Chapter 3

Getting Acquainted with
Intersection Forms

E define the intersection form of a 4-manifold, which governs inter-
Wsections of surfaces inside the manifold. We start by representing ev-
ery homology 2—class by an embedded surface, then, in section 3.2 (page
115), we explore the properties of the intersection form. Among them is
unimodularity, which is essentially equivalent to Poincaré duality. An im-
portant invariant of an intersection form is its signature, and we discuss
how its vanishing is equivalent to the 4-manifold being a boundary of a
5-manifold. After listing a few simple examples of 4-manifolds and their
intersection form, in section 3.3 (page 127) we present in some detail the
important example of the K3 manifold.

Given any closed oriented 4-manifold M, its intersection form is the sym-
metric 2-form defined as follows:

Qu: H3A(M;Z) x H}(M;Z) — Z
Qu(a, B) = (a U B)[M] .
This form is bilinear! and is represented by a matrix of determinant +1.
While over R this is a recipe for boredom, since this intersection form is
defined over the integers (and thus changes of coordinates must be made

only through integer-valued matrices), our Q,, is a quite far-from-trivial
object.

1. Notice that Q,; vanishes on any torsion element, and thus can be thought of as defined on the free
part of H2(M; Z); since our manifolds are assumed simply-connected, torsion is not an issue.
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112 3. Getting Acquainted with Intersection Forms

For convenience, we will often denote Q,,(«, ) by « - . Further, we will
identify without comment a cohomology class &« € H?(M; Z) with its Poin-
caré-dual homology class « € Hy(M;Z).

For defining Q,, more geometrically,?> we will represent classes a and f
from H,(M;Z) by embedded surfaces S, and S g, and then equivalently
define Q,,(«, B) as the intersection number of S, and Sp:

Qu (2. ) = Sa - Sg.
First, though, we need to argue that any class « € H,(M;Z) can indeed be
represented by a smoothly embedded surface S,:

3.1. Preparation: representing homology by surfaces

It is known from general results?® that every homology class of a 4-manifold
can be represented by embedded submanifolds. Nonetheless, we present
a direct argument for the case of 2—classes, owing to the useful techniques
that it exhibits.

Simply-connected case. Assume first that M is simply-connected. Then by
Hurewicz's theorem 7, (M) ~ H>(M;Z), and hence all homology classes
of M can be represented as images of maps f: 2 — M. The latter can
always be perturbed to yield immersed spheres, whose only failures from
being embedded are transverse double-points. These double-points can be
eliminated at the price of increasing the genus.

For example, by using complex coordinates, a double-point is isomorphic
to the simple nodal singularity of equation z;z = 0 in C?: the complex
planes z; = 0 and z; = 0 meeting at the origin. It can be eliminated
by perturbing to z1z; = ¢, as suggested in figure 3.1 on the facing page.
(A simple change of coordinates transforms the situation into perturbing
wi+wi=0tow?+w =c¢)

More geometrically, imagine two planes meeting orthogonally at the origin
of R*. Their traces in the 3—sphere S* are two circles, linking once.# We can
eliminate the singularity if we discard the portions contained in the open 4-
ball bounded by S, and instead connect the two circles in 5° by an annular

2. “Think with intersections, prove with cup-products.”

3. For example, for any smooth oriented X™ and any a € H*(X;Z), there is some integer k so that
ke can be represented by an embedded submanifold; if « has dimension at most 8 or codimension at
most 2, then it can be represented directly by a submanifold; if X" is embedded in R"*2, then X is
the boundary of an oriented smooth (m + l}-submanifold in R™*2. These results were announced
in R. Thom's Sous-variétés et classes d’homologic des variétés différentiables [Tho53a] and proved in
his celebrated Quelques propriétés globales des variétés différentiables [Tho54].

4. Think: fibers of the Hopf map $* — CP!; the Hopf map will be recalled in footnote 34 on page 129.
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3.1. Eliminating a double-point, I: complex coordinates

sheet, as suggested in figure® 3.2. Thus, we replaced two disks meeting at
the double-point by an annulus. A 4-dimensional image is attempted in
figure® 3.3 on the following page.

3.2. Eliminating a double-point, II: annulus

5. On the left of figure 3.2, one circle is drawn as a vertical line through o, after setting $* = IR? U o0.

6. As usual, in figure 3.3, dotted lines represent creatures escaping in the fourth dimension.
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3.3. Eliminating a double-point, III

Either way, we can eliminate all double-points of the immersed sphere, and
the result is then an embedded surface representing that homology class.
Thus, all homology classes can be represented by embedded surfaces, but
rarely by spheres.

The failure to represent homology classes by smoothly embedded spheres is
of course related to the failure of smoothly embedding disks. The natural
question to ask is then: what is the minimum genus needed to represent a
given homology class? We will come back to this question later”

In general. The method above only works for simply-connected M*’s. An
argument for general 4-manifolds has two equivalent versions:

(1) Since CP* is an Eilenberg-Maclane K(Z,2)-space? it follows that
the elements of H*(M; Z) correspond to homotopy classes of maps M —
CIP*. Since M is 4-dimensional, such maps can be slid off the high-dimen-
sional cells of CIP* and thus reduced to maps M — CP2. For any class
a € H*(M;Z), pick a corresponding f,: M — CP? and arrange it to be
differentiable and transverse to CP' C CP2. Then f; ![CP!] is a surface
Poincaré-dual to «.

(2) Equivalently, since CIP® coincides with the classifying space’ ZU(1)
of the group U(1), classes in H?(M;Z) correspond to complex line bun-
dles on M, with & being paired to L, whenever ¢;(L,) = «. If we pick a

7. See ahead, chapter 11 (starting on page 481).

8. An Eilenberg-Maclane K(G, m)-space is a space whose only non-zero homotopy group is m, =
G; such a space is unique up to homotopy-equivalence. It can be used to represent cohomology as
H™(X;G) = [X; K(G,m)], where [A; B] denotes the set of homotopy classes of maps A — B.

9. A classifying space #G for a topological group G is a space so that [X; %G| coincides with the
set of isomorphisms classes of G-bundles over X. A bit more on classifying spaces is explained in the
end-notes of the next chapter (page 204).
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generic section ¢ of L,, then its zero set 0! {0] will be an embedded surface
Poincaré-dual to «.

3.2. Intersection forms

Given a closed oriented 4-manifold M, we defined its intersection form as
Qu: Ho(M;Z) x Hy(My Z) — Z Qum(a,B) = Sq-Sg,
where S, and Sy are any two surfaces representing the classes « and .

Notice that, if M is simply-connected, then H(M;Z) is a free Z-module
and there are isomorphisms Hy(M;Z) ~ @®mZ,where m = by(M). If M
is not simply-connected, then Hy(M;Z) inherits the torsion of H;(M;Z),
but by linearity the intersection form will always vanish on these torsion
classes; thus, when studying intersection form, we can safely pretend that
H,(M;Z) is always free.
Lemma. The form Q,,(a,B) = Sy -Sg on Hy(M; Z) coincides modulo Poincaré
duality with the pairing Qs (a*, B*) = (a* U B*)[M] on H:(M;Z).
Proof. Given any class « € Hy(M;Z), denote by a* its Poincaré-dual
from H?(M;Z); we have a* N [M] = a. We wish to show that the
airin - *
parie Qu(a*,p7) = (& Up*)[M]
on H2(M; Z) defines the same bilinear form as the one defined above.
We use the general formula® (a* U g*)[M] = a* [B*N[M]], from which
it follows that Q,,(a*, *) = a*[B], or
Qu (e, B*) = a*[Sg] .
Therefore, we need to show that
Dé*[Sﬁ] = Sa . Sﬁ .
Since Q,, vanishes on torsion classes, it is enough to check the last

formula by including the free part of H*(M; Z) into H*(M;R) and by
interpreting the latter as the de Rham cohomology of exterior 2—forms.

Moving into de Rham cohomology translates cup products into wedge
products and cohomology/homology pairings into integrations. We
have, for example,

QM(«x*,ﬁ*):/Ma*/\ﬁ* and a*[sﬁ]:/sﬁa*

for all 2—forms a*, B* € ['(A*(T})).

10. More often written in terms of the Kronecker pairing as (a* U 8*, [M]) = (a*, g*n [M]}.
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In this setting, given a surface S,, one can find a 2—form a* dual to S,
so that it is non-zero only close to S,. Further, one can choose some
local oriented coordinates {xj,Xx2, ¥1,¥2} so that S, coincides locally
with the plane {y; = 0;y, = 0}, oriented by dxy Ndx;. One can
then choose a* to be locally written a* = f(x1,x;) dy; Ady,, for some
suitable bump-function f on R?, supported only around (0,0) and
with integral [, f = 1.

If Sg is some surface transverse to S, and we arrange that, around
the intersection points of S, and Sg, we have Sp described by {x; =
0; x; = 0}, then clearly

a* =S,-Sg,
Sg ©1op

with each intersection point of S, and Sg contributing +1 depending
on whether dy; A dy, orients Sg positively or not.1! ]

Unimodularity and dual classes
The intersection form Q,, is Z-bilinear and symmetric. As a consequence of
Poincaré duality, the form Q,, is also unimodular, meaning that the matrix
representing Q,, is invertible over Z. This is the same as saying that
Unimodularity is further equivalent to the property that, for every Z-linear
function f: Hy(M;Z) — Z, there exists a unique & € H;(M;Z) so that
f(x) =a-x.
Lemma. The intersection form Q,, of a 4—manifold is unimodular.

Proof. The intersection form is unimodular if and only if the map

Ou: Ha(M;Z) —— Homg (Hy(M; Z), Z)
bt — XX

is an isomorphism. We will argue that this last map coincides with

the Poincaré duality morphism. Indeed, Poincaré duality is the isomor-

phism Hy(M;Z) —— H(M;Z)

« — a*,
with a* characterized by a* N [M] = a. Assume for simplicity that
H,(M; Z) is free.? Then the universal coefficient theorem? shows that

11. See R. Bott and L. Tu’s Differential forms in algebraic topology [BT82] for more such play with
exterior forms.

12. If not free, a similar argument is made on the free part H*(M; Z)/ Ext(H;(M; Z); Z) of HX(M;Z),
which is all that matters since Q, vanishes on torsion.

13. The universal coefficient theorem was recalled on page 15.
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we have an isomorphism
H*(M;Z) —— Hom(H,(M;Z), Z)

*

o« — X a*x] .

Combining Poincaré duality with the latter yields the isomorphism
Hy(M;Z) —— Hom(Hy,(M;Z), Z)
« — X a*x] .
However, as argued in the preceding subsection, we have Q,,(a,x) =

a*[x], and therefore the above isomorphism coincides with the map
Qur- That proves that the intersection form Q) is unimodular. ]

Further, the unimodularity of Q,, is equivalent to the fact that, for every
basis {ay,...,an} of Hy(M;Z), there is a unique dual basis {Bi,...,Bn}
of Hy(M;Z) so that ay - B = +1 and ;- B; = 0if i # j.

To see this, start with the basis {ay, ...,am} in Hy(M;Z), pick the familiar
dual basis™ {af,...,a},} in the dual Z-module Hom(H,(M;Z), Z), then
transport it back to Hy(M;Z) by using Poincaré duality (or Q) and hence
obtain the desired basis {1, ...,Bm} -

In particular, for every indivisible class a (i.e., not a multiple), there exists
at least one dual class  such that a - B = +1: complete « to a basis and
proceed as above. (Of course, such B’s are not unique: once you find one,
you can obtain others by adding any y with a -y =0.)

[ntersection forms and connected sums

The simplest way of combining two 4-manifolds yields the the simplest
way of combining two intersection forms. First, a bit of review:

Remembering connected sums. The connected sum of two manifolds M
and N, denoted by M#N

is the simplest method for combining M and N into one connected man-
ifold, by joining them with a tube as sketched in figure 3.4 on the next
page. Notice that the 4-sphere is an identity element for connected sums:
M#S* =~ M.

Connected sums are described more rigorously by choosing in each of M
and N a small open 4-ball and removing it to get two manifolds M° and
N°, each with a 3—sphere as boundary, then identifying these 3-spheres to
dbtain the closed manifold M#N.

|4. Recall that, given a basis {e1, ..., em} in a module Z, the dual basis {e}, ..., er} in Z* is specified
)y setting e () = 1 and ¢} (¢;) = 0 for i # j.
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(-3

3.4. The connected sum of two manifolds, I

More about connected sums. The identification of the two 3—spheres must
be made through an orientation-reversing diffeomorphism 9 M°® = 9 N°, as
was mentioned on page 13. Indeed, if M and N are oriented, then the new
boundary 3-spheres will inherit orientations. In order that the orientations of
M and N be nicely compatible with an orientation of M#N, we must identify
the 3~spheres with an orientation flip.

Furthermore, to ensure that M # N is a smooth manifold, this gluing must be
done as follows: Choose open 4-balls in M and N, then remove them. Embed
copies of §® x [0, 1] as collars to the new boundary 3-spheres. Take care to
embed these collars so that, on the side of M, the sphere 33 x 1 be sent onto
o M°, with S* x [0,1) going into the interior of M°. On the N side, S* x 0
should be sent onto d N° and S x (0, 1] into the interior of N°. Now identify
the two collars 5* x [0, 1] in the obvious manner and thus obtain M # N, as
in figure 3.5. This automatically forces the boundary-spheres to be identified
“inside-out”, reversing orientations, and further makes it clear that M # N is
smooth.1® See figure 3.6 on the next page. The equivalence of this procedure
with “joining by a tube” is explained in figure 3.7 on the facing page.

N° —_— M#N

M°

(LI
LI

(I

3.5. Gluing by identifying collars

Sums and forms. This connected sum operation is nicely compatible with
intersection forms:

Lemma. If M and N have intersection forms Qy, and Qy, then their connected
sum M # N will have intersection form

Quasn = MO Qn -
Proof. Since M° and N° can be viewed as M and N without a 4-
handle (or a 4—cell), and since 2-homology is influenced only by 1-, 2—
and 3-handles, it follows that the 2-homology of M # N will merely be
the friendly gathering of the 2-homologies of M and N, intersections
and all. O

15. In fact, each time you read “A and B both have the same boundary, so we glue A and B along it”, you
should understand that the “gluing” is done via an orientation-reversing diffeomorphism 0 A = 9B,
and that a collaring procedure as above is used. This was already explained on page 13. For more on
the foundation of these gluings, read from M. Hirsch’s Differential topology [Hir94, sec 8.2].
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3.7. The connected sum of two manifolds, 111

Topological heaven. For topological 4—-manifolds a converse is true:

Theorem (M. Freedman). If M is simply-connected and Q,, splits as a direct
sum Qy = Q' @ Q”, then there exist topological 4—manifolds N' and N" with
intersection forms Q' and Q" such that M = N' #N". ]
This is a direct consequence of Freedman'’s classification that we will present
later.38 Such a result certainly fails in the smooth case, and its failure spawns
exoticl” R*’s.

Invariants of intersection forms

To start to distinguish between the various possible intersection forms, we
define the following simple algebraic invariants:

16. See ahead section 5.2 (page 239). For a more refined topological sum-splitting result, we refer to
M. Freedman and F. Quinn’s Topology of 4-manifolds [FQ90, ch 10].

17. See ahead section 5.4 (page 250).
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— The rank of Q,,:
It is the size of Q,,’s domain, defined simply as

rank Q,; = rank, H*(M;Z) ,

or rank Q,; = dimy H*(M;R). In other words, the rank is the second
Betti number b, (M) of M.

— The signature of Q,;:

It is obtained as follows: first diagonalize Q,, as a matrix over R (or
Q), separate the resulting positive and negative eigenvalues, then sub-
tract their counts; that is

sign Q; = dim HZ (M; R) — dim H2 (M; R) ,

where H3 are any maximal positive/negative-definite subspaces for
Q- We can set partial Betti numbers b;t = dim H2 , and thus we can
read sign Q,, = b (M) — by (M).

— The definiteness of Q,, (definite or indefinite):
If for all non-zero classes a we always have Q,,(«,a) > 0, then Q,, is
called positive definite.
If, on the contrary, we have Q,,(a,a) < 0 for all non-zero a’s, then
Qy is called negative definite.
Otherwise, if for some a; we have Q, (a4, a4) > 0 and for some «_
we have Q(a—. a_) < 0, then Q,, is called indefinite.

— The parity of Q,, (even or odd):
If, for all classes «, we have that Q,(«, &) is even, then Q,, is called
even. Otherwise, it is called odd. Notice that it is enough to have one
class with odd self-intersection for Q,, to be called odd.

Signatures and bounding 4-manifolds

A first remark is that signatures are additive: sign(Q' ® Q") = signQ’ +
sign Q”. In particular,®
sign(M#N) = sign M +signN .
Another remark is that changing the orientation of M will change the sign
of the signature: o — .
sign M = —signM ,

since it obviously changes the sign of its intersection form: Q3 = —Q-

18. The additivity of signatures still holds for gluings M U; N more general than connected sums.
This result (Novikov additivity) and an outline of its proof can be found in the the end-notes of the next
chapter (page 224).
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The signature vanishes for boundaries. More remarkably, the vanishing of
the signature of a 4—manifold M has a direct topological interpretation:

Lemma. If M* is the boundary of some oriented 5—manifold W, then

signQy = 0.

Proof. Since the signature appears after diagonalizing over some field,
we will work here with homology with rational coefficients. Thus, de-
note by ¢: Hy(M;Q) — Hy(W;Q) the morphism induced from the
inclusion of M* as the boundary of W?>.

If bounding. First, we claim that if both «, 8 € H>(M;Q) have ix = 0
and ¢ = 0 then their intersection must be a - § = 0. Indeed, since «
and f are rational, some of their multiples ma and nf will be integral.
Then ma and nf can be represented by two embedded surfaces Sy
and S,5 in M. Since iz = 0 and (8 = 0, this implies that S,,, and
Sup will bound two oriented 3-manifolds Y,,, and Y,z inside W. The
intersection number « - B is determined by counting the intersections
of the surfaces S, and Snps then dividing by mn. However, the inter-
section of Y3, and Y,fﬁ inside W> consists of arcs, which connect pairs
of intersection points of Sy, and S,g with opposite signs, as pictured
in figure 3.8. It follows that Sy, - Sue = 0, and therefore a - B = 0, as
claimed.

SNZ(\
_—
-
+
—
Sn B
M

3.8. Bounding surfaces have zero intersection

If not bounding. Second, we claim that for every & € H,(M;Q) with
e # 0 there must be some B € Hy(M; Q) so that - B = +1 but 1 = 0.
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To see that, we notice that, since w # 0 in Hy(W;Q), there exists a 3—
class B € H3(W,0W; Q) that is dual®® to our tx € Hy(W;Q), i.e, has
a-B = +1in W3. Its boundary 3 B = B is a class in H,(M;Q), and we
have that « - = ¢ - B = +1 and also that ¢f = 0. See figure 3.9.

3.9. A non-bounding class has a bounding dual

Unravel the form. Finally, we are ready to attack the actual intersection
form of M. Any class a that bounds in W, i.e., has 1« = 0, must have
zero self-intersection « - « = 0. We are thus more interested in classes
« that do not bound.

Assume we choose some a € Hy(M;Q) so that ix # 0. Then there
is some B € H;(M;Q) so that « - § = +1, while 1 = 0, and thus
B - B = 0. Therefore the part of Q,, corresponding to {«, 8} has matrix

* 1
Qaﬁ = [1 0] 4
which has determinant —1 and diagonalizes over Q as [+1] & [~1].

Since Qy; is unimodular, this means that Q,, must actually split as a

direct sum Q,; = Qup D Q+ for some unimodular form Q- defined

on a complement of Q{«, B} in Hy(M; Q). Since the signature is addi-
tive and one can see that sign Q,s = 0, we deduce that we must have

sign Q) = sign Q.

We continue this procedure for Q*, splitting off 2-dimensional pieces

until there are no more classes a with wx # 0 left. Then whatever is still

there has to bound in W, and hence cannot contribute to the signature.
Therefore sign Q;; = 0. m]

19. A reasoning analogous to the one we made earlier for ), applies to the intersection pairing
Hy(W,Z) x H3(W,dW; Z) — Z. In particular, it is unimodular, and thus we have dual classes; since
we work over O, the indivisibility of « is not required.
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A consequence of this result is that, whenever two 4-manifolds can be
linked by a cobordism, they must have the same signature. Indeed, if
OW = MUN, then 0 = sign(MUN) = —sign M + sign N. That is:

Corollary. If two manifolds are cobordant, then they have the same signature.
Signature is a cobordism invariant. o

The signature vanishes only for boundaries. A result quite more difficult to
prove is the following:

Theorem (V. Rokhlin). If a smooth oriented 4-manifold M has
signQ,, =0,
then there is a smooth oriented 5—manifold W such that 0 W = M.

Idea of proof. A classic result of Whitney assures that any manifold
X" can be immersed in R?"~!; in particular, our M* can be immersed
in R7. By performing various surgery modifications, we then arrange
that M be cobordant to a 4-manifold M’ that embeds in R®. Further-
more, a result of R. Thom?® implies that M’ must bound a 5-manifold
W’ inside R®. Attaching W’ to the earlier cobordism from M to M’
creates the needed W>. A few more details for such a proof will be
given in an inserted note on page 167. O

Therefore, the signature of M is zero if and only if M bounds. And hence:

Corollary (Cobordisms and signatures). Two 4—manifolds have the same sig-
nature if and only if they are cobordant. Signature is the complete cobordism in-
variant. O

A consequence is that, unlike h—cobordisms, simple cobordisms are not
very interesting: Every 4—manifold M is cobordant to a connected sum of CIP?’s
or of CIP?’s or to S*. Indeed, assume that sign M = m > 0; then, since
sign CIP? = 1, it follows that M and #m CIP?> must be cobordant; if m < 0,
use CIP?’s instead.

Simple examples of intersection forms

Since the first example of a 4-manifold that comes to mind, namely the
sphere $*, does not have any 2-homology, it has no intersection form worth
mentioning. Thus, we move on:

20. The result was quoted back in footnote 3 on page 112.
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The complex projective plane. The complex projective plane CIP? has inter-
section form
Qcp2 = [+1]

Indeed, since Hy(CP?;Z) = Z{[CP']} where [CP'] is the class of a projec-
tive line, and since two projective lines always meet in a point, the equality
above follows.

The oppositely-oriented manifold CIP? has
Qep: = [—-1] .

Sphere bundles. The manifold S x §? has intersection form

1
Qerxs? = [1 ]
We will denote this matrix by H (from “hyperbolic plane”).

Reversing orientation does not exhibit a new manifold: there exist orienta-
tion-preserving diffeomorphisms 52 x 82 2 §2 x 52, and they correspond
algebraically to isomorphisms H ~ —H.

The twisted product $? X $? is the unique nontrivial sphere-bundle? over
G2, It is obtained by gluing two trivial patches (hemisphere) x S* along the
equator of the base-spkere, using the identification of the $*-fibers that
rotates them by 27 as we travel along the equator. The intersection form is

1 1
QSZQS2 = l:l ]

A simple change of basis in H,(S? X 5%; Z) exhibits the intersection form

as 1
Quss = |1 _y| = i) [-1].
Even more, it is not hard to argue that in fact we have a diffeomorphism??
$*x 8 = CP*#CP?,

and so we have not really encountered anything essentially new.

21. Since an $2-bundle over $? = D?| UD?, is described by an equatorial gluing map §' — SO(3),
and 7, SO(3) = Z,, it follows that there are only two topologically-distinct sphere-bundles over a
sphere.

22. Quick argument: The equatorial gluing map S' — SO(3) of S* X 5° can be imagined as follows:
as we travel along the equator of the base-sphere, it fixes the poles of the fiber-sphere and rotates the
equator of the fiber-sphere by an angle increasing from 0 to 27t. Then these fiber-equators describe
a circle-bundle of Euler number 1, which thus has to be the Hopf circle-bundle $* — S2. Hence
the sphere-bundle is cut into two halves by a 3—sphere. Each of these halves is a disk-bundle of Euler
number | and can therefore be identified with a neighborhood of CP' inside CIP?, but the complement
of such a neighborhood is just a 4- ball. Taking care of orientations yields the splitting 5% x S* = CIP? #
P2,
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Connected sums. Of course, through the use of connected sums we can
build a lot of boring examples, such as CIP? # CP? # $% x $2, whose in-
tersection form is the sum [+1] @ [—1] ® H. (Incidentally, notice that this
manifold has signature zero, and thus must be the boundary of some 5-
manifold.)

The Eg—manifold. More interesting, though rather exotic, is Freedman'’s
Eg-manifold Mg, = P Uy A. This topological 4-manifold was built ear-
lier® by plumbing on the Eg diagram and capping with a fake 4-ball. Its
intersection form can be read from the plumbing diagram to be

2 1 1
1 2 1
1 2 1
1 2 1

QMsg_ 1 2 1 1

I 2 1

1 2
i ! 2]

From now on, we will denote this matrix?* by Eg, and succinctly write
Qus = Eg. The Eg—manifold does not admit any smooth structures.?

(3]

3.10. The Eg diagram, yet again

An alternative algebraic description of this most important Eg—form is the
following: Consider the form Q = [—1] @8 [+1], with corresponding basis
{eg. €1, ...,eg}. The vector k = 9eg + e, + - -- + ¢g has k - x = —1; therefore
its Q-orthogonal complement must be unimodular. This complement is the
Eg—form. In particular, we have Es @ [—1] ~ [—1] ®8[+1].

Lemma. The Eg—form is positive-definite, even, and of signature 8.

Unexpectedly, proof. We will perform elementary operations on the
rows and columns of the Eg—matrix. This will be fun.

23. See section 2.3 (page 86).

24. Various people have slightly different favorite choices for their Ez—matrix, for example, the nega-
tive of the above matrix. A brief discussion is contained in the end-notes of this chapter (page 137).

25. This is a consequence of Rokhlin’s theorem, see section 4.4 (page 170) ahead.
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First off, notice that these operations must be applied symmetrically, cor-
responding to changes of basis in Hy(M;Z). That is to say, when for
example we subtract 3/2 times the first row from the third, we must
afterwards also subtract 3/2 times the first column from the third col-
umn. Indeed, since the matrix A of a bilinear form acts on H, X Hp
by (x,y) — x'Ay, any elementary change of basis I + AE;; on H, will

transform A into (I + AE;;)A(I + AEj;).

Denote by (1), (2),(3),(4).(5),(6).(7), (8) the eight rows/columns of
the Eg-matrix, and let us start: We write down the Eg—matrix, then
subtract 1/2 x (1) from (2):

[2
3/2

[2
3/2

4/3

1

5/4

1

2]

then

then

then

SR NS e

1

Subtract 2/3 x (2) from (3), then subtract 3/4 x (3) from (4):

[2

1

Subtract 4/5 x (4) from (5), then subtract 1/2 x (8) from (5):

2
3/2
4/3
5/4
o 1

Subtract 10/7 x (5) from (6), then subtract 7/4 x (6) from (7):

2
2

We have diagonalized Eg, and its signature is 8. It is positive-definite.
Its determinant is det Eg

4/3

5/4

7710

4/7
1

1
2

2]

then

2

3/2
4/3
5/4
/10

4/7

—

1/4

2]

2

2-3/2-4/3.5/4-7/10-4/7-1/4-2 = 1 and

hence Es is unimodular, as claimed.

O
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A few more examples. (1) The intersection form of Mg # M, is Eg & —Es.
Algebraically, we have Eg ® —Eg ~ @ 8 H through a suitable change of basis.
As it turns out, this corresponds to an actual homeomorphism?®
T ~ 2, q2

MEB#MES ~ #8585 x S .
Hence the smooth manifold #8 $? x §? can be cut into two non-smoothable
topological 4-manifolds, along a topologically-embedded 3—sphere.
(2) The intersection form of Mg #CP? is [—1] @8 [+1], same as the intersec-
tion form of CIP2 #8 CIP2. Tfhiwo 4-manifolds, though, are not homeomor-
phic, and the manifold Mg, #CIP? does not admit any smooth structures.?’

(3) The manifold Mg # Mg, , with intersection form Eg & Eg, is not smooth.®
Neither is Mg # Mg, #52 X S2, nor is M, # Mg #258% x 52. However, sud-

denly Mg, #ME #BS2 x 82 does admit smooth structures, and in what fol-
lows we will d1sp1ay such a smooth structure:

3.3. Essential example: the K3 surface

A less exotic example (than the Eg—manifold) of a 4-manifold whose inter-
section form contains Eg’s is the remarkable K3 complex surface that we
build next:

The Kummer construction

Take the 4-torus 4 i | | 1
T" =85 x5 x§' %85

and think of each S§'—factor as the unit-circle inside C. Consider the map
o: T - T* 0(z1,22,23,24) = (Z1,22,23,24)

given by complex-conjugation in each circle-factor, as in figure 3.11 on the

next page. The involution ¢ has exactly 16 = 2* fixed points, and thus the
tient

quotien /o

will have sixteen singular points where it will fail to be a manifold. Small

neighborhoods of these singular points are cones?® on RIP3.

We wish to surger away these singular points of T* /o in order to obtain an
actual 4-manifold. For that, we consider the complex cotangent bundle

26. This homeomorphism follows from Freedman'’s classification, see section 5.2 (page 239). A direct
argument can also be made, starting with the observation that Mg # My, is the boundary of (Mg, \
ball) x [0,1].

27. This follows, again, from Freedman'’s classification.
28. This is a consequence of Donaldson’s theorem, section 5.3 (page 243).

29. Remember that the cone C4 of a space A is simply the result of taking A x [0,1] and collapsing
A x 1 to a single point (the “vertex”).
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3.11. Conjugation, acting on st

of the 2-sphere. It is the 2—plane bundle over $? with Euler number —2 (it
has opposite orientation3® to the tangent bundle Tg>, whose Euler number is
+2). Its unit-disk subbundle DT, is a 4-manifold bounded by RP3.

Since a neighborhood of a singular point in T* /¢ has the same boundary as
IDTZ,, we can cut the former out of T* /o and replace it by a copy of DT, .
The result of this maneuver is essentially to remove the singular point and
replace it with a sphere of self-intersection —2 (the zero-section of DTg).

We do this for all sixteen singular points.

Such a desingularization of T* /¢ yields a simply-connected smooth 4-mani-
fold. This manifold admits a complex structure (thus it is a complex sur-
face) and is called the K3 surface. The name comes from Kummer-Kihler—
Kodaira.3! The construction above is due to Kummer, which is why this
manifold used to be known merely as the Kummer surface.

Homology. The K3 surface has homology H,(K3;Z) = & 22Z (superfi-
cially, from 6 tori surviving from T*, plus the 16 desingularizing spheres).
Its intersection form is

1 2
121 121
121 12 1
121 12 1
Qs = - 121 1] 9~ 121 1
121 121
12 1 2
i 1 2) ] I 2]

1 1 1
o[ el ol ]
and clearly it is better kept abbreviated as
Qs = ®2(—Es) ®3H .

30. For a discussion of orientations for complex-duals, see the end-notes of this chapter (page 134).

31. A. Weil wrote that, besides honoring Kummer, Kodaira and Kéhler, the name “K3" was also chosen
in relation to the famous K2 peak in the Himalayas: “[Surfaces] ainsi nommées en I'honneur de Kummer,
Kiihler, Kodaira, et de la belle montagne K2 au Cachemire.”
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Even if this manifold does not seem simple at all, it is in many ways as
simple as it gets. We will see that K3 is indeed the simplest3? simply-connec-
ted smooth 4-manifold that is not §* nor a boring sum of CIP?, CP? and
§? x §2’s.

The desingularization, revisited. Let us take a closer look at the desingular-
ization of T* /o that created K3 and try to better visualize it.

Consider first a neighborhood inside T* of a fixed point xo of o. Itis merely
a 4-ball, which can be viewed as a cone over its boundary 3-sphere s3,
with vertex at xq. The action of ¢ on this cone can itself be viewed as being
the cone® of the antipodal map $* — S* (which sends w to —w). Therefore,
the quotient of this neighborhood of x¢ by ¢ must be a cone on the quotient
of $* by the antipodal map, in other words, a cone on RIP3.

Furthermore, S3 is fibrated by the Hopf map,3 which makes it into a bun-
dle with fiber S! and base $2. Then its quotient RIP? inherits a structure of

RP!-bundle over §%:
gl C 3 — g2

|l H

RP' ¢ RP? —— S
However, RPP! is simply a circle, so in fact we exhibited RIP? as an S!-
bundle over 52.
Now let us look back at the neighborhood of a singular point of T* /0. It
is a cone on RIP3, and we can think of it as being built by attaching a disk
to each circle-fiber of RIP?, and then identifying all their centers in order to
obtain the vertex of the cone, the singular point. When we desingularize,
we replace this cone-neighborhood in T* /o with a copy of DTg; . This can
be viewed simply as not identifying the centers of those disks attached to
the fibers of RIP?, but keeping them disjoint. The space of the circle-fibers
of RIP3 is the base 5 of the fibration. Thus the space of the attached disks is
52 as well, and thus their centers (now distinct) will draw a new 2-sphere,
which replaced the singular point.
We can thus think of our desingularization as simply replacing each of the
sixteen singular points of T* /0" by a sphere with self-intersection —2.

