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DETERMINANT FOR A DIRAC OPERATOR ON A
MANIFOLD WITH BOUNDARY
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Abstract

Let D denote a Dirac operator on a compact odd-dimensional mani-
fold M with boundary Y. The elliptic boundary value problem Dp is
the operator D with domain determined by a boundary condition P
from the smooth self-adjoint Grassmannian Gri (D). It has a well-
defined {-determinant (see [Wob]). The determinant line bundle over
Gr;, (D) has a natural trivialization in which the canonical Quillen
determinant section becomes a function, denoted by dete Dp, equal
to the Fredholm determinant of a naturally associated operator on
the space of boundary sections. In this paper we show that the (-
regularized determinant det¢ Dp is equal to det¢ Dp modulo a natural
multiplicative constant.

Introduction

Since the early stages of Quantum Mechanics there has been a fundamental
need for a rigorous and workable definition of the determinant of an invert-
ible linear operator acting on an infinite-dimensional space. The Fredholm
determinant provides a natural extension from the finite-rank case to a lin-
ear operator T : H — H acting on a separable Hilbert space such that
T — Id is an operator of trace class. It is defined in a small neighbourhood
of the identity Id by the formula

detp, e* = ™™, (0.1)
where o denotes an operator of trace class, and for general T' = Id+ o with
o trace-class, by the absolutely convergent series

detp,(Id+ o) =1+ ) Tr(Aka). (0.2)
k=1

In particular, the Fredholm determinant retains the characteristic multi-
plicative property of the finite-rank algebraic determinant

detF.,. T()Tl = detF.,. T() detF.,. T1 . (03)
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The trace-class condition is, however, very restrictive and the class of op-
erators with Fredholm determinants certainly does not include any class
of elliptic differential operators. Nevertheless, important applications in
Physics, particularly in Quantum Field Theory (see the fundamental pa-
pers [MS1,2], led to the idea that the Fredholm determinant allows one to
study the ratio of the determinant of an elliptic operator to the determi-
nant of a ‘comparable’ basepoint operator; for instance, the ratio of the
determinant of a Hamiltonian with potential and the determinant of the
free Hamiltonian. In this way a regularized determinant relative to a choice
of basepoint operator may be defined.

On the other hand, in many important problems, such as in quantizing
gauge theories, it is necessary to discuss directly a regularized determinant
of an elliptic operator. The Heuristic Approach to the determinant in this
context was first proposed by mathematicians for the case of a positive
definite second-order elliptic differential operator

L:C*(M;S)— C*(M;S)
acting on the sections of a smooth vector bundle S over a closed mani-
fold M. The operator L has a discrete spectral resolution and so formally
has determinant equal to the infinite product of its eigenvalues. The start-
ing point in defining a regularized product is the following formula for an
invertible finite-rank linear operator T:
IndetT = —%{Tr T °}s=o0 - (0.4)
For large Re(s) the (-function of the operator L is just the trace occurring
on the right side of (0.4)
_ —8 __ 1 *® s—1 —tL
Cr(s)=TrL™° = m/o 7" Tre ""dt. (0.5)
It is a holomorphic function of s for Re(s) > dim M/2 and has a mero-
morphic extension to the whole complex plane with only simple poles (see
[Sel]). In particular s = 0 is not a pole. Hence ¢},(0) = £{(z(s)}|s=0 is
well-defined and we may define the {-determinant by
det¢ L = e~¢2(0) (0.6)

This definition was introduced in 1971 in a famous paper of Ray and
Singer [RS] in order to define Analytic Torsion, the analytical counterpart
of the topological invariant Franz—Retdemeister Torsion. The equality of
the two torsions was subsequently proved independently by Jeff Cheeger
and Werner Miiller (see [C1], [Mii]). Since then, there have been numerous
applications of the {-determinant in physics and mathematics, beginning
with the 1975 Hawking paper [H] on quantum gravity.
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For positive-definite operators of Laplace type over a closed manifold
the (-determinant provides a generally satisfactory regularization method.
Though the fundamental multiplicative property of the Fredholm deter-
minant (0.3) no longer holds; if L; and L, denote two positive elliptic
operators of positive order on a Hilbert space H then in general

detc Lng 7£ detc Ll . detc LZ .

We refer to [KV] for a detailed study of the so-called Multiplicative
Anomaly. In many physical applications, however, such as the quantization
of Fermions, one encounters the more problematic task of defining the de-
terminant of a first-order Dirac operator. These are not positive operators,
and it is at this point that anomalies may arise due to the phase of the deter-
minant [AtS]. For a Dirac operator D : C*(M; S) — C*°(M; S) acting on
the sections of a bundle of Clifford modules over a closed (odd-dimensional)
manifold M one proceeds in the following way (see [BoW4] for an intro-
duction and notation). The operator D is an elliptic self-adjoint first-order
operator and hence has infinitely many positive and negative eigenvalues.
Let {Ar}ren denote the set of positive eigenvalues and {—pg }ren denote
the set of negative eigenvalues. Once again, {p(s) = Tr(D~*) is well-defined
and holomorphic for Re(s ) > dim M and we have

Z)\ _I_Z s —s
,LL A —I_/l' _, A—s_l_#—s A—s_#—s
_Z( k. k2k)_|_(_1) zk:(k2k_k2k),

which can be written as

_5C2S2—DS DS—I—C282
where 11p(s) = D> 1, AL* — >, 4 ° is the n-function of the operator D intro-
duced by Atiyah, Patodi and Singer (see [AtPS]). Once again it is holomor-
phic for Re(s) large and has a meromorphic extension to the whole complex

plane with only simple poles. There is no pole at s = 0 and therefore we
can study the derivative of Cp( ) at s = 0. We have

G)() CDZ() {( ) }GZO_CDZ(O);WJ(O)‘

The ambiguity in deﬁnlng (— )_‘ (i-e. a choice of spectral cut) now leads
to an ambiguity in the phase of the (-determinant. We have

(_1)—5 _ e:l:'iﬂ-s
- )
« »

and we pick the “ — ” sign. This leads to the following formula for the
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(-determinant of the Dirac operator D
det D = e%r(CDZ(O)_TID(O)) . e_;_ 2(0) ) (0.8)

We come back to the discussion of the choice of sign in (—1)° in the final
section of the paper.

The purpose of this paper is to explain a direct and precise identity be-
tween the (-determinant of a self-adjoint elliptic boundary value problem
for the Dirac operator over an odd-dimensional manifold with boundary
and a regularization of the determinant as the Fredholm determinant of a
canonically associated operator over the boundary. We consider an infinite-
dimensional Grassmannian of elliptic boundary conditions commensurable
with the Atiyah-Patodi-Singer condition. The latter regularization is natu-
rally understood, in the sense explained below, as the ratio of the determi-
nant of the elliptic boundary value problem to the determinant of a base-
point elliptic boundary value problem. It is a regularization canonically
constructed from the topology of the associated determinant line bundle
and hence called the canonical determinant. The canonical determinant is
a robust algebraic operator-theoretic object, while the {-determinant is a
highly delicate analytic object, and so it is surprising that they coincide.
(Though, the equality of the torsions mentioned above at least suggests that
the (-determinant may be somehow related to Fredholm determinants.)

To formalise the construction of taking the ratios of determinants used
to define the canonical determinant we use the machinery of the determi-
nant line bundle. This was introduced in a fundamental paper of Quillen
[Q] for a family of Cauchy-Riemann operators acting on a Hermitian bundle
over a Riemann surface, as the pull-back of the corresponding ‘universal’
determinant bundle over the space of Fredholm operators on a separable
Hilbert space. Without making further choices, the determinant arises not
as a function on the parameter space of operators but as a canonical section
A — det A of the associated determinant line bundle DET. More precisely,
det A lives in the complex line Det A := A™**(Ker A)* @ A™** Coker A and
is non-zero if and only if A is invertible. Using (-function regularization,
Quillen constructed a natural Hermitian metric on the determinant bun-
dle for a family of Cauchy Riemann operators and computed its curvature.
This was extended by Bismut and Freed to the context of general families of
Dirac operators on closed manifolds (see [BF]) and the curvature identified
with the 2-form component of the families index density. It did not, though,
provide a straightforward correspondence between the (-determinant and
the Quillen determinant section. More precisely, given that det¢(A) is de-
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fined, the problem is to identify the non-zero section o of DET such that
det;(A) = det A/o(A). Clearly the global existence of such a section o
is equivalent to the triviality of the determinant line bundle. From this
view point, the principal result of this paper is the exact identification of
the ‘basepoint’ section o for the class of elliptic boundary value problems
considered here. In order to link this up with Fredholm determinants we
use a construction of the determinant line bundle due to Segal [Seg].

