Bd E Hk(X,Z) , 

which measures the obstruction to defining a nowhere-zero section of E over the 
k -skeleton of X. 

A similar approach can be used for Chern classes. 

References. Classic obstruction theory, including a description of Stiefel-Whitney 
and Chem classes, is presented in N. Steenrod's The topology of fibre bundles 
[Ste51, Ste99, part Ill], and is still the best introduction. For a recent discussion of 
obstruction theory, see for example J. Davis and P. Kirk's Lecture notes in alge­
braic topology [DKOl]. 

We will use obstruction theory again in the note on page 207 ahead, where we 
will explore the obstructions to the existence of smooth structures on topological 
manifolds. 

Note: Classifying spaces and spin structures 

In what follows, we will define spin structures in terms of maps to classifying 
spaces. We will start by saying a few words about the spaces jjgG that classify all 
fiber bundles with structure group G, then describe a spin structure on a bundle 
E -+ X as the lift of its classifying map X -+ jjgSO(m) to a map X -+ pg Sp in (m ). 

Part of this note will be better understood if one first reads the preceding note 
(starting on page 197) on obstruction theory. 

This and the preceding note can be viewed both as a continuation of the survey of 
spin structures from earlier notes, and as preparing the ground for the theory of 
smoothing topological manifolds that will be explained in the next note (starting 
with page 207). 

Fiber bundles and classifying spaces. A (locally-trivial) fiber bundle E with fiber 
F over a manifold X is a space E and a map p: E -+ X so that X is covered by 
open sets {Ua:} and over each Ua the restriction of p to p-l [Ua:] looks like the 
projection Ua: x F -+ U{t. 

The fiber bundle E is said to have structure group G, or is called a G-bundle, 
if over every overlap Ua n U{3 the two trivializations p-l [Ua:] ~ Ua: x F and 
p-l [U{3] ~ Uf3 x F are related by a self-homeomorphism of (Ua: n U{3) x F act­
ing by (x,f) 1------+ (x, ga:{3(x) . f), where ga{3 is a map ga{3: Ua n U{3 -+ G and G is 
a group acting on F by homeomorphisms. 

For every topological group G there exists a space jjgG, called the classifying space 
of G, and for every fiber F on which G acts there exists a G-bundle 

0r G ~ !flJG 

with fiber F, called the universal bundle of fiber F and group G. The 'spaces 
jjgG and 0rG are unique up to homotopy-equivalence. The reason for the names 
"classifying" and "universal" is that that all G-bundles over any X are classified 
by the homotopv classes of maps X -+ !flJG. 
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This means that for every G-bundle E ---t X with fiber F there must exist a map 
s: X ---t !J8G so that E is isomorphic to the pull-back through s of the universal 
bundle 0"FG ---t !J8G; in other words, S can be covered by a bundle morphism ~, 
fitting in the diagram 

E --7 8fG 
~ 

1 
S 88G, --7 X 

so that ~ is a G-homeomorphism on the fibers. Further, two bundles E' and 
E" are isomorphic if and only if their corresponding maps s', s": X ---t ~G are 
homotopic. In brief, the set of all G-bundles can be identified with the set [X,86'G] 
of homotopy classes of maps X ---t ~ G . 

Construction. The classifying space gaG can be built as follows: Take G and start joining19 it 
to itself,-building G * G, then G * G * G, then G * G * G * G, then. .. In the limit, we obtain the 
space gG = G * G * G * .... The group G acts freely on GG, and we can then build the quotient 
space gaG = rf:G / G, which is the classifying space of G. The bundle gG -+ gaG is the universal 
bundle that classifies all principal G -bundles. To get the universal bundle for some other fiber F, 
pick somecocyclefor rf:G -+ @G,letitacton F, and glue 8'FG with it. More generally, if E is any 
contractible space on which G acts freelJ~ then the map [ -+ E / G is a principal G -bundle, and 
in fact, up to homotopy equivalence, E -+ [/ G coincides with rf:G -+ !!tG. This construction is 
due to J. Milnor's Construction of universal bundles. II [Mil56a). 

Vector bundles. A vector bundle of fiber JRk over X is a fiber bundle with group 
GL(k). Then its classifying space can be determined to be 

i.e., the GrafSmann space of all k-planes in JRoo
, defined as lim ~k(lRm) when 

~ 

m ---t 00. The universal bundle 0"[{kGL(k) is the vector bundle over ~GL(k) that 
has as fiber over a point P E ~k(lROO) the actual k-plane P. Intuitively, all twists 
and turns that a fiber of a vector bundle over X might have can be retrieved by 
positions of k-planes in lRoo

, and a description of these positions yields the clas­
sifying map. More rigorously, one can show that for every bundle E ---t X there 
exists a bundle F ---t X so that E E9 F ~ X x JRN, and thus the fibers of E can be 
identified with k-planes in lRN. For example, if X has dimension rn, then one can 
use N = rn + k + 1 and ~k(lRm+k+l) instead of the full ~k(lROO). 

A similar approach works for complex bundles and shows that gaGLc (k) is the complex GrafS­
manruan ~k(COO). In particular, complex-line bundles are classified by maps to ,~GLc (I) = 
ClPoo

• For line bundles on 4-manifolds, it is enough 10 consider maps to ClP2 . 

19. The join A * B of two spaces A and B is defined as follows: take A x B x [0, 1], then collapse A x 0 
to a point and B x 1 to another point. The join is easiest to visualize if we imagine both A and B as 
embedded in general position in some high-dimensional !RN; then A * B is the union of all straight 
segments starting in A and ending in B. For example, the join of two I-simplices (segments) will be 
a 3-simplex (a tetrahedron). 
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Metrics. The group GL(k) is homotopy-equivalent to20 O(k). Since the whole 
theory is homotopy-flavored, it follows that fllGL(k) and fllO(k) are homotopy­
equivalent, and thus a GL(k)-bundle is the same thing as an O(k)-bundle. In 
down-to-earth terms, this simply means that every vector bundle admits a fiber­
metric. 

Orientations. If the vector bundle is oriented, then its structure group can be fur­
ther refined from O(k) to SO(k). In terms of classifying spaces, the inclusion 
SO(k) C O(k) induces a map21 

S: fJ8S0(k) ----t fllO(k) . 

Finding an orientation for a bundle E is the same as finding a lift of its classifying 
map~: X ---+ fllO(k) to a map (/: X ----t fJ8S0(k),fittingin 

X -------t fllSO(k) 

II~' ls 
X ~ fJ80(k). 

The map S: fllSO(k) ---+ fJ80(k) is itself a fiber bundle with fiber O(k)/SO(k) = 

Z2. We can pull this bundle back over X by using the map ~: X ---+ fllO(k) , and 
hence transform the problem of finding a lifted map ~s into the problem of finding 
a global section in the pulled-back bundle S'* S ---+ X from 

S'* S -------t fJ8S0(k) 

1 Is 
X ~ fJ80(k). 

The fiber of ~* S ----t X is of course still Z2. 

The obstruction to the existence of a section in S'* S can then be attacked by obstruc­
tion theory, similar to the outline from the preceding note.22 This yields as unique 
obstruction the first Stiefel-Whitney class 

'lV1 (E) E HI (X; Z2) . 

If one such section (i.e., an orientation of E) is chosen, then all other sections, up 
to homotopy, are classified by the elements of HO (X; Z2) ; in other words, you can 
change the orientation on each connected component of X. 

Spin structures. The group SO(k) is double-covered by the Lie group Spin(k) , and 
the double-cover projection Spin(k) ---+ SO(k) induces a map of classifying spaces 

Sp: 8§Spin(k) ----t fJ8S0(k) . 

20. Indeed, if we think of a matrix A E GL(k) as a frame in IRk, then we can apply the Gram-Schmidt 
procedure to split A as a product A = T· R of an upper-triangular matrix T and an orthogonal matrix 
R E O(k); since all upper-triangular matrices make up a contractible space, the claim follows. 

21. Notice that ~SO(k) can be represented as the GraBmannnian of all oriented k-planes inside !Roo
. 

22. A rather special case of obstruction theory, since one plays with 1£0 (Jiber). 



4.5. Notes 207 

This map is a fiber bundle. Its fiber is denoted SO(k)jSpin(k) and it is an Eilen­
berg-Maclane K(Z2' I)-space. This means that 71} (SO(k)jSpin(k)) = Z2 is its 
only non-zero homotopy group.23 

A spin structure on an oriented bundle E is the same as a lift of its classifying 
map ~: X ---+ ~SO(k) to a map ~sp: X ---+ ~Spin(kL made against the map 
Sp: ~Spin(k) ---+ ~SO(k). Equivalently, by pulling back over X, 

~*Sp ~ ~Spin(k) 

1 1 Sp 

X ~ ~SO(k), 
we see that a spin structure on E is the same as a global section of the bundle 
~* Sp ---+ X, whose fiber is SO(k) j Spin(k). 

After applying obstruction theory to this setting, it turns out that the unique ob­
struction to the existence of such a section is the second Stiefel-Whitney class 

w2(E) E H2(X;Z2) . 

Characteristic classes. It is worth noting that, avoiding any obstruction theory, the characteristic 
classes of a vector bundle E --> X can be viewed directly as pull-backs of cohomology classes of 
the appropriate classifying space. Indeed, we have isomorphisms between the cohomology rings 
of the flgG's and polynomial rings generated by the various characteristic classes (endowed with 
suitable degrees). Specifically, 

H* (ygO(k); Z2) = Z2 [<=-'1, W2,· .. , Wk] 

H* (ygSO(k); Z2) = Z2 [W2' ... , Wk] 

H*(~SO(2i);Z) = Z[PI,P2"",Pi-J,e] 

H* (flgSO(2i + I); Z[I/2]) = Z[th] [PI, P2,···, pd 

H* (.rBU(k); Z) = Z[CI ,C2, ... ,Ck], 

where <Vj E Hj is the /h Stiefel-Whitney class of the corresponding universal bundle c,iRk , while 
Pj E H4j is its mth Pontryagin class, e E H2i is the Euler class, and Cj E H2j is the /h Ch ern class 
of the universal complex bundle 6'ck. The difference between the SO(2i) and SO(2i + I) cases 
is owing to the fact that in the first case e U e = Pi, while in the second e = 0; further, the ring 
Z['h] is needed to kill the 2-torsion (and Q or IR could be used instead). Indeed, remember 
that pj(E) = (-I )ic2j(E 0 q, butthatthe classes C2j+1 (E ® C), which are all of order 2, escape. 
See also D. Husemoller's Fibre bundles [Hus66, Hus94, ch 17] 

Note: Topological manifolds and smoothings 

In what follows, we will outline the theory of topological manifolds and of their 
smooth structures. The theory works best in dimensions 5 or more, where it of­
fers complete answers on the existence and classification of smooth structures on 
topological manifolds. The theory is quite weaker in dimension 4, but it is still 
relevant. 