32. We take “simple” to include “simple to describe”. Smooth manifolds with simpler intersection forms
already exist (e.g., exotic #mS? x §2's, see page 553), and exotic §*’s could always appear.

33. Remember that the cone C; of amap f: A — B is the function Cs: C4 — Cp defined by first
extending f: A — Bto f xid: A x [0,1] = B x [0,1], then collapsing A x 1 to a pointand B x 1 to
another, with the the resulting function Cy: C4 — Cp sending vertex to vertex.

34. Remember that the Hopf map is defined to send a point x € $* C C? to the point from $? = CP'
that represents the complex line spanned by x inside C2. Topologically, the Hopf bundle $° — S? is
a circle-bundle of Euler class +1. Two distinct fibers will be two circles in 3> linked once (a so-called
Hopf link, see figure 8.16 on page 318). The Hopf map §* — §? represents the generator of 7352 = Z.
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Holomorphic construction

A complex geometer would construct the Kummer K3 in a way that visibly
exhibits its complex structure. Specifically, she would start with T being
a complex torus—for example the simplest such, the product of two copies
of C/(Z ®iZ). Such a T* comes equipped with complex coordinates
(wy,w,), and the involution ¢ can be described as o(w;, w;) = (—w;, —ws)
(which is obviously holomorphic).

As before, the action of ¢ has sixteen fixed points, but, before taking the
quotient, the complex geometer will blow-up®® T* at these sixteen points.
This has the result of replacing each fixed point of ¢ with a sphere of self-
intersection —1 (a neighborhood of which looks like a neighborhood of
CP' inside CIP?). The map ¢ can be extended across this blown-up 4-
torus: since she replaced the fixed points of ¢ by spheres, she can extend ¢
across the new spheres simply as the identity, thus letting the whole sphe-
res be fixed by the resulting o .

Only now will the complex geometer take the quotient by ¢ of the blown-
up 4-torus. The result is the K3 surface. The spheres of self-intersection
—1 created when blowing-up the torus will project to the quotient K3 as
themselves (they were fixed by ), but their neighborhoods are doubly-
covered through the action of ¢; thus these spheres inside K3 have now
self-intersection —2.

Many K3’s. This is the place to note that a complex geometer will in fact
see a multitude of K3 surfaces. Indeed, “K3” is not the name of one complex
surface, but the name of a class of surfaces.3® Any non-singular simply-con-
nected complex surface with ¢; = 0 is a K3 surface.

For example, in the construction above, if we start with a different complex
structure on T* (from factoring C? by a different lattice), then we will end
up with a different K3 surface. All K3’s that result from such a construc-
tion are called Kummer surfaces. However, K3 surfaces can be built in
many other ways. One example is the hypersurface of CP? given by the
homogeneous equation
4 +z3+25+28=0

(or any other smooth surface of degree 4). Another is the E(2) elliptic
surface that we will describe in chapter 8 (page 301).

This whole multitude of complex K3 surfaces, through the blinded eyes of
the topologist, are just one smooth 4-manifold: any two K3’s are complex-
deformations of each other, and thus are diffeomorphic. Hence, in this book
we will carelessly be saying “the K3 surface”.

35. For a discussion of blow-ups, see ahead section 7.1 (page 286).
36. For instance, the moduli space of all K3 surfaces has dimension 20.
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K3 as an elliptic fibration

The K3 surface can be structured as a singular fibration over $?2, with gene-
ric fiber a torus. A (singular) fibration by tori of a complex surface is called
an elliptic fibration (because a torus in complex geometry is called an elliptic
curve). A complex surface that admits an elliptic fibration is called an ellip-
tic surface. The Kummer K3 is such an elliptic surface. Other examples of
elliptic surfaces, as well as a different elliptic fibration on the K3 manifold,
will be discussed later.3’

In any case, describing the elliptic fibration of K3 will help us better visual-
ize this manifold. To exhibit it, we start with the projection

S'x 8! x 8! x 8! — G x 8!
of T* onto its first two factors. After taking the quotient by the action of o,
this projection descends to a map

T!/o — T*/o.
Its target T? /o is a non-singular sphere $?, as suggested in figure 3.12 (it

seems like it has four singular points at the corners, but these are merely
metric-singular, and can be smoothed over).

\—/ )
3.12. Obtaining the base sphere: T2 /¢ = S2

Aside from the corner-points of the base-sphere T?/0, each of its other
points comes from two distinct points (p,q) and (7,3) of T? identified by
0. Thus, the fiber of the map T*/c — T? /o over a generic point appears
from ¢’s identifying two distinct tori p x ¢ x $! x 8! and 7 x § x S! x G!
from T*. The resulting fiber will itself be a torus. This is the generic fiber
of T*/0 — T? /0. See also figure 3.13 on the following page.

On the other hand, each of the four corner-points of the sphere T? /o comes
from a single fixed point (po,qo0) of o on T2. Thus, the fiber of T*/0 —
T? /o over such a corner appears from o’s sending a torus po X go x S! x !
to itself. The quotient of this torus is again a cornered-sphere (just as before,
in figure 3.12), but now its corners coincide with the sixteen global fixed
points of o on T*. In other words, each such sphere-fiber contains four

37. See chapter 8 (starting on page 301), which is devoted to these creatures.
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of the sixteen singular points of the quotient T* /¢, points where the latter
fails to be a manifold. See again figure 3.13.

3.13. Themap T*/c — T?/c and its fibers

This might be a good moment to notice that T* /o is simply-connected. It
fibrates over %, which is simply-connected, and any loop in a generic torus
fiber can be moved along to one of the singular sphere-fibers and contracted
there. The desingularization of T* /o into K3 does not create any new loops,
and therefore the K3 surface is, as claimed, simply-connected.

As explained before, we cut neighborhoods of the singular points out of
T* /o and glue a copy of DT, in their stead, thus replacing each singular
point by a sphere; the result is the K3 surface. The projection T*/o —
T? /o survives the desingularization as a map

K3 — &2,

Indeed, since we only replaced sixteen points by sixteen spheres, we can
send each of these spheres wherever the removed point used to go in 5°.

The generic fiber of K3 — 57 is still a torus. However, there are now also
four singular fibers, each made of five transversely-intersecting spheres:
the old singular sphere-fiber of T* /0, together with its four desingulariz-
ing spheres. A symbolic picture of this fibration is figure 3.14.
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-2 -2 -2 -2
._2/./ _2// _2// _2//
_2// _2// _2// “2//
42// ;2// _2// _2//
_ZA/ _2// Az// -2//

CcP!

3.14. K3 as the Kummer elliptic fibration

Observe that the main sphere of the singular fiber must have self-intersection
—2. This can be can argued as follows: Denote by S the main sphere of a
singular fiber and by S,S,, 53,54 the desingularizing spheres. Recall how
the main sphere S appeared from factoring by o: doubly-covered by a torus.
Imagine a moving generic torus-fiber F of K3 approaching our singular fiber:
it will wrap around the main sphere twice, covering it. Also, the approaching
fiber will extend to cover the desingularizing spheres once, and so in homol-
ogy wehave F =25+ S5+ S, + S3 + 54. Weknow that F - F = 0 (since it is
a fiber), and that each Sy - Sy = —2; then one can compute that we must also
have S-S5 = -2.

Finally, note that a neighborhood of the singular fiber inside K3 can be
obtained by plumbing five copies of IDTg, following the diagram from fi-
gure 3.15.

3.15. Plumbing diagram for neighborhood of singular fiber
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Note: Duals of complex bundles and orientations

The pretext for this note is to explain why the cotangent bundle Tg, (used earlier
for building K3) has Euler class —2 rather than +2; that is to say, why Tg, and
Ts2 have opposite orientations.

Let V be a real vector space, endowed with a complex structure. There are two
ways to think of such a creature: (1) we can view V as a complex vector space,
in other words, think of it as endowed with an action of the complex scalars C x
V — V that makes V into a vector space over the field of complex numbers; or
(2) we can view V as a real space endowed with an automorphism J: V — V
with the property that Jo ] = —id. One should think of this | as a proxy for the
multiplication by i. The two views are clearly equivalent, related by

J(v) =i-v.

Nonetheless, they naturally lead to two different versions of a complex structure
for the dual vector space.

The real version. Let us first discuss the case when we view V as a real vector space
endowed with an anti-involution |. As a real vector space, the dual of V is

V* = Homg (V;R) .

A vector space and its dual are isomorphic, but there is no natural choice of iso-
morphism. To fix a choice of such an isomorphism, we endow V with an auxiliary
inner-product (-, « )i . Then V and V* are naturally isomorphic through

v = v v 0" = (-, 0)R .
If V is endowed with a complex structure ], then it is quite natural to restrict the

choice of inner-product to those that are compatible with J. This means that we
only choose inner-products that are invariant under J: we require that

(Jo. Ju)g = (v,w)g -
An immediate consequence is that we have (Jv, w)p = —(v, Jw)g

We now wish to endow the dual V* with a complex structure of its own. In other
words, we want to define a natural anti-involution J*: V* — V* induced by J.
Since an isomorphism V =~ V* was already chosen, it makes sense now to sim-
ply transport | from V to V* through that isomorphism. Namely, we define the
complex structure [* of V* by

J*(0*) = (Jo)* .
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More explicitly, if f € V* is given by f(x) = (x,v)r for some v € V, then
(J*f)(x) = (x, Jv)g - However, this means that (J*f)(x) = —(Jx, v)g , and so we

have

I'f=-£0-)-
Notice that we ended up with a formula that does not depend on the choice of
inner-product. Hence we have defined a natural complex structure J* on the real
vector space V* = Homg (V,R).

The complex version. If, on the other hand, we think of the complex structure of V
as an action of the complex scalars that makes V into a vector space Vi over the
complex numbers, then a different notion of dual space comes to the fore. We must

define the dual as Ve = Home(V,C) .
This vector space comes from birth equipped with a complex structure, namely

(- f)x) = if(x)
forevery f € V. To better grasp what this V& looks like, we will endow V- with
an auxiliary inner-product. The appropriate notion of inner-product for complex
vector spaces is that of Hermitian inner-products. This differs from the usual inner
products by the facts that it is complex-valued, and it is complex-linear in its first
variable, but complex anti-linear in the second. We have (-, :)c: VxV — C
with (zv, w)e = z(v,w)¢ , but (v, zw)¢ = Z(v,w)¢ forevery! z € C.

Any Hermitian inner product can then be used to define a complex-isomorphism
of V¢, though not with V¢, but with its conjugate vector space V. The latter
is defined as being the real vector space V endowed with an action of complex
scalars that is conjugate to that of V¢. That is to say, in V¢ we have i - v = —iv.

The complex-isomorphism with the dual is:

Ve = Vg v—v* = (-, 0)¢ .
Notice that in the definition of v* we must put v as the second entry in (-, « )¢,
so that v* be a complex-linear function and thus indeed belong to V.
If f € V¢isgivenby f(x) = (x,0)¢ for some v € V, then we have (if)(x) =
~if(x) =i{x,v)c = (x, —iv)e . This means that we have

i-v* = (—iv)*,

which shows that the complex-isomorphism above is indeed between the dual V¢
and the conjugate vector space V.

Comparison. In review, if we view a complex vector space as (V,]), then its dual
is (V*,]*) and the two are complex-isomorphic. If we view a complex vector
space as Vg, then its dual is V¢, which is complex-isomorphic to V. To compare
the two versions, it is enough to notice that V- translates simply as (V, ~]). In-
deed, as real vector spaces (i.e., ignoring the complex structures) V* and V¢ are

1. It is worth noticing that the concept of a real inner product compatible with a complex structure,
and the concept of Hermitian inner product are equivalent: one can go from one to the other by using
(v, w)e = (v, w)g —i{iv, w)g and (v,w)g = Re (v,w)¢ .
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naturally isomorphic. Specifically, the isomorphism Homg (V,R) ~ Hom¢(V,C)
sends f: V — R to the function f-: V — C given by

fe(x) = 3 (f(x) —if(Jx)) .
The duals (V*,]*) and V¢ thus differ not as real vector spaces, but because their
complex structures are conjugate. This could be checked directly against the iso-
morphism above, or, in the simplifying presence of an inner-product, we could

simply write: J*(v*) = (iv)* and i-v* = (~iv)*.

Usage. We should emphasize that, while the “complex” version of dual is certainly
the most often used, nonetheless both these versions are important.

As a typical example, consider a complex manifold X, which is endowed with a
tangent bundle Ty and a cotangent bundle Ty. Owing to the complex structure of
X, the tangent bundle has a natural complex structure on its fibers. The complex
structure on Ty is always taken to be dual to the one on Ty in its “complex” ver-
sion: as complex bundles, we have T} = Tx. In general for vector bundles with
complex structures, the dual is usually taken to be the “complex” dual.

The “real” version of dual is also used in complex geometry. Thinking now of the
complex structure of Ty as [: Tx — Tx, we let it induce its own dual complex
structure J* on Ty. We then extend |* by linearity to the complexified vector
space Ty ®p C. The advantage of such an extension is that now [* has eigenval-
ues *i, and thus splits the bundle Ty % C into its Li—eigenbundles as

Ty »C =AY e A,

and hence separates complex-valued 1-formson X into type (1,0) and type (0, ).
This is simply a splitting into complex-linear and complex-anti-linear parts: in-
deed J*(a) = —ia if and only if a(]x) = +ia(x), and then a € A0,

The advantage of using | lies in part with clarity of notation: for a complex-valued
creature, | will denote the complex action on its arguments (living on X), while
denotes the complex action on its values (living in C).

More on complex-valued forms. Every complex-valued function f: X — C has its differential
df € I(T} ® C) splitinto its (1,0)-part 3 f € T{A"?) and its (0,1)-part 3 f € T(A%'). Hence,
0 f = 0 means that f s derivative is complex-linear, df(Jx) = idf, and thus that f is holomor-
phic.

By using local real coordinates (xy.y. ... Yui.Ym) on X such that z; = xi + iy, are local complex
coordinates on X, we can define dz; = dxi + idyy and dz = dx; — idyy, and write A" =
C{dz,, ....dzy} and A =C{dzy, .. dZ,;}. Indeed, J*(dzy) = +idzy.

The split A' ® C = A0 3 A% further leads to a splitting of all complex-valued forms into
(p.q)-types, asin A¥ @ C = A0 AF-10 1 ALK gy AVK Specifically, AP9 is made of all
complex-valued forms that can be written using p of the dz;’s and q of the dz;’s. For example,
A% contains all complex-bilinear 2 -forms.

The exterior differential d: T(A¥) — I'(A¥") splits, after complexification, as d = 9 +9 with
9: T(AP9) — T(AP+M1) and 9: T(A1) — [(AP9*+1), Since 39 = 0, this can be used to de-
fine cohomology groups H™1(X) = Kerd / Imd (called Dolbeault cohomology), which offer
a cohomology splitting H*(X,C) = H*(X) & H*-'Y(X) @ --- @ H'¥1(X) @ H*¥(X), with

HP(X) ~ H%P(X), further, if X is Kéhler, then the Hodge duality operator?  will take

2. The Hodge operator will be recalled in section 9.3 (page 350).
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(p.q)~forms to (m — q, m — p)—forms, and lead into complex Hodge theory, to just drop some
names. Any complex geometry book will explain these topics properly, for example P. Griffiths
and ). Harris s Principles of algebraic geometry [GH78, GH94]; we ourselves will make use of
(p.q) —forms for some technical points later on.? Part of this topic will be explained in more detail
in the end-notes of chapter 9 (page 365).

Orientations. Every vector space with a complex structure (defined either way) is
naturally oriented by any basis like {ej, ey, ... e iex} (or {e1,Jer, ... e Jex})-
Thus its dual vector space, getting a complex structure itself, will be naturally
oriented as well. However, the choice of duality matters: if our vector space V is
odd-dimensional (over C), then the two versions of dual complex structure lead
to opposite orientations of V'’s dual. Specifically, the real-isomorphism V ~ V¢
reverses orientations, while V &~ (V*, J*) preserves them.

For complex manifolds and their tangent/cotangent bundles, as we mentioned
above, one uses the “complex” version of duality. Therefore, for a complex curve
C (for example, S?) we have that the tangent bundle T¢ and the cotangent bundle
T, while isomorphic as real bundles, are naturally oriented by opposite orienta-
tions. In particular, the tangent bundle Tg. is the plane bundle of Euler class +2,

while the cotangent bundle T¢, is the plane bundle with Euler class —2.

For a complex surface M (for example, K3), the tangent and cotangent bundles
do not have opposite orientations. Nonetheless, their complex structures are con-
jugate, and this leads to phenomena like ¢;(T3;) = —c1(Tym)-

Note: Positive Eg, negative Eg

In some texts, the Eg—form is sometimes described by the matrix

Exe’b’

i

-1
2
-1

-1
2
-1

-1
2
-1

-1
2
—1

-1

-1
2
-1

-1
2

-1

2]

Correspondingly, the negative—Eg—form is sometimes written

—Eq

14

These alternative matrices are in fact equivalent with the ones presented earlier,
because one can always find an isomorphism between the two versions: simply
change the sign of “every other” element of the basis. Then the self-intersections

3. In section 6.2 (page 278), the end-notes of chapter 9 (connections and holomorphic bundles, page
365) and the end-notes of chapter 10 (Seiberg-Witten on Kahler and symplectic, page 457).
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are preserved, but, if done properly, the intersections between distinct elements
will all change signs. Peek back at the Eg diagram for inspiration.

Complex geometers always prefer to have +1’s off the diagonal (thinking in terms
of complex submanifolds, which always intersect positively), and so they will
write —Eg in the version displayed above.

More than this, certain texts prefer to switch the names of the Eg~ and negative—
Eg-matrices. Since what we denote here by —Eg appears quite more often than
Eg, calling it Eg does save some writing.

Pick your own favorites.
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Chapter 4

Intersection Forms and
Topology

E explore in what follows the topological ramifications of a 4-mani-

fold having a certain intersection form. The results discussed are classi-
cal, such as Whitehead’s theorem, Wall’s theorems, and Rokhlin’s theorem.
All classification results are postponed until the next chapter.

We start by showing that the intersection form determines the homotopy
type of a 4-manifold. This theorem of Whitehead is argued in two ways,
once by using homotopy theory and once through a Pontryagin-Thom ar-
gument. The end-notes (page 230) contain a more general discussion of the
Pontryagin—-Thom technique.

In section 4.2 (page 149) we explain the results of C.T.C. Wall: first, if two
smooth 4-manifolds are h—cobordant, then they become diffeomorphic af-
ter summing with enough copies of $% x §2; second, if two smooth 4-mani-
folds have the same intersection form, then they must be h—cobordant. No-
tice that this last result can be combined with M. Freedman'’s #—cobordism
theorem to show that two smooth 4-manifolds with the same intersection
forms must be homeomorphic.

In section 4.3 (page 160) we discuss the characteristic classes of the tangent
bundle of a 4-manifold. Most important among these is the second Stiefel-
Whitney class wy(Tp). Its vanishing is equivalent, on one hand, to the
intersection form being even, and on the other hand, to the existence of
a spin structure on M. Various definitions of spin structures and related
concepts are explained in the end-notes, and we refer to their introduction
on page 173 for an outline of their contents.

139
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Section 4.4 discusses the integral lifts of w,(Ty), called characteristic ele-
ments. These always exist, and their self-intersections are congruent mod-
ulo 8 to the signature of M. A striking result of Rokhlin’s states that if
wo(Tpm) vanishes and M is smooth, then the signature of M is not merely
a multiple of 8, but of 16; the consequences of this fact pervade all of topol-
ogy. For us, an immediate consequence is that Eg can never be the intersec-
tion form of a smooth simply-connected 4-manifold.

Finally, we should also mention that the end-notes contain a discussion of
the theory of smooth structures on topological manifolds of high dimen-
sions (page 207).

4.1. Whitehead’s theorem and homotopy type

It is obvious that, if two 4-manifolds are homotopy-equivalent, then their
intersection forms must be isomorphic. A first hint of the overwhelming
importance that intersection forms have for 4-dimensional topology comes
from the following converse:

Whitehead’s Theorem. Two simply-connected 4—manifolds are homotopy-equi-
valent if and only if their intersection forms are isomorphic.

The result as stated was proved by J. Milnor, based on J.H.C. Whitehead's
work. The rest of this section is devoted to a proof of this result.!

Start of the proof. Take a simply-connected 4-manifold M: it has homol-
ogy only in dimensions 0, 2 and 4. Therefore, by Hurewicz's theorem,

(M) =~ Hy(M;Z) .

Since M is simply-connected, the latter has no torsion and thus is isomor-
phic to some @® m Z. Hence the isomorphism 7, ~ H, can be realized by
a map? s )
f:8°V---vVE — M.

Such f induces an isomorphism on 2-homology, and thus on all homology
groups but the fourth. '

To remedy this defect, we can cut out a small 4-ball from M and thus anni-
hilate its Hs. The remainder, denoted by M°, is now homotopy-equivalent
to §? V- - -V §2: Indeed, the map f can be easily arranged to avoid the miss-
ing 4-ball, and it then induces an isomorphism of the whole homologies of

1. The next section starts on page 149.

2. Remember that A V B is obtained by identifying a random point of A with a random point of B.
(One can realize AV B as A x b U ax Binside A x B.) Thus, 82V - - - V5? is a bunch of spheres with
exactlv one point in common; it is called a bouquet of spheres.
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the two spaces. Invoking a celebrated result of Whitehead® implies that f
is in fact a homotopy equivalence

M° ~ 82v...v&2,

Since M can be reconstructed by gluing the 4-ball back to M°, we deduce
that the homotopy type of M can equivalently be obtained from Vm 52 by
gluing a 4-ball D* to it:

M~ VmS® U, D*.

The attachment of the ball is made through some suitable map
¢: 0D* — VmS*.

In conclusion, the homotopy type of M is completely determined by the
homotopy class of this ¢; this class should be viewed as an element of
iy (Vm 82).

To prove Whitehead’s theorem, we need only show that the homotopy class
of ¢ is completely determined by the intersection form of M. This can be
seen in two ways, an algebro-topologic argument and a more geometric
(but longer) argument. We present both of them:

Homotopy-theoretic argument

For the following proof, the reader is assumed to have a friendly relation-
ship with algebraic topology; if not, skip to the alternative argument.

At the outset, it is worth noticing that, through the homotopy equivalence
M ~ Vm8 U, D* the fundamental class [M] € Hs(M;Z) corresponds

to the class of the attached 4-ball ID?*; indeed, since the latter has its bound-
ary entirely contained in the 2-skeleton Vm S?, it represents a 4—cycle.

Think of each $? as a copy of CP! inside CP®. Then embed
$v..-v8 C CP®x---xCP,
and consider the exact homotopy sequence
s ( Xm CP®) — my( Xm CP*®, Vm Sz) — 3(Vm 5%) — 73 ( Xm CP*) .

Since CIP* is an Eilenberg-MacLane K(Z,2)-space, the only non-zero ho-
motopy group of Xm CIP® is 7, and thus the above sequence exhibits an
isomorphism

i ( Xm CP®, Vm $?) =~ m( VmS?) .

3. The statement is: If between two simply-connected CW —complexcs there exists a map that induces iso-
morphisms on all homology groups, then this map must be a homotopy equivalence. Note that an abstract
isomorphism of homologies is not sufficient.
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The above 714 is made of maps ID* — X m CP® that take dD* to Vm 5.
The isomorphism associates to ¢: dID* — Vm §? in 73 the class of any of
1ts extensions G: D* — XmCP® .

Further, since the inclusion Vm & C X m CP® induces an isomorphism
on 7;’s, a different portion of the same homotopy exact sequence implies
thatboth 7, and 713 of the pair ( Xm CP®, VVm $?) must vanish. Therefore,
Hurewicz’s theorem shows that we have a natural identification

i ( XmCP®, VmS?) ~ Hy( XmCP®, VmS% Z) .
Through this identification, the class of ¢ from 7 is sent to the class
7«[D*] € Hy( XmCP®, VmS% Z),
where ¢, is the morphism induced on homology by the map ¢.

Moreover, since both Hy and Hs of V m S? vanish, the homology exact
sequence makes appear the isomorphism

Hy( XmCP®, VmS? Z) ~ Hy( XmCP>; Z) .

For example, since @.[D*] represents a 4—class and its boundary is in-
cluded in the 2-skeleton of Xm CP*, it follows that @ [ID*] can be viewed
as a 4—cycle directly in Hy( X m CP%; Z).

Owing to the lack of torsion, we also have a natural duality
H*(XmCP®; Z) = Hom(Hs( XmCP*®; Z), Z) .

This shows that, in order to determine g, []D“] in Hy, it is enough to eval-
uate all classes from H* on it. In other words, the class ¢ € 713( V m 5?)
(and thus the homotopy type of M) are completely determined by the set
of values a;(@[ID*]) for some basis {ax}x of H*( X m CP*®; Z).

Such a basis can be immediately obtained by cupping the classes dual to
each 52, that is to say, we have
HY( XmCP>; Z) = Z{w;Uwj}, ¥

where wy denotes the 2—class dual to CP! inside the k™ copy of CP®.
Furthermore, since

H*(XmCP®; Z) ~ H*(VmS% Z) ~ H*(M®; Z) ~ H*(M;Z),
we see that each class wy of X m CIP® can in fact be viewed as a 2—class
wy of M itself.
Specifically, the inclusion :: Vm $* C X m CPP* extends by @ to the map

1+

M~ Vm$* u, D* X m CP” .
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The wy's appear as the pull-backs wy = (1 + @)*wy and make up a basis of
H*(M;Z).

Evaluating w; U w;j on @, [D*] inside X m CIP* yields the same result as
pulling w; and wj back to M, cupping there, and then evaluating on []D4] :

(w; Uw)) (§x[D%]) = ((t+ ¢)* (wi Uwy)) [IDY]
= ((t+@)*w) U ((t + 9)*wj) [D]
= (w; Uwy)[D?] .

However, as we noticed at the outset, the class [ID*] coincides with the
fundamental class [M] of M, and hence

(wi Uwe) [DY] = Qpp(wr, wi) -
Since {wy, ..., wn} isabasis in H?(M; Z), we deduce that the set of values
Qi (wi, wy) fills-up a complete matrix for the intersection form Q,, of M.
On the other hand, as we have argued, by staying in X m CP* and eval-

uating all the w; U wj’s on §«[ID*] we fully determine the class of ¢ in
73( Vm S?) and thus fix the homotopy type of M.

This concludes one proof of Whitehead’s theorem. O

Pontryagin-Thom argument

We have seen that the homotopy type of M can be represented as the result
of gluing a 4-ball ID* to a bouquet of spheres 5% V - - - V 82 by using some
map ¢: dD* — VmS2. Thus, the homotopy type of M corresponds to
the homotopy class of ¢. We need to argue that ¢ is determined by the
intersection form of M.

A geometric way of seeing how the intersection form Q,, determines the
attaching ma

g map :8 — VmS?
comes from what is known as the Pontryagin-Thom construction. The lat-

ter technique will be detailed in more generality in the end-notes of this
chapter (page 230).

The framed link. Pick some points py, ..., pn, one from each 2-sphere of
V'm G?. Arrange by a small homotopy that ¢ be transverse to these points.
Also, wiggle ¢ until each pre-image ¢~![pj] is connected.* Then each Ly =
¢~ ![px] is an embedded circle in S* (a knot), and so the union

L=LU---ULy,

is a link in %, as suggested in figure 4.1 on the following page.

4. If “wiggle” is not convincing, read from the end-notes of this chapter (page 230).
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Sv...v&g2

4.1. Framed link, from attaching a 4-ball to §? V - - - v &2

The way this link L appears out of the map ¢ endows it with an extra
bit of structure, namely a framing: For each L;, embed its normal bundle
Ny, /s as a subbundle of Tg: over L. Since ¢ is transverse to py and can
be assumed to be differentiable all around Ly, it follows that dg: Te:|;, —
Ts2|p, restricts to a map Ny, /5 — Ts:|, thatis an isomorphism on fibers,
see figure 4.2 on the next page. The effect is that the normal bundle N;, /s
is thus trivialized. Such a trivialization of the normal bundle of L; is called
a framing of the knot L;. Doing this for each p; results in a framed link
L =L U---UL,. Also notice that each component of the link gains a
natural orientation.’

5. We have Tg|;, = T, @ Ny, /g3 since %* is oriented and Ny, ¢ lifts an orientation from 82 (at the
same time with the framing), this induces an orientation of T, .
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4.2. Pulling-back a framing

The linking matrix. We now focus on some simple numerical data that is
expressed by our L. On one hand, for every two components L; and L;, we
have the linking numbers k(L. L;) |

This integer measures how many times L; twists around L;.

More rigorously, one chooses in §* an oriented surface F; bounded by® L;
and counts the intersection number of F; with L; in 83, as in figure 4.3. The
linking number does not depend on the choice of F; and is symmetric on link
components: 1k(L;, L;) = Ik(L;, L;).

4.3. Linking number of two knots

We also have the self-linkings numbers lk(Ly, L), induced from the fram-
ing. These count the twists of the trivialization of L;’s normal bundle.

6. Such a surface always exists and is called an (orientable) Seifert surface for Lj; we will say a bit
more in a second. )
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The self-linking number can be defined by picking some section of Ny, ;g
that follows the trivialization of Ny, ;3 given by the frammg, then thmkmg
of that section as drawing a paraIIeI copy L; of L, in $3, and finally setting
lk(Lg, Ly) to equal the linking number Ik(L;, L) of Ly with this parallel copy,
as suggested in figure 4.4. In our context, this self -linking number can also be
defined directly: since L, = ¢~![p|, pick a point p}, close to pi, and define

Ik(Li, L) = k(¢ [pi], 97" p4]) -

4.4. Self-linking number of a framed knot

All these self/linking numbers can be fit together into a matrix
[k(Li, L) ]; 5,
which is called the linking matrix of the framed link L.

On one hand, it turns out that this linking matrix is exactly the matrix of
the intersection form of M, as we will argue shortly. On the other hand,
a Pontryagin-Thom framed-bordism argument’ can be used to show that
the homotopy class of ¢ is entirely determined by this linking matrix.

The intersection form. To see that the linking matrix of L indeed governs
intersections in M, start by choosing for each Ly an oriented surface Sy

inside ID* that is bounded by Ly, as in figure 4.5.

"\

S2y...v8?

4.5. Building intersections out of a link.

7. See the end-notes of this chapter (page 230).
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Such S s exist because, as we mentioned before, every knot K in R3 bounds
an orientable surface that is bounded by K, called a Seifert surface for K. (If
not convinced, draw a knot, then try to draw its Seifert surface.® Take a peek
at figure 4.6 for inspiration. In any case, this is merely a particular case of
the general fact that homologically-trivial codimension-2 submanifolds must
bound codimension—1 submanifolds.) To get the S;’s above, one can start
with Seifert surfaces in S3 for each Ly, then push their interiors into D*.

4.6. A Seifert surface for the trefoil knot

The fundamental fact to notice is that lk(L;, L;) is in fact the intersection
number S; - S; of the corresponding surfaces in ID*:

k(Li, Lj) = S;i-S; .
See figure 4.7 on the following page for an argument.

Therefore, when rebuilding the homotopy type of M through attaching ID*
to \Vm S? via the map ¢, each S has its boundary Ly collapsed to the point
Pk, and thus creates a closed surface S;. Since the intersection numbers
Sf - 57 in (the homotopy type of) M are exactly Ik(L;, L;), we conclude that
the linking matrix captures part of the intersection form of M.

To conclude the proof, all we need to do is argue that the intersections of the
S;’s in fact exhaust the whole intersection form of M. In other words, we
need to argue that the S} ’s represent a basis for Hy(M;Z). For this, recall
that the homology H,(M;Z) was generated by the classes of the spheres of
V'm S2. The classes S} intersect the classes of those spheres exactly once.
Since the intersection form of M is unimodular, this implies that the S;’s
make up the dual basis® to the basis exhibited by the spheres of Vm S2.

This concludes the alternative proof of Whitehead'’s theorem. O

8. Be careful to not draw a non-orientable surface.
9. Two classes a and B were called dual to each other if a - § = 1; see back on page 117.
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L Seifert surface for L;

L
aa

53

D4

53

4.7. Linking numbers are intersection numbers of bounded surfaces

Example. Let us conclude the discussion of Whitehead’s theorem with a
very simple example. If we take ¢: 3> — S? to be the Hopf map, then its
link is the unknot!! with framing +1, and the homotopy type obtained by
attaching ID* to 2 using this ¢ is none other than CIP?’s.

