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Abstract

Let D denote a Dirac operator on a compact odd�dimensional mani�
foldM with boundary Y � The elliptic boundary value problem DP is
the operator D with domain determined by a boundary condition P
from the smooth self�adjoint Grassmannian Gr�

�
�D�� It has a well�

de�ned ��determinant �see �Wo�	�� The determinant line bundle over
Gr���D� has a natural trivialization in which the canonical Quillen
determinant section becomes a function
 denoted by detC DP 
 equal
to the Fredholm determinant of a naturally associated operator on
the space of boundary sections� In this paper we show that the ��
regularized determinant det� DP is equal to detC DP modulo a natural
multiplicative constant�

Introduction

Since the early stages of Quantum Mechanics there has been a fundamental
need for a rigorous and workable de�nition of the determinant of an invert�
ible linear operator acting on an in�nite�dimensional space� The Fredholm
determinant provides a natural extension from the �nite�rank case to a lin�
ear operator T � H � H acting on a separable Hilbert space such that
T � Id is an operator of trace class� It is de�ned in a small neighbourhood
of the identity Id by the formula

detFr e
� � eTr� � ���	


where � denotes an operator of trace class� and for general T � Id�� with
� trace�class� by the absolutely convergent series

detFr�Id� �
 � 	 �
�X
k��

Tr��k�
 � ���



In particular� the Fredholm determinant retains the characteristic multi�
plicative property of the �nite�rank algebraic determinant

detFr T�T� � detFr T� detFr T� � ����




� S�G� SCOTT AND K�P� WOJCIECHOWSKI GAFA

The trace�class condition is� however� very restrictive and the class of op�
erators with Fredholm determinants certainly does not include any class
of elliptic di�erential operators� Nevertheless� important applications in
Physics� particularly in Quantum Field Theory �see the fundamental pa�
pers �MS	�
�� led to the idea that the Fredholm determinant allows one to
study the ratio of the determinant of an elliptic operator to the determi�
nant of a �comparable� basepoint operator� for instance� the ratio of the
determinant of a Hamiltonian with potential and the determinant of the
free Hamiltonian� In this way a regularized determinant relative to a choice
of basepoint operator may be de�ned�

On the other hand� in many important problems� such as in quantizing
gauge theories� it is necessary to discuss directly a regularized determinant
of an elliptic operator� The Heuristic Approach to the determinant in this
context was �rst proposed by mathematicians for the case of a positive
de�nite second�order elliptic di�erential operator

L � C��M �S
� C��M �S


acting on the sections of a smooth vector bundle S over a closed mani�
fold M � The operator L has a discrete spectral resolution and so formally
has determinant equal to the in�nite product of its eigenvalues� The start�
ing point in de�ning a regularized product is the following formula for an
invertible �nite�rank linear operator T�

ln detT � � d
dsfTrT

�sgjs�� � ����


For large Re�s
 the ��function of the operator L is just the trace occurring
on the right side of ����


�L�s
 � TrL�s �
	

��s


Z �

�
ts�� Tr e�tLdt � ����


It is a holomorphic function of s for Re�s
 � dimM�
 and has a mero�
morphic extension to the whole complex plane with only simple poles �see
�Se	�
� In particular s � � is not a pole� Hence ��L��
 �

d
dsf�L�s
gjs�� is

well�de�ned and we may de�ne the ��determinant by

det� L � e��
�
L��� � ����


This de�nition was introduced in 	��	 in a famous paper of Ray and
Singer �RS� in order to de�ne Analytic Torsion� the analytical counterpart
of the topological invariant Franz�Reidemeister Torsion� The equality of
the two torsions was subsequently proved independently by Je� Cheeger
and Werner M�uller �see �C	�� �M�u�
� Since then� there have been numerous
applications of the ��determinant in physics and mathematics� beginning
with the 	��� Hawking paper �H� on quantum gravity�
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For positive�de�nite operators of Laplace type over a closed manifold
the ��determinant provides a generally satisfactory regularization method�
Though the fundamental multiplicative property of the Fredholm deter�
minant ����
 no longer holds� if L� and L� denote two positive elliptic
operators of positive order on a Hilbert space H then in general

det� L�L� �� det� L� � det� L� �

We refer to �KV� for a detailed study of the so�called Multiplicative
Anomaly� In many physical applications� however� such as the quantization
of Fermions� one encounters the more problematic task of de�ning the de�
terminant of a �rst�order Dirac operator� These are not positive operators�
and it is at this point that anomalies may arise due to the phase of the deter�
minant �AtS�� For a Dirac operator D � C��M �S
� C��M �S
 acting on
the sections of a bundle of Cli�ord modules over a closed �odd�dimensional

manifold M one proceeds in the following way �see �BoW�� for an intro�
duction and notation
� The operator D is an elliptic self�adjoint �rst�order
operator and hence has in�nitely many positive and negative eigenvalues�
Let f�kgk�N denote the set of positive eigenvalues and f�	kgk�N denote
the set of negative eigenvalues� Once again� �D�s
 � Tr�D�s
 is well�de�ned
and holomorphic for Re�s
 � dimM and we have

�D�s
 �
X
k

��sk �
X
k

��	
�s	�sk

�
X
k

�
��sk �	�sk



�
��sk �	�sk




�
���	
�s

X
k

�
��sk �	�sk



�
��sk �	�sk




�
�

which can be written as

�D�s
 � ��	
�s
�D��s�

� 
D�s




�

D�s
 � �D��s�





� ����


where 
D�s
 �
P

k �
�s
k �

P
k 	

�s
k is the 
�function of the operator D intro�

duced by Atiyah� Patodi and Singer �see �AtPS�
� Once again it is holomor�
phic for Re�s
 large and has a meromorphic extension to the whole complex
plane with only simple poles� There is no pole at s � � and therefore we
can study the derivative of �D�s
 at s � �� We have

��D��
 �
��
D���




�

d

ds
f��	
�sg

���
s��

�
�D���
� 
D��




�

The ambiguity in de�ning ��	
�s �i�e� a choice of spectral cut
 now leads
to an ambiguity in the phase of the ��determinant� We have

��	
�s � e�i�s �

and we pick the � � � sign� This leads to the following formula for the
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��determinant of the Dirac operator D

det� D � e
i�
�
��D������D���� � e�

�

�
��
D�

���
� ����


We come back to the discussion of the choice of sign in ��	
s in the �nal
section of the paper�

The purpose of this paper is to explain a direct and precise identity be�
tween the ��determinant of a self�adjoint elliptic boundary value problem
for the Dirac operator over an odd�dimensional manifold with boundary
and a regularization of the determinant as the Fredholm determinant of a
canonically associated operator over the boundary� We consider an in�nite�
dimensional Grassmannian of elliptic boundary conditions commensurable
with the Atiyah�Patodi�Singer condition� The latter regularization is natu�
rally understood� in the sense explained below� as the ratio of the determi�
nant of the elliptic boundary value problem to the determinant of a base�
point elliptic boundary value problem� It is a regularization canonically
constructed from the topology of the associated determinant line bundle
and hence called the canonical determinant� The canonical determinant is
a robust algebraic operator�theoretic object� while the ��determinant is a
highly delicate analytic object� and so it is surprising that they coincide�
�Though� the equality of the torsions mentioned above at least suggests that
the ��determinant may be somehow related to Fredholm determinants�


To formalise the construction of taking the ratios of determinants used
to de�ne the canonical determinant we use the machinery of the determi�
nant line bundle� This was introduced in a fundamental paper of Quillen
�Q� for a family of Cauchy�Riemann operators acting on a Hermitian bundle
over a Riemann surface� as the pull�back of the corresponding �universal�
determinant bundle over the space of Fredholm operators on a separable
Hilbert space� Without making further choices� the determinant arises not
as a function on the parameter space of operators but as a canonical section
A �� detA of the associated determinant line bundle DET � More precisely�
detA lives in the complex line DetA �� �max�KerA
� � �maxCokerA and
is non�zero if and only if A is invertible� Using ��function regularization�
Quillen constructed a natural Hermitian metric on the determinant bun�
dle for a family of Cauchy Riemann operators and computed its curvature�
This was extended by Bismut and Freed to the context of general families of
Dirac operators on closed manifolds �see �BF�
 and the curvature identi�ed
with the 
�form component of the families index density� It did not� though�
provide a straightforward correspondence between the ��determinant and
the Quillen determinant section� More precisely� given that det��A
 is de�
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�ned� the problem is to identify the non�zero section � of DET such that
det��A
 � detA���A
� Clearly the global existence of such a section �

is equivalent to the triviality of the determinant line bundle� From this
view point� the principal result of this paper is the exact identi�cation of
the �basepoint� section � for the class of elliptic boundary value problems
considered here� In order to link this up with Fredholm determinants we
use a construction of the determinant line bundle due to Segal �Seg��

We do not discuss in this paper the corresponding problem for a closed
manifold� Perhaps surprisingly� it is easier to discuss the relation between
the ��determinant and the Quillen determinant section on a manifold with
boundary� because of reduction to the boundary integral �see �BoW��
�
In early 	��� the second author as the follow�up to his work on the 
�
invariant on a manifold with boundary �see �Wo����
 showed the existence
of the ��determinant on the Grassmannian of generalized Atiyah�Patodi�
Singer boundary conditions� A little earlier the �rst author using the Se�
gal construction of the determinant line bundle introduced the canonical
C�determinant on this Grassmannian and showed that it is equal to the
��determinant in the one dimensional case �see �S	�� see also �BoSW� for
a discussion of the one dimensional case in the spirit of this exposition
�
The present paper contains the result of joint work� the proof of the equal�
ity of the ��determinant and C�determinant up to a natural multiplicative
constant in any odd dimension� Early progress was reported in the note
�SW	� and the results of this paper were announced in �SW
�� We refer to
�BoMSW� for a discussion of related topics in the even�dimensional case �see
also the review �WoSMB�
� The construction of a metric and compatible
connection on the determinant line bundle using the canonical regulariza�
tion for a family of Dirac operators over a closed manifold endowed with a
partition is explained in �S
��

We now give a more detailed presentation of the situation discussed in
this paper� Let D � C��M �S
 � C��M �S
 denote a compatible Dirac
operator acting on the space of sections of a bundle of Cli�ord modules S
over a compact connected manifoldM with boundary Y � It is not actually
necessary to assume that D is a compatible Dirac operator� further tech�
nical comments are made in the �nal section of the paper� In the present
paper we always assume that M is an odd�dimensional manifold� the even�
dimensional case will be discussed separately� And we discuss only the
Product Case� Namely we assume that the Riemannian metric on M and
the Hermitian structure on S are products in a certain collar neighborhood
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of the boundary� Let us �x a parameterizationN � ��� 	�	 Y of the collar�
Then in N the operator D has the form

DjN � G��u �B
 � ����


where G � SjY � SjY is a unitary bundle isomorphism �Cli�ord multi�
plication by the unit normal vector
 and B � C��Y �SjY 
 � C��Y �SjY 

is the corresponding Dirac operator on Y � which is an elliptic self�adjoint
operator of �rst order� Furthermore� G and B do not depend on the normal
coordinate u and they satisfy the identities

G� � �Id and GB � �BG � ���	�


Since Y has dimension 
m the bundle SjY decomposes into its positive and
negative chirality components SjY � S�

L
S� and we have a correspond�

ing splitting of the operator B into B� � C��Y �S�
� C��Y �S�
 � where
�B�
� � B�� Equation ����
 can be rewritten in the form�

i �
� �i

��
�u �

�
� B�

B� �

��
�

In order to obtain a Fredholm operator with good elliptic regularity
properties we have to impose a boundary condition on the operator D� Let
�	 denote the spectral projection of B onto the subspace of L��Y �SjY 

spanned by the eigenvectors corresponding to the nonnegative eigenvalues
of B� It is well known that �	 is an elliptic boundary condition for the
operator D �see �AtPS�� �BoW��
� The meaning of the ellipticity is as
follows� We introduce the unbounded operator D�� equal to the operator
D with domain

domD�� �
�
s 
 H��M �S
 j �	�sjY 
 � �

�
�

where H� denotes the �rst Sobolev space� Then the operator

D�� � D � dom�D��
� L��M �S


is a Fredholm operator with kernel and cokernel consisting only of smooth
sections�

The orthogonal projection �	 is a pseudodi�erential operator of order �
�see �BoW��
� In fact we can take any pseudodi�erential operatorR of order
� with principal symbol equal to the principal symbol of �	 and obtain an
operator DR which satis�es the aforementioned properties� In order to
explain this phenomenon� we give a short exposition of the necessary facts
from the theory of elliptic boundary problems� In contrast to the case of
an elliptic operator on a closed manifold� the operator D has an in�nite�
dimensional space of solutions� More precisely� the space�

s 
 C��M �S

�� Ds � � in M n Y

�
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is in�nite�dimensional� We introduce the Calderon projection� which is
the projection onto the L��closure of the Cauchy Data space H�D
 of the
operator D

H�D
 �
�
f
C��Y �SjY 


�� �s
C��M �S
� D�s
�� inM nY and sjY � f
�
�

The projection P �D
 is a pseudodi�erential operator with principal symbol
equal to the symbol of �	 �see �BoW��
� Moreover� in our situation P �D

is an orthogonal projection in L��Y �SjY 
� This is not true in more general
situations� for instance in the case of non�product metric structures near
the boundary� The operator D has the Unique Continuation Property�
and hence we have a one to one correspondence between solutions of the
operator D and the traces of the solutions on the boundary Y � at least in
the case of a connected manifold M � This explains roughly� why only the
projection PR onto the kernel of the boundary conditions R matters� If the
di�erence PR � P �D
 is an operator of order �	� then it follows that we
choose the domain of the operator DR in such a way that we throw away
almost all solutions of the operator D onM nY � with the possible exception
of a �nite�dimensional subspace� The above condition on PR allows us also
to construct a parametrix for the operator DR� hence we obtain regularity
of the solutions of the operator DR� We refer to the monograph �BoW��
for more details�

In the following we do not discuss the determinant on the �total space�
of elliptic boundary conditions for the operator D� we choose a smaller
and more convenient space� mostly in order to avoid unpleasant technical
questions� We restrict ourselves to the study of the Grassmannian Gr�D

of all pseudodi�erential projections which di�er from �	 by an operator
of order �	� The space Gr�D
 has in�nitely many connected components
and two boundary conditions P� and P� belong to the same connected
component if and only if

indexDP� � indexDP� �

We are interested� however� in self�adjoint realizations of the operatorD�
The anti�involution G � SjY � SjY equips L��Y �SjY 
 with a symplectic
structure� and using Green�s formula

�Ds�� s�
� �s��Ds�
 � �

Z
Y

�
G�s�jY 
� s�jY

�
dy � ���		


it is shown in �BoW�� that the boundary condition R provides a self�adjoint
realization DR of the operator D if and only if kerR is a Lagrangian sub�
space of L��Y �SjY 
 �see �BoW��� �BoW��� �DoW
�
� We may therefore
restrict our attention to those elements of Gr�D
 which are projections
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onto Lagrangian subspaces of L��Y �SjY 
� More precisely� we introduce
Gr��D
� the Grassmannian of orthogonal� pseudodi�erential projections P
such that P ��	 is an operator of order �	 and

� GPG � Id� P � ���	



The space Gr��D
 is contained in the connected component of Gr�D
 pa�
rameterizing projections P with indexDP � ��

For analytical reasons associated with the existence of the ��determinant�
in this paper we discuss only the Smooth� Self�adjoint Grassmannian� a
dense subset of the space Gr��D
� de�ned by

Gr���D
 �
�
P 
 Gr��D


�� P � �	 has a smooth kernel
�
� ���	�


The spectral projection �	 is an element of Gr���D
 if and only if
kerB � f�g� On the other hand� it is well known that the �orthogo�
nal
 Calderon projection P �D
 is an element of Gr��D
 �see for instance
�BoW��
� Moreover� it was proved in �S	� Proposition 
�
� �see also �DK�
Appendix�
 that P �D
��	 is a smoothing operator and hence that P �D

is an element of Gr���D
� The �nite�dimensional perturbations of �	 �see
also �DoW
�� �LW� and �Wo��
 provide further examples of boundary con�
ditions from Gr���D
� The latter were introduced by Je� Cheeger� who
called them Ideal Boundary Conditions �see �C
���
�

For any P 
 Gr��D
 the operator DP has a discrete spectrum nicely
distributed on the real line �see �BoW��� �DoW
�
� It was shown by the
second author that for any P 
 Gr���D
� 
DP

�s
 and �D�
P
�s
 are well�de�ned

functions� holomorphic for Re�s
 large and with meromorphic extensions
to the whole complex plane with only simple poles� In particular both
functions are holomorphic in a neighborhood of s � �� Therefore det� DP

de�ned by formula ����
 is a well�de�ned smooth function on Gr���D
 �see
�Wo��
�

The canonical determinant is de�ned in the following way� The family
of elliptic boundary value problems fDP j P 
 Gr��D
g parameterized by

