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Preface

Singularity theory stands at a cross-road of mathematics, a meeting point where
many areas of mathematics come together, such as geometry, topology and algebra,
analysis, differential equations and dynamical systems, combinatorics and number
theory, to mention some of them. Thus, one who would write a book about this
fascinating topic necessarily faces the challenge of having to choose what to include
and, most difficult, what not to include. A comprehensive treatment of singularities
would have to consist of a collection of books, which would be beyond our present
scope. Hence this work does not pretend to be comprehensive of the subject,
neither is it a text book with a systematic approach to singularity theory as a core
idea. This is rather a collection of essays on selected topics about the topology and
geometry of real and complex analytic spaces around their isolated singularities.

I have worked in the area of singularities since the late 1970s, and during
this time have had the good fortune of encountering many gems of mathematics
concerning the topology of singularities and related topics, masterpieces created by
great mathematicians like Riemann, Klein and Poincaré, then Milnor, Hirzebruch,
Thom, Mumford, Brieskorn, Atiyah, Arnold, Wall, Lê Dũng Tráng, Neumann,
Looijenga, Teissier, and many more whose names I cannot include since the list
would be too long and, even that, I would leave aside important names. My own
research has always stood on the shoulders of all of them. In taking this broad
approach I realize how difficult it is to present an overall picture of the myriad
of outstanding contributions in this area of mathematics during the last century,
since they are scattered in very many books and research articles. This work is a
step in that direction and our first main purpose is to put together some of these
gems of current mathematics in an accessible way, indicating in all cases present
lines of research and appropriate references to the literature. This step occupies
Chapters I to V of this monograph. I have made some contributions to the subject,
either by myself or in collaboration with other colleagues, and I think they are
interesting enough to be included here.

On the other hand, the theory of real singularities is much less developed than
that of complex singularities, for various reasons. There are however interesting
families of real analytic singularities having remarkable geometric and topological
properties similar to those of complex singularities. These are related to complex
differential equations and defined via complex geometry, and the second main
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purpose of this monograph is to explain some aspects of their geometry and sim-
ilarities with complex singularities. I believe the study of these singularities in
Chapters VI–VIII and the picture of complex singularities presented in Chapters
I–V, together provide interesting new insights into the geometry and topology of
singularities. This study also gives new methods for constructing smooth differen-
tiable manifolds equipped with a rich geometry and defined by algebraic equations,
which can be of interest on its own. For instance, at the end of Chapter VI we
obtain explicit algebraic equations that provide analytic embeddings of oriented
surfaces of all genera in the sphere S3; this can be useful for problems in differential
geometry and physics.

The material that I present here is mostly contained in the literature but, as
said before, it is spread over many different research papers and books, making
it difficult to put together a complete picture. In some cases I have given simple
proofs of well-known theorems; in other cases I have included the complete proofs
in detail; yet in others I have preferred to content myself by giving only some
of the key ideas to understand some specific theory. In all cases I have included
appropriate references and indications for further reading. I have also added a
number of open problems as extension of the text.

This monograph is constructed like a fan, where each individual chapter is
to some degree independent of the others and can be read on its own, and yet as
a unity, spreads out to give the reader a taste of the richness of this fascinating
topic. I am sure that everyone who reads it, regardless of whether he or she is a
graduate student, an expert in singularity theory, or a researcher in any other field
of geometry and topology, will find interesting things in it.
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Introduction

Chapter I sets up the foundations for the rest of the book. Here we review some of
the classical results of Milnor and others about the topology of real and complex
analytic spaces around an isolated singular point. Two of these results are key
for us. One is the theorem about the local conical structure of analytic sets. This
has a long history, starting with Brauner (1928) and others in their local study of
complex plane curves, noticing that every complex curve in C2 with an isolated
singularity at the origin meets transversally every sufficiently small sphere around
0; the intersection is a classical link in the sphere (i.e., a collection of pairwise
disjoint embedded circles), and therefore knot theory can be used to study complex
plane curves.

In 1961 Mumford proved a very surprising result in this direction: he showed
that one cannot find a counter-example to the classical Poincaré conjecture using
complex singularities; more precisely he proved that if the link (i.e., the boundary
of a small neighborhood) of a point in a complex surface is simply connected, then
the point is actually smooth and the link is the usual 3-sphere. May I recall at this
point that a few years earlier (1956), Milnor had found the first examples of exotic
differentiable structures on spheres. Hence these two theorems (of Milnor and
Mumford) drove the attention of several great mathematicians towards studying
the topology of links of isolated singularities in analytic spaces. In his classical
book [168] Milnor proved that if V is a (real or complex) analytic space in An,
where A is either RN or CN , and if V has an isolated singular point at the origin,
then V intersects transversally every sufficiently small sphere Sε(0) around 0; the
intersection M = V ∩ Sε(0), the link, is a smooth manifold of real dimension
m − 1, where m is the real dimension of V , and the topology of V and of its
embedding in An are completely determined by the embedding M ↪→ Sε(0); more
precisely, the pair (Bε(0), V ∩ Bε(0)) is homeomorphic to the cone over the pair
(Sε(0), V ∩Sε(0)), where Bε(0) is the closed ball bounded by Sε(0). The manifold
M is the link of 0 in V .

The second result in Chapter I which is key for this work is the fibration
theorem of Milnor. The first part of it holds for real singularities in general and is
just an easy extension of Ehresmann’s fibration theorem. This says that if a real
analytic map f : (Rn+k, 0)→ (Rk, 0) is a submersion at every point in a punctured
neighborhood of the origin, then for every sufficiently small sphere Sε(0) around 0,
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and for every δ > 0 sufficiently small with respect to ε, the restriction of f to the
tube f−1(Sk−1

δ )∩Bε(0), where Sk−1
δ is a sphere in Rk around 0, is the projection of

a (locally trivial) smooth fibre bundle; and moreover, the tube f−1(Sk−1
δ )∩ Bε(0)

can be “inflated” to become (diffeomorphically) the complement of the link M in
Sε(0), and therefore one has a fibre bundle projection Sε(0)−M −→ Sk−1

δ . This is,
so to say, the “weak” form of Milnor’s fibration theorem (see [167]). The strongest
form of this theorem is for complex singularities: if f is now a complex analytic
map (Cn+1, 0)→ (C, 0) with a (possibly non-isolated) critical point at 0, then the
above projection map Sε(0) −M −→ S1

δ is given by φ = f
/
|f |. If 0 ∈ Cn+1 is

an isolated critical point of f then one gets an open book decomposition of the
sphere (see the text for the definition), where the binding is the link M and the
pages are the fibres of φ; moreover, each fibre Fθ = φ−1(eiθ) has the homotopy
type of a bouquet of spheres of middle dimension. A corollary of Milnor’s work is
that for these singularities the link is a highly connected manifold which bounds
a parallelizable manifold (the Milnor fibre). We include here a result of [201, 269]
extending Milnor’s fibration theorem to the case of meromorphic functions f/g.
This is related to the results in Chapter VIII.

The prototype of the singularities to which Milnor’s theorem applies are the
famous singularities:

f(z0, . . . , zn) = za0
0 + · · ·+ zan

n ; ai ≥ 2 , i = 0, . . . , n ,

studied by Pham and Brieskorn. Inspired by his knowledge of physics, where it was
customary to think of the tangent bundle of the n-sphere as given by the equation
z2
0 + · · ·+ z2

n = 1, Pham proved in 1965 that given any polynomial f as above, its
non-singular level za0

0 + · · ·+ zan
n = 1 contains a canonical polyhedron of real di-

mension n, now called the join of Pham, which is a deformation retract of it. This
implies, in particular, that this hypersurface has the homotopy type of a bouquet
of spheres of middle dimension: a strong indication pointing towards Milnor’s the-
orem about the topology of the fibres, proved a couple of years later. On the other
hand Brieskorn proved in 1966 that in many cases the links of these singularities
were exotic spheres, i.e., manifolds homeomorphic but not diffeomorphic to the
usual 2n − 1-sphere, n > 3. There were remarkable generalizations of this result
by Brieskorn himself and by Hirzebruch, proving (among other results) that every
homotopy sphere that bounds a parallelizable manifold is the link of an isolated
complex hypersurface singularity. In particular all the 28 different differentiable
structures on S7 can be obtained in this way.

Chapters II and III are a joint piece. These are about the beautiful relation
between 3-dimensional Lie groups and 2-dimensional complex singularities. This
began with Klein’s theorem in 1884 giving a relation between the finite subgroups
of SU(2) and certain surface singularities in C3. In the simplest case, Klein’s
theorem establishes an isomorphism between Zp\C2 and the singularity z2

1 + z2
2 +

zp
3 = 0, where Zp denotes the cyclic group of order p; hence the link of the latter

is Zp\S3; in particular this proved that the group SO(3) ∼= (±1\S3) of motions of
the Euclidean plane is the link of the quadric z2

1 + z2
2 + z2

3 = 0, so it is the unit
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tangent bundle of the 2-sphere; for the binary icosahedral group Γ = 〈2, 3, 5〉 one
gets that Poincaré’s homology sphere Γ\S3 is the link of z2

1 + z3
2 + z5

3 = 0, and
so on. We recall that Klein’s program was to study geometry by looking at the
corresponding groups of isometries of spaces.

This theorem of Klein was later completed by Milnor, Hirzebruch, Neumann
and Dolgachev, giving the complete classification of the 2-dimensional, isolated
complex surface singularities whose link (i.e., the smooth boundary of a small
neighborhood of the singular point) is of the form Γ\G, where G is a 3-dimensional
Lie group and Γ is a discrete subgroup of G with compact quotient (these are
called uniform subgroups). Actually their results, together with the classification
of 3-manifolds of the form MΓ = Γ\G, where G and Γ are as above, i.e., a 3-
dimensional Lie group G with a uniform subgroup Γ, give a very nice, unified
view of these manifolds. There are, up to isomorphism, six 3-dimensional, simply
connected Lie groups with uniform subgroups Γ ⊂ G. Given any such group G and
a uniform subgroup Γ, there is associated to G a canonical complex 2-dimensional
manifold X , equipped with a canonical holomorphic 2-form and a foliation F of
X defined, in all cases but one, by an action of G. The manifold X is in all cases
given by an automorphy factor of some line bundle. The quotient Ṽ ∗

Γ = Γ\X is
a complex manifold, foliated by copies of Γ\G, with a canonical never-vanishing
holomorphic 2-form. This manifold Ṽ ∗

Γ is actually an open cylinder Γ\G× (0, 1),
and one of its ends can be compactified by attaching to it a smooth divisor SΓ, so
that we get a complex analytic surface ṼΓ = Ṽ ∗

Γ ∪ SΓ which may have isolated,
normal singularities at SΓ. In four of the six cases in question, this divisor can
be blown down complex analytically and the result is a complex analytic surface
VΓ with a normal singularity P , whose link is the 3-manifold MΓ; these are the
cases envisaged by Klein, Milnor, Hirzebruch, Dolgachev and Neumann. In the
remaining two cases the divisor SΓ can only be blown down real analytically, so
the quotient VΓ is (homeomorphic to) a 4-dimensional real analytic space with
an isolated singularity P , whose link is MΓ and which has a complex structure
away from P . In all cases one has on V ∗

Γ = VΓ − P a canonical never-vanishing
holomorphic 2-form that defines a trivialization of the tangent bundle of the link,
and in all cases but one, we know that this trivialization lifts to a basis of the Lie
algebra of the corresponding group G. I think this must also hold in the remaining
case, but I do not know how to prove it.

The goal of Chapter IV is to show some of the ways that the general index
theorem of Atiyah-Singer has had impact in singularities theory. Mostly I restrict
the discussion to two “particular” cases of the index theorem: the Riemann-Roch
formula and the Hirzebruch signature theorem. We consider also Rochlin’s signa-
ture theorem.

The general philosophy is the following. The index theorem of Atiyah-Singer
may be thought of as a beautiful and far-reaching generalization of the Hirzebruch-
Riemann-Roch theorem, both in statement and in the spirit of the original proof.
Given a closed, oriented manifold M , vector bundles E and F over M and an
elliptic operator D from the sections of E to those of F , one has that both the
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kernel and the cokernel of D are finite-dimensional, and the difference of these
dimensions is by definition the analytic index of D. The index theorem gives
a description of this integer in terms of topological data implicit in the elliptic
operator, the so-called topological index. This establishes a very deep connection
between analysis/geometry and topology. Special cases are the signature theorem
of Hirzebruch, the Hirzebruch-Riemann-Roch theorem, the Lefschetz fixed point
formula, the relation of the Dirac operator with the Â-genus for spin manifolds and
several other fundamental theorems in mathematics. Rochlin’s signature theorem
can also be seen through index theory (see Sections 3 and 4 in Chapter IV).

If (V, 0) is an isolated (real or complex) singularity germ in some affine space,
then the diffeomorphism type of its link M = V ∩Sε depends only on the analytic
structure of V , and not on the choices of defining equations for V or the radius
of the sphere. Thus any invariant of closed manifolds gives automatically an in-
variant of singularities. This has led to a myriad of interesting results for complex
singularities, using invariants coming from the Hirzebruch-Riemann-Roch theo-
rem, or one of the signature theorems mentioned above (Hirzebruch or Rochlin).
For instance the formula of Laufer (and its generalization to higher dimensions by
Looijenga) for the Milnor number, and that of Durfee for the signature, are both
obtained in this way, and we review these in the text.

We also give in this chapter a result of [76], which is a variant of Rochlin’s
signature theorem for the case when the spinc manifold is actually a complex
manifold. This theorem has the advantage of fitting naturally in the setting of
algebraic geometry. Then, following [76], we give an interpretation of the geometric
genus of normal, Gorenstein surface singularities in terms of the dimension of the
space H0(−K,O), where K is the canonical divisor of the minimal resolution. This
is interesting since the geometric genus is one of the key invariants for complex
singularities, and it is related with the Seiberg-Witten invariants of the link (by
[181, 182]).

Chapter V somehow provides a higher-dimensional analogue of Klein’s theo-
rem (in Chapter II) for the particular case of the quadric; this is based on [135].
We also prove an equivariant version of the Arnold-Kuiper-Massey theorem, say-
ing that CP

2 modulo conjugation is the 4-sphere; our proof is entirely analogous
to that of Atiyah-Berndt in [17], though we only envisage the case of the complex
projective plane and not the more general one that they consider. This is actually
a byproduct for us, since our goal is to understand the geometry and topology of
the pair (Cn+1, Q̃), where Q̃ is the quadric z2

0 + z2
1 + · · ·+ z2

n = 0. In fact Klein’s
theorem gives very precise information about the quadric z2

1 +z2
2+z2

3 = 0 using the
group SO(3). Here we look at the canonical action of the special orthogonal group
SO(n+1, R) on Cn+1 and on CP

n, the complex projective space, in order to study
the pair (Cn+1, Q̃). This is of course related to the classical problem studied by
Zariski [267] and others, of describing the topology of the complement of an affine
algebraic hypersurface V ⊂ Cn+1. We actually look at the projectivized situation.
We begin by showing that the complement of a non-singular hyperquadric Q in
CPn is diffeomorphic to the total space of the tangent bundle of the real projective
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n-space RPn,
CPn −Q ∼= T (RPn) .

Then we use the above observation on the topology of CP
n −Q to describe CP

n

as the double mapping cylinder of the double fibration:

Fn+1
+ (2, 1)

π1

�����
��

��
��

�
π2

�����������

Q Pn
R

where Fn+1
+ (2, 1) ∼= SO(n + 1, R)/(SO(n − 1, R) × (Z/2Z)), is the partial flag

manifold of oriented 2-planes in Rn+1 and non-oriented lines in these planes. The
manifold Fn+1

+ (2, 1) is diffeomorphic to the unit sphere normal bundle of Q in
CP

n, and it is also diffeomorphic to the unit sphere tangent bundle of Pn
R

. This
decomposition is related to previous work by V. Vassiliev [254], J. Tits, C.T.C.
Wall [262] and others, and we refer to [135] for details. Then we look more carefully
at the decomposition of CPn arising from the above double fibration. This describes
CP

n as a 1-parameter family of codimension 1 submanifolds Fn+1
+ (2, 1)× {t}, for

t ∈ (0, 1), together with two “special” fibres: Q and a copy of the real projective
space. We prove that these are the orbits of the natural action of SO(n + 1, R) on
CP

n, regarded as a subgroup of the complex orthogonal group SO(n + 1, C). This
is an isometric action with respect to the Fubini-Study metric on CP

n, and the
principal orbits are the flag manifolds Fn+1

+ (2, 1), which have codimension 1. The
space of orbits is the interval [0, π

2 ]. The endpoints of this interval correspond to
the two exceptional orbits, which are the quadric Q and the real projective space
Π which is the fixed point set of the complex conjugation in CP

n. Finally, in the
last section of Chapter V we restrict the discussion to the case n = 2 and prove the
equivariant Arnold-Kuiper-Massey theorem by constructing, via linear algebra, an
explicit algebraic map CP

2 → S4 which is SO(3)-equivariant and commutes with
complex conjugation in CP

2.
The topology of isolated complex singularities has been long studied by many

authors, as we know already, and it has a beautiful and well-developed theory.
Chapters I–IV above are a sample of this, while in Chapter V we use real analytic
group actions and foliations in order to study complex geometry. Chapter VI is
the turning point, as thereafter we are concerned with the real counterpart of
this theory, largely inspired by [168, 251]. The theme in Chapters VI–VIII is the
interplay between complex geometry and real analytic singularities. Let us explain
this with more detail.

In the last chapter of his book on singularities Milnor studied (germs of) real

analytic mappings (Rn+k, 0)
f−→ (Rk, 0) which are submersions on a punctured

neighborhood of the origin. For short we say that a map like this satisfies the Mil-
nor condition at 0. He showed that such maps also define fibre bundle projections

φ : (Sn+k−1 −M)−→ Sk−1 ,
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where Sn+k−1 is a small sphere around 0 ∈ Rn+k, M = f−1(0) ∩ Sn+k−1 is the
link and Sk−1 is a small sphere around 0 ∈ Rk. The “weakness” of this theorem,
as Milnor points out himself in his book, is that it is very hard to find examples of
singularities satisfying these conditions, since the generic situation for k > 1 is to
have a discriminant locus of dimension > 0 of points in the target over which the
rank of the derivative drops. In fact Milnor asked whether there exist non-trivial
examples of such maps (even for k = 2), other than the examples he gave in his
book. This question was partially answered by Looijenga in 1971, and then by
Church and Lamotke in 1975 used Looijenga’s technique, to give the complete
classification of the pairs (n, k) for which there exist maps satisfying Milnor’s
condition; in particular there are such maps for all n when k = 2. Those articles
proved the existence of such maps but none of them exhibited explicit examples.
An explicit example was constructed in 1973 by A’Campo for all n even and k = 2;
this is given by the map from R2m+4 ∼= Cm+2 into R2 ∼= C, m ≥ 0, defined by

(u, v, z1, . . . , zm) 
−→ u v (ū + v̄) + z2
1 + · · ·+ z2

m .

Thus an interesting problem is to find explicit families of real singularities satis-
fying the Milnor condition, and see which geometric properties they share with
complex singularities. In fact Milnor’s fibration theorem for real singularities has
another important difference with the complex case. In the theorem for complex
singularities the projection map φ of the fibre bundle (S2n−1−M)−→ S1 is given
by the obvious map φ = f

/
|f |; for real singularities this is false in general, as

Milnor pointed out in his book. To fix the ideas, we say that the function f satisfies
the strong Milnor condition at 0 (a notation taken from [214]) if it further satisfies
that the projection map of the bundle (Sn+k−1 −M)−→ Sk−1 is φ = f

/
|f | .

Similarly to complex singularities, a real singularity that satisfies the strong Mil-
nor condition defines an open book decomposition of the sphere Sn+k−1 and its
link is a fibred link. In [111] Jacquemard considered real analytic maps Rn+2 → R2

satisfying the Milnor condition, and he gave necessary conditions for such maps
to satisfy the strong Milnor condition. It was shown recently in [218] that this is
also related with the C-regularity studied by Bekka and others.

Chapter VI lays down the main ideas that we use in Chapter VII to construct
and study infinite families of singularities satisfying the strong Milnor condition,
and which have a rich geometry. Chapter VII is based in [88, 226, 227, 214], but
it is largely inspired by the pioneering work of López de Medrano, Verjovsky and
Meersseman (LVM for short) about new constructions of complex manifolds via
holomorphic dynamics, and by the previous work of Camacho-Kuiper-Palis about
the topology of linear vector fields in the complex domain.

As the previous comments suggest, the motivation for the constructions in
these chapters comes from an entirely different setting to the one envisaged so
far in this monograph. In fact, in [251] René Thom gave interesting ideas for the
use of Morse theory to study foliations on smooth manifolds. In particular he
noticed that given a foliation F on a smooth manifold M , and a Morse function
f : M → R+ ∪ {0}, the restriction of f to the leaves of F has as critical set the
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critical points of f and the points where the level surfaces of f are tangent to the
leaves of F . He showed that the latter is “generically” a manifold, except that it
may possibly have certain singularities, and called it the variety of contacts (or
polar variety) of the two foliations (F and the one given by the level surfaces of
f). Thom indicated how this polar variety could be used to study the foliation F .

In the same vein, in [50] the authors look at linear vector fields

F (z) = (λ1z1, . . . , λnzn) ,

in Cn, where the λi are non-zero complex numbers, and look at the manifold V ∗ of
points where the 1-dimensional holomorphic foliation F defined by F on Cn−0 is
tangent to the foliation S given by the spheres around the origin (i.e., by the level
sets of the Morse function “distance to 0”, squared). It is an exercise to see that if
0 ∈ C is not contained in the convex hullH(λ1, . . . , λn) of the λi, then V ∗ is empty.
In this case the vector field is said to be in the Poincaré domain; in such a case all
the leaves of F accumulate at the origin, being transversal to all spheres around
0. This situation is very important from the viewpoint of dynamical systems, but
for this work the relevant case is when 0 is contained in H(λ1, . . . , λn), i.e., when
F is a vector field in the Siegel domain. When this happens and the eigenvalues λi

satisfy a certain genericity (the “weak hyperbolicity condition”), the polar variety
V ∗ is actually a smooth manifold, defined by the complete intersection singularity,

VΛ = {λ1z1z̄1 + · · ·+ λnznz̄n = 0 } ,

which is singular only at 0, of real codimension 2, and V ∗ = VΛ − 0. The same
constructions work if we consider several commuting linear vector fields (satisfy-
ing certain conditions). One obtains in this way real analytic complete intersection
singularities of higher codimension, which have very rich and fascinating geometry
and topology (see [149, 150, 151, 160, 268, 143, 161, 162, 31, 32], and also Chapter
VI below). Alas, these singularities do not satisfy the Milnor condition at 0. How-
ever, one may replace the linear vector field (λ1z1, . . . , λnzn) by any non-linear
vector field of the form:

F (z) = (λ1z
a1
σ1

, . . . , λnzan
σn

) ,

where {σ1, . . . , σn} is any permutation of the set {1, . . . , n}, ai ≥ 2 for all i =
1, . . . , n and the λi are arbitrary non-zero complex numbers; the corresponding
polar variety V ∗

F is again a smooth manifold, defined by the complete intersection

VF = {λ1z
a1
σ1

z̄1 + · · ·+ λnzan
σn

z̄n = 0 } ,

V ∗
F = VF − 0, which is singular only at 0, quasi-homogeneous, of real codimension

2. The remarkable fact is that these singularities do satisfy the strong Milnor con-
dition at 0. Thus one has open book decompositions on the spheres analogous, but
different, to those given by complex singularities. Notice that these singularities
are reminiscent of the classical Pham-Brieskorn singularities

λ1z
a1
1 + · · · + λnzan

n = 0 ,
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and if the permutation σ is the identity, then they turn out to be topologically (not
analytically) equivalent to Pham-Brieskorn singularities, so we call them twisted
Pham-Brieskorn singularities (see Chapter VII). As an example, our results in
Chapter VII show that the famous Poincaré’s homology 3-sphere Σ can be re-
garded as the set of points in the unit sphere S5 ⊂ C3 where S5 is tangent to
the holomorphic foliation spanned by the vector field F = (z3

1 , z4
2 , z6

3); the points
where F is tangent to S5 as a real vector field form the double of the E8-manifold,
containing Σ as an equator.

Along the way, in Chapter VI we look at the real hypersurfaces that arise
when we consider a C-valued holomorphic function f on an open set U in Cn and
we compose it with the projection onto a real line through the origin in C. We
prove in particular that if f has an isolated critical point at 0, then the double of
its Milnor fibre is diffeomorphic to the link of its real part. As a byproduct we get
explicit real analytic embeddings in S3 of closed oriented 2-manifolds of all genera.

Chapter VIII is in part a return to the most basic situation: knots and links
defined algebraically in the 3-sphere. The goal here is to present the results of
[202] about the singularities

zp
1z2 + zq

2z1 = 0 , (∗)

which are of the class considered in the previous chapter, so we know they define
open book decompositions of the 3-sphere “a la Milnor”. This situation is very
much reminiscent of the classical problem, dating back to Newton and others, of
studying the topology of plane curves, i.e., sets in C2 defined by f(z1, z2) = 0,
where f is a holomorphic function. One of the most classical ways for approaching
this problem is via resolutions of the singularities. In fact, Max Noether (1883)
proved that the singularities of every plane curve could be resolved by blowing
ups; this means that given the germ at 0 of a curve C ⊂ C2 with a singular point
at 0, one can find a smooth complex surface X̃ with a projection π : X̃ → C2

which is composition of a finite number of blow-ups, such that the divisor E =
π−1(0) is connected, consists of a finite number E1, . . . , Er of copies of CP1 whose
intersections are either empty or at ordinary double points (i.e., defined locally by
xy = 0), π is biholomorphic away from E, and the closure C̃ in X̃ of π−1(C − 0)
(which is called the strict transform of C) consists of a finite number of pairwise
disjoint complex lines, as many as branches of C, which intersect E transversally
at smooth points of E. It is customary to assign to such a resolution a decorated
plumbing graph, also called the resolution graph, which describes its topology. Since
the topology of C (as an embedded sub-variety) is determined by the topology of
C ∩S3

ε, where S3
ε is a small sphere around 0 ∈ C2, and π is a diffeomorphism away

from E, it follows that if we know the resolution graph of the singularity, then we
know the topology of the plane curve.

This is what we aimed to do with the singularities (∗); the additional problem
we face is that these are only real analytic and the usual process of resolutions
via blow-ups gets stuck after the first step (i.e., the singularities are no longer
simplified by the blow-ups). The trick here is to modify some of its branches
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by a homeomorphism in the second step of the resolution process, in order to
make them become complex analytic singularities, which one can resolve in the
usual way. In this way we get a “topological” resolution π : X → C2 of the
singularity {zp

1z2+zq
2z1 = 0 }, which determines the resolution graph and therefore

the topology of these singularities.
However, just as for complex curves, this is not enough to determine the

topology of the corresponding Milnor fibrations. One has to do more: the links
that we get in this way are all Seifert links in the sense of [75], and they are fibred,
defining open book decompositions of the 3-sphere which are horizontal, i.e., the
pages are transversal to the Seifert fibres. Pichon in [200] studied these type of
links; more generally she studied Waldhausen links which are horizontally fibred,
and found a way for describing fully the topology of these fibrations, using the
resolution graph and the orientations on the components of the link induced by the
open book decomposition. In the particular case of Seifert links, which is simpler,
one has that the monodromy of the corresponding fibration is cyclic and one can
associate to it a Nielsen graph, which encodes all the information of the resolution
graph, and which is also determined by the Seifert (or the resolution) graph. One
has that the Nielsen graph of the monodromy determines the period of it and the
topology of the fibres (using the Hurwitz formula). Thus we have the complete
topological description of these fibrations.

The links of the singularities that we envisage in this chapter turn out to be
isotopic to the links defined by the equations:

z̄1z̄2 (zp+1
1 + zq+1

2 ) = 0 ,

which are a special type of singularities of the form f ḡ with f, g holomorphic
functions C2 → C. This type of singularities are already present in the work of N.
A’Campo [2] and L. Rudolph [212]. In [199] Pichon proves that such a function
f ḡ : R4 → R2 has an isolated critical point (say at 0) iff the link Lf ∪Lg is fibred
(as an oriented link), where Lf , Lg are the links of f and g. She further proved
that in this situation the projection map:

φ : Sε − (Lf ∪ Lg)→ S1

can be taken to be fḡ
|fḡ| in a tubular neighborhood of the link. These results have

been recently improved in [201], relaxing the condition of f ḡ having an isolated
critical point and showing that the projection φ can be taken as fḡ

|fḡ| everywhere.
We briefly explain this in the last section of Chapter VIII.
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to Instituto de Matemática Pura e Aplicada de Rio de Janeiro (Brazil), University
of Hokkaido (Japan) and Tata Institute of Fundamental Research (India).

During this time I have had several grants from CONACYT (México) and
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Chapter I

A Fast Trip Through
the Classical Theory

In this chapter we review briefly some of the classical results of Milnor and others
about the topology of real and complex analytic spaces around an isolated singular
point. We review first the theorem of Milnor about the (embedded) local conical
structure of analytic spaces; then we recall Ehresman’s fibration theorem, the
definition of open book decompositions; the fibration theorem of Milnor for real
singularities in general and his improved version for complex singularities. Then
we speak about the topology of the Milnor fibre, beginning with the case of the
Pham-Brieskorn polynomials where the topology is given by the so-called “join
of Pham”. Finally we speak briefly about the work of Brieskorn, Hirzebruch and
Milnor on exotic spheres and singularities.

I.1 An example: the Pham-Brieskorn polynomials

Let us begin by considering, as an example, the Pham-Brieskorn polynomials in
Cn+1:

f(z) = za0
o + · · ·+ zan

n ,

where z = (zo, . . . , zn) and the ai are integers ≥ 2, c.f. [40, 39, 198]. The derivative
of f at a point z is:

Df(z) = (a0z
a0−1
o , . . . , anzan−1

n ) .

Hence the origin 0 is the only critical point of f and therefore the variety

V = f−1(0) = {za0
o + · · ·+ zan

n = 0}

is a hypersurface (complex codimension 1) with an isolated singularity at 0 ∈ Cn+1.
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In order to study the topology of V as an embedded subvariety of Cn+1, let d
be the least common multiple of the ai, i = 0, 1, . . . , n, set qi = d/ai and consider
the action of the non-zero complex numbers C∗ on Cn+1 given by:

t · (zo, . . . , zn) = (tq0zo, . . . , t
qnzn) .

It is clear that if we restrict this action to R+ we obtain a real analytic flow
in Cn+1 satisfying:

(i) its flow lines (the orbits) are transversal to all the spheres around 0 ∈ Cn+1;
(ii) all the orbits accumulate at the origin as t tends to 0; and
(iii) the variety V is an invariant set of the flow, i.e., V is a union of orbits.

Notice this flow defines a 1-parameter group of diffeomorphisms {φt} of Cn+1

that has 0 as a fixed point, V as an invariant set and it is strictly contracting for
t < 1, while it is expanding for t > 1. This implies that:

(i) V intersects transversally every (2n+1)-sphere Sr(0) around the origin; hence
the intersection Kr = V ∩Sr(0) is a smooth manifold of real dimension 2n−1
embedded as a codimension 2 submanifold of the sphere Sr(0);

(ii) the diffeomorphism type of Kr is independent of the choice of the sphere
Sr(0); and

(iii) the embedded topological type of V in Cn+1 is determined by the pair
(Sr(0), Kr), i.e., the pair (Cn+1, V ) is homeomorphic to the (global) cone
over the pair (Sr(0), Kr).
The manifold K = Kr, for some r > 0, is called the link of the singularity,

and it is known as the Brieskorn manifold M(a0,...,an).
Notice that we also have an S1-action on Cn+1 obtained by restricting the

above C∗-action to the unit complex numbers. This S1-action on Cn+1 is by isome-
tries and therefore induces a locally free action on the links Kr. If n = 1 this means
K = Kr, for some r > 0, is the union of a finite number of S1-orbits (as many as
the irreducible components, or branches, of V ). If n = 2 then K is a 3-manifold
in S5 with an S1-action, so K is a Seifert manifold, whose Seifert invariants can
be easily determined from the “weights” of the action, see for instance [194]. In
this case the corresponding Brieskorn manifolds have very interesting topology
and this will be explained later in the text. For instance the link of the polynomial
zp
1 + zq

2 + zr
3 is the lens space S3/Zr when p = q = 2, and it is Poincaré’s homol-

ogy sphere for (p, q, r) = (2, 3, 5). The topology of these manifolds for n > 2 has
been studied by Brieskorn [40, 39], Milnor [171] and others, obtaining remarkable
results (see Section 8 below).

As we mentioned above, for n = 1 the link is the union of a finite number
of copies of the circle S1, so its topology is rather simple. Still, we can look at
the embedded topological type of K in S3, which is a knot if it is connected, or
a link in general (i.e., a disjoint union of knots). What type of knot or link is it?
To answer this, assume for simplicity that p = 2 and q = 3 (essentially the same
arguments hold whenever p, q are relatively prime). Notice that, up to isotopy, K
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is defined by {z2
1 = z3

2} and {|z1|2 + |z2|2 = 2}. Hence K is contained in the torus
T = {|z1| = |z2| = 1} as the set of points given by:

2 arg z1 = 3 arg z2 .

Thus we can parametrize K by taking a point t ∈ R into the point (e
it
2 , e

it
3 ) ∈ K,

with t ∈ [0, 12π]. As we do so, the first coordinate wraps around the unit circle 3
times, while the second coordinate wraps around the circle 2 times. This means
that the torus knot K goes around a parallel of T twice and it goes around a
meridian of T thrice.

The same arguments show that if p, q are relatively prime, then K is always
a torus knot of type (p, q), i.e., it is contained in a torus in S3 in such a way
that it goes around a meridian q times and around a parallel p times. For this
we may use the parameterization of K given by γ(t) = (eit/p, eit/q), which is
periodic of period pq. More generally, if p = sp′ , q = sq′ with p′, q′ relatively
prime, then it is an exercise to show that K consists of s disjoint copies of a torus
knot of type (p′, q′), so it is called a torus link of type (p, q). For instance, if the
polynomial f is homogeneous of degree p, i.e., p = q > 1, then K consists of p
fibres of the Hopf fibration S3 
→ S2, which are circles embedded in T of type
(1, 1), since they are given by the orbits of the standard S1-action on C2 defined
by eit · (z1, z2) = (eitz1, e

itz2).

Figure 1: Toral knots of types (2, 5) and (3, 4).

1.1 Remarks on the topology of plane curves and curves in surfaces. The litera-
ture about this subject is vast, going back to work by Newton, Max Noether and
others; Brauner [38] was the first one to study the topology of plane curves C in
C2 (i.e., the zero set of a complex analytic map C2 → C with an isolated critical
point at 0 ∈ C2) by looking at the intersection of C with a small sphere Sε around
0; this intersection defines a knot (or link) K in the 3-sphere, and the pair (Sε, K)



14 Chapter I. The Classical Theory

determines the local topology of C near 0. The book of Milnor gives an account
of this construction and more (see Chapter 10 in [168]), and this should become
clear later in the text. The book [44] of Brieskorn and Knörrer contains every-
thing we may pretend to say here about knots defined by complex plane curves,
so we refer to that excellent text for those wanting to dive into this fascinating
subject. This is closely related with the content of Chapter VIII below, so we
shall return to plane curves in that chapter. We also refer to [249], where Teissier
gives a very clear introduction to the subject. For a more advanced reading see
the book [75] of Eisenbud and Neumann which describes important constructions
of “complicated” links from simple pieces, and how to use graphs to study and
describe this process. See also [128] for a short and clear presentation of the classic
results on the topology of complex analytic plane curves from the differentiable
viewpoint. The more recent article [134] studies the three-dimensional manifold
M given by the complement in S3

ε of an algebraic link K, i.e., a link in the 3-
sphere defined by a complex plane curve. See also [200], which is concerned with
knots in 3-dimensional manifolds which appear as links of complex normal surface
singularities (see §2 below).

I.2 The local conical structure

We study here a construction that goes back to Brauner in [38] and was sketched
in Section 1 above. Consider a (reduced, equidimensional) real analytic space V of
dimension n, defined by a finite number of real analytic equations in an open ball
Br(0) ⊂ RN around the origin, and assume further that V contains the origin 0
and V ∗ := V −{0} is non-singular, i.e., it is a real analytic manifold of dimension
n > 0. We shall see that much of what we said in the previous section still holds
in this more general setting provided we are sufficiently near the origin.

Consider the function d : RN → R given by d(x1, . . . , xN ) = x2
1 + · · · + x2

N ,
so that d is the square of the function “distance to 0”. Its gradient vector field
∇d is given by (2x1, . . . , 2xN ), so its solutions are the straight rays that emanate
from the origin. Let us modify this vector field a little so that it “takes V into
account”.

In order to make the above statement precise, take the restriction dV of d
to V . At each point x ∈ V ∗ the gradient ∇dV (x) of dV is obtained by projecting
∇d(x) to TxV ∗, the tangent space of V ∗ at x. Since ∇d(x) is never zero on V ∗ and
it is a radial vector transversal to the sphere Sx passing through x and centred
at 0, it follows that ∇dV (x) vanishes if and only if TxV ∗ ⊂ TSx. This means
that the critical points of dV , other than 0 itself, are the points in V ∗ where this
manifold fails to be transversal to the sphere passing through the given point. In
other words, a point x ∈ V ∗ is a critical point of dV iff V ∗ is tangent at x to
the sphere passing through x and centred at 0. Just as in [168, Corollary 2.8],
one has that dV has at most a finite number of critical values corresponding to
points in V ∗, since it is the restriction of an analytic function on Br(0). Hence for
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V ∩ S2N−1
ε

Figure 2: The conical structure

ε > 0 sufficiently small the function dV has no critical points on V ∩Bε; therefore
V ∗ meets transversally all sufficiently small spheres around the origin in RN . The
gradient vector field of dV is now everywhere transversal to the spheres around 0,
and it can be assumed to be integrable. Hence it defines a 1-parameter family of
local diffeomorphisms of V ∗ taking each link into “smaller” links. Thus, near 0, V
is the cone over the intersection V ∩Sε of V with a small sphere around the origin
and the diffeomorphism type of the intersection V ∩ Sε is independent of ε for all
sufficiently small spheres.

A more refined argument, due to A. Durfee [66] and based on the “Curve
Selection Lemma” of [168], shows that the diffeomorphism type of the manifold
K := V ∩ Sε is also independent of the choice of the embedding of V in RN . In
other words, up to diffeomorphism K depends only on the analytic structure of
V at 0 and not on the choice of the equations that define V nor on the sphere Sε,
provided this is small enough.

This same result is also proved by Lê-Teissier in [136].
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Figure 3: The link of the singularity determines the topological type.

2.1 Definition. The manifold K := V ∩ Sε is called the link of V at 0.

It is worth saying that the word “link” is being used in two different ways.
In Definition 2.1 the name “link” comes from the notation used in PL-topology
to denote the boundary of a regular neighborhood of a point in a triangulated
manifold. But we also used the word “link” in Section 1 above to denote a disjoint
union of circles in the 3-sphere. Both names are common in the literature. Thus
given a polynomial map in two complex variables, as for instance f(z1, z2) =
zp
1 + zq

2 , one has that its link (i.e., the intersection K = f−1(0) ∩ Sε) is a link
in the 3-sphere Sε (i.e., a disjoint union of circles embedded in the sphere). This
is why some authors prefer to call the manifold K of 2.1 in some other way, as
for instance “the boundary of the singularity”. However we prefer to stick to the
classical notation and call K the link of the singularity, just taking care that this
does not lead to any confusion.

Notice however that we have not said anything yet about the embedded
topological type of V . We claim that just as for the Pham-Brieskorn singularities
of the previous section, one has in general that for ε > 0 sufficiently small, the
pair (Bε, V ∩Bε) is homeomorphic to the cone over the pair (Sε, V ∩ Sε). In other
words, not only is V ∩ Bε the cone over V ∩ Sε (as we know already), but the
pair (Bε, V ∩Bε) is the cone over the pair (Sε, V ∩ Sε). To show this we only need
to refine a little the above argument, following [168]: for each x ∈ V ∗, let Ux be
an open neighborhood of x in Bε, and let rx be a vector field on Ux obtained by
parallel extension of the gradient vector field ∇dV on Ux ∩ V ∗. We may assume
that the covering {Ux} of V ∗ is locally finite. Now take the radial vector field
∇d on Bε − V , and glue all these vector fields by a partition of unity to obtain a
vector field on Bε − {0}, which is everywhere transversal to the spheres around 0
and is tangent to V ∗. Furthermore, we can choose this vector field to be integrable
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(see [168]). One has that the solutions of this vector field converge to 0 and provide
a local family of diffeomorphisms that yield the following theorem.

2.2 Theorem (Milnor). The homeomorphism type of V near 0 and the isotopy
class of the embedding of V in RN are determined by the intersection of V with
a small sphere Sε around the isolated singularity 0 ∈ V . More precisely, for every
sufficiently small ball Bε around 0 one has a homeomorphism of pairs:

(Bε, Bε ∩ V ) ∼= Cone (Sε, Sε ∩ V ) ,

where Sε = ∂Bε is the boundary.

2.3 Remark. It is well known that Theorem 2.2 holds for non-isolated singularities.
The main difference is that in this situation the link K will no longer be a manifold
but a singular space. Actually, given an analytic germ (V, p), if we only care for
the topology of V near p, then the fact that V is locally a cone over the link of p
follows immediately from the work of Lojasiewicz in [144], where he proved that
every analytic space can be triangulated. But one can say more, just as in [168]:
given an embedding of (V, p) in some affine space RN , the embedded topological
type of V is a cone over the intersection of V with a small sphere around p.
The proof of this result is along the same lines as that of Theorem 2.2 above;
this can be found for instance in [99, 48]. The proof uses Whitney stratifications
(see for instance [136]). The idea of the proof is that given a real analytic germ
(V, 0), we can choose the representative of (V, 0) small enough so that there exists
a Whitney stratification {Sα}α∈A of the ball Bε with a finite number of strata,
compatible with V (i.e., V is the union of strata), and such that each stratum
meets transversally all the spheres in Bε with centre at 0. Each stratum Sα is a
real analytic submanifold of Bε, so one can construct a vector field on Sα just
as we did for V ∗ above, by considering the gradient vector field of the restriction
to Sα of the function distance to 0 (squared). The Whitney conditions guarantee
that we can put all these vector fields together, by a partition of unity, in order to
obtain a vector field on all of Bε (for ε > 0 sufficiently small), which is transversal
to all small spheres around the origin, pointing outwards, and it is stratified, i.e.,
at each point x ∈ V it is tangent to the stratum Sα that contains x. In this way
we obtain a 1-parameter family of homeomorphisms taking the pair (Sε, Sε ∩ V )
into the “smaller” links (Sε′ , Sε′ ∩ V ) for ε > ε′ > 0, and these homeomorphisms
preserve each stratum Sα.

I.3 Ehresmann’s fibration lemma

The content of this section is for smooth mappings between manifolds and is
included in this text for completeness, since it motivates the fibration theorem for
real singularities of Milnor that we shall prove in the next section. This result was
originally proved in [74] (see also [1], for instance).
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3.1 Theorem (Ehresmann’s fibration lemma). Let M and N be (C∞ for simplicity)
oriented, differentiable manifolds of dimensions n + k and k respectively. Assume
M is closed (=compact without boundary) and let

f : M → N

be a proper differentiable map which is a surjection everywhere, i.e., the Jacobian
matrix Df(x) =

((
∂fi

∂xj
(x)
))

has rank k for each x ∈M . Then f is the projection
map of a (locally trivial) fibre bundle.

Proof. The fact that f is a submersion everywhere implies that all points in M are
regular points of f , so the Implicit Function Theorem implies that all the fibres
f−1(y) , y ∈ N , are smooth submanifolds of M of codimension k, i.e., dimension
n. So the proof of Theorem 3.1 amounts to proving the local triviality of the
projection. In other words we must show that given any y ∈ N there exists an
open disc Dy ⊂ N such that f−1(Dy) is a product Dy × f−1(y).

At each point x ∈M we have a splitting of the tangent bundle of M as

TxM ∼= Tx(f−1(y))⊕ νx(f−1(y)) , y = f(x) ,

where ν(f−1(y)) is the normal bundle of the fibre of f containing x, for some
Riemannian metric. The fact that Df(x) has rank n implies that νx(f−1(y)) is
carried by Df(x) isomorphically into the tangent bundle of N at y. Therefore the
normal bundle of f−1(y) is trivial and it is isomorphic to the pull-back by f of
the tangent space TyN .