Upside-down handle diagrams. In a certain sense, the whole procedure from
the above proof is an upside-down version of a handle decomposition: the
framed link L is nothing but a Kirby diagram? for attaching 2-handles to
D*. The closing of Sy into S} by collapsing Ly to py is homotopy-equiva-
lent to gluing along Ly a disk with center py: the core of a 2-handle. Then the
framings can be used to thicken this disk to an actual 2-handle and eventually
transform the whole procedure from gluing D* to Vm $? into attaching 2-
handles to D* along the link L in 9 ID*.

10. The Hopf map was recalled back in footnote 34 on page 129.

11. A knot K is called the unknot if it is trivial, or not knotted. Specifically, this means that K bounds
some embedded disk.

12. Kirbv diagrams were explained back in the end-notes of chapter 2 (page 91).
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However, the framed link L is just one of many Kirby diagrams that can be
obtained through homotopies of ¢. The intersection form (i.e., the homotopy
class of @) is far from determining precisely the shape of this link. Most
of these links will not even lead to constructions that close-up to a smooth
closed 4—manifold. (They always close-up as topological 4-manifolds by us-
ing Freedman’s fake 4-balls, since if one starts with a unimodular matrix,
then the resulting boundary will be a homology 3-sphere.3) The framed link
L is just one of many diagrams for a handle decomposition of a creature ho-
motopy-equivalent to M, but rarely of M itself.

4.2. Wall’s theorems and h—cobordisms

We will now present a series of results due to C.T.C. Wall, which culmi-
nates with the statement that, if two smooth simply-connected 4-manifolds
have isomorphic intersection forms, then they are not merely homotopy-
equivalent, but in fact are s—cobordant. Combining this with Freedman'’s
topological h—cobordism theorem will yield immediately that, if two smo-
oth simply-connected 4-manifold have the same intersection form, then
they must be homeomorphic.

Sum-stabilizations

Two smooth 4-manifolds M and N are often h—cobordant without being
diffeomorphic. To obtain a diffeomorphism, we can first “stabilize” the
manifolds. A sum-stabilization' of a 4-manifold means connect-summing
with copies of $? x $2. The world of smooth 4-manifolds considered up to
such stabilizations is considerably simplified:

Wall’s Theorem on Stabilizations. If M and N are smooth, simply-connected
and h—cobordant, then there is an integer k such that we have a diffeomorphism

M#kS?> xS =~ N#kS? x &2

Proof. Adding $* x $’s essentially allows us to go through with the
h—cobordism theorem’s program. This is owing to the fact that the new
spheres can be used to undo unwanted intersections of surfaces, such
as self-intersections of immersed Whitney disks.

Imagine that two surfaces P and Q have an intersection point that we
want to be rid of. First, since 5* x $? contains two spheres meeting
in exactly one point, we can join P with one such sphere by using a
thin tube, as in figure 4.8 on the next page; the result is that P is now

13. This last fact will be proved in the the end-notes of the next chapter (page 261).

14. The name “stabilization” is in tune with, for example, stable properties of vector bundles—those pre-
served after adding trivial bundles; or stable homotopy groups—the part preserved after suspensions.
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meeting the other sphere in exactly one point. (A sphere meeting a
g p y p P &

surface P in exactly one point is sometimes called a transverse sphere
for P.)

4.8. Joining a sphere

Second, we pick a path in P from the intersection point with Q to the
intersection point with the transverse sphere. Then, using a thin tube
following this chosen path, we can connect Q to a parallel copy of the
sphere, as in figure 4.9. The intersection point of P and Q has vanished.

d ]

e |~

4.9. Eliminating an intersection by sliding over a sphere

Notice that none of these maneuvers changed the genus of either P or
Q. Thus, one can use this procedure to eliminate self-intersections of
immersed Whitney disks and proceed with the h—cobordism program.

Finally, for dealing with the framing obstruction for the Whitney trick
in dimension 4, which was observed back in the end-notes of chapter 1
(page 57), one can connect-sum the Whitney disk with the diagonal or
anti-diagonal sphere® of an extra $* x 82, which changes the framing
of the disk by 2. Since having intersection points of opposite signs
guarantees that the framing of a Whitney disk is even, summing with
enough such diagonal spheres achieves the vanishing of the framing, and
hence allows us to proceed with the Whitney trick.

15. The diagonal sphere in 52 x $? is the image of the embedding 52 — 8% x §?: x — (x,x) and has
self-intersection +2. The anti-diagonal sphere is the image of x — (x, —x), with self-intersection ~2.
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With luck, a same S? x S2—term could be used for eliminating several
(if not all) intersections.1® If not, add more. a

An alternative argument (more economical with $2 x $2—terms) will be en-
countered on page 157, in the middle of the proof of Wall’s theorem on
h—cobordisms.

Of course §? x §? is not the only summand that can be used with similar
effects as above. One might imagine that, for example, the twisted prod-
uct 52 X 82 would work just as well. However, on one hand, summing
with 82 x §2’s preserves the parity and signature of M, which is usually
desirable; and, on the other hand, in many cases summing with §% X §? is
nothing different, since one can prove directly that:

Lemma. If M* has odd intersection form, then there is a diffeomorphism
M#S5 x8 = M#S XS,

Idea of proof. Consider the simple case when M is CP2. For brevity,
we use Kirby calculus, as outlined in the end-notes of chapter 2 (page
91). Then, after two handle slides and a bit of clean-up, it is done, as
shown in figure 4.10. For the general case, one would slide over some
odd-framed handle of M, then use similar tricks to untangle and sepa-

rate $2 X 52 from M. O
0 0 0
handle slide handle slide
1 ; 1

O O

0 1 0 lo
%R0

4.10. Proof that CP2# 82 x &2 =~ CP2#52 X &?

16. It is worth noting that in all knotwn cases summing with just one copy of §2 x S is enough. Currently,
there are no devices able to detect cases when more than one copy of $? x 32 would be necessary.
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Automorphisms of the intersection form

Wall also investigated algebraic automorphisms of intersection forms, and
the question of their realizability by self-diffeomorphisms of an underlying
4-manifold.

Algebraic automorphisms. Let us consider for a moment the intersection
form as an abstract algebraic creature, a symmetric bilinear unimodular

form
Q:ZxZ—7Z,

defined on some finitely-generated free Z-module Z. An automorphism
of Q is a self-isomorphism ¢: Z =~ Z that preserves the values of Q; that

is to say, Q(x,y) = Q(o¢x, ¢y).

The divisibility of an element x of Z is the greatest integer d such that x can
be written as x = dx( for some non-zero xy € Z. An element of divisibility
1 is called indivisible.

An element w of a Z-module endowed with a symmetric bilinear unimo-
dular form Q is called characteristic if it satisfies

Q(w,x) = Q(x,x) (mod 2)

for all x € Z. Notice that, if Q is even, then the divisibility of any character-
istic element must be even; further, if Q is even, then w = 0 is characteristic.
An element is called ordinary if it is not characteristic. Whether some x € Z
is characteristic or ordinary is called the type of x.

Wall’s Theorem on Automorphisms. If rank Q — |sign Q| > 4, then, given
any two elements x', x" € Z with the same divisibility, self-intersection and type,
there must exist an automorphism ¢ of Q so that ¢(x') = x". 0

Since rank Q — sign Q is always even, the condition rank Q — |sign Q| > 4 only
excludes definite forms (when sign Q = +rank Q) and forms with rank Q —
|sign Q| = £2 (which Wall calls near-definite). As we will see later,)? the only
excluded forms are H and [+1] @ m [~1] and [—1] @ m [+1] and all definite
forms. Further, as far as smooth 4-dimensional topology is concerned, the
only relevant definite forms are'® & m [+1] and ®&m [—1].

The characteristic elements of an intersection form will continue to play an
important role and will be visited again in section 4.4 (page 168) ahead.

17. From Serre’s classification of indefinite forms; see section 5.1 (page 238).
18. This follows from Donaldson’s theorem; see section 5.3 (page 243) ahead.
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Automorphisms and diffeomorphisms. Itis obvious that any self-diffeomor-
phism of a 4-manifold induces an automorphism of its intersection form.
The converse is true, but only after stabilizing once:

Wall’s Theorem on Diffeomorphisms. Let M be a smooth simply-connected
4-manifold with Q,, indefinite.’® Then any automorphism of the intersection
form of M # S* x S? can be realized by a self-diffeomorphism of M # S* x S2.

Idea of the proof. One identifies a concrete set of generators for the
group of automorphisms of Q,, @ H, then one shows directly that each
of these generators corresponds to a self-diffeomorphism. O

Topological heaven. It should no longer come as a surprise that, if we weaken
to the realm of topological 4-manifolds, stabilization is no longer necessary:

Theorem (M. Freedman). Any automorphism of Q,, can be realized by a self-
homeomorphism of M, unique up to isotopy. a

Of course, the smooth version of such a result fails.20

Self-diffeomorphism from spheres. For amusement, we briefly mention a cou-
ple of examples of self-diffeomorphisms of a 4-manifold. These are built
around an embedded sphere S of self-intersection®! +1 or +2, and act on
homology by [S] — —|[S] and by fixing the Q—complement of [S]; in other
words, they act as reflections on the homology lattice. Of course, finding such
spheres is an endeavor in itself and often they do not exist.??

Reflection on a (£1)-sphere. A neighborhood of a (+1)-sphere S in M is
diffeomorphic to a neighborhood of CP! in CP?, and furthermore M =
M’ #CP?, with S appearing as CPP! in CP?. OQur diffeomorphism acts on
CIP? and fixes M. We take coordinates [zq : z) : z] on CP? and consider the
complex conjugation ¢,: CP? — CP?, with ¢y[z0 : z1 : 2] = [Z1 : Z2 : 2.
Away from the projective line CP! = {zy = 0}, on CIP? \ CP' = C?, this con-
jugation acts as (z1,z2) — (Z),Z), or, in real coordinates, (x1,y;, X2,y2) —
(x1. —Y1, X2. —Y2) . We pick a small 4-ball D* around 0 € C* and modify ¢,
as we approach D* by increasingly rotating the (yi,y,)-plane by an angle
growing from 0 to mt, until ¢, becomes the identity on all D*; see figure 4.11
on the following page. We have built a self-diffeomorphism ¢ of CP? that
flips CP! but fixes a small 4-ball D*. If we think of M = M’ #CP? as being
built by cutting out D* from CIP?, then ¢ extends from CIP? to the whole M
by the identity. (For a (—1)-sphere, reverse orientations.)

19. Requiring that the intersection form of a smooth 4-manifold be indefinite is not a strong restriction,
since in fact the only excluded forms are % m [£1]; see section 5.3 (page 243) ahead.

20. For example, a simple obstruction is that any automorphism of Q,, that can be realized by diffeo-
morphisms must send Seiberg-Witten basic classes to basic classes (for these notions, see chapter 10,
starting on page 375 ahead), but even that in general is not sufficient.

21. For the extent of this inserted note, we will call such spheres (+1)-and (£2)-spheres.
22. Nonetheless, recall that we did identify twenty (—2)-spheres inside the K3 surface, see page 133.
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4.11. Modification toward reflection on a {—1)-sphere

Reflection on a (+2)-sphere. A neighborhood of a (+2)-sphere S in M is dif-
feomorphic to the unit-disk bundle DTs,. We think of DTg, as {(v,w) €

R}*xR3 | |v] = 1, lw| < 1, v L w} and define a self-diffeomorphism
@: ]DTsz - ]DTsz by

(cos®-v + sind- |zl—v|w, cos®-w + sind-|w|(—v)) ifw#0

(“U,O) Ifwzo

p(v,w) = {

with @ = (1 — |w|)7. Specifically, each tangent vector w determines a great
circle in $% and we slide w along this circle by a distance depending on |w|:
the shorter w is, the more we travel; see figure 4.12. The resulting ¢ restricts
as the antipodal map on the sphere S = {(v;0)}, but as the identity on d DTg>
and thus can be extended by the identity to the rest of M, yielding a self-
diffeomorphism ¢ of M. (For a (—2)-sphere, reverse orientations.)

4.12. Reflection on a (+2)-sphere
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Wall’s theorem on diffeomorphisms plays an essential role in proving the
fundamental result that we present next.

Intersection forms and h—-cobordisms

Going quite further than Whitehead’s theorem, C.T.C. Wall proved that two
smooth manifolds with the same intersection form are more than merely
homotopy-equivalent:

Wall’s Theorem on h—-Cobordisms. If M and N are smooth, simply-connec-
ted, and have isomorphic intersection forms, then M and N must be h—cobordant.

If we combine with the earlier theorem on stabilizations, this yields:

Corollary. If M and N are smooth, simply-connected, and have the same inter-
section form, then there is an integer k such that we have a diffeomorphism

M#KkS? xS > N#kS?x 8%, O

On the other hand, if we combine the above theorem on h—cobordisms with
M. Freedman's topological h—cobordism theorem, then we deduce the fol-
lowing most remarkable result:

Corollary (M. Freedman). If two smooth simply-connected 4—manifolds have
isomorphic intersection forms, then they must be homeomorphic. O

This came almost twenty years after Wall’s results. Even today the attempt
to strengthen the above to diffeomorphisms does not get farther than the
preceding direct combination of Wall’s old results.

Because of this striking consequence, in what follows we will present a
fairly complete proof of Wall’s theorem on h—cobordisms; it will take the
rest of this section.??

Proof of Wall’s theorem on h—cobordisms

Since M and N have the same signature, MU N has signature zero, and
thus it must bound some 5-manifold; in other words, there is some ori-
ented W that establishes a cobordism between M and N.

The proof of the theorem consists in modifying this W (without changing
its boundary) until it becomes simply-connected and homologically-trivial,
in other words, until it becomes an h—cobordism from M to N.

23. The next section starts on page 160.
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Kill the fundamental group. The first step is to modify W> to make it sim-
ply-connected. We choose a set of generating loops ¢, ...,¥¢, for (W),
realized as disjointly embedded circles. We will add disks to kill these ho-
motopy classes. Specifically, for each ¢, we take a tubular neighborhood
8! x D* of ¢ and cut it out. This leaves a hole with boundary S! x *, which
we fill by gluing-in a copy of ID? x $*. In the resulting 5-manifold, the class
of ¢y is trivial. Repeating for all ¢;’s yields a new cobordism between M
and N, still denoted by W, that is simply-connected.

Divide and conquer. Choose now a handle decomposition of W>. Since
W is connected, we can cancel all 0— and 5-handles. Further, since W
is simply-connected, all its 1-handles can be traded for 3-handles, and,
upside-down, all 4-handles for 2-handles. We end up with a handle de-
composition of W that only contains 2— and 3-handles, and view W as

W? = M* x [0.) U {2-handles} U {3-handles} U N* x [-0],

which we split into the two obvious halves: on one side, M and the 2-
handles, on the other, N and the 3-handles, as on the left of figure 4.13.
Looking upside-down at the upper half of W, instead of seeing the 3-
handles as glued to the lower half, we can view them as 2~handles glued
upwards to N X [-¢0].

NS, _ W
A ATATATATA

4.13. The two halves of a simply-connected cobordism

Hence the middle level M,,,, in between the 2— and the 3-handles, is a 4-
manifold that can be obtained either from M by adding regular 2-handles
attached downwards, or from N by adding upside-down 2-handles at-
-tached upwards.

The strategy for the remainder of the proof is the following: We will cut
W into its two halves, then glue them back after twisting by a suitable self-
diffeomorphism @ of M,,, as in figure 4.14 on the next page. This cut-and-
reglue procedure will create a new cobordism from M to N. If we choose
the right diffeomorphism @, then the 3-handles from the upper half will
cancel algebraically the 2-handles from the lower half. This means that
the newly created cobordism between M and N will have no homology
relative to its boundaries, and so will indeed be an h—cobordism from M
to N.
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4.14. Modifying a cobordism into an #—cobordism

On the frontier. Let us first clarify the shape of M,/,. Think of it as obtained
from M after adding the 2-handles of W.

A 5-dimensional 2-handle is a copy of D? x p?, to be attached by glu-
ing 8! x D* to M*. To attach such a 2-handle to M, we need to specify
where the attaching circle S! x o is being sent, but a circle in a 4-manifold
is isotopic to any other embedded circle. We also need to specify how the
“thickening” of the attaching circle is to be glued to M. Since?* 7, S0(3) =
Z,, there are only two ways of doing that, depending on whether the 3-
disk D’ in M twists an even or an odd number of times around the attach-
ing circle.?’ Therefore, to fully describe M/, all we need is to specify how
many “odd” and how many “even” 2-handles are to be attached.

Attaching a 2-handle D? x D deletes a copy of §! x D* from M and, as
a step toward M,,, replaces it with a copy of D? x s*. On one hand, if
the 2-handle is even, then the disk D? from ID? X s? can be closed to a 2-
sphere of self-intersection 0: unite the disk with a small Seifert disk of the
attaching circle in M; the self-intersection of such a Seifert disk in M is the
same with the framing modulo 2 (compare with page 148 earlier). Hence,
the result of adding this even 2-handle is the same as connect-summing
with §2 x s2. On the other hand, if the 2-handle is odd, then the disk closes
to a sphere of self-intersection +1, and one can see that attaching it is the
same as connect-summing with $2 X 2. In conclusion, we have

My = M* #m'$*> xS* #m"S* x S*.

We will assume in the sequel that no $? X $2~terms are present.

No twists, and a proof of Wall’s theorem on stabilizations. The assump-
tion that there are no $? X $?~summands can be argued quite rigorously:

24. Think of SO(3) as the space of all oriented orthonormal frames in R*. Thus, 71; SO(3) will measure
how many distinct trivializations of the 3—plane bundle 5' x R? exist. Some comments on m;SO(m)
will be made in the the end-notes of this chapter (page 177).

25. Contrast this with what happens when, instead of building a 5-manifold as above, we build a
4-manifold. The framing for attaching a 2-handle is then determined by an element of n; SO(2) = Z,
an integer.
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On one hand, if the intersection form of M is odd, then adding S? x S? or
adding 5? x S? produces the same result, as we mentioned a bit earlier.26

On the other hand, if the intersection form of M is even, then a deeper
result shows that M U N can be safely assumed to bound a 5-manifold
that does not contain any odd handles.?” This odd-less manifold should
then be the one used as our W right back from the start of the argument.

By the way, if we accept that we can indeed avoid $? X $2-summands, then
we have stumbled upon another proof for Wall’s theorem on stabilizations:
from the lower half of W we have M, = M # mS? x 52, while from the
upper half we have M,,, = N # mS? x 82, since M., can also be obtained
by attaching even 2-handles upwards to N. Therefore

M#mS* xS* =2 N#mS?xS2.
This was, in fact, C.T.C. Wall’s original argument for this result.

In any case, getting back to proving Wall’s theorem on h—cobordisms, in
what follows we assume that we have M,;, = M* # mS? x §2.

Negotiating the reunification. We are trying to find a self-diffeomorphism
@ of M/, such that, after re-gluing W through it, the homology of W dis-
appears. In other words, we wish to arrange @ so that the 3-handles from
the upper half cancel algebraically the 2-handles of the lower half.

Whether a certain @ is good or not for this purpose is entirely determined
by the self-isomorphism @, that ¢ induces on the 2-homology of M,,.
Therefore, for finding a good diffeomorphism @, we will proceed by rever-
se-engineering: we will determine a good algebraic automorphism
(’ﬁ: H2(M|/2; Z) ~ Hz(Ml/z; Z) ’

preserving the intersection form of M,/,, and then use Wall’s earlier the-
orem on diffeomorphisms to claim that ¢ can be realized as @, of some
self-diffeomorphism @ of M,,,. Wall’s theorem on diffeomorphisms might
require that we add an extra copy of 52 x 82, but that can be achieved im-
mediately by the creation in W* of a (geometrically) canceling pair of a 2—
and a 3-handle—the trace of such a pair in M,;, is exactly the required
extra 5% x §?-summand.

Each 52 x $2-summand in M, appears from a 2-handle ID? x D?, attached
to M along ' x D*. The belt sphere of this 2-handle is 0 x 2. The homo-
logical hole created by the addition of the 2-handle is represented by the

26. Back on page 151.

27. This result is due to V. Rokhlin, and states: Any spin 4—manifold with zero signature must bound a spin
5-manifold. For the concept of spin manifold, look ahead at section 4.3 (page 162); the result itself will
be restated on page 165.
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first sphere-factor of $? x $? in M,/,, while the belt sphere of the handle
survives as the second factor of $? x 52 and is filled by the handle itself.

Looking now at the upper half of W3, a 3-handle is a copy of D? x p?,
attached to the lower half through $? x p?. The attaching sphere of the
3-handle is 5 x 0. Therefore, if the 3-handle is to algebraically cancel a 2~
handle from the lower half, then the attaching sphere 52 x 0 of the 3-handle
must intersect the belt sphere 0 x 2 of the 2-handle algebraically exactly
once.?8 Indeed, in “handle homology”, we would then have d(3-handle) =
(2-handle). (Intuitively, view the 3-handle as algebraically filling the ho-
mological hole §? x 1 created by the 2-handle.)

Algebraization. To translate everything into algebra, we proceed as fol-
lows: We view M/, as

My, = M#mS? x 82,
and we denote by &y the class of $? x 1 and by &; the class of 1 x S? in the
'kt 82 x S2—summand. The classes & are the classes of the belt spheres of
the lower 2-handles, and they bound in the lower cobordism. We write

Hz(MVz; Z) = Hz(M;Z) (&) Z{DL],E[, ca ,lxm,am} ,
with corresponding intersection form Q, = Qy & mH.
Now we look at M/, from upwards as

My, = N#mS* x 8.

This decomposition is obtained by adding upside-down 2-handles to N in
the upper half of W. For trivial algebraic reasons, the $? x $*~summands
added to N are just as many as those added to M, but the respective sum-
mands in the two decompositions do not correspond by, say, a diffeomor-
phism (unless M = N).
Denote by By the class of $* x 0 and by B, the class of 0 x 5? in the kth
8% x 82—summand of this latter splitting. The classes B are the classes of

the attaching spheres of the upper 3-handles, and they bound in the upper
cobordism. And we write

Hy(Myjy; Z) = Hy(N;Z) & Z{B1. By -, Brs B} »
with corresponding intersection form QM-/z =Qy®mH.

A good self-diffeomorphism @ of M/, will be one that sends the class By
onto &y, thus guaranteeing that the attaching sphere B of each 3-handle
has algebraic intersection +1 with the belt sphere 2 of the corresponding
2-handle.

28. Requiring more, such as only one geometric intersection, i.c., that 5 x o from the 3-handle be sent

to §2 x ¢ from the 2-handle, implies that these 3~ and 2-handles cancel. However, if we could do that
for all handles, we would end with a diffeomorphism M = N, which cannot happen in general.
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The final dance. The hypothesis of this theorem states that the intersection
forms of M and N are isomorphic. Denote by

¢: Hy(N;Z) =~ Hy(M;Z)
such an intersections-preserving isomorphism. Then we can extend ¢ to
652 Hz(N;Z) @Z{ﬁl, v ’Bm} ~ Hz(M,Z) (&) Z{Dél, Ce ,&m}

by setting
P(Br) = and ¢ (By) = T -

This extended ¢ is easily seen to still preserve intersections. Therefore, by
Wall’s theorem on diffeomorphisms, there must exist an actual self-diffeo-
morphism @ of M,;, that realizes ¢ as @, = ¢.

Then, if we cut our W3 into its two halves and glue them back using this
@, then the resulting cobordism will be simply-connected and with no 2—
homology. That is to say, an h—cobordism between M and N. O

4.3. Intersection forms and characteristic classes

Time has come to comment on the other classical invariants of a 4-mani-
fold, specifically on the characteristic classes of its tangent bundle. Only
w2(Tam), e(Tm) and py(Ty) are actually relevant in this realm. After first
reviewing these, we will relate them to intersection forms.

We start with the Stiefel-Whitney classes
wi(Tm) € HY(M% Z,) .

The class wy(Ty) measures the obstruction to finding a field of 4 — k + 1
linearly-independent vectors over the k—skeleton of M.

Skeleta. Remember that, for a cellular complex, its k—skeleton is the union of
all its cells of dimension < k, as in figure 4.15 on the facing page—similarly,
for simplicial complexes (triangulations).?® For a manifold M, one can also
think in thickened terms and view the k-skeleton of M as the union of all the
handles of order < k, in some handle decomposition of M see figure 4.16 on
the next page. Of course, the skeleta depend on the choice of cellular/handle
decompositions.

29. Simplices and triangulations are briefly recalled in footnote 5 on page 182 ahead.
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4.15. Skeleta of a torus, I: the cells
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4.16. Skeleta of a torus, 1I: the handles

Orientations and the first Stiefel-Whitney class

The class w;(Tp) measures the obstruction to finding a trivialization Ty
over the 1-skeleton of M. It can be defined directly’® by its values on
embedded circles C in M, namely by setting

wi(Tym)-C =0  ifand only if Tuc is trivial;
wi(Ty)-C =1 if and only if Ty|c is not trivial.
Since a 4-plane bundle over a circle is either trivial or non-orientable, we

observe that the first Stiefel-Whitney class merely detects orientation-rever-
sing loops in M. Therefore w, is the obstruction to M being orientable.

Along these lines, it is not hard to see that an orientation of M is equivalent
to a choice of trivialization of Ty over the O-skeleton that can be extended
over the 1-skeleton, considered up to homotopies.

Since we restricted our attention to oriented 4—-manifolds, this class is not
very interesting to us. Quite the opposite, though, can be said about the
next Stiefel-Whitney class:

30. Since H'(M; Z,) = Homg, (H\(M;Z3), Z,), nothing is lost.
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Spin structures and the second Stiefel-Whitney class
The second Stiefel-Whitney class

wy(Tm) € HA(M; Z,)

measures the obstruction to finding a 3—frame over the 2—skeleton. If w,
was trivial and we picked an orientation of M, then by using this orienta-
tion we can complete any 3-frame to a 4—frame. Therefore we can say that,
for oriented manifolds, w,(Tp) is the obstruction to trivializing Ty over
the 2-skeleton®! of M.

The origin of the Z,—coefficients of w, is in3 7, SO(4) = Z,. The generator
of the latter is any path of rotations of angles increasing from 0 to 27; if the
angle keeps further increasing to 4m, then the resulting loop will be null-
homotopic in SO(4). For trivializations of Ty, it is best to think of SO(4)
as the space of orienting orthonormal frames in R*. The class w,(Ty) is
obtained by patching together local obstructions over each 2—cell D of M:
a trivialization of Tp over the 1-skeleton induces a map ¢: 0 D — SO(4);
the trivialization extends across D if and only if ¢ extends over D, in other
words, if ¢ represent the trivial element of 7, SO(4).

Displaying wy(Tap) as a cochain. Given a random trivialization of Ty over
the 1-skeleton of M, we can define a cellular cochain ¢ for w,(Ty) by as-
signing 1 € Z, to any 2—cell D across which the chosen trivialization can-
not be extended. This cochain will be trivial if and only if the trivialization
extends over the 2-skeleton. Of course, one can try to go back and change
the trivialization over the 1-skeleton, then check again. It turns out that all
such changes modify our cellular cochain ¢ by the addition of a coboundary.
Further, our cochain turns out to be a cocycle. Therefore, the existence of a
trivialization that extends is equivalent to the cohomology class of ¢ being
trivial 3 (Observe that such a discussion can very well be carried out with
2-handles instead of 2—cells; the cocycle above assigns to each 2~handle the
framing coefficient3* modulo 2 of its attaching circle. )

Look at surfaces. Since “2-skeleton” might not be your friendliest of no-
tions, we can also rely upon

Lemma. The second Stiefel-Whitney class wy(Ty) € H*(M; Z,) is the obstruc-
tion to trivializing Ta over the oriented surfaces embedded in M.

31. Keep in mind that, the manifold being oriented, Ty can already be trivialized over the 1-skeleton.
32. The group SO(4) is the group of orientation-preserving isometries of R*, i.e., its group of rotations.
33. This is obstruction theory and is better explained in the end-notes of this chapter (page 197).

34. Compare also with Kirby calculus, in the end-notes of chapter 2 (page 91).
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Proof. On one hand, we have H*(M;Z,) = Homy, (Hao(M; Zs), Zs),
and thus w; is completely determined by its values w, - x on all mod-
ulo 2 classes x € Hy(M;Z;). On the other hand, when H;(M;Z)
has no 2-torsion (for example when M is simply-connected), we fur-
ther have that Hy(M;Z;) = Hy(M;Z) ®, Z,, or, in other words, clas-
ses in Hy(M;Z,) are just modulo 2 reductions of integral classes from
H,(M;Z). Therefore w, is completely determined by its values w, - S
on the oriented surfaces S of M. Furthermore, wy(Ta) - S = wa(Tpmls)
is precisely the obstruction to trivializing Ty over S. O

Thus, when M is simply-connected, we can define w,(Ty) directly by
wo(Tp)-S =0 ifand only if Tyls is trivial,
wy(Tr)-S =1 if and only if Ty|s is not trivial,

for each oriented surface S embedded in M.

Look at self-intersections. By using the obvious splitting of Ty; over any
surface S as Tm|s = Ts @ Ns/m, we compute

w2(Tum) - S = wa(Tmls)
= wy(Ts ® Ng/m)
= wy(Ts) + wa(Ns/m) + wi(Ts) - wi(Ns/m) -

Since both Ts and Ng, s are orientable, the last term vanishes. More, since
w,(Ts) is the modulo 2 reduction of the Euler class x(S) = 2 — 2 genus(S),
the first term on the right vanishes as well. We are left with w>(Ng/p),
which is the modulo 2 reduction of e(Ns, ;). The latter measures the self-
intersection of S in M. We have proved:

Wu’s Formula. For all oriented surfaces S embedded in M, we have:
wy(Ty)-S=5-5 (mod2). O

This is the 4~dimensional case of the general Wu formula.35 A verbose but

more concrete alternative proof will appear on page 168 in the next section.

A nice consequence of Wu's formula is:

Corollary. If w,(Ta) = 0, then the intersection form of M is even. ]

The converse is true whenever H;(M; Z) has no 2-torsion.

35. Wu's formula is a general statement about Stiefel-Whitney classes; see for example J. Milnor and
J. Stasheff’s Characteristic classes [MS74].
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Spin structures. Since w(Th) is the obstruction to trivializing T over the
2-skeleton of M, in the spirit of the earlier re-definition of orientations, we
can define the concept of spin structure:

A spin structure on M is a choice of trivialization of Tjs over the 1-skele-
ton that can be extended over the 2-skeleton, considered up to homotopies.
Various alternative ways of defining spin structures and related matters are
contained in the end-notes of this chapter.3¢ A manifold endowed with a
spin structure is called a spin manifold.3’

Then we can state that w,(Ty) = 0 if and only if M admits a spin struc-
ture. The simplest examples of spin 4-manifolds are 5%, $? x $2, and the
K3 surface. In general:

Corollary (Spin structures and even forms). Any 4-manifold without 2—tor-
sion, for example simply-connected, admits spin structures if and only if its inter-
section form is even. 0

Action of H'(M;Z2) on spin structures. Let s be a spin structure on M,
described by a trivialization of Ty over the 1-skeleton of M (for some fixed
triangulation of M). Choose a class « € H'(M;Z,) and represent it by its
dual unoriented 3-submanifold Y, in M. Arrange that Y, does not touch
any vertex of M’s triangulation and is transverse to all its edges. Then one
can define a new spin structure « - s on M by twisting s’s trivialization over
each edge € that meets Y, through the addition of a 2n—twist each time ¢
meets Yy . For every loop {.in the 1-skeleton that bounds a 2-simplex D, the
intersection of Y, and D occurs along arcs linking the intersections points of
¢ and Y, ; therefore there must be an even number of such intersection points,
and so the trivialization offered by « - s along { differs from s’s by an even
number of 2nt—twists; hence the trivialization of « - s still extends across D—it
is indeed a spin structure.

The resulting action of H'(M;Z,) on the set of all spin structures of M is
free and transitive.3 Therefore, after fixing a spin structure on M, this action
establishes a bijective correspondence between the elements of H'(M;Z;)
and the set of all spin structures on M (the correspondence depends on the
choice of “base” spin structure). In particular, if M is simply-connected and
has w,(Tp) = 0, then M admits a unique spin structure.

36. For the more usual, differential-geometric definition, see the end-notes of this chapter (page 174);
see also section 10.2 (page 383) ahead. A homotopy-theoretic definition is presented in the end-notes
of this chapter (page 204).

37. Often, one calls “spin manifold” any manifold that admits a spin structure, even if no specific
structure has been chosen, instead of more honestly naming it, for example, “spinnable manifold”.