Requisites for understanding this note are the two previous notes, namely the one 
on page 197, where the rudiments of obstruction theory were presented, and the 

23.SinceSpin(k) -->SO(k) isacovermap,wehave7tn,(Spin(k)) =7tm (SO(k)) for all nI > 2. 
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one on page 204, where general fiber bundles and their classifying spaces were 
explained. The groups of homotopy spheres em, described in the end-notes of 
chapter 2.5 (page 97), will also make an appearance. On the other hand, if one 
skips the paragraphs on smoothing bundles, then one merely needs the simple 
definition of a general fiber bundle, which can be read from the beginning of the 
note on page 204. 

Historically, at first the realm of purely topological manifolds and pure homeo­
morphisms seemed unapproachable, so mathematicians attacked the gap between 
smooth and piecewise-linear (PU manifolds, meaning manifolds structured by a nice 
triangulation {where "nice" means that the link24 of every vertex is required to 
be simplicially-homeomorphic to a standard polyhedral sphere; such triangulated 
manifolds are also called combinatorial manifolds}. Success with smoothing PL man­
ifolds started with S. Cairns and continued with M. Hirsch and B. Mazur, which 
completely elucidated the gap between PL and smooth. The door on smoothing 
topological manifolds was opened by J. Milnor, who introduced the right concept 
of tangent bundle for a topological manifold. Finally R. Kirby breached the barrier 
toward the study of topological manifolds, and together with L. Siebenmann clar­
ified the gap between topological and PL manifolds. See also the bibliographical 
comments on page 67 at the end of chapter 1, as well as the references ahead on 
page 219. 

Since we are focused on 4-manifolds while the gap between PL and smooth mani­
folds only starts to make its presence felt in dimension 7, in our presentation below 
we will shortcut the PL level and discuss smoothing theory only in terms of the 
gap between topological and smooth manifolds. 

Tangent bundles for topological manifolds. Remember that a topological manifold 
of dimension m is merely a separable metrizable topological space that locally 
looks like R m; in other words, X is covered by open sets U that are homeomorphic 
to Rm. 

For smooth manifolds, one of the most useful objects used in their study is the 
tangent bundle, which gives the infinitesimal image of the manifold and thus ap­
proximates its structure by simpler spaces. A suitable analogue for topological 
manifolds can only prove useful. 

A first idea would be to pick for each x E X a small open neighborhood Ux home­
omorphic to RIn and consider it as the fiber of T X at x, as in figure 4.31 on the next 
page. Parts of nearby such fibers would get identified just as the corresponding 
open sets in X: the fiber Ux over x and the fiber Uy over y have their common 
part Ux n Uy identifiable, as suggested in figure 4.32 on the facing page. 

Such a tangent ''bundle'' has fiber R111 and has an obvious "zero section" i sending 
x E X to x E Ux = T X 1.<" This creature is not a bundle: neighboring fibers 
cannot be identified with each other, since only parts of them overlap. However, 
it is conceivable that, by restricting to smaller neighborhoods of the zero-section 

24. Think of the link of a vertex v essentially as the (simplicial) boundary of a small simplicial neigh­
borhood of v. Specifically, take all simplices er that contain v and take the faces of er that do not touch 
v; the union of all such faces makes up the link of v. 
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and deforming our structure by homotopies, one would end-up with a genuine 
fiber bundle, with fib er JRIn. If, for the resulting bundle, we take care to identify 
each fiber above x with JRIn in such manner that x corresponds to 0, then the 
structure group of the bundle would be the group of all self-homeomorphisms 
cp: }R111 ::: }R111 that fix the origin, cp(O) = O. Let us denote this group by 

TOP(m) . 

Thus, our proposed tangent structure appears to induce a TOP(m)-bundle. 

The only real problem with such an approach is that the construction does not 
appear canonical, since the choice of neighborhoods/fibers Ux is random. It is 
important that each topological manifold have a canonical tangent bundle T x. In 
order to achieve this, the main observation is that what really matters is what hap­
pens around x-whatever Ux has been chosen to be, the most important part of 
Txlx is the immediate neighborhood of x E Txlx and how it relates to its neighbor­
ing fibers. Thus, one should consider, instead of the whole Ux's, just their germs 
at x. This idea was concretized in J. Milnor's notion of a microbundle, which he 
introduced in Microbundles [Mi164]. 

Microbundles and the topological tangent bundle. A k-microbundle ~ on X is a 

configuration ~: X ~ E ~ X , 

made of a topological space E (called the total space), together with two maps, 
i: X ---7 E (called the zero section) and p: E ---7 X (called the projection). These are 
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required to satisfy two properties: (1) i must behave like a section, so we have 
po i = id; and (2) E ~ X must be locally trivial, i.e., for every x E X, there is 
a neighborhood Vx of i(x) in E such that plvx : Vx ~ M looks like a projection 
U x JRk ~ U. Notice that, as suggested in figure 4.33, nothing is required far from 
i[X] or on the overlaps of the various local "charts": only parts of the fibers match. 

t--------ttttttHttttttltttttl+ttHttttttttttttHttttttlltt+H+ttHttt---------t i [Xl 

---------------------------------------------------X 
4.33. A microbundle 

You should think of a microbundle as a fiber bundle in which all that matters 
is what happens around the zero section, or as a vector bundle in which we are 
focused near the zero-section and all requirements of linearity have been dropped. 
Indeed, microbundles behave pretty much like vector bundles: they can be pulled­
back, direct sums are defined, etc. We leave such amusements to the reader. 

X ~ W' ~ 
i' pi 

11 
~1 ~ 

11 

X. X 
i" W"~ ~ 

Of course, any actual bundle with fiber JRk is a k-microbundle, and two isomor­
phic fiber bundles are also isomorphic as microbundles. 

Further, inside every microbundle actually lies a genuine bundle: 

Kisfer-Mazur Theorem. For every k-microbundle X ~ E ~ X there is a neigh­
borhood W of i[X] in E such that plw: W ~ X is a locally-trivial Jiber bundle with Jiber 
JRk and zero-section i. The contained Jiber bundle is unique up to isomorphism, and even 
up to isotopy. 

Idea of proof The crux of the argument is J. Kister's result that the space 
of topological embeddings IRk ~ IRk that fix the origin can be deformation­
retracted to the space of homeomorphisms JRk ~ JRk that fix the origin. Thus, 
the partly-matching "charts" of a microbundle can be reduced and deformed 
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to get a small global genuine bundle. See J. Kister's Microbundles are fibre 
bundles [Kis64]. 0 

Thus, to every k-microbundle is associated a canonical fiber bundle with group 
TOP(k) and fiber IRk. Microbundles have the advantage that they are easy to 
describe. Thus, if we define a canonical tangent microbundle for a topological m­
manifold, then we can pass it through Kister-Mazur to obtain a canonical tangent 
bundle, with structure group TOP ( m) . 

The tangent microbundle of a topological manifold X is defined simply as 

X~XxX~X, 
where L1 is the diagonal map x ~ (x,x) and pr} is the projection (x,y) ~ x. 

Close to the diagonal L1[X] , the fibers of pr} are just copies of neighborhoods of 
points in X. They are stacked next to each other according to their position in X: 
indeed, Zl E prl } [x'] and Zll E prl } [x"] are close to each other in X x X if and 
only if pr2(z/) and pr2(z") are close to each other in X. See also figure 4.34. 

v 
V 

Vu 
V 

MxM 

M 

4.34. The tangent microbundle 

We can then define the topological tangent bundle 

TtoP 
X 

of the topological m-manifold X to be the TOP(m)-bundle contained inside the 
tangent microbundle of X. One can prove that, if X happens to be a smooth 
manifold and hence is endowed with a tangent vector bundle T x, then T x and 
T~P are isomorphic fiber bundles. 

Using the topological tangent bundle for smoothing. Start with a topological m­
manifold X. Embed xm into some large25 IR N and choose a neighborhood W of 

25. To build an embedding of a t9pological manifold in some !RN, the easiest way is as follows: When 
X is compact, cover xm by open sets U I •...• Un, each homeomorphic to an open subset of JRIII through 
embeddings fk: Uk C !Rill; extend each !k to a continuous maps h: M ---> n~1/I , then gather all of them 
together to get an embedding (7; .... . In) : M ---> !Rnlll

. In general, by dimension theory one can find an 
open covering {Ua } of X so that at every point of X no more than In + 1 of the Ua 's meet; eventually 
one gets an embedding in JR r1I (m+I). 
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X in JRN that retracts to X, i.e., for which there is map r: W -7 X so that rlx = id. 
See figure 4.35. 

4.35. X embedded as a Euclidean neighborhood retract 

Build the tangent bundle T~P of X and then use the retraction r to pull it back 

over the whole W; denote the total space of the result by r* T~P . 

* TtoP 
r x 

1 
Ttap 

X 

1 
W ~ X. 

The total space of this pulled-back bundle can also be viewed as sitting on top of 
X, through the composition r* T~P ------+ W ~ X; in reverse, X can be embedded 

in r* T~P through the composition of the inclusion X C W with the zero section 

of the bundle r* T~lP -7 W. We have the following remarkable property: 

Lemma. The space r* T~lP is homeomorphic to X x JR N , with X C r* T~)P corresponding 
to X x 0 C X x JR N . 

Idea of proof. As a first approximation, think in terms of vector bundles: As­
sume that X was a smooth manifold, and T x its tangent bundle. Smoothly 
embed X in JR IV , then choose a tubular neighborhood W ~ N x / IR N , which 
retracts to X through the bundle projection r: NX/JRN -7 X. Then r*Tx -7 X 
is isomorphic to the bundle T x EB NX/IRN = T JRN Ix = X x JRN. 