Let {a1, . . . , ak} be a basis of TyN . We can always extend this to a set of k
linearly independent integrable vector fields on a small disc Dy of y in N , which we
still denote by {a1, . . . , ak}. These define k local flows around y which can be used
to parametrize Dy, since the vector fields {a1, . . . , ak} are linearly independent. By
the arguments above one has that {a1, . . . , ak} lift to a trivialization {α1, . . . , αk}
of the normal bundle ν(f−1(y)), which extends to a set of n integrable vector fields
on a tubular neighborhoodNy of the fibre f−1(y), linearly independent everywhere
and orthogonal to all the fibres of f . By the compactness of the fibres of f , there
exists a time t > 0 such that all these flows on Ny are defined for all times t′ with
|t′| < t and they do not have fixed points. Moreover, we can choose the flows so
that they parametrize the neighborhood Ny. By re-scaling the time, if necessary,
we can make this parametrization of Ny compatible with the one on the base Dy.
Hence the neighborhood Ny is of the form Dy× f−1(y), proving Theorem 3.1. �

I.4 Milnor’s fibration theorem for real singularities

We now consider a real analytic map,

f = (f1, . . . , fk) : (Br ⊂ Rn+k, 0) −→ (Rk, 0) ,

where Br is a (sufficiently) small ball around 0 in Rn+k.
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4.1 Definition. We say that f satisfies the Milnor condition at 0 ∈ Rn+k if its
Jacobian matrix Df(x) has rank k for all x �= 0 in Br.

In other words this means that f is a surjection at every point in Br, except
(possibly) at the origin. As Milnor himself points out in his book, this is a very
stringent hypothesis when k > 1. We shall discuss this point later in the text, in
Chapter VII.

Notice that if f satisfies the Milnor condition at 0, then by the first Thom-
Mather transversality theorem (see [1]), if V = f−1(0) is transversal to a given
sphere Sε around 0, then the fibres f−1(t) will also be transversal to Sε for all
t ∈ Rk sufficiently near 0.

The following result of Milnor is a straightforward generalization of Ehres-
mann’s fibration lemma, and its proof is just a refinement of the proof of Theorem
3.1 so we only sketch it. For Milnor this was an intermediate step for his fibration
theorem for real singularities, which we state below as Theorem 4.3. However we
state it as a theorem because this is the version of Milnor’s fibration theorem
which is more common in the literature and it also generalizes more naturally to
other settings (c.f. the last section in this chapter and Chapter VII below).

4.2 Theorem. Let f : (Br ⊂ Rn+k, 0) −→ (Rk, 0) be real analytic and assume it
satisfies the Milnor condition at 0. Let ε > 0 be sufficiently small so that Sε and all
the spheres around 0 in Rn+k of radius less than ε meet V = f−1(0) transversally.
Let δ > 0 be small enough with respect to ε so that all fibres f−1(t) with ‖t‖ ≤ δ
meet Sε transversally. Let Sk−1

δ be the sphere in Rk of radius δ and centre at 0.
Then the map

f : f−1(Sk−1
δ ) ∩ Bε −→ Sk−1

δ ,

where Bε ⊂ Rn+k is the (open or closed) ball bounded by Sε, is the projection of a
(locally trivial) fibre bundle.

Proof. By hypothesis the derivative of f is surjective at each point away from 0.
For x ∈ V ∗ = V − {0} the kernel of Df spans the tangent bundle of the fibres of
f while the pull-back of TtDδ spans the normal bundle ν(f−1(t)) of f−1(t), where
Dδ is the disc in Rk bounded by Sk−1

δ . Hence a choice of a basis for TtDδ lifts to a
trivialization of ν(f−1(t)). Furthermore, since the fibres of f are transversal to the
boundary sphere Sε, the sections {s1, . . . , sk} that define this trivialization can be
chosen to be tangent to Sε. Each section si generates a local flow ψi

λ, λ ∈ R, and
by compactness we can choose a time t0 for which all these flows are well defined
on all the fibres of f . This implies that each fibre of f has a neighborhood which
is a product, proving Theorem 4.2. �

It is worth saying that Theorem 4.2 could have been stated (with the same
proof) as giving a fibre bundle over all of Dδ−{0}. Let us set N(ε, δ) := f−1(Dδ)∩
Bε with Bε being, from now on, the closed ball. This manifold N(ε, δ) is usually
referred to as a Milnor tube for f . The boundary of N(ε, δ) is the union of the
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manifold f−1(Sk−1
δ ) ∩ Bε in Theorem 4.2, together with the manifold

Tε,δ := N(ε, δ) ∩ Sε ,

which is a regular neighborhood of K = V ∩ Sε in the boundary sphere Sε.

4.3 Theorem. Let f be as in Theorem 4.2. Then, with the above hypothesis and
notation, the fibre bundle

f : N(ε, δ)− V −→ Dδ − {0}

induces a fibre bundle projection:

φ : Sε − Int (Tε,δ) −→ Sk−1
δ = ∂Dδ

which, restricted to the boundary ∂Tε,δ = f−1(Sk−1
δ ) ∩ Sε, is the map f .

This theorem is a consequence of Theorem 4.2 and the following lemma
(which is Theorem 1 in [167]).

4.4 Lemma. The boundary of the tube N(ε, δ) is homeomorphic to Sε under a
homeomorphism that leaves Tε,δ pointwise fixed.

In fact the same proof shows that N(ε, δ) is homeomorphic to the ball Bε.

Proof. We follow the arguments of Milnor in [167], just replacing the hard part in
his proof by Corollary 3.4 in [168], which is a consequence of the Curve Selection
Lemma. Let f1, . . . , fk be the components of f and define a function:

r(x) = f2
1 (x) + · · ·+ f2

k (x) .

Let ∇r be its gradient. The level surfaces r−1(s), s ∈ R+ are the tubes f−1(|t|)
for |t|2 = s, and the vector field ∇r is transversal to these tubes (away from V ).
Consider also the vector field ∇(ι)(x) = 2x, which is the restriction to Dε − V

of the gradient of the function x
ι
→ x2. Both maps r and ι are polynomial and

≥ 0. Hence Corollary 3.4 of [168] implies that on Bε − V the vector fields ∇r and
∇(ι) are either linearly independent or one is a positive multiple of the other. Now
define a vector field on Bε − V by:

v(x) = ‖x‖ · ∇r + ‖∇r‖ · x ,

which bisects the angle between ∇r(x) and x. This is a smooth vector field on
Bε − V and by the Schwartz inequality (‖v1‖‖v2‖ ≥ v1 · v2, with equality holding
only when the two vectors are colinear) it satisfies:

v · x > 0 , v · ∇r > 0 . (∗)

Now, given any point xo ∈ Bε − V , let γ(t) be the solution through xo of
the differential equation dx/dt = v(x) in Bε−V . As we move along the path γ(t),
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by (∗) the distance to 0 increases strictly, and so does the function r, until γ(t)
intersects the boundary sphere. We may thus define a homeomorphism

h : ∂N(ε, δ)− Int(Tε,δ)→ Sε − Int(Tε,δ)

as follows: given x ∈ ∂N(ε, δ) − Int(Tε,δ), take the path γ(t) passing through x
and follow it until it meets the sphere at a point γ(t1), then define h(x) = γ(t1).
It is clear that this homeomorphism is the identity on the boundary of Tε,δ, so we
can extend it to the interior as the identity. �

I.5 Open book decompositions and fibred knots

The two concepts in the title of this section were introduced after Milnor published
his book on singularities, so he does not mention these at all. However these
important concepts are very useful in many ways, so I include them here because
they help us to grasp better what Milnor’s theorem for complex singularities is
telling us, and what is the difference with the general statement in the real case.

The concept of “open book decompositions” was introduced by E. Winkeln-
kemper in [264] and we refer to his appendix in [205] for a clear and updated
account on the subject (see also [210]). In [247] Tamura defines the equivalent
notion of “spinnable structures” on manifolds. Here we only give the basic notions
that we use in the sequel.

5.1 Definition. An open book decomposition of a smooth n-manifold M consists of
a codimension 2 submanifold N , called the binding, embedded in M with trivial
normal bundle, together with a fibre bundle decomposition of its complement:

π : M −N → S1 ,

satisfying that on a tubular neighborhood of N , diffeomorphic to N × D2, the
restriction of π to N × (D2 − {0}) is the map (x, y) 
→ y/‖y‖. The fibres of π are
called the pages of the open book.

It follows from the definition that the pages are all diffeomorphic and each
page F can be compactified by attaching the binding N as its boundary, thus
getting a compact manifold with non-empty boundary. Also, since the base of the
fibration is the circle S1, one can lift a never-zero vector field on S1 to an integrable
vector field on M−N which is transversal to the fibres. Using the flow lines of this
vector field one can define a “first return map” on the fibres, which is well defined
up to isotopy. This diffeomorphism is known as the monodromy of the fibration.
Since all the pages have the same binding N as boundary, it follows that h extends
as the identity on N .

This brings us back to the original definition of open books in [264]. Winkeln-
kemper defined open books as follows: start with a compact manifold F with non-
empty boundary ∂F , together with a diffeomorphism h of F which is the identity
on ∂F . Now form the mapping cylinder Fh of h, which is a manifold with boundary
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Figure 4: An open book.

(∂F ) × S1. Identifying (x, t) with (x, t′) for each x ∈ ∂F and t, t′ ∈ S1, we obtain
a closed, differentiable manifold M . The fibres F × t are the pages of the open
book, and their common boundary N = ∂F × t is the binding. Notice that in
this definition the pages are already compact manifolds with boundary, and their
interiors are the pages in Definition 5.1.

The concept of “fibred knots and links” actually arises from Milnor’s fibra-
tion theorem for complex singularities. This was introduced by A. Durfee and B.
Lawson in a paper [67] that generalizes the beautiful construction by Lawson,
using Milnor’s theorem, of codimension 1 foliations on odd-dimensional spheres.

We recall that a classical knot is an embedded circle in S3, and a classical link
is a disjoint union of knots in the 3-sphere. These notions have been generalized
as follows.

5.2 Definition. Let M be a smooth, closed, connected manifold. A knot in M means
a smooth codimension 2 closed, connected submanifold N of M . If N has several
connected components then it is called a link in M .

5.3 Definition. A knot (or link) N ⊂ M is fibred if it is the binding of an open
book decomposition of M .

I.6 On Milnor’s fibration theorem for complex
singularities

Consider now a complex analytic map,

f : (Br ⊂ Cn+1, 0) −→ (C, 0)

with a critical point at 0 ∈ Cn+1, which may be a non-isolated critical point of f .
One has (Milnor’s fibration theorem for complex singularities):
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6.1 Theorem. Let ε > 0 be sufficiently small and set V = f−1(0) and K = V ∩ Sε.
Then the map φ : Sε −K → S1 given by

φ(z) =
f(z)
|f(z)|

is the projection map of a (locally trivial) fibred bundle. Furthermore, if V has
an isolated singularity at 0, then K ⊂ Sε is a fibred link, defining an open book
decomposition of the sphere Sε

∼= S2n+1.

In fact Milnor also showed that whenever n > 1, the link K is connected, so
it is a knot in the sphere. [Milnor actually proved that K is (n − 2)-connected,
i.e., its homotopy groups vanish up to dimension n− 2.]

6.2 Definition. A knot (or link if n = 1) defined by a holomorphic function as in
Theorem 6.1 is called an algebraic knot (or link).

The notion of “algebraic knot” was introduced by Lê Dũng Tráng in [125], and
we refer to [127, 128, 62, 63] for basics about these knots. The proof of Theorem 6.1
is written in a very clear and elegant way in Milnor’s book, so I will content myself
by making a few comments about it. It is worth saying that Milnor’s proof was
written for polynomial maps, but all his arguments go through for holomorphic
maps in general. We also refer the reader to [201] where Milnor’s proof is adapted
to meromorphic functions f/g and the key ideas are carefully explained. The point
is to show first that the map φ in Theorem 6.1 has no critical points and so its fibres
are all codimension 1 smooth submanifolds of the sphere Sε, and then construct
a tangent vector field on Sε −K which is transversal to the fibres of φ and whose
solutions move at constant speed with respect to the argument of the complex
number φ(z); this shows the local product structure around each fibre.

It is of course natural to compare Theorem 6.1 with the corresponding the-
orem for real singularities. In fact one is tempted to try to prove Theorem 6.1
by “pushing Theorem 4.3 further”, and I believe this was the original approach
followed by Milnor (see [167]). Two first difficulties, which are not serious prob-
lems, are that Theorem 4.3 requires an isolated critical point of f and it only
gives a fibration away from a tubular neighborhood of the link. As pointed out
by Milnor in [167, Chapter 11], this latter difficulty can be easily overcome and
the fibration in Theorem 4.3 can be extended to the whole complement of the
link with some extra work. The first difficulty can mean a problem, because the
statement in general is false for real maps with non-isolated critical points. In fact
it is false (in general) even for holomorphic maps which define complete intersec-
tion germs with non-isolated singularities. This was explained to me by Lê Dũng
Tráng, who gave me the following example, which arises from Whitney’s umbrella
and is known as “Lê’s example” (unpublished). Consider the function f : C3 → C2

given by f(x, y, z) = (x2 − y2z, y). Its critical set Σ consists of the points where
the Jacobian matrix Df has rank less than 2. One has:

Df(x, y, z) =
(

2x −2yz y2

0 1 0

)
.
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Thus Σ consists of the z-axis {x = y = 0}. Notice Σ = f−1(0), and there are no
more critical points of f . However the fibre over the point (t2, 0) t ∈ R consists of
the parallel lines (±t, 0, z), while the fibre over a point of the form (t2, λ) , λ �= 0),
is the quadric {x2 − λ2z = t2}. Hence there cannot possibly be a local Milnor
fibration. However this problem cannot occur for the situation envisaged in Theo-
rem 6.1, that is when f is holomorphic and the target is 1-dimensional, essentially
because in this case one has a theorem due to Hironaka [100], saying that f satis-
fies the “Thom af -condition” (see [136]). We can then follow the technique of Lê
Dũng Tráng in [129] to show that one has a local Milnor fibration whenever one
has the af -condition (see [201]).

There is one more difficulty for proving Theorem 6.1 using Theorem 4.3, but
this again is a technical difficulty that can be overcome, and this is essentially
what Milnor does in Lemma 5.9 in [168]. Indeed Theorem 4.3 is proved by using
the fibration of Theorem 4.2, which for the case envisaged in Theorem 6.1 takes
the form:

f : f−1(S1
δ) ∩ Bε −→ S1

δ ,

and then “inflating” the tube f−1(S2n+1
δ ) ∩ Bε by means of a vector field v(z) so

that the tube becomes the complement in S2n+1 of an open tubular neighborhood
of the link K. In general one does not have much control of the behaviour of this
vector field and therefore one cannot say anything in general about the map φ in
Theorem 4.3 nor its relation with the original map f . Still, in the complex case
Milnor manages to construct a vector field in his Lemma 5.9, that we denote here
by v̂, making the same job as the vector field v in the proof of Theorem 4.3, with
the additional feature that the flow lines of v̂ carry the tube f−1(S2n+1

δ ) ∩ Bε

into the sphere, in such a way that the argument of the complex number f(z)
is constant along each flow line. Hence Milnor can assure that the fibres of the
fibration given by Theorem 4.2 are taken into the fibres of Theorem 6.1.

There is finally one more difficulty, and this is a serious one: the behavior near
the link K. There are real analytic singularities given by maps R2n → R2 with a
fibration as in Theorem 4.2 but which do not define an open book decomposition
of the sphere S2n−1 (see [201]). Hence, in order to actually control the behavior of
the fibres near the link, Milnor has to use completely different arguments (Section
4 of his book), which eventually are sufficient to complete the proof of Theorem
6.1 without using Theorem 4.2. Therefore the fibration Theorem 4.2 is given in
[168] just as “an alternative” way to look at the fibration. Still, this alternative
way has several advantages on its own and, as mentioned earlier, this is probably
the most common version of Milnor’s theorem.

6.3 Remarks. Milnor’s fibration Theorem 4.3 was generalized by Hamm in [95] to
germs of complex analytic, isolated complete intersection singularities; we refer to
Looijenga’s book [146] for a clear account on this subject. One may also consider
the germ of an arbitrary complex analytic variety (V, p) whose singular set may
have dimension more than 0, and the main theorem of [129] says that in this
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situation one has a topological locally trivial Milnor fibration as in Theorem 4.3
above.

It is worth remarking that Milnor’s theorem also proves that one has a fibra-
tion as in Theorem 4.3 (essentially the same proof as above) even when the critical
point of f is not isolated, and these two fibrations are equivalent. By the theorem
of Andreotti-Frankel [6], this implies that the fibres of φ have the homotopy type of
a CW-complex of middle dimension, and they are always parallelizable manifolds.
(Milnor proves these facts directly, not using [6], because he needs essentially the
same arguments to show that the link is highly connected.) These results have
been generalized recently in [269, 201] for meromorphic functions:

6.4 Theorem. Let f, g : (Cn+1, 0)→ (C, 0) be holomorphic maps, so that all points
in a punctured neighborhood of 0 ∈ C are regular points of the meromorphic map

f/g : (Cn+1, 0)→ (C, 0) .

Let Lfg = (fg)−1(0) ∩ Sε be the link of fg. Then the map:

φ :=
fg

|fg| =
f/g

|f/g| : Sε \ Lfg −→ S1 ⊂ C

is the projection of a C∞ (locally trivial) fibre bundle, whose fibres Fθ are diffeo-

morphic to the complex manifolds (f/g)−1(t)∩
◦
Dε, where t ∈ C is a regular value

of the meromorphic map f/g and
◦
Dε is the interior of the disc in Cn+1 whose

boundary is Sε. Hence each fibre is a parallelizable manifold with the homotopy
type of a CW-complex of dimension n.

We remark that this theorem is stated in [201] in terms of the function fg;
as explained there, both formulations are essentially equivalent.

I.7 The join of Pham and the topology of the

Milnor fibre. The Milnor number

In his pioneer article [198], F. Pham studied the topology of the complex manifold
V(a0,...,an) ⊂ Cn+1 defined by:

za0
0 + · · ·+ zan

n = 1 ,

where n > 0 and the ai are integers ≥ 2. It is easy to see that this manifold is
diffeomorphic to the Milnor fibre of the complex singularity defined by f(z) = 0,
where f is the Pham-Brieskorn polynomial f(z) = za0

0 + · · · + zan
n . To explain

Pham’s results, let Ga denote the finite cyclic group of ath roots of unity. Given
the integers {a0, . . . , an}, denote by J = J(a0,...,an) the join:

J = Ga0 ∗Ga1 ∗ · · · ∗Gan ⊂ Cn+1 ,
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which consists (see [164]) of all linear combinations

(t0 ω0, . . . , tn ωn)

with the ti real numbers ≥ 0 such that t0 + · · ·+ tn = 1 and ωj ∈ Gaj . Note that
J can be identified with the subset P = P(a0,...,an) defined by:

P = {z ∈ V(a0,...,an) | zaj

j ∈ R and z
aj

j ≥ 0 , for all j = 0, . . . , n} .

To see this, notice that P can also be described by the conditions:

zj = uj |zj| , uj ∈ Gaj , tj = |zj|aj , for all j = 0, . . . , n.

Hence P is contained in the manifold V(a0,...,an). The set P is known as the join
of Pham of the polynomial f . It is not hard to see that V(a0,...,an) has P as a
deformation retract and therefore its homotopy type is that of P . In fact, given
a point z ∈ V(a0,...,an), first deform each coordinate zj along a path in C chosen
so that the trajectory described by z

aj

j is the straight line to the nearest point on
the real axis, that we denote by ẑj . This carries z into a vector ẑ = (ẑ0, . . . , ẑn)
satisfying ẑ

aj

j ∈ R for each j, and it is clear that this deformation leaves V(a0,...,an)

invariant. Now, whenever one has that ẑ
aj

j < 0, move ẑj along a straight line to
0 ∈ C, moving the other components accordingly so that the deformation leaves
V(a0,...,an) invariant. Hence the point ẑ = (ẑ0, . . . , ẑn) moves along a straight line
towards a point ž = (ž0, . . . , žn) ∈ V(a0,...,an) whose coordinates are all ≥ 0 and
one has that each coordinate žj is necessarily of the form tj ωj for some tj ≥ 0
and some ωj ∈ Gaj . This gives a deformation of V(a0,...,an) into P that leaves
this set invariant, so the join P is a deformation retract of V(a0,...,an). It is now
an exercise to show that P has the homotopy type of a wedge (or bouquet) of
spheres of real dimension n. Moreover, the number of spheres in this wedge is
(a0 − 1) · (a1 − 1) · · · (an − 1). Thus we have obtained:

7.1 Theorem (Pham). The variety

V(a0,...,an) := {z ∈ Cn+1 | za0
0 + · · ·+ zan

n = 1 }

has the set P as a deformation retract. Thus V(a0,...,an) has the homotopy type of
a bouquet

∨
Sn of spheres of dimension n, the number of spheres in this wedge

being [(a0 − 1) · (a1 − 1) · · · (an − 1)].

Let us now return to the situation envisaged in Section 6, of a complex
analytic map f : (Br ⊂ Cn+1, 0) −→ (C, 0) with an isolated critical point at
0 ∈ Cn+1. One has Milnor’s fibration for f :

f : f−1(S1
δ) ∩ Bε −→ S1

δ .

It is easy to see that for the Pham-Brieskorn polynomials f(z) = za0
0 + · · ·+ zan

n

one can take δ = 1 and Bε as the unit ball, so that the above manifold V(a0,...,an)
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is the Milnor fibre F . By Theorem 7.1, in this case F has the homotopy type of a
bouquet of spheres of dimension n. More generally one has:

7.2 Theorem (Milnor). Let f : (Br ⊂ Cn+1, 0) −→ (C, 0) be complex analytic,
with an isolated critical point at 0 ∈ Cn+1. Then the fibre F = f−1(t) ∩ Bε is
a parallelizable manifold with the homotopy type of a bouquet

∨
Sn of spheres of

middle dimension n. The number µ(f) of spheres in this bouquet is ≥ 0 and it is
0 iff 0 ∈ Cn+1 is a regular point of f .

Notice that the manifold F can be equivalently defined by F = φ−1(eiθ) for
some eiθ ∈ S1 ⊂ C, where φ : Sε −K → S1 is given by φ(z) = f(z)/|f(z)|. The
proof of Theorem 7.2 in [168] is by Morse theory and it has several steps. The first
one shows that F has the homology of a CW-complex of dimension n. But if we
think of F as being defined by f−1(t)∩Bε, then this is an immediate consequence
of the theorem of Andreotti-Frankel in [6], saying that the homology of every Stein
space vanishes above the middle dimension. This fact implies, in particular, that
F cannot have any compact component. Since it is a hypersurface in Cn+1, its
normal bundle is trivial and canonically trivialized by the gradient vector field
∇f(z) = ( ∂f

∂z0
, . . . , ∂f

∂zn
). We recall that a smooth manifold is parallelizable if its

tangent bundle is trivial, and a rather simple and elegant argument in [113] shows
that a manifold with no compact component is parallelizable iff it can be embedded
in some Euclidean space with trivial normal bundle. Hence F is parallelizable.

7.3 Definition. The manifold F is called the Milnor fibre of f at 0. The number
µ = µ(f) of spheres in the bouquet given by Theorem 7.2 is called the Milnor
number of f at 0.

It is worth saying that the Milnor number has several different interpreta-
tions, each pointing towards different properties of this invariant. The following
theorem summarizes some of these properties, and it is all in [168].

7.4 Theorem (Milnor). The number µ has the following interpretations:
(i) it equals the number of vanishing cycles on F = f−1(t) ∩ Bε;
(ii) it equals the multiplicity of the map-germ at 0 ∈ Cn+1 defined by the partial

derivatives of f . That is, µ is the degree of the map z 
→ (f0(z),...,fn(z))
‖(f0(z),...,fn(z))‖

from a small sphere Sε centred at 0 into the unit sphere in Cn+1, where
fi = ∂f

∂zi
;

(iii) it is the dimension of the vector space obtained by taking the quotient of the
local ring O0(Cn+1) of holomorphic functions at 0 ∈ Cn+1 by the Jacobian
ideal of f :

µ = dimO0(Cn+1)/((f0(z), . . . , fn(z))

(iv) it is determined by the Euler characteristic of F :

µ = (−1)n+1(1− χ(F )) .

These are all immediate consequences of Theorem 7.2. In fact we know that
near the singular point the variety V is locally a cone, so it has the homotopy of a
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Figure 5: The Milnor fibration.

point and its homology vanishes in dimensions > 0. On the other hand Theorem
7.2 tells us that for each t �= 0 with |t| sufficiently small, the homology of f−1(t)∩Bε

in the middle dimension is a free Abelian group in µ generators. As the parameter
t tends to 0 the non-singular fibre degenerates into V ∩Bε and the homology of F
disappears. To be precise, the ball Bε has V ∩Bε as a deformation retract (see the
proof of Lemma 4.4 above); let r be such a retraction and let ι denote the inclusion
f−1(t)∩Bε ↪→ Bε. The composition r◦ι gives a map f−1(t)∩Bε −→ V ∩Bε, which
induces a morphism in homology (called a “specialization map”). This morphism
carries Hn(F ) into Hn(V ∩ Bε) ∼= 0, so the µ generators of Hn(F ) vanish. Thus
we call them vanishing cycles.

7.5 Remarks on Milnor numbers and vanishing cycles. For many purposes it is
important to have preferred sets of vanishing cycles, as for instance to be able to
control the bilinear pairing in Hn(F ) given by the intersection product, and to
compute its signature (c.f. §8 below and IV.2). For the Pham-Brieskorn polyno-
mials, in some cases the join of Pham can be used to construct a preferred set of
vanishing cycles. In [131] Lê constructs an equivalent polyhedron for all singular-
ities as above (and in the more general setting of his fibration theorem that we
explain below). However the problem of finding a “distinguished basis” of van-
ishing cycles is indeed an issue and this can be used to obtain deep information
about the singularities. We refer to [41, 43, 68, 85, 126] for very interesting results
on this subject.
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It is worth noting that the remarkable feature about Hamm’s fibration theo-
rem (for holomorphic map-germs which define isolated complete intersection sin-
gularities, see [95, 146]), is that the topology of the fibres behaves as in the case of
hypersurfaces, in the sense that the fibres have the homotopy type of a bouquet
of spheres of middle dimension. Thus one has a well-defined “Milnor number” for
isolated complete intersection singularities. For curve singularities a notion of the
Milnor number was introduced by R.-O. Buchweitz and G.-M. Greuel in [47]. For
a smoothable curve singularity (C, 0) (i.e., when there is a manifold “playing the
role of a Milnor fibre”) it is equal to 1−χ(C̃) for a smoothing C̃ of the singularity,
χ(·) is the Euler-Poincaré characteristic. However, there exist surface singularities
which have smoothings with different Euler-Poincaré characteristics ([204]). This
does not permit us to generalize the notion of the Milnor number to higher dimen-
sions so that for smoothable singularities it has the usual expression in terms of
the Euler characteristic. In [72] is introduced a notion of Milnor number for every
isolated singularity in an analytic variety. This is defined as the difference of two
indices associated to every holomorphic 1-form on an isolated singularity germ, but
it does not depend on the choice of the 1-form. One of these indices corresponds to
the “1” in the difference (1− χ(F )) in (iv) above, the other corresponds to χ(F ).
The first index is the so-called “radial index” defined in [69, 70, 71, 35, 3, 233]. The
second index is inspired in the homological index of Gomez-Mont in [90] and the
index for 1-forms defined in [69, 70, 71] in analogy with the so-called GSV-index
of [88, 232, 3]. In the case when the ambient variety V is a complete intersection
germ in Cn+k, this homological index coincides with the number of zeroes (counted
with multiplicities) of an extension of the 1-form to a Milnor fibre of V .

There are also several possible generalizations of the concept of “Milnor num-
ber” for map-germs defined on singular spaces. The first one comes from Lê’s fi-
bration theorem in [129], by defining µ(f) to be (−1)n+1(1 − χ(F )), where n is
the dimension of the ambient space and F is the Lê-Milnor fibre of f . A second
definition comes from [90, 173] for functions on curve singularities, and from [108]
for functions on isolated complete intersection germs in general, of any dimension.
There is a third generalization coming from [36] by means of the Nash blow-up.
These different generalizations of the Milnor number are compared in [234].

The concepts of Milnor number and vanishing cycles have also been extended
to varieties with non-isolated singularities. On the one hand the vanishing cycles
have given rise to the so-called “vanishing homology” when the singular set has di-
mension more than 0. We refer to [236, 237, 252, 253, 154, 155, 156, 158, 243, 221]
for outstanding results in this direction and for very general “bouquet theorems”
for the Milnor fibre. On the other hand, Parusinski defined in [195] a “gener-
alized Milnor number” associated to each connected component of the singular
set of a hypersurface in a complex manifold. Parusinski’s Milnor number was ex-
tended in [35] to local complete intersections, and this generalization is inspired
in the interpretation (iv) of the Milnor number in Theorem 7.4, together with
the above comments on indices of vector fields on singular varieties. In fact, us-
ing that language one can prove ([232]) that the Milnor number of an isolated
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complete intersection singularity is obtained, up to sign, by localizing at the sin-
gularity two different characteristic classes associated to singular varieties: one is
the top-dimensional Schwartz-MacPherson class, the other is the top-dimensional
Fulton-Johnson class. When the singular set S has dimension s > 0, one can also
localize other Schwartz-MacPherson and Fulton-Johnson classes (see [34, 35] for
more about these classes). The differences amongst them define the so-called Mil-
nor classes µi(Sj) ∈ H2i(Sj ; Z), where the Sj are the connected components of the
singular set S and i = 0, . . . , sj = dimSj . We refer to [5, 34, 37, 35, 196, 221, 266]
for different viewpoints of the Milnor classes and characteristic classes of singular
varieties; [221] relates these with the vanishing cycles.

I.8 Exotic spheres and the topology of the link

We recall that a complex analytic variety V is (analytically) normal at a point x if
every bounded holomorphic function on a punctured neighborhood of x extends to
a holomorphic function at x (see for instance [179]). Normality at a point implies
that the singular set is locally of codimension at least 2 (for a hypersurface or
complete intersection germ this condition is actually equivalent to normality).

D. Mumford proved in [176] that a 2-dimensional normal complex analytic
variety is a topological manifold iff it is a complex manifold. More precisely, Mum-
ford proved that if x is a normal point in a complex surface V and the link K
of x is simply connected, then K is the 3-sphere S3 and V is a smooth complex
manifold at x. This remarkable theorem motivated a lot of research on the topic
by various authors, most notably by E. Brieskorn [40, 39], F. Hirzebruch [102, 103]
and J. Milnor [168, 167, 166], and it was shown to be completely false in higher
dimensions. In fact Brieskorn showed in [40] that for every k > 1 odd, the link of
0 in the algebraic hypersurface

z2
0 + z2

1 + · · ·+ z2
n−1 + z3

n = 0

which is a generalized trefoil knot, is homeomorphic to the usual sphere S2n+1. It
was thus natural to ask whether this link is diffeomorphic to S2n+1 or if it is an
“exotic” sphere.

Let us recall that a smooth n-dimensional closed oriented manifold σn is a
topological sphere if it is homeomorphic to the standard unit sphere Sn. Smale’s
theorem [238] implies that for n ≥ 5 the manifold σn is a topological sphere iff it
is a homotopy sphere, i.e., if it has the same homotopy groups as the n-sphere; σn

is said to be an exotic sphere if it is homeomorphic but not diffeomorphic to Sn.
The first exotic sphere was found in dimension 7 by Milnor [165] in 1956, and it
was later shown by Kervaire and Milnor in [113] that there are no exotic spheres
in dimensions less than 7 and �= 3, 4. In dimensions 3,4 the existence of exotic
spheres is the famous Poincaré’s conjecture and the methods of [113] break down.

Two differentiable structures on spheres of dimension ≥ 5 are said to be
equivalent if there is an orientation preserving diffeomorphism among them. It is



I.8. Exotic spheres and the topology of the link 31

proved in [113] that for n ≥ 5 these equivalence classes form a finite Abelian group
Θn, with the connected sum as operation; the identity element is the standard Sn.
This group contains a “preferred subgroup”, usually denoted bPn+1 ⊂ Θn, of those
homotopy spheres that bound a parallelizable manifold. This group is zero for n
even and for n �= 3 odd it is a finite cyclic group which has finite index in Θn. This
cyclic group has order 1 or 2 for n ≡ 1 (mod4), but for n ≡ 3 (mod 4) its order
|bP4m| grows more than exponentially:

|bP4m| =
[
22m−2(22m−1 − 1)

]
·
[
numerator of (

4Bm

m
)
]

,

where the Bm are the Bernoulli numbers. Thus for instance (see [113]), for n =
7, 11, 15 or 19 there are, respectively, |bPn+1| = 28, 992, 8128 and 130816 non-
equivalent differentiable structures on the n-sphere, that bound a parallelizable
manifold.

We observe that the link K2n−1 of an isolated complex hypersurface singular-
ity has a canonical differentiable structure, being the intersection K = (V −0)∩Sε

of two smooth submanifolds of Cn+1, and with this differentiable structure it is the
boundary of the Milnor fibre, which is a parallelizable manifold. Hence if one such
link K is a topological sphere, then it necessarily represents an element in bP2n.

Notice that the link K2n−1 of an isolated complex hypersurface singularity
(V, 0) in Cn+1 is always (n−2)-connected, by [168]. Thus, if n > 2 then its homol-
ogy vanishes in dimensions i = 1, . . . , n−2. Hence, by the Poincaré duality isomor-
phism, its homology also vanishes in dimensions n+ i, i = 1, . . . , n−2; so the only
possibly non-zero groups are in dimensions i = n, n− 1 and of course i = 0, 2n− 1
where it is the integers (or the corresponding ring of coefficients). If Hn−1(K)
vanishes then Hn(K) also vanishes and K is a homology sphere. If n ≥ 2, then K
is simply connected by [168] and therefore it is a homotopy sphere whenever it is a
homology sphere. Furthermore, if n ≥ 3 then Smale’s theorem [238] on Poincaré’s
Conjecture in dimensions ≥ 5 implies that K is actually homeomorphic to S2n−1.

Summarizing, for n = 1, 2 there are no exotic spheres appearing as the link of
an isolated complex singularity. For hypersurfaces of dimension n ≥ 3 the link is a
topological sphere iff Hn−1(K) vanishes (c.f. Lemma 8.2 in [168]). In order to have
a criterion to decide when this group vanishes, recall one has the monodromy h of
the corresponding Milnor fibration, also called the characteristic homeomorphism
of the fibre. This is the first return map on the fibres, defined by lifting to S2n+1−K
a vector field on the base S1. Fixing a fibre F0, this map induces a homomorphism

h∗ : Hn(F0)→ Hn(F0) ,

known as the monodromy representation of the fundamental group π1(S1) of the
base. Using this one can define the characteristic polynomial of the fibration:

∆(t) := det(tId∗ − h∗) ,

which is a polynomial of the form:

tµ + b1t
µ−1 + · · ·+ bµ−1t± 1 ,
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with integer coefficients, since Hn(F ) is free Abelian of rank µ. This is an n-
dimensional generalization of the Alexander polynomial of a knot. The following
theorem was proved in [40, Satz 1.(i)] for the Pham-Brieskorn polynomials and by
Milnor [168, Theorem 8.5] for isolated hypersurface singularities in general:

8.1 Theorem. For n ≥ 3, K is a topological sphere if and only if the integer

∆(1) = det(I∗ − h∗) is ± 1.

To prove this result one uses the Wang sequence associated to the Milnor
fibration (see p. 67 in [168]):

Hn(F0)
h∗−I∗−→ Hn(F0) −→ Hn(Sε −K) −→ 0 .

This exact sequence implies that ∆(1) = ±1 if and only if Hn(Sε −K) vanishes.
The result then follows from the isomorphisms below, which are given by the
Alexander and Poincaré duality isomorphisms, respectively:

Hn(Sε −K) ∼= Hn(K) ∼= Hn−1(K) �

For instance consider the link K(a0,...,an) of the Brieskorn singularity:

za0
0 + za1

1 + · · ·+ zan
n = 0 .

It follows from the previous discussion about Pham’s work (also from [39, 168])
that the nth homology group Hn(F ) of the Milnor fibre is free Abelian of rank:

µ = (a0 − 1)(a1 − 1) · · · (an − 1) .

It is shown in [39] that the roots of the characteristic polynomial

h∗ : Hn(F ; C)→ Hn(F ; C)

are the products (ω0 ω1 · · ·ωn+1), where each ωj runs over the ath
j roots of unity

other than 1. Hence the characteristic polynomial is given by:

∆(t) =
∏

(t− ω0 ω1 · · ·ωn) .

As an example consider the case:

z2
0 + z2

1 + · · ·+ z2
n−1 + z3

n = 0 ,

so that a0 = · · · = an−1 = 2 and an = 3. The roots of h∗ are:

ω0 = · · · = ωn−1 = −1 , ωn =
(−1±

√
−3

2

)
.
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Hence:

∆(t) = t2 − t + 1 for n odd ;

∆(t) = t2 + t + 1 for n even .

Thus K(2,··· ,2,3) is a topological sphere when n is odd, i.e., when the link has
dimension 2n− 1 = 1, 5, 9, . . . , as claimed earlier. In dimensions 1 and 5 there are
no exotic spheres, so K has to be the usual sphere. However in dimension 9 there is
one exotic sphere and this is represented by the generalized trefoil knot K, but in
order to decide this one has to use rather sophisticated arguments. Indeed it was
shown in [113] that the elements in bP2n−1 that bound a parallelizable manifold F
which is (n− 1)-connected are distinguished by (see IV.1 below for the definition
of this invariant):

(i) the signature σ(F ) ∈ Z of the intersection pairing in Hn(F ), if n �= 2 is even;
or
(ii) the Arf-Kervaire invariant c(F ) ∈ Z2, if n is odd.

In the case n = 2m one has that the intersection pairing in Hn(F ) is even and
therefore its signature σ(F ) must be divisible by 8; if gm represents the generator
of bP4m then (by [113]) one has that K represents the element

K ≈
[σ(F )

8
]
· gm .

When n is odd a remarkable theorem of J. Levine [137] says the Kervaire invariant
c(F ) is 0 if ∆(−1) ≡ ± 1 mod 8, and it is 1 if ∆(−1) ≡ ± 3 mod 8. So the
differentiable structure on K is determined by the characteristic polynomial ∆(t).
As an example of these results Brieskorn shows in [39, p. 11] that the link of the
n-dimensional singularity V(2,...,2,d), with n, d ≥ 3 odd numbers, is a topological
sphere and the structure on the link is exotic iff d ≡ ±3 mod8.

Also using these results Hirzebruch was able to prove in [103, p. 20-21] that
the link of the singularity

z3
0 + z6k−1

1 + z2
2 + · · ·+ z2

2m = 0, k ≥ 1; m ≥ 2

is a topological sphere which represents the element:

(−1)m k gm ∈ bP4m .

As an example Hirzebruch remarks that for m = 2 one has that bP8 is the whole
group Θ7 and one gets the 28 classes of differentiable structures on S7 by taking
k = 1, . . . , 28. Similarly bP12 = Θ11 and k = 1, . . . , 992 gives all the differentiable
structures in S11. More generally, Brieskorn proved in [39, Korollar 2]:

8.2 Theorem (Brieskorn). Every homotopy sphere of dimension m = 2n − 1 > 6
that bounds a parallelizable manifold is the link K(a0,...,an) for some hypersurface
singularity of the form

za0
0 + za1

1 + · · ·+ zan
n = 0 .



Chapter II

Motions in Plane Geometry
and the 3-dimensional
Brieskorn Manifolds

This chapter is about the theorems of Klein (1884) and Milnor (1975), relating
certain groups of isometries in plane geometry to the Brieskorn varieties V(p,q,r) =
{zp

1 +zq
2 +zr

3 = 0}. There are three cases, according as the triple p−1 +q−1 +r−1 is
greater than, equal to or smaller than 1. The theorems say that in either case the
link M(p,q,r) is diffeomorphic to a space of orbits of the form Γ\G, where G is a
3-dimensional Lie group and Γ is a discrete subgroup of G. In the first case, when
p−1+q−1+r−1 > 1, the group G is SU(2), the universal cover of SO(3), the group
of rotations of the 2-sphere; SU(2) is isomorphic to the group of unit quaternions,
so it is diffeomorphic to the 3-sphere, and its discrete subgroups are either cyclic
or the lifting to SU(2) of a dihedral group or a group of symmetries of a platonic
solid. When p−1 + q−1 + r−1 < 1 the group G is S̃L(2, R), the universal cover of
PSL(2, R), the group of orientation preserving isometries of the hyperbolic plane
H2, and the subgroups in question come from the celebrated Schwarz triangle
groups of isometries in hyperbolic plane geometry. The case p−1 + q−1 + r−1 = 1
is somehow different and we discuss that difference in Chapter III.

We start this chapter with an exposition of the groups of symmetries of the
platonic solids from the classical point of view and we relate them (in §2) to the
Schwarz triangle groups; for this we explain briefly the groups of isometries in
the three classical plane geometries: Euclidean, spherical and hyperbolic. Then we
discuss the Lie group structure on the sphere S3, both as unit quaternions or as
the group SU(2) of unitary transformations, and relate this to the group SO(3)
of rotations of the 2-sphere. In Section 4 we state Klein’s theorem for the finite
subgroups of SU(2) and we give Milnor’s proof of a refinement of Klein’s theorem,
which expresses beautifully the relation between the finite subgroups of SO(3) and
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the Brieskorn singularities in the spherical case. We then speak about the group
PSL(2, R) and its universal cover S̃L(2, R), giving Milnor’s interpretation of the
latter as “labeled biholomorphic maps” of the upper half-plane. This is then used
to explain Milnor’s theorem for the Brieskorn singularities in the hyperbolic case.

II.1 Groups of motions in the 2-sphere.
The polyhedral groups

In this section we study and describe the finite subgroups of SO(3), the group of
orientation preserving isometries of the 2-sphere, endowed with the metric induced
from R3. This is a well-understood subject that has fascinated generations of
mathematicians since long ago. In fact the classification of the simplest of such
groups, those coming from Euclidean plane geometry, is usually attributed to
Leonardo da Vinci. It seems that J.F.C. Hessel (1830) was the first to enumerate
the finite 3-dimensional groups of symmetries, which were also studied later by A.
Cayley, F. Klein, H. Poincaré and many others. More recently, the contributions to
the subject by H.S.M. Coxeter in the 20th century are remarkable. The literature
in this topic is vast and we could just refer to it. However we prefer to say a few
things here, for the sake of completeness, to motivate similar constructions for
the group PSL(2, R), and for the joy of discussing a little about this important
and very beautiful piece of mathematics. This also helps to set up the notation
which can be confusing sometimes, since the groups in question can be considered
in SO(3), or lifted to the trivial double cover O(3), or extended to the universal
cover SU(2). Those wanting to go deeper into the subject can look at [56, 55], or
also at [171] where Milnor presents these groups from his own viewpoint, which is
very elegant and closer to what we need for this text (see also [118]).

Consider first the orthogonal group O(3) of linear transformations of R3 that
preserve the usual metric in R3, given by the standard quadratic form (1, 1, 1). This
is the group generated by reflections on all 2-planes through the origin and it can be
identified with the space of orthonormal 3-frames in R3; its elements are matrices
with determinant ±1. It has a preferred subgroup SO(3) consisting of those frames
which induce the usual orientation in R3, i.e., matrices with determinant 1 and
the corresponding linear transformations of R3 preserve the orientation. This is
the subgroup of O(3) consisting of words of even length, because each reflection
reverses the orientation. Since the composition of two reflections is a rotation, it
follows that SO(3) is the group of rotations of S3.

The group SO(3) acts transitively on the unit 2-sphere S2 ⊂ R3. The stabi-
lizer (or isotropy) subgroup of each point is S1 ∼= SO(2) ⊂ SO(3). This means that
given any pair of points x1, x2 ∈ S2, and unit tangent vectors v1 ∈ Tx1S2, v2 ∈
Tx2S2, there is exactly one element in SO(3) taking x1 into x2 and v1 into v2.
Therefore SO(3) can be identified with the unit tangent bundle of S2. Hence,
topologically, SO(3) is an S1-bundle over S2 with Euler class 2. One has an iden-
tification S2 ∼= SO(3)/SO(2). It is worth saying that every compact Lie group
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has an essentially unique bi-invariant metric (i.e., invariant under left and right
multiplication by elements in the group), and the usual round metric on S2 comes
from the bi-invariant metric on SO(3) via the identification S2 ∼= SO(3)/SO(2).

We are interested in the finite subgroups of SO(3). These are the cyclic
groups of finite order, the (finite) dihedral groups and the polyhedral groups of
symmetries of a tetrahedron, an octahedron and an icosahedron. Let us briefly
introduce these groups (we refer to Klein’s beautiful book [114] for more on the
subject).

a) The cyclic groups Cr of any finite order r > 0. These are embedded in SO(3)
as subgroups of SO(2) ∼= S1, the group of rotations of R2 (which is identified with
the xy-plane in R3); Cr can be regarded as the group of symmetries of a regular
polygon Pr in R2 with r-edges.

b) The dihedral groups Dr of order 2r > 1. These are obtained from the cyclic
groups by adding a generator of order 2. This generator can be represented by
a rotation α in R3 by an angle of 180o around the x-axis, taking the z-axis into
itself but with reversed orientation. Restricted to the xy-plane this is a reflection,
but it is a rotation in R3. Its order is twice the order of the corresponding cyclic
group.