38. The action of a group G onaset S is called transitive if for every two elements s’ and s” of S there
is some g € G so that g -5’ = s”. The action is called free if we can have ¢-s = s for some s € S only

twhan o — 1
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Signatures and bounding spin-manifolds. In the context of spin structures,
an important result is the spin version of the bounding theorem from sec-
tion 3.2 (page 123). The latter stated that all zero-signature 4-manifolds
must bound some oriented 5-manifold. For spin 4-manifolds, the follow-
ing refinement is true:

Theorem (V. Rokhlin). If a closed 4—manifold M is endowed with a spin struc-
ture and has

signQ,, =0,
then there exists a spin S—manifold W> that is bounded by M so that the spin
structure of W induces the spin structure of M. O

Spin structures on 5-manifolds are defined exactly as for manifolds of di-
mension 4: they are trivializations of Tiy over the 1-skeleton that extend
over the 2-skeleton.3® A spin structure on W> induces a spin structure
on d W by using an outward-pointing trivialization of the normal bundle
N;w,/w to obtain a trivialization of T,y over its 1-skeleton, etc.

In particular, it follows that:

Corollary (Spin cobordism). If two spin 4—manifolds M and N have the same
signature, then they can be linked by a cobordism W* that is a spin S—~manifold,
and its spin structure induces on M and N their respective spin structures. [

Notice that we have already relied on this result in the proof of Wall’s theo-
rem on h—cobordisms (page 157).

Third Stiefel-Whitney class

The third Stiefel-Whitney class w,(Ty) € H*(M;Z,) turns out to be rather
uninteresting:

On one hand, if M is orientable and admits spin structures, equivalently
if both w;(Ty) and w,(Ty) vanish, then ws3(Tp) must vanish as well. In-
deed, any spin structure offers a trivialization of Ty over the 2-skeleton,
and since the group 7, SO(4) is trivial, this trivialization can always be ex-
tended across the whole 3-skeleton®? of M.

39. More geometrically, a 5-manifold W admits spin structures if and only if every surface embedded
in W has trivial normal bundle. As we saw, a 4-manifold M admits spin structures if and only if every
surface embedded in M has normal bundle of even Euler class.

10. Indeed, think of SO(4) as the space of orthonormal frames in R*. Take a 3~cell E with Ty,
rivialized. The trivialization determines a map d E — SO(4), which, since 7, SO(4) = 0, must be
wull-homotopic and thus extend to a map E — SO(4); but the latter is just a trivialization of Tp|E.
Che relation between the m SO(m)'s and wy’s is probably best viewed under the light of the concepts
sresented in the end-notes of this chapter, on page 197 and page 204.
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Since we can always choose handle decompositions of M with exactly one
4—handle and then shrink that 4—-handle toward a point, we deduce that ev-
ery spin 4-manifold M has Ty trivial over M \ {point}; such manifolds are
called almost-parallelizable.

In general, the values of w3(Ty) € H?>(M:Z;) do not matter—they are
determined by the other characteristic classes of M, as will become clear a
bit ahead, from the Dold-Whitney theorem.

The Euler class

The fourth and last Stiefel-Whitney class ws(Ty) € H*(M;Z,) is not the
only remaining obstruction to trivializing T); over the whole M. In fact, if
M is oriented, then w4(Tam) can be refined to the integral Euler class

e(Ty) € HY(M:Z)=Z. .

The Euler class counts the self-intersections of M, viewed as the zero-sec-
tion inside the manifold Ty . Equivalently, it counts the zeros of a generic
vector field on M, and we have ¢(Ty) = x(M). If ¢(Ty) = 0, then Ty
admits a nowhere-zero section. Clearly though, all simply-connected 4-
manifolds have e(Ta) = 2 + rank Q,, and hence ¢(Tm) > 0.

Signatures and the Pontryagin class
Another relevant class is the Pontryagin class
pi(Tm) € H'(M:;Z) =Z.

It is defined in terms of Chern classes as p(Ty) = —¢2(Ty ® C) and can
be interpreted as the obstruction to finding three C-linearly-independent
global sections in Ty ® C.

More obscurely, the Pontryagin number also coincides with —3 times the al-
gebraic count of triple-points of a generic immersion*? M* — RS.

On a 4-manifold the Pontryagin class is completely determined by its in-
tersection form, owing to the 4-dimensional instance of F. Hirzebruch’s
celebrated signature theorem:

Hirzebruch’s Signature Theorem. For every closed 4—manifold M we have

Pi(Tm) = 3signQy, - O

41. A manifold is called parallelizable if its tangent bundle is trivial over the whole manifold. An
example of parallelizable 4-manifold is S! x 5°; there are no simply-connected examples.

42. See R. Herbert's Multiple points of immersed manifolds [Her81}; also proved in R. Kirby’s The
tonoloev of 4—manifolds [Kir89, ch IV].
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Signatures and bounding manifolds, revisited. We quoted earlier*? the fact
that, if a 4-manifold has vanishing signature, then it must bound an oriented
5-manifold. A proof of that statement can be assembled by using the signa-
ture theorem, together with the above interpretation of p; in terms of triple-
points of immersions.

First, one builds an immersion of M into R® (by using immersion theory, it
is enough to build a candidate for the normal bundle of the immersed M
inside R®, and thus the problem is reduced to a characteristic class compu-
tation). Such an immersion will have double-points, forming surfaces in M,
and will have isolated triple-points. Since 3signQu; = p1(M), and the latter
is an algebraic count of these triple-points, we conclude that the triple-points
cancel algebraically. Furthermore, there is a modification of M inside R® that
geometrically eliminates all these triple-points* and changes M merely by a
cobordism inside RS. After that, the double points can be eliminated without
obstruction (think of our method for eliminating double-points of surfaces in
4-space*® and cross with R?), and this further changes M by a cobordism
inside RS. We end up with a 4-manifold embedded in R®. Since the result
is homologically-trivial and embedded, it must bound a 5-manifold W in-
side®® RS. Putting together the cobordisms used to modify M with this last
5-manifold yields a filling 5-manifold for our initial 4-manifold.%”

That’s it, the bundle is done

The above-mentioned characteristic classes completely determine Ty as a
vector bundle. In fact, only w>, ¢ and p; are needed:

Dold-Whitney Theorem. If two oriented 4—plane bundles over an oriented 4-
manifold have the same second Sticfel-Whitney class wy, Pontryagin class p, and
Euler class e, then they must be isomorphic. O

All these three characteristic classes can be related to intersection forms. In
review, by using the partial Betti numbers b;“ we can write, for every sim-
ply-connected 4-manifold M,

e(Tm) = by (M )+b (M) + 2,
pi(Tm) = by (M) — by (M),

and recall that w,(Ty) vanishes exactly when Q,, is even.

43. See back in section 3.2 (page 123).

44. Somewhat in the spirit of figure 11.7 on page 486.

45. Look back at figure 3.1 on page 113.

46. Owing to a general result of R. Thom, stated back in footnote 3 on page 112.

47. See R. Kirby’s The topology of 4-manifolds [Kir89, ch VIII] for the full argument.
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4.4. Rokhlin’s theorem and characteristic elements

We continue the story of the second Stiefel-Whitney class w,(Ty), but this
time by focusing on the integral classes that reduce to it. Afterwards, we
state a fundamental theorem for topology in general, namely Rokhlin’s the-
orem: a smooth spin 4-manifold can only have a multiple of 16 as its sig-
nature.

Characteristic elements of the intersection form

We defined w(Ty) € H?(M;Z,) as the obstruction to trivializing Ty over
the 2-skeleton of M. We now look at representations of the class w; (T )
by oriented surfaces and integral classes.

Make it a surface. Assume that w,(Ty) can be realized as an oriented sur-
face X embedded in M. In other words, assume that [Z] € Hy(M;Z) is
(Poincaré-dual to) an integral lift w of the class w;,. Such a surface X with

Z =wy(Ty) (mod 2)

is called a characteristic surface of M, while its class w € H(M;Z) is
called a characteristic element.#® Characteristic elements are certainly not
unique: just add to such a w any even class 27 to obtain another integral
lift of w,;. Remember that we encountered characteristic elements before,
in Wall’s theorem on the automorphisms of an intersection form.#

Wu, again. Take now a random surface S in M. The obstruction to trivial-
izing Ty over S is then given by w,(Ty) - S (mod 2) or, in other words, by
XS (mod 2). We have already seen that this coincides modulo 2 with the
self-intersection S - S, but we prove it once again using a slightly different
argument.

Wu’s Formula. Let M be a simply-connected 4-manifold. An oriented surface
X is characteristic if and only if

X-5§5=5-5 (mod?2)
for all oriented surfaces S inside M.

Proof. Let T € I'(Ts) be a vector field tangent to S, and let v €
I'(Ns/pm) be a field normal to S. If T and v are generic, then they are
zero only at isolated points of S. Arrange that T and v are never zero at
a same point of S. Pick a vector field 7* complementary to T in Ts, so

48. Another customary name is characteristic class, but we will use “characteristic element” throughout,
to avoid any chance of confusion with characteristic classes of the tangent bundle.

49. See back in section 4.2 (page 152).
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that 7* is zero only at the zeros™ of 7. Also pick a complement v* to v
in Ng,p thatis zero only at the zeros of v. Then the vector field 7* 4+ v*
is nowhere-zero on S. The 3~frame {7, v, T* + v*} can be completed
to a full 4-frame of Ty, well-defined on S away from the zeros of T
and the zeros of v.

Against extending this frame across the remaining points of S lies a
Z,-obstruction: indeed, a neighborhood of a singularity is a copy of
D?\ 0, and the frame-field around 0 defines a map f: S! — SO(4); the
frame-field can be extended across 0 if and only if f is homotopically-
trivial in 71, SO(4) = Z,. It is not hard to argue that the obstructions at
various singularities can be added together,’! and thus yield a global
Z,-obstruction to extending the frame-field over the whole surface S.
Since T* + v* is nowhere-zero, this obstruction comes entirely from the
zeros of T and v.

Since T and v were chosen generic, their zeros are simple, and thus the
obstruction can be computed as

obstruction = #{zerosof 1} + #{zerosof v} (mod 2).

However, the number of zeros of a tangent vector field like T is equiva-
lent modulo 2 to x(S), which is always even and thus disappears from
the above formula. We are left with the number of zeros of the normal
vector field v, which is equivalent modulo 2 to S - S. In conclusion,

obstruction = S-S (mod 2) .
However, the same obstruction can also be seen to be wy(Ty|g) =
w2(Tpm) - S = XS (mod 2), and this concludes the proof. O

It might be amusing to look back at page 163 and compare the two proofs
that relate w; to self-intersections—the version above is essentially just a
more concrete version of the computations made there.

In any case, the property that w, - x = x - x (mod 2) for all x € H*(M;Z)
completely determines the class w»(Ty) inside H?(M; Z;). In particular, if
we find an integral class w € Hy(M; Z) satisfying

w-x=x-x (mod?2),

then the modulo 2 reduction of w must be w;(Ty): we have found a char-
acteristic element of the intersection form.

50. For example, pick a complex structure on Ts and define v = it.

51. For example, by using an argument similar to the classic Poincaré-Hopf theorem on indices of
vector fields: if the sum of indices is zero, then there is a nowhere-zero vector field. Here, since T and
v are generic, the indices are +1; further, since we are dealing with a 4-plane bundle over a surface,
the sum of indices only matters modulo 2.
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They do exist. Characteristic elements (and hence characteristic surfaces)
exist in all 4-manifolds:

Lemma. On every 4—manifold M, there always exist integral classes w such that

w-x=x-x (mod?2)

forall x € Hy(M;Z).

Proof. This is a purely algebraic argument. Let Q: Zx Z — Z be a
symmetric bilinear unimodular form, defined over a free Z-module Z.
We can build its modulo 2 reduction by taking Z" = Z/2Z and Q" =
Q (mod 2). We obtain a symmetric Z,-bilinear unimodular form

Q”: Z// X ZII _ ZZ .
The unimodularity of Q" over Z, translates as the following property:
for every Z,-linear function f: Z" — Z, there must be some element
xf € Z" so that f(-) = Q"(xy, - ). However, since (a +b) - (4 +b) =
a-a+b-b+2a-b =a-a+ b-b(mod?2), wenotice that the corre-
spondence x — Q"(x, x) is additive, and thus is Z,-linear. Therefore
there must exist an element w” € Z” so that Q"(x,x) = Q"(w",x); in
other words, we have

w'-x=x-x (mod2) forallxe Z".

Since the element w” € Z" = Z /27 represents a coset of Z, there must
be integral elements w € Z whose modulo 2 reduction is w”. In other
words, there always exist characteristic elements for Q, i.e., elements
weZwithw-x=x-x(mod?2) forallx € Z. O

The existence of integral lifts of w,(Ty) is important also because of spin€
structures (complexified spin structures). As we will see later>? the exis-
tence of w’s is equivalent to the existence of spin€ structures on M; the
latter will play an essential role in Seiberg—Witten theory.

Rokhlin’s theorem

First, an algebraic argument shows that:

Van der Blij's Lemma. For every characteristic element w we must have
signQyy = w-w (mod 8) . O

We prove this statement in the end-notes of the next chapter (page 263).53

In particular, it follows that every spin manifold (for which we can always
pick w = 0) must have signature multiple of 8. Surprisingly, more is true:

52. In section 10.2 (page 382).

53. The reason for this postponement is not the difficulty of the argument, but merely its reliance on
the classification of algebraic forms, which is discussed in the next chapter.
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Rokhlin’s Theorem. If M* is smooth and has wy(Ty) = 0, then its intersec-

1 h
thﬂfOrm must nave sign QM =0 (mod 16) . S

In part for reasons of space, proofs of this theorem are exiled to the end-
notes of chapter 11 (one proof starting on page 507, another starting on
page 521).

Three’s company. Notice that we have already encountered several statements
due to V. Rokhlin: one from page 123 (about zero-signature manifolds bound-
ing), one from a few pages back (about zero-signature spin-manifolds spin-
bounding), and the one right above.* In this volume, only the last result will
be called “Rokhlin’s theorem”.

Smooth exclusions. A first consequence of Rokhlin’s theorem is that Eg can
never be the intersection form of a smooth simply-connected 4-manifold:
indeed, Eg is an even form with signature 8. In particular it follows that,
as we claimed earlier, the Eg—manifold MEs does not admit any smooth
structures at all.

Historically, we should note that, even though it was clear from Rokhlin’s
theorem that the Eg—form would never appear as the intersection form of a
smooth 4-manifold, it was not known until Freedman’s work that the Eg—
form does nonetheless appear as the intersection form of a topological 4-
manifold. Indeed, recall®® that the definition of MES involves Freedman'’s
contractible A’s, whose construction in turn needs Freedman’s major result
on Casson handles.

More generally, since Eg has signature 8 and H has signature 0, we deduce:

Corollary. If M is smootk and has no 2—torsion, for example when M is simply-
connected, and its intersection form is

Qu=®+tmEg®nH,
then m must be even. O

As we will see shortly, all even indefinite intersection forms do in fact fall
under the jurisdiction of this corollary.

We should note that the absence of 2—torsion is essential: the complex En-
riques surface (doubly-covered by K3) has intersection form —Eg = H but
fundamental group m; = Z,; its 2-torsion allows the intersection form
to be even without w, vanishing, and hence Rokhlin’s theorem does not

apply.

54, Furthermore, all three results appeared in the same four-pages-long paper, New results in the theory
of four-dimensional manifolds [Rok52].

55. From section 2.3 (page 86).
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It is also worth noting the fact that, for the thirty years between Rokhlin’s
and Donaldson’s work, 170 new methods of excluding intersection forms
from the smooth realm were discovered. Indeed, Rokhlin in the 1950s ex-
cluded Eg from ever being the intersection form of a smooth 4-manifold,
but the form Eg & Eg was only excluded by Donaldson in the 1980s.

Other consequences. Rokhlin’s theorem is a fundamental result in topology.
Its consequences extend quite far, as we will comment in the various notes
at the end of this chapter. For example, Rokhlin’s theorem sends its ten-
tacles into dimension 3 (the Rokhlin invariant, defined in the end-note on
page 224), as well as into high dimensions (the Kirby-Siebenmann invari-
ant, governing whether a topological manifold admits smooth structures,
see the end-note on page 207); the theorem is essentially equivalent to the
fact that for big n we have m,135" = Zy4 instead of Z;,.

Rokhlin’s theorem also admits generalizations in dimension 4, such as:

Corollary (M. Kervaire & ]. Milnor). Let M be any smooth 4—manifold. If X
is a characteristic sphere in M, then we must have:

signM = X-X  (mod 16) . a

This last result was put to use for determining which characteristic ele-
ments cannot be represented by embedded spheres, and a fuller discussion
will be carried through in section 11.1 (page 482).

An even further generalization of Rokhlin’s theorem, due to M. Freedman
and R. Kirby, is the formula

signM = X-X + 8Arf(M,X) (mod 16),

involving general characteristic surfaces X and needing a correction terin
Arf(M, X), with values in Z, and depending only on the homology class
of X. This last statement will be fully explained and proved in the end-
notes® of chapter 11. Since the Freedman—Kirby formula will be proved
from scratch, in particular it will offer a complete proof of Rokhlin’s theo-
rem. If one wishes so, one can skip ahead and read it right now.%’

56. Statement and heuristics starting on page 502 and detailed proof starting on page 507. An alterna-
tive spin-flavored proof starts on page 521.

57. It is recommended, though, to first visit with the end-notes of chapter 10 (the characteristic cobor-
dism group, page 427) and the end-notes of chapter 11 (the Arf invariant, page 501). This late placement
of the proof of Rokhlin’s theorem owes more to reasons of space organization of this volume, than to
Inoical struchire.



4.5. Notes 173

4.5. Notes
— Spin structures, the structure group definition ................... ... ... 174
— Equivalence of the definitions of a spin structure ......................... 181
— Bundles, cocycles, and Cech cohomology ..................ooooviiiiina.. 189
— Obstruction theory .....................o. 197
— Classifying spaces and spin structures ..........................o.o 204
— Topological manifolds and smoothings ............................. .. .. 207
— The Rokhlin invariant of 3-manifolds ................................... 224
— Cobordism groups . ... ....oiuii i 227
— The Pontryagin-Thom construction ...................................... 230
— Bibliography ... ... 234

Introduction

Half of the following notes can: be viewed as comments on the concept of spin
structure. Part of this emphasis can be justified by the foundational role that their
complex cousins—spin® structures—play in the definition of the Seiberg-Witten
invariants that we will encounter in chapter 10. Another (non-disjoint) half of the
notes can be viewed as comments on Rokhlin’s theorem.

In the main text we defined spin structures as extendable trivializations. The more
usual definition is in terms of a reduction of the structure group of Ty to the group
Spin(4). The first note (page 174) is devoted to explaining this definition. For this
purpose, the concept of cocycle defining a vector bundle is first introduced. The
note ends with a comment on the non-spin case and with the definition of principal
bundles and their relation to spin structures.

The second note (page 181) contains a hands-on proof that the two definitions of
spin structures are indeed equivalent. It is a direct argument involving triangula-
tions and cover spaces, and was included owing to its absence from the standard
literature.

The third note (page 189) develops the concept of cocycle for a bundle in its natu-
ral context: Cech cohomology. We develop this notion just enough to encompass
bundle cocycles, but not general sheaf-cohomology. This leads in particular to
concrete representations of the Chern class of a complex line bundle and of the sec-
ond Stiefel-Whitney class of an oriented vector bundle, together with its relation
to spin structures.

The fourth note (page 197) is a quick presentation of obstruction theory for bun-
dles; this is a method for encoding the obstacles to building a section of a fiber
bundle into suitable cohomology classes. To this is added, in the fifth note (page
204), the concept of classifying spaces for G-bundles. Besides relating these to
spin structures and w,(Ty), both obstruction theory and classifying spaces are
needed in the subsequent note.
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The sixth note (page 207) presents the theory of endowing topological manifolds
with smooth structures, as developed among others by S. Cairns, J. Munkres, J. Mil-
nor, M. Hirsch, B. Mazur, R. Kirby, and L. Siebenmann. For this, tangent bundles
for topological manifolds are defined. In dimensions at least 5, a suitable reduc-
tion of their structure group (a smoothing of the bundle) can be integrated to a
smooth structure on the manifold itself. The obstacles toward this group reduc-
tion are investigated using classifying spaces and obstruction theory, and lead to
the Kirby-Siebenmann invariant as primary obstruction, as well as to higher ob-
structions. This theory is weak in dimension 4, but the Kirby-Siebenmann invari-
ant is still defined, and we conclude the note (page 221) by commenting on its
4—dimensional behavior, its strong relation to Rokhlin’s theorem, and with a nod
toward exotic R*’s.

We should mention that this note on smoothing theory is a node in the parallel threads of this
volume. Inwards, it is a far-reaching consequence of Rokhlin’s theorem; a full understanding of
it is helped by reading the earlier note on exotic spheres, at the end of chapter 2 (page 97), and
the notes ahead on obstruction theory (page 197) and on classifying spaces (page 204). Outwards,
it underlies Freedman's classification to be presented in the next chapter. It offers the right con-
trasting background for the results on smooth 4-manifolds that come from gauge theory, starting
with Donaldson’s theorem in section 5.3 (page 243) and passing through the exotic R* s of sec-
tion 5.4 (page 250); and it further motivates the Freedman-Kirby generalized Rokhlin theorem to
be explained at the end of chapter 11 (page 502).

The seventh note (page 224) presents briefly the Rokhlin invariant of 3—manifolds
that appears as a consequence of Rokhlin’s theorem. Along the way, the Novikov
additivity of signatures for 4-manifolds glued along their boundaries is stated.

The eighth note (page 227) presents the groups that appear by considering two
manifolds equivalent if they are cobordant. The oriented cobordism group and
the spin cobordism group are displayed.

The ninth note (page 230) explains the Pontryagin-Thom construction. This tech-
nique was already used during the geometric proof of Whitehead’s theorem and
is placed here in its proper place, as a framed cobordism theory. Relations with
homotopy groups of spheres are outlined.

Finally, on page 234 are gathered the usual end-of-chapter bibliographical com-
ments. The next chapter starts on page 237; for the sake of continuity the reader is
strongly recommended to skip all these notes at a first reading and resume reading
there.

Note: Spin structures, the structure group definition

The customary definition of a spin structure is in terms of the Spin group, namely
as reduction of the structure group of Ty from SO(4) to its simply-connected
double-cover Spin(4). In this note we discuss this definition. The equivalence
with the definition presented in the main text will be detailed in the next note
(page 181). The structure group approach will also be taken up in section 10.2
(page 382), where we will present spinC structures in order to define the Seiberg-
Witten invariants.
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Describing vector bundles by using cocycles. A vector bundle E of rank k over X"
(also called a k—-plane bundle over X) is an open (m + k)-manifold E together
with a map p: E — X such that its fibers p~![x] are vector spaces isomorphic to
R¥, and p locally looks like projections U x R¥ — U. In other words, there is an
open covering {U,} of X and an atlas of maps

{@a: p! [Us] = Uy x IRk} ,
with pr; o ¢, = p, and so that the overlaps ¢, o q)E' are described by

(x, w) — (x, gap(x) - w)
for some suitable change-of-coordinates functions!
gup: Un NUg — GL(k),
thus ensuring that the R¥—factors are identified linearly.
The maps g,p are in fact all that is needed to describe E: One can just glue-up
E from trivial patches U, x R by identifying (x,w,) from U, x R¥ with (x,wg)
from Ug x R¥ whenever w, = Sap(x) - wg.
For an open covering {U,} of X together with a random collection of maps
{8ap: Us NUg — GL(k)}

to actually define a k—plane bundle, certain simple compatibility relations need to
be satisfied. These are:

Saa(x) = id, 8pa(x) = gaﬁ(x)_l ’ Suy (%) = gup(x) - gpy (%) -
These three can be contracted into just one condition:
8ap(x) *8py (%) - gya(x) = id.
The latter is called the cocycle condition. Any collection { Ua,vgaﬁ} satisfying it
will be called a cocycle. (The name of “cocycle” comes from Cech cohomology;
this setting will be detailed in the note on page 189 ahead.)

As a simple example of cocycle defining a bundle, if {®,: U, ~ U, C R™} isan
atlas of charts for the smooth manifold X™, then the cocycle

8ap(x) = d(Pao @z, ,
made from the derivatives of the overlaps, defines the tangent bundle Tx of X.

Sections. Given a section s: X — E of some bundle E — X, we can use the charts {@.: E|, =
U, x R¥} to express s in coordinates. We obtain a collection of maps {s,: U, — R*} given by
Sq = @« ©5. The various local maps s, are compatible through the relations

sa(x) = gup(x) -sp(x) -
Conversely, in terms of cocycles alone, given a set of maps {s«: U, — R*}, if they satisfy the
above compatibility with some cocycle {g,g}, then they define a section in the vector bundle
described by {gqp} -

Morphisms. Bundle morphisms can be described in terms of cocycles as well. Consider two
bundles E' — X and E" — X with fibers R™ and R", both over a same base X endowed with

1. In case one finds the notations GL(m) and SO(m) somewhat obscure, they are reviewed later, in
section 9.2 (page 333).
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a covering {Uy}. Let E' be described by charts {¢,} and E" by {¢}}, inducing corresponding
cocycles {gys: Uy N Ug — GL(m)} and {gy: Ux NUp — GL(n)}. Consider any linear bundle
morphism f: E' — E", covering the identity X — X. The morphism f can be expressed as a
collection of maps {j}‘: U, — Hom(]R"’,IR”)} obtained by writing f in coordinates through the
formulae @& (f(w)) = fi(x) - ¢4 (w) forall w € E' and x = p(w) € X. These f, s satisfy the

relations fa(2) g (x) = () fo() -

Conversely, in terms of cocvcles alone, given a set of maps {fy: Ux — Hom(R™,R")}, if they
satisfy the above compatibility with some cocycles {85} and {g,s}, then they must define a
bundle morphism from the bundle defined by {g, (3} to the one deﬁned by {gis}-

Two GL(k)-valued cocycles {g;5} and { 8rs}, associated to a same covering {Us },
describe the same bundle (up to isomorphisms) if and only if there exists a collec-
tion of maps {fa: U, — GL(k)} such that

8ap(0) = fu(x) - gap(®) - fp(x) ™!
Indeed, these f,’s are just a description in local coordinates of a vector-bundle
isomorphism between the bundles defined by {g;,}"and {g,}

By ignoring the underlying vector bundles, we will say dlrectly that two cocycles
{gxp} and {g{;} are isomorphic whenever they can be linked with f,’s as above.

For comparing two cocycles {g/,,,} and {g7, ﬁ”} associated to two different cov-
erings {U},} and {U},} of M., ‘we can first move to the common subdivision
{us, n U”,,} then ploceed as above.

Keep in mind that any bundle over a contractible set must be trivial, and thus, if
one starts with a covering {U, } of X by, say, disks, then such a covering can alone
be used to describe all bundles over X.

Reductions of structure groups. Let E be a k—plane bundle, and let G be some sub-
group of GL(k). If we manage to describe E using a G-valued cocycle gt pr Ua D
Ug — G, then we say that we have reduced the structure group of E from GL(k)
to its subgroup G.
This notion can also be described in terms of cocycles alone: Given some cocycle
gap: Ua MU — GL(k), we say that we reduced its structure group to G if we can
find a G-valued cocycle g;5: Ux N Upg — G so that {g;4} is isomorphic to {g.s}-
For example, every vector bundle E can be endowed with a fiber-metric (i.c., an
inner product in each fiber, varying smoothly from fiber to fiber). Then, by restrict-
ing our choice of charts ¢, : Elu,\ ~ U, x R* to those @a's that establish isomctries
between the fibers of E and R¥ (with its standard inner product), we are led to a
description of E by an (){k)-valued cocycle

Sap: UxNUg — O(k) .
We then say that a fiber-metric has reduced the structure group of E from GL(k)
to its subgroup O(k).
If our bundle is orientable and we choose an orientation, then, by further restrict-
ing the ¢, s to those providing orientation-preserving isometries from the fibers of
E to R, we obtain a SO(k)-valued cocycle for E

gﬂB: Ua OUB — SO(k) .
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We say that an orientation has further reduced the structure group of E from O(k)
to its subgroup SO(k).

A spin structure on E can itself be described as a further “reduction” of the struc-
ture group of E from SO(k) to the group Spin(k). However, since Spin(k) is nota
subgroup of GL(k), this “reduction” has to be developed abstractly, at the level of
cocycles and not directly on the vector bundles.

Definition of a spin structure. While the notion of spin structure can be developed
for general vector bundles E, for concreteness in what follows we will restrict to
the case of the tangent bundle of a 4-manifold. The extension to the general case
should be obvious enough.

Start with an oriented 4-manifold M and pick a random Riemannian metric on it.
This reduces the structure group of Ty to SO(4), and thus Ty can be described
by an SO(4)-valued cocycle {Us, g.p} with

Sap: UxNUg — SO(4) .
The group SO(4) is connected, but has fundamental group
M 50(4) = Zz .

This fundamental group is generated by a path of rotations of angles increasing
from 0 to 27t. On the other hand, if one keeps rotating until reaching 4, then the
resulting loop in SO(4) will be null-homotopic; this can be observed in figure 4.17
on the following page, if properly interpreted. In conclusion, a loop ¢: ' — SO(4)
is homotopically-trivial if and only if it twists R* by an even multiple of 27, and
nontrivial if it twists by an odd multiple.

The fundamental group is unfolded in SO(4)’s universal cover, specifically in the
Lie group )
Spin(4) ,

which double-covers? SO(4).

Ledger. One can think of the Spin group as a method for bookkeeping 2m-rotations: Consider
a random loop (: [0,1] — SO(4), with £(0) = £(1). On one hand, if { is homotopically-trivial,
then it can be lifted to a loop € in Spin(4), with £(0) = £(1). On the other hand, if ¢ describes a
rotation of 2m, then it can only be lifted to an open path with {0) = —¢(1).

A spin structure on M is defined as a lift of the SO(4)~cocycle {g.s} of Ty to
a Spin(4)-valued cocycle, considered up to isomorphisms. Specifically, given the
SO(4)—cocycle
Sap: u,n Uﬂ — 50(4)

of Ta, we lift these maps against the projection Spin(4) — SO(4) to get maps®

Sap: Ua NUpg. — Spin(4) .

2. As abit of help in visualizing Spin(4) — SO(4) with its 7S0(4) = Z, one can invoke for a moment
the thought of 2 — RIP%. Or, even better, of 5* — RIP3. “Better”, because in fact $* = Spin(3) and
RIP* = SO(3). In dimension 4, we have Spin(4) = % x §* and SO(4) =S* x §*/+1.

3. Such a lift is always possible: choose the covering {U} so thatall U, N Ux’s are simolv-connected.
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XX

[ O]

4.17. 71 SO(n) = Z; (when n > 3)

The problem is that, since Spin(4) — SO(4) is a double-cover, on triple-intersec-
tions Uy N Ug N U, such lifts a priori satisfy merely the conditions

gaﬂ 'gﬁ“r “8ye = tid.
The appearance of an actual minus-sign makes {4} fail from being a cocycle.

Hence, the manifold M is said to admit spin structures if and only if one can find
a good SO(4)—cocycle { U, g,,qg} of Ty that can be lifted to Spin(4)-valued maps
{Ua, Sap } for which no minus-signs appears in the equality above, and which thus
make up a Spin(4)-cocycle.

No oddities. Intuitively, a Spin(4)-valued cocycle {.p} for Ty exists if and only if odd mul-
tiples of 2n can be avoided when gluing up Ty . Explicitly, take a circle C bounding a disk in
M and imagine that there are a few locally-trivialized patches U, x R* of Ty covering C that,
when matched up, describe a rotation of 2m when travelling along C (see figure 4.18 on the next
page). Then, since these patches describe the nontrivial class in 7, SO(4) = Z,, they and their
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C

4.18. A non-extendable trivialization of Ty; over the circle C

gluing maps g,4 cannot be used toward lifting to a Spin(4)~cocycle. This will be made more
clear later.

Homotopic simplifications. Choosing an orientation on M reduces the structure group of Ty
from the disconnected group O(4) to the connected group SO(4). Choosing a spin structure on
M reduces the structure group of Ty to the simply-connected group Spin(4). This process of
homotopy-simplification of the structure group ends here. We already have m,S0(4) = 0 (and
thus 7, Spin(4) = 0). Further asking of a Lie group G to have 3G = 0 would force G to be
contractible, and thus the bundle to be topologically trivial.

