Math. Ann. 299, 269-274 (1994) “MM
Annalen

© Springer-Verlag 1994

Dedekind sums and signatures of intersection forms*

Robert Sczech

Department of Mathematics, Rutgers University, Newark, NJ 07102, USA

Received September 21, 1993

The classical Dedekind sums s(a, ¢) are defined for a pair of integers (a, ¢) with ¢ & 0

by
i / ar T
s(a,c) = m Z COtﬂ'(F) COt’ﬂ'(z)

r{c)

(where E' means to drop the meaningless terms). Many of their most important
properties are best understood in terms of the Rademacher function ¢:I” — %Z on
I' =SL,Z,

3¢

according to whether ¢ & 0 or ¢ = 0. For instance, for A, € I', i = 1,2,3 with
A A,A; =1, we have

a b\ _at+d . ;
¢<c d> = — 4sign(c)s(a,c) resp. 5& )

(A + 6(Ap) + By = —sign(cicyey); A, = ( * ) )

which shows that ¢ is almost a homomorphism on I". The expression sign(c,c,¢;) in
this equation, viewed as a function of A, and A,, defines an integer valued 2-cocycle
on I', called the area cocycle. Conversely, since H!(I',Q) = 0, the area cocycle
determines the Rademacher function uniquely. In addition to ¢, we consider in this
paper two closely related cousins of ¢. The first one is given by

P(A) = —¢(A) + v(4),

a b\ _ { sign(), if c=0anda=1 3
“\e a)~ sign(c(a + d — 2)) otherwise .

It was introduced by Meyer [Me] who proved that the 2-cocycle o on I' defined by
U(Ap Az) = (P(Al) + <P(A2) + ‘P(Aj;)

* In memoriam Werner Meyer
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is the so called signature cocycle [At, BG]. For an illuminating discussion of the area
as well as the signature cocycle, we refer to the paper of Kirby and Melvin [KM] in
this journal. The second cousin of ¢ depends on an auxiliary parameter z € R?\{0},
and is defined by

Y(A) (@) = ¢(A) + o(A) (@),

b . 4
o (z d) (z) = sign(cz,(cx, — ax,)). @

It was shown in [S2] that v satisfies the relation

YA Ay (@) = P(A) (@) + Y(4,) (A '2).

In other words, 1 is a 1-cocycle on I" with values in the I'-module of functions
:R?\{0} — R equipped with the I'-action (Af)(z) = f(A~'z). As we will see in
a moment, this cocycle is very useful for exploring the connection between Dedekind
sums and the signature of certain intersection matrices.

To this end let by, b, ..., b, be a sequence of arbitrary integers. Then

-0

is clearly an element of I" and, conversely, every element of /" can be written so in
infinitely many ways. An initial pair of real numbers a_;, «,, determines a sequence
ap by ag, =bo, —ap_, k=0,1,...,n. If a_,, o are not both zero, then the
same is true for two successive ay_;, a,, and the cocycle property of ¢ implies

woo(2)-2e (1) )

n

b
= Z (?’“ - sign(ak_lak)) )
k=0

using (4) and (1). We assume now that all «,, are nonzero and let w, = oy, /0y,

1 b 1 1 b 1
I= 1 , M= 1
b, 1 teob,y 1
1 b, 1w,

where the (4, 7) entry of I is 1 for |i — j| = 1, b,_, for { = j and O otherwise, while

> Vo1

M is the same except that its (m, m) entry is w,,, m =n+ 1.
Theorem 1. ¢(A)( ao) Z b,, — sign(M).

By letting the continuous variable w,, in M approach b, we will deduce from this
the following formula of Kirby and Melvin [KM].