We can use a similar argument for our lemma if we start with a better W. 
Namely, we could start with an embedding of X into a large-enough JR N , so 

that X admits a topological normal bundle N~jJRN in JRN, and take W to be 
the total space of N~jlRN and r be its projection. 0 

Microbllluile proof. Without choosing a nice W and getting involved with topological normal 
bundles, one can also use a general argument, which is easiest to state ill terms of microbundles: 

. top . b dl X .1 X pr) Th Conslder T X as the 111 -mlcro Ull e -----t x X ---+ X. e pull-back over W has total space 
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4.36. Smoothing X x RN by using the tangent bundle of X 

r~7~~)I' = {(Ul.r(W),X) E W x X x X}, projection p: r*T~)P ----+ W, p(w,r(w),x) = w,andzero­

section i: W -4 r*T~P, i(w) = (w, r(w), r(w)). First, notice thatthe total space r*T~P isnaturally 

llOl71l'omorphic to X x W, by sending (w, r(w),x) to (x, w). This homeomorphism r*T~P ~ 
X >< W sends i[X] to L1[X]. Then, by translating the inclusion X x W c X x]RN through the 
Ill,)P X x !RN -; X X ]RN: (x, v) f-) (x, v - x), we obtain an embedding of r*T~P into X x ]RN 

th,]t sends i[X] to X x O. While this is a bit less than the statement of the lemma, all further 
dl'\'eiopments could be slightly modified to be happy with this version 

Owing to this lemma, if we manage to make the total space r* T~P into a smooth 
m{1/1~fold, then that means that we have endowed X x IRN with a smooth structure. 
We would be a bit closer to smoothing X itself. 

As mentioned, the tangent bundle T~P is a fiber bundle' over xm with fiber lR m 

and structure group TOP ( m). Denote now by 

DIFF(m) 

the group of diffeomorphisms cp: lRm ~ lRm with cp(O) = O. If we could reduce 

the structure group of T~P from TOP(m) to DIFF(m) , then the pull-back r*T~P 
would be a bundle over W whose fibers are glued by smooth maps from DIFF( m) . 
Since W is open in lRN , it is itself a smooth manifold. The base being smooth and 
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the fibers being smoothly-matched, it follows that the total space of r* T~P ---+ W 

would itself be a smooth manifold. However, r* T~P is homeomorphic to X x JRN, 
and therefore the latter inherits a smooth structure. 

Milnor's Smoothing Theorem. Let X be a topological m-manifold. If its tangent 
bundle T~P admits a DIFF(m)-structure, then,for N big enough, X x JRN must admit 
a smooth structure. 0 

This was proved26 by J. Milnor's Microbundles [Mi164]' first announced in Topo­
logical manifolds and smooth manifolds [Mi163c]. 

We postpone the investigation of the existence of DIFF(m) -structures on T~P for 
later. In the mean time, let us see how to get rid of the JRN -factor, so that we may 
end up with a smooth structure on X itself. 

Stnlctures on pl'oducts and products of structures. The following results are due 
to R. Kirby and L. Siebenmann. The first statement below is analogous to the 
Cairns-Hirsch theorem, which dealt with the PL case. 

Product Structure Theorem. Let X be a topological m-manifold, with m at least 5. 
If X X JRN admits a smooth structure, then this structure must be isotopic to a product 
smooth structure on X x JRN, coming from a smoothing of X crossed with the standard 
smooth structure 011 JRN. 0 

Note that the isotopy conclusion above is stronger than a mere diffeomorphism 
between the two smooth structures on X x JRN . 

Isotopies of sl1lootlzings. For convenience, call ~ the gh'en smooth structure on X x RN, by 
c;: the resulting smooth structure on X, and by S x std the product structure on X x RN. The 
existence of an isotopy between ~ and S x std means two things: First, that S and ~ x std are 
concordant, meaning that there exists a smooth structure on (X x RN) X [0, I] that coincides 
with S near (X x RN) x 0 and with S x std near (X x RN) xl. Second, tha t there is a smooth 

map h: (X x !RN) x [0, I] ---) (X x RN, ~) so that each slice hI = h( ., t): X x RN x {t} ~ 
X x RN is a diffeomorphism onto X x JRN smoothed by s. Thus, 110 is the identity map from 
(X x [0, I], S) to itself, while hi is a diHeomorphism from (X x [0. I], c;: x std) to (X x [0, 1], ~), 
and hI is the isotopy behveen them. 

Notice the dimensional restriction m 2:: 5 that appears in the statement of the 
theorem. Its appearance is owing to the inevitable reliance of the proofs on the 
h-cobordism theorem (and its non-simply-connected cousin, the s-cobordism the­
orem). This is what prevents smoothing theory from fully applying to 4-dimen­
sional manifolds. 

Proving tile product theorem. The essential tool for proving the product structure theorem is the 
following handle-smoothing technique: Assume we have a smooth manifold VIII and a smooth 
embedding of a thickened sphere Sk-I x [O.f) X 1R,"-k C VIII (think of Sk-I x (o.e) as a collar on 
Sk-I in [)k). Further assume that this smooth embedding can be extended as a topological em­
bedding 10: IOk x R"lk C VIII of an open k-hand1e into V. We say that the handle 10 can be 
smoothed in V if there is an isotopy It between fo and a map /I that restricts to a smooth em­
bedding of the closed k-handle /I : [)k x Dnr-k C VIII, and so that II fixes 10 outside a compact 
neighborhood of [)k x D",-k . See figure 4.37 on the facing page. 

26. Proved before the discovery of the Kister-Mazur theorem. 
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/0 I 

I 

4.37. Smoothing a handle 

It turns out that the property of a handle /0 to be smoothable is invariant under concordance: 

Handle Smoothing Theorem. Let /0 be an open k-/zandle in V"I as above, and let Will be a smooth 
manifold (0/ same dimension) containing V lIl

. Assume that there is all isotopy F: [)k x IRIII
-
k x [0, 1 J ~' 

W so that F( . , 0) = /0, that F moves the attaching sphere smoothly, and that F( . , 1) is a handle in W 
that call be smoothed in W. If m ~ 5, then /0 itself can be smoothed inside V. 0 

See also figure 4.38. This theorem is due to R. Kirby and L. Siebenmann, see Foundational essays 
on topological manifolds, smoothings, and triangulations [KS77]. An essential ingredient for 
proving this handle smoothing theorem is, of course, the h -cobordism theorem. A consequence 
of it is the following stability property: 

Corollary. Let /0: [)k x R rn - k C vm be some opm k-halldle as above and assu.me that m ~ 5. If the 
product-handle /0 x id: [)k x Rrn - k x ReV x R call be sl/1oothed inside V x JR., then /0 itself can be 
smoothed inside V. 

The proof of the product structure theorem then uses d chart-by-chart induction. Since each chart 
CP: U :::::: U' C lRl1l endows U with a smooth structure, this means that in each chart we can use 
handle decompositions, with handles that are then smoothed and made to fit on the overlaps of 
the chartsP 

W 

4.38. Handle smoothing theorem 

27. It is worth noticing how, even when investigating purely topological manifolds, it is the differential 
world that offers the local tools, which are then extended by careful patching and matching. 
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In conclusion, by combining Milnor's smoothing theorem with the Kirby-Sieben­
mann product structure theorem, we obtain: 

Corollary. Let xm be a topological m-manifold, with m at least 5. If its topological 
tangent bundle T~P admits a DIFF( m) -structure, then X must itself admit a smooth 
structure. 0 

In other words, we are able to "integrate" an infinitesimal differentiable structure 
on the tangent bundle to a differentiable structure on the manifold X itself. 

It is now time to see what obstructions appear when trying to smooth the tangent 
bundle of a topological manifold xm: 

Smoothing bundles: the setting. The topological tangent bundle T~P is a bun­
dle with fiber lRnl and group TOP(m); we wish to reduce its structure group to 
DIFF(m). The method of choice will be obstruction theory, applied to classifying 
spaces. Thus, for a better understanding of the following, it is recommended to 
first read the earlier notes (on page 197 and on page 204). 

At the outset, we should remark that the group DIFF(m) of self-diffeomorphisms of IRIll fix­
ing the origin is homotopy-equivalent with the more familiar group GL( 111) of invertible matri­
ces. Indeed, if <PI : IRIll 2=: JRIII is a diffeomorphism with q)1 (0) = 0, then the Alexander iso­
topy <Pt(x) = f<p(tx) provides a deformation of CPI to CPu = dq)I 10 E GL(m), and thus contracts 
DIFF(IIl) to GL(m). This implies that a fiber bundle with structure group DIFF(m) is nothing 
but a ,'ector bundle. Therefore, to reduce the structure group of the tangent bundle T~P from 
TOP(III) to DIFF(m) means merely to organize T~P asa \'ectorbundle. 

The group TOP(m) has a classifying space denoted by .fiTOP(m). As a conse­
quence, the tangent bundle T~P is described by a classifying map 

r: X ---+ ~TOP(M) . 

The group DIFF(m) has a classifying space28 fiBDIFF(m). The natural inclusion 
DIFF(m) c TOP(m) induces a fibration 

Y: fiBDIFF(m) ---+ /:ffiTOP(m) 

with fiber TOP(m)/DIFF(m). Then endowing the tangent bundle T~P with a 
DIFF(11l )-structure is the same as lifting the classifying map r to a map r sm : X -+ 

iiJ DIFF(m) that fits in fiBDIFF(m) 

11 
1] 

X ~ ~TOP(m) 
We can pull the fibration Y: ~DIFF(m) ---+ <cJiJTOP(111) back over X as 

r*Y -----+ 38DIFF(111) 

1 1-/ 
X ~ ~TOP(m), 

and then smoothing T~P is equivalent to finding a section in this pulled-back fi­
bration T* Y. The fiber of r*Y -+ X is TOP( m) / DJ F F( J11). 

28 .. @DIFF(I11) is the same (homotopy-equivalent) with .~GL(I11) = .~O(m) = ~m(IROO). 



4.5. Notes 217 

Think of all this as a setting on which to use obstruction theory. We start with 
a random smoothing of the tangent bundle over the vertices of some cellular de­
composition of X, viewed as a section of T*Y' over the O-skeleton of X. We then 
strive to extend this section cell-by-cell across all X. When extending from the 
k-skeleton of X across the (k + I)-skeleton of X, obstructions appear in 

Hk+1(X; 7[k(TOP(m)/DIFF(m))). 

Further, if a given section (T of r*Y over the k-skeleton is extendable across the 
(k + I) -skeleton, then the elements of 

Hk ( X; 7[k (TOP (Ill) / D IF F ( m ) ) ) 

classify up to homotopy all other sections over the k-skeleton that are extendable 
across the (k + I) -skeleton and are homotopic to (T over the (k - I) -skeleton. 