We do not discuss in this paper the corresponding problem for a closed
manifold. Perhaps surprisingly, it is easier to discuss the relation between
the {-determinant and the Quillen determinant section on a manifold with
boundary, because of reduction to the boundary integral (see [BoW4]).
In early 1995 the second author as the follow-up to his work on the 7-
invariant on a manifold with boundary (see [Wo3,4]) showed the existence
of the (-determinant on the Grassmannian of generalized Atiyah-Patodi-
Singer boundary conditions. A little earlier the first author using the Se-
gal construction of the determinant line bundle introduced the canonical
C-determinant on this Grassmannian and showed that it is equal to the
(-determinant in the one dimensional case (see [S1]; see also [BoSW] for
a discussion of the one dimensional case in the spirit of this exposition).
The present paper contains the result of joint work, the proof of the equal-
ity of the (-determinant and C-determinant up to a natural multiplicative
constant in any odd dimension. Early progress was reported in the note
[SW1] and the results of this paper were announced in [SW2]. We refer to
[BoMSW] for a discussion of related topics in the even-dimensional case (see
also the review [WoSMB]). The construction of a metric and compatible
connection on the determinant line bundle using the canonical regulariza-
tion for a family of Dirac operators over a closed manifold endowed with a
partition is explained in [S2].

We now give a more detailed presentation of the situation discussed in
this paper. Let D : C*(M;S) — C*(M;S) denote a compatible Dirac
operator acting on the space of sections of a bundle of Clifford modules S
over a compact connected manifold M with boundary Y. It is not actually
necessary to assume that D is a compatible Dirac operator; further tech-
nical comments are made in the final section of the paper. In the present
paper we always assume that M is an odd-dimensional manifold; the even-
dimensional case will be discussed separately. And we discuss only the
Product Case. Namely we assume that the Riemannian metric on M and
the Hermitian structure on S are products in a certain collar neighborhood
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of the boundary. Let us fix a parameterization N = [0,1] X Y of the collar.
Then in N the operator D has the form

D\y = G(0. + B), (0.9)
where G : S|Y — S|Y is a unitary bundle isomorphism (Clifford multi-
plication by the unit normal vector) and B : C*(Y;S|Y) — C*(Y;S|Y)
is the corresponding Dirac operator on Y, which is an elliptic self-adjoint
operator of first order. Furthermore, G and B do not depend on the normal
coordinate u and they satisfy the identities

G?*=-Id and GB=-BG. (0.10)
Since Y has dimension 2m the bundle S|Y decomposes into its positive and
negative chirality components S|Y = S* @ S~ and we have a correspond-
ing splitting of the operator B into B* : C°(Y; S*) — C>(Y; ST) , where
(B*)* = B™. Equation (0.9) can be rewritten in the form

b )@ )

In order to obtain a Fredholm operator with good elliptic regularity
properties we have to impose a boundary condition on the operator D. Let
II> denote the spectral projection of B onto the subspace of L?(Y; S|Y)
spanned by the eigenvectors corresponding to the nonnegative eigenvalues
of B. It is well known that II> is an elliptic boundary condition for the
operator D (see [AtPS], [BoW4]). The meaning of the ellipticity is as
follows. We introduce the unbounded operator Dy, equal to the operator
D with domain -

domDr, = {s € H'(M;S) | I>(s|Y) =0},
where H! denotes the first Sobolev space. Then the operator
Dy, = D :dom(Dn, ) — L*(M; S)
is a Fredholm operator with kernel and cokernel consisting only of smooth
sections.

The orthogonal projection Il is a pseudodifferential operator of order 0
(see [BoW4]). In fact we can take any pseudodifferential operator R of order
0 with principal symbol equal to the principal symbol of II> and obtain an
operator Dg which satisfies the aforementioned properties. In order to
explain this phenomenon, we give a short exposition of the necessary facts
from the theory of elliptic boundary problems. In contrast to the case of
an elliptic operator on a closed manifold, the operator D has an infinite-
dimensional space of solutions. More precisely, the space

{seC®M;S8)|Ds=0 in M\Y}
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is infinite-dimensional. We introduce the Calderon projection, which is
the projection onto the L?-closure of the Cauchy Data space H(D) of the
operator D

H(D) = {feC™(Y;S|Y) | 3s€C®(M; S), D(s)=0in M\Y and s|Y = f}.
The projection P(D) is a pseudodifferential operator with principal symbol
equal to the symbol of II> (see [BoW4]). Moreover, in our situation P(D)
is an orthogonal projection in L?(Y; S|Y). This is not true in more general
situations, for instance in the case of non-product metric structures near
the boundary. The operator D has the Unigque Continuation Property,
and hence we have a one to one correspondence between solutions of the
operator D and the traces of the solutions on the boundary Y, at least in
the case of a connected manifold M. This explains roughly, why only the
projection Pg onto the kernel of the boundary conditions R matters. If the
difference Pr — P(D) is an operator of order —1, then it follows that we
choose the domain of the operator Dg in such a way that we throw away
almost all solutions of the operator D on M\ Y, with the possible exception
of a finite-dimensional subspace. The above condition on Pg allows us also
to construct a parametrix for the operator Dg, hence we obtain regularity
of the solutions of the operator Dg. We refer to the monograph [BoW4]
for more details.

In the following we do not discuss the determinant on the ‘total space’
of elliptic boundary conditions for the operator D, we choose a smaller
and more convenient space, mostly in order to avoid unpleasant technical
questions. We restrict ourselves to the study of the Grassmannian Gr(D)
of all pseudodifferential projections which differ from IIs by an operator
of order —1. The space Gr(D) has infinitely many connected components
and two boundary conditions P; and P, belong to the same connected
component if and only if

tndex Dp, = indezx Dp, .

We are interested, however, in self-adjoint realizations of the operator D.
The anti-involution G : S|Y — S|Y equips L?(Y;S|Y) with a symplectic
structure, and using Green’s formula

(Ds1,52) — (s1,Ds2) = — /Y (G(s1]Y), 52|V )dy, (0.11)

it is shown in [BoW4] that the boundary condition R provides a self-adjoint
realization Dg of the operator D if and only if ker R is a Lagrangian sub-
space of L2(Y;S|Y) (see [BoW3], [BoW4], [DoW2]). We may therefore

restrict our attention to those elements of Gr(D) which are projections
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onto Lagrangian subspaces of L?(Y;S|Y). More precisely, we introduce
Gr*(D), the Grassmannian of orthogonal, pseudodifferential projections P
such that P — II is an operator of order -1 and
—GPG=1d-P. (0.12)
The space Gr*(D) is contained in the connected component of Gr(D) pa-
rameterizing projections P with index Dp = 0.
For analytical reasons associated with the existence of the (-determinant,

in this paper we discuss only the Smooth, Self-adjoint Grassmannian, a
dense subset of the space Gr*(D), defined by

Gri, (D) = {P € Gr*(D) | P — Il has a smooth kernel} . (0.13)
The spectral projection IIs is an element of Gri (D) if and only if
ker B = {0}. On the other hand, it is well known that the (orthogo-
nal) Calderon projection P(D) is an element of Gr*(D) (see for instance
[BoW3]). Moreover, it was proved in [S1, Proposition 2.2] (see also [DK,
Appendix]) that P(D) — II is a smoothing operator and hence that P(D)
is an element of Gr’ (D). The finite-dimensional perturbations of II> (see
also [DoW2], [LW] and [Wo4]) provide further examples of boundary con-
ditions from Gr%, (D). The latter were introduced by Jeff Cheeger, who
called them Ideal Boundary Conditions (see [C2,3]).

For any P € Gr*(D) the operator Dp has a discrete spectrum nicely
distributed on the real line (see [BoW3], [DoW2]). It was shown by the
second author that for any P € Gr3, (D), 7p,(s) and (pz, (s) are well-defined
functions, holomorphic for Re(s) large and with meromorphic extensions
to the whole complex plane with only simple poles. In particular both
functions are holomorphic in a neighborhood of s = 0. Therefore det; Dp
defined by formula (0.8) is a well-defined smooth function on Grk (D) (see
[Wo5)).