Gr��D
 �
�
P 
 Gr�D


�� P ��	 has a smooth kernel
�

has an associated determinant line bundle DET �D
� Gr�D
 with deter�
minant section

P �� detDP 
 Det�DP 
 �� �maxKer�DP 

� � �maxCoker�DP 


�see section 	
� On the other hand� relative to the basepoint Calderon pro�
jection P �D
 
 Gr��D
� we have the smooth family of Fredholm operators
over the boundary�

S�P 
 � PP �D
 � H�D
� RanP
�� P 
 Gr��D
g
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with associated �Segal
 determinant line bundle DETP �D� again equipped
with its determinant section P �� detS�P 
� From �S	�
� we know that
there is a canonical line bundle isomorphism preserving these sections

DET �D
 �� DETP �D� � detDP 
� detS�P 
 � ���	�


and therefore� since DETP �D� is a non�trivial complex line bundle whose
�rst Chern class generates H��Gr��D
�Z
 �Z� no global non�zero section
of DET �D
 exists� However� from the computation of homotopy groups in
�BoW��� �DoW
� we have H��Gr���D
�Z
 � �� and so the determinant line
bundle does restrict to a trivializable complex line bundle over the smooth
Grassmannian of self�adjoint boundary conditions�

The problem now is to identify which trivialization de�nes the ��deter�
minant det� DP � To make the presentation smoother� we assume henceforth
that kerB � f�g� this is in fact not a serious restriction and it will be ex�
plained in section � that we can easily relax this condition� The correct
choice of trivialization is indicated by the fact that any elliptic bound�
ary condition P 
 Gr���D
 is described precisely by the property that
its range is the graph of an elliptic unitary isomorphism T � F� � F�

such that T � �B�B�
����B� has a smooth kernel �S	�� where F� are
the spaces of chiral spinor �elds over the boundary� In section 	 of this
paper we explain how this de�nes a preferred non�zero �basepoint� section
P �� ��P 
 
 DetDP � The canonical determinant is then de�ned to be the
quotient taken in DetDP

detC DP � detDP

��P � � ���	�


and this turns out to be the Fredholm determinant of an operator living
on the boundary Y constructed from S�P 
� The main result of the paper
is the following Theorem�

Theorem ���� The following equality holds over Gr���D


det� DP � det� DP �D��detC DP � ���	�


Remark ���� �	
 Theorem ��	 shows that� at least on Gr���D
 � the
��determinant is an object which is a natural extension of the well�de�ned
algebraic concept of the determinant�

�

 The identi�cation of det� DP �D� with a regularized Fredholm de�
terminant of the operator S�P 
 living on the boundary extends the cor�
responding result for the index� which is well known �see �BoW�� Theo�
rem 
����
�

��
 Theorem ��	 suggests a new approach to the pasting formula for
the ��determinant with respect to a partitioning of a closed manifold� The
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pasting formula for detC was introduced in �S	�� It is hoped that a new
insight into the pasting mechanism of the ��determinant will be obtained
by combining results of �S	� and formula ���	�
� For a recent application
of the results of this paper to an adiabatic pasting formula see �PW��

To prove Theorem ��	 we follow a basic idea of Robin Forman �F� and
study the variation of the relative determinants� More precisely� given
two projections P�� P� 
 Gr���D
� we de�ne two one�parameter families of
boundary conditions Pi�r and compute the relative variation

d
drfln detDP��r � ln detDP��r gjr��

for both the canonical determinant and the ��determinant and show that
they coincide� Here we face the technical problem of dealing with a family of
unbounded operators with varying domain� To circumvent this and make
sense of the variation with respect to the boundary condition we follow
Douglas and Wojciechowski �DoW
� and apply their �Unitary Trick� �see
section �
� Finally� using the fact that the space of projections P inGr���D

such that DP is invertible is actually path connected �see section � and �N�
�
we integrate the variational equality in order to obtain formula ���	�
 of
Theorem ��	�

The paper is organized as follows� In section 	 we explain the construc�
tion of the canonical determinant� We follow here the exposition of �S	��

Assume that for given P 
 Gr���D
 the operator DP is invertible� In
section 
 we present our construction of an inverse D��P � To do that we
have to discuss certain aspects of the theory of elliptic boundary problems�
We also introduce K the Poisson map of the operator D� and K�P 
 the
Poisson map of the operator DP � The �rst is used in the construction
of the Calderon projection� The operator K�P 
 appears in several crucial
places in our computation of the variation of the canonical determinant�

In section � we discuss the variation of the ��determinant and in section
� we study the variation of the canonical determinant� It has already
been mentioned that the work �Wo�� is crucial for the study here of the
��determinant� while in the calculation of the variation of the canonical
determinant we were in uenced by the work of Robin Forman �F��

With the variational equality at hand� section � contains the �nal steps
of the proof of Theorem ��	�

In section � we discuss an immediate application of our result to the
modulus of the ��determinant� regarded as a function on the Grassmannian
Gr���D
� We show that the Calderon projection is the only critical point
of this function on the space !Gr���D
 of projections P 
 Gr���D
 such that
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the operator DP is invertible�
In section � we make some �nal comments on several technical issues

we have to deal with in this paper� We discuss the choice of the sign of the
phase of ��determinant� We also explain the necessary changes required
for the case of a non�invertible tangential operator B� A more detailed
explanation of the topological structure of !Gr���D
 is given�
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� Canonical Determinant on the Grassmannian Gr�
�
�D�

In this section we review brie y the construction of the determinant line
bundle and give an explicit construction of the canonical determinant�

The determinant line bundle over the space of Fredholm operators was
�rst introduced in a seminal paper of Quillen �Q�� An equivalent construc�
tion which is better suited to our purposes here was subsequently given
by Segal �see �Seg�
� and so we follow his approach� Let Fred�H
 denote
the space of Fredholm operators on a separable Hilbert space H� We work
�rst in the connected component Fred��H
 of this space parameterizing
operators of index zero� For A 
 Fred��H
 de�ne

FredA �
�
S 
 Fred�H


�� S �A is trace�class
�
�

Fix a trace�class operator A such that S � A�A is an invertible operator�
Then the determinant line of the operator A is de�ned as

DetA � FredA 	C�
 � �	�	


where the equivalence relation is de�ned by

�R� z
 �
	
S�S��R
� z



�
	
S� z�detFr�S

��R



�

The Fredholm determinant of the operator S��R is well�de�ned� as it is of
the form IdH plus a trace class operator� Denoting the equivalence class of
a pair �R� z
 by �R� z�� complex multiplication is de�ned on DetA by

���R� z� � �R� �z� � �	�



The determinant element is de�ned by

detA �� �A� 	� �	��


and is non�zero if and only if A is invertible�



�� S�G� SCOTT AND K�P� WOJCIECHOWSKI GAFA

The complex lines �t together over Fred��H
 to de�ne a complex line
bundle L� the determinant line bundle� To see this� observe �rst that over
the open set UA in Fred��H
 de�ned by

UA �
�
F 
 Fred��H


�� F �A is invertible
�
�

the assignment F � detF de�nes a trivializing �non�vanishing
 section of
LjUA � The transition map between the canonical determinant elements over
UA � UB is the smooth �holomorphic
 function

gAB�F 
 � detFr
	
�F �A
�F � B
��



�

This de�nes L globally as a complex line bundle over Fred��H
� endowed
with its determinant section A � detA� If indA � d we de�ne DetA to
be the determinant line of A � � as an operator H � H �Cd if d � �� or
H � C�d � H if d 
 � and the construction extends in the obvious way
to the other components of Fred�H
� Note that the determinant section is
zero outside of Fred��H
�

We use this construction in order to de�ne the determinant line bun�
dle over Gr��D
� For each projection P 
 Gr��D
 we have the �Segal

determinant line Det�S�P 

 of the operator

S�P 
 �� PP �D
 � H�D
� RanP

and the determinant line DetDP of the boundary value problem DP �
dom�DP 
 � L��M �S
� These lines �t together in the manner explained
above to de�ne determinant line bundles DETP �D� and DET �D
 over the
Grassmannian �some care has to be taken as the operator acts between two
di�erent Hilbert spaces� but with the obvious notational modi�cations we
once again obtain well�de�ned determinant line bundles
� The canonical
isomorphism ���	�
 identi�es the two line bundles and preserves the deter�
minant elements� The bundle DETP �D� is a non�trivial line bundle over
Gr��D
� but when restricted to the Grassmannian Gr���D
 it is canoni�
cally trivial�

We use the speci�c trivialization introduced in �S	�� Recall that we
work here with orthogonal projections onto the Lagrangian subspaces of
L��Y �SjY 
 � which are a compact perturbation of the Cauchy data space
H�D
� We have assumed that kerB � f�g� and hence �	�B
 is an element
of Gr���D
� The range of �	�B
 is actually the graph of the unitary
operator V	 � F� � F� given by the formula�

V	 � �B�B�
����B� � �	��


This identi�cation extends to the whole Grassmannian Gr���D
� elements
are in 	 to 	 correspondence with unitary maps V � F� � F�� such that the
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di�erence V � V	 is an operator with a smooth kernel� The corresponding
orthogonal projection P is given by the formula

P �
	




�
IdF� V ��

V IdF�

�
�

By choosing a basepoint� the correspondence de�ned above allows us to
establish an isomorphism between Gr���D
 and the group U��F�
 of uni�
taries acting on F� � L��Y �S�
 which di�er from IdF� by an operator
with a smooth kernel� It is convenient for us to work with the Calderon
projection as basepoint� hence let K � C��Y �S�
 � C��Y �S�
 denote
the unitary such that H�D
 is equal to graph�K
� For any projection P 

Gr���D
 there exists T � T �P 
 � F� � F� such that RanP � graph�T 
�
and so we have a natural isomorphism Gr���D
 �� U��F�
 de�ned by the
map P � TK��� This is expressed in terms of the homogeneous structure
of the Grassmannian by

P �

�
IdF� �
� TK��

�
P �D


�
IdF� �
� KT��

�
� �	��


Now we can de�ne a non�vanishing section l of the determinant line bundle
DETP �D� over Gr

�
��D
� The value of l at the projection P is the class in

Det�S�P 

 of the couple�
U�P 
 ��

�
IdF� �
� TK��

�
� 	

�
�

where the operator U�P 
 acts from H�D
 to Ran�P 
� That is� l�P 
 �
detU�P 
� The fact that l�P 
 is an element of Det�S�P 

 follows from the
following elementary result�

Lemma ���� The di�erence between U�P 
 and the operator S�P 
 �
PP �D
 � H�D
 � RanP is an operator with a smooth kernel� hence

detU�P 
 � �U�P 
� 	� is an element of DetS�P 
�

Proof� The operator U�P 
 acts from graph�K
 � H�D
 to graph�T 
 �
Ran�P 
 and acts by�

x
Kx

�
�

�
IdF� �
� TK��

��
x
Kx

�
�

�
x
Tx

�
�

The operator PP �D
 is given by the following formula

PP �D
 �
	

�

�
IdF� � T��K T�� �K��

T �K IdF� � TK��

�
�

leading to the following expression for the operator S�P 
 � PP �D
 �
H�D
� Ran�P 


S�P 


�
x

Kx

�
�

�
IdF��T

��K
� x

Id
F��TK

��

� Kx

�
�

�
IdF��T

��K
� �

�
Id

F��TK
��

�

��
x

Kx

�
�
�	��
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Because T��K �resp� TK��
 di�ers from IdF� �resp� IdF�
 by a smooth�
ing operator� it is now obvious that the di�erence U�P 
�S�P 
 is an oper�
ator with a smooth kernel� �

The discussion above allows us to now de�ne the Canonical Determinant

over Gr���D
� Let A � H�D
 � RanP denote an invertible Fredholm
operator such that A � S�P 
 is an operator of trace class� We have�

detA �� ��A� 	
�

�


�U�P 
�U�P 
��A
� 	


�
�


�U�P 
� detFr�U�P 


��A

�

� detFr
	
U�P 
��A




�U�P 
� 	

�
�� detFr

	
U�P 
��A



� detU�P 
 �

where we use equations �	�

 and �	��
� The above identity means we
can de�ne the determinant of the operator A as the ratio in DetA of the
non�vanishing canonical elements detA and detU�P 
� or equivalently as
the Fredholm determinant of the operator U�P 
��A� This leads to the
following de�nition of the canonical determinant of the operator DP �

Definition ���� We de�ne the Canonical Determinant of the elliptic
boundary value problem DP by�

detC DP �� detC S�P 
 �� detFr
	
U�P 
��S�P 




� �	��


The naturality of this de�nition lies in the identi�cation of the abstract
determinants of the Fredholm operators DP and S�P 
 by the isomorphism
���	�
� the section � in ���	�
 is just the image of detU�P 
 under ���	�
�
In fact� from the proof of Lemma 	�	 we see that the determinant on the
right side of the equality �	��
 is the Fredholm determinant of the operator�

Id
F�

�T��K
� �

�
IdF��TK

��

�

�

acting on the graph of the operator K� Hence we obtain�

Lemma ����

detC DP � detFr

�
Id�KT��




�
� �	��


where the Fredholm determinant on the right side is taken on F��

We may therefore reformulate Theorem ��	 as�

Theorem ���� The following equality holds over Gr���D


det� DP � det� DP �D��detFr

�
Id�KT��




�
� �	��
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Equivalently� �since detC DP �D� � 	

det� DP

det� DP �D�
�

detC DP

detC DP �D�
� �	�	�


Remark ���� In section � we also use determinants of operators of the
form

S�P�
S�P�

�� � RanP� � RanP� �

under the assumption that the operator S�P�
 is invertible� From the dis�
cussion presented above� it follows that for any Fredholm operator A �
RanP� � RanP� such that the di�erence between A and the operator
P�P� � RanP� � RanP� is of trace class we can de�ne the canonical
determinant of A using the formula

detC A � detFr

�
IdF� �
� T�T

��
�

�
A � �	�		


where RanPi is equal to graph Ti�

� Boundary Problems De�ned by Gr�
�
�D�� Inverse

Operator and Poisson Maps

For any P 
 Gr�D
 the operator DP is a Fredholm operator� hence it has
closed range� As a consequence� we can de�ne an inverse to the induced
operator domDP � kerDP � L��M �S
� cokerDP � If we assume that P is
an element of Gr��D
 then the operator DP is self�adjoint and kerDP �
cokerDP � It follows that if we assume kerDP � f�g� then there exists an
inverse D��P to the operator DP �

In this section we give an explicit formula for the operator D��P � This
formula plays a key role in the proof of the main result of the paper� The
operator D��P is a sum of two operators� The �rst is the interior inverse

of D��� The second is a correction term which lives on the boundary�

We start with the �interior� part of the inverse� Let !M � M� �Y M
denote the closed double of the manifold M �M� is a copy of M with
reversed orientation
� The bundle of Cli�ordmodules S extends to a bundle
!S of Cli�ord modules over !M and the operator D determines a compatible
Dirac operator !D over !M �equal to D on M and �D on M�
� We refer
to �Wo	�� �DoW	� for the details of these constructions and applications to
the analytic realization of K � homology� The operator

!D � C�� !M � !S
� C�� !M � !S


is an invertible self�adjoint operator� hence its inverse !D�� is a well�de�ned
elliptic operator of order �	 over the manifold !M � We also have natural
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extension and restriction maps acting on sections of S and !S� The extension
�by zero
 operator e� � L��M �S
� L�� !M � !S
 is given by the formula�

e��f
 ��

�
f on !M nM�

� on M� �
�
�	


The restriction operator r� � Hs� !M � !S
 � Hs�M �S
 � where Hs denotes
the sth Sobolev space� is given by !f � f � !f jM � To simplify the notation
in the following we always write

D�� � r� !D��e� � �
�



The operator D�� is the interior part of the inverse� It is used in several
crucial constructions in the theory of boundary problems� It mapsL��M �S

into H��M �S
� however the range is not necessarily inside the domain
of DP � For this reason we have to introduce an additional term to obtain
an operator with the correct range� To do this� we need to study the
situation in a neighborhood of the boundary Y � The restriction of smooth
sections to the boundary extends to a continuous map

�� � H
s�M �S
� Hs� �

� �Y �SjY 
 �

which is well�de�ned for s � 	�
 �see �BoW��
� The corresponding adjoint
operator ��� �in the distributional sense
 provides us with a well�de�ned
map

��� � H
s�Y �SjY 
� Hs� �

� �M �S
 �

for s 
 �� Now for any real s the mapping

K � r� !D�����G � C��Y �SjY 
� C��M �S


extends to a continuous map K � Hs�����Y �SjY 
� Hs�M �S
� with range
equal to the space

ker�D� s
 �
�
f 
 Hs�M �S


�� Df � � in M n Y
�
�

In fact� the map

K � H�D� s
 � Ran
�
P �D
 � Hs�����Y �SjY 
� Hs�����Y �SjY 


�
� ker�D� s
 �
��


is an isomorphism �see �BoW��
� We have the following equality�

D��D � Id�K�� � �
��


which holds on the space of smooth sections �see �BoW�� Lemma 	
��� 
�

The operator K is called the Poisson operator of D� It de�nes the
Calderon projection�

P �D
 � ��K �
��


�see �BoW�� Theorem 	
���
�
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Remark ���� Formula �
��
 gives� a priori� only a projector� not an
orthogonal projection� onto H�D
� In the situation discussed in this paper�
however� the resulting projector is orthogonal� We refer to �BoW�� for the
details of the construction� which is originally due to Calderon and Seeley�

To construct the correction term to the operator D�� we use the inverse
of the operator S�P 
� The invertibility of S�P 
 is equivalent to DP being
invertible�

Lemma ���� The operator DP is an invertible operator if and only if the

operator S�P 
 � PP �D
 � H�D
� RanP is invertible�

Proof� The GrassmannianGr���D
 is a subspace of the �big� Grassmannian

Gr�D
 �see �Wo
�� �BoW��� �DoW
� Appendix B�
� The space Gr�D
 has
countably many connected components distinguished by the index of the
operator S�P 
� i�e� P� and P� belong to the same connected component of
Gr�D
 if and only if indexS�P�
 � index S�P�
� The space Gr���D
 is
contained in the index zero component of Gr�D
� Now we have

kerS�P 
 �
�
f
�� P �D
f � f and P �f
 � �

�
and

cokerS�P 
 �
�
g
�� Pg � g and P �D
g � �

�
�

If P is an element of Gr��D
� then indexS�P 
 � indexDP � �� We see
that the operator S�P 
 is invertible if and only if it has trivial kernel�
Similarly a self�adjoint Fredholm operator DP is invertible only if it has
trivial kernel� On the other hand� the operator K de�nes an isomorphism

K � kerS�P 
� kerDP �

This ends the proof of lemma� �

Remark ���� Note that the lemma proves a somewhat stronger state�
ment� via the Poisson operator K� constructing solutions for the operator
S�P 
 is equivalent to constructing solutions to the elliptic boundary value
problem DP �and the same for the adjoints
� In particular this implies that
the index of the two operators coincide� This is the underlying reason why
it is easier to compute determinants on manifolds with boundary than on
closed manifolds�

From now on we assume that DP is invertible� The operator S�P 
�� is
not a pseudodi�erential operator� as it acts from RanP into H�D
� How�
ever� we can show that it is a restriction of an elliptic pseudodi�erential op�
erator of order �� More precisely� the operator PP �D
��Id�P 
�Id�P �D


is an elliptic pseudodi�erential operator� which can be written as

S�P 
� �Id� P 

	
Id� P �D




� H�D
 �H�D
� � W �W� �
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where W � RanP � It can be seen that

kerS�P 
 � coker�Id� P 

	
Id� P �D




�

and
cokerS�P 
 � ker�Id� P 


	
Id� P �D




�

Therefore if we assume that kerS�P 
 � f�g� then the operator PP �D
 �
�Id� P 
�Id� P 
�D

 is invertible� Its inverse is an elliptic operator �see
for instance �BoW��
 and it follows that

S�P 
�� � P �D



PP �D
 � �Id� P 
�Id� P �D



���
P � �
��


We can now present the formula for the inverse of the operator DP �

Theorem ���� Assume that the operator DP � domDP � L��M �S
 is
invertible� then its inverse is given by the formula�

D��P � D�� �KS�P 
��P��D
�� � �
��


Proof� From �
��
 we have that DK is equal to � in M n Y � and hence that
DD��P is equal to Id on L��M �S
� Now let f 
 L��M �S
� then�

P���D
��
P f
 � P ����D

��f
� P��KS�P 

��P��D

���f


� P���D
��f
� PP �D
S�P 
��P��D

���f


� P ����D
��f

� P ����D

��f

 � � �

and hence D��P f 
 domDP � We have shown that DPD
��
P � L��M �S
 �

L��M �S
 is equal to IdL� and that D��P � L��M �S
 � domDP � hence
the operator D��P is indeed a right inverse of DP � and obviously since
indexDP � � it is also a left inverse� �

Corollary ���� Let P�� P� 
 Gr���D
 such that the operators DP� and

DP� are invertible� Then the di�erence D��P� � D��P� is an operator with

smooth kernel�

Proof� It follows from Theorem 
�� that

D��P� � D
��
P�

� K
	
S�P�


��P� � S�P�

��P�



��D

�� � �
��


Now the fact that P��P� is an operator with a smooth kernel and equation
�
��
 implies that the operator S�P�
��P� � S�P�
��P� also has a smooth
kernel� �

For the rest of this section we take a closer look at the operator D��P D�
as it allows us to introduce another important operator K�P 
� the Poisson
operator of the operator DP � From formula �
��
 we have that

D��P D � Id� K�� �KS�P 

��P���Id�K��


� Id� K�� �KS�P 

��PP �D
�� � KS�P 


��P�� � Id�KS�P 
��P�� �
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Hence if f 
 domDP � then P���f
 � � and

D��P DP f �
	
Id�KS�P 
��P��



f � f �

We de�ne the Poisson operator of DP by

K�P 
 � KS�P 
��P � �
��


The operator K�P 
 appeared in the second term of the operator D��P DP �

Let g denote an element in the range of the projection P � More precisely�
assume that g 
 Hs�Y �SjY 
 and Pg � g� Then K�P 
g is a solution of D�
which belongs to the Sobolev space Hs�����M �S
� and ��K�P 
g is an ele�
ment of the space of Cauchy data of D� in general not equal to g� However�
the part of ��K�P 
g along P is in fact equal to the original element g�

P��K�P 
g � P��KS�P 

��Pg � PP �D
S�P 
��Pg � Pg �

In section � we also need the following results�

Lemma ���� Let P�� P� 
 Gr���D
 such that the operators DP� and DP�

are invertible� Let f�� f� 
 RanP� and assume that

P���K�P�
f� � P���K�P�
f� �

Then� f� � f� and K�P�
f� � K�P�
f��

Proof� We have
P����K�P�
fi
 � S�P�
S�P�


��fi �

hence the �rst equality follows from the invertibility of the operators S�P�

and S�P�
� The second is a consequence of the Unique Continuation Prop�

erty for Dirac operators� We have

���K�P�
f�
 � P �D
S�P�

��f� � S�P�


��S�P�
S�P�

��f�

� S�P�

��S�P�
S�P�


��f� � ���K�P�
f�


and hence two solutions of D with the same Cauchy data� hence they are
equal� �

Proposition ��	�

K�P�
P���D
��
P�

� D��P� � D
��
P�

� �
�	�


Proof� We �x f 
 L��M �S
� Let

h � K�P�
P����D
��
P�
f
 �

Observe that the section h is the unique solution of D with boundary data
along P� equal to P����D

��
P�
f
� Indeed

P����h
 � P�
	
g�K�P�
P����D

��
P�
f




� P�P �D
S�P�

��P����D

��
P�
f
 � P����D

��
P�
f
 �
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and uniqueness is a consequence of Lemma 
��� Now� the section g �
�D��P� �D

��
P�

f is also a solution of D and the restriction of g to the boundary

has P��component equal to

P����g
 � P�
	
��K�S�P�


��P� � S�P�

��P�
��D

��f



� P�P �D

	
S�P�


��P� � S�P�

��P�



��D

��f

� P���D
��f � P���

	
KS�P�


��P�


��D

��f

� P����D
��
P�

f

and therefore h and g are the same section� �

Remark ��
� �	
 The construction of the inverse presented in this section
gives� in fact� a parametrix for any elliptic boundary problem for the Dirac
operator� First of all� if P is an element of Gr�D
 we can still use formula
�
��
 in order to construct the aforementioned parametrix� The operator
S�P 
�� has to be replaced by an operator R�P 
 of the form

P �D
RP � RanP � H�D
 �

where R denotes any parametrix of the elliptic operator PP �D
 �
�Id� P 
�Id� P �D

� The formula

CP � D�� �KR�P 
P��D
��

now gives an operator such that DPCP � Id and CPDP � Id have smooth
kernels�

�

 More generally� this formula gives a parametrix for any elliptic
boundary problem DT as de�ned in �BoW�� �where the authors were fol�
lowing Seeley�s exposition �Se
�
� The reason is that NT � the kernel of
the boundary condition T � and H�D
 form a Fredholm pair of subspaces
of L��Y �SjY 
� which allows a parametrix R to be constructed� This fact
was well known to Booss and Wojciechowski and is implicit in their work
�BoW	� and �BoW
� �see also Proposition 	��� in �BoMSW�
� Last but not
least� we are not really restricted in this construction of the parametrix
only to Dirac operators� This construction holds for any �rst order elliptic
di�erential operator on a compact manifold with boundary� The details
will be presented elsewhere�

��
 The explicit construction of the parametrix presented in this paper
may be found elsewhere in the literature in related contexts� It was used for
instance by Peter Gilkey and Lance Smith in their work on the 
�invariant
for a class of �local
 elliptic boundary problems �see �GS�
� See also the
work of Forman �F��
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	 Variation of the ��determinant on Gr�
�
�D�

In this section we study the variation of the ��determinant of the opera�
tor DP � where P 
 Gr���D
� under a change of boundary condition� From
section 	 we know that the Grassmannian Gr���D
 can be identi�ed with
the group U��F�
� If we �x a base projection� for instance P �D
� then
any other projection is of the form�

P �

�
IdF� �
� g

�
P �D


�
IdF� �
� g��

�
�

where g � F� � F� is a unitary operator such that g � Id has a smooth
kernel�

We introduce a smooth one�parameter family fgrg�
�r�
 of operators
from U��F�
 with g� � IdF�� Let fPrg denote the corresponding family
of projections�

Pr �

�
IdF� �
� gr

�
P

�
IdF� �
� g��r

�
�

We want to compute the variation
d
drfln det� DPrgjr�� �

For the purposes of this paper it is enough to solve an easier problem�
Let us �x two elements of the Grassmannian P� and P� such that DP� and
DP� are invertible operators� The family fgrg determines two 	�parameter
families of projections

Pi�r �

�
IdF� �
� gr

�
Pi

�
IdF� �
� g��r

�
���	


with respect to which we may study the relative variation
d
drfln det� DP��r � ln det� DP��rgjr�� � ���



The �rst obstacle here is that the domains of the unbounded operators
DPi�r vary with the parameter r� It was explained in �DoW
� and �LW� how
to solve this problem by applying a �Unitary Twist�� The point is that
we may extend the family of unitary isomorphisms fgrg on the boundary
sections to a family of unitary transformations fUrg on L��M �S
� To do
that� �x a smooth non�decreasing function ��u
 such that

��u
 � 	 for u 
 	�� and ��u
 � � for u � ��� �

and for each r introduce the 
�parameter family

gr�u � gr��u� for � � u � 	 � ����


Now we de�ne a transformation Ur as follows�

Ur ��

��
Id

F�
�

� gr�u

�
on fug 	 Y � N � ��� 	�	 Y

Id on M nN �
����


We then have the following elementary result�
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Lemma ���� The operators DPi�r and �U
��
r DUr
Pi are unitarily equivalent

operators�

Clearly� the operators Ur depend upon the choice of the extension func�
tion �� however by Lemma ��	 the ��determinant does not� which is all that
we need� The canonical determinant is also independent of the choice of
the family fUrg� This follows from the fact that Pi�rP �D
 and the operator
PiP �Dr
 are unitarily equivalent�

Pi�rP �D
 � grPig
��
r P �D
 � gr

	
Pig

��
r P �D
gr



g��r � grPiP �Dr
g

��
r �
����


In the following we use the notation

Dr � U��r DUr and "D� �
d
drDrjr�� � ����


The main result of this section is the following theorem�

Theorem ���� For any pair of projections P�� P� 
 Gr���D
 such thatDP�

and DP� are invertible operators and for any smooth 	�parameter family

fgrg of operators from U��F�
 with go � Id� the following equality holds�
d
drfln det� DP��r � ln det� DP��rgjr�� � Tr "D��D

��
P�
�D��P� 
 � ����


Notice that although the variation "D� is localized in N � the variation
of the ��determinant is not� It depends on global data because of the term
D��P� � D��P� and it is this that makes the ��determinant a more di#cult
spectral invariant than the 
�invariant� which corresponds to the phase of
the determinant� Indeed� formula ����
 contains only a variation of the
di�erence of logarithms of the modulus of the ��determinant� The reason
is that the variation of the phase of the determinant of DP��r is equal to the
variation of the phase of the determinant of DP��r �

Theorem ���� The variation of the phase of the ��determinant of the

operator DPr depends only on the family of the unitaries fgrg on F� such

that

Pr �

�
IdF� �
� gr

�
P�

�
IdF� �
� g��r

�
�

not on the choice of the base�point projection P�� More speci�cally� �D�
P
��


is a constant function of the projection P � and the variation of the 
�
invariant depends only on the family fgrg�

Proof� The theorem follows from two technical results proved in the work
of the second author �Wo��� The phase of the determinant is equal to

exp
�
i�
�

	
�D�

Pr
��
� 
DPr

��


�
�

It was shown in �Wo�� �Proposition ���
 that �D�
P
��
 is constant on Gr���D
�

hence the variation of the logarithm of the phase is equal to the variation
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of the 
�invariant times �i��
� The formula for the variation of the 
�
invariant was derived in the proof of Theorem ���� in �Wo��� We have

d

dr

DPi�r

��
jr�� �
i

�

Z �

�
duTr

�
d

dr

�
g��r�u

�gr�u
�u

�����
r��

�
� ����


In particular the right side of ����
 does not depend on Pi� �

Remark ���� A special case of the formula ����
 was discussed in the
paper �SW	��

Next we study the logarithm of the modulus of the determinant

lnj det� DP j � ��
��
�
D�
P
��
 �

It is well known �see section � of �Wo��
 that

��D�
P
��
 � lim

s��

�Z �

�
ts�� Tr e�tD

�
P dt�

�D�
P
��


s

�
� ���D�

P
��
 � ����


where � denotes the Euler constant� The fact that �D�
P
��
 does not depend

on P allows us to study just the variation of the integral in formula ����

and with the help of Duhamel�s Principle we obtain

d

dr

	
��D�

Pi�r

��



jr�� �

Z �

�

	

t
� Tr��
t "D�DPie

�tD�
Pi 
dt

� �


Z �

�
Tr "D�D

��
Pi
D�
Pie

�tD�
Pidt � 


Z �

�

d

dt
�Tr "D�D

��
Pi
e
�tD�

Pi 
dt

� 
 � lim

��

�Tr "D�D
��
Pi
e
�tD�

Pi 
j��

 � �
 � lim

��

Tr "D�D
��
Pi
e
�
D�

Pi �

We therefore have

Lemma ����

d
dr

	
� �

��
�
D�
Pi�r

��


��
r��

� lim

��

Tr "D�D
��
Pi
e
�
D�

Pi � ���	�


In general the limit on the right hand of the equation ���	�
 is just the
constant term in the asymptotic expansion of the trace� However� since we
discuss the di�erence ���

� in this situation we actually obtain the true
operator trace�

d
dr fln det� DP��r � ln det� DP��r gjr��

� lim

��

Tr "D�D
��
P�
e
�
D�

P� � lim

��

Tr "D�D
��
P�
e
�
D�

P�

� lim

��

Tr "D��D
��
P�
� D��P� 
e

�
D�
P�

� Tr "D��D
��
P�
�D��P� 
 �

where for the �nal step we use Corollary 
��� This completes the proof of
Theorem ��
�
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 Variation of the Canonical Determinant

In this section we prove that the relative variation of the canonical deter�
minant coincides with the relative variation of the ��determinant ����
� We
begin with the following result�

Proposition ���� The following formula holds for any P�� P� 
 Gr���D

such that DP� and DP� are invertible operators�

detC DP��r �detC DP��r 

�� � detFr

�
Id �

� T�T
��
�

�
Sr�P�
Sr�P�


��� ���	


where Sr�Pi
 denotes the operator PiP �Dr
 � H�Dr
� RanPi�

Proof� Let

UT��T� �

�
Id �
� T�T

��
�

�
� RanP� � RanP�

and observe that

UT��T�UT��T� � UT��T� � U��T��T�
� UT��T� ���



and that if A � RanP� � RanP� is of the form Id plus trace�class then

detFr A � detFr U
��
T��T�

AUT��T� � ����


where the determinant on the left�side is taken on RanP� and the deter�
minant on the right�side is taken on RanP�� Then since U�P 
 � UK�T �
we have using the invariance ����
 of the canonical determinant under a
unitary twist and the multiplicativity ����
 of the Fredholm determinant

detC DP��r �detC DP��r 

�� � detFr

	
U��Kr�T�

Sr�P�



detFr

	
�U��Kr�T�

Sr�P�


��



� detFr
	
U��Kr�T�

Sr�P�
S�P�

��UKr�T�



� detFr i

	
U��Kr�T�

UT��T�Sr�P�
S�P�

��UKr�T�



� detFr

	
UT��T�Sr�P�
Sr�P�


��


�

where the last two lines use ���

 and ����
� respectively� �

Hence� setting

Sr � UT��T�Sr�P�
Sr�P�

��P� � RanP� � RanP� �

we have proved

Corollary ����

d
dr fln detC DP��r � ln detC DP��rgjr�� � Tr

		
d
drSr



S��r


��
r��

� Tr "S�S
��
� �
����


Lemma ����

Tr "S�S
��
� � TrP���

	
d
drKr�P�



��
r��

P���K�P�
 � ����
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Proof� We compute
d
dr ln detSr