In the remainder of this note, we will comment on what happens when M does
not admit spin structures and explain the principal bundle point-of-view on spin
structures. The latter will help us argue in the next note (page 181) that the two def-
initions of spin structures, the one with cocycles and the one with trivializations,
are indeed equivalent. The third note (page 189) will develop bundle cocycles in
their natural habitat, Cech cohomology. The fourth note (page 197) will present
a smattering of obstruction theory and apply it to spin structures, while the fifth
note (page 204) will present the homotopy-theoretic point-of-view on spin struc-
tures. Some consequences of the cocycle definition of spin structures (spinor bun-
dles, Dirac operators) will be outlined in section 10.2 (page 382), as a quick prelude
to the introduction of spin€ structures. The standard reference for spin structures
is B. Lawson and M-L. Michelson’s Spin geometry [LM89].

When not spinnable. The existence of a spin structure is equivalent to the vanish-
ing of w,(Ty). We wish to note what happens when no spin structures exist, that
is, when w2 (Ty) # 0. In the cocycle point-of-view, this means that every Spin(4)-
valued maps {gyp}, lifted from the SO(4)—cocycle of Ty, must have triples a, B,y
with U, NUg N Uy, non-empty and such that gus(x) - §5,(%) - §ya(x) = —id.

We pick an integral lift w € H?(M;Z) of w1(Ty) and represent w by an embed-
ded oriented surface X in M. Since the characteristic surface X is the incarna-
tion of the obstruction to the existence of a spin structure on M, there exist spin
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structures away from X, on the complement M\ X. None of these outside spin
structures can be extended across X. (In terms of cocycles, we can arrange that the
failing triples a, B,y occur when and only when we go around X.)

In the trivializations point-of-view, such an outside spin structure on M \ X offers
a trivialization of T); over the 1-skeleton, which restricts to a trivialization of Ty
over small circles surrounding X (e.g., fibers of the normal circle-bundle SNy,
of £ in M). Since the outside spin structure cannot extend across Z, it follows
that the trivialization of Tp; over each such circle around X must describe a twist
of 27, as in figure 4.19. In the note ahead on Cech cohomology (page 196), this
description will be made rigorous by using a concrete representation of w,(Ty).

1

-4.19. Outside spin structure, not extending across a characteristic surface Z

Principal bundle point-of-view. For any group G, a principal G-bundle is a lo-
cally-trivial fiber bundle with fiber G and structure group G. In other words, a
principal G-bundle over X is a space P, together with a projection map p: P; —
X so that there is some covering {U,} of X and maps ¢,: p~'[Us] & U, x G,
with pr; o @, = p and so that the overlaps ¢g o ¢; ! are described by formulae
(x.7) = (x. 8,5 7) for suitable functions g,5: Us N Uz — G, acting on G by
multiplication. Hence P; — X can be obtained by gluing trivial pieces Uy X G —
U, using the G—cocycle {§aﬁ}, identifying (x,7.) € Uy x G with (x,yp) € Ug x
G ifand only if 74 = g,4(x) - 7.

Notice that, unlike a vector bundle, a principal G-bundle does not admit any
global sections, unless it is trivial4

Bundle of franies. For example, the SO(4)-valued cocycle {g.;} of Ty acts directly
on the group SO(4) itself. Then, by gluing trivial pieces U, x SO(4), one obtains
from {g.s} a principal SO(4)-bundle

P50(4) — M.

4. The fibers of F; may look like G, and G itself acts on them, but they are merely “affine” copies of
G, without, for example, a specified identity element. A global section in 7; can be viewed as offering
a coherent choice of identity element, and thus yields an isomorphism 7. =~ X x G.
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The bundle Pgy ) depends only on Ty, not on the particular choice of SO(4)-

cocycle {g,3}. Geometrically, one should think of Psp4) — M as the bundle of
orienting orthonormal frames of Ty.

A local section 7: U — Psq4) is a frame-field in Ty over U. Itis thus equivalent
to a trivialization of Ty over U. In particular, a trivialization of Ty; over the 1-
skeleton M|; of M is the same as a section M|; — Pygyy- The trivialization is
extendable over the 2-skeleton M|, if and only if the corresponding section of
Pso(ay can be extended across M.

Spin structures. Assume now that the SO(4)—cocycle {gap} lifts to some Spin(4)-
valued maps {Z,p} that satisfy the cocycle condition. Then we can use this lifted
cocycle to glue a principal Spin(4)-bundle

PSpiu(:L) - M

from trivial pieces U, x Spin(4). More, the double-cover Spin(4) — SO(4) defines
fiber-to-fiber a natural map P,;u4) — Fso(a) - fitting in the diagram

Spl”l(4) - ,PSpin(-t) — M

d | |
S0(4) C By —— M.

The map Pgin4) — Pso(a) 1s itself a double-cover of Pypy, -

A spin structure can thus be redefined as a principal Spin(4)-bundle Py,;, ,) that
double-covers the bundle Py 4y (and fits in the diagram above).

Note: Equivalence of the definitions of a spin structure

n what follows, we will prove hands-on the equivalence between defining spin
structures as extendable trivializations of Ty and defining them as lifted Spin(4)-
:ocycles. Reading the preceding note is, obviously, a requisite.

Of course, more streamlined arguments exist. (Here is the best one: both the exis-
ence of an extendable trivialization and of a Spin(4)-cocycle are equivalent with
he vanishing of w;(Ty); the end.) Nonetheless, in what follows we favor a con-
:rete approach, which is rather expensive; we choose to present it here owing to
ts absence from the literature.

Jur argument is rather long and involves some careful play with triangulations,
rrincipal bundles and double-covers, but the basic idea is pretty straightforward:
et E — ID? be a vector bundle over a disk, with fiber R*. Since ID? is contractible,
o must be trivial; for definiteness fix a reference trivialization E ~ ID? x R*.
“onsider some other random trivialization ¢: E|g ~ S' x R* over the bound-
ry of the base. Think of ¢ as a field of frames in E over 9ID?, that is to say,
s a map ¢f: 8! — SO(4). The trivialization ¢ will extend across all ID? if
nd only if the frame-field ¢y can be extended over D2. That happens if and
nly if the loop ¢f in SO(4) is homotopically-trivial, that is to say, if and only if
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¢r: 8! — S0O(4) can be lifted to a closed loop @ S' — Spin(4) (and not to an
open path @: [0, 1] — Spin(4), with §r(0) = —@¢(1)).

Throughout this note, assume that M has been triangulated, in other words, ex-
hibited as a simplicial complex.> Denote by M|, the l-skeleton of M, by M|,
the 2—skeleton, and so on. Further, for any bundle E over M, denote by E|; the
restriction of E to the k—skeleton of M (and not the k—skeleton of the manifold E).

From cocycles to trivializations. Assume first that a SO(4)—cocycle {g,5} of Ty
lifts to some maps {Z,p} that actually satisfy the cocycle condition. Then a cor-
responding principal Spin(4)-bundle Py,;, 4 is well-defined. We will show that
the existence of the bundle P, 4 implies that Ty can be trivialized over the 2—-
skeleton M|,. Specifically, we will show that the frame-bundle P,y admits a
section over M|,. For that, we define a section T of P4y over M|, and project
it to a section of Fyp4). The section T is defined using a simplex-by-simplex con-
struction.®

We start with the vertices of M and define each T(vertex) in some random manner
as an element of P, 4 in the fiber above it.

Any edge ¢ of M is contractible, and thus PS[,,,,(4 |¢ is trivial. Choose some triv-
ialization Pgpn4yle ~ € x Spin(4). The section T is already defined at the end-
points (vertices) of £. By looking through the trivialization, we see that the fact
that Spin(4) is connected implies that T can always be extended over ¢, and thus
eventually across the whole 1-skeleton M]|;.

There remain the 2-simplices. Any 2-simplex D is contractible and thus P;,4) Ip
can be trivialized as D x Spin(4). The section T is already defined over the edges
that make up the boundary 0 D. Looking through the trivialization and using that
Spin(4) is simply-connected allows us to extend T over D, and eventually across
the whole 2-skeleton M|,.

The resulting section T: M|, — Pspin(a) can be projected through the double-cover
PSP,-,,(4) — PSO(4) to a section T: M|, — 7750(4). The latter is a field of frames in
T that trivializes Tpr over M|,.

Notice that, since we have mS0(4) = 0 (and thus n; Spin(4) = 0), a bit more can be done: the
section T of Py, can be further extended across the 3 -skeleton of M, yielding a trivialization
of Ty over M|3, which can be viewed as a trivialization over M\ {point}.

5. A triangulation is a decomposition of M into simplices. A 0-simplex, or veriex, is a point. A 1-
simplex, or edge, is a copy of [0, 1]; its faces are its endpoint-vertices. A 2-simplex is a triangle (interior
included); its faces are its three edges. A 3-simplex is a tetrahedron (interior included); its faces are
the obvious four 2—simplices. A 4-simplex is whatever you want to call what follows; its faces are 3~
simplices. If a simplex is part of a triangulation, then all its faces must be simplices of the triangulation.
All simplices of a triangulation of M must be embedded in M and must either have exactly a whole
sub-simplex (= face, or face-of-face, or...) in common with another simplex or be disjoint from it. In
short, a triangulation of M means making M look like a polyhedron with simple “triangular” faces.

6. This simplex-by-simplex method is just a most simple application of the method of obstruction theory,
which will be explained in generality in the note on page 197 ahead. If you do not like the word
“simplex”, you can substitute “handle” or “cell” throughout.
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Uniqgueness. It is worth noting that the trivialization T of Tp|; that we obtained above is uniquely
determined, up to homotopies, by the spin structure Psp;,(4) - Indeed, assume two random sec-
tions T and T' of Pyy;(4) are given over M|;. We will define a homotopy between them over
the 1-skeleton of M. For that, we view a homotopy as a section of the bundle Ps,;, 4y % [0.1] —
M x [0,1] that limits to T over M x 0 and to T" over M x 1. Since T and T’ are given, such
a section is already defined over the vertices of M x [0, 1]. It can be extended across the edges
connecting M x 0 with M x 1, using as above that Spin(4) is connected. Then it can be ex-
tended over the 2-simplices of M x [0, 1] by using that m Spin(4) = 0. Thus, we have defined
a homotopy between T and T over M|;. This descends to a homotopy between the induced
trivializations 7" and 1" of Ty, proving uniqueness.

In conclusion, a spin structure defined via cocycles determines an extendable trivi-
alization of Ty, unique up to homotopies.

From trivializations to cocycles: Preparation. The converse argument involves a
rather cumbersome setup that will allow us to link 1-skeletons and trivializations
to cocycles and their lifts. It will take the rest of this note (through page 189).

Assume that M has been endowed with a fixed triangulation & . For definiteness,
fix a Riemannian metric on M. We will prove that any trivialization of Ty|; that
extends across M|, defines a Spin(4)—cocycle for Tj,.

First, remember that any triangulation 7 admits a dual cellular decomposition T *.

Given a triangulation J of M*, its dual cellular decomposition .7* is obtained by taking the
barycentric subdivision” ' of &, then, for each (4 — k)-simplex A, of 7, defining its dual
k—cell A} in I* by taking the union of all k-simplices of .7’ that touch the barycenter of A,.
For example, the vertices of J* are the barycenters of the 4~simplices of 7, the 1—cells of
™ are arcs normal to the 3-simplices of .7 (and link the vertices of .7* ), while the 4—cells of
F* are neighborhoods of the vertices of 7. See figure 4.21 on the following page. The dual
cellular decomposition is an especially nice cellular decomposition, in that it fails from being a
triangulation only by using more general “polygonal” cells rather than just “triangular” simplices;
otherwise, all cells are embedded, etc. (On the side, note that dual cellular decompositions can be
used fo offer a nice visualization of Poincaré duality.)

{ a new simplex

&> .

4.20. Barycentric subdivision of a 2-simplex

7. The barycenter of a simplex A is simply a canonical center for it. The barycenter of a vertex is the
vertex itself. The barycentric subdivision .7’ of .7 is obtained by taking as new k-simplices every join
of the barycenter of an old k-simplex of 7 with the barycenter of a face and the barycenter of a face of
that face and... For example, a 2-simplex in .7" is the triangle that appears by joining the barycenter
of a triangle of 7 with the center of one of its edges and with the vertex at one end of that edge. See
figure 4.20. The join of two subsets A and B of R" is the union of all segments that startin A and end
in B.
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4.21. Cellular decomposition dual to a triangulation

Since we have to deal with trivializations of Ty over the 1-skeleton M|; and their
extendability over the 2-skeleton M|,, we will only use cocycles { U, gxg} of T
that are nicely compatible with the chosen triangulation .7 of M.

Namely, we will take the U, s to be small neighborhoods of the 4—cells A}, of the
dual decomposition Z* of M. The 4—cell A} is a closed set surrounding a vertex
v, and touching the barycenters of all 4-simplices that contain v,. In particular,
each edge ¢ of 7 links the center of U, with the center of Ug and passes through
the overlap U, N Ug. The latter intersection is just a small neighborhood of the
3—cell (dual to ¢) that A% and A",‘; have in common.

Since each U, is contractible, TMlua is trivial. Using the Riemannian metric of M,

we choose trivializations 4
(e TMlU,\ ~ Uy xR

that are isometries on the fibers. We compare these trivializations over U, N Ug
and obtain transition maps

Sap: U NUg — SO(4)  with ¢ = gap - 9p -

These will be the cocycles {Us, gaﬁ} of Ty that we will consider. Notice that these
cocycles depend essentially only on the choice of trivializations @, over the U, ’s.

Trivializations and partial Spin—bundles. Given any trivialization

@: Tyly ~ Mj; x R*
of Ty over the 1-skeleton of M, we express @ in coordinates with respect to the
charts ¢x: Tmly, = Uy x R*. Namely, we describe © by a collection of SO(4)-

valued maps 1, defined on the part of the 1-skeleton of M that is included in U,
which we denote by Uy|; (see figure 4.22 on the next page).

Specifically, the maps T Usly — SO(4)

are defined by the equations 7, (x) - w = ¢,(®~'(x,w)) and will satisfy compati-

bility relations
Ty = gllﬁ . T‘; .

An alternative view of the 7, s is as defining a section

T: M|; — Psow i
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Ualy

4.22. Open set U, and the 1-skeleton of M

corresponding to the frame-field induced by the trivialization ©.
Consider a random lift of the maps 1, : Ux|; — SO(4) to some maps
Tyt Uyly — Spin(4) .
Given such a collection {7, }, we can correspondingly choose lifts
Sap: Un NUpg — Spin(4)
of the gap’sin such manner as to fit the various T, s, namely so that
Ta = 8up Tp -

Since this fitting amounts merely to a choice of sign for each g,s and owing to the
special shape of our covering {U,}, such a lift can always be made.

Of course, {,s} is most likely not a cocycle. Whether it is or not depends only on
the 7, s, not on the random lifts T,. To see this, consider two random lifts {7/}
and {7,}. They can differ at most by a collection of signs e¢x € Z; = {—1,+1}

with T = €, T,. The corresponding transition maps are then related by g% 5=

€x g 8yp- Clearly, we have gis - & - 87, = +1ifand only if g5 - g3, - §10 = +1.
In particular, when one choice of 7,’s leads to a cocycle, then so will any other
choice, and the various choices lead to isomorphic cocycles, i.e., a unique spin
structure.

By definition, the maps g, satisfy g, = ;). Therefore, if we avoid all triple
intersections Uy N Up N Uy, then the lifts g, can be used to define a principal
Spin(4)-bundle away from the U, N Ug N U, ’s. In particular, we get a bundle

Pg[)in(ét} ll
well-defined over the I-skeleton of M.

Of course, P4 |1 is a double-cover of Pyg 4y |, built fiberwise from the projec-
tion Spin(4) — SO(4). Furthermore, the maps 7, can be viewed as defining a
section T: Mll i Pspin(4) '1.

Trivial versus nontrivial covers. Since the bundle P,;, 4|, defined above is a
principal bundle, having a section T implies that it is a trivial bundle over M|;.
Nonetheless, it can project in a nontrivial way onto Pgp 4 |;- In what follows we
will investigate how this nontriviality can be detected. Since Py,i4)l1 — Pooa) I
is a cover projection, fundamental groups will play a prominent role in the argu-
ment.
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Restrict to the boundary 0D of a fixed 2-simplex D. Since both Py4)lap and
Pspin(a)lap admit sections T and 7, they are trivial, and thus Psglap ~ 9D x

SO(4) and Pypinaylop ~ 9D x Spin(4). Therefore
7 (Psowylop) =Z®Z>  and  m(Pynaylap) = 2.
Denote by d the double-cover map

4: Popin()lop — Pso)lap -

fitting in the diagram
PSpin(4)|8D —T" PSO(4)|BD Z ———*—> VASY )
l l or,on 7;’s: l lprl
oD oD Z zZ

Being a cover map, d’s induced morphism d, must be injective. We deduce that
there are only two choices: either

d«(1) =180 or d«(l)=101 € Z&Z,.

The case dx(1) = 1 ® 0 corresponds to the case when the cover Py, lap —
Pso(aylap is trivial, while d«(1) = 1 & 1 happens when the fiber of Pg,;n4)l5p
twists once as we go around 9 D, as suggested in figure® 4.23.

% Popiniaylan L@
| |

4.23. Trivial and nontrivial covers

To better visualize how this can happen, consider the trivial bundles S' x §* and §! x RP? over
S'. There are two possible double-cover projections d of $' x §* onto §' x RIP? that both com-
mute with the bundle projections and hence fit in a diagram

Sl x &3 — S! x RP?
B st
One possible double-cover is the obvious one, the product of the identity on S' with the double-
cover $*> — RIP3. The other can be seen as follows: start with [0,1] x 8> and glue the ends
0 x S3 and | x S? using the antipodal map on S3; project each S* to RP? to get a double-cover
of 8! x RP?. However, since the antipodal of 5 is homotopic to the identity, what we glued is
still §' x S3. The first map has d.(1) = t %0, while the second has d.(1) = 1 ® 1. In fact, this
example is pretty close to our concerns, since $* = Spin(3) and RIP* = S0(3).

8. Owing to dimension-reduction, figure 4.23 is misleading;: on both sides, the space Byu(4)lo p should
he the scame trivial bundle over 9 D.
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Detecting nontriviality with cocycle candidates. The two cases d«(1) = 140 and
d«(1) = 1@ 1 are detected both by the lifted Spin(4)-valued maps g, and by the
section T of P4 [1- We start with the gyp's.

Since D is a 2-simplex of M, it is surrounded by three of the open sets from
our covering, say U,, Ug and U,, with the center of D right in the middle of
u,n Uﬁ N U,, as suggested in figures 4.24 and 4.25.

4.24. Set-up for equivalence argument, I

4.25. Set-up for equivalence argumernt, II

We claim that, for the indices «, 8, v around D, we have

8up 8py &ya = +1
if and only if the cover P,;,1)lap = Psoa)lap is trivial, that is to say, if and only
ifde(1) =160.

Assume first that the product of the gups around D is +1. Then the g,3’s can
safely be used to extend P, (4)lap over D as abundle Py, 4 [p, fitting in

Popinwlap € Popin(a)lp zZ —— 0

dl 1 or,on 7;’s: d,l J .

pl‘
Powlap € Fowlp ZOZy —— Z»
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Thus the only possibility for ds is
de(1) = 180.

Conversely, assume that d«(1) = | & 0. Then Pspin(4) lap = Psoa) |sp must be
the trivial double-cover, with

PSpin(-'l)'aD ~ PS’O(-I)ISD X {—1,+1} .

Therefore it can be extended to a double-cover P of Pgp4) across the whole D,
with Plyp = Pgin)lap- Such a double-cover, when projected down to D, can
only have as fibers copies of Spin(4). Moreover, since P projects to Psg 4| p, its
cocycle must project to the cocycle g,5 of Pgp 4y - Further, since P — D is glued
over d D by the g,g’s, it must be that it is glued over the whole D by the g,z’s.
This in particular implies that the gys’s, since they glue an actual bundle over D,
must be a genuine cocycle over D, and thus

871\‘/; ‘§ﬁf,- -§q“ = +1.
In conclusion, gug - 85, - §ya = +1 ifand only if dx(1) = 1 & 0.
Detecting nontriviality with trivializations. Now we will see how to distinguish

between the two cases d4(1) = | =0 and d.(1) = 1® | by using the trivialization
©: Tuly =~ M|y x R*.

The trivialization © expresses itself through the section T of Psy(4)ly, with local
coordinates 7, : U, — SO(4). Recall that we chose random lifts T, : U, — Spin(4)
and then picked the maps g4 in such manner as to ensure that the 7,’s would
define a section in the partial Spin(4)-bundle Ps,,4 |1 that is glued by the g,’s.

Over the boundary d D, we have the diagram

ngin(4)|aD T 7350(4)[6[) Z —— Z&Z,
?T ]‘T or,on 7;’s: %*T Tr*
oD oD Z Z

Since from commuting we must have that 7,(1) = d«(1), it follows that either

Trivialize Pgq(4) over D as D x SO(4) and use the inclusion
Psowylap € Psounlp = D x S50(4)

to obtain from 7: d D — Py 4ylyp a map 1: 9D — SO(4). Then the section T
of Psos)lap can be extended to a section of Pso(ay over all D if and only if the
induced map 1: 0D — SO(4) is homotopically-trivial. In other words, if and
only if we have 7,(1) = 1@ 0 and not I 4 1.

In conclusion, the trivialization ® of Tj; over the 1—-skeleton can be extended over
the 2-simplex D if and only if dx (1) = 14 0.
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Final twirl. Gathering our toys, we notice that we have proved the statement:

Given a trivialization © of Tply, it can be extended over a 2—simplex D surrounded by
the open sets Uy, Up, Uy if and only if gup - 8py - §ya = +1.

In particular, if © is a trivialization of Tj; over the 1-skeleton that extends across
the whole 2-skeleton, then it can be used to define lifted maps {g,s} that will
constitute a Spin(4)-cocycle.

The proof is concluded: an extendable trivialization defines a unique Spin(4)-
cocycle, up to isomorphisms.

Note: Bundles, cocycles, and Cech cohomology

In this note we describe the Cech cohomology of a manifold, with constant coef-
ficients in an Abelian group G. Then we extend this concept, on one hand, to
non-Abelian groups and, on the other hand, to non-constant coefficients. (We will
not take the next step of defining the general cohomology of a sheaf.)

This will enable us to present a cocycle defining a bundle as a Cech cocycle that de-
fines a cohomology class in H!(M; C*GL(k)). Consequently, H' (M; C*GL(k))
can be viewed as the set of all k—plane bundles over M, up to isomorphisms. This
approach will allow us to get concrete descriptions of a few characteristic classes
and will be used to touch upon the obstruction and uniqueness of spin structures
on M.

Cech cohomology. One should think of Cech cohomology as a cohomology theory
that uses open coverings and the way their open sets assemble (intersect) patching-
up the manifold M, in order to detect the topology of M.

Let {U} be a covering of M by open sets, and G an Abelian group. We consider
collections of G-valued functions defined on intersections of the U,’s. Pick an
integer n and choose a set of locally-constant functions

¢ = {Prgoay: Ui N~ NUs, — G},
each defined on the intersection of 7 + 1 of the open sets Us. This collection is
called a Cech n—cochain with values in G. We denote by
C"({Ua}:G)
the Abelian group of all such Cech n—cochains.

The coboundary operator §: C" — C"*! sends each ¢ to an (1 + 1)—cochain d¢,
a set of functions defined on intersections of n 4+ 2 of the L, ’s, each described as
an alternating sum of restrictions of ¢’s. Namely, we set

(5({))1\0..4\',,“ : u’xo n---nN uﬁ,”_l - G
(5(P)(x(,..,z\‘,,+] (X) = Z(—l)k (Pao...ﬁk...a"H (x)
(where @ signals the removal of ay).

If an n—cochain ¢ has 6¢ = 0, then ¢ is called a Cech cocycle. If ¢ = da for some
(n — 1)=chain &, then @ is called a Cech coboundary. The Cech cohomology group
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H*({U4}; G) of the covering {U,} of M is then defined in the usual fashion, as
cocycles modulo coboundaries:

H"({}:6) = {9 € C"({Ua};6) |89 =0} / {sa|a e "' ({Uu}:G)} .
A priori these groups depend on the chosen open covering {U,}. Eliminating this
dependence, the Cech cohomology group of M is defined as the direct limit

H*(M;G) = lim H*({Us},G) ,
taken over refinements of the open cover.

If M is a manifold, then H*(M; G) coincides with the usual singular cohomology
of M, as we will prove directly in an instant.

Taking the direct limit is rather unpleasant, and it is almost never done. Indeed,
it is enough to consider a fine enough covering, for example a covering {U,} of
M by contractible open sets, with all intersections Uy, N - - - N Uy, contractible as

well.? For such coverings we have H*(M;G) = H*({U,};G).

Simple examples. The group H°({U};G) comes from O—cocycles, that is to say,
from collections ¢ = {¢x : Uy — G} of locally-constant functions defined on the
U, ’s and satisfying d¢ = 0. In this case, the cocycle condition is

bp =0 = ¢ =9 onlyNly,
and therefore immediately
H°({U,};G) = {locally-constant functions M — G } .
Hence HO detects the components of M: if M is connected, then HO(M;G) =G.

The first group H'({U,}; G) comes from I-cocycles, that is to say, from families
Q= {%‘ﬁ 1 Uy NUg — G} satisfying 69 = 0, where
6p=0 = Puy = Pap+ Ppy, oMU NUgNU, .

In particular, notice thata I-cocycle must satisfy the skew-symmetry ¢,5 = — g, .
These 1-cocycles yield cohomology classes in H?({Uy}; G) by considering them
up to the addition of a coboundary. That is, for any two cocycles ¢’ and ¢”, we

have: ¢]=1[¢"] nB = =gkt fa—fp

for some O—cochain f = {f,: U — G}.

And the usual suspects. We now prove directly that nothing new is obtained:

Lemma. If X is a simplicial complex (e.g., a triangulated manifold), then
H*(X;G) = H*(X;G),

where on the right we have the simplicial cohomology of X.

9. A typical geometric method for building such coverings is to pick a Riemannian metric on M and
choose geodesically convex open sets for the U, 's. A more topological method would use a triangulation
of M and take the U, ’s to be the stars of the vertices of M.
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Proof. For every vertex v of X we define its star, denoted by star(v), as the
union of all simplices of X that contain v. List the vertices of X as {v,} and
define the open sets U, as

U, = interior of star(vy) .
Then we have that

Uy N NUy, #@ ifandonlyif vy, ..., 0, spanan n-simplex.
See also figure 4.26.

\VAVAVAVAVAVAVY

4.26. Linking Cech cochains with simplicial cochains

Each of these intersections is connected, and therefore every Cech n—cochain
@ is constant on it. Thus, a Cech n—cochain ¢ simply assigns to every n—
simplex (vy, ..., Va,) of X an element ¢, , of G, and hence corresponds
bijectively to a simplicial #—cochain.

Finally, it is not hard to check that the Cech and simplicial coboundary opera-
tors correspond perfectly, and thus

H*({U};G) = H*(X;G) .

Going to the limit with the coverings is not a problem, e.g., by using subdivi-
sions of the simplicial complex. O

Even though nothing new appears at the outset, Cech theory admits a remarkable
extension from coefficients in a group to coefficients in a presheaf and leads to the
sheaf cohomology that is essential in complex geometry. We will not fully pursue
that avenue, but the reader is encouraged to consult P. Griffiths and J. Harris’s
Principles of algebraic geometry [GH78, GH94].

Another remarkable extension of the theory is to non-commutative groups:

Non-commutative Cech cohomology. One should notice that the whole cohomol-
ogy apparatus depends on G being Abelian, and thus the extension to the non-
Abelian case will have serious restrictions. Namely, H! (M; G) ceases to be a group
and H?(M;G) ceases to be altogether. However, since vector bundles are glued
using non-commutative groups such as GL(k), SO(k), U(k), we do need to pur-
sue this direction. Thus, let G be a non-Abelian eroun. written multinlicatinels. We
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can define Cech cochains just as before. However, when it comes to defining the
coboundary operator, we need to be careful.

We are only interested in H'(M;G), so let ¢ = {@,5: Uy NUg — G} bea G-
valued 1-cochain. Switching from additive to multiplicative writing, we write

((541)“[;,), = Pup Py Prya -

A l—cocycle must then be any ¢ with (6¢),4, = 1 for every &, B,y. In particular,
every cocycle has ¢, 5 = gol;t\'.

Now let f = {fa: Ux — G} be a 0—cochain. Its coboundary is, naturally,

(0f)ep = fu f5"-
Nonetheless, when it comes to defining when two 1—cochains ¢’ and ¢” are co-

homologous, that is, when ¢’ and ¢” are considered to differ by éf, the non-
commutativity of G makes essential a specific choice of order. The right one is:

] =1¢"] = dp=Lfoop S
Then we can define in the usual manner the Cech cohomology set H'({Ux}:G)
of the covering {Uy, }, and thereafter its limit H'(M; G) = lim H' ({Uy};G) . Since
the coboundaries cannot be expected to make up a normal subgroup of the cocy-

cles, this H! is not a group, but merely a set with a distinguished element, the
class of the trivial cocycle given by 1,5 = 1.

The similarities with the cocycles that glue bundles should be obvious by now.
Nonetheless, to fully engulf that case we need to extend the notion of cochain a bit
to allow for non-locally-constant functions.

Non-constant cochains. We extend the notion of cochain. Namely, given a topo-
logical group G and a covering {U,} of M, we define a continuous n-cochain
¢ = {@x,..a, } asa collection of continuous functions

(pn,.,“:\,, : ul\'() n---N uﬂ‘n — G.

The rest of the theory flows just as before and leads to what one should properly
call the Cech cohomology with cocfficicnts in the sheaf of continuous G-valued functions,
and denote it by something like

H*(M; C°(G)) .
Notice that, if G is a discrete group (such as Z), then the cochains will be forced to
be locally-constant, and so in particular H*(M; C%(Z)) = H*(M; Z).

Assuming that M is a smooth manifold and G is a Lie group, we can further require
the cochains to be made of smooth functions, thus leading to the Cech cohoniology
with coefficients in the sheaf of smooth G-valued functions,

H*(M; C*(G)) -
It is important to note that, if one merely chooses G to be the additive groups R

or C, then nothing much happens, since it is proved that H" (M; C*(R)) = 0 for
every n > 1.
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Finally, note in passing that, if M and G happen to be complex manifolds, then we can require
the cocycles to be holomorphic. This leads to the Cech cohomology with coefficients in the sheaf
of holomorphic G -valued bundles, denoted by F*(M; O(G)). If one then takes G to be the ad-
ditive group C, then H"(M; O(C)) —usually denoted by H"(M;O)—is very much nontrivial,
and plays an essential role in complex geometry.

A further generalization of Cech cohomology allows, in a sense, for the coefficient-
group G to vary from point to point, and that leads to sheaf cohomology, but not
in this volume. For ramifications in complex geometry, see P. Griffiths and J. Har-
ris’s Principles of algebraic geometry [GH78, GH94]. For algebraic topology
applications, see R. Godement’s Topologie algébrique et théorie des faisceaux
[God58, God73]. For topological use in combination with differential forms, see
R. Bott and L. Tu's Differential forms in algebraic topology [BT82].

Finally, we reached the bundles. We now combine the two extensions above, al-
lowing both non-commutative groups and non-constant cochains. Assume that G

is a subgroup of GL(k). Then
H'(M; C*(G))

is the set of all k—plane bundles with structure group G, up to isomorphisms. Its
distinguished element [{1,g}] is the trivial bundle M x RF — M.

To convince ourselves, let us notice that a class in H'(M; C®(G)) is determined

by a G-valued |—cochain
{g,x,g: umuﬁ — G}

that is coclosed, meaning that we must have g - g3y - 7« = 1. Two such cocycles
¢ and ¢” define a same class if they differ by a coboundary, that is to say,

=01 <=  gp=f s f'
for some collection {fs: Uy — G}. However, this defines nothing but a smooth

vector bundle, unique up to isomorphisms and with structure group G, as was
explained back on page 176.

More generally, for any group G the set H!(M; C*(G)) is the set of all principal
G-bundles, with distinguished element M x G — M.

Let us now look at a few examples:
Complex line bundles. Since any complex-line bundle can be endowed with a Her-

mitian metric, which reduces its structure group from GL(1) to U(1) = 8!, it
becomes clear that H (M; C°°(S'))

is the set of all smooth'® complex-line bundles on M. Since S' is Abelian, the
set H'(M: C™(S')) turns out to be a group; its operation corresponds to tensor
products of line bundles.

Further, §' = R/Z fits into the exact sequence of groups

0—Z—R-2,8

10. For liolomorphic line bundles on a complex manifold M, one would look at H' (M: O(C*)), usually
denoted by H'(M.O*).
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(with the groups Z and R written additively, but S! written multiplicatively).
This short exact sequence leads, as usual, to a long exact sequence in cohomology,
part of which is:

- — HY(M; C®°(R)) — H'(M; C®(8")) —
— H*(M; C®(Z)) — H*(M; C*(R)) — - -~

Since H"(M;C®(R)) = 0 and H"(M;C®(Z)) = H*(M;Z), exactness provides
an isomorphism
0 — H'(M; C*(8')) = HX(M: Z) — 0.