In terms of smooth structures on T~P or, equivalently when m 2:: 5, in terms of the 
induced smooth structures on Xm , any homotopy of a section of r*Y corresponds 
to a concordance of smooth structures on X. Two smooth structures S' and SI! on 
X are called concordant if there is a smooth structure on X x [0, I] that is S' on 
X x 0 and is SI! on X x I. Keep in mind tha t smooth structures can be diffeomor­
phic without being concordant; simple examples come from manifolds that do not 
admit orientation-reversing diffeomorphisms. (Furthermore, in high-dimensions 
concordance implies isotopy.) 

Hence, obstruction theory can be used to clarify the existence and classification 
up to concordance of smooth structures on topological manifolds of dimension at 
least 5. Of course, in order to effectively put obstruction theory to work, we need 
to determine the homotopy groups of the fiber TOP(m)/DIFF(m). 

Smoothing bundles: computing the homotopy g1'OUps. This paragraph is rather 
dense and very sketchy. It can be safely skipped; the next paragraph starts on 
page 220. 

High homotopy. Let us apply the above obstruction theory setting to the case of the 
sphere sn . Since the topological manifold 511 admits smooth structures, no obstruc­
tions appear. Further, the only non-zero classifying cohomology group Hk (X; 7[k) 
appears when k = n, in which case we have 

Hn(SI1; 7[n(TOP(n)/DIFF(Il))) = 7[11 (TOP(n)/DIFF(n)) . 

Therefore, for n 2:: 5 we have 

{smooth structures on 511
} ~ 7T.//(TOP(n)/DIFF(n)) 

(smooth structures considered up to concordance). That is to say: 

Lemma. When n 2:: 5,wehave7CI1 (TOP(Il)/DIFF(I1)) = 8 n ,where8n denotes the 
group of homotopy 11-spheres. 0 

The groups 8 n have been presented in the end-notes of chapter 2 (page 97). They 
are defined as the set of all smooth homotopy n-spheres, considered up to h­
cobordisms and with addition given by cOlU1ected sums. We have seen that, when 
11 2:: 5, the set 8 n can be understood as the group of concordance classes of smooth 
structures on sn; hence we could call 8 11 "the group of exotic n-spheres". These 
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groups can be computed using surgery methods. All groups 8 n are finite, and the 
first non trivial one is 8 7 = Z28. 

Further, after using stabilizations TOP(k) c TOP(k + I), we are led to: 

Theorem. For all n and m with 5 :::; n :::; m + I, we have 

7tn(TOP(m)/DIFF(m)) = 8/1 . 

This theorem follows from the delicate result tha t, for n ~ m + 1 and m 2: 4, we have 

1In (TOP(m + l)/DIFF{m + 1), TOP(m)/DIFF(m)) = 0 . 

The cases when m 2: 5 were proved in R. Kirby and L. Siebenmann's Foundational essays on 
topological manifolds, smoothings, and triangulations [KS77]. The cases when m = 4 were 
cleared in F. Quinn's Ends of maps. Ill. Dimensions 4 and 5 [Qui82] for n ~ 3; in his Isotopy 
of 4-manifolds [Qui86] for n = 5; and in R. Lashof and L. Taylor's Smoothing theory and 
Freedman's work on four-manifolds [LT84] for n = 3,4. 

o 

Low homotopy. We now need to compute the low-dimensional homotopy groups 
of TOP /DIFF. For n ~ 5, we have used sn to evaluate 1I/1. For n :::; 4, we 
can instead increase the dimension of sn by thickening it to sn x ]Rk such that 
n + k ~ 5. Then, after using stabilizations, we have 

{ smooth structures on S n X ]R k} ~ 1In (TOP (m) / D I F F ( m ) ) 

for all m ~ 4. However, smooth structures on the open manifold sn x ]Rk are hard 
to approach directly. Instead, one considers smooth structures on sn X ']['k. On 
one hand, by climbing the universal cover ]Rk ~ ']['k, it is clear that each smooth 
structure on sn X ']['k induces a smooth structure on sn x ]Rk. 

The fundamental fact is that, conversely, the smooth structures on sn x ]Rk corre­
spond to smooth structures on sn X ']['k, more precisely to homotopy smooth struc­
tures on S/1 x ']['k. A homotopy smooth structure on a topological m-manifold xm 
is a homotopy equivalence xm rv vm with some smooth m-manifold vm (same 
dimension). 

This converse is a consequence of the celebrated torus unfurling trick of R. Kirby, which first 
appeared in Stable homeomorphisms and tlte annulus conjecture [Kir69], and was used in our 
context in R. Kirby and L. Siebenmann's On tlte triangulation of manifolds and tlte HauphJer­
mutung [KS69] (see also Foundational essays ... [KS77]). 

When 11 + k :::; 6, the homotopy smooth structures on sn X ']['k (thought of as 
smooth structures on D n x ']['k relative to the boundary) are known by surgery 
theory to be classified by the elements of H3- n (']['k; Z2)' Thus, for n ~ 4 there is 
only one homotopy smooth structure on sn X ']['k, the standard one. For n :::; 2, all 
structures are known to be finitely-covered by the standard one (and thus can be 
standardized after climbing a finite cover of 1[k). Finally, for n = 3 there is at most 
one structure that is not covered by the standard one. Therefore the conclusion is 
that, for all small n not 3, we have 

1In(TOP(m)/DIFF(m)) = 0 

;:mcJ. moreover. that 7t~ (TOP( m) / DIFF( m)) has either one or two elements. 
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As was first noticed by L. Siebenmann, it turns out that 7t3 cannot be trivial, and 
hence 

7t3(TOP(m)/DIFF(m)) = Z2· 
If one accepts everything else that was claimed above, then, for proving this non­
triviality of 7t3, we need only exhibit one topological manifold of dimension less 
than 7 that does not admit any smooth structures. 

In dimension 4, Freedman's E8-manifold MEs is an example, as follows from 
Rokhlin's theorem. For dimensions higher than 4, we also have: 

Lemma. The topological manifold MEs x Sk does not admit any smooth structures. 

Proof. Assume that MEs x Sk admits a smooth structure. Then, by writing 
Sk = JRk U {oo}, we obtain a smooth structure on MEs x JRk. We apply the 
product structure theorem and deduce that MEs x JR admits a smooth struc­
ture. Consider the projection map pr2: MEs x JR ~ JR. Then, since MEs x JR 
is smooth, we can perturb pr2 over A1E x (0,00) so that it becomes smooth x 
over MEs x (E, 00) but remains unchanged on MEs x (-00,0). Pick a positive 
regular value c > E of pr2; then pril [e] is a smooth 4-manifold. Since .MEs 

has W2 = 0, so must pril le]. However, pril [-1] = ME ,and hence the 5-
4 S 

manifold pril [-1, c] is a cobordism between MEs and the smooth manifold 
pri I [c]. Since signatures are cobordism-invariants, it follows that the smooth 
4-manifold pril [e] has signature 8, but W2 = 0. This, of course, is forbidden 
by Rokhlin's theorem. 0 

The manifolds MEs x Sk do not admit PL structures either. More important, no­
tice the fundamental role that Rokhlin's theorem plays29 in the nontriviality of 
7t3(TOP(m)/DIFF(m)) . 

What was omitted. A more detailed discussion would of course have taken into account the 
intermediate piecewise-linear level between smooth and topological, and infinite stabilizations. 

Stabilization means considering everything lip to adding trivial bundles. This embeds TOP(11l) 
into TOP(m + 1) and in the limit yields the group TOP = ~ TOP(m), with its own classifying 
space ~TOP. Similarly, DIFF(m) stabilizes to DIFF = ~DIFF(m), with classifying space 
'%DIFF. The group of piecewise-linear self-homeomorphisms of JRIII that fix 0 is denoted by 
PL(m), stabilizing to PL and with classifying space .r'$PL. The inclusions TOP C PL c DIFF 
lead tofibrations ~PL ~ flgTOP and .YJDIFF ----> APL, with corresponding fibers TOP /PL and 

PL/DIFF. 

Between smooth and PL: The study of the smooth/PL gap was attacked by S. Cairns in The man­
ifold smoothing problem [Cai61]. Then R. Thorn's Des varieUs triangulees aux varieUs diffe­
rentiables [Tho60] suggested that the smoothing problem should admit a setting in terms of ob­
struction theory. A natural simplex-by-simplex obstruction theory was developed byJ. Munkres' 
Obstructions to the smoothing of piece1Vise-d~ffe,.elltiable homeomorphisms [Mun59, Mun60b] 
(see also his [Mun64] and [Mun65]). A different obstruction theory was outlined in M. Hirsch's 
Obstruction theories for smoothil1g manifolds al1d maps [Hir63], and also proved a product 
structure theorem for the smootll/PL gap. Then appeared J. Milnor's Microbundles [Mil64]. 
All this led to an obstruction theory based on the classifying spaces ~DIFF and ~PL, de­
veloped by M. Hirsch and B. Mazur and e,"entually published in the volume Smoothings of 

29. Of course, R. Kirby and L. Siebenmann's result that Tt3 (TOP / DIFF) = 'Z2 was proved before 
M. Freedman built the fake 4-balls that are used in the construction of MEs. Nonetheless, their exam­
ples also rest upon Rokhlin's theorem. 
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piece wise-linear manifolds [HM74]. (A quick comparison of Munkres' and Hirsch-Mazur's 
approaches can be read from J. Munkres' Concordance of differentiable structures-two ap­
proaches [Mun67].) 

The passing of the smooth/PL gap depends on the fiber DIFF / PL, which has homotopy groups 

nn(DIFF/PL) = 0 for all n ~ 6, and 'T[I/(DIFF/PL) = en for all n ~ 5 . 

For proving the triviality of nn in low-dimensions, the cases 11 = 1,2 are boring, the case n = 3 
follows fromJ. Munkres'sDifferentiable isotopies on the 2-sphere [Mun60a] and S. Smale's Dif­
feomorphisms of the 2-sphere [Sma59]. The case n = 4 was proved by J. Ced's series of papers 
La nullite de no (DiffS3) [Cer64L later published in the volume Sur les diffeomorphismes de la 
sphere de dimension trois (f4 = 0) [Cer68a]. The cases 11 = 5,6 follow from the computations 
of 8/1 in M. Kervaire and J. Milnor's Groups ofllOmotopy spheres [KM63]. 