The canonical determinant is defined in the following way. The family
of elliptic boundary value problems {Dp | P € Gro (D)} parameterized by
Gro(D) = {P € Gr(D) | P — I has a smooth kernel }
has an associated determinant line bundle DET (D) — Gr(D) with deter-

minant section

P+ det Dp € Det(Dp) = A™**Ker(Dp)* @ AN™**Coker(Dp)
(see section 1). On the other hand, relative to the basepoint Calderon pro-
jection P(D) € Gry (D), we have the smooth family of Fredholm operators
over the boundary

{8(P) = PP(D) : #H(D) — Ran P | P € Gro(D)}
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with associated (Segal) determinant line bundle DETpp) again equipped
with its determinant section P +— det S(P). From [S1,2] we know that
there is a canonical line bundle isomorphism preserving these sections

DET(D) = DETp(p), detDp +— detS(P). (0.14)
and therefore, since DETp(p) is a non-trivial complex line bundle whose
first Chern class generates H%(Groo(D); Z) = Z, no global non-zero section
of DET (D) exists. However, from the computation of homotopy groups in
[BoW3], [DoW2] we have H?(Gr%,(D);Z) = 0, and so the determinant line
bundle does restrict to a trivializable complex line bundle over the smooth
Grassmannian of self-adjoint boundary conditions.

The problem now is to identify which trivialization defines the {-deter-
minant det; Dp. To make the presentation smoother, we assume henceforth
that ker B = {0}; this is in fact not a serious restriction and it will be ex-
plained in section 7 that we can easily relax this condition. The correct
choice of trivialization is indicated by the fact that any elliptic bound-
ary condition P € Gr% (D) is described precisely by the property that
its range is the graph of an elliptic unitary isomorphism 7' : F* — F~
such that 7 — (Bt¥B~)"'/2B* has a smooth kernel [S1], where F* are
the spaces of chiral spinor fields over the boundary. In section 1 of this
paper we explain how this defines a preferred non-zero ‘basepoint’ section
P — o(P) € Det Dp. The canonical determinant is then defined to be the
quotient taken in Det Dp

detc Dp = “SBF (0.15)
and this turns out to be the Fredholm determinant of an operator living
on the boundary Y constructed from S(P). The main result of the paper

is the following Theorem:
Theorem 0.1. The following equality holds over Gr}, (D)
det; Dp = det, DP(D)-detc Dp. (0.16)

REMARK 0.2. (1) Theorem 0.1 shows that, at least on GrX (D) , the
(-determinant is an object which is a natural extension of the well-defined
algebraic concept of the determinant.

(2) The identification of det¢ Dp(py with a regularized Fredholm de-
terminant of the operator S(P) living on the boundary extends the cor-
responding result for the indez, which is well known (see [BoW4, Theo-
rem 20.8]).

(3) Theorem 0.1 suggests a new approach to the pasting formula for
the (-determinant with respect to a partitioning of a closed manifold. The
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pasting formula for det¢c was introduced in [S1]. It is hoped that a new
insight into the pasting mechanism of the (-determinant will be obtained
by combining results of [S1] and formula (0.16). For a recent application
of the results of this paper to an adiabatic pasting formula see [PW].

To prove Theorem 0.1 we follow a basic idea of Robin Forman [F] and
study the variation of the relative determinants. More precisely, given
two projections Py, Py € Grk (D), we define two one-parameter families of
boundary conditions P;, and compute the relative variation

%{ln detDp, . — Indet Dp, , },=o

for both the canonical determinant and the {-determinant and show that
they coincide. Here we face the technical problem of dealing with a family of
unbounded operators with varying domain. To circumvent this and make
sense of the variation with respect to the boundary condition we follow
Douglas and Wojciechowski [DoW2] and apply their “Unitary Trick” (see
section 3). Finally, using the fact that the space of projections P in Gr’ (D)
such that Dp is invertible is actually path connected (see section 5 and [N]),
we integrate the variational equality in order to obtain formula (0.16) of
Theorem 0.1.

The paper is organized as follows. In section 1 we explain the construc-
tion of the canonical determinant. We follow here the exposition of [S1].

Assume that for given P € Gr} (D) the operator Dp is invertible. In
section 2 we present our construction of an inverse D;l. To do that we
have to discuss certain aspects of the theory of elliptic boundary problems.
We also introduce K the Poisson map of the operator D, and K(P) the
Poisson map of the operator Dp. The first is used in the construction
of the Calderon projection. The operator K(P) appears in several crucial
places in our computation of the variation of the canonical determinant.

In section 3 we discuss the variation of the (-determinant and in section
4 we study the variation of the canonical determinant. It has already
been mentioned that the work [Wob5] is crucial for the study here of the
(-determinant, while in the calculation of the variation of the canonical
determinant we were influenced by the work of Robin Forman [F].

With the variational equality at hand, section 5 contains the final steps
of the proof of Theorem 0.1.

In section 6 we discuss an immediate application of our result to the
modulus of the {-determinant, regarded as a function on the Grassmannian
Gr% (D). We show that the Calderon projection is the only critical point
of this function on the space Gr% (D) of projections P € GrZ, (D) such that



Vol. 10, 2000 PROJECTIVE EQUALITY OF DETERMINANTS 11

the operator Dp is invertible.

In section 7 we make some final comments on several technical issues
we have to deal with in this paper. We discuss the choice of the sign of the
phase of (-determinant. We also explain the necessary changes required
for the case of a non-invertible tangential operator B. A more detailed
explanation of the topological structure of Gr%, (D) is given.

Acknowledgements. We want to thank our friends and collaborators
Bernhelm Booss-Bavnbek and Ryszard Nest for constant support and valu-
able discussions. The concept of the Canonical Determinant is implicit in
the work of Graeme Segal and his work has greatly influenced our efforts in
understanding this beautiful subject. We are grateful also to Jean-Michel
Bismut for helpful comments, and to the referee for a careful reading of the
manuscript.

1 Canonical Determinant on the Grassmannian Gr}_(D)

In this section we review briefly the construction of the determinant line
bundle and give an explicit construction of the canonical determinant.

The determinant line bundle over the space of Fredholm operators was
first introduced in a seminal paper of Quillen [Q]. An equivalent construc-
tion which is better suited to our purposes here was subsequently given
by Segal (see [Seg]), and so we follow his approach. Let Fred() denote
the space of Fredholm operators on a separable Hilbert space H. We work
first in the connected component Fredo(#) of this space parameterizing
operators of index zero. For A € Fredo(?) define

Fredy = {S € Fred(H) | S — A is trace-class} .

Fix a trace-class operator A such that S = A+ A is an invertible operator.
Then the determinant line of the operator A is defined as

Det A= Freds x C/~, (1.1)
where the equivalence relation is defined by

(R,2) = (S(S7'R), 2) =~ (S, 2 detp, (ST'R)) .

The Fredholm determinant of the operator S™!R is well-defined, as it is of
the form Idy plus a trace class operator. Denoting the equivalence class of
a pair (R, z) by [R, z], complex multiplication is defined on Det A by

MR, z] = [R,Az]. (1.2)
The determinant element is defined by
det A :=[A,1] (1.3)

and is non-zero if and only if A is invertible.
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The complex lines fit together over Fredo(#) to define a complex line
bundle £, the determinant line bundle. To see this, observe first that over
the open set Uy in Fredo(H) defined by

Ua = {F € Fredo(H) | F+ A is invertible}

the assignment F' — det F' defines a trivializing (non-vanishing) section of
Ly, The transition map between the canonical determinant elements over
Ua N Ug is the smooth (holomorphic) function
9as(F) = detp, (F + A)(F+B)™").

This defines £ globally as a complex line bundle over Fredo(H), endowed
with its determinant section A — det A. If ind A = d we define Det A to
be the determinant line of A @ 0 as an operator H — H @ cifd> 0, or
HedC %= Hifd< 0 and the construction extends in the obvious way
to the other components of Fred(#). Note that the determinant section is
zero outside of Fredo(H).

We use this construction in order to define the determinant line bun-
dle over Groo(D). For each projection P € Gr (D) we have the (Segal)
determinant line Det(S(P)) of the operator

S(P) :=PP(D): H(D) — Ran P

and the determinant line Det Dp of the boundary value problem Dp :
dom(Dp) — L*(M;S). These lines fit together in the manner explained
above to define determinant line bundles DETp(p) and DET (D) over the
Grassmannian (some care has to be taken as the operator acts between two
different Hilbert spaces, but with the obvious notational modifications we
once again obtain well-defined determinant line bundles). The canonical
isomorphism (0.14) identifies the two line bundles and preserves the deter-
minant elements. The bundle DETp(p) is a non-trivial line bundle over
Gro (D), but when restricted to the Grassmannian Gr’ (D) it is canoni-
cally trivial.