In terms of bundles, this isomorphism is established by sending a line bundle L to
its first Chern class:
L+—c(L).

In particular, this proves (again) that every 2—class of M can be represented by a
smooth complex-line bundle on M, and thus (by taking the zero-locus of a generic
section) by a surface embedded in M.

Cech cocycle for Chern. By explicitly following the isomorphism H'(M; C*(S')) ~ H*(M;Z),
we obtain a concrete description of a cocycle for ¢ (L): Let L be a complex-line bundle, defined
by a cocycle {gqg} with values in S'. Lift each map gag: U, NUg — S' to some map 8,5: Uy N
Ug — R so that gup(x) = e?"%p(x) and 948 = —Bg,. The cocycle condition gup - gpy gy = |
only lifts to 8,5 + 8y + 01« € Z. Then define the Cech 2~cocycle {cop,: Us NU N U, — Z}
by setting Cay = Oap + Oy + Oy -
Its cohomology class is ¢y (L) € H>(M;Z). This exhibits ¢;(L) as essentially a cohomological
bookkeeping of the 2t rotations used while building L. (For that matter, so is w»(L), but only
modulo 2.)

Orientable vector bundles. Since every k-plane bundle can be endowed with a
i ic, the set .

fiber metric, the se Jod (M: C0(K))

is still the set of all k—plane bundles on M. A vector bundle is orientable if its

structure group can be reduced to SO(k). The exact sequence

det

0 — SO(k) — O(k) — Zy — 0
(with Z, = {—1,+1} written multiplicatively) leads to an exact sequence of sets!!
- —> HY(M:;Z,) — H'(M; C*SO(k)) —

— H'(M; C®0(k)) =~ H'(M;Z,) .
The map denoted w, is the assignment of the first Sﬁéfel—Whitney class

E+— w;(E).
By exactness, if a bundle E € H'(M; C®O(n)) has w;(E) = 0, then E must come
from H'(M; C*SO(n)), that is to say, E can be oriented. If a bundle is orientable,
then its various orientations are all classified by the elements of H'(M:Z,).

11. An exact sequence of sets (each with a distinguished element) means that the image of one map
coincides with the preimage of the distinguished element through the next map.
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Cech cocycle for w1(E). Specifically, if E is defined by the O(k)-cocycle {8ap}, then w (E) €
H'(M;Z,) is determined by the Z;-valued Cech 1 —cocycle {detgus} -

Spin structures. An oriented k—plane bundle (with k at least 3) is said to admit a
spin structure if its SO (k)-cocycle lifts through the double-cover Spin(k) — SO(k)
to a Spin(k)-valued cocycle. The exact sequence

0 — Z; —> Spin(k) — SO(k) — 0

(with Z; = {—1, +1} written multiplicatively) leads to an exact sequence

- — H'(M;Z,) — H"(M; C*Spin(k)) —
— H'(M; C°S0(k)) 2~ H}(M;Z,) .
The map w, above simply ascribes the second Stiefel-Whitney class
E+— wy(E).

By exactness, if abundle E € H! (M', C°°S0(k)) has w,(E) = 0, then E must come
from a Spin(k)-cocycle from H'(M; C*Spin(k)). Further, the spin structures on a
bundle E with w;(E) = 0 are classified by H!(M;Z,).

Cech cocycle for wy(E). Let {gap: UaNU g — SO(k (k) } be a cocycle for an oriented
bundle E. Assuming that the U, N Ug’s are all simply-connected, we can always
lift the maps g, to maps

gaﬁi u,,; N U5 — Spill(k)

with g5 = gﬁ“ . The product g, 8ap - $py - §ya will take values in Z, = {—1,+1}.
We can then define a Z,-valued Cech 2—cochain {w,g,: Us NUgNU, — Z,} by
setting

Wapy = 8ap 8py " §ra -
Clearly, the cochain {w,g,} measures the failure of the F,4’s to define a spin struc-
ture on E. Moreover, {waﬂ,,} is a cocycle: indeed, it is not hard to check that

(60)apys = (8py - 8o~ 8op) - (8ar -85 - §ou) - (8up - Spy - §1a)

is constantly +1. The cocycle {wyg, } represents in Cech cohomology the second
Stiefel-Whitney class of E:
wy(E) = [waﬁ'y] .

This can be argued indirectly by using the fact that the vanishing of both w;(E)
and of [w,s,] are equivalent to the existence of a spin structure on E — X. Indeed,
if [w,xﬁ,,} = 0, that means that Wapy i @ coboundary. In other words, there must
be a Z,-valued 1-cochain {exg: Uy NUg — Zy} so that wap, = €45 €py - €qa-
However, that implies that (eaﬁ . §a,3) . (8'37 . §57) - (€ya - $ya) = +1 or, in other
words, that the €,5’s represent the corrections needed to make the g,4’s into a gen-
uine Spin(4)—-cocycle. Thus, [w,p,] = 0 if and only if E admits a spin structure.
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Simplicial cocycle for w,(E). Passing the identity
wa(E) = [wap,]

through the isomorphisms between Cech and simplicial cohomology exhibited
earlier, leads to the uncovering of a simplicial cocycle ¢ for w,(E):

Triangulate the base X and use for all cocycles the covering U, = star(v,) cor-
responding to the vertices vy of X. Then a triple intersection U, N Ug N Uy is
non-empty if and only if it corresponds to a 2-simplex (v4, v, v4) (and in that
case the interior of {v,, Vg, v,) isincluded in U, N Up N Uy ).

Choose a random lift of the SO(4)—cocycle {g,3} of E to some set of Spin(4)-
valued maps {gys}. Then the simplicial 2—cocycle ¢ for w,(E) is defined by as-
signing to every 2-simplex (va, vg, vy) the Z,~-value of the product gus - g5y - §ya-

Switching from writing Z; = {—1,+1} multiplicatively to the more familiar ad-
ditive writing Z, = {0, 1}, we translate to having & assign 0 to D if and only if
8up 8py §ya = +1,and assign | if and only if 45 - gpy - §ra = — 1.

Around a characteristic surface. Let us focus on the case of 4-manifolds M and
their tangent bundles Ty;. Using the above description of a simplicial cocycle ¢ for
wy(Tym), we can imagine a characteristic surface of M as a surface that manages
to cross an odd number of times exactly those 2—simplices that ¢ assignsto 1.

An even better way to see this is probably in the slightly different setting used
in the proof of equivalence of the spin structure definitions (preceding note, page
181), as is recalled in figure 4.27. Recall that in that case the U, 's were small neigh-
borhoods of the 4—cells dual to the vertices of M.

4.27. Drawing a characteristic surface

Assume now that D is a 2-simplex, surrounded by the open sets Uy, Up, U,,
with g5 §py - 8§10 = —1. Then the 2—cell £ dual to D is part of a simplicial chain
that describes a (modulo 2) homology class Poincaré-dual to w,(Ty).

With a bit of luck in choosing the lifts g,g, the union of all these distinguished
dual 2—cells will make up an actual (unoriented) embedded surface in M (“luck”
is needed, because a priori there might be problems at the vertices). With a bit
more luck, the surface Z will be orientable, in which case it represents an integral
homology class dual to w,(Tm), and thus is deserving of the name “characteristic

surface”.
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This picture also has the advantage of exhibiting a characteristic surface X as sur-
rounded by 27n—twists of Ta, as was mentioned earlier (page 179) and is recalled
here through figure 4.28. Away from X, the maps g, are a genuine cocycle and
thus define a spin structure on the complement M \ X; clearly, this spin structure

on M \ X cannot be extended across X.

4.28. Outside spin structure, not extending across a characteristic surface X

Note: Obstruction theory

In this note, we give a short presentation of obstruction theory. On one hand, this
will shed light on several constructions already seen in this chapter. On the other
hand these techniques will be needed in the note on page 207 ahead, where the
theory of smooth structures on topological manifolds is explained.

Obstruction theory deals with the problem of existence and uniqueness of sections
of fiber bundles, encoding it into cohomology classes with coefficients in the ho-
motopy groups of the fiber. At the outset, the case of a vector bundle E is unin-
teresting, since there always exist sections. However, obstruction theory can be
applied to bundles associated to E, such as its sphere bundle SE (uncovering the
obstruction to the existence of a nowhere-zero section in E), or the bundle Psp )

of frames in E (uncovering obstructions to the existence of a global frame-field in
E, that is, obstructions to trivializing E), or bundles of partial frames—the result-
ing obstructions turn out to be the usual characteristic classes of E. In particular,
from this note we will gain yet another point-of-view on the characteristic classes
of a 4—manifold.

The argument to follow has two main components, each propelling the other: on
one hand, defining things through cell-by-cell extensions and climbing from each
k—skeleton to the (k + 1)-skeleton; on the other hand, meshing the issue of extend-
ing sections with the issue of their uniqueness up to homotopy.

Set-up. A fiber bundle E with fiber F over a manifold X is a space E and a map
p: E — X so that X is covered by open sets U over which the restriction of p to
p~'[U] looks like the projection U x F — U.
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Assume that that the fiber F is connected; furthermore, assume that F’s first non-
trivial homotopy group? is m,(F). (If m = 1, assume further that m(F) is
Abelian.)

Moreover, choose a random cellular decomposition!® of X. We denote by X/, the
k-skeleton of X, and by E| the restriction of E to X|; (not the k—skeleton of the
space E). Also, let 0|, denote the restriction of ¢ to X|.

Free ride, up to the m—skeleton. We try to define a section ¢ of E by defining it
over the vertices of X, then try to extend o over the I-skeleton of X, then over
the 2—skeleton, and so on, cell-by-cell. This plan proceeds without problems until
we attempt to extend from the m-skeleton across the (m + 1)-skeleton.

Indeed, to reach the m-skeleton, we start by defining o(vertex) in any random
way. Then, assuming ¢ was already defined over the k-skeleton of X, we try to
extend o across the (k + 1)—cells of X: For every (k+ 1)—cell C, we notice that the
restriction E|c is trivial (since C is contractible)!* and hence E|- =~ C x F. Our
o, already defined on the k-sphere 0 C, induces a map 0C — F. Then c|3¢ can
be extended across C if and only if the induced map dC — F is homotopically-
trivial. However, as long as k < m — 1, we have 7 (F) = 0 and thus every map
0C — F can be extended over C, and hence so can ¢. Therefore, we can always
define sections o over the m—skeleton of X.

Uniqueness so far. Let us investigate for a second the dependence {up to homo-
topy) of the resulting c|,, on the choices made along the way; again, we split the
problem in stages between the k—and (k + 1)-skeletons.

Take k and assume that ¢ is fixed over X[, then let ¢’ and ¢” be two extensions
of o from X|; across X|x41- A homotopy between ¢’|;; and 0|, 1 means
a section @ in the product-bundle p x id: E x [0,1] — X x [0, 1], defined over
(X|k41) x {0,1] and limiting to ¢’ on X x 0 and to ¢’ on X x I.

We choose the obvious cellular decomposition of X x [0, 1] induced from the cho-
sen decomposition of X, with each j—cell C of X creating two j—cells C x 0 and
Cx1inXx[0,1],and a (j+ 1)—cell C x [0, 1].

Certainly ¢ must be defined to be ¢/ x 0 on (X|x44) X 0 and to be ¢’ x 1 on
(X|k41) x 1. Furthermore, since ¢’ and ¢’ were taken to coincide over the k—ske-
leton of X, it follows that, for every j—cell C of X with j < k, we have ¢’'|c = ¢”|c.
We can then extend @ across the (j+ 1)—cell C x [0, 1] simply as ¢ x id. Therefore,
for fully extending @ across (X|;41) X [0,1], we need only extend @ across those

12. Remember that the homotopy group 7 (A) is the set of all homotopy-classes of maps Sk — A, with
a suitable group operation. An element f € m(F) is trivial if and only if f: ¥ — A can be extended
toamap f: D¥'' — A. Whenever k is at least 2, the group 71 (A) is Abelian.

13. Handle decompositions would work just as well. Just substitute the word “handle” for “cell” in all
that follows. Or one could use a triangulation of X (as recalled back in footnote 5 on page 182) and
substitute “simplex” for “cell” throughout.

14. Technically, since the cell C is not necessarily embedded along 9 C, one should view E|- as the
pull-back (*E, where 1: C — X is the “inclusion” of the cell in X.



4.5. Notes 199

(k4 2)—cells of X x [0, 1] that are of shape D x [0, 1] for some (k + 1)—cell D of X.
Compare with figure 4.29.

4.29. Toward a homotopy between two sections

Notice that @ is already defined over the whole boundary (D x [0, 1]). Thus, ¢
restricted to the (k + 1)-sphere 9(D x [0, 1]) determines an element of . (F).
It follows that @ extends across D x [0, 1 if and only if the class of @[3y o.1)) in
Ty (F) is trivial.

Therefore, since all homotopy groups of F were assumed trivial up to dimension
m, it follows that the extension of ¢ up to the (m — 1)-skeleton of X must be
unique up to homotopy. However, when we extend ¢ from the (m — 1)-skeleton
across the m-skeleton, the various options can differ over each m—cell by elements
of 7, (F). We will come back to this issue.

Across the (m + 1) —cells: obstruction cocycles. In any case, our fibre bundle E —
X admits a section ¢ defined over the m-skeleton of the base. When attempting
to extend ¢ from the m-skeleton across the (m + 1)-skeleton, obstructions appear.
Indeed, if D is a (m + 1)—cell, then o|;p might describe a nontrivial element in
7, (F), and then our ¢ will not extend across D. Compare with figure 4.30 on the
following page.

To measure this, we define the function
8,: {(m+1)—cells of X} — 7, (F) D+ [ol3p]

which takes an (m + 1)—cell D to the element of 7, (F) that is determined by
ol3p through some random trivialization E|{p ~ D x F. We can then extend ¢,

by linearity, and think of it as a 71, (F)-valued?® cellular (m + 1)—cochain on X.

15. In truth, the twists of our fiber bundle E — X might twist the way the 7, ’s of the various fibers
can be assembled together. Thus, to get a well-defined map 8, one must in fact use twisted coefficients
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4.30. Obstruction to extending a section

This cochain 8, is in fact coclosed. Indeed, on every (i + 2)-cell B, we have
(68,)(B) = 8,(aB) = [UlaaB] =0,

where d denotes taking the homological boundary and we use that 40 = 0. We

call 8, the obstruction cocycle of o. Our chosen section ¢ will extend over the

(m + 1)-skeleton if and only if , = 0.

Even when the cocycle 8, happens to be nontrivial, we can still try to go back

and change the way ¢ was defined over the m-skeleton of X, and maybe the new

version ¢/ will have ?,, = 0 and hence extend. We need to revisit the issue of
uniqueness of sections of E|,,:

Uniqueness, revisited: difference cochains. Given any two sections ¢’ and ¢” of E
defined over the m-skeleton, they cannot differ homotopically over the (m — 1)—
skeleton. Therefore there must exist a homotopy « between ¢'|,,_; and ¢”|,,_;.

We try to extend this x to a homotopy ¢ between ¢|,,, and ¢”},,. As before, we
view @ as a partial section of E x [0,1] — X X [0, 1] and set ¢ to be ¢’|,, X 0 on
(X{,,) x0and ¢"|,, x 1 on (X|,,) x 1, and thereafter extend it across (X|,,_1) X
[0. 1] by spreading k over it, thus linking ¢'|,,,_; x 0 with ¢”],, _; X 1.

To extend this to a full homotopy between ¢’|,, and ¢”|,,, we need only extend &
across every (m + 1)—cell C x [0, 1] that corresponds to some m—cell C of X. The

(better known as local coefficients) that twist 7, (F) by the action of 7, (X) on the fibers of F. Let us
assume that X is simply-connected and move on as if nothing happened. ..
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homotopic difference between ¢’ and ¢” can be encoded in the obstruction to this
extension, namely in the function

d(lT;I(O'”): {m—cells of X} — 7tm(F) Cr— [(pla(Cx[O,l])] .

This d(oxc”) can be extended by linearity and defines a 7, (F)-valued16 cellular
m—cochain on X. It is called the difference cochain of ¢’ and o”.

The homotopy « between ¢’|,,_; and ¢”|,,_; can be extended to a full homotopy
between ¢’ and ¢” if and only if d(oxc”) is identically-zero. However, a different
choice of homotopy «: ¢’|,,_;, ~ ¢”|,,_; might be a better choice toward obtain-
ing a homotopy between ¢|,,, and ¢”|,,. We will come back to this issue.

Back to obstruction cocycles: primary obstructions. We return to the extension
problem, to see how different choices of sections over X|,, influence our chances
of extension across X|,,,1. Let ¢/ and ¢” be two sections of E|,, and choose
a random homotopy « between ¢’|,,_; and ¢”|,,_;. Consider the bundle E x
[0,1] — X x [0,1] and denote by oyxc” its section defined as ¢’ x 0 over X|,, X0,
as ¢’ x 1 over X|,, x 1, and as « over (X|,,_1) x [0,1].

Notice that this section ¢%o” is defined over the whole m—skeleton of the base
X x [0,1]. We can therefore define its obstruction cocycle 8,;,+. We observe that
this cocycle is made of three distinct parts: (1) the obstruction to extending ¢’ x 0
across the (m + 1)—cells D x 0 of X x 0, which can be identified with 8, (D); (2)
the obstruction to extending ¢” x 1 across the (m + 1)—cells D x 1 of X x 1, which
can be identified with 9, (D); finally, (3) the obstruction to extending x across the
(m + 1)—cells of shape C x [0, 1], which can be identified with d(oxc”)(C).

Takeany (m + 1)—cell D of X and consider the (m + 2)~-cell D x [0,1] of X x [0, 1].
Apply the above decomposition of 8, ,» to d(D x [0, 1]). On one hand, since 9, ,»
is a cocycle, it must vanish on every boundary and in particular on 9(D x [0,1]).
On the other hand, we have 9(D x [0,1]) = Dx1 U Dx0 U (9 D) x[0, 1], and we
can evaluate the parts of 6, on these pieces. We end up with 8,,(D), 9,+(D),
and d(ox0")(0 D). Gathering up and keeping track of signs, we obtain the equality
8,/(D) — 8,.(D) = d(oxc")(9 D), which translates to

19(7/ — 19‘7” = (5!.‘1((7’;/(0'”) .
The conclusion is that different choices of sections in E|,,, change the correspond-
ing obstruction cochain by a coboundary. It follows that the obstruction cocycle
determines a well-defined cohomology class

[0,] € H™'(X; mu(F)) .

o
This class depends only on the bundle E — X and nof on the choice of section o.
Moreover, this class is trivial if and only if there is some m—cochain d such that
9, = éd. In that case, we can change ¢ over the m—-skeleton of X to a section o’
with d(c¢’) = d, and then the new ¢’ will have obstruction cocycle 8,, = 0: it
will extend across X, 1.

16. Again, in general one needs twisted coefficients.
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In conclusion, E — X admits sections over the (m + 1)-skeleton of X if and only
if the class [¢] vanishes. We call this class the primary obstruction!” of E — X.

Back to uniqueness: difference cocycles. If the primary obstruction [d] vanishes,
then conceivably there exist several distinct sections of E,, that extend across the

(m + 1)-skeleton of X.

Assume that 0’|, and ¢”],, are two such extendable sections of E[,, and take x to
be some homotopy between ¢’|,,_; and ¢”|,,_;. We have 8, — 8,» = §d(oxo”"),
but since both ¢’ and 0 were assumed extendable, their obstruction cocycles van-
ish, and thus (Sd(a,’(a”) -0.

In other words, the difference cochain is now in fact a cocycle.

Further, the difference cochain d(oxc”) can in this case be understood as represent-
ing the whole obstruction cocycle 8, . of the section ox0” across the (m + 1)-ske-
leton of X x [0,1]. We can then apply the previous results about obstruction cocy-
cles to this d(oxo”). It follows that changing the choice of homotopy «: ¢/|,,_; ~
0" | n—1 merely modifies d(cxo”) by the addition of a coboundary. Therefore, the
difference cocycle itself determines a well-defined cohomology class

[d(oxo”)] € H™(X; mw(F)) .
This class depends only on the extendable sections ¢’ and ¢” and not on the choice

of homotopy x. Furthermore, if [d(c’c")] = 0, then there exists a choice of x that
can be extended to a full homotopy & between ¢’|,, and o”|,,,.

Conclusion. For every fiber bundle E — X whose fiber F has its first nontrivial
homotopy group in dimension m, the primary obstruction

(8] € H"*!(X: mu(F)

vanishes if and only if there are sections of E — X defined over the m—skeleton of
X that extend across the (m + 1)-skeleton.

Moreover, if [¢] = 0 and one chooses some extendable section ¢, then all other
sections ¢’ of E[,, that extend across X|,,,; are classified up to homotopy by the

elements of H™ (Xl T (F))

via their corresponding difference classes [d(c0”’)]

Application: trivializing the tangent bundle. We will now apply the method of
obstruction theory to the problem of trivializing the tangent bundle Ty of an ori-
ented 4—-manifold M. Since a trivialization of Ty; over some subset U of M is
equivalent to a field of frames over U, the problem becomes one of finding sec-
tions in the bundle of frames Ps4) Of Ty

The fiber of Pgg4) is the Lie group SO(4), which is connected and has
mSO4) =2Z;, mS0(4) =0, mS04) =Z & Z .

17. “Primary”, because the project can conceivably be continued by attempting to further extend across
higher skeleta, until we exhaust all X.
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Therefore, when applying the obstruction theory method, we first encounter a pri-
mary obstruction in H?(M; m; SO(4)). This obstruction class is none other than
the Stiefel-Whitney class
wa(Ty) € H (M:iZy) .

Hence, if wy(Tm) = 0, then Py 4y admits a section over the 2-skeleton of M, in
other words, Ty can be trivialized over M|,. Two such sections of Py 4y over
M|, differ by difference cocycles from H'(M; Z;). Such trivializations of Ty over
M|, are, of course, spin structures on M.

Assuming that wy(Ty) vanished and we did choose a section of B4y over M|,
we can now try to further extend it over M. Since 1, SO(4) = 0, extending across
the 3-skeleton encounters no problems. The next significant obstruction appears
in H*(M; m350(4)), and it can be identified as the pair

(e(Tm). p1(Tm)) € HY(M; Z & Z),
made from the Euler class e(T);) and the Pontryagin class p;(Tu).

The Euler class appears as the obstruction to extending a nowhere-zero vector field
over all M, that is to say, e(T)) is the primary obstruction to defining a section in
the 3-sphere bundle STy of Ty; thus, it belongs to H*(M; m35°).

That the pair (e, p;) fully catches the secondary obstruction can be argued directly
by computing characteristic classes of 4—plane bundles over $* that are built using
equatorial gluing maps from 71350(4); an exposition can be found in [Sco03].

If, besides w,(Ty) being trivial, we also have that both e(Ty) and p;(Ta) vanish,
then the tangent bundle Ty can be completely trivialized, Tyy &~ M x R*. This
happens for example with S' x §3, but never for simply-connected 4-manifolds.

Similar results apply for general oriented 4-plane bundles over 4-manifolds. In
particular, notice that moving along these lines one can quickly obtain a proof of
the Dold-Whitney theorem (stated on page 167).

Application: characteristic classes. The obstruction-theoretic approach was in fact
the one initially used by E. Stiefel and H. Whitney when they discovered charac-
teristic classes.

Given a vector bundle E — X with fiber R¥, consider the Stiefel bundle Vi(E) —
X of all j—frames in E. Then the corresponding primary obstruction [¢;] of V;(E)

appears in H*~/*! and determines the Stiefel-Whitney classes by
(8] ifk—j+ lisevenand < k i

_iw(E) = 4] € H"IM(X:Z,) .
Wej1 (E) {[0,-] (mod 2) ifk—j+ lisodd, orj=1 (X:Z2)

Thus, each class wy_;;; reveals itself as an obstruction to defining a field of j-
frames in E over the (k — j+ 1)—skeleton of X.

18. The modulo 2 reduction in the following formula is done because in those cases ¢ appears at the
outset with twisted Z—coefficients. Still, if we know all the w;’s, no information is lost through this

reduction.
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Finally, if E — X is oriented, then for j = | the full obstruction of V,(E) = SE is
caught by the Euler class

e(E) = (8] € H'(X,Z),
which measures the obstruction to defining a nowhere-zero section of E over the
k—skeleton of X.

A similar approach can be used for Chern classes.

References. Classic obstruction theory, including a description of Stiefel-Whitney
and Chern classes, is presented in N. Steenrod’s The topology of fibre bundles
[Ste51, Ste99, part III], and is still the best introduction. For a recent discussion of
obstruction theory, see for example J. Davis and P. Kirk’s Lecture notes in alge-
braic topology [DKO01].

We will use obstruction theory again in the note on page 207 ahead, where we
will explore the obstructions to the existence of smooth structures on topological
manifolds.

Note: Classifying spaces and spin structures

In what follows, we will define spin structures in terms of maps to classifying
spaces. We will start by saying a few words about the spaces %G that classify all
fiber bundles with structure group G, then describe a spin structure on a bundle
E — X as the lift of its classifying map X — #S0(m) to amap X — ABSpin(m).

Part of this note will be better understood if one first reads the preceding note
(starting on page 197) on obstruction theory.

This and the preceding note can be viewed both as a continuation of the survey of
spin structures from earlier notes, and as preparing the ground for the theory of
smoothing topological manifolds that will be explained in the next note (starting
with page 207).

Fiber bundles and classifying spaces. A (locally-trivial) fiber bundle E with fiber
F over a manifold X is a space E and a map p: E — X so that X is covered by
open sets {U,} and over each U, the restriction of p to p~![U,] looks like the
projection Uy X F — U,

The fiber bundle E is said to have structure group G, or is called a G-bundle,
if over every overlap U, N Ug the two trivializations p~'[Ux] ~ U, x F and
p~{Ug] ~ Ug x F are related by a self-homeomorphism of (U, N Ug) x F act-
ing by (x, f) = (x, gap(x) - f), where g,g isamap g,5: Uy NUpg — G and G is
a group acting on F by homeomorphisms.

For every topological group G there exists a space #G, called the classifying space
of G, and for every fiber F on which G acts there exists a G-bundle

G — BG
with fiber F, called the universal bundle of fiber F and group G. The spaces
PG and 6;G are unique up to homotopy-equivalence. The reason for the names

“classifying” and “universal” is that that all G-bundles over any X are classified
by the homotopy classes of maps X — #G.
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This means that for every G-bundle E — X with fiber F there must exist a map
¢: X — %G so that E is isomorphic to the pull-back through ¢ of the universal
bundle &G — £&G; in other words, & can be covered by a bundle morphism ¢,
fitting in the diagram
/| |
X Lr BG,

so that ¢ is a G-homeomorphism on the fibers. Further, two bundles E’ and
E” are isomorphic if and only if their corresponding maps &', ¢’: X — BG are
homotopic. In brief, the set of all G-bundles can be identified with the set [X, ZG]
of homotopy classes of maps X — #G.

Construction. The classifying space BG can be built as follows: Take G and start joining® it
to itself,-building G+ G, then G+ G # G, then GG * G x G, then... In the limit, we obtain the
space §G = G*G*xG*---. The group G acts freelv on £G, and we can then build the quotient
space BG = £G/G, which is the classifying space of G. The bundle §G — %G is the universal
bundle that classifies all principal G-bundles. To get the universal bundle for some other fiber F,
pick some cocycle for G — #BG, letitacton F, and glue 6; G with it. More generally, if £ isany
contractible space on which G acts freely, then the map £ — £/G is a principal G-bundle, and
in fact, up to homotopy equivalence, £ — £ / G coincides with §G — %G. This construction is
due to ). Milnor’s Construction of universal bundles. II [Mil56a].

Vector bundles. A vector bundle of fiber R over X is a fiber bundle with group
GL(k). Then its classifying space can be determined to be

BGL(K) = 9 (R™),

Le., the GraBmann space of all k-planes in R%, defined as lim %(R™) when
m — oo. The universal bundle &k GL(k) is the vector bundle over ZGL(k) that
has as fiber over a point P € % (R*) the actual k—plane P. Intuitively, all twists
and turns that a fiber of a vector bundle over X might have can be retrieved by
positions of k—planes in R®, and a description of these positions yields the clas-
sifying map. More rigorously, one can show that for every bundle E — X there
existsabundle F — X sothat E®F ~ X x RY, and thus the fibers of E can be
identified with k—planes in RN . For example, if X has dimension m, then one can
use N = m +k + 1 and % (R"™+*+1) instead of the full % (R*).

A similar approach works for complex bundles and shows that ZGL¢ (k) is the complex Graf-
mannian %(C*). In particular, complex-line bundles are classified by maps to BGL(1) =
CIP®. For line bundles on 4—manifolds, it is enough to consider maps to CP2.

19. The join A * B of two spaces A and B is defined as follows: take A x B x [0, 1], then collapse A x 0
to a point and B x 1 to another point. The join is easiest to visualize if we imagine both A and B as
embedded in general position in some high-dimensional RY; then A * B is the union of all straight
segments starting in A and ending in B. For example, the join of two 1-simplices (segments) will be
a 3-simplex (a tetrahedron).
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Metrics. The group GL(k) is homotopy-equivalent to?® O(k). Since the whole
theory is homotopy-flavored, it follows that ZGL(k) and #0(k) are homotopy-
equivalent, and thus a GL(k)-bundle is the same thing as an O(k)-bundle. In
down-to-earth terms, this simply means that every vector bundle admits a fiber-
metric.

Orientations. If the vector bundle is oriented, then its structure group can be fur-
ther refined from O(k) to SO(k). In terms of classifying spaces, the inclusion
SO(k) C O(k) induces a map?!

S: BS0(k) — BO(k) .
Finding an orientation for a bundle E is the same as finding a lift of its classifying
map ¢: X — BO(k) toamap & : X — #BSO(k), fitting in

| Is

X —* . BO®K).

The map S: ZS0(k) — BO(k) is itself a fiber bundle with fiber O(k)/SO(k) =
Z;. We can pull this bundle back over X by using the map ¢: X — 20(k), and
hence transform the problem of finding a lifted map ¢* into the problem of finding
a global section in the pulled-back bundle {*S — X from

¢S —— BSO(k)
I Is
X —° . BO®K).
The fiber of *S — X is of course still Z,.

The obstruction to the existence of a section in ¢*§ can then be attacked by obstruc-
tion theory, similar to the outline from the preceding note.?? This yields as unique
obstruction the first Stiefel-Whitney class

w(E) € H'(X;Z,) .

If one such section (i.e., an orientation of E) is chosen, then all other sections, up
to homotopy, are classified by the elements of HO(X; Z,); in other words, you can
change the orientation on each connected component of X.

Spin structures. The group SO(k) is double-covered by the Lie group Spin(k), and
the double-cover projection Spin(k) — SO(k) induces a map of classifying spaces

Sp: BSpin(k) — BSO(k) .

20. Indeed, if we think of a matrix A € GL(k) as a frame in R¥, then we can apply the Gram—Schmidt
procedure to split A asa product A = T R of an upper-triangular matrix T and an orthogonal matrix
R € O(k); since all upper-triangular matrices make up a contractible space, the claim follows.

21. Notice that ZS0(k) can be represented as the Grafimannnian of all oriented k—planes inside R*.
22. A rather special case of obstruction theory, since one plays with 7, (fiber).
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This map is a fiber bundle. Its fiber is denoted SO(k)/Spin(k) and it is an Eilen-
berg-Maclane K(Z,,1)-space. This means that m (SO(k) /Spin(k)) = Z; is its
only non-zero homotopy group.?

A spin structure on an oriented bundle E is the same as a lift of its classifying
map §: X — #BSO(k) to a map ¢P: X — BSpin(k), made against the map
Sp: #BSpin(k) — #BS0(k). Equivalently, by pulling back over X,

&*Sp —— BSpin(k)

1 o

X — . ®s50(%),

we see that a spin structure on E is the same as a global section of the bundle
&*Sp — X, whose fiber is SO(k) /Spin(k).

After applying obstruction theory to this setting, it turns out that the unique ob-
struction to the existence of such a section is the second Stiefel-Whitney class

wy(E) € HA(X;Z,) .