Thus, the first non-zero homotopy group of DIFF / PL is 'T[7 = Z28, coming from Milnor's exotic 
7 -spheres; geometrically, this first group corresponds to the existence of PL 8-manifolds that 
cannot be smoothed; an example is the 8 -dimensional topological manifold Mls built by E8 -

plumbing eight copies of lDTs4 and capping with an 8-disk, see back on page 98. In general all 
Mt

g
k 's are PL and non-smoothable. 

Between PL and topological: For the study of topological manifolds, some important steps along 
the way were B. Mazur's On embeddings of splzeres [Maz59, Maz61], followed by M. Brown's A 
proof of the generalized Schoenflies theorem [Br060], then A. CernavskiI's Local contractibility 
of the group of homeomorphisms of a manifold [Cer68b, Cer69]. Then came R. Kirby's already 
melltioned torus unfurling trick, in Stable llOmeomorphisms and the annulus conjecture [Kir69], 
which was then put to work together with L. Siebenmann. 

The passing of the PL/topological gap is governed by the fiber TOP / PL. The latter was shown 
to be an Eilenberg-Maclane K(Z2; 3) -space, that is to sa_,~ 

'T[3(TOP/PL) = Z2 and 'T[n(TOP/PL) = 0 for all 11 f- 3 . 

This can be read from R. Kirby and L. Siebenmann's Foundational essays on topological mani­
folds, smoothings, and triangulations [KS77]. Examples of topological (4 + k)-manifolds that 
do not admit any PL structure are all MEs x Sk iJnd .,vIEs x lrk _ A recent exposition of the 
PL/topological gap can also be read from Y. Rudyak's Piecewise linear structures on topolog­
ical manifolds [Rud01]. 

The evaluation of the hornotopy groups of TOP / PL rests upon the determination of all homo­
topy PL structures on sn X lrk (viewed as structures 011 [)'l X lrk relative to the boundary). These 
were cleared using surgery by A. Casson, then by W-c. Hsiang and J. Shaneson's Fake to ri, the 
annulus conjecture, and the conjectures of Kirby [HS69J, based on the surgery techniques devel­
oped by C.T.C Wall's On homotopy tori and the annulus theorem [WaI69b] (see also Surgery on 
compact manifolds [WaI70, Wa199, ch 15]). 

Smoothing bundles: the Kirby-Siebenmann invariant. Reviewing the results out­
lined in the preceding paragraph, we can now state: 

Theorem. For every n and m with 5 ::; n ::; m + I , we have: 

7tn(TOP(m)/DIFF(m)) = 0 for 3 f= n ::; 6 

7t3(TOP(m)/DIFF(m)) = Z2 

7tn(TOP(m)/DIFF(m)) = en for 11 ~ 5 

where en is the group of homotopy n -spheres. 30 o 

30. For those who skipped the preceding paragraphs: The groups of homotopy spheres en have been 
presented in the end-notes of chapter 2 (page 97). They can be defined for n ~ 5 as the set of smooth 
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We can now apply obstruction theory to study smoothings of topological mani­
folds of dimension at least 5, via smoothings of their topological tangent bundles. 

Since the first dimension with a nontrivial homotopy group is n = 3, it follows 
that the primary obstruction to endowing the topological tangent bundle of X 
with a DIFF(m)-structure appears as a class in H4(X; Z2)' It is called the .Kirby­
Siebenmann invariant and is denoted by 

ks(X) E H4 (M;Z2) . 

The existence of this first obstruction rests upon Rokhlin's theorem. Further, the 
difference cocycles are elements of H3 (X; Z2) . 

Past dimension 7, higher obstructions appear from Hn+ I (X; 8 11 ), the first one 
from H8 (X; Z28). Higher difference cocycles live in H n (X; 8 n ), the first ones in 
H 7 (X;Z28). 

Bringing in the intermediate PL level, l-ve shollld say: The Kirby-Siebenmann invariant ks(X) E 
H 4 (X;Z2) is the complete obstruction to endowing a topological manifold XIII of dimension 
m 2: 5 with a PL structure. If such a structure exists, all other PL structures are classified up 
to concordance (and thus isotopy) by H'(X; 'Z2)' The higher obstructions from H"+ I (X; ell) 
govern the possibility of endowing a PL manifold XIII with a smooth structure and do not appear 
until m = 8. Notice also that every PL 7 -manifold admits exactly 28 distinct smooth structures, 
up to concordance. 

Since Z2 and all the 8 n 's are finite, a consequence is that any topological manifold 
of dimension not 4 admits at mostfinitely-many distinct smooth structures.31 

Another consequence of the theory is that, for all m 2: 5, any topological manifold 
homeomorphic to R m admits a unique smooth structure. Since the cases m ::; 3 
are similar, this leaves R4 as the only possible support of exotic structures. 

Conclusion. If the Kirby-Siebenmann invariant ks(X) vanishes and m ::; 7, then 
the tangent bundle of xm admits a DIFF(m)-structure. If moreover m 2: 5, then 
this bundle structure can be integrated to a smooth structure on X itself. For ex­
ample, all simply-connected topological 5-manifolds admit smooth structures.32 

Moreover, if X admits some smooth structure, then all other smooth structures 
on X are classified (up to concordance/isotopy, via difference cocycles) by the el­
ements of H3(X;Z2). Starting with dimension 8, beside ks(X) appear higher ob­
structions to the existence of smooth structures, living in the groups H n+ I (X; 8 n ) . 

The case of dimension 4. The Kirby-Siebenmann invariant can certainly still be 
defined in dimension 4. However, lacking the power of the (smooth) h-cobordism 
theorem behind it, it mainly has negation power. 

For a topological 4-manifold M, the Kirby-Siebenmann invariant 

ks(M) E H4 (M;Z2) 

structures on sn considered up to concordance, with addition defined by connected sums; all groups 
en are finite, and the first nontrivial one is 8 7 = 'Z28. 

31. The cases of dimension 2 and 3 being handled, of course, separately. 

32. Since H4 (XS;Z2) = HI (XS,Z) = O. 
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is simply a Z2 -valued invariant: it is either 0 or 1. Its value is strongly related to 
Rokhlin's theorem (and its generalizations). Specifically, ks(M) detects whether a 
smooth structure on M is prohibited by Rokhlin's or not. 

Evaluating the Kirby-Siebenmann invariant. Let M be any topological 4-manifold 
with no 2-torsion in HI (M; Z) and with even intersection form QM (such a mani­
fold can safely be called a "spin manifold"). We have: 

ks(M) = k sign M (mod 2) . 
In particular, ks(MEs) = 1. 

More generally, regardless of the parity of QM' if a characteristic element of M can 
be represented by a topologically embedded sphere 2:" then we have 

ks(M) = k(signM - 2:,.2:,) (mod 2). 

This is related to the Kervaire-Milnor generalization of Rokhlin's theorem. 

Finally, via the Freedman-Kirby generalization of Rokhlin's theorem, we have, for 
every topological 4-manifold M with an embedded characteristic surface 2:" 

ks(M) = k (sign M - 2:, . 2:,) + Arf(M,2:,) (mod 2) , 

where Arf( M, 2:,) is a Z2 -invariant that measures the obstruction to representing 
2:, by a sphere, and depends only on the homology class of 2:,. The Freedman­
Kirby theorem will be discussed and proved in the end-notes of chapter 11 (page 
502); it is readable any time. 

When Kirby-Siebenmann vanishes. If M admits a smooth structure, then ks(M) = o. 
The converse is false: if ks(M) = 0, then M might still not admit any smooth 
structures. Such examples were uncovered starting with Donaldson's work33 and 
they are not rare. Nonetheless, if ks(M) = 0, then the 5-manifolds M x R or 
M x SI do admit smooth structures. Further, without increasing dimension, if 
ks(M) = 0, then for m big enough the stabilization M #m52 x 52 must admit a 
smooth structure. 

On the other hand, it was proved that all open 4-manifolds can be smoothed. In 
particular, any closed 4-manifold M can be endowed with a smooth structure off 
a point. 

In the case when ks(M) = 0, then, since M #mS2 x S2 can be smoothed, such a 
smoothing-off-points for M can be made in a controlled fashion: 

Theorem (F. Quinn). If M is a topological 4-manifold with ks(M) = 0, then there is 
n finite set of points PI, ... ,pm in M and a smooth structure on 

M \ {PI, ... ,Pili} , 

such that, for each k, on one hand there is a neighborhood Uk of Pk in M, and on the other 
hand there is a self-homeomorphism rpk: S2 x 52 . ~ S2 X 52 (isotopic to the identity), a 
neighborhood U~ of hk [52 V 52] in 52 x 52; and we have a diffeomorphism 

Uk \ Pk ~ U, \ rpd52 V 52] . 

33. See ahead section 5.3 (page 243). 
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In other words, the complement of each Pk is locally smoothed like the complement of a 
displacement of 52 V 52 in 52 x 52. 0 

See the left side of figure 4.39. This result was proved in F. Quinn's Smooth 
structures on 4-manifolds [Qui84] and can also be read from M. Freedman and 
F. Quinn's Topology of 4-manifolds [FQ90]. 

-~J--------
M -----1-------M • Pk • Pk 

4.39. Almost-smoothing a 4-manifold with ks(M) = 0 

Since 52 x 52 # (]p2 = #2 (]p2 # (:JP 2 , the theorem can immediately be restated by 
instead using displacements of CP I in CP2 and diffeomorphisms 

Uk \ Pk ~ U~ \ o/dCp1 ] 

(some of which which could reverse orientations). See the right side of figure 4.39, 
and also think in analogy with blow-ups of complex manifolds.34 

A fundamental remark to be made in this context is that both 52 x 52 \ o/k [52 V 52 J 
and ClP2 \ o/k [Cp I] are open smooth 4-manifolds that are homeomorphic to JR4. 
This implies that, if M has ks(M) = 0 but is not smoothable, then these open 
manifolds must exhibit non-standard smooth structures on R4. In other words, 
they must be exotic JR4 '5. This, in part, explains why the discovery of exotic IR4 ,s 
had to wait for Donaldson's work.35 Exotic JR4,s will be discussed in section 5.4 
(page 250) ahead. 

When Kirby-Siebenmann does not vanish. If ks(M) = I, then M does not admit any 
smooth structures. If ks( M) = I, then stabilizations do not help: ks (M # m 52 x 
52) will still be I, and all the M # m 52 x 52's will be non-smoothable. Indeed, the 
Kirby-Siebenmann invariant is nicely additive: 

ks(M Ua N) = ks(M) + ks(N) . 