Corollary. $(AJ) = 3 trace(]) —sign(I) with J = <(1) _01) '
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Proof. To prove the theorem, we have to show only

sign(M) = Z sign(a,_ 04,) - 6)
k=0

But this is easy since M is equivalent to the diagonal matrix W whose (3, ¢) entry is

w;_y, 1 £1 < m. Let
1 if i=j
Xj;j=18 Yw, if j=i+13, 154,jSm.
0 otherwise
Then
w,_,+ 1w, fi=j<m
m .
o _Jw fi=j=m
(XWX%J-—;XMW—IXM' 1 if [i—jl=1
0 otherwise

which shows that XWX* = M since w; + 1/w; | = (a;_; + oy )/, = b,
Moreover, since det(X) = 1, this calculation yields also the useful result

det(M) = [[w, =_, /o, . (7
k=0

Proof of the corollary. Using (4) and ¢(AJ) = ¢(A) — sign(dc) (which follows from
(2)), we see that the corollary holds iff

sign(M) — sign(J) = sign(ca_,,,) — sign(dc) . (8)

Letting w,, — b, in (7) gives det(I) = d. We consider the case d 3 O first. Then
sign(M) = sign(J) for w,, sufficiently close to b,. This condition is satisfied for
(ay,, @, 1) close to (1, 0) or, equivalently, (a_,, o) = (dov,, — cov,,yy, a0, | — bay,)
close to (d, —b). With this assumption, it is obvious that the right side in (8) is indeed
zero. Now let d = 0. Then det(M) = wy(cy/cv,) has, as a function of wy = a_, /g,
a simple zero at w, = 0. Therefore,

sign(M) — sign(l) = sign(w,) = sign(a_, o)

for (a_, o) close to (d, —b) = (0, &:1). Since sign(cey) = sign(e,,) = 1 in that case,
(8) follows again and the corollary is proved. We remark in passing that Theorem 1
and Eq. (6) remain valid even if some of the ¢, vanish provided o, itself is nonzero.
It should be aiso noted that all terms in Theorem 1 and the corollary change their sign
individually under the involution (a_ |, ) — (0_;, —¢y) and b, — —b, for all k.
The matrix I represents the intersection form of a certain class of 4-manifolds
bounded by lens spaces [HN, KM]. Of interest is also the related class of 4-manifolds
bounded by a torus bundle over the circle, since such a bundle is completely classified
by its gluing matrix in I". In the case of a hyperbolic gluing matrix, these 4-manifolds
arise naturally in number theory as closed neighbourhoods of cusps on Hilbert modular
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surfaces [Hi]. The corresponding intersection form is again determined by a finite
sequence of integers b,, but its matrix depends on the length of the sequence: Let

by 1 1
1 b 1
by 2
I,=Q2+by, (0 ) or 1
0 2 b
: 1
1 1 b

"

forn =0, n =1, n = 2, respectively. Using the elementary matrices E;; (whose
only nonzero entry is the (i, j) entry which is 1), we can write I, = I + E,, + F_,
in all three cases, m = n+ 1. Denote by I the matrix arising out of I, by changing
the sign of all the b,’s.

n
Theorem 2. ¢(A) = —sign(I]) — é Z bi( = %trace([c_) —sign(I;) ifn £ 0).
k=0

As explained at the beginning, the function ¢ on the left is the unique 1-cochain on I’
whose coboundary is the signature cocycle . Contrary to the Rademacher function ¢,
this function does not transform in any simple way under the sign change b, — —b,
which partly explains the necessity to introduce I . The theorem displays the well
known fact [At, MS] that p(A) is a measure for the signature defect of the torus
bundle over the circle associated to A.

Remark. Theorem 2 was originally proved in [S1], and was published without proof
in [MS].