Characteristic classes. It is worth noting that, avoiding any obstruction theory, the characteristic
classes of a vector bundle E — X can be viewed directly as pull-backs of cohomology classes of
the appropriate classifying space. Indeed, we have isomorphisms between the cohomology rings
of the #G s and polynomial rings generated by the various characteristic classes (endowed with
suitable degrees). Specifically,

H*(BO(k): Z3) = Zs[wy,wy, ... W)

H* (3350(1(); Zz) = Zz [w2, ceny wk]

H* (@80(21), Z) = Z[PIsPL cees p,'-l.e]

H*(#BS0(2i + 1); Z[\/2]) = Z[1/2) [p,,pz, i

H* (,%U(k); Z) = Z[C],Cz, .. .,Ck],
where w; € H/ is the j™ Stiefel-Whitney class of the corresponding universal bundle &gx , while
pj € HY isits m™ Pontryagin class, e € H* is the Euler class, and ¢j € H” is the j' Chern class
of the universal complex bundle &ck . The difference between the SO(2i) and SO(2i + 1) cases
is owing to the fact that in the first case e Ue = p;, while in the second e = 0; further, the ring
Z[1/2] is needed to kill the 2-torsion (and Q or R could be used instead). Indeed, remember
that p;(E) = (—1)Yey(E® C), but that the classes ¢2j+1(E ® C), which are all of order 2, escape.
See also D. Husemoller’s Fibre bundles [Hus66, Hus94, ch 17)

Note: Topological manifolds and smoothings

In what follows, we will outline the theory of topological manifolds and of their
smooth structures. The theory works best in dimensions 5 or more, where it of-
fers complete answers on the existence and classification of smooth structures on
topological manifolds. The theory is quite weaker in dimension 4, but it is still
relevant.

Requisites for understanding this note are the two previous notes, namely the one
on page 197, where the rudiments of obstruction theory were presented, and the

23. Since Spin(k) — SO(k) is a cover map, we have i, (Spin(k)) = 7, (SO(K)) for all m > 2.
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one on page 204, where general fiber bundles and their classifying spaces were
explained. The groups of homotopy spheres ®,, described in the end-notes of
chapter 2.5 (page 97), will also make an appearance. On the other hand, if one
skips the paragraphs on smoothing bundles, then one merely needs the simple
definition of a general fiber bundle, which can be read from the beginning of the
note on page 204.

Historically, at first the realm of purely topological manifolds and pure homeo-
morphisms seemed unapproachable, so mathematicians attacked the gap between
smooth and piecewise-linear (PL) manifolds, meaning manifolds structured by a nice
triangulation (where “nice” means that the link?* of every vertex is required to
be simplicially-homeomorphic to a standard polyhedral sphere; such triangulated
manifolds are also called combinatorial manifolds). Success with smoothing PL man-
ifolds started with S. Cairns and continued with M. Hirsch and B. Mazur, which
completely elucidated the gap between PL and smooth. The door on smoothing
topological manifolds was opened by J. Milnor, who introduced the right concept
of tangent bundle for a topological manifold. Finally R. Kirby breached the barrier
toward the study of topological manifolds, and together with L. Siebenmann clar-
ified the gap between topological and PL manifolds. See also the bibliographical
comments on page 67 at the end of chapter 1, as well as the references ahead on
page 219.

Since we are focused on 4-manifolds while the gap between PL and smooth mani-
folds only starts to make its presence felt in dimension 7, in our presentation below
we will shortcut the PL level and discuss smoothing theory only in terms of the
gap between topological and smooth manifolds.

Tangent bundles for topological manifolds. Remember that a topological manifold
of dimension m is merely a separable metrizable topological space that locally
looks like R™; in other words, X is covered by open sets U that are homeomorphic
to R™.

For smooth manifolds, one of the most useful objects used in their study is the
tangent bundle, which gives the infinitesimal image of the manifold and thus ap-
proximates its structure by simpler spaces. A suitable analogue for topological
manifolds can only prove useful.

A first idea would be to pick for each x € X a small open neighborhood U, home-
omorphic to R™ and consider it as the fiber of Tx at x, as in figure 4.31 on the next
page. Parts of nearby such fibers would get identified just as the corresponding
open sets in X: the fiber Uy over x and the fiber Uy over y have their common
part Uy N Uy identifiable, as suggested in figure 4.32 on the facing page.

Such a tangent “bundle” has fiber R" and has an obvious “zero section” i sending
x € Xtox € Uy = Tx|,. This creature is not a bundle: neighboring fibers
cannot be identified with each other, since only parts of them overlap. However,
it is conceivable that, by restricting to smaller neighborhoods of the zero-section

24. Think of the link of a vertex v essentially as the (simplicial) boundary of a small simplicial neigh-
borhood of v. Specifically, take all simplices ¢ that contain v and take the faces of ¢ that do not touch
v; the union of all such faces makes up the link of v.
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U, T i(x)

Ux

4.31. Building a tangent bundle, 1

M
X

4.32. Building a tangent bundle, 11

and deforming our structure by homotopies, one would end-up with a genuine
fiber bundle, with fiber R™. If, for the resulting bundle, we take care to identify
each fiber above x with R™ in such manner that x corresponds to 0, then the
structure group of the bundle would be the group of all self-homeomorphisms
@: R"™ ~ R that fix the origin, ¢(0) = 0. Let us denote this group by

TOP(m) .
Thus, our proposed tangent structure appears to induce a TOP(m)-bundle.

The only real problem with such an approach is that the construction does not
appear canonical, since the choice of neighborhoods/fibers Uy is random. It is
important that each topological manifold have a canonical tangent bundle Tx. In
order to achieve this, the main observation is that what really matters is what hap-
pens around x—whatever Uy has been chosen to be, the most important part of
Tx|, is the immediate neighborhood of x € Tx|, and how it relates to its neighbor-
ing fibers. Thus, one should consider, instead of the whole U, ’s, just their germs
at x. This idea was concretized in J. Milnor’s notion of a microbundle, which he
introduced in Microbundles [Mil64].

Microbundles and the topological tangent bundle. A k—microbundle ¢ on X is a
configuration X L Py ,

made of a topological space E (called the total space), together with two maps,
i: X — E (called the zero section) and p: E — X (called the projection). These are
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required to satisfy two properties: (1) i must behave like a section, so we have
poi = id; and (2) E — X must be locally trivial, i.e., for every x € X, there is
a neighborhood V; of i(x) in E such that p}y : Vx — M looks like a projection
U x RF — U. Notice that, as suggested in figure 4.33, nothing is required far from
i[X] or on the overlaps of the various local “charts”: only parts of the fibers match.

\/—”é’
_/‘/\

p

i(X]

4.33. A microbundle

You should think of a microbundle as a fiber bundle in which all that matters
is what happens around the zero section, or as a vector bundle in which we are
focused near the zero-section and all requirements of linearity have been dropped.
Indeed, microbundles behave pretty much like vector bundles: they can be pulled-
back, direct sums are defined, etc. We leave such amusements to the reader.

Two k-microbundles &: X YL F S X and & X B P X are called
isomorphic if there are neighborhoods W’ of i'[X] in E’ and W” of i"[X] in E”
and a homeomorphism ¢: W' ~ W’ fitting in the diagram

X — W' . X
| =T
X — W’ X.

Of course, any actual bundle with fiber RF is a k-microbundle, and two isomor-
phic fiber bundles are also isomorphic as microbundles.

Further, inside every microbundle actually lies a genuine bundle:

Kister-Mazur Theorem. For every k-microbundle X — E L X there is a neigh-
borhood W of i[X] in E such that ply: W — X is a locally-trivial fiber bundle with fiber
R¥ and zero-section i. The contained fiber bundle is unique up to isomorphism, and even
up to isotopy.

Idea of proof. The crux of the argument is J. Kister’s result that the space
of topological embeddings R — R¥ that fix the origin can be deformation-
retracted to the space of homeomorphisms R¥ ~ R that fix the origin. Thus,
the partly-matching “charts” of a microbundle can be reduced and deformed
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to get a small global genuine bundle. See J. Kister's Microbundles are fibre
bundles [Kis64]. m]

Thus, to every k-microbundle is associated a canonical fiber bundle with group
TOP(k) and fiber R*. Microbundles have the advantage that they are easy to
describe. Thus, if we define a canonical tangent microbundle for a topological m—
manifold, then we can pass it through Kister-Mazur to obtain a canonical tangent
bundle, with structure group TOP(m).

The tangent microbundle of a topological manifold X is defined simply as

XS xxx 2o x,
where A is the diagonal map x — (x,x) and pr; is the projection (x,y) — x.
Close to the diagonal A[X], the fibers of pr, are just copies of neighborhoods of
points in X. They are stacked next to each other according to their position in X:

indeed, z' € pr;![x'] and z” € pry![x"] are close to each other in X x X if and
only if pr,(z') and pr,(2") are close to each other in X. See also figure 4.34.
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4.34. The tangent microbundle

We can then define the topological tangent bundle

top
TX

of the topological m-manifold X to be the TOP(m)-bundle contained inside the
tangent microbundle of X. One can prove that, if X happens to be a smooth
manifold and hence is endowed with a tangent vector bundle Tx, then Tx and

T;?p are isomorphic fiber bundles.

Using the topological tangent bundle for smoothing. Start with a topological m~
manifold X. Embed X™ into some large?® RN and choose a neighborhood W of

25. To build an embedding of a topological manifold in some RV, the easiest way is as follows: When
X is compact, cover X" by open sets Uy, . .., Uy, each homeomorphic to an open subset of R™ through
embeddings f;: Uy C R™; extend each f; to a continuous maps f;: M — R™, then gather all of them
together to get an embedding (fi, ..., fa): M — R™. In general, by dimension theory one can find an
open covering {U.} of X so that at every point of X no more than m + | of the U, ‘s meet; eventually
one gets an embedding in R"("+1).
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X in RN that retracts to X, i.e., for which there is map r: W — X so that r|y = id.
See figure 4.35.

4.35. X embedded as a Euclidean neighborhood retract

Build the tangent bundle T;?p of X and then use the retraction r to pull it back
over the whole W; denote the total space of the result by r*T;g P

s fop fop
Tyt —— Ty

| |

w — X.
The total space of this pulled-back bundle can also be viewed as sitting on top of
X, through the composition r*T;?p — W - X;inreverse, X can be embedded
in r* T;?p through the composition of the inclusion X C W with the zero section
of the bundle r* T;;p — W. We have the following remarkable property:

Lemma. Thespace r* T;fp is homeomorphic to X x RN, with X C r* T;’p corresponding
to X x0 C XxRVN.

Idea of proof. As a first approximation, think in terms of vector bundles: As-
sume that X was a smooth manifold, and Tx its tangent bundle. Smoothly
embed X in RY, then choose a tubular neighborhood W ~ Ny gn~, which
retracts to X through the bundle projection r: Ny ,gv — X. Then r*Tx — X
is isomorphic to the bundle Tx @ Ny, gy = Tgn|x = X x RN.

We can use a similar argument for our lemma if we start with a better W.
Namely, we could start with an embedding of X into a large-enough RV, so
that X admits a topological normal bundle N;?%RN in RN, and take W to be
the total space of N;'TIRN and r be its projection. O

Microbundle proof. Without choosing a nice W and getting involved with topological normal
bundles, one can also use a general argun}ent, which r1s easiest to state in terms of microbundles:
Consider T" as the m-microbundle X —= X x X £ X. The pull-back over W has total space
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4.36. Smoothing X x RN by using the tangent bundle of X

P T¢Y = {(w.r(w),x) € W x X x X}, projection p: r*Ty" — W, p(w,r(w),x) = w, and zero-
section it W — r* T;’p, i(w) = (w,r(w),r(w)). First, notice that the total space r* T;gp is naturally
homeomorphic to X x W, by sending (w,r(w),x) to (x,w). This homeomorphism r* T;?p ~
X x W sends i[X] to A[X]. Then, by translating the inclusion X x W C X x RN through the
map X x RN = X x RN: (x,9) — (x, v — x), we obtain an embedding of r*Ty" into X x RN
that sends i[X] to X x 0. While this is a bit less than the statement of the lemma, all further
developments could be slightly modified to be happy with this version.

Owing to this lemuna, if we manage to make the total space r*T;fp into a smooth
manifold, then that means that we have endowed X x RN with a smooth structure.
We would be a bit closer to smoothing X itself.

As mentioned, the tangent bundle T;gp is a fiber bundle over X™ with fiber R™
and structure group TOP(m). Denote now by

DIFF(m)

the group of diffeomorphisms ¢: R™ = R™ with ¢(0) = 0. If we could reduce
the structure group of T)tgp from TOP(m) to DIFF(m), then the pull-back r*T;?p
would be a bundle over W whose fibers are glued by smooth maps from DIFF (m).
Since W is open in RY, it is itself a smooth manifold. The base being smooth and
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the fibers being smoothly-matched, it follows that the total space of r* T)tgp - W

would itself be a smooth manifold. However, r* T;gp is homeomorphic to X x RN,
and therefore the latter inherits a smooth structure.

" Milnor’s Smoothing Theorem. Let X be a topological m—manifold. If its tangent
bundle T;?P admits a DIFF (m)-structure, then, for N big enough, X x RN must admit
a smooth structure. O

This was proved?® by J. Milnor’s Microbundles [Mil64], first announced in Topo-
logical manifolds and smooth manifolds [Mil63c].

We postpone the investigation of the existence of DIFF (m)-structures on T;gp for
later. In the mean time, let us see how to get rid of the RN —factor, so that we may
end up with a smooth structure on X itself.

Structures on products and products of structures. The following results are due
to R. Kirby and L. Siebenmann. The first statement below is analogous to the
Cairns-Hirsch theorem, which dealt with the PL case.

Product Structure Theorem. Let X be a topological m—manifold, with m at least 5.
If X x RN admits a smooth structure, then this structure must be isotopic to a product
smooth structure on X x RN, coming from a smoothing of X crossed with the standard
smooth structure on RN, o

Note that the isotopy conclusion above is stronger than a mere diffeomorphism
between the two smooth structures on X x RN .

Isotopies of smoothings. For convenience, call ¢ the given smooth structure on X x RY, by
{ the resulting smooth structure on X, and by { x std the product structure on X x RN . The
existence of an isotopy between { and { x std means two things: First, that { and { x std are
concordant, meaning that there exists a smooth structure on (X x RN) x [0,1] that coincides
with ¢ near (X x RN) x 0 and with { x std near (X x RN) x 1. Second, that there is a smooth
map h: (X x R¥) % [0,1] — (X x RN, &) so that each slice hy, = h(-,t): X x RN x {t} =
X x RV is a diffeomorphism onto X x RN smoothed by &. Thus, hy is the identity map from
(X x [0, 1], &) toitself, while hy is a diffeomorphism from (X x [0. 1], { x std) to (X x [0.1}, &),
and h; is the isotopy between them.

Notice the dimensional restriction m > 5 that appears in the statement of the
theorem. Its appearance is owing to the inevitable reliance of the proofs on the
h—cobordism theorem (and its non-simply-connected cousin, the s—cobordism the-
orem). This is what prevents smoothing theory from fully applying to 4-dimen-
sional manifolds.

Proving the product theorem. The essential tool for proving the product structure theorem is the
following handle-smoothing technique: Assume we have a smooth manifold V" and a smooth
embedding of a thickened sphere S~ x [o,e) x R+ C V™ (think of S~ x [n.e) as a collar on
§*-! in ID¥). Further assume that this smooth embedding can be extended as a topological em-
bedding fy: ID* x R"- C V" of an open k-handle into V. We say that the handle fy can be
smoothed in V if there is an isotopy f; between fy and a map f| that restricts to a smooth em-
bedding of the closed k-handle f: D¥ x D"+ C V™, and so that fi fixes fy outside a compact
neighborhood of ID¥ x D"—*. See figure 4.37 on the facing page.

26. Proved before the discovery of the Kister-Mazur theorem.
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fo

fi

1%

4.37. Smoothing a handle

It turns out that the property of a handle fy to be smoothable is invariant under concordance:

Handle Smoothing Theorem. Let fy be an open k—handle in V™ as above, and let W™ be a smooth
manifold (of same dimension) containing V" . Assume that there is an isotopy F: DF x Rk x [0,1] —
W so that F(-,0) = fo, that F moves the attaching splere smoothly, and that F(-,1) is a handle in W
that can be smoothed in W. If m > 5, then fq itself can be smoothed inside V. O

See also figure 4.38. This theorem is due to R. Kirby and L. Siebenmann, see Foundational essays
on topological manifolds, smoothings, and triangulations [KS77]. An essential ingredient for
proving this handle smoothing theorem is, of course, the h—cobordism theorem. A consequence
of it is the following stability property:

Corollary. Let fo: DX x R"-k C V™ be some open k-handle as above and assume that m > 5. If the
product-handle fy x id: D¥ x R"kx R C V x R can be simoothed inside V x R, then fy itself can be
smoothed inside V.

The proof of the product structure theorem then uses a chart-by-chart induction. Since each chart
@: U =~ U’ C R™ endows U with a smooth structure, this means that in each chart we can use
handle decompositions, with handles that are then smoothed and made to fit on the overlaps of

the charts.?”

|4 w

4.38. Handle smoothing theorem

27. It is worth noticing how, even when investigating purely topological manifolds, it is the differential
world that offers the local tools, which are then extended by careful patching and matching.
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In conclusion, by combining Milnor’s smoothing theorem with the Kirby-Sieben-
mann product structure theorem, we obtain:

Corollary. Let X’" be a topological m—manifold, with m at least 5. If its topological
tangent bundle T 7 admits a DIFF (m)-structure, then X must itself admit a smooth
structure. D

In other words, we are able to “integrate” an infinitesimal differentiable structure
on the tangent bundle to a differentiable structure on the manifold X itself.

It is now time to see what obstructions appear when trying to smooth the tangent
bundle of a topological manifold X™:

Smoothing bundles: the setting. The topological tangent bundle T;?p is a bun-
dle with fiber R” and group TOP(m); we wish to reduce its structure group to
DIFF (m). The method of choice will be obstruction theory, applied to classifying
spaces. Thus, for a better understanding of the following, it is recommended to
first read the earlier notes (on page 197 and on page 204).

At the outset, we should remark that the group DIFF (m) of self-diffecomorphisms of R™ fix-
ing the origin is homotopy-equivalent with the more familiar group GL(m) of invertible matri-
ces. Indeed, if ¢,: R" =~ R™ is a diffeomorphism with ¢,(0) = 0, then the Alexander iso-
topy ¢1(x) = 1¢@(tx) provides a deformation of ¢, to ¢y = d¢;|, € GL(m), and thus contracts
DIFF(m} to GL(m). This implies that a fiber bundle with structure group DIFF(m) is nothmg
but a vector bundle. Therefore, to reduce the structure group of the tangent bundle T ! from
TOP(m) to DIFF(m) means merely to organize TX" as a vector bundle.

The group TOP(m) has a c1a551fy1ng space denoted by .ATOP(m). As a conse-
quence, the tangent bundle TX is described by a classifying map

T: X — BTOP(M) .

The group DIFF(m) has a classifying space? #DIFF(m). The natural inclusion
DIFF(m) C TOP(m) induces a fibration

& BDIFF(m) — BTOP(m)

with fiber TOP(m / )/DIFF (m). Then endowing the tangent bundle T;gp with a
DIFF (m)-structure is the same as lifting the classifying map 7 toamap ™: X —

ADIFF(m) that fits in % BDIFF(m)

| "L

X —— BTOP(m) .
We can pull the fibration . : ZDIFF(m) — ATOP(ni) back over X as
™ ——— BDIFF ()

l l7

X —"— BTOP(m),

and then smoothing T;gp is equivalent to finding a section in this pulled-back fi-
bration T4 The fiber of 7™ — X is TOP(m)/DIFF (m).

28. BDIFF(m) is the same (homotopy-equivalent) with BGL(m) = #0(m) = %, (R™).
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Think of all this as a setting on which to use obstruction theory. We start with
a random smoothing of the tangent bundle over the vertices of some cellular de-
composition of X, viewed as a section of 7% over the O-skeleton of X. We then
strive to extend this section cell-by-cell across all X. When extending from the
k-skeleton of X across the (k + 1)-skeleton of X, obstructions appear in

H*"Y(X; m (TOP(m)/DIFF(m))) .

Further, if a given section ¢ of 7% over the k-skeleton is extendable across the
(k + 1)—skeleton, then the elements of

HY(X; m(TOP(m) /DIFF (m)))

classify up to homotopy all other sections over the k-skeleton that are extendable
across the (k + 1)—skeleton and are homotopic to o over the (k — 1)-skeleton.

In terms of smooth structures on T)fgp or, equivalently when m > 5, in terms of the
induced smooth structures on X", any homotopy of a section of T*% corresponds
to a concordance of smooth structures on X. Two smooth structures ¢’ and " on
X are called concordant if there is a smooth structure on X x [0, 1] that is {’ on
X x 0 and is " on X x 1. Keep in mind that smooth structures can be diffeomor-
phic without being concordant; simple examples come from manifolds that do not
admit orientation-reversing diffeomorphisms. (Furthermore, in high-dimensions
concordance implies isotopy:.)

Hence, obstruction theory can be used to clarify the existence and classification
up to concordance of smooth structures on topological manifolds of dimension at
least 5. Of course, in order to effectively put obstruction theory to work, we need
to determine the homotopy groups of the fiber TOP(n1) / DIFF(m).

Smoothing bundles: computing the homotopy groups. This paragraph is rather
dense and very sketchy. It can be safely skipped; the next paragraph starts on
page 220.

High homotopy. Let us apply the above obstruction theory setting to the case of the
sphere §". Since the topological manifold S" admits smooth structures, no obstruc-

tions appear. Further, the only non-zero classifying cohomology group H*(X;m)
appears when k = n, in which case we have
H"(S"; m, (TOP(n)/DIFF(n))} = m,(TOP(n)/DIFF(n)) .
Therefore, for n > 5 we have
{smooth structureson 8"} =~ m, (TOP(n)/DIFF(n))

(smooth structures considered up to concordance). That is to say:

Lemma. When n > 5, we have m,(TOP(11) /DIFF(n)) = ©,, where ©, denotes the
group of homotopy n—spheres. O

The groups ©, have been presented in the end-notes of chapter 2 (page 97). They
are defined as the set of all smooth homotopy #-spheres, considered up to h-
cobordisms and with addition given by connected sums. We have seen that, when
n > 5, the set ®, can be understood as the group of concordance classes of smooth
structures on 5”; hence we could call ®, “the group of exotic n—spheres”. These
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groups can be computed using surgery methods. All groups ®,, are finite, and the
first nontrivial one is ©; = Zg.

Further, after using stabilizations TOP(k) C TOP(k + 1), we are led to:

Theorem. Forall n and m with 5 < n < m+ 1, we have
nn(TOP /DIFF m)) =0,. O

This theorem follows from the delicate result that, forn < m+ 1 and m > 4, we have
Ty (TOP(m+ 1)/DIFF(m + 1), TOP(m)/DIFF(m)) =0.

The cases when m > 5 were proved in R. Kirby and L. Siebenmann’s Foundational essays on
topological manifolds, smoothings, and triangulations [KS77]. The cases when m = 4 were
cleared in F. Quinn’s Ends of maps. IIl. Dimensions 4 and 5 [Qui82] for n < 3; in his Isotopy
of 4-manifolds [Qui86] for n = 5; and in R. Lashof and L. Taylot’s Smoothing theory and
Freedman’s work on four-manifolds [LT84] for n = 3,4.

Low homotopy. We now need to compute the low-dimensional homotopy groups
of TOP/DIFF For n > 5, we have used 5" to evaluate 7,,. For n < 4, we
can instead increase the dimension of S” by thickening it to S” x R¥ such that
n + k > 5. Then, after using stabilizations, we have

{smooth structures on " x R¥} =~ m,(TOP(m)/DIFF(m))

for all m > 4. However, smooth structures on the open manifold 5" x R* are hard
to approach directly. Instead, one considers smooth structures on §" x T¥. On
one hand, by climbing the universal cover RF — T*, it is clear that each smooth
structure on 8" x T¥ induces a smooth structure on 8" x R¥.

The fundamental fact is that, conversely, the smooth structures on 5" x R¥ corre-
spond to smooth structures on 5" x T¥, more precisely to homotopy smooth struc-
tures on 8" x T*. A homotopy smooth structure on a topological m-manifold X"
is a homotopy equivalence X" ~ V™ with some smooth m-manifold V™ (same
dimension).

This converse is a consequence of the celebrated torus unfurling trick of R. Kirby, which first
appeared in Stable homeomorphisms and the annulus conjecture [Kir69], and was used in our
context in R. Kirby and L. Siebenmann’s On the triangulation of manifolds and the Hauptver-
mutung [KS69] (see also Foundational essays. .. [KS77]).

When n +k < 6, the homotopy smooth structures on $" x T* (thought of as
smooth structures on D" x T relative to the boundary) are known by surgery
theory to be classified by the elements of H>~"(T*;Z,). Thus, for n > 4 there is
only one homotopy smooth structure on 5" x T, the standard one. For n < 2, all
structures are known to be finitely-covered by the standard one {and thus can be
standardized after climbing a finite cover of T¥). Finally, for n = 3 there is at most
one structure that is not covered by the standard one. Therefore the conclusion is
that, for all small n not 3, we have

7tn (TOP(m) /DIFF(m)) = 0
and. moreover. that 72 (TOP(m) /DIFF(m)) has either one or two elements.
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As was first noticed by L. Siebenmann, it turns out that 713 cannot be trivial, and

hence 73 (TOP(m) /DIFF(m)) = Z, .

If one accepts everything else that was claimed above, then, for proving this non-
triviality of 73, we need only exhibit one topological manifold of dimension less
than 7 that does not admit any smooth structures.

In dimension 4, Freedman’s Eg-manifold Mg, is an example, as follows from
Rokhlin’s theorem. For dimensions higher than 4, we also have:

Lemma. The topological manifold Mg, x S¥ does not admit any smooth structures.

Proof. Assume that Mg, x Sk admits a smooth structure. Then, by writing
8k = RF U {oo}, we obtam a smooth structure on Mg, X R*. We apply the
product structure theorem and deduce that Mg x R admits a smooth struc-
ture. Consider the projection map pr,: /\/lE8 x R — R. Then, since Mg, x R
is smooth, we can perturb pr, over Mg x (0, o0) so that it becomes smooth
over Mg, x (¢ 0) but remains unchanged on Mg, x (—00,0). Pick a positive
regular value ¢ > ¢ of pry; then pry'[c] is a smooth 4-manifold. Since M,

has w, = 0, so must pr; '[c]. However, pry'[—1] = Mg, and hence the 5-
manifold pr; '[~1,c] is a cobordism between Mg, and the smooth manifold
pr; '[c]. Since signatures are cobordism-invariants, it follows that the smooth

4-manifold pr; l[c] has signature 8, but w; = 0. This, of course, is forbidden
by Rokhlin’s theorem. a

The manifolds Mg_x S¥ do not admit PL structures either. More important, no-
tice the fundamental role that Rokhlin’s theorem plays? in the nontriviality of
713(TOP(m) / DIFF (m)) .

What was omitted. A more detailed discussion would of course have taken into account the
intermediate piecewise-linear level between smooth and topological, and infinite stabilizations.

Stabilization means considering everything up to adding trivial bundles. This embeds TOP(n1)
into TOP(m + 1) and in the limit yields the group TOP = lim TOP(m), with its own classifying
space BTOP. Similarly, DIFF(m) stabilizes to DIFF = lim DIFF(m), with classifying space
#BDIFF. The group of piecewise-linear self-homeomorphisms of R™ that fix 0 is denoted by
PL(m), stabilizing to PL and with classifying space #PL. The inclusions TOP C PL C DIFF
lead to fibrations BPL — BTOP and #BDIFF — .#PL, with corresponding fibers TOP / PL and
PL/DIFF.

Between smooth and PL: The study of the smooth/PL gap was attacked by S. Cairns in The nan-
ifold smoothing problem [Cai61]. Then R. Thom's Des variétés triangulées aux variétés diffé-
rentiables [Tho60] suggested that the smoothing problem should admit a setting in terms of ob-
struction theory. A natural simplex-by-simplex obstruction theory was developed by J. Munkres’
Obstructions to the smoothing of piecewise-differentiable homeomorphisms [Mun59, Muné60b]
(see also his [Mun64] and [Muné65]). A different obstruction theory was outlined in M. Hirsch’s
Obstruction theories for smoothing manifolds and maps [Hir63], and also proved a product
structure theorem for the smooth/PL gap. Then appeared J. Milnor’s Microbundles [Mil64].
All this led to an obstruction theory based on the classifying spaces #DIFF and #BPL, de-
veloped by M. Hirsch and B. Mazur and eventually published in the volume Smoothings of

29. Of course, R. Kirby and L. Siebenmann’s result that 73(TOP/DIFF) = Z, was proved before
M. Freedman built the fake 4-balls that are used in the construction of MEs. Nonetheless, their exam-
ples also rest upon Rokhlin’s theorem.
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piecewise-linear manifolds [HM74]. (A quick comparison of Munkres” and Hirsch-Mazur’s
approaches can be read from J. Munkres’ Concordance of differentiable structures—two ap-
proaches [Muné67].)

The passing of the smooth/PL gap depends on the fiber DIFF /PL, which has homotopy groups
7, (DIFF/PL) =0 foralln <6, and n,(DIFF/PL) = ®, foralln>5 .

For proving the triviality of 7, in low-dimensions, the cases n = 1,2 are boring, the case n = 3
follows fromJ. Munkres s Differentiable isotopies on the 2—sphere [Muné60a] and S. Smale’s Dif-
feomorphisms of the 2—sphere [Sma59]. The case n = 4 was proved by ]. Cerf’s series of papers
La nullité de mo (DiffS®) [Cer64], later published in the volume Sur les difféomorphismes de la
sphére de dimension trois (I'y = 0) [Cer68a}. The cases n = 5,6 follow from the computations
of ®, in M. Kervaire and J. Milnor’s Groups of homotopy spheres [KM63].

Thus, the first non-zero homotopy group of DIFF /PL is m; = Zyg, coming from Milnor’s exotic
7-spheres; geometrically, this first group corresponds to the existence of PL 8-manifolds that
cannot be smoothed; an example is the 8-dimensional topological manifold /\/1‘1588 built by Eg—
plumbing eight copies of DTg: and capping with an 8-disk, see back on page 98. In general all
M ,:f‘s" ‘s are PL and non-smoothable.

Between PL and topological: For the study of topological manifolds, some important steps along
the way were B. Mazur’s On embeddings of spheres [Maz59, Maz61), followed by M. Brown's A
proof of the generalized Schoenflies theorem [Bro60], then A. Cernavskii’s Local contractibility
of the group of homeomorphisms of a manifold [Cer68b, Cer69]. Then came R. Kirby's already
mentioned torus unfurling trick, in Stable homeomorphisms and the annulus conjecture [Kir69],
which was then put to work together with L. Siebenmann.

The passing of the PL/topological gap is governed by the fiber TOP /PL. The latter was shown
to be an Eilenberg-Maclane K(Z;3) -space, that is to say,

n3(TOP/PL) = Z; and 7, (TOP/PL) =0 foralln#3 .

This can be read from R. Kirby and L. Siebenmann’s Foundational essays on topological mani-
folds, smoothings, and triangulations [KS77]. anmples of topological (4 + k)-manifolds that
do not admit any PL structure are all Mg, x sk and Mg, % T*. A recent exposition of the
PL/topological gap can also be read from Y. Rudyak’s Piccewise linear structures on topolog-
ical manifolds [Rud01].

The evaluation of the homotopy groups of TOP /PL rests upon the determination of all homo-
topy PL structures on 8" x T (viewed as structures on D" x T* relative to the boundary). These
were cleared using surgery by A. Casson, then by W-c. Hsiang and J. Shaneson’s Fake tori, the
annulus conjecture, and the conjectures of Kirby [HS69], based on the surgery techniques devel-
oped by C.T.C Wall’s On homotopy tori and the annulus theorem [Wal69b] (see also Surgery on
compact manifolds [Wal70, Wal99, ch 15]).

Smoothing bundles: the Kirby—Siebenmann invariant. Reviewing the results out-
lined in the preceding paragraph, we can now state:

Theorem. For every n and m with 5 < n < m + 1, we have:
7tu (TOP(m) /DIFF(m)) =0 for3 #n <6
713(TOP(m) /DIFF(m)) = Z
7w (TOP(m) /DIFF (m)) = ©, forn >5

where @, is the group of homotopy n—spheres.3 m]

30. For those who skipped the preceding paragraphs: The groups of homotopy spheres ®, have been
presented in the end-notes of chapter 2 (page 97). They can be defined for n > 5 as the set of smooth
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We can now apply obstruction theory to study smoothings of topological mani-
folds of dimension at least 5, via smoothings of their topological tangent bundles.

Since the first dimension with a nontrivial homotopy group is n = 3, it follows
that the primary obstruction to endowing the topological tangent bundle of X
with a DIFF(m)-structure appears as a class in H*(X; Z,). It is called the Kirby—
Siebenmann invariant and is denoted by

ks(X) € HY(M;Z,) .

The existence of this first obstruction rests upon Rokhlin’s theorem. Further, the
difference cocycles are elements of H*(X;Z;).