34. Blow-ups are described in section 7.1 (page 286) ahead. 

35. Of course, it also had to wait for A. Casson's and M. Freedman's work. Nonetheless, one can still 
ask whether the existence of exotic JR4 ,s can be obtained as a consequence of Rokhlin's theorem while 
avoiding Donaldson's theory or equivalents. No. 
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In particular ks(M # N) = ks(M) + ks(N), and so, if ks(M) = I, then ks(M # 

m 52 x 52) = 1. Another important property to note is that the Kirby-Siebenmann 
invariant is unchanged by cobordisms.36 

The invariant ks misses most of the wildness of dimension 4: for example, the 
Kirby-Siebenmann invariant of MEs # MEs vanishes; but the latter has intersec­
tion form E8 Efl E8 , which is excluded from the smooth realm by the results of 
Donaldson: Kirby-Siebenmann's does not see what Rokhlin's does not exclude. 

Note: The Rokhlin invariant of 3-manifolds 

The Rokhlin theorem has major consequences beyond dimension 4. As we have 
seen in the preceding note (starting on page 207), in high-dimensions it is funda­
mentally implied in the non-existence of smooth structures on topological mani­
folds. In dimension 3, the Rokhlin theorem permits the definition of invariants for 
3-manifolds, which are the topic of this note. The invariants for 3-manifolds are 
a Z2 -invariant 

for homology 3-spheres L, and a Zl6-invariant 

fl(N) E Zl6 

for 3-manifolds N endowed with spin structures. 

Preparation: additivity of signatures. We have already seen that, if we connect­
sum two 4-manifolds M and N, then we have QM # N = QM Efl QN' and as a 

consequence sign ( M # N) = sign M + sign N . 

Intersection forms can also be defined for 4-manifolds with non-empty bound­
ary, but they will not be unimodular unless the boundary is a homology sphere.37 

Then the additivity properties above are easy to prove for two manifolds M and 
N whose boundaries are a same homology sphere with opposite orientations: if 
we glue M and N along their boundaries, then QM Ua N = QM Efl QN and hence 

sign(M Ua N) = sign M + sign N. 

Examples. For ex'!...mple, the 4-manifold 3s PEs has intersection form Es and signature 8. The 
manifold PEg ULp PEg is a closed 4-manifold ~vith intersection !..orm Es EEl -E8 ~ EEl 8 Hand 
signature O. Because of signature-\'anisiling, IVC expect PEg ULp PEg to bound a 5-manifold, and 
indeed, it is the boundary of PEg x [0, I], as i11 figure 4.40 on the facing page. It turns out that 
PEg ULp PEg is none other than # 8 52 X 52. (Notice tilat, since Lp does not have an orientation­

reversing self-diffeomorphism, a manifold like PEs ULI' PEg does not exist.39) 

36. In fact, the topological cobordism group O~)l' of oriented topological 4-manifolds is O~OI' = Z 'B 
Z2, with isomorphism given by M f---+ (sign M, ks(M)). Cobordisms groups will be discussed in the 
note on page 227 ahead. 

37. This will be fully proved in the end-notes of the next chapter (page 261). 

38. Recall that PEg denotes the Es -plumbing and is bounded by the Poincare homology sphere Lp; 
see section 2.3 (page 86). 

39. A roundabout argument: PEg ULr PEs would be a smooth 4-manifold with definite intersection 
form E8 EEl E8 • However, that is excluded by Donaldson's theorem (see section 5.3, on page 243 ahead). 
Thus, this 4-manifold does not exist, and therefore Lp cannot admit an orientation-reversing self­
diffeomorphism. 
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If two 4-manifolds have boundaries that are not homology spheres, then the ad­
ditivity of the intersection forms ceases to hold. Nonetheless, signatures are still 
additive: 

Novikov's Additivity Theorem. Let M and N be two 4-manifolds with non-empty 
boundaries. Assume that their boundary 3-manifolds a M and a N admit an orientation­
reversing diffeomorphism a M ~ aN. Then the closed manifold M Ua N, built by 
identifying the boundaries a M and aN, has signature 

sign(M Ua N) = sign M + sign N . 

Outline of proof. Denote by y3 the (unoriented) boundaries of M and N as 
well as the resulting 3 -sub manifold in M Ua N. Take a random element IX E 
H2 (M Ua N), represented as surface transverse to Y. Then the intersection 
IX n Y is a l-cycle in Y. 

On one hand, if IX n Y is non-trivial in HI (y3; Z), then it admits a dual class 
f3 E H2 (Y; Q). (Notice that we must use rational coefficients, but that is no 
problem: signatures were defined by diagonalization over a field.) The class 
f3 can be included as a class in M Ua N. Since f3 in M Ua N can be pushed 
off itself by using some nowhere-zero vector field normal to Y in M Ui) N, it 
follows that f3 . f3 = 0 in M Ua N. Therefore, the span of IX and f3 in H2 (M Ui) 
N; Q) has intersection form 

QI.~ = [; ~], 
whose signature is zero and thus does not contribute to sign(M Ua N). 

On the other hand, if Lt n Y is homologically-trivial, then one shows, using 
a Mayer-Vietoris argument, that IX must in fact be a sum IX = IXM + LtN of 
classes from M and N. Therefore the contribution of IX to the signature of 
M Ua N is caught in sign M and sign N. 0 

The complete proof can be found in R. Kirhy's The topology of 4-manifolds 
[Kir89, ch Ill. 

If two 4-manifolds are glued on only parts of their boundaries, then the additivity of the signc1-
ture ceases.to hold. Nonetheless, there is a well-determined correction term, see CT.C Wall's 
Non-additivity of the signature [WaI69a]. 

The Rokhlin invariant of homology 3-spheres. On 3-manifolds spin structures 
can be defined in the same way as on 4-manifolds. Since every 3-manifold N 
is parallelizable (i.e., T N is a trivial bundle)~ it admits spin structures. As in di­
mension 4, the group HI (N; Z2) acts transitively on the set of spin structures. In 
particular, if HI (N; Z2) = 0, then N admits exactly one spin structure. Moreover, 
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every spin 3-manifold N bounds a (smooth) spin 4-manifold M with the spin 
structure of M restricting to the chosen spin structure40 of N. 

Let..E3 be a homology 3-sphere. Let M be a smooth spin 4-manifold bounded by 
..E. Being spin, the manifold M must have an even intersection form. Since ..E is a 
homology 3-sphere, the intersection form of M must be unimodular. Thus, using 
van der Blij's lemma, its signature must be a multiple of 8: 

sign M = 0 (mod 8) 

(from the same algebraic argument41 as for closed 4-manifolds). In other words, 
the residue of sign M modulo 16 is either 0 or 8. 

We can then define the Rokhlin invariant of ..E by 

p(..E) = k sign M (mod 2) . 

Due to Rokhlin's theorem, this is a well-defined invariant of ..E, which does not 
depend on the choice of the bounded 4-manifold M. Indeed, if ..E also bounds 
another spin 4-manifold M', then M and M' can be glued along ..E yielding a 
closed spin 4-manifold M U.E M', which must have 

sign(M U.E M') = 0 (mod 16) , 

and thus sign M - sign M' = 0 (mod 16). 

For example, since it bounds PEs whose signature is 8, the Poincare homology 
3-sphere ..Ep must have p(..Ep) = 1. 

The Rokhlin invariant of Z2-homology 3-spheres. Assume now that the 3-mani­
fold N is a Z2 -homology sphere, i.e., a closed 3-manifold with 

HI (N;Z2) = O. 

Then N admits a unique spin structure. Pick some smooth spin 4-manifold M 
that is bounded by N, with compatible spin structures. The intersection form of 
M is still even, but no longer unimodular, and so the best we can do is define the 
Rokhlin invariant (or p-invariant) of N by 

ll(N) = sign M (mod 16) . 

A similar reasoning as above shows that it is well-defined, independent of M. 

The Rokhlin invariant of spin 3-manifolds. Finally, if N is just a random closed 
3-manifold, then we can choose a spin structure .5 on N, find a spin 4-manifold 
M that is spin-bounded by N, and define the invariant 

ll(N) = sign M (mod 16) . 

This is an invariant that depends on the chosen spin structure .5. 

Two easy properties of the Rokhlin invariants, in any of the above versions, are: 

ll(N) = -ll(N) and ll(N' # Nil) = Il(N') + Il(N") . 

40. In the language of the next note (cobordism groups; page 227), we are saying that O~Pin = O. 

41. For the proof of van cler Blij's lemma, see the end-notes of the next chapter (page 263). 
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Vice-versa: proving Rokhlin's theorem from JI-invariants. The reason why the fJ-­
invariant of a spin 3-manifold is a well-defined invariant modulo 16, rather than 
modulo 8, is Rokhlin's theorem. Surprisingly, one can also go in reverse: If one 
proves by other means that the p-invariant is well-defined modulo 16, then from 
this fact one can deduce Rokhlin's theorem for 4-manifolds. 

This brief and elegant proof of Rokhlin's theorem can be discovered hidden as an 
appendix to R. Kirby and P. Melvin's The 3-manifold invariants of Witten and 
Reshetikhin-Turaev for s((2,(:) [KM91]. Specifically, one starts with a presenta­
tion of the 3-manifold as a Kirby link diagram, then defines the ft-invariant in 
terms of that diagram and proves that it well-defined by using only Kirby calcu­
lus.42 

References. The Rokhlin invariant first appeared, in a more general setting, in 
J. Eells and N. Kuiper's An invariant for certain smooth manifolds [EK62]. Some 
early properties are explored in F. Hirzebruch, W. Neumann and S. Koh's Differ­
entiable manifolds and quadratic forms [HNK71]. 

The Rokhlin invariant can be refined into the much more powerful Casson invari­
ant of homology 3-spheres, to the exposition of which is devoted S. Akbulut and 
J. McCarthy's Casson's invariant for oriented homology 3-spheres [AM90]. This 
was extended by K. Walker to an invariant of rational homology 3-spheres in An 
extension of Casson's invariant [WaI92], and then finally to general 3-manifolds 
in C. Lescop's Global surgery formula for the Casson-Walker invariant [Les96]. 
A recent survey of such invariants is N. Saveliev's Invariants for homology 3-
spheres [Sav02]. In a different direction, the Casson invariant admits a gauge­
theoretic interpretation in terms of Donaldson's instantons, as was noticed by 
C. Taubes' Casson's invariant and gauge theory [Tau90], and, even further, it is 
the Euler characteristic of an instanton-based homology theory built in A. Floer's 
An instant01i-invariant for 3-manifolds [FloSS]. However, all this is beyond the 
scope of the present volume. 