We use the specific trivialization introduced in [S1]. Recall that we
work here with orthogonal projections onto the Lagrangian subspaces of
L%(Y;S|Y) , which are a compact perturbation of the Cauchy data space
H(D). We have assumed that ker B = {0}, and hence II, (B) is an element
of Gr:, (D). The range of II,(B) is actually the graph of the unitary
operator Vs, : F™ — F~ given by the formula:

Vs = (BTB™)"Y2B*. (1.4)
This identification extends to the whole Grassmannian Gr’ (D): elements
arein 1 to 1 correspondence with unitary maps V : F™ — F~, such that the
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difference V' — V5, is an operator with a smooth kernel. The corresponding
orthogonal projection P is given by the formula

p_ 1 (IdF+ V_l) '

2\ V.  Idg-

By choosing a basepoint, the correspondence defined above allows us to
establish an isomorphism between Grk (D) and the group U*(F~) of uni-
taries acting on F~ = L2(Y;S~) which differ from Idz- by an operator
with a smooth kernel. It is convenient for us to work with the Calderon
projection as basepoint, hence let K : C*®(Y;S*) — C*®(Y;S™) denote
the unitary such that #(D) is equal to graph(K). For any projection P €
Gr? (D) there exists T = T(P) : F* — F~ such that Ran P = graph(T),
and so we have a natural isomorphism Gr% (D) = U®(F~) defined by the
map P — TK~!. This is expressed in terms of the homogeneous structure
of the Grassmannian by

p= (Idé” ng—l) P(D) (Idé” K;_l) . (1.5)

Now we can define a non-vanishing section [ of the determinant line bundle
DETpp) over Grg, (D). The value of I at the projection P is the class in
Det(S(P)) of the couple

_ (Idp+ 0

where the operator U(P) acts from #H(D) to Ran(P). That is, [(P) =
det U(P). The fact that I(P) is an element of Det(S(P)) follows from the
following elementary result.

LemMMA 1.1.  The difference between U(P) and the operator S(P) =
PP(D) : #H(D) — RanP is an operator with a smooth kernel, hence
det U(P) = [U(P), 1] is an element of Det S(P).

Proof. The operator U(P) acts from graph(K) = H(D) to graph(T) =
Ran(P) and acts by

T\, Idp+ 0 z\ (=
Kz 0 TK')J\Ke) \Tz)’
The operator PP(D) is given by the following formula
1 (Idp+ +T'K T '4+K™!
PP(D)_Z( T+K Idg- +TK™ ')’
leading to the following expression for the operator S(P) = PP(D) :

H(D) — Ran(P)
( )( T ) ( IdF+-;T_1Km IdF+-;T_1K 0 T
S(P =\ 1d,_ +TK™? = Id,_+TK™! ( ) :
Kz ja 2 Kz 0 ja 2 Kz (1.6)
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Because T~ 'K (resp. TK~!) differs from Idp+ (resp. Idp-) by a smooth-
ing operator, it is now obvious that the difference U(P) — S(P) is an oper-
ator with a smooth kernel. O

The discussion above allows us to now define the Canonical Determinant
over Gri (D). Let A : (D) — Ran P denote an invertible Fredholm
operator such that A — S(P) is an operator of trace class. We have:

det A :=[(4,1)]

= [(U(P)(U(P)7"4),1)]

= [(U(P); detr,(U(P)~" 4)]

 detr, (U(P)4) [(U(P); 1]

;= detp, (U(P)™'A4) -det U(P).
where we use equations (1.2) and (1.3). The above identity means we
can define the determinant of the operator A as the ratio in Det A of the
non-vanishing canonical elements det A and det U(P), or equivalently as
the Fredholm determinant of the operator U(P)"'A. This leads to the
following definition of the canonical determinant of the operator Dp.
DEerINITION 1.2. We define the Canonical Determinant of the elliptic
boundary value problem Dp by:

dete Dp = dete S(P) := detp. (U(P)"'S(P)) . (1.7)

The naturality of this definition lies in the identification of the abstract
determinants of the Fredholm operators Dp and S(P) by the isomorphism
(0.14); the section ¢ in (0.15) is just the image of det U(P) under (0.14).

In fact, from the proof of Lemma 1.1 we see that the determinant on the
right side of the equality (1.7) is the Fredholm determinant of the operator

Id, +T7'K 0
2
0 Id,_+TK™!

2
acting on the graph of the operator K. Hence we obtain:

LEmMMma 1.3.
Id+ KT !
dete Dp = detp, (%) , (1.8)
where the Fredholm determinant on the right side is taken on F~.
We may therefore reformulate Theorem 0.1 as:
Theorem 1.4. The following equality holds over Gr}, (D)
Id+ KT !
det¢ Dp = det¢ DP(D)-detF,. (%) , (1.9)
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Equivalently, (since detc Dp(p) = 1)
detc Dp _ dete Dp
det, DP(D) ~ dete DP(D) '

(1.10)

REMARK 1.5. In section 4 we also use determinants of operators of the
form

S(Pl)S(Pg)_l : Ran Py — Ran P,
under the assumption that the operator S(P,) is invertible. From the dis-
cussion presented above, it follows that for any Fredholm operator A :
Ran Py, — Ran P; such that the difference between A and the operator
PP, : Ran P, — Ran P; is of trace class we can define the canonical
determinant of A using the formula

dete A = detp, (Idé” ng’fl) A, (1.11)
where Ran P; is equal to graphT;.

2 Boundary Problems Defined by Gr?_(D): Inverse
Operator and Poisson Maps

For any P € Gr(D) the operator Dp is a Fredholm operator, hence it has
closed range. As a consequence, we can define an inverse to the induced
operator dom Dp/ker Dp — L%(M;S)/cokerDp. If we assume that P is
an element of Gr*(D) then the operator Dp is self-adjoint and kerDp =
coker Dp. It follows that if we assume ker Dp = {0}, then there exists an
inverse D;l to the operator Dp.

In this section we give an explicit formula for the operator D;l. This
formula plays a key role in the proof of the main result of the paper. The
operator D;l is a sum of two operators. The first is the interior inverse
of D71, The second is a correction term which lives on the boundary.

We start with the “nterior” part of the inverse. Let M = M_ Uy M
denote the closed double of the manifold M (M_ is a copy of M with
reversed orientation). The bundle of Clifford modules S extends to a bundle
S of Clifford modules over M and the operator D determines a compatible
Dirac operator D over M (equal to D on M and —D on M_). We refer
to [Wol], [DoW1] for the details of these constructions and applications to
the analytic realization of K — homology. The operator

D :C>®(M;8) — C™(M;S)
is an invertible self-adjoint operator, hence its inverse D! is a well-defined
elliptic operator of order —1 over the manifold M. We also have natural
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extension and restriction maps acting on sections of S and S. The extension
(by zero) operator ey : L(M;S) — L?(M; S) is given by the formula:

f on M\ M_
er(f) = {0 o (21)
The restriction operator 7, : H*(M;85) — H*(M;S) , where H* denotes
the st" Sobolev space, is given by fof= f|M To simplify the notation
in the following we always write
D l=r,Dle,. (2.2)
The operator D! is the interior part of the inverse. It is used in several
crucial constructions in the theory of boundary problems. It maps L?(M; S)
into H'(M;S), however the range is not necessarily inside the domain
of Dp. For this reason we have to introduce an additional term to obtain
an operator with the correct range. To do this, we need to study the
situation in a neighborhood of the boundary Y. The restriction of smooth
sections to the boundary extends to a continuous map
Yo : H'(M;8) — H* "5 (Y; 8]Y),
which is well-defined for s > 1/2 (see [BoW4]). The corresponding adjoint
operator 74y (in the distributional sense) provides us with a well-defined
map .
70 : H*(Y;S|Y) — H*"2(M; S),
for s < 0. Now for any real s the mapping
K=r, DG : C™(Y;S|Y) — C=(M;5S)
extends to a continuous map K : H*~Y/2(Y; S|Y) — H*(M; S), with range
equal to the space
ker(D,s)={f € H*(M;S) | Pf=0in M\Y}.
In fact, the map
K : H(D,s) = Ran{P(D) : H* Y2(Y;S|Y) —» H*"Y/2(v; S|Y)}
— ker(D,s) (2.3)
is an isomorphism (see [BoW4]). We have the following equality:
DD =1d - Ky, (2.4)
which holds on the space of smooth sections (see [BoW4, Lemma 12.7] ).