Past dimension 7, higher obstructions appear from H"*!(X;®,), the first one
from H®(X;Z,g). Higher difference cocycles live in H"(X;®,), the first ones in
H(X;Zs3).

Bringing in the intermediate PL level, we should say: The Kirby-Siebenmann invariant ks(X) €
H*(X;Z,) is the complete obstruction to endowing a topological manifold X" of dimension
m > 5 with a PL structure. If such a structure exists, all other PL structures are classified up
to concordance (and thus isotopy) by H*(X:Z,). The higher obstructions from H"*'(X;©,)
govern the possibility of endowing a PL manifold X" with a smooth structure and do not appear
until m = 8. Notice also that every PL 7-manifold admits exactly 28 distinct smooth structures,
up to concordance.

Since Z, and all the ®, s are finite, a consequence is that any topological manifold
of dimension not 4 admits at most finitely-many distinct smooth structures.31

Another consequence of the theory is that, for all m > 5, any topological manifold
homeomorphic to R™ admits a unique smooth structure. Sincé the cases m < 3
are similar, this leaves R* as the only possible support of exotic structures.

Conclusion. If the Kirby-Siebenmann invariant ks(X) vanishes and m < 7, then
the tangent bundle of X" admits a DIFF (m)-structure. If moreover m > 5, then
this bundle structure can be integrated to a smooth structure on X itself. For ex-
ample, all simply-connected topological 5-manifolds admit smooth structures.3?

Moreover, if X admits some smooth structure, then all other smooth structures
on X are classified (up to concordance/isotopy, via difference cocycles) by the el-
ements of H3(X;Z,). Starting with dimension 8, beside ks(X) appear higher ob-
structions to the existence of smooth structures, living in the groups H"*1(X;®,,).

The case of dimension 4. The Kirby-Siebenmann invariant can certainly still be
defined in dimension 4. However, lacking the power of the (smooth) h—cobordism
theorem behind it, it mainly has negation power.

For a topological 4-manifold M, the Kirby-Siebenmann invariant
ks(M) € H*(M;Z,)

structures on " considered up to concordance, with addition defined by connected sums; all groups
©®,, are finite, and the first nontrivial one is ©; = Zy3.

31. The cases of dimension 2 and 3 being handled, of course, separately.
32. Since H*(X%;Z,) = H;(X>,Z) = 0.
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is simply a Z;-valued invariant: it is either 0 or 1. Its value is strongly related to
Rokhlin’s theorem (and its generalizations). Specifically, ks(M) detects whether a
smooth structure on M is prohibited by Rokhlin’s or not.

Evaluating the Kirby—Siebenmann invariant. Let M be any topological 4-manifold
with no 2-torsion in H;(M; Z) and with even intersection form Q,, (such a mani-
fold can safely be called a “spin manifold”). We have:

ks(M) = %signM (mod 2) .
In particular, ks(Mg,) = 1.

More generally, regardless of the parity of Q,, if a characteristic element of M can
be represented by a topologically embedded sphere X, then we have

ks(M) = L(signM — X %) (mod 2).
This is related to the Kervaire-Milnor generalization of Rokhlin’s theorem.

Finally, via the Freedman-Kirby generalization of Rokhlin’s theorem, we have, for
every topological 4-manifold M with an embedded characteristic surface X,

ks(M) = (signM —Z-X) + Arf(M,X) (mod2),
where Arf(M, X} is a Z,—-invariant that measures the obstruction to representing
X by a sphere, and depends only on the homology class of X. The Freedman-

Kirby theorem will be discussed and proved in the end-notes of chapter 11 (page
502); it is readable anytime.

When Kirby-Siebenmann vanishes. If M admits a smooth structure, then ks(M) = 0.
The converse is false: if ks(M) = 0, then M might still not admit any smooth
structures. Such examples were uncovered starting with Donaldson’s work3? and
they are not rare. Nonetheless, if ks(M) = 0, then the 5-manifolds M x R or
M x S' do admit smooth structures. Further, without increasing dimension, if
ks(M) = 0, then for m big enough the stabilization M #m S? x §? must admit a
smooth structure.

On the other hand, it was proved that all open 4-manifolds can be smoothed. In
particular, any closed 4-manifold M can be endowed with a smooth structure off
a point.

In the case when ks(M) = 0, then, since M #m 5% x §? can be smoothed, such a
smoothing-off-points for M can be made in a controlled fashion:

Theorem (E Quinn). If M is a topological 4-manifold with ks(M) = 0O, then there is
a finite set of points py, ..., pm in M and a smooth structure on

M\{Pl» '--,Prn} ’
such that, for each k, on one hand there is a neighborhood Uy of py in M, and on the other
hand there is a self-homeomorphism @y : 8% x §? .~ S2 x S? (isotopic to the identity), a
neighborhood U}, of h[S* V §?] in 8% x S and we have a diffeomorphism

U\ pr = Ug \ @i [S* VS

33. See ahead section 5.3 (page 243).
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In other words, the complement of each py is locally smoothed like the complement of a
displacement of 5* V82 in 52 x 52, 0

See the left side of figure 4.39. This result was proved in E Quinn’s Smooth
structures on 4—manifolds [Qui84] and can also be read from M. Freedman and
F. Quinn’s Topology of 4-manifolds [FQ90].

@ N GPZ
M

.

Pk * Pk

4.39. Almost-smoothing a 4-manifold with ks(M) =0

Since §? x §? #CP? = #2CIP? #CPP?, the theorem can immediately be restated by
instead using displacements of CP' in CIP? and diffeomorphisms

Ui\ px = Up \ ¢r[CP']
(some of which which could reverse orientations). See the right side of figure 4.39,
and also think in analogy with blow-ups of complex manifolds.34

A fundamental remark to be made in this context is that both 52 x 52 \ ¢, [$? V 5]
and CIP? \ ¢ [CP'] are open smooth 4-manifolds that are homeomorphic to R*.
This implies that, if M has ks(M) = 0 but is not smoothable, then these open
manifolds must exhibit non-standard smooth structures on R*. In other words,
they must be exotic R*’s. This, in part, explains why the discovery of exotic R*’s
had to wait for Donaldson’s work.3> Exotic R*’s will be discussed in section 5.4
(page 250) ahead.

When Kirby-Siebenmann does not vanish. If ks(M) = 1, then M does not admit any
smooth structures. If ks(M) = 1, then stabilizations do not help: ks(M #mS? x
§?) will still be 1, and all the M #m S? x $2’s will be non-smoothable. Indeed, the
Kirby-Siebenmann invariant is nicely additive:

ks(M Uy N) = ks(M) + ks(N) .

34. Blow-ups are described in section 7.1 (page 286) ahead.

35. Of course, it also had to wait for A. Casson’s and M. Freedman’s work. Nonetheless, one can still
ask whether the existence of exotic R*’s can be obtained as a consequence of Rokhlin’s theorem while
avoiding Donaldson'’s theory or equivalents. No.



224 4. Intersection Forms and Topology

In particular ks(M #N) = ks(M) + ks(N), and so, if ks(M) = I, then ks(M #
m$? x §?) = 1. Another important property to note is that the Kirby-Siebenmann
invariant is unchanged by cobordisms.3¢

The invariant ks misses most of the wildness of dimension 4: for example, the
Kirby-Siebenmann invariant of Mg # Mg vanishes; but the latter has intersec-
tion form Eg @ Eg, which is excluded from the smooth realm by the results of
Donaldson: Kirby-Siebenmann’s does not see what Rokhlin’s does not exclude.

Note: The Rokhlin invariant of 3—-manifolds

The Rokhlin theorem has major consequences beyond dimension 4. As we have
seen in the preceding note (starting on page 207), in high-dimensions it is funda-
mentally implied in the non-existence of smooth structures on topological mani-
folds. In dimension 3, the Rokhlin theorem permits the definition of invariants for
3-manifolds, which are the topic of this note. The invariants for 3—manifolds are
a Z,—invariant o(%) €2,

for homology 3-spheres £, and a Z¢—invariant
H(N) € Zie

for 3—manifolds N endowed with spin structures.

Preparation: additivity of signatures. We have already seen that, if we connect-
sum two 4-manifolds M and N, then we have Qusn = Qu® Qn,and as a

consequence sign(M#N) = sign M + sign N .

Intersection forms can also be defined for 4-manifolds with non-empty bound-
ary, but they will not be unimodular unless the boundary is a homology sphere.3”
Then the additivity properties above are easy to prove for two manifolds M and
N whose boundaries are a same homology sphere with opposite orientations: if
we glue M and N along their boundaries, then Qv = Qu ® Qu and hence

sign(M Uy N) = sign M +sign N.

Examples. For example, the 4-manifold® Py has intersection form Eg and signature 8. The
manifold Py, Ug, P, is a closed 4-manifold with intersection form Eg @ —Eg ~ @©8H and
signature 0. Because of signature-vanishing, we expect P, Uy, Py, to bound a 5-manifold, and
indeed, it is the boundary of P, x (0,1, as in figure 4.40 on the facing page. It turns out that
Pg, Uy, Py, is none other than #8S2 x S2. (Notice that, since Zp does not have an orientation-
reversing self-diffeomorphism, a manifold like Py, Uy, Pg, does not exist.%)

36. In fact, the topological cobordism group Qi"" of oriented topological 4-manifolds is O;”” =Z%
Z,, with isomorphism given by M — (sign M, ks(M)). Cobordisms groups will be discussed in the
note on page 227 ahead.

37. This will be fully proved in the end-notes of the next chapter (page 261).

38. Recall that Py, denotes the Eg—plumbing and is bounded by the Poincaré homology sphere Zp;
see section 2.3 (page 86).

39. A roundabout argument: Py, Uy, Py would be a smooth 4-manifold with definite intersection
form Eg @ Eg. However, that is excluded by Donaldson’s theorem (see section 5.3, on page 243 ahead).
Thus, this 4-manifold does not exist, and therefore Xp cannot admit an orientation-reversing self-
diffeomorphism.
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4.40. Pp, Uy, P, is the boundary of Pg, x [0, 1]

If two 4-manifolds have boundaries that are not homology spheres, then the ad-
ditivity of the intersection forms ceases to hold. Nonetheless, signatures are still
additive:

Novikov’s Additivity Theorem. Let M and N be two 4—manifolds with non-empty
boundaries. Assume that their boundary 3—manifolds 0 M and 0 N admit an orientation-
reversing diffeomorphism 9 M = 9N. Then the closed manifold M Uy N, built by
identifying the boundaries d M and 0 N, has signature

sign(M Uy N) = signM + signN .

Outline of proof. Denote by Y? the (unoriented) boundaries of M and N as
well as the resulting 3—submanifold in M Uy N. Take a random element & €
Hy(M Uy N), represented as surface transverse to Y. Then the intersection
«NYisa l—cyclein Y.

On one hand, if a NY is non-trivial in H; (Y3; Z), then it admits a dual class
B € Hy(Y;Q). (Notice that we must use rational coefficients, but that is no
problem: signatures were defined by diagonalization over a field.) The class
B can be included as a class in M Uy N. Since 8 in M Uy N can be pushed
off itself by using some nowhere-zero vector field normal to Y in M Uy N, it
follows that 8- B = 0 in M Uy N. Therefore, the span of « and  in H,(M U,

N; Q) has intersection form
* 1
Qlaﬁ = I:l OJ ’

whose signature is zero and thus does not contribute to sign(M Uy N).

On the other hand, if « NY is homologically-trivial, then one shows, using
a Mayer-Vietoris argument, that & must in fact be a sum a = ap + ay of
classes from M and N. Therefore the contribution of & to the signature of
M Uy N is caught in sign M and sign N. m]

The complete proof can be found in R. Kirby’s The topology of 4-manifolds
[Kir89, ch II].

If two 4—manifolds are glued on only parts of their boundaries, then the additivity of the signa-
ture ceases to hold. Nonetheless, there is a well-determined correction term, see C.T.C. Wall’s
Non-additivity of the signature [Wal69a).

The Rokhlin invariant of homology 3-spheres. On 3-manifolds spin structures
can be defined in the same way as on 4-manifolds. Since every 3-manifold N
is parallelizable (i.c., Ty is a trivial bundle), it admits spin structures. As in di-
mension 4, the group H'(N;Z,) acts transitively on the set of spin structures. In
particular, if H'(N;Z,) = 0, then N admits exactly one spin structure. Moreover,
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every spin 3-manifold N bounds a (smooth) spin 4-manifold M with the spin
structure of M restricting to the chosen spin structure®® of N.

Let =3 be a homology 3-sphere. Let M be a smooth spin 4-manifold bounded by
Z. Being spin, the manifold M must have an even intersection form. Since X is a
homology 3-sphere, the intersection form of M must be unimodular. Thus, using
van der Blij’s lemma, its signature must be a multiple of 8:

signM =0 (mod 8)

(from the same algebraic argument?! as for closed 4-manifolds). In other words,
the residue of sign M modulo 16 is either 0 or 8.

We can then define the Rokhlin invariant of X by
p(X) = gsignM  (mod 2) .

Due to Rokhlin’s theorem, this is a well-defined invariant of X, which does not
depend on the choice of the bounded 4-manifold M. Indeed, if X also bounds
another spin 4-manifold M’, then M and M’ can be glued along X yielding a
closed spin 4-manifold M Uy M’, which must have

sign(M Uz M') = 0 (mod 16),
and thus sign M — sign M’ = 0 (mod 16).
For example, since it bounds Pr whose signature is 8, the Poincaré homology
3-sphere Xp must have p(Zp) =1.
The Rokhlin invariant of Z;—homology 3—spheres. Assume now that the 3-mani-
fold N is a Z,~homology sphere, i.e., a closed 3-manifold with
H'(N:Z,)=0.

Then N admits a unique spin structure. Pick some smooth spin 4-manifold M
that is bounded by N, with compatible spin structures. The intersection form of
M is still even, but no longer unimodular, and so the best we can do is define the
Rokhlin invariant (or pg—invariant) of N by

#(N) =sign M (mod 16) .
A similar reasoning as above shows that it is well-defined, independent of M.
The Rokhlin invariant of spin 3—manifolds. Finally, if N is just a random closed

3-manifold, then we can choose a spin structure s on N, find a spin 4-manifold
M that is spin-bounded by N, and define the invariant

u(N) =signM (mod 16) .
This is an invariant that depends on the chosen spin structure s.
Two easy properties of the Rokhlin invariants, in any of the above versions, are:
#(N) = —u(N) and W(N"#N") = p(N') + u(N") .

40. In the language of the next note (cobordism groups; page 227), we are saying that O‘gp " =0.
41. For the proof of van der Blij's lemma, see the end-notes of the next chapter (page 263).
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Vice-versa: proving Rokhlin’s theorem from py—invariants. The reason why the y—
invariant of a spin 3-manifold is a well-defined invariant modulo 16, rather than
modulo 8, is Rokhlin’s theorem. Surprisingly, one can also go in reverse: If one
proves by other means that the y~invariant is well-defined modulo 16, then from
this fact one can deduce Rokhlin’s theorem for 4—manifolds.

This brief and elegant proof of Rokhlin’s theorem can be discovered hidden as an
appendix to R. Kirby and P. Melvin's The 3-manifold invariants of Witten and
Reshetikhin-Turaev for s1(2,C) [KM91]. Specifically, one starts with a presenta-
tion of the 3-manifold as a Kirby link diagram, then defines the p~invariant in
terms of that diagram and proves that it well-defined by using only Kirby calcu-
lus.42

References. The Rokhlin invariant first appeared, in a more general setting, in
J. Eells and N. Kuiper’s An invariant for certain smooth manifolds [EK62]. Some
early properties are explored in F. Hirzebruch, W. Neumann and S. Koh's Differ-
entiable manifolds and quadratic forms [HNK71].

The Rokhlin invariant can be refined into the much more powerful Casson invari-
ant of homology 3-spheres, to the exposition of which is devoted S. Akbulut and
J. McCarthy’s Casson’s invariant for oriented homology 3-spheres [AM90]. This
was extended by K. Walker to an invariant of rational homology 3—spheres in An
extension of Casson’s invariant [Wal92], and then finally to general 3-manifolds
in C. Lescop’s Global surgery formula for the Casson-Walker invariant [Les96].
A recent survey of such invariants is N. Saveliev’s Invariants for homology 3-
spheres [Sav02]. In a different direction, the Casson invariant admits a gauge-
theoretic interpretation in terms of Donaldson’s instantons, as was noticed by
C. Taubes’ Casson’s invariant and gauge theory [Tau90], and, even further, it is
the Euler characteristic of an instanton-based homology theory built in A. Floer’s
An instanton-invariant for 3—manifolds [Flo88]. However, all this is beyond the
scope of the present volume.

Note: Cobordism groups

If we consider two m-manifolds as equivalent whenever there is a cobordism be-
tween them, then we separate manifolds into cobordism classes, and these can be
organized as an Abelian group.

Oriented cobordism group. Consider the set of all oriented m—manifolds, together
with the empty manifold @. Think of X™ and Y™ as equivalent if and only if they
are cobordant, i.e., if there is an oriented manifold W™*! such that oW = X U Y.
The equivalence classes make up an Abelian group

030
called the oriented cobordism group in dimension m. Its addition comes from
disjoint unions, [X] + [Y] = [X U Y], as suggested in figure 4.41 on the next page.

42. A quick overview of Kirby calculus was made in the end-notes of chapter 2 (page 91).
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oy D

X Y
4.41. Cobordisms: [X] + [Y] = [Z] in QSO
The identity element in Q30 is given by 0 = [@]. Any bounding m-manifold

represents 0, and thus in particular the identity can also be represented by the
m—sphere 5™ —since S bounds D"'*!, we have [$™] = [].

The inverse in (30 is given by reversing orientations: we have —[X] = [X], as
argued in figure 4.42.

X

>

4.42. Cobordisms: [X] + [X] = 0in Q50

It is worth noticing that X U Y is always cobordant to X #Y. This can be seen, for
example, by using the boundary sum® (X x [0,1]) § (Y x [0,1]) as in figure 4.43.
Thus, connected sum corresponds to addition in (Q3:

(X]+ Y] = [X#Y].
The diffeomorphisms X #5" = X reflectas [X] +0 = [X].

(D,

X Y

4.43. Cobordisms: [X] + [Y] = [X #Y] in Q30

Cobordism ring. Further, all the groups Q3¢ can in fact be put together to make up the oriented
cobordism ring (3¢, with multiplication given by [X] - [Y] = [X x Y], and unit the element
[+point] € OFO.

As examples, it is easy to see that ng = Z, Q‘fo = 0 and an = 0. Itis a
nontrivial result that Q¢ = 0. We have already mentioned that a 4-manifold is

43. Boundary sums were recalled back on page 13.
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the boundary of some oriented 5-manifold if and only if its signature is zero. It
follows that 0=z,

with isomorphism given by [M] — sign Q). A generator of Q3¢ is CP?.

More cobordism groups are collected in table VI. The generator of (}3C is the manifold )* de-
scribed by the equation®® (xq + x; + x2)(yo + - - - + ya) = € in RIP> x RIP*. The generators of
O30 are CP* x CIP? and CP*. The generators of O30 are Y° x CIP? and )?, the latter being de-
scribed by the equation (xg + % +x2)(yo +- - - +yg) = € in RP? x RIP®. The generator of Q5§ is
Y5 x V3. The generator of (50 is V', given by the equation (xo +-- -+ x4)(yo + -~ + ys) =
in RIP* x RIP%. Keep in mind that Cartesian product organizes & Q0 as a graded ring.

VI. Oriented cobordism groups
[of1]2|3]|4|5]6]7] 8 | 9 |11l
0§10” ‘0‘ I lZ}Zz( FIZ@Z|22@22‘22 Z,

Spin cobordism groups. The “SO” from the notation (23° comes from the fact that
an orientation of X" is the same as a reduction of the structure group of Tx to
SO(m). The oriented cobordism group is not the only cobordism group—indeed,
one can define a cobordism theory for most types of structure on manifolds.

In particular, the spin cobordism group
m

is defined by starting with m-manifolds endowed with spin structures and con-
sidering X and Y as equivalent if and only if together they make up the boundary
of a spin (m + 1)-manifold W, with the spin structures on X and Y induced from
the one on W.

In low-dimensions?*> we have pr " =Z,, Qgp " = Z,,and Qgpm = 0. In dimen-
ion 4, we have ] -
S P prm =7 ,

with isomorphism given by [M] — - signQ,, (always an integer, by Rokhlin’s
theorem). The generator is the K3 surface.

More groups are collected in table VII. The generator of QO3P™ is K3. The generators of Q37" are
HP? and an 8 -manifold K3 such that #4 K is spin cobordant to K3 x K3.

VIL Spin cobordism groups

(o1 ]23]4]s5]6[7] 8

|z |2 [0]z]o[o]0] 2z

m |
Spm '

NI

44. The role of ¢ in the equation is merely to eliminate the singularities that would appear for = 0.

45. Defining spin structures for 1—and 2-manifolds requires first stabilization (because 7 S0(n) be-
gins to be Z, only for n > 3). Thus, for 1-manifolds C we will look at trivializations of Tc & R?,
while for surfaces S, we look at Ts @ R. These low-dimensional spin structures and their cobordisms
will be discussed in more detail in the end-notes of chapter 11 (page 521).
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Uses. The application of such cobordism results usually follows this pattern: In
order to prove a general statement about manifolds, first prove that it is invariant
under cobordisms, then prove that the statement holds on the generators.

For example, the signature sign Q,, is an oriented-cobordism invariant, and such
an argument is used in M. Freedman and R. Kirby’s A geometric proof of Rochlin’s
theorem [FK78] to prove Rokhlin’s theorem; we will present two versions of that
argument in the end-notes of chapter 11 (page 502 and page 521).

The most famous results first proved via cobordism arguments are Hirzebruch’s
signature theorem and the Atiyah-Singer index theorem.

References. Cobordism groups were first studied by R. Thom's Variétés différen-
tiables cobordantes [Tho53b] and fully detailed in his Quelques propriétés glob-
ales des variétés différentiables [Tho54]. That ng is trivial was proved in A. Wal-
lace’s Modifications and cobounding manifolds [Wal60] or R. Lickorish’s A repre-
sentutzon of orientable combinatorial 3-manifolds [Lic62b]. Both Q50 = 0 and
Q" = 0 were first proved by V. Rokhlin in New results in the theory of four-
dzmenszonal manifolds [Rok52].

R. Kirby’s The topology of 4-manifolds [Kir89] contains geometric proofs of
the low-dimensional cobordism statements mentioned above. A general study of
cobordisms can start with chapter 7 of M. Hirsch’s Differential topology [Hir76,
Hir94], then continue with R. Stong’s monograph Notes on cobordism theory
[Sto68].

As far as we are concerned, we will also encounter the spin€ cobordism group and
the characteristic cobordism group, both discussed in the end-notes of chapter 10
(page 427); the two are in fact isomorphic. Also, in the note that follows, we will
explore the framed version of cobordisms.

Note: The Pontryagin-Thom construction

In what foliows, we will present the Pontryagin—-Thom construction, which relates
homotopies of maps to framed bordisms of submanifolds. An instance of this
method was encountered in the proof of Whitehead’s theorem,*® and the follow-
ing should shed some extra light on that argument. It is also of independent inter-
est, since it adds geometric content to homotopy groups of spheres. In particular,
it was during the pursuit of this method that Rokhlin discovered his celebrated
theorem.

The construction. Let 12 Xk _, g

be any map, considered up to homotopy. Pick your favorite point p in $", then
modify f slightly to make it smooth and transverse to p. The preimage K =
f~!p] is now a k-submanifold of X""+*. Moreover, the differential df: Tx — Tou
induces a map df : Nx;x — Ten|, = R™, which is an isomorphism on fibers and
thus trivializes Ng,x. A submanifold together with a trivialization of its normal
bundle is called a framed submanifold.

46. Back in section 4.1 (page 143).
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In the reversed direction, let K be any k-submanifold of X""*¥ with trivial normal
bundle. Assume that a trivialization of its normal bundle Ng,x has been chosen.
This means that there is a projection f: Ngx,x — R™ that is an isomorphism on
fibers. Think of f as defined on a tubular neighborhood Ng,x of K in X and
compactify its codomain R™ to 5 by adding a point co. Then f: Ng,x — 5™
can be extended on X\ Nk,x simply by setting f|x\ n,,, = o, thus yielding a
map f: X"tk — gm,

The correspondence K & f becomes bijective if we consider f only up to homo-
topies, and K only up to framed bordisms. Specifically, two k-submanifold K’
and K” of X™+k both with trivialized normal bundles, are called framed bordant
if there exist both a (k + 1)—submanifold K of X x [0,1] suchthat 9K = K’ x 0 U
K" x 1, and a trivialization of the normal m-plane bundle Ny, xx[o,1] Of K such
that it induces the chosen trivializations of Nyr,x and Ngv,x when restricted to
K’s boundary. See figure 4.44.

4.44. A framed bordism

Lemma (Pontryagin-Thom Construction). We have the bijection
[Xm+k Sm] ~ Qkfm'nEd(Xm+k)

where the former denotes the set of homotopy classes of maps X — 5", while the latter
denotes the set of framed bordism classes of k—submanifolds of X .

Sketch of proof. That K +— f + K is the identity is obvious. That f; — K —
fo is the identity up to homotopy is shown by using the Alexander homotopy
fi(x) = 1fi(tx) thatlinks f1 with fo = dfi|, (use coordinates on S" = R™ U
co that set p at 0). Finally, apply the Pontryagin-Thom construction again to
establish a correspondence between (k + 1)-submanifolds of X x [0, 1] and
functions X x [0, 1] — S§™. Interpret the former as framed bordisms and the
latter as homotopies. O

Lemma. The bijection Framed
7tm+ksm ~ Qk (Sm—l-k)

is an isomorphism of groups. O
The group structure on the latter is the obvious bordism addition,

K +K' = K'UK' C §"#5" = §" |
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Notice also that the bigger m becomes when compared to k, the less relevant the
restriction to manifolds that embed in $™ becomes. In other words, the stable
k—stem is given by abstract framed bordisms

. amed

119 Ton+k §" = Qkﬁ s

m
where the latter is the cobordism group of k-manifolds endowed with a stable
trivialization of their tangent bundle.4”

Whitehead, revisited. Some claims made during the proof of Whitehead’s theorem should now
be clearer. First, going from T,k (S™) to Ty (8™ V - -- V 8™) is trivial: just consider framed
bordisms of several distinct (each maybe disconnected) submanifolds. After that, it is now ob-
vious that any map f: §"** — S" can be arranged to have f~'[p] connected (compare page
143), because it is easy to devise a framed bordism to a connected k—submanifold (connected
sum inside 8" comes to mind). Similarly, the statement that the linking matrix of L determines
the homotopy class of ¢ (page 146) can now be made rigorous, because the linking matrix is in-
variant under framed bordisms (allow the splitting of link components into disconnected pieces).
It is in fact the only invariant, as will be suggested below.

References. The Pontryagin-Thom construction was created in the 1940s by L. Pon-
tryagin, who used framed bordisms to compute homotopy groups of spheres,
see his papers The homotopy group m,+1(K") (n > 2) of dimension n 41 of
a connected finite polyhedron K" of arbitrary dimension, whose fundamental
group and Betti groups of dimensions 2,...,n — 1 are trivial [Pond9a], and Ho-
motopy classification of the mappings of an (n + 2)-dimensional sphere on an
n—dimensional one [Pon50], or the book [Pon55] translated as Smooth manifolds
and their applications in homotopy theory [Pon59].

Then, after the development by ].P. Serre of more powerful methods for com-
puting homotopy groups,?® R. Thom in Quelques propriétés globales des var-
iétés différentiables [Tho54] went backwards and used computations of homotopy
groups in order to compute cobordism groups.’ Framed bordisms are explained
in a friendly manner in J. Milnor’s Topology from the differentiable viewpoint
[Mil65b, Mil97], but see also A. Kosinski’s Differential manifolds [Kos93].

Application: homotopy groups of spheres. In what follows we will put to work the
Pontryagin-Thom construction to offer geometric interpretations of certain simple
homotopy groups of spheres. While this is how the homotopy groups below were
first computed by L. Pontryagin and V. Rokhlin, the Pontryagin-Thom construc-
tion is a very weak method for evaluating homotopy groups when compared to
Serre’s later methods.

Lemma. n, 8" = Z .

47. A stable bundle is a bundle considered up to additions of trivial bundles. A stable trivialization of
the tangent bundle Tx means an isomorphism Tx @ R" =~ Rk, corresponding to a virtual embed-
ding in $"** with Ny jqu . trivialized as K x R™.

48. See J.P. Serre’s Homologie singuliére des espaces fibrés. I11. Applications homotopiques [Ser51].
49. For a first taste of this approach, start with M. Hirsch’s Differential topology [Hir76, Hir94, ch 7].
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Sketch of proof. Not that this is not clear for all sorts of reasons, but it can
also be argued in terms of framed bordisms: Q({m'm’d(S'l) contains framed
points; the framing of a point x € 8" is a trivialization of Tgn|, considered
up to homotopy, in other words, an orientation of Ty|,. Comparing it with

the fixed orientation of 5" exhibits the elements of Q-gmmed(S”) as points with
signs. The isomorphism
g P Q();ramed(sn) ~ 7

is given simply by counting those points with signs. (Of course, on one hand
this is just a very roundabout way of getting to the degree of a map 5" — 5";
on the other hand, though, this is just the easiest instance of a pattern that we
will see developing below.) o

Lemma. mS2 =7, and 7, S" = Z, whenn>3.

Outline of proof. For m35?, we are looking at Q{m”“’d(83), which contains
framed links in 83. Each component of the link has a framing, determined by
an integer, which can be added together to yield the isomorphism

Q{mmed(s3) ~ 7.

The framing is determined by an integer because we are talking about trivial-
izations of 2-plane bundles over copies of S!, and 7;SO(2) = Z. As soon
as the codimension increases, though, we have m;SO(n1) = Z; (detecting
whether the bundle twists by an even or odd multiple of 27), and thus

Q{ra'11ed(5"+l) ~ Z, whenn >3,

which concludes the argument. O

Lemma. M2 8" = Z5 .
Outline of proof. Consider surfaces embedded in S"*2. Every surface S has
a sketr-symmetric bilinear unimodular intersection form on H,(S;Z), given
by intersections of I—cycles. It descends to an intersection form modulo 2 on
H,(5:2,).
Using the embedding of S in $"*2, we can define a quadratic enhancement g
of the intersection forms, namely a map q: H(S;Z;) — Z, with

g(x+y) = q(x)+q(y) +x-y (mod?2).
Such a g is defined as follows: represent ¢ € H,(S;Z,) by a circle embedded

in § and consider the framing of Ng g2 over ¢: it is determined by a Z,-
framing coefficient, and we define g(¢) to be that coefficient.

Any quadratic enhancement has an associated Z,-invariant, called its Arf
invariant, which can be defined swiftly by setting

Arf(q) =Y q(ee) q(e)

for any choice of basis {e1, ...,em, €1, ...,ey} of H;(S:Z,) such that the only
non-zero intersections are ¢ - & = 1. A more thorough discussion of the
algebra of the Arf invariant is made in the end-notes of chapter 11 (page 501).
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In any case, the Arf invariant is the only framed bordism invariant and estab-
lishes the isomorphism d
ngme (Sn) ~ ZZ ,

and thus concludes the argument. O

All of the above computations are due to L. Pontryagin and can be read from his
book [Pon55], translated as Smooth manifolds and their applications in homo-
topy theory [Pon59].

Finally, at the limits of Pontryagin-Thom’s applicability, we have:
Theorem. T3 S" = Zys whenn > 5. ]

This is already serious business and was first discovered by V. Rokhlin. While
studying the problem of 7,43 5" by using framed bordisms of 3-manifolds, V. Rok-
hlin first concluded that 7,43 5" = Z;,. His mistake stemmed from thinking that
a certain characteristic element in a 4-manifold could be represented by an embed-
ded sphere. This was not the case, he corrected his mistake in New results in the
theory of four-dimensional manifolds [Rok52], and in the process discovered his
theorem on the signature of almost-parallelizable 4-manifolds. The whole story
can be followed in the volume A la recherche de la topologie perdue [GM86a],
edited by L. Guillou and A. Marin, with French translations of the relevant papers
of Rokhlin, commentaries, efc.

For completeness, even though they were never obtained using the Pontryagin-—-
Thom construction, we also state:

Theorem. MyeaS" =0, M58 =0, m4S" =7, whennisbig. 0O

In particular it follows that Q4ﬁ amed _ . This is not in contradiction with 0% = Z, because

not all 4-manifolds appear in Q™ , but only those that can be embedded in a sphere with
trivial normal bundle, in other words, only those 4-manifolds M whose tangent bundle is stably-
trivial, i.e., Ty ® R" = R"** for some n. These M ‘s have vanishing Pontryagin class, and thus
vanishing signature.
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