Note: Cobordism groups 

If we consider two In -manifolds as equivalent whenever there is a cobordism be­
tween them, then we separate manifolds into cobordism classes, and these can be 
organized as an Abelian group. 

01'iented cobordism group. Consider the set of all oriented m-manifolds, together 
with the empty manifold 0. Think of xm and ym as equivalent if and only if they 
are cobordant, i.e., if there is an oriented manifold Wm+ 1 such that d W = X u y. 
The equivalence classes make up an Abelian group 

OSO 
m 

called the oriented cobordism group in dimension m. Its addition comes from 
disjoint unions, [X] + [y] = [X U Y], as suggested in figure 4.41 on the next page. 

42. A quick overview of Kirby calculus was made in the end-notes of chapter 2 (page 91). 
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z 

x 

4.41. Cobordisms: [X] + [Y] = [Z] in n~O 

The identity element in of,P is given by ° = [0]. Any bounding m-manifold 
represents 0, and thus in particular the identity can also be represented by the 
m-sphere Sin-since Sin bounds JDIIl+l, we have [Sin] = [0]. 

The inverse in of,P is given by reversing orientations: we have - [X] = [X], as 
argued in figure 4.42. 

4.42. Cobordisms: [X] + [X] = 0 in n~p 

It is worth noticing that X U Y is always cobordant to X #Y. This can be seen, for 
example, by using the boundary sum43 (X x [0,1]) q (Y x [0,1]) as in figure 4.43. 
Thus, connected sum corresponds to addition in O~P: 

[X] + [Y] = [X#Y]. 

The diffeomorphisms X # Sill = X reflect as [X] + 0 = [X]. 

X HY. __ _ 

x Y 

4.43. Cobordisms: [X] + [Y] = [X #Y] in nfnO 

Cobordism ring. Further, all the groups 0;;;' can in fact be put together to make lip the oriented 
cobordism ring 0;0, with multiplication gi\'en by [X] . [Y] = [X x Y], and unit the element 
[+point] E ogo. 

As examples, it is easy to see that ogo = Z, of 0 = 0 and O~o = O. It is Cl 

nontrivial result that O~o = O. We have already mentioned that a 4-manifold is 

43. Boundary sums were recalled back on page 13. 
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the boundary of some oriented 5-manifold if and only if its signature is zero. It 
follows that nSO 

~"4 = Z, 

with isomorphism given by [M] ~ sign QM. A generator of o~o is (::Jp2. 

More cobordism groups are collected in table VI. The generator of O~o is the manifold yS de­
scribed by the equiltion44 (.lo + XI + X2)(YO + ... + Y4) = f in JRlP2 x JRlP4. The generators of 
0io are ClP2 x ClP2 and C1P4. The generators of O~o are y5 x CIP2 and y9, the latter being de­
scribed by the equa tion (xo + X I + X2) (Yo + ... + Ys) = f in JRIP2 X JRlPs. The genera tor of o.f~ is 
yS x ys. The generator of Of? is yll , given by the equation (xo + ... + X4) (yo + ... + Ys) = f 

in JRlP4 
X !RIPs. Keep in mind that Cartesian product organizes El? OrO as a graded ring. 

VI. Oriented cobordism groups 

m 0 1 2 3 4 5 6 7 8 9 10 11 

0 50 
m Z 0 0 0 Z Z2 0 0 ZEBZ Z2 EB Z2 Z2 Z2 

Spin cobordis111 groups. The 11 SO" from the notation o~o comes from the fact that 
an orientation of XIII is the same as a reduction of the structure group of Tx to 
SO( m). The oriented cobordism group is not the only cobordism group-indeed, 
one can define a cobordism theory for most types of structure on manifolds. 

In particular, the spin cobordism group 
OSpin 

m 

is defined by starting with m-manifolds endowed with spin structures and con­
sidering X and Y as equivalent if and only if together they make up the boundary 
of a spin (nz + 1 )-manifold W, with the spin structures on X and Y induced from 
the one on W. 

I d · . 45 h nSpin '77 nSpin '77 d n 5pin I d· In ow- ImenSlOns we ave ~ "I = u....2, ~ "2 = u....2, an ~ "3 = O. n Imen-
sion 4, we ha ve OSpill - Z 

4 - , 

with isomorphism given by [M] ~ k sign QM (always an integer, by Rokhlin's 
theorem). The generator is the K3 surface. 

More groups are collected in table VII. The generator of O~Pill is K3. The generators of O~l'ill are 
1H1P2 and an 8 -manifold K8 such that #4 K is spin cobordant to K3 x K3. 

VII. Spin cobordism groups 

m 0 1 2 3 4 5 6 7 8 
OSpill 

m Z Z2 Z2 0 Z 0 0 0 ZEBZ 

44. The role of E in the equation is merely to eliminate the singularities that would appear for = O. 

45. Defining spin structures for 1- and 2-manifolds requires first stabilization (because 7t I SO(n) be­
gins to be Z2 only for 11 2: 3). Thus, for I-manifolds C we will look at trivializations of Tc El? JR2, 
while for surfaces 5, we look at Ts El? JR. These low-dimensional spin structures and their cobordisms 
will be discussed in more detail in the end-notes of chapter 11 (page 521). 



230 4. Intersection Forms and Topology 

Uses. The application of such cobordism results usually follows this pattern: In 
order to prove a general statement about manifolds, first prove that it is invariant 
under cobordisms, then prove that the statement holds on the generators. 

For example, the signature sign QM is an oriented-cobordism invariant, and such 
an argument is used in M. Freedman and R. Kirby's A geometric proof of Rochlin' s 
theorem [FK78] to prove Rokhlin's theorem; we will present two versions of tha t 
argument in the end-notes of chapter 11 (page 502 and page 521). 

The most famous results first proved via cobordism arguments are Hirzebruch's 
signature theorem and the Atiyah-Singer index theorem. 

References. Cobordism groups were first studied by R. Thorn's VarieUs differen­
tiables cobordantes [Tho53b] and fully detailed in his Quelques proprieUs glob­
ales des varietes differentiables [Tho54]. That O~O is trivial was proved in A. Wal­
lace's Modifications and cobounding manifolds [WaI60] or R. Lickorish's A repre­
sen~ation of orientable combinatorial 3-manifolds [Lic62b]. Both O~O = 0 and 
O~pm = 0 were first proved by V. Rokhlin in New results in the theory of four­
dimensional manifolds [Rok52]. 

R. Kirby's The topology of 4-rnanifolds [Kir89] contains geometric proofs of 
the low-dimensional cobordism statements mentioned above. A general study of 
cobordisms can start with chapter 7 of M. Hirsch's Differential topology [Hir76, 
Hir94]' then continue with R. Stong's monograph Notes on cobordism theory 
[Sto68]. 

As far as we are concerned, we will also encounter the spine cobordism group and 
the characteristic cobordism group, both discussed in the end-notes of chapter 10 
(page 427); the two are in fact isomorphic. Also, in the note that follows, we will 
explore the framed version of cobordisms. 

Note: The Pontryagin-Thom construction 

In what follows, we will present the Pontryagin-Thorn construction, which relates 
homotopies of maps to fralned bordisms of submanifolds. An instance of this 
method was encountered in the proof of Whitehead's theorem,46 and the follow­
ing should shed some extra light on that argument. It is also of independent inter­
est, since it adds geometric content to homotopy groups of spheres. In particular, 
it was during the pursuit of this method that Rokhlin discovered his celebrated 
theorem. 

The construction. Let 

be any map, considered up to homotopy. Pick your favorite point p in SII1, then 
modify f slightly to make it smooth and transverse to p. The preimage K = 
f- 1 [p] is now a k-sublnanifold of xm+k. Moreover, the differential d f: T x ~ TSIII 

induces a map df: NK/ X ~ TSllllp = R m , which is an isomorphism on fibers and 
thus trivializes NK/ X ' A submanifold together with a trivialization of its normal 
bundle is called a framed submanifold. 

46. Back in section 4.1 (page 143). 
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In the reversed direction,let K be any k-submanifold of X II1 +k with trivial normal 
bundle. Assume that a trivialization of its normal bundle NK / X has been chosen. 
This means that there is a projection f: NK/ X ---+ lRlI1 that is an isomorphism on 
fibers. Think of f as defined on a tubular neighborhood NK / X of K in X and 
compactify its codomain lRrn to srn by adding a point 00. Then f: NK/ X ---+ Sin 
can be extended on X \ N K/ X simply by setting flx\ N

K
/

X 
= 00, thus yielding a 

map f: X m+k ---+ Sin . 

The correspondence K ~ f becomes bijective if we consider f only up to homo­
topies, and K only up to framed bordisms. Specifically, two k-submanifold K' 
and K" of X m+k, both with trivialized normal bundles, are called framed bordant 
if there exist both a (k + I)-submanifold K of X x [0,1] such that a K = R' x ° U 

K" X I, and a trivialization of the normal m-plane bundle NR I Xx [0,1] of K such 
that it induces the chosen trivializations of NK,/x and NK"/x when restricted to 
K's boundary. See figure 4.44. 

4.44. A framed bordism 

Lemma (Pontryagin-Thom Construction). We have the bi;ection 

[Xm+k, Srn] ~ 0farned(XI1Hk) , 

where the former denotes the set of homotopy classes of maps X ---+ Sill, while the latter 
denotes the set of framed bordism classes of k-submanifolds of X. 

Sketch of proof. That K f---+ f f---+ K is the identity is obvious. That 11 f---+ K f---+ 

fa is the identity up to homotopy is shown by using the Alexander homotopy 
Jr(x) = fh (tx) that links It with fa = dh 10 (use coordinates on sm = lRm U 

00 that set p at 0). Finally, apply the Pontryagin-Thom construction again to 
establish a correspondence between (k + 1)-submanifolds of X x [0,1] and 
functions X x [0, I] ---+ sm. Interpret the former as framed bordisms and the 
latter as homotopies. D 

Lemma. The bijection 
Sm ""' njramed(SI11+k) 7t71l+k '" ~ "k 

is an isomorphism of groups. 