There is a geometric way to “visualize” this group by looking at its action on
the 2-sphere; this is convenient for later discussions. Start with a regular polygon
P̂r (including its interior) in the xy-plane with r-edges, and let Pr denote its
boundary. Let us join the r vertices of Pr with the centre 0 by r straight lines,
getting a triangulation of P̂r with r triangles. Now project P̂r radially from the
centre to get the unit disc D2 in the xy-plane, whose boundary S1 corresponds to
Pr. The disc D2 inherits a triangulation from that of Pr. Next, make a stereographic
projection from the south pole S = (0, 0,−1). This carries D2 into the upper half
of the sphere S2, which is covered by r congruent and symmetric triangles that we
denote {T1, . . . , Tr}. The equator S1 = ∂D2 is pointwise fixed by this projection
and the origin 0 is mapped to the north pole (0, 0, 1). It is clear that each triangle
is bounded by geodesic arcs in the sphere (for the usual round metric), with two
right angles at the vertices where the edges meet the equator S1. All the r triangles
meet at the north pole, so each has an angle 2π/r there. Thus the angles of each Ti

are (π
2 , π

2 , 2π
r ). We notice that the action of Cr on S2 permutes these triangles. The

generator α carries them into the southern hemisphere of the sphere, which gets
equipped with a triangulation σ. All together we have 2r triangles in σ covering
the sphere and bounded by geodesics. It is an exercise to show that either of these
triangles works as the fundamental domain for the action of Dr. That is, if we pick
any one of them and denote it T̂ , then the 2r images of T̂ by the elements of Dr

cover the whole sphere and provide the above triangulation.
We remark that later in this section we relate these groups with the “triangle

groups” (p, q, r), and for this it will be important to look at the angles (π
2 , π

2 , 2π
r )

of the triangles in σ. To construct the triangle groups it is however convenient to
consider the full group of reflections on the edges of a given triangle, thus getting
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subgroups of O(3). The order of these groups is twice the order of the corresponding
groups of rotations. Thus, in order to get a triangle which is a fundamental domain
for the action of the full triangle group, we must double the number of triangles
in the triangulation σ above. This is achieved by splitting each triangle Ti in two
equal halves by joining the north and south poles by r geodesic arcs in S2 passing
through the middle points of the r edges of Pr , which are contained in the equator.
Hence the triangles will have angles (π

2 , π
2 , π

r ), corresponding to the triangle group
(2, 2, r) as we indicate below.
c) The tetrahedral group. This is the group of rotations in R3 that preserve a
regular tetrahedron T , which is a pyramid with triangular base. It is a group of
order 12. Notice that each symmetry of T must carry vertices into vertices, middle
points of the faces into middle points of the faces and the same for the edges. We
may construct the 12 elements of this group as follows. Let (v1, . . . , v4) be the
vertices of T and let (f1, . . . , f4) be the faces, numbered in such a way that fi is
the face opposite to the vertex vi. For each i, let mi ∈ fi be its barycentre (the
middle point), and let li be the line determined by vi and mi. Then rotating by
an angle 2π/3 along li as axis we get a symmetry of T , that we denote ρi; it has
order 3. Doing this for each of the four vertices we get the 12 elements of T (a
combination of all these rotations produces the identity in the group). To get a
fundamental domain for the corresponding action on the sphere is rather easy: take
a triangulation of the faces by joining the point mi by lines with each of the three
vertices in the face fi. We get a triangulation of T with 12 triangles. Now make a
radial projection from the centre 0, mapping T into S2. The vertices (v1, . . . , v4)
are fixed points of this projection. We get a triangulation σ of the sphere with 12
triangles. Anyone of these serves as fundamental domain. We may compute the
angles of these triangles as follows. Each triangle T̂ in σ has two vertices amongst
(v1, . . . , v4) and another vertex at the barycentre of one of the faces (f1, . . . , f4).
At each vertex of σ corresponding to a vertex vi of T we have six triangles of σ,
two for each face of T containing the given vertex. Hence the angle of each triangle
at this point is π/3. At a vertex of σ corresponding to the barycentre of a face fj

we have three vertices of σ, so the corresponding angles are 2π/3. Thus the angles
of each Ti in σ are (π

3 , π
3 , 2π

3 ).
Observe that we have considered only symmetries of the tetrahedron given

by rotations. There are also symmetries given by reflections. For instance, given
a face fi of T , take the middle point mij of an edge eij of fi, the vertex vj in
fi opposite to the edge eij , and the vertex vi of T opposite to the face fi. The
points vi, vj and mij determine a plane P which cuts the tetrahedron in two
equal halves. The reflection in P determines a symmetry of T . Starting with each
vertex of T we get three symmetries in this way, corresponding to the edges in the
opposite face of T . This gives 12 more symmetries of T , which together with the
previous 12 rotations gives the full group of symmetries of the tetrahedron, with
24 elements. In this case the fundamental domain for the action on the sphere
is obtained by dividing in two each triangle of the above triangulation σ in an
appropriate way. For this, take the full barycentric triangulation of the faces of
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T . That is, for each face fi take its barycentre mi and join it by lines with the
three vertices of fi as before (this gives the triangulation considered above), and
also join the barycentre mi with the middle points mij of the three edges of fi.
This corresponds to intersecting T with its planes of symmetry. Now we have a
triangulation of T with 24 symmetric triangles Ti. Map these to the sphere by
radial projection and get a triangulation of S2 with 24 congruent and symmetric
triangles. Let us measure the angles of these triangles. At the vertices which are
also vertices of T the angle is still π/3; each triangle has now one such vertex.
At the vertices which are middle points of the faces we now have six adjacent
triangles, since each of the previous three triangles was divided in two. Thus the
angle is also π/3. Finally, at the vertices corresponding to the middle points of
the edges we have four adjacent triangles, so the angle is π/2. Hence the triangle
T ⊂ S2 which serves as fundamental domain for the action of the full group Σ∗ of
reflections of the tetrahedral group has angles (π

2 , π
3 , π

3 ). This corresponds to the
triangle group (2, 3, 3).

It remains to prove that the triangle T is indeed a fundamental domain for
the action of Σ∗. This is more easily seen by looking directly at the action on the
tetrahedron: it is clear that the rotation ρi above permutes the three triangles T̂
(which are double triangles) in the face fi, and it also permutes the three faces
adjacent to the vertex vi. Thus, iterating this rotation ρi and combining it with
a rotation ρj around some other vertex, we see that the images of the face fi

cover all of T and the image of a single triangle T̂ is carried to the 12 triangles
of this triangulation. This proves that T̂ is a fundamental domain for the action
of Σ ⊂ Σ∗, the group of rotations of T . To complete the proof we notice that by
construction, T̂ is divided in two symmetric triangles Ti by a plane of symmetry
of T , and the reflection in that plane permutes these two triangles. Hence T is a
fundamental domain for the action of Σ∗.

d) The octahedral group. An octahedron O is the polyhedron whose vertices are
the middle points of the faces of a cube C. It has six vertices (one for each face of
C), 12 edges and eight (triangular) faces. The middle points of these eight faces
of O are vertices of a smaller cube. Hence the cube and the octahedron are dual
polyhedra and their groups of symmetries are equal.
The full group of symmetries of the cube has 48 elements. This is a subgroup
of O(3). The octahedron O has nine planes of symmetry, i.e., planes in R3 with
respect to which the reflection maps O into itself. Six of these planes are the fol-
lowing (see Figure 6). Each vertex, say v1 has four adjacent vertices, say v2, . . . , v5

and an opposite one v6, and the four adjacent vertices determine a quadrangle with
edges e12, e13, e14, e15. Suppose e12 and e14 are opposite edges in the quadrangle,
and similarly for e13 and e15. Let m12 denote the middle point of the edge e12.
Then the points v1, v6, m12 determine a plane of symmetry of O (which passes by
m14), and the points v1, v6 and m13 determine another plane of symmetry. There
are three pairs of opposite vertices and each such pair determines two planes as
above, so we have six planes. These divide each triangular face of O into six al-
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Figure 6: An octahedron and one of its planes of symmetry.

ternately congruent and symmetric triangles that have the middle point of the
face as common vertex; they meet at each vertex of O in sets of eight and in sets
of four at each middle point of the edges. Hence, if we put O with its vertices
in the unit 2-sphere S2 and map O into S2 by radial projection from the origin,
we get a triangulation of the sphere by triangles whose angles are π/2 (for the
vertices which come from middle points of the edges), π/3 (for the vertices that
correspond to middle points of the faces), and π/4 (for the vertices which are also
vertices of O). So this corresponds to the triangle group (2, 3, 4). Any one of these
48 triangles T serves as fundamental domain for the action of the full octahedral
group Σ∗ in S2. To get a fundamental domain for the corresponding group Σ of
rotations, which has 24 elements, we must take a “double” triangle T̂ as before.

We leave it as an exercise to show that these triangles T and T̂ are indeed
fundamental domains for the actions of Σ∗ and Σ, respectively.

e) The icosahedral (and dodecahedral) group. Just as the octahedron and the cube
are dual polyhedra with the same groups of symmetries, so too the icosahedron
and the dodecahedron are also dual: the middle points of the 12 pentagonal faces
of the dodecahedron determine the 12 vertices of the icosahedron, and the middle
points of the 20 triangular faces of the latter are the vertices of the former. Each
has 30 edges.

Here is a method for actually making a dodecahedron (see Figure 7 below):
start with a pentagon P0 and put it flat over a table. Now attach five pentagons
P1, . . . , P5 to it by gluing each of them to one of the sides of P0. And now glue
each pentagon P1, . . . , P5 to its two neighbors by the edge next to each of them.
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In order to actually do this physically, you will have to fold them by the edge in
common with P0, as if these edges were the hinges of a door. The result looks like
a bowl with boundary a regular polygon with 10 edges (the two free edges of each
pentagon P1, . . . , P5). Now make a second bowl like this and glue them together
along their boundary. The result is a dodecahedron D.

Figure 7: Making a dodecahedron.

Let us look at some of its planes of symmetries: we need 30 such planes
to get the triangulation that gives the fundamental domain for the full group of
symmetries of D. Notice that each face has exactly one opposite face, so everything
we do in one side gets automatically done in the other side. That is, we only look
at one of our two bowls used to construct D; this has six faces in it. Let us set
D in R3 so that its vertices are in S2. Fix a face f1 of the dodecahedron. Given
one of its vertices v, take the middle point m of the opposite edge in that face.
The points v and m determine a unique plane in R3 passing through the origin,
and the reflection in this plane carries D into itself. Notice this plane cuts the
face f1 in two equal halves. The 3-sphere Doing this for the five vertices in f1

we get a triangulation of this face with 10 congruent, symmetric triangles with
a common vertex at the middle point of the face. Doing this for all the faces
we get a triangulation of D with 120 triangles. Now map these to the sphere by
radial projection. At each vertex in the sphere which is a vertex of D, one has six
triangles with that common vertex, hence they have angle π/3 there. As before, at
each vertex coming from a middle point in an edge of D we have four triangles, so
the angle is π/2. Finally, at each vertex coming from a middle point of the faces
we have the 10 triangles, so the angle is π/5. Thus each of these 120 triangles has
angles (π

2 , π
3 , π

5 ). This corresponds to the triangle group (2, 3, 5). Let us show that
anyone of these triangles serves as fundamental domain for the action of the full
group of reflections on S2. As in the case of the tetrahedron, by construction it
is enough to prove that the double triangle T̂ is a fundamental domain for the
corresponding group of rotations. For this we observe that the action is transitive
on the triangles T̂ contained in the same face (just take the appropriate rotation
with axis the line determined by the middle point of the face and that of the
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opposite face). Furthermore, this rotation permutes the five pentagons adjacent
to the given face, as well as with the other five pentagons adjacent to the opposite
face. Hence the proof is complete by noticing that given any two opposite faces of
D, there is always a rotation permuting these faces.

II.2 Triangle groups and the classical plane geometries

In this section we describe the triangle groups, which were introduced by H.A.
Schwarz and W. Dyck in the 1880s and are related to the polyhedral groups
of Section 1. For this we consider the three classical 2-dimensional geometries:
Euclidean, spherical and hyperbolic. Let us recall briefly a few facts about these
geometries.

We recall that the group of Euclidean motions (isometries) of R2 is the affine
group E(2), isomorphic to O(2)×R2, where O(2) is generated by the reflections on
lines through the origin in R2, and R2 is identified with its group of translations.
Since translations are given by reflections on parallel lines, the group E(2) is
generated by the reflections on all possible lines in R2. In particular, given a
triangle T ⊂ R2 with angles (α, β, γ), one has the group of isometries of R2

generated by the reflections on the edges of T . If two edges e1, e2 of T enclose the
angle α at the vertex v1, then the reflections on these two lines yield a rotation
around v1 by an angle of 2α, and similarly for the other angles. Hence if the angle
is of the form π/p for some p ∈ Z, p > 1, then repeating p-times the reflections on
these two lines brings T back to its original position, while the 2p-images of T fill
out a neighborhood of the given vertex. We leave it as an exercise to think what
happens when the angles are not of this form. (There are two remarkably different
situations: when the angles are “rational”, so that after a number of times the
triangle comes back to its original place, and when the angles are “irrational”.)

Now let us see what happens when we are on the 2-sphere. We know that its
group of isometries is O(3), which is generated by the reflections on all 2-planes
through the origin in R3. Notice that each such plane meets S2 orthogonally in
a circle of maximal length, i.e., an equator. These circles are the geodesics in S2,
i.e., the curves that locally minimize the distance between points. Conversely,
given any geodesic arc on the sphere, we know that this corresponds to a circle
of maximal length; this circle is necessarily the intersection of S2 with a 2-plane
through the origin in R3 and we can define a reflection on this plane. Hence, as in
the Euclidean case, given a triangle T in S2, bounded by geodesics, we can look
at the group of isometries of S2 generated by reflections on the edges of T . As
before, if a given angle of T is of the form π/p for some p ∈ Z, p > 1, then the
reflections on the corresponding edges produce a rotation of an angle 2π/p, and
repeating this p-times brings T back to its original position, while its 2p-images
fill out a neighborhood of the rotation point.

Now we move to hyperbolic geometry. As models for H2, the 2-dimensional
hyperbolic plane, one can take the Poincaré model of the unit disc, the Lobachev-
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sky model of the upper half-plane, or whatever model one prefers. For this section
I take the Poincaré model, so that H2 is the unit disc in R2 with the hyperbolic
metric. Here is a way to define this metric. This elegant construction, which I
learned from D.P. Sullivan, works in all dimensions and has the additional advan-
tage that it gives for free the corresponding group of isometries. Let Möb(3, R)
denote the group of transformations of the extended plane

R̂2 = R2 ∪ {∞} ∼= S2 ,

generated by inversions in all possible circles, including the reflections in straight
lines, which are circles of infinite radius. Denote by Möb(2, R) the subgroup of
Möb(3, R) generated by inversions that preserve the unit disc D = D2 ⊂ R2. The
generators of Möb(2, R) are the inversions in circles (and lines) in R̂2 that meet
orthogonally the boundary circle S1 = ∂D. It is an exercise to see that Möb(2, R)

acts transitively on the interior
◦
D of D. Furthermore, the isotropy subgroup at

0 ∈
◦
D is generated by the reflections on lines through the origin, so it is the

group O(2). Hence we can put the usual Riemannian metric on the tangent plane

T0(
◦
D), tangent to

◦
D at 0, and spread this metric around using the group action.

That is, given a point x ∈
◦
D, take an element g in Möb(2, R) with g(0) = x; the

derivative of g identifies the tangent planes Tx(
◦
D) ∼= T0(

◦
D) and the metric on the

latter induces a metric in the former. This is well defined because the ambiguity
lies in O(2) and this group preserves the standard metric. Thus one has a well-

defined Riemannian metric on
◦
D and it is an exercise to show that this metric

is of constant negative curvature, so it gives the Poincaré model for hyperbolic

geometry. By construction we see that the geodesics are circles in
◦
D that meet

the boundary S1 orthogonally, and the isometries are compositions of inversions

(that we shall call also “reflections”) on these circles. By H2 we mean
◦
D with this

metric.
Notice that Möb(2, R) has the subgroup Möb+(2, R), of orientation preserv-

ing isometries of H2, as an index 2 subgroup, consisting of the words of even length.
This group, also denoted Iso+(H2), is isomorphic to the famous group of Möbius
transformations z 
→ az+b

cz+d with real coefficients and ad − bc = 1. It is also iso-
morphic to the group PSL(2, R) := SL(2, R)/± 1 = GL(2, R)/R∗. The previous
discussion shows that as a manifold, Möb(2, R) is diffeomorphic to H2 × SO(2),

so it is an open solid torus S1×
◦
D.

As before, given a triangle T in H2 bounded by geodesics, we can look at
the group of isometries generated by the reflections (inversions) on the edges of T ,
and given an angle of T of the form π/p for some p ∈ Z, p > 1, the reflections on
the corresponding edges produce a rotation of an angle 2π/p, and repeating this
p-times brings T back to its original place.
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From now on we essentially follow the exposition given in [171, §2]. Let us
denote by P either the Euclidean plane (i.e., R2 with the Euclidean metric), the
2-sphere with its usual metric, or the hyperbolic plane. Given integers p, q, r ≥ 2,
there is a triangle T = T(p,q,r) in P with angles π/p, π/q, π/r. This triangle is
Euclidean if 1

p + 1
q + 1

r = 1, spherical if this sum is > 1 and hyperbolic if the sum
is < 1. In the first case the area of T can be arbitrary, but in the spherical and
hyperbolic cases the area is determined by the angles: it is | π

p + π
q + π

r − π | .

2.1 Definition.

(i) The full (Schwarz) triangle group Σ∗ = Σ∗
(p,q,r) is the group of isometries of

P generated by reflections σ1, σ2, σ3 in the three edges of T(p,q,r).

(ii) The (Schwarz) triangle group Σ = Σ(p,q,r) is the index 2 subgroup of Σ∗
(p,q,r)

consisting of orientation preserving maps.

It is customary to denote the triangle groups simply by (p, q, r), but this
notation can be confusing in our case, so we use the notation of Definition 2.1.

From the previous discussion we know that in the spherical case the group
Σ∗ is a subgroup of O(3) and Σ ⊂ SO(3). In the hyperbolic case Σ∗ is a subgroup
of Möb(2, R) and Σ is contained in PSL(2, R). In the Euclidean case Σ∗ lives in
the affine group E(2) and Σ is contained in E+(2), which is a semi-direct product
SO(2) � R2.

The following theorem is due to Poincaré.

2.2 Theorem. The group Σ∗
(p,q,r) has a presentation with generators σ1, σ2, σ3 and

relations

σ2
1 = σ2

2 = σ2
3 = 1 and (σ1σ2)p = (σ2σ3)q = (σ3σ1)r = 1 ,

where it is understood that the edges e1 and e2 enclose the angle π/p, e2 and e3

enclose the angle π/q, and e3, e1 enclose the angle π/r. Furthermore, the triangle
T(p,q,r) is a fundamental domain for the action of Σ∗

(p,q,r) on P .

This theorem implies that the various images of the triangle T(p,q,r) cover
the whole “plane” and they are pairwise disjoint, except for boundary points.
These kinds of decompositions of the “plane” are usually called tesselations, as in
Figure 8.

That Σ∗
(p,q,r) is generated by σ1, σ2, σ3 is by definition, and the above discus-

sion shows that these generators satisfy the relations in Theorem 2.2, since each
σi is a reflection (so that σi = 1) and the composition of any two of them produces
a rotation (around the corresponding vertex) by twice the given angle. So what
has to be proved in Theorem 2.2 is that there are not more relations among the
generators and that the triangle T(p,q,r) is a fundamental domain, i.e., that its
images under the action of Σ∗ on P cover the whole “plane” and they are pairwise
disjoint except for the boundaries of the triangles. We refer to [171, §2] for this.
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An immediate consequence of Theorem 2.2 is:

2.3 Corollary. In the hyperbolic and Euclidean cases 1
p + 1

q + 1
r ≤ 1 the group is

infinite, while in the spherical case it is finite and its order is given by the area of
the sphere divided by that of T :∣∣Σ∗

(p,q,r)

∣∣ =
4

( p−1 + q−1 + r−1 )− 1
.

Recall that the group Σ(p,q,r) of orientation preserving isometries of P con-
sists of the elements of even length in Σ∗

(p,q,r). Let us set (following [171]):

τ1 = σ1σ2 , τ2 = σ2σ3 , τ3 = σ3σ1 .

One has
τ1τ2τ3 = σ1σ2σ2σ3σ3σ1 = σ1σ

2
2σ2

3σ1 = 1

and one has another consequence of Corollary 2.3 (see [171, 2.5]):

2.4 Corollary. The group Σ(p,q,r) has a presentation with generators τ1, τ2, τ3 and
relations

τp
1 = τq

2 = τr
3 = τ1τ2τ3 = 1 .

Let us now list the possibilities. We may assume that 2 ≤ p ≤ q ≤ r. In
the Euclidean case 1

p + 1
q + 1

r = 1 there are only three possibilities: the triple
(p, q, r) must be (2, 3, 6), (2, 4, 4) or (3, 3, 3). For the spherical case 1

p + 1
q + 1

r > 1
the possibilities are: (2, 2, r), (2, 3, 3), (2, 3, 4) or (2, 3, 5). For all the other infinite
triples we are in the hyperbolic case 1

p + 1
q + 1

r < 1.
In the spherical case we already know from Section 1 which are the finite

subgroups of SO(3); we also know their orders and fundamental domains for their
actions on the sphere. This allows us to deduce the following (well-known) theorem.

2.5 Theorem. The finite subgroups of SO(3) are the cyclic groups Cr of finite order
and the triangle groups Σ(p,q,r) where (p, q, r) is one of the triples:

(i) (2, 2, r), and Σ(2,2,r) is isomorphic to the dihedral group Dr of order 2r.
(ii) (2, 3, 3), and Σ(2,3,3) is isomorphic to the tetrahedral group of order 12.
(iii) (2, 3, 4), and Σ(2,3,4) is isomorphic to the octahedral group of order 24.
(iv) (2, 3, 5), and Σ(2,3,5) is isomorphic to the icosahedral group of order 60.

Notice that the dihedral group can also be considered as the group of sym-
metries of a bi-prism over a regular polygon, so the spherical triangular groups
are also called polyhedral groups.

In the hyperbolic case 1
p + 1

q + 1
r < 1 the triangle groups are a special case

of the so-called Fuchsian groups that we will describe in the next chapter. In the
Euclidean case 1

p + 1
q + 1

r = 1 the triangle groups, the analogous group of the
quadrangle and Z ⊕ Z, are the only discrete subgroups of E+(2) with compact
quotient. We shall come back to this point in Chapter III.
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Figure 8: Tesselations of S2 and H2 given by the triangle groups Σ∗
(2,3,5) and Σ∗

(2,3,7).
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II.3 The 3-sphere as a Lie group and
its finite subgroups

This section is about the geometry of quaternions and we refer to [56, Chapter 6]
for a clear account of the subject.

Let us denote by H the space of quaternions. As a vector space H is R4

endowed with three additional complex structures given by the numbers

i = (0, 1, 0, 0), j = (0, 0, 1, 0) and k = (0, 0, 0, 1),

and defining relations:

i2 = j2 = k2 = −1 and i j = k ; j k = i ; k i = j .

One has
i j = −j i ; j k = −k j ; k i = −i k .

This defines a multiplication of quaternions in the obvious way, by extending
linearly the above operations. Every quaternion can be written uniquely as:

q = a0 + a1i + a2j + a3k = (a0 + a1i) + (a2 + a3i) j

with a0, a1, a2, a3 ∈ R.
This gives an identification H ∼= C2. In other words, every quaternion q can

be written as a pair (z1, z2) of complex numbers, q = z1 + z2j.
Given q = a0 + a1i + a2j + a3k, we say that a0 is its real part, while a1i +

a2j + a3k is a pure quaternion. Writing q = a0 + (a1i + a2j + a3k), one defines
the quaternionic conjugation q 
→ q̄ by

q̄ = a0 − (a1i + a2j + a3k) .

The norm ‖q‖ of a quaternion is defined in the usual way, via the identification
H ∼= R4, and just as for the complex numbers, it is an exercise to verify that
quaternionic multiplication satisfies:

‖q‖2 = q q̄ and ‖q1q2‖ = ‖q1‖ ‖q2‖.

Thus one has that multiplication in H preserves the unit quaternions and induces
a Lie group structure on the unit sphere S3 in H. In particular, if we identify H
with C2 as above, one has an inclusion C ↪→ H given by z 
→ (z, 0); quaternionic
multiplication restricts to the usual complex multiplication and one has the unit
circle S1 as invariant set. This defines an inclusion S1 ↪→ S3 as Lie groups.

We notice that we can identify a quaternion q = z1 + z2j with the complex
matrix

A(q) =
(

z1 z2

−z̄2 z̄1

)
.
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With this identification one has that the norm of q is the determinant of A(q), thus

one has an induced map: (H− {0}) ψ→ GL(2, C) into the 2× 2 invertible matrices
with complex coefficients. Furthermore, the column vectors of A(q) satisfy:

〈(z1,−z̄2), (z2, z̄1)〉 = z1z̄2 − z̄2z1 = 0 ,

where 〈·, ·〉 is the usual Hermitian product in C. This means that these column
vectors form an orthogonal complex 2-frame in C2; thus restricting ψ to the unit
quaternions, one has that its image consists of all 2 × 2 unitary matrices with
determinant 1. That is, we have a canonical identification of S3 with the special

unitary group SU(2) , consisting of all matrices of the form
(

z1 z2

−z̄2 z̄1

)
with

determinant 1. With this identification, the circle S1 ⊂ C gets embedded in SU(2)

as the group of diagonal matrices of the form
(

eiθ 0
0 e−iθ

)
. The centre of SU(2)

is ±I and the projection

S3 ∼= SU(2) π−→ (SU(2)/± I) ∼= RP 3

identifies pairs of opposite points in the sphere. This projection corresponds to the
adjoint representation of SU(2) in its Lie algebra, which can be identified with
the tangent space at the identity T1S

3 ∼= R3.
Let us describe with more care the projection SU(2) π→ RP 3. For this we

recall that the sphere S2 can be identified with CP 1, the projective space of com-
plex lines through the origin in C2. Since SU(2) acts linearly on C2, its action
descends to an action on S2. This action is by holomorphic transformations, so
it preserves the orientation of S2. Moreover, this action is also transitive, because
given any two lines in C2 there is a linear map in SU(2) taking one into the other.
The isotropy subgroup consists of the unitary matrices that preserve the z1-axis,
so it is the circle S1, regarded as the diagonal matrices in SU(2), which is in fact
the group U(1). One gets an identification S2 ∼= SU(2)/U(1) and the fibre bundle
projection SU(2) ∼= S3 → S2 is precisely the Hopf fibration; the fibre over each
point x ∈ S2 ∼= CP 1 is precisely the unit circle in the corresponding complex line.
We observe that the metric on S2 is also the one induced by this identification.
Thus one gets a homomorphism from SU(2) into the group SO(3) of orientation
preserving isometries of S2, which is actually surjective. Moreover, it is two-to-one,
since two matrices in SU(2) induce the same map in CP 1, the space of lines in C2,
iff they differ by sign. This identifies S3 with the universal cover of SO(3), being
a 2-fold cover. Furthermore, since the projection S3 → SO(3) has kernel ±1, it
follows that as a manifold SO(3) is the real projective space RP 3.

The theorem below summarizes the previous discussion.

3.1 Theorem. The Lie group S3 of unit quaternions is isomorphic to the special
unitary group SU(2). Its centre consists of the quaternions ±1 and the projection
π : SU(2) ∼= S3 → SO(3) is a two-fold cover with kernel the centre ±1 of S3. One



II.3. The 3-sphere and its finite subgroups 49

has a commutative diagram:

Z2

∼=−−−−→ Z2 −−−−→ 1⏐⏐�ι

⏐⏐�ι

⏐⏐�
S1 i1−−−−→ S3 ∼= SU(2)

pr1−−−−→ S2⏐⏐�π̃

⏐⏐�π

⏐⏐�Id

RP 1 ∼= S1 i2−−−−→ RP 3 ∼= SO(3)
pr2−−−−→ S2

where the middle line is the Hopf fibration, the bottom line comes from identifying
SO(3) with the unit tangent bundle of S2, and the first two columns are two-fold
covering projections.

We remark that we are making here an abuse of notation. The multiplicative
group of the unit quaternions is usually denoted by Sp(1) and called the symplectic
group; this is the 3-sphere canonically, hence our notation.

Now we want to describe the finite subgroups of the 3-sphere. These were
known since the 19th century. For instance A. Cayley gave the list of these groups
and the list of all the unit quaternions in each (see for instance [223]).

Since one has a 2-fold covering S3 → SO(3), which is actually a group ho-
momorphism with kernel ±1, it follows that each finite subgroup Σ of SO(3) lifts
to a finite subgroup of S3 doubling its order. The cyclic groups of order r lift to
cyclic groups of order 2r and the triangle subgroups Σ(p,q,r) lift to the so-called
binary polyhedral groups:

(i) the binary dihedral group, of order 4r;

(ii) the binary tetrahedral group, of order 24;

(iii) the binary octahedral group, of order 48;

(iv) the binary icosahedral group, of order 120.

These are usually denoted < p, q, r > but to be consistent with our notation in §2
we prefer to denote them Γ(p,q,r).

3.2 Remark. It is worth making clear that these binary polyhedral groups are not
the corresponding full triangle groups Σ∗ of §2 above, though their orders coincide.
The binary groups live in S3 while the full triangle groups live in O(3). The groups
S3 and O(3) are both double covers of SO(3) and this is why the orders of the
groups coincide. However O(3) is a trivial double cover, isomorphic to SO(3)×Z2,
while S3 is simply connected and is therefore the universal cover of SO(3). This
means that S3 is also isomorphic to the group Spin(3) (see [124] and Chapter IV
below).

3.3 Theorem. The only finite subgroups of the 3-sphere S3 are the double covers of
the finite subgroups of SO(3) and the cyclic groups of odd order.
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The proof of this well-known result is now easy: if a subgroup Γ ⊂ SU(2)
contains the centre ±1, then it is the lifting of a subgroup of SO(3) and there is
nothing to prove. Thus we only have to prove that if Γ ⊂ SU(2) does not contain
the centre, then it is a cyclic group of odd order. For this we observe:

(i) if a subgroup Γ ⊂ SU(2) does not contain the centre, then the restriction to
Γ of the projection S3 π→ SO(3) is an injective morphism and therefore Γ is
isomorphic to its image Σ ⊂ SO(3);

(ii) if g is an element in S3 such that g2 = 1, then g = ±1. In fact, think of g as

a unitary matrix
(

z1 z2

−z̄2 z̄1

)
. Then one has:

g2 =
(

z2
1 − |z2|2 z2(z1 + z̄1)

−z̄2(z1 + z̄1) z̄2
1 − |z2|2

)
=
(

1 0
0 1

)
;

the two equations given by the anti-diagonal imply that either z2 = 0 or
else z1 is purely imaginary, say z1 = iy1 with y ∈ R; if this happens, then
z2
1 = −y2

1 ≤ 0 and by hypothesis one has z2
1−|z2|2 = 1, which is not possible.

Hence one must have z2 = 0 and therefore z1 = ±1.

Now, the inverse of an element in S3 is uniquely defined, so the elements in a
subgroup Γ ⊂ S3, others than the identity, necessarily come in pairs. Hence if
−1 /∈ Γ, then the order of Γ is odd, by (ii) above. Thus (i) implies that Γ is
isomorphic to a subgroup of SO(3) of odd order, hence Γ is cyclic by Theorem 2.5.

II.4 Brieskorn manifolds and Klein’s theorem

We recall that SU(2) acts linearly on C2 with the origin 0 as the only fix point;
the action is free away from 0. Also, this action, being unitary, preserves the usual
Hermitian metric on C2 and therefore preserves all the spheres centred at 0. So
each orbit, other than 0 itself, is a 3-sphere with centre at 0; the unit sphere is
the orbit of (1, 0) ∈ C2. Each finite subgroup Γ ⊂ SU(2) acts naturally on C2

and on the unit 3-sphere S3 ⊂ C2. The space of orbits Γ\C2 is a 2-dimensional
complex analytic variety VΓ (c.f. [52, 102]) with an isolated singularity at the
image of 0, that we denote by 0̂. In Chapter I we defined the link of an isolated
singularity in an analytic space; this turns out to be the smooth boundary of a
regular neighborhood of the singular point. Hence the link of 0̂ in VΓ is MΓ = Γ\S3,
a smooth compact 3-manifold whose universal cover is S3 and Γ is its fundamental
group. Notice that Γ acts naturally on the 3-sphere by left (or right) multiplication
in the group. The action we are taking here corresponds to left multiplication (for
compatibility with the complex structure). Felix Klein [114] proved in the 19th

century a remarkable theorem about these surfaces VΓ. To state his result, let us
introduce one of his ideas in this direction, which is to me a keystone in today’s
geometric invariant theory (c.f. [178]).
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Let Hd denote the space of homogeneous polynomials of degree d in two
complex variables x, y. This is a vector space of dimension d+1, with a basis given
by the monomials {xd, xd−1y, . . . , xyd−1, yd}. The action of SU(2) on C2 defines a
linear action of this group on Hd in the obvious way: given g ∈ SU(2) and h ∈ Hd

define the action by (g, h) 
→ hg where hg is defined by hg(x, y) = h(g(x, y)).
In this way one has a representation of SU(2) in Hd. [In fact these are all the
irreducible representations of SU(2).] Of course that if we are given a subgroup
Γ ⊂ SU(2), one can restrict this action to Γ.

4.1 Definition. An element h ∈ Hd is Γ-invariant if h(g(x, y)) = h(x, y) for all
g ∈ Γ and all (x, y) ∈ C2.

It is clear that the set of all Γ-invariant polynomials of degree d is a complex
vector space Hd

Γ. Moreover, given h1 ∈ Hd1
Γ and h2 ∈ Hd2

Γ their product is in
Hd1+d2

Γ . Hence the set of all Γ-invariant polynomials of all degrees forms a graded
algebra, that we denote by H∗

Γ, which as a vector space is the direct sum of the Hd
Γ.

The theorem of Klein that we are talking about can be phrased as follows.

4.2 Theorem (Klein). Let Γ be a finite subgroup of SU(2). Then the algebra H∗
Γ

of Γ-invariant polynomials is generated by three homogeneous polynomials, say
h1, h2, h3, of various degrees, which satisfy a (essentially single) polynomial equa-
tion

f(h1, h2, h3) = 0 ,

where f is weighted homogeneous. These three polynomials define a Γ-invariant
function H : C2 → C3, which induces a homeomorphism between the orbit space
VΓ = Γ\C2 and the surface V = f−1(0). This map is actually a diffeomorphism
from VΓ− 0̂ into V −0 and carries MΓ = (Γ\SU(2)) into the link of 0 in V , which
is V ∩ S5, where S5 is the unit sphere in C3.

In fact Klein finds the explicit polynomials that generate these algebras for
each of the finite subgroups of SU(2). For instance, if Γ = Zr is cyclic of order r,
then the generators of the algebra H∗

Zr
can be taken to be:

h1 = xr + yr , h2 = ixr − iyr and h3 = 2ixy ,

which clearly satisfy:
h2

1 + h2
2 + hr

3 = 0

and the surface VZr = Zr\C2 is the hypersurface V in C3 defined by

V = { z2
1 + z2

2 + zr
3 = 0 } .

So the link of V is the lens space Zr\S3. In particular, for r = 2 this is RP 3 =
SO(3).

We refer to Klein’s book for the proof of Theorem 4.2. Here we follow [171]
and prove a slight refinement of Klein’s theorem, which leaves out a few cases
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but is more precise in its statement and has the advantage of motivating Milnor’s
proof of his theorem for the Brieskorn manifolds in the hyperbolic case, which we
discuss in Section 6 below.

4.3 Theorem. Let Γ = Γ(p,q,r) be a binary triangle subgroup of SU(2) and let Π =
Π(p,q,r) be its commutator, Π = [Γ, Γ]. Then the algebra H∗

Π of Π-invariant polyno-
mials is generated by three polynomials h1, h2, h3 of orders k/p, k/q, k/r , respec-
tively, where k is the order of the triangle subgroup Σ(p,q,r) ⊂ SO(3), Σ(p,q,r) =
Γ(p,q,r)/± 1, which satisfy the (essentially single) polynomial relation:

hp
1 + hq

2 + hr
3 = 0.

The corresponding Π-invariant map C2 → C3 determines a homeomorphism be-
tween the space of orbits Π\C2 and the Brieskorn variety:

V(p,q,r) = {(z1, z2, z3) ∈ C3 | zp
1 + zq

2 + zr
3 = 0 } .

This homeomorphism is actually a diffeomorphism away from the singular point
in each surface, and it induces a diffeomorphism between the corresponding links.

The statement “essentially single” in Theorem 4.3 means that the ideal of all
polynomial relations among these polynomials is generated by the aforementioned
relation. Also, we recall that the order of Σ(p,q,r) is half the order of Γ(p,q,r), which
equals the order of the full triangle group Σ∗

(p,q,r).
Hence (2.3) yields that the order of Σ(p,q,r) is:

∣∣Σ(p,q,r)

∣∣ =
2

( p−1 + q−1 + r−1 )− 1
.

Let us make some comments before coming to the proof of Theorem 4.3.
First we remark that the equivalence in Theorem 4.3 is in fact an isomorphism
of analytic spaces, but we will not discuss that here. In fact these singularities
are the prototype of what is called a “taut singularity” (see [121]). These are,
by definition, isolated surface singularities whose topology determines uniquely
the analytic structure. This is not always so. For instance, it follows from [171,
Theorem 7.3] that the Brieskorn manifolds M(2,7,14) and M(3,4,12) are both circle
bundles with Euler class −1 over a Riemann surface of genus 3. Hence the cor-
responding surfaces are homeomorphic. However (c.f.[168, Th. 9.1]) the Milnor
number of the first surface is 78, while for the latter this number is 66, so they
are not analytically equivalent. Similar remarks apply to many other Brieskorn
manifolds, as for instance M(2,9,18) and M(3,5,15).

It is an exercise to show that the binary icosahedral group Γ(2,3,5) is a perfect
group, i.e., it equals its own commutator. The commutator of Γ(2,3,4) is Γ(2,3,3),
the commutator of Γ(2,3,3) is Γ(2,2,2), which is the so-called quaternion group, con-
sisting of the quaternions ±1,±i,±j,±k. The commutator of the dihedral group
Γ(2,2,r) is the cyclic group Zr .
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Hence Theorem 4.3 gives the equivalences:

iv) V(2,2,r)
∼= (Zr\C2),

(iii) V(2,3,3)
∼= (Γ(2,2,2)\C2),

(ii) V(2,3,4)
∼= (Γ(2,3,3)\C2),

(i) V(2,3,5)
∼= (Γ(2,3,5)\C2).

In this list there are missing the cases (Γ(2,3,4)\C2) and (Γ(2,2,r)\C2) , r > 2. Klein’s
theorem is also true for these, and the corresponding singular surfaces are:

z2
1 + z3

2 + z2z
3
3 = 0

for the binary octahedral group Γ(2,3,4), and

z2
1 + z2

2z3 + zr+1
3 = 0

for the binary dihedral group with 4r elements. In the special case r = 2 this
surface is equivalent to V(2,3,3).

We also notice that the Brieskorn manifold M(2,3,5)
∼= Γ(2,3,5)\S3 is a ho-

mology sphere, since the group Γ(2,3,5) is perfect. This is the famous Poincaré’s
homology sphere. Notice that examples like this may not occur in higher dimen-
sions, as pointed out in §8 of the first chapter. The point is that when the link of
a hypersurface singularity has dimension more than 3, then it is highly connected
and therefore it is a homology sphere iff it is a homotopy sphere, and in this case
Smale’s h-cobordism theorem implies that the manifold is actually a topological
sphere.

The singularities constructed above play a very special role in geometry and
the theory of singularities, and they receive different names according to the prop-
erty one is looking at. They are called, for instance, Klein singularities, Du Val
singularities or rational double points. They are also the simple (or 0-modal) sin-
gularities in Arnold’s notation (see for instance [9]). We refer to [65] for a (yet not
exhaustive) list of 15 characterizations of these singularities. Klein’s theorem gives
two of them. These groups can also be regarded as Coxeter groups and there are
very interesting results in this respect, see for instance [42, 45].

Proof of 4.3. This theorem is carefully proved in Milnor’s article [171], so we only
indicate here the main ideas. We recall that a character of a group Γ means a
1-dimensional unitary representation of Γ, i.e., a homomorphism

χ : Γ→ U(1) ⊂ C∗ := C− 0.

Given Γ ⊂ SU(2) and a character χ, let Hd,χ
Γ denote the set of all homogeneous

polynomials of degree d which are χ-invariant, i.e., they transform according to
the rule:

h(g(x, y)) = χ(g)h(x, y)
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so they are “invariant up to multiplication by χ”. [These polynomials were called
“invariant forms” by Klein in [114].] Since χ is a homomorphism, the set Hd,χ

Γ

is a complex vector space. Furthermore, given characters χ1, χ2, and polynomials
h1 ∈ Hd1,χ1

Γ and h2 ∈ Hd2,χ2
Γ , the product h1 · h2 is in H

d1+d2,χ1χ2
Γ , where the

product of the characters is defined in the obvious way. Hence these polynomials
form a bigraded algebra that we denote H∗,∗

Γ . Notice that H∗,1
Γ is by definition the

set of Γ-invariant polynomials.
Given Γ ⊂ SU(2) and h ∈ Hd,χ

Γ for some character χ, for every g = xyx−1y−1

in the commutator Π of Γ, one has χ(g) = 1. Thus one has an inclusion Hd,χ
Γ ⊂ Hd

Π.
On the other hand, Π is a normal subgroup of Γ, hence the quotient group Γ/Π acts
linearly on Hd

Π, which is therefore a representation space for this group. Since the
group Γ/Π is finite and Abelian, it follows (see [171, 4.1]) that the representation
space Hd

Π splits as the direct sum of the Hd,χ
Γ as χ varies over the characters of Γ.

Hence one has an isomorphism of algebras:

H∗
Π =
⊕

H∗,∗
Γ . (4.4)

Now consider a polynomial h ∈ Hd,χ
Γ , for some d and some χ. Since h is homoge-

neous of degree d, it follows that h must vanish over d lines (maybe not necessarily
different) �1, . . . , �d through the origin in C2. These lines are necessarily permuted
by the elements of Γ, and the linear equations of �1, . . . , �d determine h uniquely,
up to multiplication by a constant. Conversely, given d points in CP 1 which are
permuted by the action of Γ, the corresponding lines in C2 determine a homoge-
neous polynomial h of degree d, which satisfies that for each γ ∈ Γ, the rotated
polynomial f(g(x, y)) is a scalar multiple of f(x, y). Thus we can define a character
of Γ by:

χ(g) = f(g(x, y))/f(x, y).

By construction one has that h is in Hd,χ
Γ .

Now suppose Γ is a triangle subgroup Γ(p,q,r) of SU(2). Then its action on
CP 1 ∼= S2 factors through an action of the triangle group Σ(p,q,r) ⊂ SO(3), because
the element −1 carries each line into itself.

Now consider the triangle T(p,q,r) ⊂ S2 whose edges give rise to the full
triangle group Σ∗

(p,q,r), and let T̂ be the triangle obtained by reflecting T(p,q,r)

in one of its edges. The generators of Σ(p,q,r) are rotations around the vertices
v1, v2, v3 of T(p,q,r) by angles 2π/p, 2π/q, 2π/r, and T̂ is a fundamental domain for
the action of Σ(p,q,r), as we already know from Corollary 2.4 or from the discussion
in §1. One has three special orbits, which correspond to the three vertices v1, v2, v3

of T̂ , and all other orbits have as many points as there are copies of the triangle
T̂ in S2, i.e., the order k of Σ(p,q,r). Since the stabilizers of the vertices are cyclic
groups of orders p, q, r, respectively, it follows that the orbits of the three vertices
have k/p, k/q, k/r points. These three special orbits determine as above three

polynomials h1 ∈ H
k
p ,χ1

Γ , h2 ∈ H
k
q ,χ2

Γ , h3 ∈ H
k
r ,χ3

Γ . [It is worth saying that if
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we think of the triangle groups as being groups of symmetries of polyhedra, then
the three special orbits correspond to: (i) the vertices of the polyhedron; (ii) the
middle points of the edges; and (iii) the middle points of the faces.]

The claim now is that these polynomials h1, h2, h3 generate the bigraded
algebra H∗,∗

Γ , so they generate H∗
Π and they satisfy the polynomial relation of

Theorem 4.3 above. (This is also Lemma 4.3 in [171].) Since these polynomials are
Π-invariant, they define a map

φ : Π\C2 −→ C3 ,

whose image is contained in the Brieskorn variety V(p,q,r).
We claim that this map is injective. For this we consider points (x1, y1)

and (x2, y2) in C2 which are not in the same Π-orbit. Denote by {π1, . . . πm} the
elements of Π, and choose some polynomial g(x, y) (maybe not homogeneous)
which vanishes on (x1, y1) but does not vanish at any point in the Π-orbit of
(x2, y2). Now define a Π-invariant polynomial h by:

h(x, y) = g(π1(x, y)) g(π2(x, y)) · · · g(πm(x, y)) .

