
Math. Ann. 299, 269-274 (1994) Mathematlsdm 
Annalen 
O Springer-Verlag 1994 

Dedekind sums and signatures of intersection forms* 

R o b e r t  S c z e c h  

Department of Mathematics, Rutgers University, Newark, NJ 07102, USA 

Received September 21, 1993 

The classical Dedekind sums s(a, c) are defined for a pair of  integers (a, c) with c :~ 0 
by 

s(a, c) : 4 ~  Z cot 7r cot 7r 
r(c) 

(where ~ '  means to drop the meaningless terms). Many of their most important 
1 properties are best understood in terms of the Rademacher  function r  ~ ~ Z on 

F = SLzZ, 

3c 4sign(c)s(a,c) resp. 3-d (1) 

according to whether c 5~ 0 or c = 0. For instance, for A i E F,  i = 1, 2, 3 with 
A1A2A 3 = 1, we have 

r162162 , A , = ( * c l  : )  , (2) 

which shows that r is almost a homomorphism o n / ' .  The expression sign(clc~c3) in 
this equation, viewed as a function of A 1 and A 2, defines an integer valued 2-cocycle 
on F ,  called the a rea  cocycle. Conversely, since H I ( F , Q )  = 0, the area cocycle 
determines the Rademacher  function uniquely. In addition to r we consider in this 
paper two closely related cousins of r The first one is given by 

qp(A) = - r  + u(A) ,  

( :  bd) { s i g n ( b ) ,  if c = O a n d a =  1 (3) 
u = sign(c(a + d - 2)) otherwise. 

It was introduced by Meyer [Me] who proved that the 2-cocycle a on F defined by 

a (Al ,  A2) = ~o(Al) + ~(A2) + qo(A 3) 

* In memoriam Werner Meyer 
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is the so called signature cocycle [At, BG]. For an illuminating discussion of the area 
as well as the signature cocycle, we refer to the paper of Kirby and Melvin [KM] in 
this journal. The second cousin of r depends on an auxiliary parameter x E R2\{0}, 
and is defined by 

r (x) = r + 0(A) (x), 

( a bd) (X) = sign(cx2(cxl _ ax2)). (4) 
g c 

It was shown in [$2] that r satisfies the relation 

r (x) = r l) (x) + r (A~lx).  

In other words, ~ is a 1-cocycle on F with values in the F-module of functions 
f :N2\{0} ~ N equipped with the F-action (A f ) (x )  = f (A - l x ) .  As we will see in 
a moment, this cocycle is very useful for exploring the connection between Dedekind 
sums and the signature of certain intersection matrices�9 

To this end let bo, bl, . . . ,  b n be a sequence of arbitrary integers. Then 

A = (  ac ~ )  = ( 0  - 1 ) l  b 0 . . . ( ~  -1)bn 

is clearly an element of F and, conversely, every element of F can be written so in 
infinitely many ways. An initial pair of real numbers a_ l ,  a0 determines a sequence 
a k by ak+ 1 = bkOl k - -  O~k_l ,  k = O, 1, . . . ,  n. If a l, a 0 are not both zero, then the 
same is true for two successive a k_ 1, ak, and the cocycle property of r implies 

r  = ~ r  ( 0  -1  

=- ~ ( ~  -- sign(o%_lO~k) ) (5, 
k=0 

using (4) and (1). We assume now that all a k are nonzero and let w k = ak_ l /a  k, 

b l 1 

I =  1 "'. "'. 

�9 . bn_ 1 1 
1 b n 

M = 

b o l 
1 b I 1) 

�9 . � 9  � 9 1 4 9  

"'. bn_ l 1 

1 w n 

where the (i , j)  entry of I is 1 for ti - Jl = 1, b i _  1 for i = j and 0 otherwise, while 
M is the same except that its (rn, m) entry is w n, m = n + 1. 

--0~ 0 1 E bn - sign(M) Theorem 1. ~p(A) a - l  = 5  �9 
k=O 

By letting the continuous variable w n in M approach bn, we will deduce from this 
the following formula of Kirby and Melvin [KM]. 

' t r a c e ( I ) - s i g n ( I ) w i t h  J = ( ~  ; 1 )  Corollary. r A J ) = -g 
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Proof. To prove the theorem, we have to show only 

sign(M) = ~ s ign(ak_ lak) .  
k=0 

(6) 

But this is easy since M is equivalent to the diagonal matrix W whose (i, i) entry is 
wi-1 ,  1 <_i<_m. Let 

1 if i = j  } 

X i j  = 1 /w  i if j = i + l  , l _ < _ i , j < m .  