The group structure on the latter is the obvious bordism addition, 

K' +K" = K'UK" C S11l#Sm = S11I. 

o 
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Notice also that the bigger In becomes when compared to k, the less relevant the 
restriction to manifolds that embed in srn becomes. In other words, the stable 
k-stem is given by abstract framed bordisms 

1· Srn Ofrarned 
~ 7tm+k ~ k ' 
m 

where the latter is the cobordism group of k-manifolds endowed with a stable 
trivialization of their tangent bundle.47 

Whitehead, rellisited. Some claims made during the proof of Whitehead's theorem should now 
be clearer. First, going from 7t1ll+k(sm) to 7tm+k(sm V ... V S"') is trivial: just consider framed 
bordisms of several distinct (each maybe disconnected) submanifolds. After that, it is now ob­
vious that any map I: SIII+k ----+ Sill can be arranged to have I-I [pJ connected (compare page 
143), because it is eas), to devise a framed bordism to a connected k-submanifold (cOIU1ected 
sum inside Sill comes to mind). Similarly, the statement that the linking matrix of L determines 
the homotop), class of cp (page 146) can now be made rigorous, because the linking matrix is in­
variant under framed bordisms (allow the splitting of link components into disconnected pieces). 
It is in fact the only ilwariant, as will be suggested below. 

References. The Pontryagin-Thorn construction was created in the 1940s by L. Pon­
tryagin, who used framed bordisms to compute homotopy groups of spheres, 
see his papers The homotopy group 7tn+l(Kn) (n ~ 2) of dimension 11 + 1 of 
a connected finite polyhedron Kn of arbitrary dimension, whose fundamental 
group and Betti groups of dimensions 2, ... , n - 1 are trivial [Pon49a], and Ho­
motopy classification of the mappings of an (n + 2)-dimensional sphere on an 
n-dimensional one [Pon50], or the book [Pon55] translated as Smooth manifolds 
and their applications in homotopy theory [Pon59]. 

Then, after the development by J.P. Serre of more powerful methods for com­
puting homotopy groups,48 R. Thorn in Quelques proprietes globales des var­
ietes differentiables [Tho54] went backwards and used computations of homotopy 
groups in order to compute cobordism groups.49 Framed bordisms are explained 
in a friendly manner in J. Milnor's Topology from the differentiable viewpoint 
[Mil65b, Mil97], but see also A. Kosinski's Differential manifolds [Kos93]. 

Application: homotopy groups of spheres. In what follows we will put to work the 
Pontryagin-Thorn construction to offer geometric interpretations of certain simple 
homotopy groups of spheres. While this is how the hornotopy groups below were 
first computed by L. Pontryagin and V. Rokhlin, the Pontryagin-Thorn construc­
tion is a very weak method for evaluating homotopy groups when compared to 
Serre's later Inethods. 

Lemma. 

47. A stable bundle is a bundle considered up to additions of trivial bundles. A stable tri\'ialization of 
the tangent bundle TK means an isomorphism TK EEl]RIII :::::: ]RIII+k, corresponding to a virtual embed­
ding in SII1+k with NK/S""k trivialized as K x !R"'. 

48. See J.P. Serre's Homologie singttliere des espaces fibres. Ill. Applications llOl11otopiqllcs [Ser51]. 

49. For a first taste of this approach, start with M. Hirsch's Differential topology [Hir76, Hir94, ch 7]. 
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Sketch of proof. Not that this is not clear for all sorts of reasons, but it can 

also be argued in terms of framed bordisms: ntramfd (SIl) contains framed 
points; the framing of a point x E sn is a trivialization of TSlllx considered 
up to homotopy, in other words, an orientation of T M I x' Comparing it with 

the fixed orientation of 5n exhibits the elements of ntramed 
(SI1) as points with 

signs. The isomorphism framed nO (5n
) ~ Z 

is given simply by counting those points with signs. (Of course, on one hand 
this is just a very roundabout way of getting to the degree of a map 5n ~ sn; 
on the other hand, though, this is just the easiest instance of a pattern that we 
will see developing below.) 0 

Lemma. 'Tt3S2 = Z, and 7tn+15n = Z2 when n 2 3 . 

Outline of proof. For 'Tt3 S2, we are looking at n{rIllI/cd (S3), which contains 
framed links in 53 . Each component of the link has a framing, determined by 
an integer, which can be added together to yield the isomorphism 

nfamed (53) ~ Z. 

The framing is determined by an integer because we are talking about trivial­
izations of 2-plane bundles over copies of Si, and 7t,50(2) = Z. As soon 
as the codimension increases, though, we have 7t, 50(/1) = Z2 (detecting 
whether the bundle twists by an even or odd multiple of 271), and thus 

nfamed(S1HI) ~ Z2 when n 2:: 3, 

which concludes the argument: o 

Lemma. 71n+2 SI1 = Z2 . 

Outline of proof Consider surfaces embedded in 511 +2 . Every surface S has 
Cl. skew-symmetric bilinear unimodular intersection form on Hl(S;Z), given 
by intersections of I-cycles. It descends to an intersection form modulo 2 on 
H, (5; Z2)' 

Using the embedding of 5 in sn+2, we can define a quadratic enhancement q 
of the intersection forms, namely a map q: HI (5; Z2) ---> Z2 with 

q(x+y) = q(x)+q(y)+x·y (mod 2). 

Such a q is defined as follows: represent £. E HI (5; Z2) by a circle embedded 
in 5 and consider the framing of N S / SI1+2 over €: it is determined by a Z2-
framing coefficient, and we define q(£.) to be that coefficient. 

Any quadratic enhancement has an associated Z2 -invariant, called its Arf 
invariant, which can be defined swiftly by setting 

Arf(q) = Lq(ek) q(ek) 

for any choice of basis {el, ... , em, el, . ", em} of HI (5; Z2) such that the only 
non-zero intersections are ek . ek = I. A more thorough discussion of the 
algebra of the Arf invariant is made in the end-notes of chapter 11 (page 501). 
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In any case, the Arf invariant is the only framed bordism invariant and estab-
lishes the isomorphism framed 

02 (Sn) ~ Z2, 

and thus concludes the argument. 0 

All of the above computations are due to L. Pontryagin and can be read from his 
book [Pon55], translated as Smooth manifolds and their applications in homo­
topy theory [Pon59]. 

Finally, at the limits of Pontryagin-Thorn's applicability, we have: 

Theorem. 7In+3 sn = Z24 when n ~ 5. 0 

This is already serious business and was first discovered by V. Rokhlin. While 
studying the problem of 7In+3 sn by using framed bordisms of 3-manifolds, V. Rok­
hlin first concluded that 7In+3 sn = Z12. His mistake stemmed from thinking that 
a certain characteristic element in a 4-manifold could be represented by an embed­
ded sphere. This was not the case, he corrected his mistake in New results in the 
theory of four-dimensional manifolds [Rok52], and in the process discovered his 
theorem on the signature of almost-parallelizable 4-manifolds. The whole story 
can be followed in the volume .A la recherche de la topologie perdue [GM86a], 
edited by L. Guillou and A. Marin, with French translations of the relevant papers 
of Rokhlin, commentaries, etc. 

For completeness, even though they were never obtained using the Pontryagin­
Thorn construction, we also state: 

Theorem. 7I11 +4 Sll = 0 , 7In+5 sn = 0 , 7In+6 sn = Z2 when /1 is big. 

In particular it follows that nfamed = O. This is not in contradiction with n~o = Z, because 

not all 4-manifolds appear in n:amed
, but only those that can be embedded in a sphere with 

trivial normal bundle, in other words, only those 4-manifolds M whose tangent bundle is stably­
trivial, i.e., T M ill]R1! = ]R11+4 for some n. These M's have vanishing Pontryagin class, and thus 
vanishing signa ture. 
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[Mil63b]. 
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English in 1971. A French translation of this and three other remarkable papers 
of Rokhlin can be read as [Rok86] in the volume A la recherche de la topologie 
perdue [GM86a], edited by L. Guillou and A. Marin, where they are followed by 
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ing that 7[n+3511 = Z12; he then found his mistake, stated his theorem, and cor­
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Most later proofs or textbook-treatments of Rokhlin's theorem actually deduce it 
from 7r1l +3 S" = Z24, with the latter fact obtained through the impressive machin­
ery set up by J.P. Serre's Homologie singuliere des espaces fibres. Ill. Applications 
homotopiques [SerS1] for computing homotopy groups, thus setting aside the 
direct geometric approach of Rokhlin's papers. For this homotopy-theoretic ap­
proach to proving Rokhlin's theorem, see M. Kervaire and J. Milnor's Bernoulli 
numbers, homotopy groups, and a theorem of Rohlin [KM60]. 

Rokhlin's theorem was generalized successively by M. Kervaire and J. Milnor in 
On 2-spheres in 4-manifolds [KM61] (see also section ILl, page 482), and further, 
along an unpublished outline of A. Casson from around 1975, by M. Freedman 
and R. Kirby in A geometric proof of Rochlin's theorem [FK78]. The latter state­
ment and its proof from scratch (thus in particular proving Rokhlin's theorem as 
well) will be discussed in the end-notes of chapter 11, with a warm-up starting on 
page 502 and a detailed proof on page 507.50 Alternative proofs of a similar flavor 
can be read in L. Guillou and A. Marin's Une extension d'un theoreme de Rohlin 
sur la signature [GM86c] and Y. Matsumoto's An elementary proof of Rochlin's 
signature theorem and its extension51 by Guillou and Marin [Mat86L both inside 
the same wonderful volume .A la recherche de la topologie perdue [GM86a]. It 
has been reported that V. Rokhlin was himself long aware (1964) of these gener­
alizations, but only published them in Proof of a conjecture of Gudkov [Rok72t 
when he found an application. 

Another version of the proof is found in R. Kirby's The topology of 4-rnanifolds 
[Kir89, ch XIL where a nice streamlined argument with spin structures is used. 
This alternative proof is also explained in this volume, in the end-notes of chap­
ter 11 (page 521). 

A third and surprising proof of Rokhlin's theorem that starts with the ft-invariants 
of 3-manifolds can be read from the appendix of R. Kirby and P. Melvin's The 3-
manifold invariants of Witten and Reshetikhin-Turaev for 5(2,C) [KM91]; it 
was briefly mentioned back on page 227. 

50. The reason for the exile of the proof of Rokhlin's theorem to chapter 11 is mainly one of space: even 
though logically that proof would better fit with the present chapter, the current group of end-notes is 
already quite extensive. 

51. The word "extension" from the last two titles refers to a refinement of the Kirby-Siebenmann for­
mula from a Z2 -equality to a Z4 -equality, with the extra residues appearing only from non-orientable 
characteristic surfaces. 