By construction one has h(x1, y1) �= h(x2, y2). Now we express h as the sum of
homogeneous polynomials of various degrees. Since h1, h2 and h3 generate the bi-
graded algebra H∗,∗

Γ , we must have that one of these satisfies that hi(x1, y1) �=
hi(x2, y2). Hence the map φ is injective. The rest now follows from general argu-
ments, using the local conical structure of V(p,q,r) and the fact that away from the
isolated singular point in each surface, both VΓ = Π\C2 and V(p,q,r) are complex
manifolds of the same dimension (c.f. [171, §4] for details).

II.5 The group PSL(2, R) and its universal

cover S̃L(2, R)

Let us look now at the group PSL(2, R) of orientation preserving isometries of
the hyperbolic plane H2, introduced in §2 above. We recall that it acts on H2

with isotropy SO(2), hence it is diffeomorphic to the open solid torus S1 × H2.
Given points z1, z2 ∈ H and unit tangent vectors v1, v2 based at z1, z2, there is one
and only one element in PSL(2, R) taking z1 to z2 and whose derivative carries
v1 into v2.

For the rest of this chapter it is actually better to work with the Lobachevsky
model for hyperbolic geometry, so we think of H2 as being the upper half-plane
Im z > 0 of the complex plane C. For simplicity we set H = H2. We identify

PSL(2, R) with the group of all Möbius transformations z 
→ az+b
cz+d , where

(
a b
c d

)
is an element in SL(2, R) and two such matrices define the same Möbius transfor-
mations iff they differ by sign.
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Notice that the action of PSL(2, R) on the tangent bundle TH ∼= H × C is
via the derivative:

g · (z, w) =
(

g(z) ,
dg

dz
(z) · w

)
,

and this action is free away from the zero-section, because if an element g ∈
PSL(2, R) fixes a point z ∈ H, then it is locally a rotation (more precisely it is
an “elliptic element” in PSL(2, R), using the standard terminology). It follows
that given any point (z, v) ∈ TH with |v| �= 0, the orbit of this point is a copy of
PSL(2, R). In particular the orbit of the point (i, 1) embeds PSL(2, R) in TH as
the unit tangent bundle of the hyperbolic plane.

Since PSL(2, R) is topologically a solid torus S1×H2, its fundamental group
is isomorphic to Z and its universal cover S̃L(2, R) is diffeomorphic to R×H2 ∼= R3,
but its Lie group structure is quite interesting. This group S̃L(2, R) is a central
extension of PSL(2, R) and one has a short exact sequence:

0 −→ Z −→ S̃L(2, R) −→ PSL(2, R) −→ 0 ,

where the kernel Z of the projection S̃L(2, R) −→ PSL(2, R) is the centre of
S̃L(2, R).

We need in the sequel a description of this group due to Milnor [171, §5],
which is not standard. For this we need to introduce the differential forms of
fractional degree, first considered by H. Petersson (1930).

It is classical in the theory of Riemann surfaces to consider Abelian differ-
entials, which are expressions of the form f(z) dz with f holomorphic, as well as
quadratic differentials, i.e., expressions of the form f(z) dz2. More generally, for
any integer k ≥ 0, a differential form of degree k on H (or on an open set of C)
can be defined as a complex-valued holomorphic function of two variables, of the
form

φ(z, w) = f(z)wk ,

where z varies over H and w (= dz) varies over C. These can be regarded as
functions defined on the holomorphic tangent bundle TH ∼= H×C. Given such a
differential form φ(z, w) on H and an element g ∈ PSL(2, R), the pull-back g∗φ is
the form

g∗φ(z, w) = φ

(
g(z) ,

dg

dz
(z) · w

)
= f(g(z))

(
dg

dz

)k

wk.

This allows us to speak of differential forms (of any integral degree) invariant
under the action of a certain subgroup of PSL(2, R), these are called automorphic
forms and we will come to them in §6 below.

We need to generalize these concepts (following [171]), replacing the integer
k by an arbitrary rational number. For this we make the convention that the
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variable w is to vary over the universal covering group C̃∗ of the non-zero complex
numbers, which is of course equivalent to the additive group of C; the isomorphism

ẽ : C −→ C̃∗

of complex Lie groups is obtained by lifting the exponential map e(z) = e2πiz from
C to C∗. The kernel of the projection is isomorphic to Z and it is generated by
the image of ẽ(1).

5.1 Definition. (Milnor) A differential form of (fractional) degree α ∈ Q on the
upper half-plane H is a holomorphic function on H× C̃∗ of the form:

φ(z, w) = f(z)wα ,

where f is a holomorphic function on H and w varies over the universal covering
group of C∗, the non-zero complex numbers. Here it is understood that wα is to
be evaluated in C̃∗ and then projected to C∗ to be multiplied by f(z).

5.2 Definition. (Milnor) A labeled holomorphic map on H means a holomorphic
function g : H → H with nowhere-vanishing derivative, together with a lifting of
the derivative from C∗ to C̃∗ (a “labeling”).

As noted by Milnor ([171, p. 201]) one has:

5.3 Proposition. The set of all labeled biholomorphic maps from H to itself forms a
group, which is isomorphic to S̃L(2,R), the universal covering group of PSL(2,R).

This group acts on H× C̃∗ by:

g · (s, w) =
(

g(z) ,
d̃g

dz
(z) · w

)
,

where S̃L(2, R) is acting on H by projecting it to SL(2, R). This action is free
and therefore each orbit is a copy of S̃L(2, R) embedded in the complex manifold
H× C̃∗.

II.6 Milnor’s theorem for the 3-dimensional

Brieskorn manifolds. The hyperbolic case

In this section we state the following theorem of Milnor [171] and give an outline
of its proof, which is formally similar to the proof of Theorem 4.3. We refer to
Milnor’s article for the complete proof.

6.1 Theorem. Let Γ = Γ(p,q,r) be a triangle subgroup of PSL(2, R), let Γ̃ be its
lifting to the universal covering group S̃L(2, R), and let Π̃ ⊂ S̃L(2, R) be the
commutator subgroup of Γ̃. Then the orbit space (Π̃\S̃L(2, R)) is diffeomorphic to
the 3-dimensional Brieskorn manifold M(p,q,r).
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Before coming to the proof of this theorem, let us remark that when we lift
Γ(p,q,r) ⊂ PSL(2, R) to a subgroup Γ̃ of S̃L(2, R), the lifting necessarily contains
the centre C ∼= Z of S̃L(2, R), which is the kernel of the projection into PSL(2, R).
Hence the quotient spaces (Γ\PSL(2, R)) and (Γ̃\S̃L(2, R)) are obviously diffeo-
morphic 3-manifolds, and they are closed (i.e., compact and with empty boundary)
because (Γ\PSL(2, R)) is a Seifert manifold (see III.1 below) that fibres with three
exceptional fibres over the orbifold Γ\H, which is the sphere S2 with three marked
points. However, in Theorem 6.1 we are considering the commutator subgroup Π̃,
and there is no reason why this group should contain the centre C, and in fact
it does not in general. Hence the Brieskorn manifold M(p,q,r) will not be in gen-
eral of the form (G\PSL(2, R)) for a subgroup of PSL(2, R) (c.f. Chapter III).
An exception is when the triple (p, q, r) is (2, 3, 7). The corresponding triangle
group is perfect and its lifting Γ̃(2,3,7) ⊂ S̃L(2, R)) is also perfect. [In fact a simple
computation shows that this is the only triangle subgroup of PSL(2, R) which is
perfect and its lifting to the universal cover is also perfect; it would be interesting
to understand why this happens.]

Milnor’s proof of Theorem 6.1 is along the same lines as his proof of Theorem
4.3, with automorphic forms replacing the homogeneous polynomials. We recall
(see for instance [30]) that the classical automorphic functions were introduced by
Poincaré in the 1880s as holomorphic (or meromorphic) functions on H satisfying
certain conditions with respect to a discrete subgroup of Möbius transformations.
For Theorem 6.1 we need to consider what Milnor calls automorphic forms of
fractional degree. For this we consider differential forms of fractional degree as in
the previous section. These are expressions of the form φ(z, w) = f(z)wα, where
f(z) is a holomorphic function on H, and w varies over the universal covering
group of C∗, the non-zero complex numbers (we recall that wα is to be evaluated
in C̃∗ and then projected to C∗ to be multiplied by f(z)).

Given a differential φ(z, w) = f(z)wα on H and an element g ∈ S̃L(2, R), its
pull-back g∗φ is:

g∗φ(z, w) = φ

(
g(z) ,

d̃g

dz
(z) · w

)
.

6.2 Definition. Let Γ be a discrete subgroup of S̃L(2, R) and let χ : Γ→ U(1) ⊂ C∗

be a character. A differential φ(z, w) = f(z)wα on H is χ-automorphic if

g∗(φ) = χ(g) · φ

for every g ∈ Γ. If χ ≡ 1 is the constant character, so that g∗(φ) = φ for all
g ∈ Γ, then φ(z, w) is said to be Γ–automorphic.

Notice that such a form vanishes at a point x (to order s) if g vanishes at x
(to order s), and in this case g vanishes in the whole orbit of x, since the form is
automorphic.
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Let us denote by Aα,χ
Γ the complex vector space of χ-automorphic forms of

degree α. We denote simply by Aα
Γ those corresponding to the constant character

1, i.e., the Γ-automorphic forms. We have, just as for the homogeneous polynomials
of Section 4, that each of these is a vector space. Taking all of them, of all degrees
and for all characters, we get the bigraded algebras

A∗
Γ and A∗,∗

Γ

of automorphic and χ-automorphic forms, respectively.
The first step for proving Theorem 6.1 is to show that given the extended

triangle group Γ̃ = Γ̃(p,q,r) and its commutator Π̃, one has that each vector space
Aα

Π̃
splits as direct sum of its subspaces Aα,χ

Γ̃
as χ varies over the characters of Γ̃.

Thus one has that the graded algebra A∗
Π̃

of Π̃-automorphic forms is the direct sum
of the bigraded algebras A∗,∗

Γ̃
. This is easy and similar to the previous assertion

for polynomials and subgroups of SU(2).
The aim is to show that the algebra A∗

Π̃
is generated by three automorphic

forms which satisfy the relation given by the corresponding Brieskorn polynomial.
For this Milnor shows (Lemma 3.1) that the group Γ̃(p,q,r) has a presentation with
generators γ1, γ2, γ3, which represent rotations through the three vertices of the
triangle T(p,q,r) and satisfy the relations:

γp
1 = γq

2 = γr
3 = γ1 γ2 γ3.

Letting k be the rational number defined by,

k =
1

1− p−1 − q−1 − r−1
,

so that π/k is the area of the triangle T(p,q,r), Milnor constructs a character χ0 of
Γ̃ defining it on the generators by:

χ0(γ1) = e2πik/p , χ0(γ2) = e2πik/q , χ0(γ3) = e2πik/r ,

and shows that if an automorphic form φ ∈ Aα,χ

Γ̃
does not vanish at any vertex of

T(p,q,r), then its degree α is a multiple of k and the character χ is χ
α/k
0 . [Recall

that in the spherical case k is the order of the triangle group in question, hence
the order of the generic orbits.]

To construct the generators of the algebra of Π-invariant automorphic forms,
one may recall that in the spherical case this was done by looking at the orbit of
each vertex of T ; such orbit defines a set of lines through the origin in C2 which
are Γ-invariant and give rise to a homogeneous polynomial hi (well defined up
to a constant) and a character χi, defined ad hoc so that h is χi-invariant. In
the hyperbolic case the key is (Lemma 6.3 in [171]) proving that the space Ak,χ0

Γ̃
contains one and (up to a constant multiple) only one automorphic form which
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vanishes at any given point of H (and therefore at the orbit of the point, since it
is automorphic). If the chosen point is a vertex of T , say v1, then the form one
gets must have a p-fold holomorphic root φ1, and Milnor shows that this must be
also an automorphic form for some character χ1 satisfying χp

1 = χ0 (Lemma 5.3
in [171]). Hence, just as for polynomials, the orbit in H of each vertex defines an
automorphic form of Γ, for some character.

In this way Milnor arrives at his main Lemma (6.4), that given the extended
triangle group Γ̃ = Γ̃(p,q,r) and its commutator Π̃, the bigraded algebra A∗,∗

Γ̃
is

isomorphic to the graded algebra A∗
Π and is generated by three forms

φ1 ∈ A
k/p,χ1

Γ̃
, φ2 ∈ A

k/q,χ2

Γ̃
, φ3 ∈ A

k/r,χ3

Γ̃
,

where the characters satisfy the relation

χp
1 = χq

2 = χr
3 = χ0 .

Furthermore, the automorphic form φi has a simple zero at each point of the Γ̃-
orbit of the vertex vi and no other zeroes, and they satisfy the polynomial relation:

φp
1 + φq

2 + φr
3 = 0.

The three forms φ1 , φ2 , φ3 are complex-valued holomorphic functions on
H× C̃∗ and they are never simultaneously zero, so they define a holomorphic map:

Φ = (φ1, φ2, φ3) : h× C̃∗ −→ C3

whose image is contained in the complex manifold V(p,q,r)−0, obtained by remov-
ing the singular point from the corresponding Brieskorn variety. As we know from
Section 5, the group S̃L(2, R) acts freely on H × C̃∗ by holomorphic transforma-
tions. Hence H × C̃∗ is foliated by the orbits of S̃L(2, R), which are all copies of
this group. Thus the quotient of H×C̃∗ by Π̃ is a (non-compact) complex manifold
of dimension 2, which is foliated by manifolds of the form (Π̃\S̃L(2, R)). One can
show that Φ is actually a biholomorphism and induces a diffeomorphism between
one of the orbits (Π̃\S̃L(2, R)) (anyone you prefer) and the Brieskorn manifold
M(p,q,r). �

II.7 Brieskorn-Hamm complete intersections.
The theorem of Neumann

Consider now a Pham-Brieskorn polynomial in n complex variables,

f(z) = za1
1 + · · ·+ zan

n , ai ≥ 2 , n ≥ 3 .

Given any n-tuple α1 = α11, . . . , α1n of non-zero complex numbers, the variety:

Vα1 = {α11 za1
1 + · · ·+ α1n zan

n = 0 }
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has an isolated singularity at 0 and it is equivalent to a Brieskorn variety. However
the way this is placed in Cn depends on the coefficients αij . Suppose you have
another vector of coefficients α2 = α21, . . . , α2n, then one has another equivalent
Brieskorn variety Vα2 . It is an exercise to show that if all the (2×2)-minors of the
(2× 2n) matrix whose rows are α1, α2 have non-zero determinant, then these two
varieties intersect transversally away from 0 and define a complete intersection
singularity, of codimension 2, with an isolated singularity at 0. More generally,
H. Hamm [96] showed that given any (n− 2) × n matrix A =

((
αi,j

))
the corre-

sponding n− 2 varieties define a 2-dimensional complete intersection VA with an
isolated singularity at 0 ∈ Cn if and only if every (n−2)× (n−2) subdeterminant
is non-zero. In this case the link,

M = VA ∩ S2n−1 ,

is a smooth 3-manifold whose diffeomorphism type depends only on the n-tuple
a1, . . . , an [96]. Following Hamm and [183], we call VA a Brieskorn-Hamm complete
intersection. If n = 3 this is a Brieskorn variety as before.

Now consider a convex n-sided polygon ∆ ⊂ H, bounded by geodesics, whose
interior angles are π/a1, . . . , π/an, let Σ∗ be the group generated by the reflections
(inversions) σ1, . . . , σn in the edges of ∆, and let Σ ⊂ PSL(2, R) be the group of
orientation preserving isometries of H generated by reflections on the edges of ∆.
These groups are called polygonal, for obvious reasons. They were considered by
W. Dyck (1882) and one can show, just as for the triangle groups, that Σ∗ has a
presentation with generators σ1, . . . , σn and relations σ2

i = (σi σi+1)ai = 1 for all
i modulo n. The group Σ is generated by rotations around the vertices by twice
the corresponding angles, and it has a presentation:

〈τ1, . . . , τn | τa1
1 = · · · = τan

n = τ1 · · · τn = 1〉 .

Following [183] we lift Σ to the universal covering S̃L(2, R). Its lifting Γ =
Γ(a1,...,an) has a presentation

〈γ1, . . . , γn , c | γa1
1 = · · · = γan

n = c , γ1 · · · γn = cn−2〉 .
(Notice that if n = 2 nothing changes if we drop the generator c.) Now let
Π ⊂ S̃L(2, R) be the commutator subgroup of Γ. Just as for the triangle groups,
one has that both Γ and Π act (freely) on H× C̃∗ and one has the corresponding
algebras of automorphic and χ-automorphic forms of fractional degree, for the
various characters of Γ. Again, since Π\Γ is finite and Abelian, one has an iso-
morphism of algebras A∗

Π
∼= A∗,∗

Γ and W. Neumann proved in [183] that these
algebras are generated by n forms φj ∈ A

k/aj ,χj

Γ , where k is given by the area
of ∆: k−1 = (n − 2) −∑ a−1

i and the characters χ1, . . . , χn are defined on the
generators of Γ by:

χj(γi) = e2πik/aiaj for j �= i ;
and

χj(γi) = e2πik/(a2
i +1)/aj for j = i .
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Each form φj has a simple zero at the vertex vj of ∆ and is uniquely determined
by its zeroes up to a multiple. These n forms satisfy polynomial relations:

αi1 φa1
1 + · · ·+ αin φan

n = 0 ; i = 1, . . . , n− 2 ,

such that the matrix A =
((

αij

))
has all (n− 2)× (n− 2) minors with non-zero

determinant. In this way one has the Brieskorn-Hamm complete intersection VA

determined by the matrix A and the angles of the polyhedron ∆. We arrive at the
following beautiful generalization of Milnor’s theorem.

7.1 Theorem (Neumann). These n forms define a map

Φ = (φ1, . . . , φn) : H× C̃∗ −→ Cn

which is Π-invariant and defines a biholomorphism between the space of orbits
Π\(H × C̃∗) and the non-singular part V ∗

A = VA − 0 of the Brieskorn-Hamm
complete intersection

VA =
n−2⋂
i=1

{αi1 za1
1 + · · ·+ αin zan

n = 0 } .

This map induces a diffeomorphism between Π\S̃L(2, R) and the link of 0 in VA.

In Chapter III we speak more about this theorem and improvements of it
made by Neumann himself and by I. Dolgachev.

II.8 Remarks

To complete the story about the relation between groups of isometries in plane
geometry and Brieskorn singularities, it remains to consider:

(i) What about the Brieskorn singularities { zp
1+zq

2+zr
3 = 0} when 1

p+ 1
q + 1

r = 1?

(ii) What about the subgroups of PSL(2, R), other than the triangle groups? And
what about the quotients of PSL(2, R) by the triangle groups themselves?
(not going to the universal cover and then taking the commutator subgroup
there).

(iii) What about the groups of isometries of the Euclidean plane?

These three questions are answered in Chapter III. The answer to (i) was
given by Milnor himself in [171], showing that these singularities correspond to
quotients related to the nilpotent group N of real 3×3 upper triangular matrices.
The Brieskorn singularities correspond to three of the discrete subgroups of N ;
this study was completed in [59] and [183].

A subgroup Γ of PSL(2, R) which is discrete is called a Fuchsian group,
and it is said to be cocompact if the orbit space Γ\PSL(2, R) is compact. These
are the groups relevant for question (ii), since the link of an isolated complex
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surface singularity is a compact 3-manifold. Dolgachev gave in [57, 58] a beautiful
construction of surface singularities using cocompact Fuchsian groups, which is
very closely related to Milnor’s work for the Brieskorn manifolds. This provides,
for every cocompact Fuchsian group, an isolated surface singularity whose link
is Γ\PSL(2, R). This was extended in [59] and [183] to all discrete subgroups of
S̃L(2, R).

Question (iii) was considered in [231] and we discuss it in Chapter III below.



Chapter III

3-dimensional Lie Groups and
Surface Singularities

The theorems of Klein, Milnor and Neumann discussed in Chapter II, together with
very deep and important results by Hirzebruch, Dolgachev, Neumann himself and
others that I have not mentioned yet, give us a very good understanding of the
relation between 3-dimensional Lie groups and complex surface singularities; this
is the topic that we explore in this chapter. Our basic references here are [207, 59,
194, 204, 104, 186, 231]. It turns out that up to isomorphism, there are six different
3-dimensional Lie groups that admit discrete subgroups with compact quotient (we
call these uniform subgroups, a term frequently used in the literature). In five of
these cases the orbit spaces one gets are Seifert manifolds, and these are strongly
related with the so-called quasi-homogeneous surface singularities. The remaining
case gives rise to the cusp-singularities, whose links are torus bundles over the
circle. In this chapter we explain these relationships. We begin by describing a
few well-known facts about quasi-homogeneous singularities and Seifert manifolds,
then we describe the 3-dimensional Lie groups with uniform subgroups and their
orbit spaces. Their relation with singularities is discussed case by case, including
two cases which apparently do not come into the scene and are usually left aside
when talking about complex singularities (these are the solvable group Ẽ+(2) and
the Abelian group R3). We show that there are several interesting properties in
common for all six cases. We also discuss a relationship between the property of
being Gorenstein for the complex surfaces in question and the Lie algebras of the
corresponding groups.

III.1 Quasi-Homogeneous surface singularities

The quasi-homogeneous singularities play a very distinguished role in singularity
theory. Their geometry and structure has been widely studied by many authors,
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most notably by H. Pinkham, P. Orlik and Ph. Wagreich, I. Dolgachev and W.
Neumann. We refer to [256] for a beautiful introduction to the subject.

We recall that a polynomial h in n complex variables is weighted homogeneous
if there exist non-zero integers (q1, . . . , qn) and a positive integer d such that:

h(tq1z1, . . . , t
qnzn) = td h(z1, . . . , zn) .

Equivalently, we demand that there exist non-zero rational numbers (w1, . . . , wn),
called the weights of h, for which h is a sum of monomials zα1

1 · · · zαn
n such that

α1

w1
+ · · ·+ αn

wn
= 1 .

Given these weights we recover d as being the smallest integer such that for each
i = 1, . . . , n there exists an integer qi so that qi wi = d. These are the qi. For
example, if h is a Pham-Brieskorn polynomial,

h(z1, . . . , zn) = za1
1 + · · ·+ zan

n ,

then the weights are obviously (a1, . . . , an). For the polynomial

f(z1, z2) = za1
1 + z1z

a2
2 , a1 > 1, a2 ≥ 1 ,

the weights are: w1 = a1 and w2 = a1 a2/(a1 − 1). In this case one has q1 = a2 ,
q2 = a1 − 1 and d = a1a2. One has in this case:

f(ta2z1, t
a1−1z2) = ta1a2f(z1, z2) ,

as it should be.
Now let V ⊂ Cn be an algebraic variety defined by homogeneous polynomi-

als h1, . . . , hn with same weights. Let q1, . . . , qn be the corresponding exponents,
defined as above. One can define an action of C∗ on Cn,

σ : C∗ × Cn −→ Cn

by σ(t, (z1, . . . , zn)) = (tq1z1, . . . , t
qnzn). Notice this is exactly the action consid-

ered in I.1 above for the Brieskorn varieties. Just as in that case, if the exponents qi

are all > 0, then the restriction of this action to the positive real numbers R+ gives
a real analytic flow, whose orbits are transversal to all the spheres in Cn centred
at 0, and they converge to the origin. Hence every orbit contains 0 in its closure.
Conversely, if a complex analytic variety V ⊂ Cn admits such a C∗-action, then
V is globally defined and it is (globally) a cone over its intersection with the unit
sphere. Furthermore, by [194, 1.1.2] one also has that V is actually algebraic and
the ideal of polynomials (in n variables) vanishing on V is generated by weighted
homogeneous polynomials. In fact one has even more (see [194, 1.1.3]): if V ⊂ Cn

is an algebraic variety and there is a C∗-action on V , C∗ × V → V , given by a
morphism of algebraic varieties, then:
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(i) there is an embedding of V in some Cm and a C∗-action on Cm for which V
is an invariant set and the induced action on V coincides with the given one;
and

(ii) one can choose the coordinates suitably, so that the action takes the form:

σ(t, (z1, . . . , zm)) = (tq1z1, . . . , t
qmzm)

for some qi ∈ Z.
This means that the fact that an analytic germ (V, 0) admits a C∗-action is some-
thing intrinsic of the germ, independent of the equations used to define it; and V
is automatically algebraic.

1.1 Definition. By a quasi-homogeneous surface singularity we mean a 2-dimen-
sional complex analytic variety V in some affine space Cn with an isolated sin-
gularity at 0, together with a good C∗-action, where good means that 0 is in the
closure of every C∗-orbit.

As before, by restricting the action to the positive real numbers R+ ⊂ C∗

one gets a real analytic flow on V , with a fixed point at 0, whose orbits are rays
emanating from the origin, transversal to all the spheres around 0, and the orbit
space (V −0)/R+ can be identified with the link M , which is automatically a Seifert
manifold, with a Seifert decomposition given by the S1-orbits of the restriction to
S1 of the C∗-action.

We recall that a Seifert manifold can be defined to be a 3-manifold M , that
we assume to be closed, connected and orientable, endowed with a foliation by
oriented circles, such that every fibre has a neighborhood which is diffeomorphic
to a torus S1 × D2 and is a union of orbits. (See for instance [206, 193, 110]
for details). We can actually assume that this foliation on M is given by an S1-
action. One has that there are a finite number of special orbits O1, . . . ,Or and
all other orbits are principal. The principal orbits are those where the S1-action
is free. Each such orbit has a neighborhood which is a solid torus T, a union
of principal orbits. The special (exceptional) orbits are where the action has non-
trivial isotropy. It is easy to see that the isotropies are necessarily finite and cyclic,
and therefore the quotient space of M by this action is a closed 2-dimensional
manifold S; one has a projection p : M → S, which is a fibre bundle away from
the exceptional fibres. Thus we speak of the Seifert fibres of the corresponding
Seifert fibration of M . To each exceptional Seifert fibre one attaches a pair (α, β)
of normalized (or reduced) Seifert invariants (0 < β < α). These integers satisfy
the equation αa+βb = 0 in H1(N, Z), where N is a small tubular neighborhood of
the corresponding exceptional fibre, saturated with Seifert fibres, b is an oriented
Seifert fibre on ∂N and a is an oriented curve on ∂N such that the intersection
a · b is +1 on ∂N , oriented as the boundary of N .

Seifert manifolds are characterized, up to equivariant diffeomorphism, by
their Seifert invariants (see [193, 1.10]). These are the normalized orbit invariants
(αi, βi), i = 1, . . . , r , of the exceptional fibres and (in our case) two other invariants
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that we now describe. One is the genus of the 2-dimensional manifold S. It can
happen that S is non-orientable, and this has to be taken into account, but that
will not happen for the cases that concern us in this text. The other relevant
invariant is usually denoted by e; when there are no special fibres, so that M
is an S1-bundle over S, e is the usual Euler number (see [242]). In the general
case one must take the special fibres into account. To define it we recall that if
E is an oriented S1 bundle over an oriented 2-dimensional, compact, connected,
manifold B, then its usual Euler class is the primary (i.e., non-automatically zero)
obstruction for constructing a section of E. This class lives in H2(B; Z) and it
becomes a number when we evaluate it on the orientation class of B. If B has
non-empty boundary, then H2(B; Z) ∼= 0, so the bundle is trivial. However, if we
fix a choice of a trivialization of E over ∂B, i.e., a section of τ : ∂B → E, then
one has an Euler class of E relative to τ , e(E; τ) ∈ H2(B, ∂B; Z) ∼= Z; evaluating
e(E; τ) on the orientation cycle of the pair (B, ∂B) we obtain an integer, which is
by definition, the Euler number of E relative to τ . Now, given the oriented Seifert
fibration π : M → S, let us remove from S small, pairwise disjoint, open discs
around the points corresponding to the special fibres, and denote by B what is
left. Let E be π−1(B), which is M minus a union of open solid tori. This is an S1

bundle over B. On each boundary torus Ti one can can choose a unique (up to
isotopy) oriented curve a which intersects each Seifert fibre in exactly one point
and satisfies that m = α[a] + β[b], where m is a meridian of Ti, (α, β) are the
corresponding reduced orbit invariants and [b] is the homology class represented
by one Seifert fibre. This curve a determines a section of E|Ti . Doing this for each
boundary torus we obtain a section of E over ∂B. The Euler number e = e(M) of
the Seifert fibration π : M → S is defined to be the Euler number of E relative to
the given trivialization over ∂B.

1.2 Definition. The normalized (or reduced) Seifert invariants of the Seifert mani-
fold M are:

{ g; e; (α1, β1), . . . , (αr, βr) }.

Now, given the surface V with C∗-action, let V ∗ = V − {0}. Consider the
subgroup R+ ⊂ C∗ of positive real numbers. If we divide V ∗ by the induced R+-
action we obtain the link M , which is then naturally equipped with an S1-action.
Thus M becomes a Seifert manifold.

The orbit space S = V ∗/C∗ is an oriented 2-dimensional closed manifold,
canonically diffeomorphic to the orbit space M/S1. The projection V ∗ π−→ S
endows V ∗ with the structure of a holomorphic Seifert bundle. This means that
V ∗ minus the exceptional orbits is indeed a holomorphic C∗-bundle over S minus
the corresponding points, and the structure of V ∗ around the exceptional orbits
is described by the orbit invariants (αi, βi), which can be defined as follows.

LetOi be the corresponding exceptional S1-orbit on M . The isotropy group of
Oi is necessarily a finite cyclic subgroup σi of S1, and its order is the corresponding
invariant αi. Now, given a point x in Oi, let H be a 2-plane in the tangent space
TxM transversal to the line tangent to the orbit. Using a local chart, we identify
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a small disc Û ⊂ H with a small disc U in M , which is transversal to Oi. Now let
W be the union of all the S1-orbits that meet U . This is a solid torus, and it is a
neighborhood of Oi in M . By the slice theorem (see for instance [193, 256]), the S1-
action gives a representation σ̂ of the isotropy group σi in GL(2, R), regarded as the
automorphisms of H , such that σ̂(γ)(Û) = Û for all γ ∈ σ, and W is equivariantly
diffeomorphic to (S1×Û)

/
σi, where σi acts on S1×Û by γ ·(g, u) = (gγ−1, σi(γ)u).

We may identify the plane H with C and the group σi with the αth roots of unity,
so that the slice representation is just complex multiplication by these roots of
unity. Then, for each γ in σi and for each x ∈ Û the slice representation takes the
form σ̂(γ)(z) = γνi(z), for some integer νi, 0 < νi < αi. The integers (αi, νi) are
the orbit invariants of Oi as used in [194, 256]. The corresponding invariant βi is
defined by

νiβi ≡ −1 mod (αi) ;

so it is the inverse of −νi modulo αi.
As an example (see [256]), consider the affine surface V defined by z12

1 +z8
2−

z2z
5
3 = 0. Then V is invariant under the action t ·(z1, z2, z3) 
→ (t10z1, t

15z2, t
21z3),

so V is quasi-homogeneous and it has six exceptional orbits. One of these orbits is

O1 = {(z1, z2, z3) ∈ V ∩ S5 | z1 = z7
2 − z5

3 = 0 } ,

whose isotropy group is Z3, so α1 = 1. To compute β1 we notice that (0, 1, 1) is a
point in O1 and a plane transversal to this orbit is given by z2 = z3 = 0. Then the
slice representation is γ · (z1, 0, 0) = (γ10z1, 0, 0) for γ a cubic root of unity. Thus
ν1 ≡ 10 ≡ 1 mod 3. Therefore β1 = 2.

The Euler number e also has a very nice interpretation, coming from [204,
187]. For this, as in Chapter II, we let P denote one of the standard simply
connected complex manifolds of dimension 1: CP1, C or the upper half-plane H,
which serve as models for the classical plane geometries. Since the bundle V ∗ over
S is holomorphic, it turns out that the surface S is automatically a Riemann
surface with marked points corresponding to the exceptional orbits, where it has
an orbifold structure. By the Riemann-Köbe uniformization theorem we know
that choosing the appropriate “plane”, one has that P is the universal cover of
S (as an orbifold) and there exists Γ ⊂ Aut(P ), a discrete group of holomorphic
automorphisms of P with quotient S = P/Γ. Then a well-known theorem of
Selberg (see also [80]) says that there exists a normal subgroup Γ̂ of Γ of finite
index which acts freely on P . Thus one has a finite covering map Ŝ

H→ S with
covering group H = Γ/Γ̂. It was noted in [204] (see also [171, 6.6]) that there is a
holomorphic C∗-bundle L over Ŝ with an action of H (something like a “pull-back
bundle”) with L/H ∼= V ∗, and one has a commutative diagram:

L
H−−−−→ V ∗

π

⏐⏐� π

⏐⏐�
Ŝ

H−−−−→ S .

(1.3)
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We recall that the C∗-bundle L over Ŝ is classified topologically by its Chern class
c1(L) ∈ H2(Ŝ; Z), which evaluated on the fundamental cycle [Ŝ] gives the Euler
number of L defined as above (see also Chapter IV). It turns out that the number

e(V ∗ → S) = (Euler number ofL)/order ofH ∈ Q (1.4)

is independent of the choice of the normal subgroup Γ̂ and the bundle L. This
number is called the virtual degree, or rational Euler number of the Seifert bundle
V ∗ → S, and it is related to the Euler number e in 1.10, which is an integer, by
the formula:

e(V ∗ → S) = −e −
m∑

i=1

βi

αi
.

The rational Euler number e(V ∗ → S) of the Seifert bundle generalizes the
usual Euler number of S1-bundles; this was introduced in [187, 204] for Seifert
manifolds M in general, and it was shown that the corresponding Seifert manifold
occurs as the link of a surface singularity if and only if e(M → S) < 0.

In [194], completing previous results by several authors, there is given an
explicit method for computing the Seifert invariants of all quasi-homogeneous
surface singularities from the the weights of the corresponding C∗-action, and
they use this information to determine the weighted graph of a canonical good
resolution for these singularities (c.f. Chapter IV below).

1.5 Remark. It is well known that there is a very close relation between quasiho-
mogeneous singularities, graded algebras of finite type and automorphy factors.
The theorems of Klein, Milnor and Neumann in Chapter II are an example of this,
and we refer to [256] for more on the subject. Given a quasihomogeneous surface
V as above, an automorphy factor for V means a diagram similar to (1.3) but
replacing Ŝ by the universal cover P of S. More precisely, given the C∗-bundle
V ∗ π→ S, then (by [204, 54, 59]) there exists a holomorphic line bundle L over P
with an action of Γ that commutes with the C∗-action, such that L/Γ = V ∗ and
one has a commutative diagram:

L
Γ−−−−→ V ∗

π

⏐⏐� π

⏐⏐�
P

Γ−−−−→ S .

(1.6)

The triple (P, L, Γ) is called an automorphy factor for V . If P is CP
1 ∼= S2, and

Γ ⊂ SU(2), then the canonical automorphy factor is (CP
1, T ∗(CP

1), Γ), where
T ∗(CP1) is the cotangent bundle. When P is the upper half-plane H, and Γ ⊂
PSL(2, R), the canonical automorphy factor is (H,H × C, Γ), since the tangent
bundle of H is trivial, T (H) ∼= H×C; the action of Γ on T (H) is via the derivative,
as explained in II.5 above.

1.7 Remark. It is clear that if V is a quasi-homogeneous singular variety, then
the C∗-action on V defines a holomorphic vector field on V , whose orbits are
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everywhere transversal to the link. This vector field plays the role of a “radial”
vector field. One can prove (see [29]) that every small perturbation of this vector
field is still “equivalent” to it in some sense that can be made precise, and these
types of vector fields form an open dense set in the space of all germs at 0 of
holomorphic vector fields on V . This motivates two questions:

Question 1: If an isolated complex singularity (V, 0) admits a holomorphic vector
field which is singular only at 0 and the field of complex lines that it spans is
everywhere transversal to the link, does it follow that V is quasi-homogeneous? If
this is true, it is probably a consequence of the deep results of K. Saito in [216],
where he gives several characterizations of quasi-homogeneous singularities.

Question 2: Given an isolated singularity germ (V, 0), one can always make sense
of the concept of “the local radial (or Schwartz) index” of germs of vector fields
on V (see for instance [3, 35, 69]); the results of [29] imply that there is a smallest
possible index attained by the holomorphic vector fields on V . If V is quasi-
homogeneous, then this index is 1. What is this number for isolated singularity
germs which are not quasi-homogeneous? An alternative way of re-phrasing this
question is to characterize the generic germs of holomorphic vector fields on V
with the “least complicated topology”.

III.2 3-manifolds whose universal covering
is a Lie group

In this section we describe the closed, oriented 3-dimensional manifolds which are
diffeomorphic to homogeneous spaces of the form Γ\G, where G is a 3-dimensional
Lie group and Γ is a discrete subgroup of G with compact quotient; for short we
call these uniform subgroups, as it is common in the literature. Our basic reference
is the article of Raymond and Vasquez [207], which completes previous work by
various people. In fact the problem of classifying the closed 3-manifolds of the
form Γ\G was considered in [23, Ch. III], where the authors give the list of the
3-dimensional Lie groups that admit uniform subgroups; they also list the corre-
sponding uniform subgroups, but their list is incomplete and erroneous in some
cases. There is also a classification of the 3-dimensional Lie groups with uniform
subgroups given in [172, §4 ]. It turns out that in all cases but one, the corre-
sponding orbit spaces Γ\G admit circle actions and therefore are Seifert manifolds.
Thus the classification in [207] is based on the classification given in [206] of cir-
cle actions on 3-manifolds. The remaining case is when G is the solvable group
E(1, 1) which had to be treated separately. Notice that it is enough to consider
the simply-connected Lie groups, for given another one, we can always lift it to
the universal covering and work there.

Up to isomorphism, there are six different 3-dimensional, simply-connected
Lie groups that admit uniform subgroups. These are: (i) two semi-simple groups:
SU(2) (compact) and S̃L(2, R), both of them known to us from Chapter II; two
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solvable (not-nilpotent) groups: Ẽ+(2), which is the universal covering of the group
E+(2) of orientation preserving isometries of the euclidean plane, and the inhomo-
geneous Lorenz group E(1, 1); the Heisenberg group N of 3 × 3 upper triangular
real matrices, which is nilpotent, and R3 regarded as an Abelian (additive) group.
We recall briefly which are the uniform subgroups in each case, and which are the
corresponding quotient manifolds. Except for the case G = SU(2), in all other five
cases the underlying manifold is R3, with different Lie group structures.

It is worth noting that these Lie groups give rise to six of the eight geometries
which are relevant for 3-manifolds theory according to W. Thurston (see [186]).
Let us describe the six types of manifolds of the form Γ\G.

(i) If G = SU(2), this was widely studied in the previous chapter. Its finite
subgroups are either cyclic or the triangle groups Γ(2,2,r), r ≥ 2, Γ(2,3,3),
Γ(2,3,4), Γ(2,3,5). The quotient Γ\SU(2) is a Seifert manifold which fibres over
(Γ(p,q,r)\S2) ∼= S2 with either two or three exceptional fibres, according as the
group Γ is cyclic or a triangular group. In the second case the special orbits are
those of the vertices of the triangle and the corresponding Seifert invariants are:

{0 ;−2 ; (p, p− 1), (q, q − 1), (r, r − 1) }.

When Γ = Zn is cyclic, the manifold Γ\SU(2) is the lens space L(n, 1), which is
also a Seifert manifold but it has many such representations, unlike all the other
cases.

(ii) Let G = S̃L(2, R). We start with PSL(2, R); its discrete subgroups are called
Fuchsian groups, and they are said to be cocompact when the quotient Γ\G is
compact, which is the relevant case for us. Examples of these are the triangle and
the polygonal groups of Chapter II. The elements of PSL(2, R) are of three types:
hyperbolic, parabolic and elliptic; the elliptic elements are conjugate to rotations
and are the only type of elements in PSL(2, R) that have fixed points is H: the
hyperbolic elements have two fixed points on the real axis (which is not in H), and
the parabolic elements have one fixed point on the real axis. A Fuchsian group
Γ can have at most finitely many orbits of fixed points in H, and the isotropy
of each orbit is cyclic of finite order. Let us denote by α1, . . . , αm the orders of
the isotropy subgroup of the different orbits of fixed points. For instance, for the
triangle groups these are precisely p, q, r. The group Γ acts on H and the quotient
is a Riemann surface of genus g ≥ 0, which has an orbifold structure with marked
points x1, . . . , xm, which correspond to the orbits with non-trivial isotropy. Thus
one has a branched covering projection H → Γ\H, ramified at these m points,
with branching indices the αi. The set of integers {g; α1, . . . , αm} is called the
signature of the Fuchsian group, and it characterizes the group up to conjugation
by a quasi-conformal diffeomorphism (see for instance [28]).

For instance, if Γ is the fundamental group of a Riemann surface S of genus
g > 1, then Γ is a subgroup of PSL(2, R) that acts freely on H with quotient S;
hence the signature is in this case {g; 0}. The projection p : H→ Γ\H = S is now



III.2. 3-manifolds covered by Lie groups 73

a covering projection, without ramifications, and the orbit space Γ\G is the unit
tangent bundle of S. For a triangle group the signature is {0; p, q, r}.

In general, there is a projection Γ\G→ Γ\H which is a Seifert fibration, with
exceptional fibres over the m points x1, . . . , xm which have non-trivial isotropy.
The orders αi of these isotropy groups gives the orbit invariants αi of Definition 1.2.

Now recall that G = S̃L(2, R) is a central extension of PSL(2, R) and one
has an exact sequence:

0→ Z→ S̃L(2, R) π∞−→ PSL(2, R)→ 1 .

For every positive integer r ≥ 1 one has an r-fold cyclic cover Gr of PSL(2, R)
and projections

G∞ = S̃L(2, R) −→ Gr
πr−→ G1 = PSL(2, R) −→ 0 .

In fact one has central extensions,

0 −→ Z/r −→ Gr
πr−→ G1 −→ 1 ,

0 −→ Z −→ G∞
pr−→ Gr −→ 1 .

According to [207], each discrete cocompact subgroup Γ∞ ⊂ G∞ has finite index,
say r = r(Γ), in π−1

∞ (π∞(Γ∞)). For instance, if Γ ⊂ PSL(2, R), then its lifting Γ̃
to S̃L(2, R) obviously has index r = 1 in π−1∞ (π∞(Γ∞)); if we now start with a
subgroup Γ ⊂ SL(2, R), then its lifting Γ̃ to S̃L(2, R) may have r = 1 or r = 2
according as Γ contains or not the kernel of the projection SL(2, R)→ PSL(2, R),
respectively. One has that the projection Γr of Γ∞ to the r-fold covering group Gr

only meets the kernel of the projection pr : Gr → G1 at the identity and one has

Γr\Gr
∼= Γ∞\G∞ .

Then, according to [207], the cocompact discrete subgroups of S̃L(2, R) and the
diffeomorphism type of the quotient MΓ = Γ∞\G∞, are characterized by the
corresponding integer r, together with the signature of its image Γ1 = π∞(Γ∞) in
PSL(2, R). As mentioned before, these quotients are all Seifert manifolds; their
(normalized) Seifert invariants can be computed from the signature of Γ1. These
are (see [207]):

{ g; e = 2g − 2; (α1, α1 − 1), . . . , (αm, αm − 1) } ,

where g is the genus of Γ1\H = S. The corresponding integer r was found in [231,
2.4] to be:

r =
χ(MΓ → S)
e(MΓ → S)

,

where e(MΓ → S) =
∑m

i=1
βi

αi
is defined in (1.4) above, and the Euler character-

istic χ(MΓ → S) of the Seifert fibration is defined by:

χ(MΓ → S) = χ(S) −
m∑

i=1

αi − 1
αi

.



74 Chapter III. Lie Groups and Singularities

The invariant χ(MΓ → S) appears in Pinkham’s and Dolgachev’s work. It is
shown in [186, p. 250–251] that it distinguishes the possible geometries in the link
M = Γ\G of a quasi-homogeneous singularity: the group G is SU(2), S̃L(2, R) or
the Heisenberg group N according as χ(MΓ → S) is > 0, < 0, or = 0, respectively
(see the discussion below).

(iii) G = N , the Heisenberg group of real matrices of the form⎛⎝1 x t
0 1 y
0 0 1

⎞⎠ .

It has one discrete subgroup Γk for each integer k ≥ 1, which consists of the
elements in N whose entries are integral multiples of k. The manifolds one gets
are S1-bundles over the torus T = S1 × S1. Notice one has a natural projection of
N into R2 regarded as the plane defined by the x, y coordinates, whose quotient
by the action of Γk is the 2-torus. The fibre of this projection is R, spanned by
the t-coordinate, which maps into the S1-fibres of the S1-bundle over the torus. As
noticed in [171, p. 222], the first integral homology group of the quotient Γk\N
is isomorphic to Z ⊕ Z ⊕ Zk, so the Euler number of this bundle is ±k, the sign
depending on the choice of orientations. This happens because the group operation
on N is given by:

[x, y, t] · [x′, y′, t′] = [x + x′, y + y′, xy′ + t + t′] ,

where we are writing [x, y, t] for the corresponding matrix (c.f. the Abelian case
G = R3 below).

iv) G = E(1, 1). This is the inhomogeneous Lorentz group of affine transforma-
tions of R2 that preserve the quadratic form x2 − y2. This group and its discrete
subgroups are beautifully explained in [104]. One has an extension

1→ R2 → G→ R→ 1

with [G, G] = R2, which presents G as a semi-direct product of R2 and R. Its
discrete subgroups are all of the form Γ = (Z × Z) � Z :=M � V . The quotient
of R2 by the lattice M is a 2-torus T2, while the quotient of R by V is a circle.
The quotient Γ\G is a torus bundle over S1 with infinite cyclic monodromy, where
both eigenvalues are positive and distinct from 1; all such possibilities occur.

v) G = Ẽ+(2), the universal cover of the affine group E+(2), which can be regarded
as the group of real matrices:⎛⎝cos 2πθ − sin 2πθ x1

sin 2πθ cos 2πθ x2

0 0 1

⎞⎠ .
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The group G is a semi-direct product R2 �R, where R acts on R2 by the rotations
induced from SO(2) ⊂ E+(2). It is a central extension of E+(2),

0→ Z→ Ẽ+(2)→ E+(2)→ 1 .