The operator K is called the Poisson operator of D. It defines the
Calderon projection:

P(D) = vk (2.5)
(see [BoW4, Theorem 12.4]).
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REMARK 2.1. Formula (2.5) gives, a priori, only a projector, not an
orthogonal projection, onto H(D). In the situation discussed in this paper,
however, the resulting projector is orthogonal. We refer to [BoW4] for the
details of the construction, which is originally due to Calderon and Seeley.

To construct the correction term to the operator D~! we use the inverse
of the operator S(P). The invertibility of S(P) is equivalent to Dp being
invertible:

LEmMA 2.2. The operator Dp is an invertible operator if and only if the
operator S(P) = PP(D) : H(D) — Ran P is invertible.

Proof. The Grassmannian Gr} (D) is a subspace of the “big” Grassmannian
Gr(D) (see [Wo2], [BoW3], [DoW2, Appendix B]). The space Gr(D) has
countably many connected components distinguished by the index of the
operator S(P), i.e. P; and P, belong to the same connected component of
Gr(D) if and only if index S(P;) = index S(P,). The space Gri (D) is
contained in the index zero component of Gr(D). Now we have

ker S(P) = {f ‘ P(D)f=f and P(f)= 0}
and

coker S(P) = {g| Pg=g and P(D)g=0}.
If P is an element of Gr*(D), then index S(P) = index Dp = 0. We see
that the operator S(P) is invertible if and only if it has trivial kernel.
Similarly a self-adjoint Fredholm operator Dp is invertible only if it has
trivial kernel. On the other hand, the operator X defines an isomorphism

K :ker S(P) — kerDp.
This ends the proof of lemma. |

REMARK 2.3. Note that the lemma proves a somewhat stronger state-
ment: via the Poisson operator X, constructing solutions for the operator
S(P) is equivalent to constructing solutions to the elliptic boundary value
problem Dp (and the same for the adjoints). In particular this implies that
the index of the two operators coincide. This is the underlying reason why
it is easier to compute determinants on manifolds with boundary than on
closed manifolds.

From now on we assume that Dp is invertible. The operator S(P)~! is
not a pseudodifferential operator, as it acts from Ran P into H(D). How-
ever, we can show that it is a restriction of an elliptic pseudodifferential op-

erator of order 0. More precisely, the operator PP(D)+(Id—P)(Id—P(D))
is an elliptic pseudodifferential operator, which can be written as

S(P)® (Id— P)(Id - P(D)) : H(D) @ H(D): - W o W,
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where W = Ran P. It can be seen that
ker S(P) = coker(Id — P)(Id — P(D)),

and

coker S(P) = ker(Id — P)(Id — P(D)).
Therefore if we assume that ker S(P) = {0}, then the operator PP(D) +
(Id — P)(Id — P)(D)) is invertible. Its inverse is an elliptic operator (see
for instance [BoW4]) and it follows that
S(P)™' = P(D)[PP(D) + (Id — P)(Id — P(D))] " P. (2.6)
We can now present the formula for the inverse of the operator Dp.

Theorem 2.4. Assume that the operator Dp : domDp — L2(M; S) is
invertible, then its inverse is given by the formula:

Dyl =D — KS(P) ' PyoD . (2.7)
Proof. From (2.3) we have that DK is equal to 0 in M \ 'Y, and hence that
DD;l is equal to Id on L?(M;S). Now let f € L?(M; S), then:
Po(Dp'f) = P(70(D 7" f) — PyoKS(P) ™ PyoD ™ (f)
= Pyo(D™" f) = PP(D)S(P)™ P1D~'(f)
= P(7(D7'f)) - P(o(D7'f)) =0,
and hence Dp'f € domDp. We have shown that DpDp' : L}(M;S) —

L%(M; S) is equal to Idyz and that D;l : L*(M;S) — domDp , hence
the operator D;l is indeed a right inverse of Dp , and obviously since

-1

index Dp = 0 it is also a left inverse. O

CoroLLARY 2.5. Let P, P, € Grk (D) such that the operators Dp, and
Dp, are invertible. Then the difference D;ll - D;zl is an operator with

smooth kernel.

Proof. 1t follows from Theorem 2.4 that
Dy, — Dy =K(S(P) ' P — S(P1) ' P1)yoD . (2.8)
Now the fact that P; — P, is an operator with a smooth kernel and equation

(2.6) implies that the operator S(P)~1P, — S(P;)~1P; also has a smooth
kernel. O

For the rest of this section we take a closer look at the operator D;lD,
as it allows us to introduce another important operator C(P), the Poisson
operator of the operator Dp. From formula (2.4) we have that

Dp'D = Id — Kyo — KS(P) " Pyo(Id — Kvo)
= Id— K70+ KS(P) " 'PP(D)yo — KS(P) ' Pyo = Id — KS(P) ' P, .
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Hence if f € domDp , then Pvo(f) = 0 and
Dp'Dpf = (Id— KS(P) 'Pyo)f=f.
We define the Poisson operator of Dp by
K(P)=KS(P)'P, (2.9)

The operator K(P) appeared in the second term of the operator D;le.

Let g denote an element in the range of the projection P. More precisely,
assume that g € H*(Y;S|Y) and Pg = g. Then K(P)g is a solution of D,
which belongs to the Sobolev space H*t1/2(M; S), and 7oK (P)g is an ele-

ment of the space of Cauchy data of D, in general not equal to g. However,
the part of 7o/C(P)g along P is in fact equal to the original element g:

PyoK(P)g = PyoKS(P)™*Pg = PP(D)S(P)"'Pg = Py.
In section 4 we also need the following results.

LEMMA 2.6. Let P, P, € Grk (D) such that the operators Dp, and Dp,
are invertible. Let fi, fo € Ran P, and assume that

PiyoK(P2) fi1 = PivoK(P2) fa -
Then, fi = f; and K(Pz)fl = ’C(Pz)fz-
Proof. We have
Piyo(K(P2)f;) = S(PL)S(P2) ™' fi
hence the first equality follows from the invertibility of the operators S(P;)

and S(P,). The second is a consequence of the Unique Continuation Prop-
erty for Dirac operators. We have

Yo(K(P2) 1) = P(D)S(P2) ' fi = S(P) T S(P)S(P2) ™ fi
= S(P)IS(P)S(P) 7 fo = v0(K(P2) f2)
and hence two solutions of D with the same Cauchy data, hence they are

equal. |

ProprosiTIiON 2.7.
K(P1)PiyoDp, =Dyl — Dy (2.10)
Proof. We fix f € L?(M; S). Let
h = K(P1)Piyo(Dp, f) .-

Observe that the section h is the unique solution of D with boundary data
along P; equal to Pl'yo(D]_;zl f). Indeed

Pi(yoh) = P (goK(Pl)Pl‘Yo(D}_:zl 1)
= P,P(D)S(P.) "' Pryo(Pp, ) = Pyo(Dp, )
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and uniqueness is a consequence of Lemma 2.6. Now, the section g =
(Dl_,zl —Dl_,ll)f is also a solution of D and the restriction of g to the boundary
has P;-component equal to

Pi(709) = PL(voK(S(P1) ' Py — S(P,) "' P)yoD ' f)
= PLP(D)(S(P) ' PL— S(P2) ' P)vD ' f
= PryoD ' f — Pryo(KS(Py) ' Pa)voD ' f
= Piyo(Dp,) f

and therefore h and g are the same section. |

REMARK 2.8. (1) The construction of the inverse presented in this section
gives, in fact, a parametrix for any elliptic boundary problem for the Dirac
operator. First of all, if P is an element of Gr(D) we can still use formula
(2.7) in order to construct the aforementioned parametrix. The operator
S(P)™! has to be replaced by an operator R(P) of the form

P(D)RP : Ran P — H(D),

where R denotes any parametrix of the elliptic operator PP(D) +
(Id — P)(Id — P(D)). The formula

Cp =D ! — KR(P)PyoD™*
now gives an operator such that DpCp — Id and CpDp — Id have smooth
kernels.

(2) More generally, this formula gives a parametrix for any elliptic
boundary problem Dr as defined in [BoW4] (where the authors were fol-
lowing Seeley’s exposition [Se2]). The reason is that A7, the kernel of
the boundary condition T, and #(P) form a Fredholm pair of subspaces
of L?(Y; S|Y), which allows a parametrix R to be constructed. This fact
was well known to Booss and Wojciechowski and is implicit in their work
[BoW1] and [BoW2] (see also Proposition 1.4. in [BoMSW]). Last but not
least, we are not really restricted in this construction of the parametrix
only to Dirac operators. This construction holds for any first order elliptic
differential operator on a compact manifold with boundary. The details
will be presented elsewhere.