��
r��

� Tr
		

d
drSr



S��r


 ��
r��

� Tr "S�S
��
�

� Tr

�
Id �
� T�T

��
�

��
d
dr

	
P�P �Dr
�P�P �Dr



��P�

��
r��

�
�
	
P�P �D
�P�P �D



��

�Id �

� T�T
��
�

�
� Tr d

dr

	
P���KSr�P�


��P�

��
r��

P���KS�P�

��P�

� Tr d
dr

	
P���Kr�P�



��
r��

P���K�P�


� TrP���
	
d
drKr�P�



 ��
r��

P���K�P�
 �

The lemma is proved� �

The next lemma takes care of the variation of the operator Kr�P�
�

Lemma ���� The following formula holds at r � �
"K��P�
 ��

d
drKr�P�
jr�� � �DP�

"D�K�P�
 � ����


Proof� Let us �x f 
 RanP� and let sr � Kr�P�
f � We have

Drsr � � and P���sr � f �

hence di�erentiation with respect to r gives	
d
drDr



sr � �Dr

	
d
drsr



and d

dr �P����sr

 � P�
	
��

d
drsr



� � �

hence d
drsr 
 domDP� � We obtain

d
drKr�P�
f � d

drsr � �D��r�P�
	
d
drDr



sr � �D��r�P�

	
d
drDr



Kr�P�
f �

This gives at r � �
"K��P�
 � �D��P�

"D�K�P�
 � �

The trace of "S�S
��
� is therefore given by the following formula

Tr "S�S
��
� � TrP�����D

��
P�

 "D�K�P�
P���K�P�
 � ����


The next important step is to change the order of the operators under
the trace�

TrP�����D
��
P�

 "D�K�P�
P���K�P�


� Tr
	
P�����D

��
P�

 "D�K�P�
P�


	
P���K�P�




� Tr

	
P���K�P�



	
P�����D

��
P�

 "D�K�P�
P�



�

The exchange is justi�ed by the fact that

P���K�P�
 � P�P �D
S�P�

��P�

is a pseudodi�erential operator of order � �with the symbol equal to the
symbol of P �D

� and hence that it is a bounded operator on L��Y �SjY 
�
Thus we have

Tr "S�S
��
� � Tr

	
P���K�P�



	
P�����D

��
P�

 "D�K�P�
P�



� ����
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Now from equation ����
 and Proposition 
�� we have that

Tr "S�S
��
� � TrP����D

��
P�
� D��P� 


"D�K�P�
P� � ����


The operator on the right side of ����
 has a smooth kernel �see Corol�
lary 
��
 and so we can again switch the order of operators�

Tr
	
P����D

��
P�
� D��P� 


"D�


	
K�P�
P�



� Tr

	
K�P�
P�


	
P����D

��
P�
�D��P� 


"D�



� TrK

	
S�P�


��P���K

	
S�P�


��P� � S�P�

��P�



��D

�� "D�

� TrK
	
S�P�


��P� � S�P�

��P�



��D

�� "D� � Tr�D��P� � D
��
P�

 "D�

where we have used �
��
 and �
��
�
Thus we have

Tr "S�S
��
� � Tr�D��P� �D

��
P�

 "D� �

This completes the proof of the following theorem�

Theorem ���� With the assumptions of Theorem ��	 one has
d
dr fln det� DP��r � ln det� DP��rgjr��

� d
drfln detC DP��r � ln detC DP��rgjr�� � ���	�


� Equality of the Determinants

In this section we prove the main result of the paper� First� we need the
following elementary result� which allows us to integrate the equality ���	�
�
�We refer to �N� for a more detailed discussion of the topology of !Gr���D
�
see also the remarks in sections � and �
�

Proposition ���� The space !Gr���D
� which consists of projections

P 
 Gr���D
 such that the operator DP is invertible� is path connected�

Proof� We show that for any P 
 !Gr���D
 there exists a path fPrg�
r
� �
!Gr���D
 such that

P� � P and P� � P �D
 �

Let H denote the range of the projection P � Lemma 
�
 tells us that if DP

is invertible then

H� �H�D
 � L��Y �SjY 
 and H� �H�D
 � f�g � ���	


Equivalently we can write the �rst equality in ���	
 as

H �H�D
� � L��Y �SjY 
 �

The equality above implies the existence of a linear operator T � H�D
 �
H�D
�� such that H � graph�T 
� In fact T is de�ned in the following way�
We introduce the operator

�P �D
P 
�� � �S�P 
�
�� � H�D
� H �
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It follows now easily that H is a graph of the operator

T � �S�P 
�
�� � P �D
 � ���



The fact that H is Lagrangian gives the equality

T �G�GT � � ����


where the bundle anti�involution G �see ����
� ���	�

 determines the sym�
plectic structure on L��Y �SjY 
� If we now write the projection P with
respect to the decomposition L��Y �SjY 
 � H�D
 �H�D
�� we obtain

P �

�
�Id� T �T 
�� �Id� T �T 
��T �

T �Id� T �T 
�� T �Id� T �T 
��T �

�
� ����


Since P 
 Gr���D
 then P � P �D
 is a smoothing operator and so the
operator T has a smooth kernel� For each value of the parameter r we
de�ne the operator Tr � rT and the corresponding projection

Pr �

�
�Id� T �r Tr


�� �Id� T �r Tr

��T �r

Tr�Id� T �r Tr

�� Tr�Id� T �r Tr


��T �r

�
�

It is obvious that

kerP �D
Pr �� cokerS�Pr
 �� Graph�Tr
 �H�D
� � f�g �

We know that indexS�Pr
 is equal to � and hence that S�Pr
 also has a
trivial kernel� Therefore the operator DPr is invertible for each � � r � 	�
The operators Tr satisfy condition ����
� which shows thatHr � RanPr is a
Lagrangian subspace satisfying condition ���	
� It follows that the operators
DPr are self�adjoint� Moreover P� � P �D
� which ends the proof� �

The next result is a consequence of Theorem ��� and Proposition ��	�

Proposition ���� Assume that we have P�� P� 
 Gr���D
 and g 

U��F�
 such that all four operators DP� � DUP�U�� � DP� � DUP�U�� are

invertible� then

det� DUP�U��� detC DUP�U��

det� DP�� detC DP�

�
det� DUP�U��� detC DUP�U��

det� DP�� detC DP�

� ����


In particular� the ratio of the determinants does not depend on the choice

of the base projection�

Proof� From Proposition ��	� given any two projections from Gr���D

such that DP� and DP� are invertible operators� we can �nd a path fPrg
in the subspace !Gr���D
 which connects P� and P�� Hence we can use
Theorem ��� and integrate equation ���	�
� which gives the identity

det� DP���� detC DP���

det� DP���� detC DP���

�
det� DP���� detC DP���

det� DP���� detC DP���

� ����


where by construction

Pi�� � gPi��g
�� � gPig

�� � Pi�� � Pi � �
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We introduce an invariant A�g
 using ����
�

A�g
 �
det� DUPU��� detC DUPU��

det� DP � detC DP
� ����


The next result follows from Proposition ��
 and gives the �rst formula
directly relating det� to detC �

Theorem ���� There is the following relation between det� and detC on

Gr���D
�

det� DP � det� DP �D��detC DP �A�g
 � ����


where� as before� P �
�
Id �
� g

�
P �D


�
Id �
� g��

�
�

Proof� The result is immediate from the identity ����
 with P� � P �D
 and

P� � P �
�
Id �
� g

�
P �D


�
Id �
� g��

�
� �

The main result of this section is the following theorem�

Theorem ���� The function A�g
 is the trivial character on the group

U��F�
� i�e� for any g 
 U��F�


A�g
 � 	 �

Proof� Let g and h be elements ofGr���D
 such thatDUgP �D�U
��
g
�DUhP �D�U

��
h

and DUhUgP �D�U
��
g U��

h
are invertible� We have

A�hg
 �
det� DUhgPU

��
hg
� detC DUhgPU

��
hg

det� DP � detC DP

�
det� DUhgPU

��
hg
� detC DUhgPU

��
hg

det� DUgPU
��
g
� detC DUgPU

��
g

�
det� DUgPU

��
g
� detC DUgPU

��
g

det� DP � detC DP

� A�h
A�g
 �

hence A�g
 is a multiplicative character� It is well known that there are
only two non�trivial characters on the group U��F�


A��g
 � detFr g and A��g
 � �detFr g
�� � ����


We study the variation of det� at the Calderon projection P �D
 to show
that A�g
 is actually the trivial character� Let � � F� � F� denote a self�
adjoint operator with a smooth kernel� We de�ne the 	�parameter smooth
family of operators fgr � eir�g in U��F�
 and the corresponding family
of operators on M

Ur �

���
��
Id on M nN�
Id �

� eir��u��

�
on N �
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with � as in equation ����
� The variation of the phase of the ��determinant
is equal to the variation of the 
�invariant times the factor ��i��

� It
follows now from formula ����
 that

d

dr

DPi�r

��
jr�� �
i

�

Z �

�
du Tr

�
d

dr

�
g��r�u

�gr�u
�u

� ����
r��

�

�
i

�

Z �

�
du Tr

d

dr
�ir���u
�
 � �

Tr�

�

Z �

�
���u
du �

Tr�

�
� ���	�


and so we see that variation of the ��determinant in this case is equal to
�i � Tr��
� On the other hand� the canonical determinant of DgrP �D�g

��
r

is
equal to

detC DgrP �D�g
��
r

� detFr
Id�KT��r



� detFr

Id�e�ir�




� detFr

�
e�r

i�
�
er

i�
� �e�r

i�
�




�

� detFr
	
e�r

i�
� cos r��



� e�

ir
�
Tr� detFr

	
cos r��



� ���		


Therefore the variation of the phase of the canonical determinant is equal
to the variation of the phase of the ��determinant� From equation ���	
� the
variation of the only two non�trivial characters ����
 of the group U�F�

are in our case equal to

d
dr �A

��gr

jr�� � �i � Tr� � ���	



and hence A�g
 is the trivial character of the group U��F�
� �

This completes the proof of the main theorem�

� Calderon Projection is the Only Critical Point of the
Modulus of det� on the Space 
Gr�

�
�D�

Let us denote the modulus by j det� DP j � e
� �

�
��
D�
P

���
� We consider j det� DP j

as a smooth function on the subspace !Gr���D
 � Gr���D
� The striking
property of this function is the following�

Theorem 	��� The only critical point of the function j det� j on !Gr���D

is the Calderon projection P �D
� In other words� at the point P �D
 the
variation of j det� j at any direction in Gr���D
 is equal to 
� For any other

P 
 !Gr���D
 there exists � � F� � F� such that the variation of j det� j
at the point P in the direction of � is not equal to ��

Proof� It follows from Theorem ��	 that it is enough to prove this result
for detC� Let us study the variation of detC in the direction of � � F� � F��
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where � is a self�adjoint operator with a smooth kernel� Let us �x
P 
 !Gr���D
� The projection P is given by formula �	��
 for some T �
and now we consider the family fPrg of projections�

Pr �

�
IdF� �
� eir


�
P

�
IdF� �
� e�ir


�

�

�
IdF� �
� �eir
T 
K��

�
P �D


�
IdF� �
� K�eir
T 
��

�
� ���	


Let Sr denote the operator
Id�K�Teir����

� � Then
d
dr �ln detC DPr 
jr�� �

d
dr �ln detFr Sr
jr�� � �i �TrKT����Id�KT��
�� �

���



Now the phase of the right side of ���

 equals �Tr ��
 and the modulus is
�
� Tr

	
� iKT����Id�KT��
�� � ��iKT����Id�KT��
��
�



� � i

� � Tr��Id� TK��
���Id� TK��
 � ����


It follows that for any � ����
 is equal to � when T � K � hence the variation
of the modulus of det� at P �D
 is equal to ��

We have to work a little harder in order to show that the variation is
non�trivial at P �� P �D
� The operator TK�� � F� � F� is a Fredholm
operator and 	 is the only element of the essential spectrum of this operator�
In the case that the operator TK�� not equal to IdF� there exists 	 in
the spectrum of TK��� such that 	 �� 	� Moreover TK�� is unitary� which
implies that j	j � 	� The invertibility of Id�TK

��

� implies also that 	 �� �	�
The operator TK�� is Fredholm and of the form IdF� plus smoothing

operator� hence the Fredholm alternative shows the existence of a section
s 
 F�� such that

TK��s � 	s �

We may assume that kskL� � 	 and we �x an orthonormal basis f�kgk�Z
of F� such that �� � s� Now we de�ne the operator � as follows

����
 � �� and ���k
 � � for k �� � �

Equation ����
 shows that the variation of the modulus of detC at P in
the direction of � is equal to

� i
� �Tr��Id� TK��
���Id� TK��


� � i
� �
X
k�Z

	
��Id� TK��
���Id� TK��
�k��k




� �
i



�
	� 	

	 � 	

� �
Im�	



�	 � Re�	


�� � �
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and the proof of the theorem is now complete� �

� Comments and Concluding Remarks

In this section we comment on some technical issues around the proof of
Theorem ��	�


�� The choice of spectral cut� This determines the sign of the phase
of the ��determinant and refers to the choice of the branch of ��	
�s�
Bearing in mind Theorem ���� it is natural to choose the minus sign in the
representation ��	
�s � e�i�s� and therefore obtain that the phase of the
��determinant �see ����

 is equal to

i�
�

	
�D�

P
��
� 
DP

��



�

This choice is opposite to the one made in the original reference �see �Si�
p� ��	�
� One can argue that the original choice was dictated by applica�
tions in Quantum Field Theory� However� the discussion of the phase of
the determinant in the fundamental work of Witten �see �W� section 
�
�
extended later by others� suggested that the choice of the sign� or more
generally the parameter which determines the phase� should depend on the
particular model being discussed �see for instance �AS	�
�
�

Anyway� if we make the opposite choice� so that ��	
�s � e�i�s� then
the ��determinant is equal to

det� D � e
i�
�
��DP �����D�

P
����
�e�

�

�
��
D�

��� � ���	


Reviewing the proof of Theorem ���� equations ���	�
 and ���		
 show
that in this situation the variation of the phase of the ��determinant is
equal to i�Tr�

� � which is now minus the variation of the C�determinant� It
follows now from ���	

� that we have the following result�

Theorem 
��� Assume that we de�ne det� DP using formula ���	
� then
the following equality holds on Gr���D
�

det� DP � detFr g�detC DP � det� DP �D� � ���



where� as before� g denotes the unique element of U��F�
 such that

P �

�
Id �
� g

�
P �D


�
Id �
� g��

�
�


�� Contractibility of �Gr�
�
�D
� One of the important technical re�

sults used in the paper is Proposition ��	� which allows us to integrate
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equation ���	�
 in order to obtain Theorem ��	� The idea of the proof be�
longs to Liviu Nicolaescu �see �N� Proposition ��	
�
� In fact the following
theorem is a special case of a result proved by Nicolaescu�

Theorem 
�� �see �N� Proposition C��
� The space !Gr���D
� which
consists of projections P 
 Gr���D
 such that the operator DP is invertible�

is weakly contractible� i�e� any continuous map

f � Sn � !Gr���D


is homotopic to a constant map�


�� The case of non�invertible B� Next we discuss the modi�cation
which has to be made in the case of a non�invertible tangential operator
B �see the decomposition formula ����

� There are two important points
which have to be addressed here�

First� we have to know if the di�erence P �D
 � �	 is a smoothing
operator� It was assumed in the original proof �see �S	�
 that the tangential
operator B is invertible� The general case� however requires only a slight
modi�cation and we refer to the appendix in �DK� for the details�

Second� we need a replacement for the operator V	 � �B�B�
����B�

�see �	��

 � which provides us with a unitary transformation used in the
construction of the trivialization of the determinant line bundle over
Gr���D
� We employ the Cobordism theorem for Dirac operators �see for
instance �BoW�� Theorem 
	���
� Namely� if Y is a boundary of a com�

pact manifold M and the operator B �
�

� B���B���

B� �

�
is the boundary

component of a Dirac operator D on M � then indexB� � � � which implies

dimkerB� � dimkerB� � ����


Now we �x an orthonormal basis f��k g
k�dimkerB�

k�� of kerB� and de�ne a
unitary transformation � � kerB � kerB by the formula

����k 
 � ���k �

We de�ne a modi�ed operator B� � B � � and

V� � �B�
� B

�
� 


����B�
� � ����


The orthogonal projection

�� �
	




�
IdF� V ���

V� IdF�

�
�

is an element of Gr���D
 �it satis�es ���	

 and it is a modi�cation of �	

by a smoothing operator
� One then proves that Gr���D
 consists of the
graphs of unitary operators V � F� � F� � such that V �V� is an operator
with a smooth kernel� in the same way as in �S	��
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