We see from [207, 1.3] that every uniform subgroup of G is the lifting of one
such subgroup in E+(2), and these are Z2 = Z⊕ Z, the triangle groups (2, 3, 6),
(2, 4, 4), (3, 3, 3) and the quadrangle group (2, 2, 2, 2). For Γ = Z2 the quotient
MΓ = Γ\G is the 3-torus T3, but regarded as a homogeneous space of E+(2), not
equivalent to its structure as an Abelian Lie group considered below. In the other
cases the corresponding quotient MΓ is a Seifert manifold with Seifert invariants
{ 0; −2; (α1, α1 − 1), . . . , (αn, αn − 1) }, where n is either 3 or 4 and (α1, . . . , αn)
is one of the above triples (if n = 3) or quadruple (if n = 4).

(vi) G = R3. In this case the only discrete subgroup with compact quotient is
Z3 = Z⊕Z⊕Z, up to equivalence, and the quotient is the 3-torus T3 regarded as
an Abelian group with the product structure.

This classification of 3-manifolds which are quotients of 3-dimensional Lie groups
by discrete subgroups motivates the following interesting question, asked of me
some time ago by Etienne Ghys, whose answer I do not know:

2.1 Question. Which 3-manifolds arise as quotients H\G, where G is a Lie group
of dimension n + 3 and H is a subgroup of G of dimension n? That is, which
3-manifolds are homogeneous spaces?

Recently E. Ghys mentioned to me that he thinks this question has been
answered already, but I could not find it in the literature. Of course, once we know
the answer then a natural next problem is to decide which of these homogeneous
3-manifolds are links of complex surface singularities?

More generally one may study which closed 3-manifolds arise as orbit spaces
of the form M = ρ(H)\X , where X is a smooth Riemannian manifold, H is
a connected Lie group and ρ is an action of H on X whose orbits are all of
codimension 3 with the same isotropy everywhere. This is closely related to the
problem of classifying cohomogeneity 3 actions, which is no doubt an interesting
and hard problem (c.f. [174, 106, 98, 245]).

III.3 Lie groups and singularities I:
quasi-homogeneous singularities

One has the following theorem of [59, 186], which culminates from the theorems
of Klein, Milnor and Neumann described in Chapter II, as well as previous results
by Dolgachev in [57, 58], see also [187].

3.1 Theorem. Let (V, 0) be the germ of a quasi-homogeneous surface singularity
which is Gorenstein. Then its link M is diffeomorphic to an orbit space of the
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form Γ\G, where G is one of the groups SU(2), S̃L(2, R) or N , and Γ is a discrete
subgroup of G. Conversely, let G be one of these three Lie groups and Γ ⊂ G a
discrete subgroup with compact quotient MΓ = Γ\G; then MΓ is diffeomorphic to
the link of a normal, Gorenstein quasi-homogeneous surface singularity.

We recall that an isolated surface singularity germ (V, 0) is (analytically)
normal if every bounded holomorphic function on V ∗ = V − 0 extends to a holo-
morphic function at 0 (see for instance [179]). This implies that the singularity is
isolated. (For hypersurface or complete intersection germs these two conditions are
actually equivalent, i.e., normal iff the singular set has codimension more than 1.)
A normal surface singularity germ (V, 0) is Gorenstein if there exists a nowhere-
vanishing holomorphic 2-form on V ∗. [Notice that the canonical bundle K of V ∗,
i.e., the bundle of holomorphic 2-forms, is 1-dimensional. Hence the existence of
a nowhere-vanishing holomorphic 2-form on V ∗ is equivalent to saying that K is
holomorphically trivial. By normality, this means that the dualizing sheaf of V is
free at 0, which is the usual requirement for a singularity to be Gorenstein.]

It is worth saying that one cannot expect to have in this generality such
an explicit description of the equivalence between the orbit spaces Γ\G and the
corresponding singularities, as one does in Milnor’s theorem for the Brieskorn
manifolds (or in its generalization by Neumann described in Chapter II), because
in the general case the structure of the local ring of these singularities can be quite
complicated, with many generators and relations. However one does have that
in all cases the corresponding local rings are given by appropriate automorphic
forms (see [59]). Moreover (see [183, 186]), their analytic structure may have a
large-dimensional deformation space, so one has to look also at the embedding
of the group Γ in the corresponding group G, similarly to classical Teichmüller
theory. This means in particular that the singularity one gets from a given discrete
subgroup Γ ⊂ G does not depend only on the abstract group Γ, but also on the
way it is embedded in G.

We refer to the articles of Neumann and/or Dolgachev for the proof of this
theorem and for the interesting study in [186] of the deformations of both, the
analytic structure on the variety and the embedding of the group Γ in G.

Here we follow [231] and describe how to construct explicitly the surface sin-
gularities associated to the orbit spaces Γ\G in each of the three cases, and we show
that these singularities are Gorenstein by exhibiting explicit nowhere-vanishing
holomorphic 2-forms in all cases. This construction is essentially Dolgachev’s and
the arguments below rely on his work, specially in [59].

3.2. In the case G = SU(2) the corresponding singularities are those of Klein
studied in Chapter II. It is clear that these singularities admit a good C∗-action,
and they are normal (since they are isolated hypersurface singularities, or also by
Grauert’s contraction criterium that we explain in Chapter IV). The corresponding
2-form on VΓ = Γ\C2 is obtained by noticing that the holomorphic form Ω =
dz1 ∧ dz2 on C2 is clearly nowhere-vanishing and invariant under the action of
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all SU(2), which acts on C2 by holomorphic transformations. Hence this form
descends to the quotient VΓ and is nowhere-vanishing on V ∗

Γ = VΓ − 0.
Alternatively, one may consider (say for the commutators of the binary tri-

angle groups) the corresponding Brieskorn variety in C3,

Vp,q,r = { zp
1 + zq

2 + zr
3 = 0 } ,

whose link is G = SU(2) divided by the commutator of the corresponding triangle
group (one has analogous singularities for all the finite subgroups of SU(2), see
Chapter II). One has in C3 the form Ω̃ = dz1 ∧ dz2 ∧ dz3; this induces a canonical
2-form ω on Vp,q,r−0, obtained by contracting Ω̃ with the gradient vector field ∇f ,
where f is the corresponding Pham-Brieskorn polynomial. In local coordinates ω is:

ω =
dz1 ∧ dz2

∂f/∂z3
=

dz2 ∧ dz3

∂f/∂z1
=

dz3 ∧ dz1

∂f/∂z2
. (3.2.1)

It is easy to see that the 2-forms on the right-hand side of this equation, which
are defined where the denominator is not zero, coincide when any two of them are
defined and so they give a global 2-form, which coincides with the one given by
contracting Ω̃ with ∇f . It is now an exercise (see [229]) to show that the pull-back
of this 2-form w to C2 under Klein’s map C2 → C3 is a constant multiple of the
form Ω = dz1 ∧ dz2, and therefore these two forms on VΓ = Γ\C2 coincide up to
a constant.

3.3. Let us describe now the case G = S̃L(2, R). We consider first the case Γ ⊂
PSL(2, R). The corresponding singularities are known as Dolgachev singularities
and were introduced in [57, 58]. We recall (Chapter II) that PSL(2, R) acts on
the tangent bundle TH of the hyperbolic plane by:

g · (z, w) 
→
(

g(z) ,
d̃g

dz
w

)
.

This action is free away from the zero section, which is H and where we may
have fixed points, all with finite cyclic isotropy. Thus we may embed PSL(2, R)
in TH as the boundary of a tubular neighborhood of H in TH, regarded as a
complex manifold. The orbit space ṼΓ = Γ\TH is a complex analytic surface
with (possibly) singularities contained in the Riemann surface Γ\H ⊂ ṼΓ, which
correspond to the special orbits of the Γ-action on H. Then Dolgachev showed
that Γ\H can be blown down to a point that we may denote by 0 (this follows
essentially from Grauert’s criterium, c.f. Chapter IV). The result is a complex
analytic surface VΓ with an isolated normal singularity at 0. It is clear from the
construction that the link of VΓ is Γ\PSL(2, R). One may exhibit an explicit 2-
form for these singularities, thus proving that they are Gorenstein, but we will do
this in general below for all the uniform subgroups of S̃L(2, R).

It is worth saying that the singularities one gets in this way may not be
hypersurfaces nor complete intersections, and not even smoothable, as shown by
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Pinkham. For instance, for the triangle subgroups of PSL(2, R), Dolgachev showed
that there are only 14 of them for which the corresponding singularity can be
defined by a single equation; these correspond to the 14 exceptional unimodal
singularities of Arnold (c.f. [257]).

To construct the singularities corresponding to arbitrary uniform subgroups
of S̃L(2, R) we adopt the notation introduced in [171, 231].

3.4 Definition. For every integer r ≥ 1, an r-labeled biholomorphic map of H to itself
means a biholomorphic map f : H→ H, together with a lift d̃f

dz of its derivative to
the r-fold cover of the multiplicative group C∗.

Taking r = 1 we recover the group G1 = PSL(2, R) as the group of 1-labeled
biholomorphic maps of H, while for r =∞ we get the labeled biholomorphic maps
of Milnor, which form the group S̃L(2, R). It is an exercise to see that the set
of all r- labeled biholomorphic maps forms the r-fold cyclic covering group Gr of
PSL(2, R).

If we denote by Cr
∼= C the r-fold cyclic cover of C branched at 0, we then

have an action of Gr on H × Cr, which embeds Gr as the orbit of (i, 1), where
1 is a selected point in Cr lying over 1 ∈ C. Given Γ ⊂ Gr, we have an analytic
surface Γ\H × Cr with isolated singularities on SΓ = Γ\(H × 0); the 3-manifold
Γ\Gr = MΓ is embedded in Γ\H×Cr as the boundary of a tubular neighborhood
of SΓ. Observe that we are now having an automorphy factor: as in [57, 58, 59], we
may now blow down SΓ to a point (essentially by Grauert’s criterium, c.f. Ch. IV)
to obtain a complex analytic surface VΓ with a normal singularity at a point that
we may denote by 0, with an obvious C∗-action. The link of VΓ is Γ\Gr = MΓ.

To show that this singularity is Gorenstein we observe, following [229], that
one has on H× C̃∗ the holomorphic 2-form:

Ω =
dz ∧ dw

w2
,

which is nowhere-vanishing and, we claim, is invariant under the action of
S̃L(2, R). In fact, for every g ∈ S̃L(2, R) we have:

g∗Ω(z, w) =
g∗dz ∧ g∗dw(

dg
dz (z)

)2
w2

=
( (dg

dz (z)
)2(

dg
dz (z)

)2
w2

)
dz ∧ dw =

dz ∧ dw

w2
,

so Ω is invariant. Hence it descends to a nowhere-vanishing holomorphic form on
Γ\H× (Cr−0), and so defines a nowhere-vanishing holomorphic 2-form on VΓ−0.

3.5 Remark. We notice that in the two cases above, G = SU(2) or G = S̃L(2, R),
one has free actions of G on a certain complex 2-manifold X , which is C2 − 0
or H × C̃∗. In both cases the G-orbits foliate X by copies of G, and one has a
G-invariant nowhere-vanishing holomorphic form on all of X . We will see that one
has a similar picture for all the six Lie groups in question.
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3.6. Consider now the Heisenberg group N of real matrices of the form⎛⎝1 x t
0 1 y
0 0 1

⎞⎠ .

For simplicity we denote such a matrix by [x, y, t]. The group operation on N is
given by:

[x, y, t] · [x′, y′, t′] = [x + x′, y + y′, xy′ + t + t′] .

We may define the smooth map N × C2 ρ−→ C2 by:

ρ([x, y, t], (z1, z2)) = (z1 + x + iy, e2πit z2) .

This is not a group action since:

ρ
(
[x, y, t], ρ

(
[x′, y′, t′], (z1, z2)

))
= (z1 + x + x′ + i(b + b′), e2πi(t+t′) z2) ,

while

ρ
((

[x, y, t]·[x′, y′, t′]
)
, (z1, z2)

)
= (z1+x+x′+i(b+b′), e2πi(t+t′+xy′) z2) , (3.6.1)

so we get an extra factor e2πi(xy′) in the second variable. Still we observe that ρ is
an action restricted to every discrete subgroup of N , since in these cases xy′ ∈ Z.

Notice that we can embed C in N by z 
→ [x, y, 0], though this is not a group
homomorphism. Still, the restriction to C ⊂ N of the map ρ is a group action
of C on C2, acting by translations in the first variable. We may also define an
embedding of R in N (this time as a subgroup) by t 
→ [0, 0, t]. The map ρ gives
an action of R ⊂ N on C2, it is multiplication in the second variable by e2πit,
which are rotations. It follows that for each (z1, z2) ∈ C2 with z2 �= 0, the image
of the map:

ρ(z1,z2) : N → C2

given by ρ(z1,z2)([x, y, t]) is a cylinder C × S1. This defines a foliation of C2 by
cylinders, with one special leaf L0 = {(z1, 0)} (where the foliation is singular), and
every discrete subgroup Γ of N acts on each leaf of this foliation. By the previous
comments we see that one also has an S1-action on each leaf of the foliation, given
by the restriction of ρ to R× C2.

We now recall that, up to isomorphism, N has one discrete subgroup Γk for
each integer k > 0, consisting of those triangular matrices as above, for which the
coefficients x, y, t are all multiples of k. Given Γk = Γ ⊂ N discrete, we can pass
to the quotient ṼΓ = Γ\C2. The singular leaf L0 becomes a 2-torus T2 = Γ\L0,
and all other leaves of F become copies of MΓ = Γ\N ∼= Γ\(C× S1), so they are
S1-bundles over the torus and the complex surface ṼΓ is a holomorphic line bundle
over the 2-torus. The Chern class of this bundle is ±k, depending on the choices of
orientations, due to the contribution of the {x, y}-variables in (3.6.1). This means
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that MΓ is a circle bundle over the 2-torus with Euler class ±k. Choosing the
orientations so that the self-intersection of T2 is −k, we have that the contraction
criterium of Grauert says that we can blow T2 down to a point to get a surface
singularity VΓ, whose minimal resolution (see Chapter IV) is ṼΓ.

For k = −1,−2,−3 the surfaces one gets in this way are homeomorphic to
the Brieskorn varieties,

V(p,q,r) = { zp
1 + zq

2 + zr
3 = 0 } ,

where (p, q, r) is one of the triples (2, 3, 6), (2, 4, 4) or (3, 3, 3). This follows either
by [171], by [194] or by [59, 186]. Milnor tells us that the corresponding Brieskorn
manifolds are circle bundles over the torus, with Euler class equal to −k, where
k is the greatest common divisor of (p, q, r); Orlik and Wagreich [194] tell us that
the minimal resolutions of these singularities are holomorphic line bundles over
the 2-torus, with the corresponding Chern classes.

We remark that Dolgachev in [59] gives a finer argument than we do here,
and he proves the above diffeomorphisms directly.

We also remark that these singularities are elliptic, meaning by this that
their geometric genus is 1 (see [122] and Chapter IV below). Moreover, by [122]
they are also minimally elliptic, which amounts to ellipticity plus Gorenstein. To
see that they are actually Gorenstein we observe, following [231], that for every
h = [x, y, t] ∈ N the map θh : C2 → C2 given by:

θh(z1, z2) = ρ([x, y, t], (z1, z2)) = (z1 + (x + iy) , e2πitz2)

is holomorphic and leaves invariant the holomorphic 2-form

Ω =
dz1 ∧ dz2

z2

since for every g = [x, y, t] ∈ N one has:

g∗Ω(z1, z2) =
g∗dz1 ∧ g∗dz2

e2πitz2
=

dz1 ∧ e2πitdz2

e2πitz2
= Ω(z1, z2) .

Hence this form descends to VΓ − 0 and is never-vanishing there. �

III.4 Lie groups and singularities II: the cusps

This section is essentially taken from [104], where Hirzebruch constructs and stud-
ies the cusp singularities.

Let K be a totally real quadratic field over Q, so it has two different embed-
dings in R, that we denote by x(1), x(2), for x ∈ K. Let � be the ring of algebraic
integers in K, and let x 
→ x′ be the non-trivial automorphism of K. The Hilbert
modular group:

SL2(�) =
{(a b

c d

) ∣∣∣ a, b, c, d ∈ � , ad− bc = 1
}
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acts on H×H, where H is the upper half-plane, by(
a b
c d

)
(z1, z2) =

(az1 + b

cz1 + d
,

a′z1 + b′

c′z1 + d′
)

.

The corresponding projective group P̂ = SL2(�)/{±Id} acts effectively on H×H,
and for each point x ∈ H×H the isotropy group P̂x ⊂ P̂ is finite and cyclic. The
orbit space P̂\(H × H) is a complex space, which can be compactified by adding
to it a finite number of points, called the cusps. The resulting space is a compact
algebraic surface with isolated singularities at these cusps, whose links are torus
bundles over the circle, diffeomorphic to quotient spaces of the form Γ\E(1, 1).

More generally, given K, let M be a Z-module of rank 2 contained in K,
and let U+

M be the group of totally positive units in K that leaveM invariant; we
recall that an element x ∈ K is totally positive (denoted x� 0) if each of its two
embeddings in R is > 0. The elements of U+

M are automatically algebraic integers
since they leaveM invariant (see [104]). The group U+

M is free of rank 1, U+
M ∼= Z.

We recall that the group PSL(2, R) acts on H via the Möbius transforma-
tions; thus its product PSL(2, R)2 = PSL(2, R) × PSL(2, R) acts naturally on
H× H. An element of PSL(2, R) is parabolic when it has exactly one fixed point
in CP

1, and in this case the fixed point is in RP 1 ∼= R ∪∞. Similarly, an element
γ = (γ(1), γ(2)) of PSL(2, R)2 is called parabolic iff both γ(1), γ(2) are parabolic.
Such an element has exactly one fixed point in (CP

1)2, which belongs to (RP 1)2.
A discrete subgroup Γ ⊂ PSL(2, R)2 is said to be irreducible if it contains no

element γ = (γ(1), γ(2)) such that γ(i) = 1 for some i and γ(j) �= 1 for some j. It is
proved in [235] that an irreducible discrete subgroup Γ ⊂ PSL(2, R)2 has at most
finitely many distinct orbits of parabolic points. Let us look at the geometry near
a parabolic point. According to [235, p. 45], for any parabolic fixed point x of an
irreducible discrete subgroup Γ ⊂ PSL(2, R)2 with Γ\H×H of finite volume, the
parabolic element ρ ∈ PSL(2, R)2 with ρx = x can be chosen so that ρΓxρ−1 is
contained in PGL(K) ⊂ PSL(2, R)2, where Γx is the isotropy of x, K is a suitable
totally real field and PGL(K) is the projectivization of

GL+(2, K) =
{(

a b
c d

) ∣∣∣ a, b, c, d,∈ K; ad− bc� 0
}

.

Then one has an exact sequence (see [104, 1.5 (15)]):

0→M→ ρ Γx ρ−1 → V → 1 ,

whereM is a Z-module of rank 2 contained in K and V is a non-trivial subgroup
of U+

M of finite index. The field K, the equivalence class ofM and the group V are
completely determined by the parabolic orbit and do not depend on the choice of
ρ. In this case one has that ρΓxρ−1 is a semi-direct productM� V that we may
denote by Γ(M,V). The parabolic orbit is called a cusp (similarly to the classical
theory of Kleinian groups) of type (M,V), a name which is also used for the image
point 0 of this orbit in the quotient space of orbits.
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For any positive number d, the group Γ(M,V) acts freely on

W = {(z, w) ∈ H×H | Im(z) · Im(w) ≥ d } .

The orbit space Γ(M,V)\W is a non-compact manifold with compact boundary

M = Γ(M,V)\∂W .

The space Γ(M,V)\W ⊂ Γ(M,V)\H × H can be compactified by adding to
it the point 0, whose link is M . By [104, p. 202] the analytic surface VΓ =
Γ(M,V)\H×H has a normal singularity at 0.

We notice that the group G = E(1, 1), homeomorphic to R3, can be identified
with the group of affine transformations of H×H of the form:

(z, w) 
−→ (t1z + a1 , t2w + a2) ,

where a1, a2, t1, t2 ∈ R and t1t2 = 1. Thus G acts freely on H × H and we can
identify G with the orbit of a point, say (i, i). It follows that the link M can be
identified with the quotient Γ(M,V)\E(1, 1) and it is therefore a torus bundle
over the circle S1 ∼= V\R. Of course the various orbits of G fill out all of VΓ − 0.

We notice too that the holomorphic 2-form

Ω =
dz ∧ dw

z w

on H×H is obviously invariant under the above action of E(1, 1); it is also invariant
under the action of the isotropy group of the cusp, so it descends to a never-zero
holomorphic 2-form on a punctured neighborhood of ∞ in VΓ.

III.5 Lie groups and singularities III:
the Abelian and E+(2)-cases

It is known ([186, 59]) that the only normal complex surface singularities whose
link is of the form Γ\G, with G a Lie group and Γ a uniform subgroup, are those
described in Sections 3 and 4 above: the weighted homogeneous Gorenstein singu-
larities and the cusp singularities. It is well known (see for instance [184] or [246])
that the 3-torus cannot be the link of a normal singularity in a complex surface;
this observation extends to all quotients of E+(2) by uniform subgroups. Even
so, there are interesting similarities among both of these cases and the previous
ones, and this is what we discuss in this section, following [231]. We start with the
Abelian case, which is somewhat similar to that of the nilpotent case N .

Let us recall from Chapter II that one has a canonical isomorphism ẽ : C→
C̃∗ of the additive (complex) Lie group C with the universal covering group C̃∗ of
the non-zero complex numbers; this isomorphism is obtained by lifting to C̃∗ the
exponential map e(z) = e2πiz : C → C∗. Given G = R3, regarded as a Lie group
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under the coordinate-wise addition, one has an action of G ∼= C × R on C × C̃∗

given by:
((x, y), t), (z, w)) 
→ (z + (x + iy) , ẽ(t) · w) .

This foliates C × C̃∗ by copies of R3 embedded as the orbits of the action. The
natural projection into C× C∗ induces an action on C× C∗ given by

((x, y), t), (z, w)) 
→ (z + (x + iy) , e(t) · w) ,

which extends in the obvious way to an action on C2 whose orbits are all cylinders
C× S1 that wrap around the “special leaf” C× {0}. This foliation F is invariant
under the action of the whole group G, so in particular it is invariant under
Γ = Z3 = Z ⊕ Z ⊕ Z, which is the only uniform subgroup of G. Notice that the
action of Z on the second component is already trivial since this is the kernel
of the map C̃∗ → C∗. The quotient ṼΓ = Γ\C2 is a complex manifold which
fibres as a trivial holomorphic line bundle over the torus T2 = Z2\(C × {0}).
The complement of the torus in ṼΓ is diffeomorphic to a cylinder T3 × R, where
T3 = S1 × S1 × S1; these 3-torii are quotients of the leaves of the foliation F by
the action of Γ.

Just as in the nilpotent case, one has the holomorphic 2-form,

Ω =
dz ∧ dw

w

on C× C̃∗, which is never-vanishing and G-invariant, so it descends to ṼΓ − T2.
Hence, so far this case is entirely analogous to the previous cases; the problem

now is that T2 is embedded in ṼΓ with self-intersection 0. Therefore Grauert’s
criterium does not apply (see IV.5.8 and IV.5.9) and the torus cannot be blown
down complex analytically.

5.1 Question. Can the torus T2 be blown down real analytically?

By [4] we know that 5.1 is true up to homeomorphism. Thus, the 3-torus is
the link of an isolated singularity in a real analytic 4-dimensional variety (V, 0)
which has a holomorphic structure (compatible with the real analytic structure
at 0) and has a nowhere-vanishing holomorphic 2-form on V − 0. This seems to
be related with an interesting class of singularities that come from the example
below, taken from [50], which is the starting point for Chapter VI below.

Consider the linear vector field in C3 given by F (z) = (λ1z1, λ2z2, λ2z2),
where the λj = µj + iνj are non-zero complex numbers. Let VF be the variety

VF = { z ∈ C3 | 〈F (z), z〉 =
3∑

j=1

λj |zj |2 = 0 }

of points where the vector field F is tangent to the sphere through the point and
centre at 0. This variety is real analytic since it is defined by the real analytic
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equations:
3∑

j=1

µj (x2
j + y2

j ) = 0 =
3∑

j=1

νj (x2
j + y2

j )

where zj = xj + iyj. It may consist of 0 ∈ C3 alone, for instance when the µj are
all > 0. However, if we assume that the eigenvalues λi are chosen so that 0 ∈ C is
in the interior of the convex hull of {λ1, λ2, λ3}, then one has that:

(i) VF has real codimension 2 in C3; and 0 ∈ C3 is its only singular point;

(ii) the link M of VF is the 3-torus T3 and there is a transitive action of T3 on
M ; and

(iii) at each point z ∈ (VF − 0) the complex line spanned by F is transversal
to VF .

The first two conditions tell us that the 3-torus is the link of the real analytic
variety VF , which is actually a complete intersection in C3, and the third condition
yields that VF − 0 is, canonically, a complex manifold (see Chapter VI), though it
is not (in general) embedded as a complex submanifold of C3.

Let us consider now the case of Ẽ+(2), or rather we look at G = E+(2), since
all the uniform subgroups of the former come from the latter. This group acts on
C ∼= R2 in the obvious way, and this action extends naturally to the tangent bundle
TC = C× C via the derivative:

g · (z, w) 
−→
(
g(z),

dg

dz
(z) · w

)
.

This action is free away from the line z = 0 and therefore the orbits foliate C×C

by copies of G = Ẽ+(2) that degenerate into the singular leaf of the foliation,
given by z = 0 . Hence, every discrete subgroup Γ of G = E+(2) acts freely on
TC, away from the zero section, but it has fixed points there (except for Γ = Z2

which acts freely also on this line). The quotient VΓ = Γ\TC is a complex analytic
surface with zero, three, or four singular points, as the case may be, all contained
in the divisor SΓ = Γ\C, which is either a torus, if Γ = Z2, or CP 1 with three or
four marked points in the other cases. The action of Γ on TC preserves the leaves
of the above foliation and descends to a foliation of VΓ−SΓ by copies of Γ\E+(2)
embedded as boundaries of regular neighborhoods of SΓ, which is the special leaf.

Again, as in the Abelian case, one cannot blow down this divisor complex
analytically. In the case Γ = Z2 this follows because the divisor SΓ, which is a
2-torus, is embedded with trivial normal bundle. In the other cases this can be
seen as follows: at each singularity of VΓ one has, locally, a quotient singularity
of the form Zn\C2 for an appropriate n = 3, 4. One can resolve this and get a
divisor D in the resolution ṼΓ; D consists of a central curve isomorphic to SΓ and
one “branch” of rational curves for each singularity of VΓ. Then SΓ can be blown
down iff D can be blown down, but an easy calculation shows that the intersection
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matrix of D is not negative-definite, so Grauert’s criterium says we cannot blow
it down.

Just as in the Abelian case, one may ask whether SΓ can be blown down real
analytically. By [4] this is always the case up to homeomorphism.

Finally we observe that the holomorphic form Ω = dz∧dw on TC is globally
defined and G-invariant, so it descends to VΓ minus the singular points, and it is
never-zero.

III.6 A uniform picture of 3-dimensional Lie groups

Let us put together some of what we have said in the previous sections about
3-dimensional Lie groups and their uniform subgroups, in relation with surface
singularities.

Let G be any one of the six 3-dimensional Lie groups with a uniform subgroup
Γ ⊂ G. Then we know from the previous discussion that there is associated to G
a complex 2-dimensional manifold, equipped with a canonical holomorphic 2-form
and a foliation F of X defined, in all cases but one, by an action of G. There are
several interesting properties common to all cases, and others that miss in one
or two cases. It is convenient to recall first which are the specific manifolds, the
2-forms and the action of G on X in each case.

(i) For G = SU(2), X = (C2 − 0) and the form is Ω = dz1 ∧ dz2. The action is
the usual one by linear transformations on C2.

(ii) For G = S̃L(2, R), X = (H × C̃∗) and Ω = dz∧dw
w2 . The action on H is via

the Möbius transformations, and on C∗ is by lifting the derivative to the
universal cover of the multiplicative group C∗.

(iii) For G = N , the Heisenberg group, X = (C × C∗) and Ω = dz1∧dz2
z2

. This
is the only exception in which we do not have a group action, but a map
G×X → X

([x, y, t], (z1, z2) 
→ (z1 + (x + iy) e2πitz2)

which is an action restricted to the uniform subgroups of G. I believe that
one should be able to read from [59] all the information we need to fully unify
this case with the others, but I have not been able to this this yet.

(iv) For G = E(1, 1), X = (H × H) and Ω = dz∧dw
z w . The action of G on X is

given by identifying this group with the group of affine transformations of X
of the form:

(z, w) 
−→ (t1z + a1 , t2w + a2) ,

where a1, a2, t1, t2 ∈ R and t1t2 = 1.

(v) For G = E+(2), X = (C×C∗) and Ω = dz ∧ dw. Here X is regarded as the
non-zero tangent vectors on C. The action on C is the obvious one; on C∗ it
is multiplication by the derivative.
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(vi) For G = R3, X = (C × C∗) and Ω = dz1∧dz2
z2

. The action is given by the
same map as in (iii) above, which is now an action.

Having this in mind, let us recall some of the properties that these cases have in
common.
(a) Except for the case G = N , the leaves of F are the orbits of the G-action,

which is free in all cases.
(b) In all cases, every uniform discrete subgroup Γ of G acts on X preserving the

leaves of F ; and the space of orbits Γ\L is the homogeneous space Γ\G.
(c) In all cases one has a canonical holomorphic trivialization of the canonical

bundle K of X given by the 2-form Ω, which is G-invariant in all cases but
one: G = N , where we have Γ-invariance for all uniform subgroups. This
induces an Sp(1) structure on the tangent bundle TX .

(d) The orbit space Ṽ ∗
Γ = Γ\X is a complex analytic manifold, foliated by

copies of Γ ⊂ G, with a nowhere-vanishing holomorphic 2-form. For G =
SU(2), S̃L(2, R), E(1, 1) or N , one has that the complex manifold Ṽ ∗

Γ is
biholomorphic to V − 0, where V is a 2-dimensional surface with a normal
singularity at 0. For G = E+(2) and G = R3,the complex manifold Ṽ ∗

Γ is
homeomorphic to V − 0, where V is a real algebraic variety with an isolated
singularity at 0 (by [4, 4.1]). I believe that the 1-point compactification of Ṽ ∗

Γ

should be itself real analytic, but I do not know how to prove this (c.f. [161,
Lemme 1]).

Summarizing, one has:

6.1 Theorem. There are, up to isomorphism, six 3-dimensional, simply connected
Lie groups with uniform subgroups Γ ⊂ G. Given any such group G and a uniform
subgroup Γ, there is associated to G a canonical complex 2-dimensional manifold
X, equipped with a canonical holomorphic 2-form and a foliation F of X defined,
in all cases but one, by an action of G. The manifold X is in all cases given by
an automorphy factor of some line bundle. The quotient Ṽ ∗

Γ = Γ\X is a complex
manifold, foliated by copies of Γ\G, with a canonical never-vanishing holomorphic
2-form. This manifold Ṽ ∗

Γ is actually an open cylinder Γ\G × (0, 1), and one of
its ends can be compactified by attaching to it a smooth divisor SΓ, so that we
get a complex analytic surface ṼΓ = Ṽ ∗

Γ ∪ SΓ which may have isolated, normal
singularities at SΓ. In four of the six cases in question, this divisor can be blown
down complex analytically and the result is a complex analytic surface VΓ with
a normal singularity P , whose link is the 3-manifold MΓ. In the remaining two
cases the divisor SΓ can only be blown down real analytically, so the quotient VΓ is
(homeomorphic to) a 4-dimensional real analytic space with an isolated singularity
P , whose link is MΓ and which has a complex structure away from P .
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III.7 Lie algebras and the Gorenstein property

An essential feature of Lie groups is that they have their Lie algebras, which
can be defined as being the vector space of all left invariant vector fields on the
group, endowed with the multiplication given by the Lie bracket. These play an
important role in the classifications given in [23, 172, 207] of 3-dimensional Lie
groups and their uniform subgroups. On the other hand we know from [59, 186]
and the previous discussion, that there is a close connection between closed 3-
manifolds of the form Γ\G and complex surfaces which are normal and Gorenstein,
i.e., they admit a nowhere-zero holomorphic 2-form. In this section we discuss an
aspect of how the property of being Gorenstein relates to the Lie algebras of the
corresponding groups. This goes back to [224, 229, 231].

Given an oriented Lie group G of dimension n, and a positively oriented basis
{v1, . . . , vn } of its tangent space at the identity TeG, multiplication on the left by
an element g ∈ G carries TeG isomorphically into TgG and defines a basis of this
space by left translating the basis {v1, . . . , vn }. In this way we obtain a trivial-
ization L of the tangent bundle TG by left invariant vector fields, and every left
invariant vector field is a linear combination of these. Of course this trivialization
F of TG depends on the choice of basis for TeG, but this dependence is determined
just by a linear transformation at TeG carrying one basis into the other.

If Γ is a discrete subgroup of G, then the orbit space MΓ = Γ\G is a
smooth manifold, in fact a homogeneous space, and the left-invariant vector fields
descend to MΓ. Thus the trivialization L of the tangent bundle TG determines a
trivialization of the tangent bundle of MΓ that we also denote L. This trivialization
L induces a metric on MΓ with identical curvature properties to the left-invariant
metric on G defined by L. This type of metrics on homogeneous spaces plays an
important role in geometry (see for instance [172]). One also has several other
important geometric structures on MΓ determined by L, as for instance a spin
structure with its Dirac operator (see [124] and Chapter IV below).

Let us consider now a complex 2-dimensional manifold X . The structure
group of its tangent bundle TX is GL(2, C), and we can always reduce it to U(2)
by endowing X with some Hermitian metric. If we try to reduce the structure
group of TX further to SU(2) we may run into problems, since this is not always
possible. The obstruction for doing so is the first Chern class of TX (c.f. IV.1
below). To see this we notice that U(2), being the structure group of TX , acts
naturally on the space of differential forms (of all degrees) on X . In particular
it acts on the forms of type (2, 0), i.e., on the sections of the bundle associated
to TX whose fibre at x ∈ X is

∧(2,0)
T ∗

xX ; this is isomorphic to the bundle of
holomorphic 2-forms on X , which is called the canonical bundle K of X . The
action of U(2) on

∧(2,0)
T ∗

xX is by the determinant, and SU(2) is precisely the
subgroup of U(2) which acts trivially on K. Hence we can reduce the structure
group of TX from U(2) further to SU(2) if and only if the bundle K is trivial,
and the specific reductions of the structure group of TX to SU(2) correspond to
the specific trivializations of K. Now, the canonical bundle K is 1-dimensional, so
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it is classified (up to a differentiable isomorphism) by its Chern class, which is the
negative of the first Chern class of X (see [101, Th. 4.4.3]. Hence c1(X) vanishes iff
K is trivial and this happens iff we can reduce the structure group of TX to SU(2).

Now suppose the manifold X is endowed with a never-zero holomorphic 2-
form, as in the previous sections. Then this form defines a specific reduction to
SU(2) of the structure group of TX . Since SU(2) is isomorphic to the group of
unit quaternions Sp(1), this means that we have at each point of X multiplication
of tangent vectors by the quaternions i, j, k.

Let us now return to the situation envisaged above. In each of the six cases
in question we have a specific complex 2-manifold X equipped with a never-zero
holomorphic 2-form. Thus we have, by the previous discussion, a specific reduction
of the structure group of TX to SU(2) ∼= Sp(1). Moreover, the normal bundle of
the foliation is trivial in all cases. Choosing a trivialization of this bundle one gets,
via multiplication by i, j, k, a trivialization L of TF , the bundle tangent to the
foliation. If G �= N , this trivialization of TF is left invariant under the G-action
on X and so defines a basis of the Lie algebra of G.

In the nilpotent case we still have the holomorphic 2-form on X and therefore
a multiplication by the quaternions i, j, k, which induces a canonical trivialization
of the tangent bundle of each leaf of the foliation F . However, there is not a group
action of G preserving the leaves, but only an action restricted to each discrete
subgroup, so I do not know how to relate these vector fields with the Lie algebra
of G.

It is worth noting that this same construction applies to the link of every
2-dimensional isolated hypersurface (or complete intersection) singularity [224].
In fact, if V is the germ of an affine surface in C3 defined by a holomorphic map-
germ (C3, 0)

f→ (C, 0) with an isolated critical point at 0 ∈ C3, then one has the
canonical 2-form ω of 3.2.1 above:

ω =
dz1 ∧ dz2

∂f/∂z3
=

dz2 ∧ dz3

∂f/∂z1
=

dz3 ∧ dz1

∂f/∂z2
.

This 2-form defines as above, multiplication by the quaternions i, j, k. The normal
bundle of the link M in V ∗ = V − {0} is trivial and canonically trivialized by
choosing the unit outwards normal vector field ν (for the restriction to V ∗ of the
ambient Hermitian metric). Multiplying ν by i, j, k at each point of T (V ∗)|M we
get a canonical trivialization of the bundle T (M) tangent to M . This was called
in [224] the canonical framing of the link. This also induces a canonical metric and
a spin structure on M .

III.8 Remarks

There are several other lines of research, with very important results, that fall
into the theme of this chapter, and which I am not including here for several
reasons. However I would like to make a few comments in this respect and give
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some guidelines for further reading. Most of what I say here points towards articles
of W.D. Neumann, either by himself or with some co-authors.

8.1. It is important, for many reasons, to know when the link of a surface singu-
larity is a homology sphere. It was proved in [185, Th. 1] that every weighted
homogeneous surface singularity whose link is a homology sphere, is equivalent
to one given by a Brieskorn-Hamm complete intersection (which were described
in II.7); and it is relatively easy to decide when the link of a Brieskorn-Hamm
complete intersection is a homology sphere. This is explained in Milnor’s book in
the case of hypersurfaces in C3, and for the general case one can use, for instance,
the description in [183] of the corresponding Seifert invariants. On the other hand,
it is known (see Chapter IV below) that the link of every surface singularity is a
plumbed manifold, and there is an operation one can make on plumbed manifolds,
called splicing (see [75]), which allows us to construct every link of a singularity
which is a homology sphere by iterated splicing of homology spheres which are
Seifert manifolds.

8.2. In the previous sections we looked at 3-manifolds of the form Γ\G for G a
Lie group and Γ a uniform subgroup, and we discussed the relation of these and
surface singularities. There are however much deeper things one can say in this
respect. On the one hand, one has the deformations of the complex structure on
the corresponding surface singularities; on the other hand, by expressing M as Γ\G
we are endowing this manifold with a geometric structure in the sense of Thurston,
and this geometric structure can be also deformed. This corresponds to deforming
the embedding of the group Γ in G. It is natural to ask which are all these moduli
spaces of deformations, and how the deformations of the complex structure of a
surface singularity relate to the deformations of the geometric structure on the
link. These questions are beautifully answered in [186], where the author also
gives references to several significant previous contributions by various authors,
including himself.

8.3. Given a complex analytic surface singularity (V, 0) in Cn, we know that the
link M of V is the intersection V ∩ Sε of V with a sufficiently small sphere, and
we know from Chapter I that the diffeomorphism type of M does not depend on
the choice of sphere. In 8.2 above we explained that under certain hypotheses the
link M has a geometric structure in the sense of Thurston. Still, it was observed
in [220] that one always has another type of geometric structure: since M is a real
hypersurface in a complex manifold, it is automatically a CR-manifold. Of course,
the CR-structure on M depends on the choice of the sphere, and on the embedding
of V in the ambient space. However J. Scherk proved in [220], remarkably, that if
(V1, x1), and (V2, x2), are normal surface singularities whose links M1, M2 are CR-
isomorphic (for appropriate links), then they are actually analytically equivalent.
In fact Scherk proves more: this statement holds in all dimensions, not only in
complex dimension 2, and if f is a CR-isomorphism between the links, then f
itself extends to an analytic isomorphism between the analytic germs. This was
used later in [73] to have a better understanding of the relation between the
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geometric structure of the link, regarded as a homogeneous space Γ\G, and the
analytic structure on the surface singularity. In [59] Dolgachev mentions that F.
Ehlers and J. Scherk pointed out to him that the diffeomorphisms that he obtains
(and that we explained above) between the links of normal Gorenstein surface
singularities with C∗-action and quotient spaces of the form Γ\G, for G = SU(2),
S̃L(2, R) or N , also preserves the CR structures: on the link M it is determined
by the analytic structure on V ; on Γ\G it is induced by the unique G-invariant
CR structure on G [51]. I presume the same statement holds for all quotients Γ\G
for the remaining 3-dimensional Lie groups.



Chapter IV

Within the Realm of the
General Index Theorem

The goal of this chapter is to show some of the ways in which the general index
theorem of Atiyah-Singer has had impact in singularities theory. Mostly, I will
restrict myself to some interesting applications of two “particular” cases of the in-
dex theorem: the Hirzebruch-Riemann-Roch formula and the Hirzebruch signature
theorem. We consider also Rochlin’s signature theorem.

The general philosophy is the following. The index theorem of Atiyah-Singer
may be thought of as a beautiful and far-reaching generalization of the Hirzebruch-
Riemann-Roch theorem, both in statement and in the spirit of the original proof
(modified in [20, 21] to allow certain generalizations). Given a closed, oriented
manifold M , vector bundles E and F over M and an elliptic operator D from the
sections of E to those of F , one has that both the kernel and the cokernel of D
are finite-dimensional, and the difference of these dimensions is by definition the
analytic index of D. The index theorem gives a description of this integer in terms
of topological data implicit in the elliptic operator, the so-called topological index.
This establishes a very deep connection between analysis/geometry and topology.

Special cases are the signature theorem of Hirzebruch, the Hirzebruch-Rie-
mann-Roch theorem, the Lefschetz fixed point formula, the relation of the Dirac
operator with the Â-genus for spin manifolds and several other fundamental theo-
rems in mathematics. Rochlin’s signature theorem can also be seen through index
theory (see §3 below).

In the case of a compact manifold M with non-empty boundary ∂M , both
sides of the index formula are still defined, the analytic index and its topological
counterpart, but their difference need not vanish. This led Hirzebruch to introduce
the signature defect, which has had significant applications to singularities. For
elliptic operators in general, the signature defect was the starting point of a series
of articles by Atiyah, Patodi and Singer, leading them to the definition of the
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η-invariant, which is the boundary contribution that gives the correction term for
the index formula.

This has been used in singularity theory in essentially two related general ways:

(i) If (V, 0) is an isolated (real or complex) singularity germ in some affine space,
then the diffeomorphism type of its link M = V ∩Sε depends only on the analytic
structure of V , and not on the choices of defining equations for V or the radius
of the sphere (see Chapter I). Thus any invariant of closed manifolds gives auto-
matically an invariant of singularities. This has led to a vast number of interesting
results for complex singularities, especially in dimension 2. For example for the
Rochlin invariant, the signature defect (we discuss both of these below), and in
many more directions. Of course, the index theorem comes from the 1960s and
since then there has been a tremendous evolution in mathematics, particularly in
the low dimensions, where the theorems of Donaldson, Witten and others have
given rise to powerful invariants of 3- and 4-dimensional manifolds, which are
nowadays giving important information about surface singularities (see the last
section of this chapter).

It is worth noticing that (to my knowledge), essentially nothing has been done
in this direction for real analytic singularities, and I believe this can be interesting.

(ii) Consider now an isolated (real or complex) singularity germ (V, 0) and a reso-
lution of this singularity π : Ṽ → V (see Section 5 below); these can be considered
as manifolds with boundary the link M , and we can use them to compute the
invariants associated to the link as in i) above. Furthermore, if (V, 0) is a complex
analytic complete intersection germ, or more generally a smoothable singularity
(see below), one also has a Milnor fibre F (or a smoothing) of V . These can also
be considered as manifolds with boundary the link, and the same invariants that
we evaluated using a resolution can be computed via the smoothing. This leads
to interesting relations among the invariants of (V, 0) coming from a resolution
and those coming from the smoothings. For instance the formula of Laufer (and
its generalization to higher dimensions by Looigenga) for the Milnor number, and
that of Durfee for the signature, are both obtained in this way.