(3) The explicit construction of the parametrix presented in this paper
may be found elsewhere in the literature in related contexts. It was used for
instance by Peter Gilkey and Lance Smith in their work on the 7-invariant
for a class of (local) elliptic boundary problems (see [GS]). See also the
work of Forman [F].
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3 Variation of the {-determinant on Gr?_ (D)

In this section we study the variation of the (-determinant of the opera-
tor Dp, where P € Gr’ (D), under a change of boundary condition. From
section 1 we know that the Grassmannian Gr’ (D) can be identified with
the group U (F~). If we fix a base projection, for instance P(D), then
any other projection is of the form:

_ (Idp+ 0 Idpt 0

where g : F~ — F~ is a unitary operator such that g — I'd has a smooth
kernel.

We introduce a smooth one-parameter family {g,}_.<r<. of operators
from U®(F~) with go = Idp-. Let {F,} denote the corresponding family

of projections:
"0 g 0 g')

We want to compute the variation
4 {Indet¢ Dp, }|r=0 .-

For the purposes of this paper it is enough to solve an easier problem.
Let us fix two elements of the Grassmannian P; and P, such that Dp, and
Dp, are invertible operators. The family {g,} determines two 1-parameter
families of projections

_ IdF+ 0 IdF+ 0
B = ( 0 gr) b ( 0 gr_l) (31)
with respect to which we may study the relative variation
%{ln det¢ Dp, . — Indet¢ Dp,, }r=o- (3.2)

The first obstacle here is that the domains of the unbounded operators
Dp, . vary with the parameter r. It was explained in [DoW2] and [LW] how
to solve this problem by applying a “Unitary Twist”. The point is that
we may extend the family of unitary isomorphisms {g,} on the boundary
sections to a family of unitary transformations {U,} on L2(M;S). To do
that, fix a smooth non-decreasing function &(u) such that
k(u)=1 for u<1/4 and k(u)=0 for u>3/4,
and for each r introduce the 2-parameter family
Iru = Gr(w) for 0 <u <1, (3.3)
Now we define a transformation U, as follows:
(”g+ 0 ) on {ul xY CN=[0,1]xY

U’r = gr,u
Id on M\ N.

We then have the following elementary result.
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LEMMA 3.1. The operators Dp,, and (U 'DU,)p, are unitarily equivalent
operators.

Clearly, the operators U, depend upon the choice of the extension func-
tion k, however by Lemma 3.1 the {-determinant does not, which is all that
we need. The canonical determinant is also independent of the choice of
the family {U,}. This follows from the fact that P; . P(D) and the operator
P;P(D,) are unitarily equivalent:

P;»P(D) = g, P.g; ' P(D) = g, (Pig; ' P(D)g.) 9, " = 9. PiP(Dy)g; "
(3.5)
In the following we use the notation
D, =U;'DU, and Do= LD,|.—. (3.6)
The main result of this section is the following theorem:

Theorem 3.2. For any pair of projections Py, P, € Gr’ (D) such that Dp,
and Dp, are invertible operators and for any smooth 1-parameter family
{g-} of operators from U (F~) with g, = Id, the following equality holds:

£ {lndet; Dp,, — Indet¢ Dp,  }r—0 = Tr Do(Dp! — Dp'). (3.7)

Notice that although the variation Dy is localized in N, the variation
of the {-determinant is not. It depends on global data because of the term
D;ll — D;zl and it is this that makes the (-determinant a more difficult
spectral invariant than the 7-invariant, which corresponds to the phase of
the determinant. Indeed, formula (3.7) contains only a variation of the
difference of logarithms of the modulus of the {-determinant. The reason
is that the variation of the phase of the determinant of Dp, , is equal to the
variation of the phase of the determinant of Dp, ,:

Theorem 3.3. The variation of the phase of the (-determinant of the
operator Dp_ depends only on the family of the unitaries {g.} on F~ such

that
4 p _ (Tdre O\, (Idpe 0
Lo g/ L0 gt)

not on the choice of the base-point projection Py. More specifically, CD} (0)
is a constant function of the projection P, and the variation of the 7-
invariant depends only on the family {g,}.

Proof. The theorem follows from two technical results proved in the work
of the second author [Wob]. The phase of the determinant is equal to

exp {2 (Coy (0) ~ oy, (0))}-
It was shown in [Wob] (Proposition 0.5) that (52 (0) is constant on GrZ (D),
hence the variation of the logarithm of the phase is equal to the variation



Vol. 10, 2000 PROJECTIVE EQUALITY OF DETERMINANTS 23

of the n-invariant times —iw/2. The formula for the variation of the 7-
invariant was derived in the proof of Theorem 4.3. in [Wo5]. We have

d i [t d dg
hal o=~ | dume [ 2 (g1 % . .
an, Oo= 2 [aume (5 (%)) ).

In particular the right side of (3.8) does not depend on F;. O

REMARK 3.4. A special case of the formula (3.8) was discussed in the
paper [SW1].
Next we study the logarithm of the modulus of the determinant
In|det¢; Dp| = —%C;)?D (0).
It is well known (see section 3 of [Wo5]) that
e Cp2,(0)
/ BT s—1 —tD? P A

Gy O = tim{ [T e P - B 2 0), (39)

where v denotes the Euler constant. The fact that CD} (0) does not depend

on P allows us to study just the variation of the integral in formula (3.9)
and with the help of Duhamel’s Principle we obtain

d 1 . 2
E(CID% (0))|'r:0 :A ? . TI'(—2tD0DPie tDPi)dt

* . _ * d . _
- _2/0 Tr DDy Dl Pridt = 2/0 2 (TrDoDple D% ) dt
=2 lim(Tr ngDl_,,le_tD?’i)ﬁ/E = —9.1im Tr jjopl—lle—w?:i )
e—0 : e—0 :
We therefore have
LeMMA 3.5.
. _eD2
(=3¢ (0)],_o = lim TrBoDple Pe; | (3.10)

In general the limit on the right hand of the equation (3.10) is just the
constant term in the asymptotic expansion of the trace. However, since we
discuss the difference (3.2), in this situation we actually obtain the true
operator trace:

4 {Indet, Dp,, —Indet¢ Dp, . }r=0

2
D%,

T , —1 —ED?_—, T : -1 -
= lim Tr DODH e 1 — lim Tr DODPZ e 2

e—0 e—0
. : -1 —1y —€D2
:il_r)r(l)TrDO(DP1 —Dp,)e
= Tr Do(Dp, — Dp)),
where for the final step we use Corollary 2.5. This completes the proof of
Theorem 3.2.
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4 Variation of the Canonical Determinant

In this section we prove that the relative variation of the canonical deter-
minant coincides with the relative variation of the {-determinant (3.7). We
begin with the following result:

ProposITION 4.1. The following formula holds for any Py, P, € Gr’ (D)
such that Dp, and Dp, are invertible operators.

Id 0 _1
. TZTl_l)ST(Pl)ST(PZ) . (4.1)

where S, (P;) denotes the operator P,P(D,) : H(D,) — Ran P;.

dete Dpl'r (detc Dpz'r)_l = detp, (

Proof. Let p
I 0
Urn,,1, = (0 Tle_l) : Ran P, — Ran Py

and observe that

UTl,Tz UTs,Tl = UTs,Tz ) UCZ:ll,Tz = UTz,Tl (4'2)
and that if A : Ran P; — Ran P, is of the form Id plus trace-class then
detg, A = detp, UCZ:ll,TZAUTl,Tz , (4.3)

where the determinant on the left-side is taken on Ran P; and the deter-
minant on the right-side is taken on Ran P;. Then since U(P) = Uk,
we have using the invariance (3.5) of the canonical determinant under a
unitary twist and the multiplicativity (0.3) of the Fredholm determinant

detc Dp, ,(detc Dp, )~ = detp, (Ul;j,TIST(Pl)) detpy ((UIZ':,TZST(PZ))_l)
= detz, (Ul;j,TlSr(Pl)S(PZ)_lUKr,TZ)
= detr, i(Ug! 1,Ur, 1,8 (P1)S(P2) 'Uk,,1;)
= detp, (Un, 1S (P1)S:(P2)7Y)
where the last two lines use (4.2) and (4.3), respectively. O
Hence, setting
S, = UTI,TZST(Pl)ST(Pg)_lPZ : Ran Py — Ran P5,
we have proved
COROLLARY 4.2.