0 otherwise 

Then 

m 

( x w x t ) i j  -~ Z XikWk- lZJ  k 
k=l 

w i - l + l / w  i if i = j  < m  

= w n if i = j = m 

1 if  [ i - j [  = 1 

0 otherwise 

which shows that X W X  t = M since w i + 1/wi+ 1 = (oLi_ 1 -~- OLi+I)/OL i -~- b i.  
Moreover, since det(X) = 1, this calculation yields also the useful result 

d e t ( M ) - - - f i w  k = c ~  1/c~ n .  
k=0 

(7) 

Proof  o f  the corollary. Using (4) and r  = q~(A) - sign(de) (which follows from 
(2)), we see that the corollary holds iff 

sign(M) - sign(I) = sign(ec~_lC~) - sign(de). (8) 

Letting w n ~ b n in (7) gives det(I) = d. We consider the case d ~: 0 first. Then 
sign(M) = sign(I) for w n sufficiently close to b n. This condition is satisfied for 
(O~n, O~n+l) close to (1, 0) or, equivalently, ( a _ l ,  O~0) : (da n - can+l ,  aO~n+ 1 -- ban) 
close to (d, -b) .  With this assumption, it is obvious that the right side in (8) is indeed 
zero. Now let d = 0. Then det(M) = Wo(ao/an)  has, as a function of  w 0 = a _ l / s  o, 
a simple zero at w 0 = 0. Therefore, 

sign(M) - sign(I) = sign(w0) = sign(c~_la0) 

for (OL 1, O~0) close to (d, - b )  = (0, 5:1). Since sign(cc~0) = sign(c~n) = 1 in that case, 
(8) follows again and the corollary is proved. We remark in passing that Theorem 1 
and Eq. (6) remain valid even if some of  the c~ k vanish provided c~ n itself is nonzero. 
It should be also noted that all terms in Theorem 1 and the corollary change their sign 
individually under the involution (ct_ l, c~0) ~ (c~  1,-c~0) and b k ---+ - b  k for all k. 

The matrix I represents the intersection form of a certain class of  4-manifolds 
bounded by lens spaces [HN, KM]. Of  interest is also the related class of  4-manifolds 
bounded by a torus bundle over the circle, since such a bundle is completely classified 
by its gluing matrix in F.  In the case of  a hyperbolic gluing matrix, these 4-manifolds 
arise naturally in number theory as closed neighbourhoods of  cusps on Hilbert modular 
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surfaces [Hi]. The corresponding intersection form is again determined by a finite 
sequence of  integers b k, but its matrix depends on the length of  the sequence: Let 

I r  , bl , 

(11 1 b 1 1 

or 1 ". ". 

".  1 

1 b~ 

for n = 0, n = 1, n => 2, respectively. Using the elementary matrices F_,ij (whose 
only nonzero entry is the ( i , j )  entry which is 1), we can write I c = I + E l ,  ~ + E,~ 1 
in all three cases, m = n + 1. Denote by I~- the matrix arising out of  Ic by changing 
the sign of  all the bk's. 

1 ~ 1 t r ace (U)  _ sign(I~-) i f n  ~- 0 ) .  Theorem 2. qo(A) = - sign(I~-) - 5 bk ( = 5 
k=0 

As explained at the beginning, the function V on the left is the unique 1-cochain on F 
whose coboundar-y is the signature cocycle or. Contrary to the Rademacher function r 
this function does not transform in any simple way under the sign change b k --~ - b  k 
which partly explains the necessity to introduce I~-. The theorem displays the well 
known fact [At, MS] that qo(A) is a measure for the signature defect of  the torus 
bundle over the circle associated to A. 

Remark.  Theorem 2 was originally proved in [S1], and was published without proof 
in [MS]. 

We consider first the case where A is hyperbolic (I tr AI > 2). This case is of special 
interest because A has then two different real eigenvalues, say e, e t. In particular, 
we can choose for ( - a n +  l, a n) a nonzero eigenvector of A which implies that the 
sequence of  wk's  becomes periodic: w o = wn+ 1 as it is easily seen from 

\ an  \ an  / a - i  
(9) 

Moreover, since all the w k become quadratic irrationalities (in the field generated 
by the eigenvalues of  A), they are all nonzero real numbers�9 Therefore, in order to 
deduce Theorem 2 from (5) in the hyperbolic case, we have to show only 

qo(A) = - r  ( ~ a ~ ) ,  

The first equation follows from 

n 

sign(I~-) = - Z sign(w\) �9 
k=O 

Q(A) = sign(ca_ l ( - - C a 0  - -  a a _  1)) = - -  sign(ca_ l an)  