IV.1 A review of characteristic classes

The material in this section is all standard, see for instance [170, 166, 242]. Let
v = (v1, . . . , vn) be a vector field in an open set U ⊂ Rn; the vector field is said
to be continuous, smooth, analytic, etc., according as its components {v1, . . . , vn}
are continuous, smooth, analytic, etc., respectively. A singularity P of v is a point
where all of its components vanish, i.e., vi(P ) = 0 for all i = 1, . . . , n, and a
singularity of v is isolated if at every point x near P there is at least one component
of v which is not zero.

Let v be a vector field as above and let P be an isolated singularity of v.
Let Sε be a small sphere around P . Then the Poincaré-Hopf index of v at P is
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the degree of the map v
||v|| from Sε into the unit sphere in Rn. It is clear that all

these definitions extend to vector fields on smooth manifolds, and a fundamental
property of this index is the following theorem:

1.1 Theorem. (Poincaré-Hopf ) Let M be a closed, oriented n-manifold and let
v be a continuous vector field on M with isolated singularities. Define the total
index of v, denoted PH(v, M), to be the sum of all its local indices at the singular
points. Then one has

PH(v, M) = χ(M) ,

independently of v, where χ(M) is the Euler characteristic.

The proof of this theorem can be found in many text books. If M is now an
oriented manifold with boundary, one has a similar theorem:

1.2 Theorem. Let M be a compact, oriented n-manifold with boundary ∂M , and
let v be a non-singular vector field on a neighborhood U of ∂M . Then:

(i) v can be extended to the interior of M with isolated singularities.

(ii) the total index of v in M is independent of the way we extend it to the interior
of M . In other words, the total index of v is fully determined by its behavior
near the boundary.

(iii) if v is everywhere transversal to the boundary and pointing outwards from
M , then one has PH(v, M) = χ(M). If v is everywhere transversal to ∂M
but it points inwards M , then PH(v, M) = χ(M)− χ(∂M).

There is another way of defining the index, which brings us closer to the
topic that we discuss in a moment. Suppose first that M has no boundary and we
want to construct a non-singular vector field on M , i.e., a non-zero section v of its
tangent bundle TM . We do it step by step: let M j be the j-skeleton of M for some
triangulation (or cell decomposition). It is clear that we can always construct a
non-zero vector field on M0, which consists of isolated points. Now observe that
if we have the vector field defined and non-zero on the boundary of a p-simplex
σ, then the vector field can be regarded locally as a map ∂σ ∼= Sp−1 → Sn−1;
hence it extends to the interior of σ if p < n. In this way we see that a never-zero
vector field can be constructed up to the (n− 1)-skeleton of M . When we try to
extend it to the n-skeleton, for each n-simplex σ we have the vector field on its
boundary, a topological (n−1)-sphere, defining an element in the homotopy group
πn−1(§n−1) ∼= Z. The vector field can be extended to this cell iff the corresponding
map is nulhomotopic. Thus we have for each n-simplex a local obstruction in Z.
In fact the vector field always extends to all of σ minus its barycentre σ̂ and the
corresponding local obstruction in Z is the Poincaré-Hopf index at σ̂. This gives
rise to a cochain of dimension n, which is in fact a cocycle, hence representing a
cohomology class with integer (local) coefficients. The cohomology class that we
obtain in this way is the Euler class of M , e(M) ∈ Hn(M ; Z), which evaluated on
the orientation cycle [M ] gives a number: the Euler characteristic χ(M).
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Suppose now that M has boundary ∂M and the vector field v is defined and
non-singular around the boundary. The previous stepwise process tells us that v
can be extended to all of ∂M ∪ M (n−1). For each n-cell of M we have a local
obstruction in Z. Thus we get a cocycle e(M, v) in the relative cohomology group
Hn(M, ∂M ; Z). As a relative class e(M, v) does depend on the choice of the vector
field, generally speaking, though its image in Hn(M ; Z) depends only on M . This
is the Euler class of M relative to v. Evaluating e(M, v) on the orientation cycle
of (M, ∂M) we get a number, the total index of v in M .

Let us now extend these constructions to define the Chern classes via ob-
struction theory. This can be done with no extra work for a continuous complex
vector bundle ξ of complex (fibre) dimension n over a finite simplicial complex K
of real dimension 2m; we assume for simplicity n ≤ 2m, but this is not necessary.
We denote by Kj the jth-skeleton.

1.3 Definition. Consider a set F (r) = {v1, . . . , vr} of r continuous sections of ξ
defined on a subcomplex A of K. If the vectors vi are linearly independent over C

at every point of A, we say that F (r) defines an r-frame, or a non-singular r-field
on A. If at a point a ∈ A one (at least) of the vectors vi is zero, or if the r vectors
are not linearly independent over C, then we say that a is a singular point of the
r-field F (r).

Let Wr(n) be the Stiefel manifold of complex r-frames in Cn. We know
(see [242]) that this manifold is (2n−2r)-connected and its first non-zero homotopy
group is π2n−2r+1(Wr(n)) ∼= Z. The bundle of r-frames of ξ, denoted by Wr(ξ), is
the bundle associated with ξ whose fibre over x ∈ K is the set of r-frames in ξx.

The Chern class cq(ξ) ∈ H2q(K) is the first possibly non-zero obstruction to
construct a section of Wr(ξ). Let us construct this class using the same stepwise
process we used to construct the Euler class of a manifold. Let σ be a k-simplex of
K (or a k-cell of a given cell decomposition of a smooth manifold). If the section
F (r) of Wr(ξ) is already defined over the boundary of σ, it gives a map:

∂σ ∼= Sk−1 F (r)

−−−−→ Wr(ξ)|σ ∼= σ ×Wr(n)
pr2−−−−→ Wr(n),

thus an element of πk−1(Wr(n)). If k ≤ 2n− 2r + 1, this homotopy group is zero,
so the section F (r) can be extended to σ without singularities. If k = 2n − 2r +
2 = 2q, we meet an obstruction. So we can always construct a section F (r) of
Wr(ξ) over the (2q − 1)-skeleton. When we try to extend F (r) to the 2q-skeleton,
we have for each simplex an r-frame on its boundary, which defines an element
I(F (r), σ) ∈ π2q−1(Wr(n)) ∼= Z. Let us define a cochain γ ∈ C2q(K; π2q−1(Wr(n)))
by γ(σ) = I(F (r), σ) for each simplex σ, and then extend it by linearity. This
cochain is actually a cocycle and the cohomology class that it represents is the
qth Chern class cq(ξ) of ξ in H2q(K; Z). It is independent of the various choices
involved in its definition. We have one such class for each q = 1, . . . , n.

For an almost complex manifold M2m, its Chern classes are those of its
tangent bundle. Note that cm(M) coincides with the Euler class of the underlying
real tangent bundle TRM .
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Suppose now that L is a sub-complex of K such that the bundle ξ is trivial
over L, and we are given a specific trivialization τ of this bundle. Then we can
form the quotient space K̂ = K/L; this is a finite CW-complex. The trivialization
τ : ξ|L → L × Cn gives us a way to identify all the fibres of ξ over L, and so we
get a complex vector bundle ξ̂ over K̂. The Chern classes

ci(ξ̂) ∈ H2i(K̂; Z) ∼= H2i(K, L; Z) , i = 1, . . . , n ,

of ξ̂ are by definition the Chern classes of ξ relative to the trivialization τ over L,
denoted ci(ξ; τ). These classes do depend on the choice of τ , generally speaking,
but their images in H∗(K; Z) are the usual Chern classes, which depend only on
ξ and K.

Let us now repeat the same constructions as before, but we consider now an
oriented real vector bundle ζ of fibre dimension n over a finite simplicial complex
K of dimension m; for simplicity we assume n ≤ m. The previous arguments tell
us that the obstruction for constructing a non-zero section of ζ is a cohomology
class e(ζ) ∈ Hn(K; Z), which is (by definition) the Euler class of ζ. The image
of e(ζ) in Hn(K; Z2), denoted wn(ζ), is by definition the top-dimensional Stiefel-
Whitney class of ζ. Notice that the orientation of ζ is only necessary to define the
Euler class, which has integral coefficients. The Stiefel-Whitney class wn(ζ) is well
defined even for non-orientable bundles.

Now let us mimic the previous construction of Chern classes: we want to
construct at each point of K two linearly independent sections of ζ. This means
that (up to homotopy) we want a section of the bundle V2(ζ), whose fibre at
each point is the Stiefel manifold V2(n) of oriented 2-frames in Rn. The homotopy
groups of V2(n) vanish up to dimension i = n − 3 and one has πn−2(V2(n)) ∼= Z

for n even, and πn−2(V2(n)) ∼= Z2 for n odd, see [244, 25.6]. Thus, for n even, one
gets that the primary obstruction Wn−1(ζ) for constructing a 2-frame of ζ lives
in Hn−1(K; πn−2(V2(n)) ∼= Hn−1(K; Z), while for n odd the obstruction is a class
wn−1(ζ) in Hn−1(K; Z2). For n even, let us denote also by wn−1(ζ) ∈ Hn−1(K; Z2)
the reduction modulo 2 of Wn−1(ζ). By definition, the class wn−1(ζ) is the (n−1)th
Stiefel-Whitney class of ζ, for all n.

More generally, if we try to construct a k-frame of ζ by the stepwise process,
the first possibly non-zero obstruction will be a cohomology class of K in dimension
(n− k + 1) with coefficients in πn−k(Vk(n)), which is isomorphic to Z when n− k
is even, and it is isomorphic to Z2 when n− k is odd and k > 1, see [244, 25.6].
In all cases we can consider the corresponding class wi(ζ) ∈ Hn−k+1(K; Z2); this
is by definition the (i)th Stiefel-Whitney class of ζ, i = n− k + 1 = 1, . . . , n.

We notice that by construction, when n − k is even, or when k = 1, the
corresponding Stiefel-Whitney class automatically has a lifting to the integral
homology. However, for n− k odd, such a lifting may not exist.

For a smooth manifold, its Stiefel-Whitney classes are those of its tangent
bundle.

Of course just as for Chern classes, when one has a trivialization of the bundle
ζ over a subcomplex L ⊂ K, one also has a theory of relative Stiefel-Whitney
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classes, which live in H∗(K, L; Z2). Their images in the absolute cohomology are
the usual Stiefel-Whitney classes, which depend only on the space K and the
vector bundle ζ, while the relative classes do depend in general on the choice of
trivialization of ζ over L.

There is finally a third type of characteristic classes associated to vector
bundles, which is very useful and important in order to obtain further information
of the bundles. These are the Pontryagin classes. To define these, we start with
a real vector bundle ζ over K as before. For each fibre Vx of ζ consider the
complexification Vx ⊗ C = Vx ⊗R C. The union of all these vectors gives a new
vector bundle over K, which is now a complex vector bundle that we denote by
ζ ⊗ C and call it the complexification of ζ.

Notice that the underlying real vector bundle (ζ ⊗ C)R is canonically iso-
morphic to the Whitney sum ζ ⊕ ζ, with each fibre being canonically of the form
Vx ⊕ i Vx.

We now consider the Chern classes of the complex bundle ζ ⊗ C. It is an
exercise (see [170, §15)] to show that the odd-dimensional classes c2i+1(ζ⊗C) are
all elements of order 2, i.e., twice the element is zero in cohomology. Ignoring these
elements of order 2, the ith Pontryagin class of ζ, pi(ζ) ∈ H4i(K; Z), is defined to
be the integral class (−1)ic2i(ζ ⊗ C), the sign being just a useful convention.

There is a situation which is especially relevant for what follows in this chap-
ter, that is when the bundle we start with is already a complex bundle, particularly
the tangent bundle of a complex manifold. So we consider now a complex vector
bundle ξ over K; we may forget the complex structure on ξ and regard the under-
lying real vector bundle ξR. One has (see [170, 15.4]) that the complexification
of this bundle is canonically isomorphic to the Whitney sum ξ ⊕ ξ, where ξ is
the dual vector bundle. We also know that the Chern classes satisfy the Whitney
product formula with respect to Whitney sums. This means that one has:

1− p1(ξ) +− · · · ± pn(ξ) = (1 + c1(ξ) + · · ·+ cn(ξ)) · (1 + c1(ξ) + · · ·+ cn(ξ))

and the Chern classes of ξ satisfy: ci(ξ) = (−1)ici(ξ), see [170, 14.9]. Thus one
has ([170, 15.5]):

1.4 Proposition. For any complex n-plane bundle ξ, the Chern classes of ξ deter-
mine the Pontryagin classes of ξR by the formula (dropping ξ from the notation
for simplicity):

1− p1 + p2 −+ · · · ± pn = (1− c1 + c2 −+ · · · ± cn) · (1 + c1 + c2 + · · ·+ cn)

and therefore pi(ξR) is: pi = c2
i − 2ci−1ci+1 +− · · · ± 2c1c2i−1 ∓ 2c2i.

In particular, for a complex manifold M of dimension 2 one has:

p1(M) = c1(M)2 − 2c2(M).

1.5 Remark. Notice that we have only considered here characteristic classes of
vector bundles and manifolds. These will be used later to study invariants of
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singular spaces, usually by looking at the characteristic classes of either a resolution
of the singular variety or a smoothing of it (see the definitions below). These are
useful invariants, however they are not intrinsic to the singular variety and depend
on the choice of resolution or smoothing. There is a vast literature about “Chern
classes for singular varities”, which are intrinsic to varieties. This began with the
work of M.H. Schwartz [222] and R. MacPherson [152]; we refer to [34] for an
overview of the topic. But we shall not use these in the sequel.

IV.2 On Hirzebruch’s theorems about the signature

and Riemann-Roch

Let M be a compact, smooth and oriented manifold (possibly with non-empty
boundary ∂M) of dimension 2n ≥ 2 and consider its middle cohomology with real
coefficients, Hn(M, ∂M ; R). This is a finite-dimensional vector space over which
one has a non-degenerate symmetric bilinear form:

bM : Hn(M, ∂M ; R)×Hn(M, ∂M ; R) −→ H2n(M, ∂M ; R) ∼= R

given by the cup product. The Poincaré-Lefschetz duality isomorphism implies
that this pairing is non-degenerate. This duality isomorphism also allows us to
look at this bilinear pairing in homology,

b∗M : Hn(M ; R)×Hn(M ; R) −→ H0(M ; R) ∼= R ,

where it is given by the intersection product of cycles. One usually refers to the
corresponding quadratic form in Hn(M, ∂M ; R) as the quadratic form of M .

2.1 Definition. Let n = 2k. The signature of M4k, σ(M), is the signature of the
bilinear form bM . That is, σ(M) = s+−s−, the number s+ of positive eigenvalues,
minus the number s− of negative eigenvalues of bM .

For a manifold of dimension 4k+2 the signature is defined to be 0. It is clear
that one has σ(M) = −σ(−M) where −M is M with reversed orientation.

One has:

2.2 Theorem. (R. Thom [250].) The signature satisfies:
(i) it is an invariant of oriented cobordism, in particular it vanishes when the

manifold is an oriented boundary;
(ii) it is multiplicative, i.e.,

σ(M4k ×N4r) = σ(M4k) · σ(N4r);

(iii) it is additive under disjoint unions:

σ(M4k �N4r) = σ(M4k) + σ(N4r).
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Thom also proved in [250, IV.14, p. 81] that for k = 1 one has

σ(M) =
1
3

p1(M)[M ] ,

a third of the Pontryagin number. This gives a clue to what is coming next.

To give a precise statement of the signature theorem of Hirzebruch we need to
introduce the multiplicative sequences of polynomials (we follow [101]). These are
sequences {Kj} of polynomials in the indeterminates p1, p2, . . . . One sets p0 = 1
and considers the ring Q[p1, p2, . . . ]. This ring is graded by assigning weight i
to each variable pi and weight i1 + i2 + · · · + in to the product pi1pi2 · · · pin .
Each polynomial Kj is homogeneous of weight j. The sequence {Kj} is called
multiplicative if every identity of the form:

1 + p1z + p2z
2 + · · · = (1 + p′1z + p′2z

2 + · · · ) · (1 + p′′1z + p′′2z2 + · · · )

with z, pi, p
′
i, p

′′
i indeterminate, implies an identity

∞∑
i=0

Ki(p1, . . . , pi)zi =
( ∞∑

i=0

Ki(p′1, . . . , p
′
i)z

i

)( ∞∑
j=0

Kj(p1, . . . , pj)zj

)
.

Given one such sequence, the power series,

Q(z) = K(1 + z) =
∞∑

i=0

bi zi , b0 = 1, bi = Ki(1, 0, . . . , 0) ∈ Q ,

is called the characteristic power series of the multiplicative sequence. It turns
out [101, 1.2.1] that each multiplicative sequence of polynomials as above is
completely determined by its characteristic power series Q(z). Furthermore ([101,
1.2.2]), every formal power series Q(z) =

∑∞
i=0 bi zi , b0 = 1, bi ∈ Q , corresponds

to a multiplicative sequence of polynomials. Hence, to describe such a sequence
we only need to specify the corresponding power series Q(z). So now consider the
power series

Q(z) =
√

z

tanh
√

z
= 1 +

∞∑
r=0

(−1)r−1 22r

(2r)!
Br zr .

The coefficients Br are the Bernoulli numbers. Hirzebruch in [101] gives the first
of these coefficients, some of them are:

B1 =
1
6

, B2 =
1
30

, B3 =
1
42

, . . . , B8 =
3617
510

.

2.3 Definition. The multiplicative sequence corresponding to this power series is
the L-sequence of Hirzebruch, denoted {Lj(p1, . . . , pj)}.
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The first of these polynomials are listed by Hirzebruch. These are:
L1 = 1

3 p1 ,

L2 = 1
45 (7p2 − p2

1) ,

L3 = 1
33·5·7 (62p3 − 13p2p1 + 2p3

1).

We can now state the signature theorem of Hirzebruch [101, Thm. 8.2.2]:

2.4 Theorem. Assume M is closed (i.e., ∂M = ∅) of dimension 4k > 0. Then its
signature σ(M) is:

σ(M) = Lk

(
p1(M), . . . , pk(M)

)
[M ] ,

where the pi(M) ∈ H4i(M ; Z) are the Pontryagin classes of M .

The polynomial on the right-hand side is called the L-genus of the manifold
M , denoted L[M ]. Notice that just the mere fact this genus is an integer is already
a miracle.

The proof of this theorem was given by Hirzebruch in [101], and as mentioned
before, this can also be deduced directly from the general Index Theorem of Atiyah-
Singer. The idea of the proof is the following (see [101, Chapter II] or [170, p.
225]). First one notices that by construction, the L-genus satisfies a multiplicative
property similar to that satisfied by the signature (see Definition 2.3 above), and
they are both additive under disjoint unions, which is the operation in cobordism.
From this, together with the fact that the Pontryagin numbers are invariants
of oriented cobordism, one deduces that the correspondences M 
→ σ(M) and
M 
→ L[M ] give rise to algebra homomorphisms Ω∗ ⊗ Q −→ Q, where Ω∗ is
the oriented cobordism ring. Hence it is enough to prove Theorem 2.4 for a set
of generators of the algebra Ω∗ ⊗ Q, which vanishes in dimensions �≡ 0 mod4
(by [250]). Such a set is provided by the complex projective spaces CP2k. It is not
hard to show that the signature of CP

2k is always +1. So one needs to show only
that the L-genus of every complex projective space is also +1, and this is proved
in [101, p. 225] or [170].

Let us restrict now to dimension 4. As mentioned above, in this case the
theorem was given by R. Thom [250, IV.14, p. 81] and it says:

σ(M) =
p1(M)[M ]

3
. (2.5)

If we now take M to be a complex manifold (even almost complex is enough),
then we know that p1 = c2

1 − 2c2, and so the previous formula takes the very nice
shape:

σ(M) =
K2 − 2 χ(M)

3
, (2.6)

where K is the canonical divisor, representing a homology class which is the
Poincaré dual of the first Chern class of the cotangent bundle T ∗M , and χ(M) is
the topological Euler characteristic.
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Let us move now towards the Hirzebruch-Riemann-Roch theorem. This be-
gins with Riemann’s calculation that the holomorphic differentials on a compact
Riemann surface S of genus g ≥ 0 is a complex vector space of dimension g, i.e.,

dimH0(S;KS) = g ,

where KS is the cotangent (or canonical) bundle on S. The next step is to consider
an arbitrary holomorphic line bundle L over S, then we would like to be able to
determine the dimension of the space of global sections of it H0(S;L), which we
denote h0(L) for simplicity; in particular one may ask whether this number is still
determined by the topology. Before stating the theorem, notice that the above
formula can be written as:

h0(OS)− h0(KS) =
1
2
(2− 2g) =

1
2

c1(S)[S]

where h0(OS) = 1 are the holomorphic functions from S to C and c1 is the Chern
class of TS. The Riemann-Roch formula for line bundles over a Riemann surface
in general says:

h0(L) − h0(KS ⊗ L−1) =
(

c1(L) +
1
2

c1(S)
)

[S].

The Serre duality theorem for line bundles over Riemann surfaces gives the duality:

H0(KS ⊗ L−1) ∼= H1(L) ,

and therefore the Riemann-Roch formula can be expressed as:

h0(L)− h1(L) =
(

c1(L) +
1
2

c1(S)
)

[S].

That is, the analytic Euler characteristic

χ(L) =
1∑

i=0

(−1)i hi(L) ,

is determined by the topological invariants on the right-hand side. We write this as:

χ(S;L) =
(
Td1(S) + c1(L)

)
[S] , (2.7)

where Td1(S) = 1
2 c1(S). This is the expression that generalizes to higher dimen-

sions. In order to explain this we need to introduce another multiplicative sequence
of polynomials, the Todd sequence {Tdk}. This is determined by the power series:

Q(x) =
x

1− e−x
= 1 +

1
2

x +
∞∑

k=0

(−1)k−1 Bk

(2k)!
x2k .
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The first polynomials in this sequence are [101]:

Td1 =
1
2

c1 , T d2 =
1
12

(c2 + c2
1) , T d3 =

1
24

c2c1,

T d4 = 1
720 (−c4 + c3c1 + 3c2

2 + 4c2c
2
1 − c4

1).

2.8 Definition. Let M be an almost complex manifold of real dimension 2k. Then
its Todd genus Td(M) is:

Td(M) = Tdk(c1(M), . . . , ck(M))[M ] ,

where ci(M) ∈ H2i(M ; Z), i = 1, . . . , k, are the Chern classes of M .

2.9 Definition. Let M be a complex manifold of dimension k. Its analytic Euler
characteristic (also called the arithmetic genus) is:

χ(M ;O) =
k∑

i=0

(−1)i hi(M ;O) ;

and more generally, if L is a holomorphic bundle over M , then the analytic Euler
characteristic of L is:

χ(M ;L) =
k∑

i=0

(−1)i hi(M ;L) .

Now we can state the simplest version of the Hirzebruch-Riemann-Roch theorem:

2.10 Theorem. Let M be a complex manifold. Then

χ(M ;O) = Td(M) .

For algebraic manifolds of dimension 2, this is Noether’s formula. Stated in
this way, Theorem 2.10 only makes sense for complex manifolds and Hirzebruch’s
proof was only for algebraic manifolds. However one can re-phrase it using the
index theorem, replacing the left-hand side by the index of the ∂̄-operator, and
the theorem holds for almost complex manifolds. This implies in particular that
Td(M) is an integer, which is another miracle. In Section 4 below we give a
theorem [76] which shows that for complex manifolds, the parity of Td(M) is
detected by a certain “mod (2) index”, which for complex surfaces is the Arf
invariant in Rochlin’s theorem, which we discuss in the following section.

More generally, given a holomorphic bundle L, the Riemann-Roch formula
says that the analytic Euler characteristic of L is given by the Todd genus of M
and a polynomial in the Chern class c1(L) and the Chern classes of M .
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Making c = c1(L), in the low dimensions this takes the form:

χ(M1;L) =
(
c +

1
2
c1(M)

)
[M ] ,

χ(M2;L) =
(1

2
(
c2 + c · c1(M)

)
+

1
12
(
c2(M) + c2

1(M)
))

[M ] ,

χ(M3;L) =
(1

6
c3 +

1
4
c2c1(M) +

1
12

c (c2(M) + c2
1(M)) +

1
24

c1(M)c2(M)
)
[M ] .

The general Riemann-Roch theorem (see [101, Ch. 4] and [21, §4]) expresses
the analytic Euler characteristic χ(M ; E) of every holomorphic vector bundle over
M (E of any dimension) in terms of the total Todd class of M (i.e., the collection of
all cohomology classes in all dimensions, obtained by evaluating the Todd sequence
of polynomials in the Chern classes of M), and the Chern character of the bundle
(see [101, §10]), which is a class in the cohomology ring H∗(M ; Q).

IV.3 Spin and Spinc structures on 4-manifolds.
Rochlin’s theorem

We refer to [124] for a clear account of spin and spinc structures on manifolds. The
group Spin(n), n > 1, is usually defined as a subgroup of the group of units of an
appropriate (Clifford) algebra, but it can be equivalently defined as the non-trivial
double cover of SO(n); since for n > 2 the fundamental group of SO(n) is Z/2,
it follows that in these dimensions Spin(n) is also the universal covering group of
SO(n). In low dimensions one has that Spin(2) is the circle S1 regarded as the 2-
fold cover Spin(2)→ SO(2); Spin(3) is the 3-sphere, isomorphic to SU(2) ∼= Sp(1);
Spin(4) is SU(2)× SU(2) , since SO(4) ∼= SO(3)× SU(2).

Now, given a closed, connected smooth manifold M of dimension n, the
structure group of its tangent bundle TM is GL(n, R). To have a reduction of the
structure group of this bundle to a certain subgroup G ⊂ GL(n, R) means that
we have a smooth atlas {(Ui, φi)} for M , so that TM |Ui is trivial on each chart,
and the gluing functions for TM on each chart,

φ̃ij : Ui ∩ Uj → GL(n, R)

can be all taken in G (c.f. Ch. III, §6). Since each basis of Rn is homotopic to
an orthonormal one, the group GL(n, R) has O(n) as a deformation retract. This
means that endowing M with a Riemannian metric, we can reduce the structure
group of TM from GL(n, R) to O(n). Equivalently, the bundle TM is classified,
up to isomorphism, by a continuous map (see [164])

τM : TM → BGL(n, R)

into the classifying space of GL(n, R). There is a map induced by the inclusion
BO(n)

ι
↪→ BGL(n, R), and a reduction of the structure group of TM to O(n)



IV.3. Rochlin’s theorem for Spinc manifolds 103

simply means a lifting of the classifying map τM from BGL(n, R) to BO(n). If M
is an orientable manifold, we may reduce the structure group of the bundle TM
further to SO(n). This means choosing our atlas so that all the gluing maps have
determinant 1, i.e., we are fixing an orientation on M , or equivalently, lifting the
classifying map τM further to BSO(n). We remark that such lifting of τM exists
only because we are assuming M is orientable, and there are exactly two homotopy
classes of such liftings, corresponding to the possible orientations on M . It is an
exercise (see [124]) to show that a smooth compact manifold M is orientable iff
its first Stiefel-Whitney class w1(M) ∈ H1(M ; Z2) vanishes.

The covering map Spin(n) → SO(n) induces a map of classifying spaces
B Spin(n) → BSO(n), and we may ask to further lift τM from BSO(n) to
B Spin(n).

3.1 Definition. A compact, oriented manifold M admits a spin structure if the
structure group of its tangent bundle can be lifted from SO(n) to Spin(n); the
various homotopy classes of such liftings are the different spin structures on M .

In this case one says, shortly, that M is a spin manifold. Alternatively, an
orientation on M determines a principal SO(n)-bundle P over M , whose fibre at
each point x ∈ M is the set of all orthonormal, positively oriented basis of the
corresponding tangent space TxM ; and a spin structure on M means a principal
spin bundle P̃ over M which double covers P and at each x ∈ M restricts to the
double cover Spin(n)→ SO(n). One has (see [124, 1.7]):

3.2 Proposition. A compact smooth manifold M admits a spin structure iff its
Stiefel-Whitney classes w1(M) and w2(M) vanish; and if this happens, then the
different spin structures on M are classified by H1(M ; Z2).

Thus, for instance, every parallelizable manifold is spin, since TM trivial
implies we can reduce its structure group to 1, and all its Stiefel-Whitney classes
vanish. Also notice that every homology sphere (of dimension > 2) admits a unique
spin structure.

Let us assume now that M is spin. Then one can easily see that its quadratic
form is automatically an even form, and therefore its signature must be divisible
by 4. A general result in algebra tells us that it is actually divisible by 8, which is
already a non-trivial fact. Rochlin’s remarkable theorem in 1952 says more:

σ(M) ≡ 0 mod (16) . (3.3)

This was a key result in 4-manifold theory, being closely related to other peculiar-
ities of low-dimensional topology and triangulation theory. This was generalized
by M. Kervaire and J. Milnor for oriented 4-manifolds which may not be spin pro-
vided there is an embedded 2-sphere S in M representing an integral homology
class whose reduction modulo 2 is the Stiefel-Whitney class. In this situation they
proved:

σ(M) ≡ S2 mod (16) (3.4)
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where S2 is the self-intersection of S in M . In order to say more about this result
of Kervaire-Milnor, and its later generalization by Rochlin himself, it is convenient
to speak about spinc-structures on manifolds.

For this we recall that the oriented, differentiable 2-plane vector bundles over
an oriented manifold are in 1-to-1 correspondence with the cohomology group
H2(M ; Z), the correspondence being given by associating to each such bundle
its Euler class. Notice that SO(2) ∼= U(1), so we can identify oriented 2-plane
bundles with complex line bundles. We also recall that Spin(n)c is defined to be the
subgroup of Spin(n+2) that double covers the group SO(n)×SO(2) ⊂ SO(n+2).
One has an isomorphism

Spin(n)c ∼= Spin(n)×Z2 SO(2) ,

and a short exact sequence

0 −→ Z2 −→ Spin(n)c −→ SO(n)× SO(2) −→ 1 ,

where Z2 ⊂ Spin(n)c is generated by the element [(−1, 1)] = [(1,−1)].

3.5 Definition. An oriented n-manifold M admits a spinc structure if there exists
a complex line bundle L over M , called the determinant bundle for the spinc

structure, such that the structure group of TM ⊕ L lifts to Spin(n)c.

One has that M admits a spinc structure iff there exists an integral homology
class W ∈ Hn−2(M ; Z) whose reduction modulo 2 is the Poincaré dual of w2(M),
the 2nd Stiefel-Whitney class of M (see for instance [124, Theorem D.2, p. 391].
This class W is precisely the Chern class of the determinant bundle L. It follows
that if M admits a spinc structure, then all other spinc structures correspond
bijectively with the elements in H2(M ; Z), which can be regarded as the group of
C∞ complex line bundles over M .

Of course if M is a complex manifold, then it has a canonical spinc struc-
ture given by −K, the anti-canonical class, which is the Chern class of its tangent
bundle, which equals that of the complex line bundle

∧2
TM . The canonical bun-

dle KM =
∧2 T ∗M gives another spinc structure. Also every spin manifold is

canonically spinc with the trivial bundle as determinant (and W = ∅).
3.6 Definition. An oriented submanifold W ⊂M of codimension 2 is characteristic
if it is the Chern class of a line bundle over M which is the determinant of some
spinc structure on M .

Of course this is equivalent to saying that W represents an integral homology
class W ∈ Hn−2(M ; Z) whose reduction modulo 2 is the Poincaré dual of w2(M),
the 2nd Stiefel-Whitney class of M , which is the usual definition of a characteristic
submanifold.

The following generalization of the theorems of Rochlin (3.3) and Kervaire-
Milnor (3.4) was given by Rochlin himself in [209]. An essentially complete proof
can be found in [81]; a generalization to higher dimensions was given in [192].
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3.9 Theorem. Let M be an oriented closed 4-manifold and W ⊂M a characteristic
submanifold, then one has:

σ(M)−W 2 ≡ 8 Arf(W ) mod (16) ,

where W 2 is the self-intersection number of W and Arf(W ) ∈ {0, 1} is the Arf
invariant of a certain quadratic form on H1(W ; Z2).

We leave it as an exercise for the reader to prove that every closed, oriented
4-manifold admits a spinc structure. We recall that the Arf invariant of a quadratic
form on a finite-dimensional vector space over Z2 takes values in {0, 1} and can
be defined to be 0 iff it takes the value 0 more times than it takes the value 1; two
such quadratic forms are equivalent iff they have the same Arf invariant (see the
appendix in [211] for details).

Of course if M is spin we can take W = ∅ and we recover (3.3). And if M is
not spin but we can take W to be a 2-sphere, then H1(W ; Z2) = 0, so Arf(W ) = 0
and we recover (3.4).

IV.4 Spin and Spinc structures on complex surfaces.

Rochlin’s theorem

We now discuss Spin and Spinc structures on complex surfaces and give a variant of
Rochlin’s Theorem 3.1 when both M and W are complex analytic. Our approach is
via algebraic geometry, and in doing so one is naturally led to considering divisors
on M , rather than smooth submanifolds. But the definition of the Arf invariant
in Rochlin’s theorem only makes sense when W is smooth. Thus we were led
in [76] to considering another mod (2) invariant, instead of Arf(W ), that comes
naturally from algebraic geometry. This invariant is an extension for divisors of
the mod (2) index introduced in [16, 19], which is the mod (2) index of a Dirac
operator. Essentially everything we say here is taken from [76] and holds for all
complex dimensions of the form 4k + 2; here we restrict to complex dimension 2
for simplicity.

We recall (c.f. III.6) that if M is a compact complex manifold of dimension
2, then its canonical bundle K = KM , is the bundle of holomorphic 2-forms on M ,
whose Chern class is the negative of c1(TM). The anti-canonical bundle K−1

M is the
exterior product

∧2 TM . This bundle determines a canonical spinc structure on
M , for whichK−1

M is the determinant bundle (c.f. [192]). We denote by K the divisor
of K, the canonical divisor of M ; −K is then the anti-canonical divisor. Notice
that −K represents the Poincaré dual of the Chern class c1(K) ∈ H2(M ; Z). Since
for complex manifolds the Chern classes reduced modulo 2 give the corresponding
Stiefel-Whitney classes (see Section 1), it follows that both ±K represent integral
homology classes whose reduction modulo 2 is the second Stiefel-Whitney class of
M . However in most cases they are singular, non-reduced and reducible, so they
cannot be used as characteristic submanifolds for M in the sense of Section 3. Yet



106 Chapter IV. The General Index Theorem

we note that a submanifold W ⊂ M is characteristic iff it represents a homology
class of the form 2D − K for some integral class D ∈ H2(M ; Z). This group
classifies the different spinc structures on M , and it can be regarded also as the
group of C∞ complex line bundles over M . Given a divisor D, we can form a divisor
W = 2D − K , which corresponds to the line bundle D2 ⊗ K−1; the reduction
modulo 2 of the homology class represented by W is the second Stiefel-Whitney
class of M . Summarizing, one has:

4.1 Proposition. Every complex manifold M has a canonical spinc structure whose
determinant bundle is the anti-canonical divisor −K. Furthermore, every line bun-
dle LW on M of the form D2 ⊗K−1 determines canonically a spinc structure on
M whose determinant bundle is LW .

Notice that if W were a smooth submanifold of M , then W would be char-
acteristic in Rochlin’s sense. This justifies the following definition:

4.2 Definition. A characteristic divisor of M is a non-negative divisor W ≥ 0 of
M which can be expressed as

W = 2D − K ,

where D is some (any) divisor of M and K is the canonical divisor.

We now want to introduce the aforementioned mod (2) invariant of char-
acteristic divisors that will replace Rochlin’s Arf invariant in our discussion. For
this we recall (see [16, 3.2]) that on a Riemann surface X the spin structures
correspond bijectively with the holomorphic square roots of the canonical bundle
KX , that is with the (isomorphism classes of) holomorphic line bundles L over X
with L2 ∼= K, where L2 = L⊗L. These bundles are called theta characteristics on
the manifold; they were first studied by Krazer (1903). In [16, 177] Atiyah and
Mumford showed (independently) that for Riemann surfaces, the dimension of the
space of sections of these bundles, dim H0(X,L), reduced modulo 2, is stable un-
der holomorphic deformations. To explain this, Atiyah showed that the parity of
dim H0(X,L) can be regarded as being the mod (2) index of the Dirac operator
for the corresponding spin structure.

Similarly, given a compact complex surface M as above, and an effective
divisor W on M , one has the canonical (or dualizing) sheaf ωW . This exists for all
effective divisors (possibly non-reduced, reducible) on complex manifolds, see for
instance [24]. One may define:

4.3 Definition. A theta characteristic on W is the restriction to W of a holomorphic
line bundle D on M , such that D2|W ∼= ωW .

One has:

4.4 Proposition. Let W = 2D − K be a characteristic divisor of M , and let
L = LW , D be the corresponding line bundles. Then D|W is a theta characteristic
on W .
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Proof. We recall that for a Riemann surface E in M the classical adjunction
formula says

KE
∼= KM |E ⊗ νE ,

where νE is the normal sheaf. Similarly, given an effective divisor W in M defined
by a section of a holomorphic line bundle L ∼= LW , the restriction of L to W can
be identified with the normal sheaf OW (W ) of W , and one also has the adjunction
formula (see [24]):

ωW
∼= KM |W ⊗ L|W .

By hypothesis one has L ∼= D2 ⊗K−1
M . Therefore:

ωW
∼= KM |W ⊗ L|W ∼= KM |W ⊗ D2|W ⊗ K−1

M |W ∼= D2|W . �

Now define (following [16, 19, 177, 76]):

4.5 Definition. The mod 2 index of the characteristic divisor W = 2D − K is:

�(W ) =

{
dim H0(W,D) mod 2 , if W �= 0 ,

0 , if W = 0 ;

i.e., for W �= 0 it is the reduction modulo 2 of the space of sections of its associated
theta characteristic D|W .

4.6 Remarks.

(i) Notice that given the divisor W , the corresponding bundle D is well defined
modulo the 2-torsion in the Picard group PicM of holomorphic line bundles
on M . However the Hirzebruch-Riemann-Roch formula [101] of §2 above,
together with Theorem 4.7 below, grants that this invariant depends only on
the numerical equivalence class of D and is independent of the 2-torsion in
Pic M .

(ii) We also remark that everything we have said so far holds for compact man-
ifolds of complex dimension 4k + 2, with obvious adaptations. In this case
the characteristic divisor has dimension 4k +1 and the corresponding mod 2
index is the reduction modulo 2 of

∑2k
i=0 dimHi(W,D), see [76, 1.4]. The fol-

lowing theorem also holds in this general setting ([76, 2.1]), but for simplicity
we do it here only for k = 0.

4.7 Theorem. Let M be a compact complex surface, let W = 2D−K be a charac-
teristic divisor of M , �(W ) its mod 2 index, and let χ(M,D)=

∑2
i=0(−1)ihi(M,D)

be the analytic Euler characteristic of M with coefficients in D (see [101]). Then
one has:

�(W ) ≡ χ(M,D) mod 2 .

Proof. Assume first that W �= 0, and consider the exact sequence of sheaves over M :

0 −→ KM ⊗D−1 s∗
−→ D r−→ D|W −→ 0 ,
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where s∗ is multiplication by the section s of L that defines W and r is the
restriction to W . One has the associated long exact sequence

0→ H0(KM ⊗D−1)→ H0(D)→ H0(D|W ) α→ H1(KM ⊗D−1)
β→ H1(D)→ · · · .

If we denote by hi(·) the dimension of the corresponding cohomology group, then
we want to prove:

h0(W,D|W ) ≡
2∑

1=0

hi(M,D) mod 2

and by exactness of the sequence above we know:

h0(W,D|W ) ≡ h0(M,KM ⊗D−1) + h0(M,D) + dim Im (α) mod 2.

Serre’s duality on M gives:

H0(M,KM ⊗D−1) ∼= H2(M,D) ,

so, again by exactness, the theorem will be proved if we show that

dim Ker (β) ≡ h1(M,D) mod 2 ,

but Serre’s duality tells us that β is essentially defined by the cup-product in
H1(M,KM ⊗D−1), and in dimension 2 the cup-product is a skew-form, so it can

be expressed as a direct sum of blocks of the form
(

0 b
−b 0

)
, hence the theorem.

This proves Theorem 4.7 for W �= 0 characteristic. It remains to prove the theorem
for W = 0; this is left as an exercise (see [76] for details). �

Let us now recall that the Riemann-Roch formula says that the analytic
Euler characteristic of M with coefficients in D is given by:

χ(M,D) = Td(M) +
1
2
(D2 −D ·K)

=
1
12

(K2 + χ(M)) +
1
8
(W 2 −K2) ,

since W = 2D−K, where χ(M) is the usual (topological) Euler-Poincaré charac-
teristic of M . Thus Theorem 4.7 can be reformulated as:

�(W ) ≡ 1
24

(2χ(M)−K2) +
1
8
(W 2) mod 2.

Since for a complex surface the Pontryagin class is:

p1(M) = c2
1 − 2c2,

and the Hirzebruch signature theorem says σ(M) = − 1
3p1(M)[M ], it follows that

Theorem 4.7 is equivalent to:
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4.8 Theorem. Let M be as above, a compact complex manifold of dimension 2, and
let W = 2D −K be a characteristic divisor of M . Then:

σ(M) − W 2 ≡ 8 dim H0(W ;D|W ) mod (16) .

This theorem is essentially an algebro-geometric variation of Rochlin’s sig-
nature theorem, the difference being that in Theorem 3.7, W has to be a smooth
characteristic submanifold and the term on the right-hand side is the Arf invari-
ant of a quadratic form on H1(W ; Z2) defined topologically, while here W is a
(possibly singular, non-reduced and reducible) characteristic divisor.

Notice that W is defined by a holomorphic section of a line bundle L. Every
such section can be approximated by a C∞ section st of L which is transversal to
the zero-section. The zero set Ŵ of st is then a smooth, real submanifold of M rep-
resenting the same homology class as W . Hence Ŵ is a characteristic submanifold
in the sense of Section 1, and 4.8 together with Rochlin’s theorem yield:

Arf(Ŵ ) ≡ dimH0(W ;D|W ) mod (2) . (4.9)

Is this a special case of a more general theorem? For instance, following [192] we
see that the manifold Ŵ is canonically spin:

4.10 Question. Is the mod (2) index �(W ) = dim H0(W ;D|W ) equal to the mod (2)
index of the Dirac operator on Ŵ? And in higher dimensions?

For instance, if a real manifold M of dimension 8k + 4 has a spinc structure
and W ⊂ M is a codimension 2 characteristic submanifold, then W is automati-
cally spin. Each of these manifolds has a Dirac operator DM , DW ; the C∞ version
of Theorem 4.7 in higher dimensions (see [76]) would be to ask whether the index
of DM reduced modulo 2 equals the mod (2) index of DW . I do not know the
answer to these questions.

4.11 Remark. It is worth pointing out some special cases of Theorem 4.7:
(i) If K < 0, then W = −K is characteristic with D = 0. We obtain,

dimH0(−K,O) ≡ χ(M,O) mod 2 .

(ii) If K > 0, then W = K = D is characteristic and one has:

dimH0(K,KM |K) ≡ χ(M,O) mod 2 ,

because χ(M,KM ) = χ(M,O) (by [101]).
(iii) If K is even, so that M is spin, then K2 is divisible by 8 and:

Td(M) ≡ 1
8

K2 mod 2 ,

that is, Td(M) is always an integer (by [101]), but it may or may not be an
even integer, and this is given by the parity of 1

8 K2. Hence the Todd genus
is even when K = 0 (c.f. [18, Cor. 2.ii]).
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IV.5 A review of surface singularities

We want to use the previous results for compact manifolds to study germs of sur-
face singularities. For this we need some preliminary background about resolutions
of singularities. Since this important material is now standard in the literature,
we only make a brief review, for completeness and to set up our notation and
conventions.

Consider first a singular (reduced) complex curve C in some smooth complex
surface X . An important result for plane curves, due to Max Noether (1883), is
that by a finite sequence of blowing ups we can always resolve the singularities of
C. Let us explain this with a little more care (see [44] for a clear account of the
subject). Given a smooth point x in a complex surface X , take local coordinates
so that we identify the germ of X at x with that of C2 at 0. Let us take a small
disc U around x and consider the map: γ : U − {x} → CP 1 which associates to
each y ∈ U − {x} the point in CP 1 represented by the line determined by x and
y. The graph of γ is an analytic subset of (U − {x})× CP 1, whose closure

X̃ = graph(γ) ⊂ (U − {x})× CP 1

turns out to be a smooth complex surface. Notice that X̃ is obtained by removing
x from X and replacing it by the limits of lines converging to x. Thus we have
replaced x by a copy of CP 1. There is a projection map π : X̃ → X which is
biholomorphic away from E ∼= CP 1 = π−1(x). This transformation is called the
blow-up of X at x (in the literature this is called sometimes a σ-process or a
monoidal transformation).

Now, given the reduced (maybe reducible) singular curve C ⊂ X , with X a
smooth complex surface, let x be a point in Csing, the singular set of C, and look
at the blow-up of X at x, π : X̃ → X . The closure π−1(C − x) in X̃ is called the
proper (or strict) transform of C under the blow-up, and denoted C̃. Notice that
C̃ is obtained by removing x from C and replacing it by the limits of lines which
are tangent to C − {x}. This curve C̃ is analytic in X̃ and projects to C under
π; this curve may still be singular, but its singularities are simpler. We may now
repeat the process, choosing a singular point in C̃, blowing up X̃ at this point to
get π2 : X̃2 → X̃ and then consider the proper transform of C in X̃2, which is the
closure of (π2 ◦π)−1(C−x), and so on. The theorem is (see [24, II.7.1] for a short
proof):

5.1 Theorem. Let X be a smooth complex surface and C ⊂ X an embedded reduced
curve. Then there is a smooth complex surface Y and a proper map τ : Y → X
obtained by a finite sequence of blow-ups, such that the proper transform C̃ of C
in Y is smooth.