We consider first the case where A is hyperbolic (| tr A| > 2). This case is of special
interest because A has then two different real eigenvalues, say ¢,¢’. In particular,
we can choose for (—a,,,,,) a nonzero eigenvector of A which implies that the
sequence of w’s becomes periodic: wy = w,, ; as it is easily seen from

(Ca) ()=o) o
c d a, a_, o,
Moreover, since all the w, become quadratic irrationalities (in the field generated

by the eigenvalues of A), they are all nonzero real numbers. Therefore, in order to
deduce Theorem 2 from (5) in the hyperbolic case, we have to show only

A) = - A)("""), ign(I7) = — ) sign(w,).
p(A) 1/1‘( o, sign ;sxg Wy,

The first equation follows from

0(A) = sign(ca_ (—coy — aa_;)) = —sign(ca_ o)
= —sign(ce) = — sign(c(a + d ~ 2)) = —v(4)

since eg’ = 1, £4+¢' = a+d and |a+d| > 2. To prove the second equality, it suffices
to find a representation I, = —Y WY with a non-singular matrix Y. It is the beauty
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of the hyperbolic case that such a representation does indeed exist. For m > 1 with
m =n+ 1, we have

1 if =3
Y= 1w, if j=i+1lm),, 1=24,j<m,
0 otherwise
m —w,_y —ljw, fi=j
—(YWYH,; =— Yyw,_Vie={e if i —j=+1(m)
k=1 0 otherwise

where e = 1 for m > 2, but e = 2 for m = 2. Note that the periodicity w,,, = w; is
absolutely crucial in this calculation. Y is not singular since

m
1
det(Y)=1-— —— ] =1% =1+¢%0.
e H( o) =ltan/a =14+
Finally, in the case m = 1, we have wy; = ¢ and the desired factorization is
I7=2-by=2-¢e—€&' =-(1 -yl —¢")

which proves the theorem in the hyperbolic case.
Unfortunately, this proof does not apply in the non-hyperbolic case. In order to
treat the general case, we study for n > 1 the auxiliary matrix

— Oy 1
N = 1
. 1
1 1 -b,
whose entries are the same as in I except for N;| = —aya and N, = N,; = o,

In addition, we drop now all previous restrictions on a_;, a, and assume only that
oy is nonzero.

. a/ay, blo =
Lemma. sign(N) = ~—V( o 0 o 0) - gmgn(akaﬂl).

n n+1
The function v in this equation is the same one as in the definition of . It is defined
for an arbitrary matrix in SL,R by

(e B\ _ [ sign(B), if y=0and =1
v &6) | sign(y(a+6—2)) otherwise.

The matrix N is easily diagonalized using elementary row and column opera-
tions. if all o, are nonzero, one gets for the diagonal elements —a,ay, —,/q,
~a3/0y, ..., —o, /o,y G, /oy, With

n—1
_ 1 a
an+l_an+l_2+an =Ot'n+l-—2+_

oo FEOki1 G
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which proves the lemma in the generic case. As a corollary, one gets also the handy
formula
det(N) = (—~1)"" (e, — 209 + @) .

In general, the correction term v enters the lemma as the sign of the last element on
the diagonal after diagonalizing N by elementary row and column operations starting
at the top.

Proof of Theorem2. Leta_; =0, oy = 1. Then o, = d, o, = ¢ by (9), and, since
0(1 = bo,

n—1
. - a b )
sign(I]) = —v (c d) — ,?=0 sign(a, gy ),

det(I7) = (-1 @ +d—2),

at first for n > 1, but this is easily checked also for n = 0, 1. On the other hand, by
4) and (5),

2 /b
w(A) = v(A) — ¢(A) = v(4) — Z (g’ﬁ - sign(akm;%ﬂ

k=0
from which Theorem 2 follows at once.

Remark. The formula (3) for the correction term v has an amusing history. The
original formula in [Me] was in terms of the signature of a 2 x2 matrix. This expression
was simplified in [MS], but the result was still clumsy. A further compactification
was attempted in [At], but unfortunately, the formula (6.17) given there is not quite
correct; it corresponds to v = sign(ct(t* —4)), t = a+d, rather than v = sign(c(t —2))
if ¢ & 0, and hence gives the wrong answer in the 3 cases £ = —2, —1,0. The simple
formula for v given in (3) was found by Kirby and Melvin [KM].
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