%{ln detc Dp,, — In det¢ Dp,, }|r=0 = Tr ((%Sr) S,._l) "r:O =Tr 30551 .
(4.4)

LemMma 4.3.
Tr 5050_1 =Tr Pl‘)’() (%K.,.(Pg)) ‘TZOPZ‘)’OK(Pl) . (45)
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Proof. We compute

LindetS,| _o=Tr ((£8,)871) |._y = TrSoSy™

(Iod TyT ){d (PLP(D:)(PoP(D;)) "' Pa) o }

Id 0
-1
(@) ErE)) ()
= TI' %(Pl‘)’OKST(PZ)_lPZ) ‘,,.ZOPZ‘YOKS(Pl)_l-Pl
=Tr di(Pl‘YOK (Pg)) ‘TZOPZ‘YOK(Pl)
= Tr Pryo (§:Kr (P2)) | ,—o P2 70K (P2) -
The lemma is proved. |
The next lemma takes care of the variation of the operator K, (Ps).
LEMMA 4.4. The following formula holds at r = 0
Ko(Pg) = %K.,.(Pz)“:g = _DPZDOK(PZ) . (46)
Proof. Let us fix f € Ran Py and let s, = K. (Py)f. We have
Dys, =0 and Pyyos, = f,
hence differentiation with respect to r gives
(%DT) sp = —D, (%s,‘) and %(Pg(‘)’os.,.)) =P, (‘)’0%37.) =0,
hence %sr € dom Dpz. We obtain
(P f = o = D, (£D,) s = D7, (£D,) K. (Ro)S
This gives at r =0

Ko(Pg) = —Dl_;.zljjoK(Pg) . O
The trace of 30551 is therefore given by the following formula
Tr 5050_1 =Tr Pl‘)’g(—Dl_;.zl)DoK(PZ)Pz‘)’OK(Pl) . (47)

The next important step is to change the order of the operators under
the trace:

Tr Pl‘)’()(—D;zl)boK(Pg)Pz‘)’gK(Pl)
= Tr (Prvyo(— Dp, )DoK(P, )P2) (PavoK(P1))
=Tr (Pz‘)’()IC(Pl)) (Pl‘YO( B ) Dok (P2) Ps) .
The exchange is justified by the fact that
PyvoK(Py) = P,P(D)S(P,) "' P,
is a pseudodifferential operator of order 0 (with the symbol equal to the

symbol of P(D)), and hence that it is a bounded operator on L?(Y; S|Y).
Thus we have

Tr 3050_1 =Tr (Pz‘)’()K(Pl)) (Pl‘)’g(—Dl_;.zl)DoK(Pz)Pg) . (48)
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Now from equation (4.8) and Proposition 2.7 we have that
TrSoSy ' = Tr Pyyo(Dp! — Dp))DoK(Py)Ps . (4.9)
The operator on the right side of (4.9) has a smooth kernel (see Corol-
lary 2.5) and so we can again switch the order of operators:

Tr (Pro(D5) — DH)Do) (K(P2)P2) = Tr (K(P2) Py) (Pryo(D5! - D7) Do)
= TI'IC(S(Pz)_l.Pz‘)’OIC) (S(Pg)_lpg — S(Pl)_lpl)‘)’op_lbg
= TrK(S(P2) "' Py — S(P1) "' P1)70D ' Do = Tr(Dp! — Dp)Do
where we have used (2.5) and (2.8).
Thus we have

Tr 868y ' = Tr(Dp! — Py ) Do
This completes the proof of the following theorem.
Theorem 4.5. With the assumptions of Theorem 3.2 one has
4 {Indet, Dp,, —In det¢ Dp, . }Hr=o
= %{ln dete Dpl'r — Indete DPz,r}|7‘=0 . (4.10)

5 Equality of the Determinants

In this section we prove the main result of the paper. First, we need the
following elementary result, which allows us to integrate the equality (4.10).
(We refer to [N] for a more detailed discussion of the topology of Gr%, (D),
see also the remarks in sections 6 and 7).

ProposITION 5.1. The space ér:o(D), which consists of projections
P € Gr% (D) such that the operator Dp is invertible, is path connected.

Proof. We show that for any P € ér:o (D) there exists a path {P, }o<r<1 C
Gr% (D) such that
P():P and P1:P(D)

Let H denote the range of the projection P. Lemma 2.2 tells us that if Dp
is invertible then

HY @ H(D) = L} (Y;S|Y) and H*nNH(D) = {0}. (5.1)
Equivalently we can write the first equality in (5.1) as
H o H(D)*T = LA(Y; S|Y).
The equality above implies the existence of a linear operator T' : H(D) —

H(D)*, such that H = graph(T). In fact T is defined in the following way.
We introduce the operator

(P(D)P)™' = (S(P)")™' : H(D) — H.
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It follows now easily that H is a graph of the operator

T=(S(P)*) ' - P(D). (5.2)
The fact that H is Lagrangian gives the equality
T*G+GT =0 (5.3)

where the bundle anti-involution G (see (0.9), (0.10)) determines the sym-
plectic structure on L?(Y;S|Y). If we now write the projection P with
respect to the decomposition L%(Y; S|Y) = H(D) & H(D)*, we obtain

p_ ( (Id+T*T)™* (Id+T*T)"'T* ) (5.4)

T \T{d+T*T)"Y T{Id+T*T)"'T* '
Since P € Grk (D) then P — P(D) is a smoothing operator and so the
operator T has a smooth kernel. For each value of the parameter r we
define the operator T, = T and the corresponding projection
p_ ( (Id+ TrT,) ! (Id+T}T,)~'T* )

TN\ IAd+ T T.(Id+TFT,) 1T

It is obvious that
ker P(D)P, = coker S(P,) = Graph(T,) N H(D)* = {0} .

We know that indexz S(FP,) is equal to 0 and hence that S(F,) also has a
trivial kernel. Therefore the operator Dp, is invertible for each 0 < r < 1.
The operators T, satisfy condition (5.3), which shows that H, = Ran P, is a
Lagrangian subspace satisfying condition (5.1). It follows that the operators
Dp, are self-adjoint. Moreover Py = P(D), which ends the proof. o

The next result is a consequence of Theorem 4.5 and Proposition 5.1.

ProPOSITION 5.2.  Assume that we have P, P, € Gri (D) and g €
U*(F~) such that all four operators Dp,, Dyp,y-1, Dp,, Dyp,y-1 are
invertible, then
detc DUPlU—l/ dete DUPlU—l _ detc DUPZU—l/detC DUPZU—l
detc Dp, / dete Dp, - detc Dp, / dete Dp,
In particular, the ratio of the determinants does not depend on the choice
of the base projection.

(5.5)

Proof. From Proposition 5.1, given any two projections from GrZ (D)
such that Dp, and Dp, are invertible operators, we can find a path {F,}
in the subspace Gr’ (D) which connects P; and P,. Hence we can use
Theorem 4.5 and integrate equation (4.10), which gives the identity

detc DP1,1 / dete DP1,1 _ detc DP2,1 / dete DP2,1

detc DP1,0 / dete DP1,0 detc Dpz'o/detc DPz,o !
where by construction

Py =gPyog ' =gPg™', Ppo=Fh. o

(5.6)
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We introduce an invariant A(g) using (5.5):
A(g) _ detc ?UPU—I/ detc DUPU—I
et Dp/ dete Dp
The next result follows from Proposition 5.2 and gives the first formula
directly relating det¢ to dete.

(5.7)

Theorem 5.3. There is the following relation between det; and det¢ on
Gri,(D):

det; Dp = det¢ DP(D)-detc Dp-Alg), (5.8)
where, as before, P = (Iodg)P(D) (Iod 991 )
Proof. The result is immediate from the identity (5.5) with P, = P(D) and
P=P=(%9)PD) (5 ,%). .