The curve E = τ−1(C), is called the total transform of C in Y . It consists
of the proper transform C̃ and the divisor τ−1(Csing). The theorem above can be
refined to the following theorem, which will be used later in the text.
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5.2 Theorem. Let X and C be as above. Then by performing finitely many blow-ups
more, if necessary, we can assume that the whole total transform E = τ−1(C) of
C in Y has only ordinary normal double points as singularities, and these are all
away from the proper transform C̃ of C.

We recall that an ordinary normal double point is locally defined by the
equation {xy = 0}.

Now consider the germ (V, 0) of a normal complex surface singularity. The
following important theorem has a long history. This was first stated by Jung
but his proof was not complete, and was completed later by Hirzebruch. The first
complete proof of Theorem 5.3 is due to O. Zariski; this was done using blowing ups
and it was based on a previous proof by R. Walker (1935) which was not correct
either. We refer to [24, Ch. III] for a proof. This result was later generalized by
Hironaka to all dimensions and for (real or complex) analytic spaces with arbitrary
singularities.

5.3 Theorem. Let (V, 0) be a normal complex surface singularity. For simplicity
assume it is defined in a sufficiently small ball around the origin in some Cn, so
that V ∗ = V −0 is non-singular. Then there exists a non-singular complex surface
Ṽ and a proper analytic map π : Ṽ → V, such that:

(i) the inverse image of 0, E = π−1(0), is a (connected, reduced) divisor in Ṽ ,
i.e., a union of 1-dimensional compact curves in Ṽ ; and

(ii) the restriction of π to π−1(V ∗) is a biholomorphic map between Ṽ −E and V ∗.

The surface Ṽ is called a resolution of the singularity of V , and π : Ṽ → V
is the resolution map. Sometimes these are called desingularizations of the singu-
larities instead of resolutions. The divisor E is called the exceptional divisor.

Notice that “the” resolution of (V, 0) is not unique: given a resolution Ṽ we
can obtain new resolutions by performing blow-ups at points in E. By Theorem
5.2 above, given a resolution, we can make blow-ups on it, if necessary, so that the
divisor E in Theorem 5.3 is good, i.e.:

(iii) each irreducible component Ei of E is non-singular; and

(iv) E has normal crossings, i.e., Ei intersects Ej , i �= j, in at most one point,
where they meet transversally, and no three of them intersect.

5.4 Definition. A resolution π : Ṽ → V is good if its exceptional divisor is good,
i.e., if it satisfies conditions (iii) and (iv) above.

Some authors allow good resolutions to have irreducible components of E
intersecting transversally in more than one point, and they reserve the name very
good for resolutions as in Definition 5.4. This makes no big difference and we prefer
to keep the notation of Definition 5.4.

We recall that given a non-singular complex surface Ṽ and a Riemann surface
S in it, the self-intersection of S, usually denoted by S · S or simply by S2, is the
Euler class of its normal bundle ν(S) in Ṽ (which coincides with its Chern class)
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evaluated in the fundamental cycle [S]. Equivalently, S ·S is the number of zeroes,
counted with signs, of a generic section of the normal bundle ν(S). It is an exercise
to see that every time we make a blow-up on a smooth complex 2-manifold, we
get a copy of CP 1 with self-intersection −1. It is remarkable that the converse is
true: recall that a non-singular curve in a smooth complex surface is said to be
exceptional of the first kind if it is a copy of CP 1 embedded with self-intersection
−1, one has:

5.5 Theorem. (Castelnuovo’s criterium) Let X̃ be a non-singular complex surface
and C an exceptional curve of the first kind. Then S can be blown down analytically
and we still get a non-singular surface X.

This result is in fact a special case of a more general theorem of Castelnuovo
for exceptional divisors of the first kind. We refer to [82, Ch. 3 ] for a proof. Notice
that Definition 5.4 has the very important consequence of giving us a minimal
model:

5.6 Definition. A resolution X
π→ V is minimal if given any other resolution

X ′ π′
→ V , there is a proper analytic map X ′ p→ X such that π′ = π ◦ p.

One has (see [24, III.6.2]):

5.7 Theorem. Up to isomorphism, there exists a unique minimal resolution of V ,
and this is characterized by not containing non-singular rational curves with self-
intersection −1.

We remark that these statements are false in dimensions more than 2: there
are no minimal resolutions in general.

Notice that the minimal resolution may not be good. For instance (c.f. [57]),
for the Brieskorn singularity

z2
1 + z3

2 + z7
3 = 0 ,

the minimal resolution has an exceptional divisor consisting of three non-singular
rational curves meeting at one point, so it is not good; making one blow-up at
that point we obtain a good resolution, which has now a central curve which is
a 2-sphere with self-intersection −1, and three other spheres, each meeting the
central curve in one point and with self intersections −2, −3, −7.

Something similar happens in general: we can make the minimal resolution
good by performing blow-ups, if necessary, and there is a unique (up to isomor-
phism) minimal good resolution.

Consider now a divisor E =
⋃r

i=1 Ei in a complex 2-manifold X , whose
irreducible components Ei are non-singular, they all meet transversally and no
three of them intersect. To such a divisor we can associate an r× r integral matrix
A = ((Eij)), called the intersection matrix of E, as follows: on the diagonal ∆ of A
we put the self-intersection numbers E2

i ; and if a curve Ei meets Ej at Eij points,
we put this number as the corresponding coefficient of A. So this is necessarily a
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symmetric matrix, whose coefficients away from the diagonal ∆ are integers ≥ 0
and in ∆ we have the self-intersection numbers of the Ei, called the weights of
these curves.

We have the following remarkable theorems of Mumford and Grauert
(see [24, III.2]):

5.8 Theorem [176]. If E is the exceptional divisor of a resolution X
π→ V , where

V is a normal surface, then the intersection matrix A is negative definite (and the
weights of the Ei are all negative numbers).

5.9 Theorem [91]. Conversely, if the divisor E in X is such that the intersection
matrix A is negative definite, then we can blow down E analytically; we get a
normal complex surface V , in general with a singularity at the image 0 of E, and
the projection π : X → V is a good resolution of (V, 0) with exceptional divisor E.

A divisor E as above is usually called an exceptional divisor, meaning by this
that it can be blown down. It is said to be of the first kind when the blow-down
is smooth.

Notice that we can associate a weighted graph G = G(E) to a good excep-
tional divisor E in a complex 2-manifold X as follows: to each irreducible com-
ponent Ei of E we associate a vertex vi, and if the curves Ei and Ej meet, then
we join the vertices vi and vj by an edge. Each vertex has two integers attached
to it: one is the genus gi ≥ 0 of the corresponding Riemann surface Ei; the other
is the weight wi = E2

i ∈ Z, which is the self-intersection number of Ei in X .
This weighted graph is called the dual graph of the exceptional divisor E, or the
dual graph of the resolution when E is regarded as the exceptional set of a good
resolution of a normal singularity.

We observe that every finite graph Σ has associated a matrix I(Σ) called the
matrix of adjacencies of the graph: it has zeroes in the diagonal and if a vertex vi

is joined to vj by δij edges, then we put this number in the corresponding place
of I(Σ). It follows that the intersection matrix of the exceptional divisor E is
the result of taking the matrix of adjacencies of the dual graph and replacing its
diagonal by the vector of weights w1, . . . , wm, wi = Ei ·Ei.

A beautiful aspect of these constructions is that the dual graph of a resolution
allows us to re-construct the topology of the resolution, and hence that of the
link of the singularity. For this we need to introduce a construction known as
plumbing. This was used already by Milnor to construct his first examples of exotic
spheres and by Von Randow (1962) in relation with Seifert manifolds, though it was
Hirzebruch who made this construction systematic. The plumbing construction is
very nicely explained in [105] (see also [187, 75]), we just recall it here briefly.

Let E be a real 2-dimensional oriented vector bundle over a Riemann surface
S, and denote by D(E) its unit disc bundle for some metric. The total space of
D(E), that we denote by the same symbol, is a 4-dimensional smooth manifold
with boundary the unit sphere bundle S(E). Notice that, restricted to a small disc
Dε in S, the manifold D(E) is a product of the form D2×D2, where the first disc
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is Dε ⊂ S and the second disc is in the fibres of E. Now suppose we are given
two such bundles Ei, Ej , over Riemann surfaces Si, Sj . To perform plumbing on
them we consider the total spaces of the corresponding unit disc bundles D(Ei),
D(Ej), we choose small discs Di,ε, Dj,ε in Si, Sj , and take the restriction of
D(Ei), D(Ej) to these discs. Each of them is of the form D2 × D2 as above. We
now identify each point (x, y) ∈ Di,ε × D2 ⊂ D(Ei) with the corresponding point
(y, x) ∈ Dj,ε × D2 ⊂ D(Ej), i.e., interchanging base points in one of them with
fibre points in the other. The result is a 4-dimensional, oriented manifold with
boundary and with corners, which can be smoothed off in a unique way up to
isotopy (see [60]). We denote this manifold by P (Ei, Ej). One says that P (Ei, Ej) is
obtained by plumbing the bundles Ei and Ej over the Riemann surfaces Si and Sj .

Figure 9: Plumbing line bundles over circles.

The boundary S(Ei, Ej) = ∂P (Ei, Ej) of this 4-manifold is obtained by
plumbing the corresponding sphere bundles Si(E) and Sj(E): we remove from
Si(E) and Sj(E) the interior of the solid tori ∂Di×D2 and similarly for Ej . Thus
we get two 3-manifolds with boundary a torus S1 × S1 in each; we then identify
these boundaries by gluing the meridians in one torus to the parallels in the other.
The result is a 3-manifold with corners, which can be smoothed off in a unique
way up to isotopy. The surfaces Si, Sj are naturally embedded in P (Ei, Ej) as
the zero-sections of the corresponding bundles, and they meet transversally in
one point.

Notice that the manifolds one gets in this way are entirely described, up to
diffeomorphism, by the genera of the Riemann surfaces Si, Sj , and by the Euler
classes of the corresponding bundles, since these classes determine the isomorphism
class of the bundles.
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5.10 Definition A plumbing graph is a triple (Σ, w, g) consisting of a finite graph
Σ with vertices v1, . . . , vr, r ≥ 1 and with no loops, a vector w of weights, w =
(w1, . . . , wr), wi ∈ Z, and a vector g = (g1, . . . , gr) of genera, gi ∈ N.

So the dual graph of a good resolution of a normal singularity is a plumbing
graph with negative definite intersection matrix. In this definition, by a loop we
mean an arrow that begins and ends at the same vertex, and we do not allow
this (geometrically this means a singular curve in the exceptional divisor that
has a double crossing). There can be cycles, i.e., a chain of vertices and edges
that returns to itself after a certain time. In [184] Neumann considers a slightly
more general situation of plumbing graphs than the one envisaged here, which is
important for the plumbing calculus developed there, but it does not really make
a difference for the present work.

Now, given a plumbing graph we may perform plumbing according to the
graph: for each vertex vi take a Riemann surface Si of genus gi and an oriented
2-plane bundle Ei over Si with Euler class wi. If there is an edge between the
vertices vi and vj , we plumb the corresponding bundles as above. If a vertex vi is
joined with other vertices, we choose pairwise disjoint small discs in each surface,
as many as one has adjacent vertices, and perform plumbing by pairs as above. The
result is a 4-dimensional manifold P(E) with boundary S(E). It follows from the
construction that the manifold P(E) contains the union E =

⋃
Si as a deformation

retract, and these surfaces are contained in P(E) with self-intersection wi. Hence
the homology of P(E) is that of E, and the intersection form on P(E) is given by
the intersection matrix of its corresponding graph.

A manifold obtained in this way is known as a plumbed manifold, and this
term may refer either to the 4-manifold P(E) with boundary, or to its boundary,
which is a 3-manifold. Notice that if the plumbing graph (Σ, w, g) is the dual graph
of a resolution π : Ṽ → V , then the manifold P(E) is diffeomorphic to a regular
neighborhood of the exceptional set E in the resolution, which may be taken to
be of the form π−1(V ∩Dε), where Dε is a small closed disc in the ambient space
Cn with centre at 0. Since the resolution map is a biholomorphism away from E,
it follows that the boundary S(E) is diffeomorphic to the link of V , a fact that we
state as a theorem:

5.11 Theorem. Let π : Ṽ → V be a good resolution of (V, 0), a normal surface
singularity. Then the irreducible components E1, . . . , Er of the exceptional divisor
E determine a plumbing graph G(E), called the dual graph of the resolution, and
performing plumbing according to this graph we obtain a 4-manifold homeomorphic
to π−1(V ∩ Dε) ⊂ Ṽ , whose boundary is the link M , where Dε is a small closed
disc in the ambient space Cn with centre at 0.

Hence Theorems 5.8 and 5.9 say that a plumbing graph is the dual graph of
a resolution if and only if its intersection matrix is negative definite. This gives a
necessary and sufficient condition for an oriented 3-manifold to be the link of a
surface singularity. A natural question is:
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5.12 Question. Which plumbed 3-manifolds with negative-definite intersection ma-
trix arise as links of isolated singularities of hypersurfaces in C3?

This is for me one of the most beautiful open questions in singularities. It
is clear that if a 3-manifold M can be obtained in this way, then M can be
embedded in S5 with trivial normal bundle. One may think that this could be a
first step towards answering Question 5.12. However every orientable, closed 3-
manifold embeds in S5 with trivial normal bundle, so this is not an obstruction;
hence the problem is not only topological. This is actually a very subtle problem
and a number of people have worked on it obtaining interesting partial results (see
for instance [265]).

5.13 Remark. It is worth noticing that the condition on a plumbing graph to
be the dual graph of a resolution depends only on the graph and its weights,
but not on the genera assigned to the vertices. I do not know if there is any
interesting relationship between singularities with the same weighted graph but
different genera. We also remark that given any finite graph, for almost every set
of negative weights that we assign to the vertices, the corresponding intersection
matrix is negative definite (see [119]) and therefore is the dual graph of a surface
singularity.

IV.6 Gorenstein and numerically Gorenstein
singularities

The concept of numerically Gorenstein singularities was introduced by A. Durfee
in [64]; these could as well be called “topologically Gorenstein” surface singulari-
ties, by Corollary 6.3 below.

6.1 Definition. A normal surface singularity germ (V, 0) is numerically Gorenstein
if the complex tangent bundle TV ∗ of V ∗ = V − 0 is C∞ trivial.

It is worth noting that this definition is less innocent than it looks. Obviously
Definition 6.1 is equivalent to demanding that TV ∗|M be trivial. As a real vector
bundle TV ∗|M splits as the direct sum TM⊕ν(M), where M is the link of V , TM
its tangent bundle and ν(M) its normal bundle for some metric. The bundle TM is
trivial, because every oriented 3-manifold is parallelizable; and ν(M) is also trivial,
because a hypersurface in an oriented manifold is orientable iff it has trivial normal
bundle, and we know that M is orientable. Hence TV ∗ is always trivial as a real
vector bundle. Thus Definition 6.1 does ask for TV ∗ to be trivial as a complex
bundle; but it does not ask for TV ∗ to be holomorphically trivial: the Zariski-
Lipman conjecture (still open) claims that this happens iff V is smooth at 0 (this
conjecture is a theorem in many cases, as for instance for hypersurface germs).

The following lemma was noticed in [64, 1.1] and summarizes well-known
properties of vector bundles.
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6.2 Lemma. Let ξ be a 2-dimensional complex bundle over a connected, open C∞-
manifold X. The following conditions are equivalent:

(i) ξ is trivial;
(ii) ξ is stably trivial;
(iii) the first Chern class of ξ vanishes;

(iv) the second exterior power
∧2

ξ is a trivial bundle.

The proof is easy: we recall that a bundle is stably trivial if its tangent bundle
plus a trivial bundle is trivial. For instance the tangent bundle of the 2-sphere is
not trivial, but when we add to it the normal bundle of S2 in R3 we get TR3|S2 ,
which is trivial. Hence TS2 is stably trivial. So (i) implies (ii) by definition. But
also (ii) implies (i), because it is easy to see that, in general, if ζ is a complex
n-plane bundle over a manifold N of dimension 2n and ζ is stably trivial, then
there is a unique obstruction to have it actually trivial, and this is a cohomology
class in top dimension 2n (see [113]). Since in our case we are assuming X is open
and connected, then one has H4(M) = 0 and therefore (ii) implies (i). That (i)
implies (iii) is by definition of the Chern classes. Now, for every complex vector
bundle one has that its first Chern class is, up to sign, the Chern class of its
second exterior power

∧2 ξ. Hence (iii) implies c1(
∧2 ξ) = 0 and this implies

∧2 ξ
is trivial, because a line bundle is trivial iff its Chern class vanishes; so (iii) and
(iv) are equivalent. Finally, since H4(M) = 0, the construction we gave above
of the Chern classes via obstruction theory shows that one can always construct
a never-zero section s1 of ξ on all of X . Now, c1(ξ) = 0 is equivalent to saying
that we can construct a second section s2 of ξ which is never-zero and linearly
independent of s1 on the 2-skeleton of X (for some triangulation). Then we can
extend this section s2 to all of X using the stepwise process of Section 1, since
πi(S1) vanishes for i > 1. �
6.3 Corollary. The following conditions are equivalent:

(i) the germ (V, 0) is numerically Gorenstein;

(ii) the bundle
∧2

TV ∗ is topologically trivial;
(iii) the structure group of the bundle TV ∗ can be reduced to SU(2);

(iv) if π : Ṽ → V is any resolution of V , then the restriction of the tangent bundle
T Ṽ to M̃ = π−1(M) , where M = V ∩ S2n−1

ε is the link, is a trivial bundle;

(v) the Chern class c1(T Ṽ ) can be represented by a relative cohomology class in
H2(Ṽ , M̃ ; Z), whose Lefschetz dual −K ∈ H2(Ṽ ; Z) is uniquely characterized
by the adjunction formula: for every compact, non-singular curve C in Ṽ one
has:

2g
C
− 2 = C2 + K · C. (6.4)

Proof. The equivalence (i) ⇔ (ii) is a special case of the equivalence (i) ⇔ (iv) in
Lemma 6.2. The equivalence (ii) ⇔ (iii) was proved in III.6. Now, it is clear that
(i) implies (iv) since π is a biholomorphism away from E = π−1(0); conversely,
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it is clear that (iv) implies that TV ∗|M is trivial, hence TV ∗ is trivial by the
conical structure of V . Also, if T Ṽ |

M̃
is trivial, then a choice of a trivialization T

of this bundle determines representatives of the Chern classes of T Ṽ that vanishes
over M ; the top relative class c2(Ṽ ; T ) lives in H4(Ṽ , M̃) and it is determined by
the degree of T , i.e., by the number of zeroes (counted with multiplicities) of an
extension to Ṽ of one of the sections that determine T . The class c2(Ṽ ; T ) lives
in H2(Ṽ , M̃), as stated in (v) above, and it must satisfy the adjunction formula
because for every C as above one has a splitting:

T Ṽ |
M̃
∼= TC ⊕ ν(C)

as C∞ bundles, where ν is the normal bundle. Thus one has

c1(T Ṽ |
M̃

)[C] = c1(TC)[C] + c1(ν(C))[C] ,

where [C] is the fundamental cycle. Hence,

−K · C = (2− 2gc) + C2

as claimed. Notice that these equations characterize uniquely the class K, since
the intersection matrix is negative definite. Thus (iv) ⇒ (v). Finally, (v) implies
that the first Chern class of the bundle T Ṽ |

M̃×(−ε,ε)
vanishes, where M̃ × (−ε, ε)

is a tubular neighbourhood of M̃ in Ṽ . Hence (v) and Lemma 6.2 imply (iv). �
Notice that the manifold Ṽ has the exceptional set E = π−1(0) as a defor-

mation retract. Hence, if the resolution is good, then the irreducible components
E1, . . . , Er of E are non-singular and they form a basis for the homology of Ṽ .
Thus, in order to characterize uniquely the canonical class K, it is enough to
consider these curves in the adjunction formula (6.4).

6.5 Definition. The class K is the canonical class of the resolution.

6.6 Corollary. Every Gorenstein singularity is numerically Gorenstein. More pre-
cisely, Gorenstein means that the bundle

∧2
T ∗(V − 0) is holomorphically trivial,

while numerically Gorenstein means that this bundle is topologically trivial.

Notice that the canonical class K corresponds to the zero-set of a differen-
tiable section of the bundle

∧2
T ∗(V − 0). If V is assumed to be Gorenstein, then

K can be taken to be a divisor, i.e., defined by a meromorphic 2-form. We also
remark that regardless of whether or not (V, 0) is Gorenstein, the intersection ma-
trix is negative definite and therefore the adjunction formula determines a unique
canonical class, which may have rational coefficients (see [64, 119]). The geometric
reason behind this is that the class determined by the adjunction formula is, by
construction, concentrated in the exceptional divisor, it is always a rational linear
combination of the form:

K = n1E1 + · · ·+ nrEr ;

however, when the singularity is not numerically Gorenstein, one cannot possibly
have a representative of the first Chern class of T Ṽ that is localized on E.
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6.7 Examples.

(i) First consider a plumbing graph with only one vertex:

•
(w, g)

where w ∈ Z is the weight and g ∈ N is the genus. The intersection matrix is now
1 × 1, so it is negative definite iff w < 0; hence all of these are graphs of normal
surface singularities. By the adjunction formula, the canonical class is

K =
(

2g − 2
w

− 1
)
· E ,

where E is the curve of genus g represented by the vertex. Hence the corresponding
singularities are numerically Gorenstein iff 2g − 2 ≡ 0 mod w.

(ii) If the graph Σ is one of the classical Dynkin diagrams An, Dn, E6, E7 or
E8, with all weights equal to −2 and all genera 0, then the intersection matrix is
negative definite, the corresponding singularities are the Klein singularities studied
in Chapter II, i.e., those of the form Γ\C2 for a finite subgroup of SU(2), and a
trivial computation shows that K ≡ 0, see for instance [65].

(iii) If the graph is a star, with a central curve E0 of genus g ≥ 0, weight w =
2−2g−n, and all other vertices represent spheres Ei with weights {−α1, . . . ,−αr}
satisfying αi > 1 and w <

∑r
i=1

−1
αi

, then the intersection matrix is negative defi-
nite and the corresponding plumbing graph represents the minimal good resolution
of a Dolgachev singularity [57], i.e., one of the singularities considered in III.3.3,
which corresponds to taking a cocompact Fuchsian group Γ ⊂ PSL(2, R), making
it act on TH = H × C and then blown down the zero-section. By the adjunction
formula, the canonical class is now

K = −2E0 −
r∑

i=1

Ei .

(iv) Now start with a discrete subgroup Γ ⊂ SL(2, R) with compact quotient
Γ\SL(2, R) which does not contain the centre ±Id, and construct a surface sin-
gularity as in III.3.3, i.e., we make Γ act on H× C2, where C2 denotes the 2-fold
cyclic cover of C branched at 0. The quotient contains (Γ\H × {0}) as a divisor,
which can be blown down to get a normal singularity. The resolution graph is now
of the form (see [194] or [231, p. 351]):
where {g; α1, . . . , αr} is the signature of the Fuchsian group obtained by mapping Γ
to PSL(2, R). All the αi are (automatically) odd numbers and all vertices represent
spheres, except the centre E0 which has genus g ≥ 0. In this case one has that the
canonical class is

K = −3E0 − 2
r∑

i=1

Ei,1 −
r∑

i=1

Ei,2.
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−1
2
(αn + 1) (g; 1− g − n) −1

2
(α1 + 1)

−2

−2

−2−2

−1
2
(α3 + 1)

−1
2
(α2 + 1)

Figure 10: Resolution graph for SL(2, R)-singularities.

v) More generally, we recall from Chapter III that if (V, 0) is a normal singularity
with a good C∗-action, then its link is a Seifert manifold of the form Γ\G where
G is either SU(2), the Heisenberg group N or S̃L(2, R), the universal cover of
PSL(2, R), and Γ is a uniform subgroup of G. Consider the case Γ ⊂ S̃L(2, R),
which is the most interesting. The minimal good resolution of these singularities
is given in [194]. It is always a star with a central curve E0 of some genus g ≥ 0,
as many branches as exceptional fibres of the corresponding Seifert fibration and
all other vertices represent spheres; the lengths of the branches and their weights
are all determined by the corresponding Seifert invariants. The canonical class was
essentially computed in [231]. The remarkable thing is ([231, 2.4], c.f. III.2):

6.8 Proposition. Let −mo be the coefficient of the canonical class K of the minimal
resolution of an S̃L(2, R)-singularity. Let r = m0− 1. Then the group Γ has index
r in p−1

(
p(Γ)
)
. Or equivalently, if we denote by Γr the projection of Γ to the r-fold

cyclic cover PSL(2, R)r of PSL(2, R), then:

(i) Γr\PSL(2, R)r is diffeomorphic to Γ\S̃L(2, R); and
(ii) Γr is isomorphic to its image in PSL(2, R).

6.9 Remark. We pointed out earlier that the property for a plumbing graph to
have negative definite intersection matrix depends only on the weights and not on
the genera assigned to the vertices. However the property of being the dual graph
of a numerically Gorenstein singularity does depend on the genera too, since these
do appear in the adjunction formula. One can prove (see [119, 3.10]) that given
any graph Γ and weights w = (w1, . . . , wr) so that the intersection matrix E is
negative definite, there are infinitely many different possible genera for the vertices
that make it correspond to a numerically Gorenstein singularity. In fact one can
say more in some cases. For example, we know that K represents the 1st Chern
class of the resolution Ṽ . Hence K is an even class iff Ṽ admits a spin structure.
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One can prove that if the weights are even, then there are infinitely many different
genera for which the class K is even. Furthermore, if the weights are even and the
determinant det(E) of E is odd, then K is integral iff it is even. As a consequence,
if a complete intersection surface singularity has a resolution with even weights
and det(E) is odd, then K is even.

IV.7 An application of Riemann-Roch:

Laufer’s formula

There is an important invariant of surface singularities called the geometric genus,
which extends to surface singularities the genus of Riemann surfaces (regarded
as the number of linearly independent differential forms). M. Artin introduced it
in [1] to define the concept of rational singularities, which means geometric genus
0. This has been much used and studied by several authors for various purposes,
as for instance F. Hirzebruch, H.B. Laufer, K. Saito, S.T. Yau and many more.

To define the geometric genus ρg = ρg(V, 0) of a normal surface singularity
(V, 0), let π : Ṽ → V be a resolution of V . Then ρg(V, 0) is:

ρg(V, 0) = dim R1π∗OṼ

the dimension of the direct image sheaf R1π∗OṼ , which is a coherent sheaf concen-
trated at 0. It was noticed in [14] that this number is independent of the choice of
resolution (since it is invariant under blowing ups) and it can also be computed as:

ρg = dim H1(X,OX) ,

where the term on the right must be understood as an inverse limit over a funda-
mental set of open neighborhoods of the exceptional divisor E = π−1(0).

The formula of Laufer in [123] (and later generalized by others, as we explain
below) gives a very interesting relationship between the geometric genus and in-
variants of the singularity which are associated to deformations of it, namely the
Milnor number in the case of complete intersection germs, or an extension of it
for more general normal singularities which are Gorenstein and smoothable (see
below).

Let us look first at the classical case of a hypersurface germ in C3, as con-
sidered by Laufer. We notice that every such germ is automatically Gorenstein
(see for instance III.3.2 above), so given a resolution π : Ṽ → V , then a never-
zero holomorphic 2-form on V −0 lifts by π to a never-zero holomorphic 2-form on
Ṽ −E, which extends to a meromorphic form on Ṽ , possibly with poles and zeroes
in the divisor E. Thus we know that the canonical bundle KṼ is holomorphically
trivial away from E and we can choose the canonical divisor K to be vertical, i.e.,
with support in E. If we assume that the resolution Ṽ is good, then the irreducible
components E1, · · · , Er of E are non-singular curves and K will necessarily be an
integral linear combination of these (see the previous section).
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Let f : (U ⊂ C3, )→ (C, 0) be a function-germ that defines V . Then one has
the Milnor number µ of f defined in I.7. We know (see for instance [120, 7.1])
that up to a local change of coordinates, we can assume f is a polynomial map.
Compactify C3 to CP 3, denote by V̄ the closure of V in CP 3 and let V̄t be the
compactification of Vt = f−1(t) for some t �= 0, |t| small. As noted by Laufer,
we can assume that V̄ is non-singular away from 0 and V̄t is non-singular. One
obviously has

χ(V̄t) = χ(V̄ ) + µ,

where µ = χ(Vt)− 1 is the Milnor number. Now, given a resolution π : Ṽ → V of
V , let Ṽ ∗ be the resolution of V̄ that has Ṽ as open set. Topologically this means
that Ṽ , V and Vt have all been compactified by adding “the same divisor” K∞ at
∞. Letting E = π−1(0), one has:

χ(Ṽ ∗) = χ(V̄ ) + χ(E)− 1,

since Ṽ ∗ is obtained by removing 0 from V̄ and replacing it by E. Also, the
Riemann-Roch formula of Section 2 says that the analytic Euler characteristic is:

χ(Ṽ ∗,O) =
1
12

(K2
Ṽ ∗ + χ(Ṽ ∗)) =

1
12

(K2
∞ + K2

Ṽ
+ χ(Ṽ ∗)),

and
χ(V̄t,O) =

1
12

(K2
∞ + χ(V̄t)),

because K2
Vt

= 0 since the canonical bundle of Vt is trivial.
Finally, using Mayer-Vietoris ([7, p. 236]) for the cohomology of Ṽ ∗ = Ṽ ∪

Ṽ ∗ − E and V̄ = V ∪ V̄ − 0 one gets:

χ(Ṽ ∗,O) = χ(V̄ ,O)− h1(Ṽ ,O).

Putting these equations together Laufer[123] arrives at his formula:

µ + 1 = χ(Ṽ ) + K2 + 12ρg , (7.1)

where χ(Ṽ ) is the topological Euler-Poincaré characteristic of the resolution and
K2 is the self-intersection number of the canonical divisor.

This result of Laufer shows also that the geometric genus cannot in general
be defined by the topology of V alone (c.f. [181, 182]). For instance, the Brieskorn
singularities with (p, q, r) being (3, 5, 15) and (2, 9, 18) are homeomorphic but their
Milnor numbers are 112 and 136, respectively, so their geometric genera are dif-
ferent.

Laufer’s proof extends with minor changes to complete intersection germs,
and he conjectured that the same formula should hold for normal Gorenstein
smoothable singularities, just replacing the left-hand side by the Euler-Poincaré
characteristic of the smoothing. Let us explain this.
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Given a normal surface singularity (V, 0), a smoothing of V means a flat
deformation of V where all nearby fibres are smooth. To be precise:

7.2 Definition. An isolated complex singularity germ (X, P ) of dimension n ≥ 1 is
smoothable if there exists a complex analytic space (W , 0) of dimension n + 1 and
a proper analytic map:

F :W −→ D ⊂ C ,

where D is an open disc with centre at 0, such that:

(i) it is flat, i.e., it is not a zero divisor in the local ring of W at 0;
(ii) F−1(0) is isomorphic to V ; and

(iii) F−1(t) is non-singular for t �= 0.

It follows that W has (at most) an isolated singularity at 0, which is normal
when X is normal at P , and one has (by Theorem I.4.3) a fibre bundle

F|F−1(D−0) : F−1(D− 0) −→ D− 0

with non-singular fibres Xt = F−1(t). For simplicity we call smoothings of X
to both, the map F and the fibres Xt. If W is smooth, then its germ at 0 is
essentially that of Cn+1 at 0. The picture one has in general is similar to the one
of hypersurfaces and their corresponding Milnor fibration, but now the ambient
space W can be itself singular at 0.

For hypersurfaces and complete intersection germs the smoothing is unique
up to isomorphism (because the base of the versal deformation space is connected)
and it is given by the Milnor fibration. However there are normal singularities
which are not smoothable (e.g., some triangle singularities of Dolgachev, see for
instance [199, 147]), and there are also surface singularities which are smooth-
able but they have different smoothings whose fibres have distinct Euler-Poincaré
characteristics (see [199]).

Laufer’s formula explained above was later extended by Steenbrink [241] to
surface singularities which are Gorenstein and smoothable. His proof is via mixed
Hodge structures, but it can be proved exactly with the same method of Laufer,
using a result in [225] and a globalization theorem of Looijenga, conjectured by
J. Wahl in [258].

7.3 Theorem. (E. Looijenga [148]) Let F : (W , x) → (C, 0) be a smoothing of an
isolated singularity (X, x). Then there is, up to isomorphism, a global projective
compactification of the smoothing. That is, there exists a flat projective morphism
F : Z → C, a point z ∈ Z0 = F−1(0) and an isomorphism h : (W , x) → (Z, z)
such that F = F ◦ h and F is smooth along Z0 − z.

We refer to the appendix in [148] for the proof of this theorem. As pointed
out by Wahl in [258, p. 220], this assertion allows us to use the Riemann-Roch
theorem to compare the cohomology of the singular variety, the smoothing and
the resolution, just as in Laufer’s proof. Everything works in exactly the same
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way as for hypersurfaces, except for one more point that has to be proved: for
hypersurfaces (or complete intersections) of any dimension, the canonical bundle
of the smoothing (the Milnor fibre) is holomorphically trivial. To see this one
may, for instance, take the form dz1 ∧ · · · ∧ dzn+k in the ambient space, and
contract it using the gradient vector fields of the function germs that define the
complete intersection singularity. The same statement holds for smoothings of
isolated, normal singularities in all dimensions.

7.4 Proposition [225]. Let F : (W , 0)→ C be a smoothing of a normal, Gorenstein
singularity (V, 0) of dimension n ≥ 1, and let TF denote the tangent bundle along
the fibres of F on W − V . Then the bundle

∧n
T ∗
F is holomorphically trivial.

In the following section we will see that Proposition 7.4, which is obvious for
the algebraic-geometers, has an important topological implication in the case of
surfaces, and this proved a conjecture of Durfee in [64].

Proof. Consider the smoothing F : W −→ D ⊂ C , so each fibre Vt = F−1(t),
t �= 0, is non-singular. Since V is Gorenstein at 0 and F is flat, it follows thatW is
also Gorenstein at 0 (see for instance [97, V.9.6]). Hence there exists a nowhere-
vanishing holomorphic (n + 1)-form ω̃ on W− 0. Since F is flat, we have an exact
sequence of vector bundles over W − 0:

0→ TF → T (W − 0)→ F∗(TD)→ 0 ,

where TF denotes the tangent bundle along the fibres of F . Hence,

n+1∧
T ∗(W − 0) ∼=

n∧
T ∗
F ⊗F∗(T ∗D)

and the above holomorphic (n + 1)-form on W − 0 defines a nowhere-vanishing
holomorphic n-form on each non-singular fibre of the smoothing and trivializes the
whole bundle

∧n
T ∗
F . �

The fact that W is Gorenstein at 0 is fairly standard in algebraic geometry
and can be proved as follows: the local ring of V at 0 is:

OV,0
∼=
(
OW,0

/
(F)
)

by hypothesis. Since V is Gorenstein, it is Cohen-Macaulay, so there are elements
ḡ1, . . . , ḡn ∈ OV,0 which form a regular sequence, i.e., ḡ1 is not a zero-divisor in
OV,0, ḡ2 is not a zero-divisor in OV,0

/
(ḡ1) and so on, and such that

HomOV,0 {C , OV,0

/
(ḡ1, ḡ2, . . . , ḡn)} ∼= C .

Hence if g1, . . . , gn ∈ OW,p are extensions of ḡ1, . . . , ḡn (which exist by normality),
then (F , g1, . . . , gn) form a regular sequence in OW,p and

HomOW,0 {C , OW,0

/
(F , g1, . . . , gn)} ∼= C . �
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With this, one obtains the Laufer-Steenbrink formula in general:

7.5 Theorem. Let (V, 0) be a 2-dimensional normal singularity which is Gorenstein
and smoothable. Let Vt be a smoothing of V and let Ṽ → V be a resolution. Then
one has:

χ(Vt) = χ(Ṽ ) + K2 + 12ρg(V, 0) ,

where χ(·) is the usual (topological) Euler-Poincaré characteristic, K is the canon-
ical class of Ṽ and ρg(V, 0) = dim H1(Ṽ ,OṼ ) is the geometric genus of 0 ∈ V .

7.6 Remarks.

(i) It is obvious that χ(Ṽ ) depends on the choice of resolution, as can be seen just
by noticing that this increases by 1 when we make a blow-up. But it is an exercise
to show that the sum χ(Ṽ )+K2 does not depend on the choice of resolution, and
we know that neither does ρg(V, 0). Hence Theorem 7.3 implies that for normal
surface, smoothable singularities, being Gorenstein implies that at least χ(Vt)
does not depend on the choice of the smoothing (which is not the case for surface
singularities in general, by [199]).

Notice that the right-hand side of the formula in Theorem 7.5 makes sense
even for non-smoothable singularities, and it depends only on the analytic struc-
ture of V , not on the choice of resolution. It is thus natural to ask what plays the
role of χ(Vt) when there is not a smoothing? In other words, what should we put
in the left-hand side of Theorem 7.5 when there is no smoothing? This question
was asked of me by Dolgachev and I do not know the answer. Presumably this
will be in terms of the Seiberg-Witten invariant of the link (see §11 below).
(ii) There is an interesting generalization in [148] of the above formula to higher
dimensions, also based on the generalized Riemann-Roch theorem. To state this,
the first observation that Looijenga makes is that using a deep theorem of O.
Gabber (or also by work of Steenbrink) one has that given an isolated singularity
(V, 0) of dimension n ≥ 1, the subalgebra of H∗(V − 0) generated by the Chern
classes of the tangent bundle T (V − 0) is trivial in dimensions ≥ n. For complete
intersection germs this is an obvious fact, since the bundle T (V − 0) is itself
trivial, but for singularities in general it is not so obvious. Now let X denote
either a resolution of the singularity or a smoothing of it (if it is smoothable),
and think of it as being a compact manifold with boundary the link M = ∂X .
Given any polynomial P (c1, . . . , cn) in the Chern classes of X of top degree n,
the previous observation tells us that we can lift the corresponding cohomology
class to P̃ ∈ H∗(X, ∂X). Elementary properties of the cup product of relative
cohomology classes yield that if the polynomial P is decomposable (i.e., if it is the
product of at least two Chern classes of degree less than n), then the lifting P̃ does
not depend on the choice of lifting, so it is canonically defined. In the case of the
top class cn this is not so, and Looijenga shows that one can always do it in such
a way that the class one gets is the Lefschetz dual of χ(X) in H2n(X, ∂X). With
this one may now define the Todd genus of X , just as in Section 2 above, by taking
the nth Todd polynomial in these classes, and evaluating it on the fundamental
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cycle of X . Taking the representative of (V, 0) small enough, we can assume that
the smoothing Vt is Stein and therefore (by the theorem of Andreotti-Frankel) all
its cohomology groups vanish in dimensions > n. Thus Td(Vt) is determined only
by χ(Vt) and, if n = 2m is even, by c2

m. Now denote by π : Ṽ → V a resolution of
V . Then Looijenga’s theorem says:

Tdn(Vt) = Tdn(Ṽ ) +
∑
i>0

(−1)i−1hi(Ṽ ;OṼ ) − dimπ∗OṼ

/
OV .

IV.8 Geometric genus, spinc structures and
characteristic divisors

This section is based on [76], where Riemann-Roch is used to explore the rela-
tionship between the geometric genus of normal, Gorenstein surface singularities
and the dimension of the space of sections of holomorphic line bundles associated
with spinc-structures on a resolution of the singularity. Essentially everything we
say here holds in complex dimensions 4k+2, with some obvious modifications; we
restrict to k = 0 for simplicity, and we refer to [76] for details.

We know that since V is Gorenstein, given any resolution π : Ṽ → V , we
may consider the canonical divisor K to have support in the exceptional divisor
π−1(0). And we know from §4 that on a complex manifold, the anti-canonical
divisor determines a canonical spinc-structure. In the sequel we shall consider
divisors in Ṽ of the form W = 2D − KṼ with D vertical, i.e., with π(|D|) = 0.
The bundle L of such a divisor determines a spinc structure on Ṽ for which L is
the determinant bundle. We call these characteristic divisors of the resolution.

Given a characteristic divisor W = 2D−KṼ and its bundle L, we define the
invariant:

�(W ) =

{
0 , if W = 0
dim H0(W,D|W ) , if W �= 0;

The reduction of �(W ) modulo 2 is the invariant introduced in §4. One has ([76,
3.5 & 4.1]):

8.1 Theorem. Let (V, 0) be as above, a normal Gorenstein surface singularity, and
let ρg(V, 0) be its geometric genus. Let π : Ṽ → V be a resolution of V and KṼ
its canonical divisor, chosen so that it is vertical. For every characteristic divisor
W = 2D −K with D vertical, one has:

(i) The integer (W 2 −K2
Ṽ

) is divisible by 8, and

�(W ) +
1
8
(W 2 −K2

Ṽ
) ≡ ρg(V, 0) mod (2) .

(ii) Moreover, if D = 0 or D > 0 and −D is relatively ample for π, then:

ρg(V, 0) = �(W ) +
1
8
(W 2 −K2

Ṽ
) .
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(iii) If KṼ ≤ 0, then for all D ≥ 0, setting W = 2D −KṼ , one has:

ρg(V, 0) = �(W ) +
1
8
(W 2 −K2

Ṽ
) .

The proof of this theorem in [76, §3,S4] is based on the Hirzebruch-Riemann-
Roch theorem and on several vanishing theorems. The idea is to compactify the
resolution of the singularity, then use Riemann-Roch and cancel down the terms
that come from contributions away from the exceptional divisor. More precisely,
given any resolution π : Ṽ → V , a smooth compactification Ṽ ∗ of Ṽ and a vertical
divisor D, for every a ∈ Z we can define an invariant g(a ·D) ∈ Z as the difference
of the analytic Euler characteristic

g(a ·D) = χ
(
OṼ ∗(a ·D)

)
− χ
(
OṼ ∗
)

.

It is an exercise to verify that the additivity of Euler characteristics for short exact
sequences and the Riemann-Roch theorem imply:

8.2 Properties of g(a ·D):

(i) it is independent of the compactification Ṽ ∗ chosen;

(ii) if KṼ is the canonical divisor of Ṽ , then g(a ·D) = 1
2 (a ·D) · (a ·D −KṼ );

(iii) for W = 2D −KṼ one has: g(D) = 1
8 (W 2 −K2

Ṽ
) .

Having this one can prove that for every effective vertical divisor ∆:

�(W ) + g(D) ≡ �(W + 2∆) + g(D + ∆) mod (2) . (8.3)

Thus statement (ii) in Theorem 8.1 implies statement (i), since we can always
choose some effective vertical divisor ∆ such that D + ∆ > 0 and −(D + ∆) is
relatively ample for π. The proof of statements (ii) and (iii) in Theorem 8.1 does
rely on several vanishing theorems given in [76] and we refer to that article.

Since, by [176], for the minimal resolution of a surface singularity it is always
the case that the canonical divisor is ≤ 0, one has:

8.4 Corollary. If the resolution Ṽ is minimal, then

ρg(V, 0) = dimH0(−KṼ ,O)

= dim H0(W,D|W ) +
1
8
(W 2 −K2

Ṽ
)

for all W = 2D −KṼ with D ≥ 0.

8.5 Remarks.

(i) If the canonical divisor KṼ of some resolution is even, one has that the resolu-
tion must be minimal (by [119]) and admits a spin structure; in this case one has
(essentially from Theorem 8.1) that K2

Ṽ
is divisible by 8 and

1
8

K2
Ṽ
≡ ρg(V, 0) mod (2) .
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If KṼ is not even, the most natural choice of a characteristic divisor is W0 =
∑

Ei,
where the sum is taken over all components of the exceptional divisor E = π−1(0)
which have odd multiplicity in KṼ . With this choice, assuming that the resolution
is good and the Betti number b1(E) = dimH1(E; Z) is 0, one gets:

1
8
(W 2

0 −K2
Ṽ

) ≡ ρg(V, 0) mod (2)

since b1(E) = 0 implies that H0(E, ωE) = 0 and hence H0(W0, ωW0) = 0, where
ω∗ is the canonical sheaf (c.f. §4 above). Hence H0(W0,OW0(D)) = 0. This remark,
together with the combinatorial argument contained in [140], imply that Theorem
2 in [140] holds without the assumption that the singularity is smoothable, i.e., if
the determinant of the intersection matrix of E is odd, then one always has:

K2
Ṽ

+ 8ρg(V, 0) ≡ W 2
0 mod (16) .

(ii) In [140] the authors present four examples of singularities with KṼ even and
for which the relation 1

8 K2
Ṽ
≡ ρg(V, 0) mod (2) does not hold. Alas their compu-

tations were mistaken (c.f. [141]), as proven by Theorem 8.1.