= - sign(ce) ---- - sign(c(a + d - 2)) -- - v ( A )  

since e d  = 1, e + e  ~ = a + d  and la+d[  > 2. To prove the second equality, it suffices 
to find a representation I c = - Y W Y  t with a non-singular matrix Y. It is the beauty 
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of  the hyperbolic case that such a representation does indeed exist. For m > 1 with 
m = n +  1, we have 

Yij= - 1 / w  i if j - - - - i + l ( m )  , l _-< i , j  <= m ,  

0 otherwise 

m ( - w i _  1-1/w~ if i = j  

-(YWYt)iJ = - E Y~kwk-lYJk = / e if i -- j -- + l ( m )  

k=l 0 otherwise 

where e = 1 for m > 2, but e = 2 for m = 2. Note that the periodicity w,~ = w 0 is 
absolutely crucial in this calculation. Y is not singular since 

d e t ( Y ) =  1 - H  - = l •  o = l •  
k = l  

Finally, in the case m = 1, we have w 0 = e and the desired factorization is 

I~- = 2 - b  0 = 2 - e - e ' = - ( 1 - e t ) w 0 ( 1 - e ' )  

which proves the theorem in the hyperbolic case. 
Unfortunately, this proof does not apply in the non-hyperbolic case. In order to 

treat the general case, we study for n > 1 the auxiliary matrix 

- - ~ 0 ~ 1  

~ 0  

N =  

(~0 1 
- b  1 1 

�9 o 
, *o 

�9 . 1 

1 1 - b ~  

whose entries are the same as in I~- except for NIL = - cg0o~ l and N12 ---- N 2 1  = Ct 0. 
In addition, we drop now all previous restrictions on c~_l, c~0 and assume only that 
c~ 0 is nonzero. 

( a/C~o b/ao ) n-~ 
Lemma.  sign(N) = --/./  \ a n  OLnd_l -- E sign(ak~ 

k = 0  

The function u in this equation is the same one as in the definition of  ~. It is defined 
for an arbitrary matrix in SL2~ by 

( ~  5~) { sign(/~), if 7 = 0 a n d a =  1 
u = sign(7(a + 5 - 2)) otherwise. 

The matrix N is easily diagonalized using elementary row and column opera- 
tions, if all a k are nonzero, one gets for the diagonal elements - a l a  0, --O/2/Ctl, 
--O~3/O~2, . . .  , --an/an_l, ~n+l/O~n with 

n - - I  
1 a 

(~n+l ~ O ~ n - k l  - -  2 + a n ~ - -  = o l n q _  1 - 2 + - -  
k = 0  OlkOLk+I 030 
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which proves the lemma in the generic case. As a corollary, one gets also the handy 
formula 

det (N)  = ( - 1 )  n+l (Ot00~n+ 1 -- 2 a  0 + a ) .  

In general, the correction term u enters the lemma as the sign of  the last element on 
the diagonal  after diagonatizing N by elementary row and column operations starting 
at the top. 

Proof of Theorem2. Let a _  1 = 0, a 0 = 1. Then an+  1 = d, a n = c by (9), and, since 

O: 1 = b0 ,  
n - - |  

(a b)_~sign(akak+l), sign(I~-) = - u  d k=0 

det(I~-) = ( - 1 )  n+l (a + d - 2) ,  

at first for n > 1, but this is easily checked also for n = 0, 1. On the other hand, by 
(4) and (5), 

~(Z) = u(A)- r = u(Z)- ~ ( ~ - sign(ak_tak)) 
k=0 

from which Theorem 2 follows at once. 

Remark. The formula (3) for the correction term u has an amusing history. The 
original formula in [Me] was in terms of  the signature of  a 2 x 2 matrix. This expression 
was simplified in [MS], but the result was still clumsy. A further compactification 
was attempted in [At], but unfortunately, the formula (6.17) given there is not quite 
correct; it corresponds to u = sign(ct(t 2 - 4)), t = a + d, rather than u = s i g n ( c ( t -  2)) 
i f  c =~ 0, and hence gives the wrong answer in the 3 cases t = - 2 ,  - 1 , 0 .  The simple 
formula for u given in (3) was found by Kirby and Melvin [KM]. 

Acknowledgement. The paper was written during my stay at the MPI ftir Mathematik (Bonn) in the 
fall of 1993. I thank this institution for its support. 
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