The main result of this section is the following theorem.
Theorem 5.4. The function A(g) is the trivial character on the group
U*®(F~), ie. forany g € U®(F™)
Alg)=1.
Proof. Let g and h be elements of Gr? (D) such that DUQP(D)UQ—I ,DUhP(D)Uh_l
and DUhUgP(D)Ug—th—l are invertible. We have

detc DUhQPUh_gl / dete DUhQPUh_gl

hg) =
A( g) detc Dp/ dete Dp
_ det¢ DUthU{;/ detc DUthUh‘; ' det¢ Dy py-1/ dete Dy py-1
detc DUQPUQ_I / dete DUQPUQ_I detc Dp/ dete Dp
= A(h)A(g) ,

hence A(g) is a multiplicative character. It is well known that there are
only two non-trivial characters on the group U (F ™)

At (g) = detr, g and A (g) = (detr, g)". (5.9)
We study the variation of det¢ at the Calderon projection P(D) to show
that A(g) is actually the trivial character. Let oo : F~ — F~ denote a self-
adjoint operator with a smooth kernel. We define the 1-parameter smooth
family of operators {g, = "} in U®(F~) and the corresponding family
of operators on M

Id on M\ N

U, = Id
) 0 on N.
( 0 ez'rn(u)a)
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with & as in equation (3.3). The variation of the phase of the {-determinant
is equal to the variation of the n-invariant times the factor —(in/2). It
follows now from formula (3.8) that

'r:())

d i [l d dg
@ r—o = — du Tr [ = —1Y89ru
dr ™PFi (0)lr=o 71'/0 wr (dr (gr’“ Ou )

(! d Tra [* T
= 7%/0 du Tr E(irn'(u)a): — :Ta/o &' (u)du = ;a, (5.10)

and so we see that variation of the (-determinant in this case is equal to
—i-Tra/2. On the other hand, the canonical determinant of Dg,-P(D)
equal to

118
gr

Id+ KTt Id4e
- = detF.,. T

pia  _pia
detp, |8 21C *
=detp, | €72 ———

dete DgrP(D)g,Tl = detp,

2

= detpy (e_"% cosrg) = e~z T detr, (cosrg) . (5.11)

Therefore the variation of the phase of the canonical determinant is equal

to the variation of the phase of the {-determinant. From equation (0.1), the

variation of the only two non-trivial characters (5.9) of the group U(F'~)
are in our case equal to

4 (A% (gr))lrmo = +i - Tr e, (5.12)

and hence .A(g) is the trivial character of the group U*(F~). O

This completes the proof of the main theorem.

6 Calderon Projection is the Only Critical Point of the
Modulus of det; on the Space Gr>_ (D)
_;_CI 2 (0) .

Let us denote the modulus by |det; Dp| = e ° PP °. We consider | det¢ Dp|
as a smooth function on the subspace Gr¥ (D) C Gri (D). The striking
property of this function is the following:

Theorem 6.1. The only critical point of the function |det¢ | on Gr%, (D)
is the Calderon projection P(D). In other words, at the point P(D) the
variation of | det¢ | at any direction in GrX (D) is equal to 0. For any other
P ¢ Gr*,(D) there exists 8 : F~ — F~ such that the variation of | det; |
at the point P in the direction of 8 is not equal to 0.

Proof. 1t follows from Theorem 0.1 that it is enough to prove this result
for det¢. Let us study the variation of det¢ in the directionof 8 : F~ — F—,
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where @ is a self-adjoint operator with a smooth kernel. Let us fix
P € Gr% (D). The projection P is given by formula (1.5) for some T,
and now we consider the family {P,} of projections:

_ (Idps 0 Idps O
PT_( 0 eirﬂ)P( 0 e‘”ﬂ)

:(Ialém+ (eirﬂﬁ)K_l) P(D) (Mém+ K(eir%T)—l)' (6.1)

irgy—1
Let S, denote the operator %. Then

4 (Indete Dp, )|reo = Z(Indetpr Sp)lpmo = —i - Tt KT 'f(Id+ KT™1)7!.
(6.2)
Now the phase of the right side of (6.2) equals —Tr 8/2 and the modulus is
LTe (—4KT'B(Id+ KT ) '+ (—iKT 'B(Id+ KT")71)¥)
=L . Tep(Id+TK ') '(Id-TK™'). (6.3)
It follows that for any 8 (6.3) is equal to 0 when 7' = K , hence the variation
of the modulus of det¢ at P(D) is equal to 0.

We have to work a little harder in order to show that the variation is
non-trivial at P # P(D). The operator TK~! : F~ — F~ is a Fredholm
operator and 1 is the only element of the essential spectrum of this operator.
In the case that the operator TK ! not equal to Idp— there exists p in
the spectrum of TK !, such that u # 1. Moreover TK ~! is unitary, which
implies that |g| = 1. The invertibility of % implies also that g # —1.

The operator TK ! is Fredholm and of the form Idp— plus smoothing
operator, hence the Fredholm alternative shows the existence of a section
s € F7, such that

TK 's=pus.
We may assume that ||s||zz = 1 and we fix an orthonormal basis {¢x}rez
of F'~ such that ¢9 = s. Now we define the operator § as follows
B(¢o) = ¢po and PB(¢r) =0 for k#0.

Equation (6.3) shows that the variation of the modulus of det¢ at P in

the direction of 8 is equal to

— LT g(Id+ TK ') '(Id— TK ™)
= -5 (BUd+TE ) (Id— TK ") ¢x; )

kEZ
i 1—p

21+p
Im(p)

T (it Ree) 7
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and the proof of the theorem is now complete. |

7 Comments and Concluding Remarks

In this section we comment on some technical issues around the proof of
Theorem 0.1.

7.1 The choice of spectral cut. This determines the sign of the phase
of the (-determinant and refers to the choice of the branch of (—1)~°.
Bearing in mind Theorem 5.4, it is natural to choose the minus sign in the
representation (—1)7% = e**™  and therefore obtain that the phase of the
¢-determinant (see (0.8)) is equal to

5 (Cp2,(0) — 12, (0)) -

This choice is opposite to the one made in the original reference (see [Si,
p. 331]). One can argue that the original choice was dictated by applica-
tions in Quantum Field Theory. However, the discussion of the phase of
the determinant in the fundamental work of Witten (see [W, section 2]),
extended later by others, suggested that the choice of the sign, or more
generally the parameter which determines the phase, should depend on the
particular model being discussed (see for instance [AS1,2]).

Anyway, if we make the opposite choice, so that (—1)7% = et™™  then
the {-determinant is equal to

det¢ D = e Pp0)=to3 (O) -3¢0 (0). (7.1)

Reviewing the proof of Theorem 5.4, equations (5.10) and (5.11) show
that in this situation the variation of the phase of the (-determinant is
equal to ""gm, which is now minus the variation of the C-determinant. It
follows now from (5.12), that we have the following result.

Theorem 7.1. Assume that we define det¢ Dp using formula (7.1), then
the following equality holds on Gr% (D):

detc Dp = detp, g-dete Dp - detc DP(D) , (7.2)

where, as before, g denotes the unique element of U (F ™) such that
Id 0 Id 0
r= (0 9) PAP) (0 9‘1)'
7.2 Contractibility of ér:o('D) One of the important technical re-
sults used in the paper is Proposition 5.1, which allows us to integrate
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equation (4.10) in order to obtain Theorem 0.1. The idea of the proof be-
longs to Liviu Nicolaescu (see [N, Proposition 3.12]). In fact the following
theorem is a special case of a result proved by Nicolaescu.

Theorem 7.2 (see [N, Proposition C7]).  The space Gr’ (D), which
consists of projections P € Gr} (D) such that the operator Dp is invertible,
is weakly contractible, i.e. any continuous map

f: 8™ = Gr: (D)

is homotopic to a constant map.

7.3 The case of non-invertible B. Next we discuss the modification
which has to be made in the case of a non-invertible tangential operator
B (see the decomposition formula (0.9)). There are two important points
which have to be addressed here.

First, we have to know if the difference P(D) — IIs is a smoothing
operator. It was assumed in the original proof (see [S1]) that the tangential
operator B is invertible. The general case, however requires only a slight
modification and we refer to the appendix in [DK] for the details.

Second, we need a replacement for the operator Vs, = (B"'B_)_l/ZB"'
(see (1.4)) , which provides us with a unitary transformation used in the
construction of the trivialization of the determinant line bundle over
Gr%, (D). We employ the Cobordism theorem for Dirac operators (see for
instance [BoW4, Theorem 21.5]). Namely, if Y is a boundary of a com-

pact manifold M and the operator B = ( 0 B—:(()B+)*) is the boundary

Bt
component of a Dirac operator D on M, then index BT = 0, which implies
dimker BT = dimker B~ . (7.3)

Now we fix an orthonormal basis {go,f}ﬁz‘fimkerBJr of ker B* and define a
unitary transformation o : ker B — ker B by the formula
o(p) = £¢f -

We define a modified operator B, = B + ¢ and

V, = (BfB;)™'/*B] . (7.4)
The orthogonal projection

o - 1 (IdF+ V;l)

T2\ Vo, Idp-)
is an element of Gr’ (D) (it satisfies (0.12) and it is a modification of I,
by a smoothing operator). One then proves that Gr’ (D) consists of the
graphs of unitary operators V : F™ — F~ | such that V' —V,, is an operator
with a smooth kernel, in the same way as in [S1].
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