IV.9 On the signature of smoothings
of surface singularities

In Section 7 we explained Laufer’s formula expressing the Euler-Poincaré charac-
teristic of a smoothing of a normal Gorenstein smoothable singularity in terms of
invariants associated to a resolution of it. Section 8 gives relations between the
geometric genus and the spaces of sections of characteristic line bundles over a
resolution, particularly with the canonical bundle. All these formulae are proved
by using the Hirzebruch-Riemann-Roch theorem, applied to projective compact-
ifications of Ṽ (and in Section 7 of a “Milnor fibre” Vt = f−1(t), where f is the
smoothing), and then cancelling down terms that come from the contributions
away from the origin. In this section we are concerned with a formula obtained by
A. Durfee in [64], which is in the same spirit as Laufer’s but uses the signature de-
fect, introduced by Hirzebruch, instead of the Hirzebruch-Riemann-Roch formula.
The result is an interesting and useful formula for the signature of smoothings of
Gorenstein singularities. One may notice that, since for compact complex surfaces
the Todd genus and the signature are both expressible in terms of the canonical
class and the Euler-Poincaré characteristic, the formulas of Durfee and Laufer turn
out to be essentially equivalent.

Let us define first the signature defect of a framed 3-manifold. This invariant
of 3-manifolds was defined by Hirzebruch via his signature theorem, and it was
later generalized by Morita and (notably) by Atiyah, Patodi and Singer, giving
rise to the so-called η-invariants. There is also a generalization in [147] which is an
improvement of Morita’s work. We define it here only in the classical case, which
is all we need in the sequel.
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We recall that if X is a smooth, oriented closed 4-manifold, then the signature
theorem of Thom-Hirzebruch says that its signature is given by the Pontryagin
number:

σ(X) =
1
3

p1(X)[X ] .

Now let X be a compact manifold with non-empty boundary M ; both sides of this
equation still make sense, but p1(X) lives in H4(X) ∼= 0, so one may not expect
an equality in general. We notice however that the bundle TX |M is trivial, and a
choice of a trivialization τ leads to a representative of p1(X) that vanishes over M
and so defines a relative Pontryagin class p1(X, τ) ∈ H4(X, M) ∼= Z, see §1 above.
This class depends on the choice of the trivialization τ of TX |M , so it cannot give
the signature of X for arbitrary τ . Notice that the trivialization τ determines an
orientation of M , and we assume this is the same as the orientation M gets as
being the boundary of X . One has that the difference:

dσ(X, τ) =
1
3

p1(X)[X ]− σ(X) ,

is actually independent of X : it depends only on its boundary M and the trivial-
ization τ of the bundle

TX |M = T (M)⊕ (1) ,

where (1) denotes the trivial 1-dimensional bundle, isomorphic to the normal bun-
dle of M in X . In fact, suppose we are given another compact, oriented 4-manifold
X ′ with the same boundary M (as oriented manifolds). Then one can form the
union Y = X ∪ (−X ′), where (−X ′) is X ′ with the opposite orientation; Y is a
smooth, closed, oriented 4-manifold, and one has:

σ(Y ) = σ(X)− σ(X ′)

and
1
3

p1(Y )[Y ] =
1
3

(
p1(X, τ)[X ]− p1(X ′, τ)[X ′]

)
,

because p1(Y ) vanishes over M . Hence one has:

dσ(X, τ) − dσ(X ′, τ) =
(

1
3
p1(X)[X ]− σ(X)

)
−
(

1
3
p1(X ′)[X ′]− σ(X ′)

)
=
(

1
3

(
p1(X)[X ]− p1(X ′)[X ′]

))
−
(

σ(X)− σ(X ′)
)

= 0 .

Therefore dσ(X, τ) depends only on the framed boundary (M, τ) and not on the
choice of X . Since the group of oriented cobordism is trivial in dimension 3 (see,
e.g., [244]), it follows that every framed 3-manifold M as above is the boundary
of a compact, oriented 4-manifold, with the orientation being compatible with the
one defined by τ .
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9.1 Definition. The invariant dσ(X, τ) = 1
3p1(X)[X ]−σ(X) is called the signature

defect of the framed manifold (M, τ).

We have:

9.2 Theorem. (Durfee) Let (V, 0) be a normal, numerically Gorenstein surface
singularity, which is smoothable. Assume further that Vt is a smoothing of V with
(topologically) trivial tangent bundle. Then:

σ(Vt) = −1
3
(
2(χ(Vt)− 1) + K2 + s + 2b1

)
,

where b1 is the first Betti number of the resolution and s is the second Betti number.

Proof. Observe first that if (V, 0) is numerically Gorenstein, then by Corollary
6.3.iii above we know that the structure group of the bundle TVt|M can be reduced
to SU(2). Since SU(2) ∼= Sp(1), this means we have multiplication of tangent
vectors in this bundle by the quaternions i, j, k. Now let ν denote the unit outwards
normal vector field of M in Vt (with respect to some metric). Then multiplying
ν by i, j, k at each point of M we obtain three linearly independent vector fields
on M , which define a trivialization of TM which is compatible with the complex
structure on TVt|M , in the sense that they determine with ν a trivialization of
this bundle as a complex bundle.

Now, let M be the link of V and let ρ be a trivialization of TVt obtained
as above, i.e., multiplying by i, j, k a unit normal vector field on M = ∂Vt. Let
π : Ṽ → V be a resolution of V . By the previous discussion we have:

1
3
p1(Vt)[Vt]− σ(Vt) =

1
3
p1(Ṽ )[Ṽ ]− σ(Ṽ ).

But both TVt and T Ṽ are complex bundles and the trivialization ρ is compatible
with their complex structure, so the Pontryagin number can be expressed in terms
of the Chern numbers relative to ρ. One has:

p1(Vt)[Vt] = (c1(Vt)2 − 2c2(Vt))[Vt] = −2χ(Vt)

because c1(Vt)2 = 0, since TVt is trivial by hypothesis, and c2(Vt)[Vt] = χ(Vt)
because ρ is given by a parallelism on the boundary M . Similarly,

p1(Ṽ )[Ṽ ] = K2 − 2χ(Ṽ )

and σ(Ṽ ) = −b2(Ṽ ), the 2nd Betti number of Ṽ , because the intersection matrix
on Ṽ is negative definite by Mumford’s theorem (see §4 above). Putting these
equations together we arrive at Durfee’s formula. �

Notice that Gorenstein singularities are numerically Gorenstein. So Theorem
9.2 applies to these singularities provided the tangent bundle of the smoothing is
topologically trivial, a fact conjectured by Durfee in [64, 1.6] and proved in [225]:
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9.3 Proposition. Let Vt be a smoothing of a normal, Gorenstein surface singularity.
Then the complex tangent bundle of Vt is topologically trivial,.

The proof of 9.3 is immediate from Lemma 6.2 and Proposition 7.4. Thus
one has,

9.4 Corollary. Let (V, 0) be a normal, smoothable Gorenstein surface singularity.
Then for every smoothing of V and every resolution one has:

σ(Vt) = −1
3
(
2(χ(Vt)− 1) + K2 + s + 2b1

)
,

where these invariants are as in Theorem 9.2.

IV.10 On the Rochlin µ invariant for links
of surface singularities

We know (Rochlin’s theorem) from Section 3 that if X is a closed, spin 4-manifold,
then its signature is divisible by 16. This allows us to define an invariant of spin
3-manifolds as follows: let (M,S) be a spin 3-manifold. Since the group of spin
cobordism is trivial in dimension 3 (see, e.g., [244]), it follows that there exists
a compact, spin 4-manifold X whose spin-boundary is (M,S); let µ(M,S) be
defined by

µ(M,S) = σ(X) mod (16).

An argument similar to the one we used in the previous section to define the
signature defect shows that this invariant is well defined modulo 16. This is the
Rochlin µ invariant of the spin manifold (M,S), which played an important role
in 3-manifolds theory several decades ago, and still does, being related to the
new 3-manifolds invariants coming from gauge theory (see §11 below). This is
of particular interest when M is a homology sphere, since in this case the spin
structure on M is unique.

Notice that Rochlin’s Theorem 3.7 allows us to compute this invariant by
having (M,S) as an oriented boundary, provided we are given a characteristic
submanifold (c.f. [224, 231]):

10.1 Definition. Let X be a compact oriented manifold with spin-boundary (M,S).
A characteristic submanifold of X relative to the spin structure on the boundary
means an oriented 2-submanifold W in the interior of X , representing a homology
class in H2(X ; Z) whose reduction modulo 2 is the Poincaré-Lefschetz dual of the
second Stiefel-Whitney class w2(X,S) ∈ H2(X, M ; Z2) of X relative to the spin
structure on its boundary.

Notice that a submanifold W as above actually defines a spinc structure on
X which is compatible with the given spin structure on the boundary. Now, given
the spin 3-manifold (M,S), consider it as a spinc-boundary of X as above, and let
W be a characteristic submanifold of X for this spinc structure.
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Then one has:

10.2 Theorem. The Rochlin invariant of (M,S) is:

µ(M,S) = σ(X) − (W 2 + 8 Arf(W ) ) mod (16) ,

where Arf ∈ {0, 1} is the Arf invariant of a certain quadratic form on H1(W ; Z2).

The proof is left as an exercise (using Theorem 3.7). Of course if X is spin,
then we can take W = ∅ and we recover the usual definition of the Rochlin
invariant.

Now consider a normal Gorenstein surface singularity (V, 0) and let Ω be a
never-zero holomorphic 2-form on V ∗ = V − 0. Just as before, we see that this
2-form defines a reduction of the structure group of TV ∗ to SU(2) ∼= Sp(1) ∼=
Spin(3). Hence it defines a spin structure on V ∗. But it actually gives more: a
multiplication by the quaternions i, j, k at each fibre of the tangent bundle TV ∗,
varying smoothly, just as in III.6. If ν denotes a unit outwards, normal vector field
of the link M in V ∗, then multiplication by i, j, k determines a trivialization of
the bundle TV ∗|M compatible with its complex structure. In fact this is the same

as multiplying ν at each point by the unitary matrix
(

0 1
−1 0

)
, which defines

a section of TV ∗, everywhere linearly independent of ν over C. We denote this
trivialization of TM by ρ. This gives a spin structure on M .

Now let π : Ṽ → V be a good resolution of V . For convenience we think of Ṽ
indistinctly as a complex manifold or as a compact almost-complex manifold with
boundary the link M and a complex structure in its interior. The trivialization ρ
defines Chern classes of Ṽ relative to the boundary; they live in H2i(Ṽ , M ; Z). The
Poincaré-Lefschetz dual of c2(X ; ρ) is χ(Ṽ ) by construction; the Poincaré-Lefschetz
dual of c1(X ; ρ) is the anti-canonical class −K, and it is independent of the choice
of complex trivialization of T Ṽ |M , because the intersection matrix on Ṽ is negative
definite. We call such a parallelism on M (that defines a trivialization of T Ṽ |M
as a complex bundle) a complex parallelism on M . Thus, if K is non-singular,
then K is a characteristic submanifold for X , relative to any spin structure on the
boundary which is given by a complex parallelism on M . More generally, choose
the canonical divisor K to be vertical, and let W = 2D −K, D vertical, be any
characteristic divisor as in §9. Then W represents an integral homology class whose
reduction modulo 2 is the dual of w2(X, ρ). If L is the bundle of W , then we can
approximate W by a smooth C∞ manifold W̃ defined by a C∞ section of L which
is transversal to the zero-section. Then W̃ inherits a spin structure from the spinc

structure on Ṽ : this follows from [192] in the general case, and also from [16] if
W̃ is complex analytic, since the line bundle D of D is a theta characteristic for
W̃ . As noted in [231], the Arf invariant in Theorem 10.2 turns out to be a spin
cobordism invariant, so it is 0 iff W (with its induced spin structure) is zero in
the group Ω2

spin
∼= Z2 of spin cobordism.
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One has:

10.3 Theorem. Let M be the link of a normal Gorenstein surface singularity (V, 0),
let Ṽ be a good resolution of V and let β be a parallelism on M compatible with
the complex structure on V . Let W = 2D−K be a characteristic divisor of Ṽ and
let W̃ be a C∞ smoothing of it. Then:

(i) Arf(W̃ ) ≡ h0(W ;D|W )mod (2), where Arf(W̃ ) is the Arf invariant in The-
orem 10.2, and this is independent of the choice of the complex parallelism
on M . Hence the spin cobordism class of W̃ is independent of β.

(ii) In particular Arf(K) is the reduction mod (2) of the geometric genus ρg(V,0).
(iii) The Rochlin invariant of M is independent of the choice of the complex par-

allelism on M and equals:

µ(M) = −s − (W 2 + 8 Arf(W ) ) mod (16) ,

where s is the number of irreducible components in the exceptional divisor
of Ṽ .

(iv) If the singularity (V, 0) is smoothable and Vt is a smoothing of V , then

µ(M) = σ(Vt) mod (16) .

The proof of statement (i) is an exercise (using (4.9) above); statement (ii)
follows from (i) and Theorem 8.1.i. Statement (iii) is obvious from the previous
discussion and the last statement follows from Proposition 7.4.

It is worth remarking that the Rochlin invariant was studied by several au-
thors for singularities whose link is a homology sphere, specially in [187]. By (ii)
above this is essentially an invariant of the singularity (V, 0), independent of the
various choices. This invariant was computed in [231] for all quasi-homogeneous
singularities and for the cusps of Hirzebruch [104] ( and also for all 3-manifolds of
the form Γ\G, where G is a 3-dimensional Lie group and Γ a discrete subgroup).
As a corollary one gets an improvement of [225, 4.5]:

10.4 Corollary. Let (V1, P1) and (V2, P2) be normal, Gorenstein surface singu-
larities with orientation preserving links, and let µ(Vi) denote the corresponding
Rochlin invariant. Then:

(i) µ(V1) − µ(V2) ≡ 8
(
ρg(V1) − ρg(V2)

)
mod (16), where ρg is the geometric

genus.
(ii) If the singularities are smoothable and V #

1 , V #
2 are smoothings of them, then:

σ(V #
1 ) − σ(V #

2 ) ≡ 8
(
ρg(V1)− ρg(V2)

)
mod (16);

and
χ(V #

1 ) − χ(V #
2 ) ≡ 12

(
ρg(V1)− ρg(V2)

)
mod (24) .

The first statement above follows from Theorem 10.3 and the fact that,
by [184], the topology of the link determines the topology of the minimal resolu-
tion, which gives the number of irreducible components in the exceptional divisor
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and determines the canonical class K numerically. The second statement follows
from the first one, together with Corollary 9.4 above.

This motivates the following question, whose answer I do not know.

10.5 Question. Is there an analogous statement to Corollary 10.4 for complex
singularities in higher dimensions? In particular, does the fact that two isolated
hypersurface singularities have orientation preserving links imply anything about
their Milnor numbers? This question was asked of me by V.I. Arnold and I do not
know the answer.

For instance, the singularities z2
1 + z7

2 + z14
3 = 0 and z3

1 + z4
2 + z12

3 = 0 have
orientation preserving links, but their Milnor numbers are 78 and 66 respectively,
so the congruences above are best possible. On the other hand one may ask under
what circumstances is the geometric genus a topological invariant? (see [181, 182]).

10.6 Remark. There is an invariant of framed cobordism called the real Adams
e-invariant eR. For framed 3-manifolds this takes values in Z24. There is also a
complex Adams e-invariant, but this is weaker (though easier to compute). We
refer to [224, 231] for details on this and for the relation with complex singular-
ities. From the viewpoint of surface singularities as above, the invariant eR gives
essentially the same information as the Rochlin invariant (which takes values in
Z16); each of these has some advantages, but eR is easier to handle.

IV.11 Comments on new 3-manifolds invariants

and surface singularities

As pointed out earlier, since the orientation preserving homeomorphism type of
the link M of a normal surface singularity (V, 0) depends only on the analytic type
(V, 0), it follows that every 3-manifolds invariant is an invariant of singularities.
This has been used by several authors in both ways. On the one hand, whatever
invariant we want to understand, the links of surface singularities are a great
source of examples which we have more chances of being able to put our hands on.
Conversely, the various invariants of 3-manifolds give a lot of information about
the singularities themselves. The previous sections are a taste of what is known in
that direction concerning more classical invariants.

There are however numerous, very important invariants that have been de-
fined in more recent years, and which are just beginning to be studied. Among
these are the η-invariants of Atiyah, Patodi and Singer, published in 1975 and
1976 in Math. Proc. Cambridge Philos. Soc. There is one such invariant for each
first-order elliptic, self-adjoint operator acting on the sections of a vector bun-
dle over the link of the singularity. Very little is yet known about these (see, for
instance, [230, 25, 190, 180]).

Related with the eta-invariants, via the spectral flow, is the Floer homol-
ogy (also called “instanton homology”). This homology HF∗(Σ) was defined by
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A. Floer [79] for every integral homology sphere, as the homology of a Z8-graded
complex generated by the critical points of a perturbed Chern-Simons functional
(on a certain space of connections). The Casson invariant λ(Σ) is essentially the
alternating sum of the Betti numbers of the Floer homology, and it is an integral
lifting of the Rochlin invariant, i.e., λ(Σ) is an integer whose reduction modulo 16
gives the Rochlin invariant. For homology 3-spheres which are links of surface sin-
gularities, the signature of the Milnor fibre provides another integral lifting of the
Rochlin invariant, and the so-called Casson invariant conjecture [188] states that
these two liftings of the Rochlin invariant should coincide, i.e., that for homology
3-spheres which are links of surface singularities, the Casson invariant λ(Σ) should
equal 1

8σ(F ), an eighth of the signature of the corresponding Milnor fibre.
I am grateful to W.D. Neumann for explaining to me that this conjecture

was first suggested by J. Wahl to M.F. Atiyah at the 1987 Weyl conference at
Duke in response to Atiyah asking if there were connections between the analytic
structure of singularities and gauge-theoretic invariants; that led Atiyah to sub-
sequently make a conjecture about Floer homology. Fintushel and Stern studied
in [78] the Floer homology of the Brieskorn homology spheres Σ(p, q, r) and proved
the Casson invariant conjecture for these; some of the calculations in [78] were
extended in [84] to Seifert fibred homology 3-spheres in general. In [188] and [83],
independently, the authors proved the Casson invariant conjecture for all homol-
ogy spheres given by weighted homogeneous surface singularities (in [188] they
proved it also for other families of singularities). There is also a very interesting
article by N. Saveliev [219], where the author relates in a precise way the Floer
homology of Brieskorn homology spheres with the topology of the Milnor fibre
and with classical invariants of 4-manifolds and knots. But the Casson invariant
conjecture remains open. Recently, in a beautiful set of lectures delivered by W.D.
Neumann in a workshop at Luminy, France, he spoke about his work in process
with J. Wahl in this direction, and about their new “Milnor fibre conjecture”,
which implies the Casson invariant conjecture.

In fact, since 1982 much of the progress in low-dimensional topology has
arisen from applications of gauge theory, pioneered by S.K. Donaldson. In par-
ticular, Donaldson’s polynomial invariants have been used to prove a variety of
results about the topology and geometry of 4-manifolds. Kronheimer and Mrowka
showed in [115] that there is a deep structure encoded in the Donaldson invariants
which is related to embedded surfaces in 4-manifolds; this was a significant step
for understanding these invariants, and it was a motivation for important fur-
ther developments, most spectacularly for Witten’s introduction of the now-called
Seiberg-Witten (SW) monopole equations for the study of four-manifolds. These
4-dimensional SW equations yield differentiable invariants that have all the power
of the polynomial invariants of Donaldson, but they are much easier to handle;
these are known as the Seiberg-Witten invariants of smooth 4-manifolds. There are
also the 3-dimensional Seiberg-Witten equations, giving rise to the Seiberg-Witten
invariants of 3-manifolds, whose understanding is important also for 4-manifolds
theory. These invariants associate a rational number sw0

M (σ) to each spinc struc-
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ture σ on a 3-manifold M . For homology spheres there is only one such structure
and the Seiberg-Witten invariant coincides with the Casson invariant (see [142]).
When M is the link of a surface singularity (V, 0), the complex structure on V − 0
determines a canonical spinc structure on M and the remarkable articles of A.
Némethi and L. Nicolaescu [181, 182, 190, 180] are throwing light into the rela-
tion of the corresponding SW invariants with other classical invariants of surface
singularities, particularly with the geometric genus. The hope is to find topolog-
ical invariants of singularities, which determine the analytic ones. Their results
led them to make a conjecture, the Seiberg-Witten invariant conjecture, which im-
plies the Casson invariant conjecture, and they managed to prove it in some cases.
However the recent article [77] provides counterexamples to this more general
conjecture (but the original Casson invariant conjecture of [188] remains alive!).



Chapter V

On the Geometry and Topology
of Quadrics in CPn

In Chapter II we saw how the action of the group SU(2) on C2 gives very precise
information about certain surface singularities; in particular we described the close
relation between SO(3, R) = SU(2)/±Id and the quadric z2

1 +z2
2 +z2

3 = 0. In this
chapter, which is based on [135], we look at the canonical action of SO(n + 1, R)
on Cn+1 and on CPn, the complex projective space, in order to get a better
understanding of the geometry and topology of the pair (Cn+1, V ), where V is the
Fermat quadric

z2
0 + z2

1 + · · ·+ z2
n = 0.

This is of course related to the classical problem studied by Zariski [267] and oth-
ers, of studying the topology of the complement of an affine algebraic hypersurface
V ⊂ Cn+1. We actually look with more care at the projectivized situation. We
notice that the complement of a non-singular hyperquadric Q in CP

n is diffeomor-
phic to the total space of the tangent bundle of the real projective n-space RPn,
CP

n −Q ∼= T (RPn) . Then we use this observation to describe CP
n as the double

mapping cylinder of the double fibration:

Fn+1
+ (2, 1)

π1

�����
��

��
��

�
π2

�����������

Q Pn
R

where
Fn+1

+ (2, 1) ∼= SO(n + 1, R)/(SO(n− 1, R)× (Z/2Z))

is the partial flag manifold of oriented 2-planes in Rn+1 and non-oriented lines in
these planes. The manifold Fn+1

+ (2, 1) is diffeomorphic to the unit sphere normal
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bundle of Q in CP
n, and it is also diffeomorphic to the unit sphere tangent bundle

of Pn
R

. This decomposition is related to previous work by V. Vassiliev, J. Tits,
C.T.C. Wall and others, and we refer to [135] for details and for more on the
subject.

In Section 3 we look more carefully at the decomposition of CP
n arising

from the above double fibration. This describes CP
n as a 1-parameter family of

codimension 1 submanifolds Fn+1
+ (2, 1) × {t}, for t ∈ (0, 1), together with two

“special” fibres: Q and a copy of the real projective space. We prove that these are
the orbits of the natural action of SO(n+1, R) on CPn, regarded as a subgroup of
the complex orthogonal group SO(n + 1, C). This is a cohomogeneity 1 isometric
action with respect to the Fubini-Study metric.

In Section 4 we look at the (now classical) theorem saying that CP
2 modulo

conjugation is the sphere S4. This theorem has a long and remarkable history.
The first time this appeared in print (without proof) was in [8, p. 175], where
Arnold used it to study real algebraic curves in RP 2. In 1973–74 appeared two
independent proofs of this theorem, given by W. Massey and N. Kuiper [116, 159].
Several other proofs of this result have been given by various authors afterward,
including important improvements and generalizations (see for instance [10, 11,
12, 22, 153, 175]). We refer particularly to the recent article of M. Atiyah and J.
Berndt [17], whose proof is along the same lines of the one we describe here (which
is taken from [135]), but they do it in a more general setting. Here, as in [17], we
prove an equivariant version of the Arnold-Kuiper-Massey theorem, showing that
the equivalence CP

2/j ∼= S4 can be realized by a real algebraic map Φ which
conjugates the natural cohomogeneity 1-actions of SO(3, R) on CP

2 and S4. Our
proof uses only linear algebra.

V.1 The topology of a quadric in CPn

Let h be a homogeneous polynomial of degree 2 in n + 1 complex variables with
an isolated critical point at 0 ∈ Cn+1; let Q̃ = h−1(0), K = Q̃ ∩ S2n+1 be its link,
and let Q ⊂ CP

n be its projectivization, Q = (Q̃ − 0)/C∗, which is non-singular
by hypothesis.

1.1 Theorem.

(i) The hypersurface Q̃ is isotopic to the hypersurface given by the Fermat poly-
nomial equation z2

0 + · · · + z2
n = 0. The analogous statement holds for the

projectivized quadrics.

(ii) The Milnor fibre F of h is diffeomorphic to the total space of the tangent
bundle of the n-sphere Sn. Hence the link K is diffeomorphic to the total
space of the unit sphere tangent bundle of Sn. Therefore K is diffeomorphic
to the Stiefel manifold Vn+1,2 of orthonormal 2-frames in Rn+1.

(iii) The quadric Q ⊂ CP
n is diffeomorphic to the Grassmannian Gn+1,2 of ori-

ented 2-planes in Rn+1.
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iv) The complement CP
n − Q is diffeomorphic to the quotient space F/Z2 of

the Milnor fibre F by the monodromy of the Milnor fibration, which is cyclic
of order 2. Hence CP

n − Q is diffeomorphic to the total space of the real
projective space RPn.

Proof. The first statement in Theorem 1.1 actually holds for homogeneous polyno-
mials of any degree d > 1. To prove this, let P be the projective space of coefficients
of homogeneous polynomials of degree d in n + 1 complex variables. The general
homogeneous equation of degree d in n + 1 variables is:∑

αo+···+αn=d

aαo,...,αnzαo
0 · · · zαn

n = 0 .

This defines a polynomial, and hence a hypersurface X , in P × CP
n. The family

of projective hypersurfaces of degree d in CP
n is given by the map:

E : X → P ,

induced by the projection of P × CPn onto P . In P , the polynomials defining
singular hypersurfaces in CP

n form a closed subvariety of complex codimension
1. Hence its complement Ω is connected. Since the map E is a locally trivial
fibration over Ω, by Ehresmann’s Lemma (Chapter I), one knows that any non-
singular hypersurface X ⊂ CP

n of degree d is ambient isotopic to the hypersurface
defined by the Fermat polynomial Fn

d := zd
0 + · · · + zd

n. That is, up to isotopy
we can assume that X is the projectivization of the affine variety V := {zd

0 +
· · · + zd

n = 0} after removing the singular point 0 ∈ V (c.f. [133, Lemme 2.2]).
The corresponding statement for the affine hypersurfaces follows easily from this,
proving the generalization of statement (i) for polynomials of degree d.

Also notice that CP
n is the orbit space of Cn+1 − {0} by the C∗-action:

gt(zo, . . . , zn) = (tzo, . . . , tzn) , t ∈ C∗ = C− {0} .

If V is as above, then V is an invariant set for this C∗-action. It follows that
CP

n − X is the image of Cn+1 − V . Moreover, C∗ is S1 × R+ and if we divide
Cn+1 − {0} by the R+-action we get the sphere S2n−1. Thus CP

n − X is the
quotient of S2n−1−(V ∩S2n−1) by the corresponding S1-action. By [168], these S1-
orbits are transversal to the Milnor fibres of the polynomial Fn

d (z) = zd
0 + · · ·+zd

n,
and their action on the fibres is given by the monodromy of the Milnor fibration,
which is cyclic of period d. Therefore the Milnor fibre F is a d-fold cyclic cover of
CP

n − X , showing that the first statement in (iv) also holds for hypersurfaces of
degree d > 1.

In the quadratic case d = 2 the Milnor fibre is diffeomorphic to the affine
variety z2

0 + · · · + z2
n = 1. Let us decompose each vector Z := (z0, . . . , zn) in its

real and imaginary parts, Z = U + iV ; then the Milnor fibre is given as the set
(U, V ) ∈ Rn+1 × Rn+1 such that |U |2 − |V |2 = 1 and U ⊥ V . We notice that the
map (U, V ) 
→ (U/‖U‖, V ) induces an isomorphism of this Milnor fibre F with
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the tangent bundle of Sn, proving the first statement in (ii). Of course we may
think of F as being the unit disc tangent bundle of the sphere. Hence the link K
is the unit sphere tangent bundle of Sn, since K can be regarded as the boundary
of F . Therefore each point in K corresponds to a point in Sn, i.e., a unit vector
in Rn+1 together with a unit vector orthogonal to the first one. Hence K is the
Stiefel manifold Vn+1,2, as claimed in (ii).

Statement (iii) follows easily from statement (ii). In fact, it is clear that
(V − 0)/C∗ is diffeomorphic to K/S1. The link K is Vn+1,2 and the corresponding
S1 ∼= SO(2)-action identifies all 2-frames which are in the same 2-plane in Rn+1.
Hence K/S1 is the Grassmannian Gn+1,2.

To complete the proof of Theorem 1.1 it only remains to prove the last
statement in (iv). From the previous discussion we know already that CP

n −Q is
diffeomorphic to the quotient of F , the Milnor fibre, by the monodromy, which is
cyclic of order 2. We also know that F is the total space of the tangent bundle
T (Sn). We observe that, using the previous notation, the monodromy is given
by multiplication by −1, (U, V ) 
→ (−U,−V ). Hence the quotient of F by this
involution is the tangent bundle of the real projective n-space. �

We notice that part of the argument above is similar to that of Lemmas 2.2
and 2.3 in [133] (see also Libgober in [139, Lemma 1.1]), implying Corollary 1.2
below. We denote by X0 the projectivization of the affine hypersurface defined by
the Fermat polynomial Fn

d := zd
0 + · · ·+ zd

n, and we denote by Cn
d := CP

n − X0

the complement of X0.

1.2 Corollary. Let X be a non-singular hypersurface of CP
n of degree d. Then:

(i) the pair (CP
n , X) is isotopic to the pair (CP

n , X0); and
(ii) the Milnor fibre F of Fn

d is a d-fold cyclic cover of Cn
d , the projection map

F → Cn
d being given by the monodromy of the Milnor fibration of Fn

d (which
is cyclic of period d).

Since by [198, 168] the Milnor fibre has the homotopy type of a bouquet∨
µ Sn of µ spheres Sn, where µ = (d − 1)n+1 is the Milnor number, one has (as

in [139]) that for n > 1 the fundamental group π1(Cn
d ) is isomorphic to Z/dZ and

πj(Cn
d ) ∼= πj(

∨
µ Sn) for j > 1. In particular:

πj(Cn
d ) ∼= 0 if 1 < j < n and πj(Cn

d ) ∼= Zµ if j = n . (1.3)

1.4 Remark. It should be noted that (1.3) is a special case of the results proved
by A. Libgober in [139] about the topology of the complement of projective hy-
persurfaces. There are also interesting results in the recent article [15] about the
topology of non-singular complete intersections in complex projective spaces.
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V.2 The space CPn as a double mapping cylinder

From now on we let Q ⊂ CP
n be the non-singular hyperquadric in CP

n with
equation

z2
0 + · · ·+ z2

n = 0,

in homogeneous projective coordinates. Let j : CPn → CPn be the involution on
CP

n given by complex conjugation: j([z0, . . . , zn]) = [z̄0, . . . , z̄n], and let Π be the
fixed point set of j, so that Π ∼= Pn

R
.

Theorem 1.1 says that CP
n−Q is diffeomorphic to the tangent bundle T (Π),

and Π is the zero section of this bundle. Hence CPn − (Q ∪ Π) can be regarded
as the set of non-zero tangent vectors of Π, so it is diffeomorphic to the cylinder
T1(Π) × (0, 1), where T1(Π) is the unit sphere tangent bundle.

In other words, we have that CPn is obtained by taking the product T1(Π)×
(0, 1) and attaching to it in some way the quadric Q on one end and the real
projective space Π = RPn on the other end. We now explain these “attaching”
functions. For this we have:

2.1 Proposition. The unit sphere tangent bundle T1(Π) is diffeomorphic to the
homogeneous space SO(n + 1, R)/(SO(n − 1, R) × Z2), and it is therefore diffeo-
morphic to Fn+1

+ (2, 1), the (partial) flag manifold of oriented 2-planes in Rn+1

and unoriented lines in these planes.

Proof. Notice that the group SO(n + 1, R) acts linearly on Cn+1 and this action
descends to an action on CP

n that preserves Q. This action also leaves invariant the
real projective space Π, where it acts in the usual way (i.e., via the action induced
from the linear SO(n + 1, R)-action on Rn+1). This extends, via the differential,
to a transitive action of SO(n + 1, R) on T1(Π), with isotropy subgroup SO(n −
1, R)×Z2 . Hence T1(Π) is diffeomorphic to SO(n + 1, R)/(SO(n− 1, R)×Z2), as
claimed in Proposition 2.1. But SO(n + 1, R) also acts transitively on Fn+1

+ (2, 1)
with isotropy SO(n− 1, R)× Z2 . Hence:

T1(Π) ∼= SO(n + 1, R)
SO(n− 1, R)× Z2

∼= Fn+1
+ (2, 1) ,

as stated. �
Now observe that each point in the flag manifold Fn+1

+ (2, 1) consists of an
oriented plane in Rn+1 and a line in this plane. If we forget the 2-plane and keep the
line, we get an obvious map from Fn+1

+ (2, 1) into RPn, which is actually a fibration.
Similarly, we may forget the line and keep the 2-plane, getting a projection into
the Grassmannian Gn+1,2, which is diffeomorphic to the quadric Q, by Theorem
1.1. Thus one has a double fibration:

Fn+1
+ (2, 1)

π1

�����
��

���
�� π2

������������

Q RPn

(2.2)
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where π1 and π2 are the maps that assign to each flag (P, l) either the 2-plane
P ∈ Gn+1,2 or the line l ∈ RPn.

We form the corresponding double mapping cylinder
(
Fn+1

+ (2, 1)× [0, 1]
)
/ ∼

where ∼ identifies a point

((P0, l0), 0) ∈ Fn+1
+ (2, 1)× {0}

with the point π1(P0, l0) = P0 in Gn+1,2
∼= Q, and a point

((P1, l1), 1) ∈ Fn+1
+ (2, 1)× {1}

with the point π2(P1, l1) = l1 ∈ RPn. The space we obtain is homeomorphic to
CP

n. Furthermore, the double fibration (2.2) splits into two fibrations, correspond-
ing to the maps π1 and π2. The open mapping cylinder of π1 is CPn − Π, while
the open mapping cylinder of π2 is CP

n −Q. One has:

2.3 Theorem. The projective space CP
n is the double mapping cylinder of the double

fibration (2.2). If we remove Q from CP
n we obtain a manifold diffeomorphic to

the total space of the normal bundle of Π ∼= Pn
R

in CPn. Reciprocally, if we remove
Π from CP

n, what we get is diffeomorphic to the total space of the normal bundle
of Q in CP

n. If we remove Q ∪ Π from CP
n, what we get is diffeomorphic to

Fn+1
+ (2, 1)× (0, 1).

Proof. We notice that if we replace in Theorem 2.3 the word diffeomorphic by
homeomorphic, then this theorem follows immediately from the previous discus-
sion. Let us prove that we actually have diffeomorphisms. By Theorem 1.1, this is
clear for CP

n −Q. In fact, the fibration of CP
n − (Q ∪Π) given by the manifolds

Fn+1
+ (2, 1) corresponds to the fibration on T (Π) − Π given by sphere bundles of

radius r > 0, for some metric on T (Π). These correspond to boundaries of tubular
neighborhoods ν̃r(Π) of Π ⊂ CP

n. In particular CP
n−Q is a tubular neighborhood

of Π, hence CP
n −Q is diffeomorphic to the total space of the normal bundle of

Π ∼= Pn
R

in CPn. This bundle is isomorphic to T (Π).
Let us prove that CP

n −Π is diffeomorphic to the total space of the normal
bundle of Q in CP

n. We observe that for all r > 0, the interior of CP
n − ν̃r(Π)

is diffeomorphic to CP
n − Π. Now we prove that CP

n − Π is actually a tubular
neighborhood of Q. For this we recall that one has the Fubini-Study metric on
CPn, which can be thought of as being the descent to CPn ∼= S2n+1/S1 of the usual
metric on the sphere, which is S1-invariant. If N is a Riemannian submanifold of
CP

n, its normal map NN is the function that associates to each normal vector v of
N the projection to CPn (via the exponential map) of the end-point of v ∈ T (CPn)
(see, for instance [169], p. 32). Let us denote by ν(Q) the normal bundle of Q in
CP

n and consider the normal map:

NQ : ν(Q)→ CPn .

We notice that every complex projective line L in CP
n orthogonal to Q, for the

Fubini-Study metric, is invariant under conjugation, which is an isometry. So L is
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defined by equations with real coefficients (c.f. Section 3 below), and it is totally
geodesic in CPn since it is a complex projective line. Therefore L intersects Π
transversally in a real projective line. This implies that the normal map NQ is a
diffeomorphism from the open disk bundle in ν(Q) of radius π

2 into CP
n−Π. The

union of all closed geodesic segments normal to Q of length π
2 fill up all of CP

n.
Thus the distance from a point p ∈ CP

n − (Π ∪ Q) to Q is exactly the length of
the unique geodesic segment joining p and the unique point q ∈ Q such that this
segment is orthogonal to Q. Hence every tubular neighborhood of Q in CP

n, of
diameter less than π

2 , is diffeomorphic to CP
n − Π. �

We remark that one has a construction for the Milnor fibre F of the Fermat
polynomial Fn

2 in the spirit of Theorem 2.3, since F can be regarded as the open
mapping cylinder of the fibration

Vn+1,2
∼= SO(n + 1, R)/SO(n− 1, R) −→ SO(n + 1, R)/SO(n, R) ∼= Sn ,

where Vn+1,2 is the aforementioned Stiefel manifold.

V.3 The orthogonal group SO(n + 1, R) and

the geometry of CPn

We now look more carefully at the decomposition of CP
n arising from the double

fibration (2.2). It is convenient to look at two other interesting foliations that arise
naturally from the double fibration (2.2), and from other considerations too.

3.1 Proposition. The double fibration (2.2) induces two foliations F1 and F2 such
that:

(i) The first foliation F1 is defined on CPn − Π; its leaves are embedded copies
of R2 orthogonal to Q, which are the image under the normal map of Q of
the fibres of the normal disc bundle of Q of radius less than π

2 . The closure
of each such leaf is a closed 2-disc that meets Π orthogonally in a projective
line which is a closed geodesic in CP

n. For each pair of conjugate points in
Q, the corresponding leaves are naturally glued together along their common
limit set in Π, forming a complex projective line defined by real coefficients.

(ii) The second foliation F2 is defined on CP
n − Q; its leaves are embedded n-

discs, orthogonal to Π, which are the image under the normal map of Π of the
fibres of the normal disc bundle of Π of radius less than π

2 . The closure of each
such leaf is a closed n-disc that meets Q orthogonally in an (n − 1)-sphere,
invariant under complex conjugation.

Here, by the limit set of a leaf L we mean the difference L − L, where L is
its topological closure.

Proof. The leaves of the first foliation F1 on CP
n − Π are the fibres of π1, which

are 2-discs transversal to Q, by Theorem 2.3. By construction, each leaf of F1 is
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transversal to all the manifolds Fn+1
+ (2, 1) × t ⊂ CP

n for t ∈ (0, 1), intersecting
each in a copy of RP 1 and approaching Π as t→ 1. Let us construct this foliation
in a different way, which actually gives even more information than what is stated
in Proposition 3.1. Recall one has on CP

n the Fubini-Study metric. From the proof
of Theorem 2.3 we know that the normal map NQ of Q induces a diffeomorphism
between the open disc bundle of radius π/2 and CP

n−Π. The leaves of F1 are the
images of the normal discs. Since the conjugation j : CPn → CPn is an isometry,
we have that a projective line L in CP

n intersects Q at two conjugate points iff
it is orthogonal to Q, and this happens iff L can be defined by equations with
real coefficients. So we call these CR-lines. If two distinct CR-lines intersect, they
do so in a point in Π ∼= Pn

R
. Also, each CR-line L meets Π in a real projective

line, which is an equator of L. Since all complex lines in CP
n are totally geodesic,

the real projective line L ∩ Π is a geodesic in CP
n, at equal distance π/2 from

both intersection points in L∩Q. This divides L into two round discs of maximal
diameter, orthogonal to Q. One can prove that through each point in CPn − Π
passes a unique CR-line, hence these lines foliate this space. Therefore the open
discs into which the CR-lines split fill out the whole of CP

n −Π, they are totally
geodesic in CPn and orthogonal to Q, thus providing a fibre bundle decomposition
of CP

n−Π, equivalent to the open disc bundle of the normal bundle ν(Q) of Q in
CP

n. By construction, the closure of each leaf in CP
n is obtained by attaching to

the leaf a real projective line RP 1 ⊂ Π, which is its boundary (or limit set). This
circle (a real projective line in Π) is invariant by conjugation and it is an equator
of the unique CR-line, therefore it is also a closed geodesic for the Fubini-Study
metric of CP

n.

In the case of the foliation F2, the leaves are the fibres of π2, up to isotopy.
They are transverse to Fn+1

+ (2, 1) × t, for every t ∈ (0, 1), and these leaves are
also transverse to Π. We can describe this foliation, more precisely, as follows.
Given z ∈ Π, we let Pz be the pencil of real projective lines in Π passing through
z. Note that the tangent vectors at z to the lines of this pencil give the tangent
space of Π at z. Let lz be one of the lines of the pencil Pz. Its complexification is
a projective line Lz in CP

n defined by an equation with real coefficients, invariant
under conjugation. This implies that Lz intersects Q at two points w1 and w2,
which are conjugate; the intersection Lz ∩Q is necessarily orthogonal and lz is an
equator in Lz. Thus, there is a segment l̂z, half of a real projective line (a circle)
in Lz, joining the points w1, z and w2. This line is orthogonal to Π and to Q, it
is geodesic in CP

n and has length π, by the minimality of Lz. Doing this for all
lines in the pencil Pz, we get an open n-disc of radius π/2 in CPn, orthogonal to
Π at z, filled by geodesics in CP

n of length π/2 and intersecting Q orthogonally.
Thus the normal map NΠ is regular for vectors of norm < π/2. The leaves of F2

are the image under NΠ of the fibres of the open disc normal bundle of Π ⊂ CPn

of radius π
2 .

There is another interesting way of thinking about this foliation, up to iso-
topy, which is helpful to understand the way how its leaves approach Q. By Corol-
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lary 1.2 we have that CP
n − Q is the Milnor fibre F := {z2

0 + · · · + z2
n = 1}

divided by the monodromy (z1, . . . , zn) 
→ (−z1, . . . ,−zn). The fibre F is the tan-
gent bundle of the n-sphere, so it has a natural foliation by leaves diffeomorphic
to n-planes. These planes can be described as follows. Let us decompose each
Z := (z1, . . . , zn) in its real and imaginary parts, Z = U + iV . The fibre F is the
set (U, V ) ∈ Rn+1 × Rn+1 such that ‖U‖ ≥ 1, ‖U‖2 − ‖V ‖2 = 1 and U ⊥ V . If
‖U‖ = 1, then we are on the n-sphere and ‖V ‖ = 0. Given a fixed Uo ∈ Sn ⊂ Rn+1,
its “tangent space” is the plane defined as follows: for each λ ∈ R with λ > 1, let
Sλ(U0) be the (n−1)-sphere in the affine n-plane perpendicular to λUo, consisting
of all vectors V such that the vector Z = λUo + iV is in F ; these must satisfy
‖V ‖2 = λ2 − 1. The radius of the sphere Sλ(U0) grows with λ, while for λ = 1 the
corresponding “sphere” is just one point. For a given U0 ∈ Sn, let us denote by
L(U0) the union of all these (n− 1)-spheres Sλ(U0), for all λ ≥ 1. Then L(U0) is a
copy of Rn embedded in F as a component of the 2-sheeted hyperboloid consist-
ing of L(U0)∪L(−U0). The monodromy map interchanges these two sheets of the
hyperboloid, so their image in CP

n is a manifold diffeomorphic to a plane, that
we denote by F(U0). By the uniqueness of the tubular neighbourhood, these are
the leaves of F2 up to isotopy.

From this description ofF2 one can see the way the leaves approach Q. In fact,
let us denote by S′

λ(U0) the image of the sphere Sλ(U0) in CPn. It lies in F(U0).
Let γλ(U0) be the intersection of the unit sphere S2n+1 ⊂ Cn+1 with the real half
cone over Sλ(U0) with vertex at 0. The image of γλ(U0) in CP

n is also S′
λ(U0).

The sphere γλ(U0) is the set of vectors ( λ√
2λ2−1

U0,
1√

2λ2−1
V ) with (λU0, V ) in

Sλ(U0). Therefore the limit of γλ(U0) is the set of vectors ( 1√
2

U0,
1√
2

v) where v

is V/‖V ‖, with V as above. Since the vectors 1√
2

U0 and 1√
2

v have equal length,
the image Λ(U0) in CPn of this limit set is in Q, and it is an (n − 1)-sphere. By
continuity, the limit set of S′

λ(U0) in CP
n is also Λ(U0). Since the conjugate of

the vector (U, V ) is (U,−V ), the sets γλ(U0) and their limit, are invariant under
conjugation. Hence Λ(U0) is also invariant by conjugation.

We notice that the previous discussion also proves the following fact, that we
state as a proposition. We recall that given a Riemannian submanifold N of CPn,
its focal points are the critical values of the normal map of N , see [169].

3.2 Proposition. The real projective space Π ∼= Pn
R
, consisting of the points in

CPn with homogeneous real coordinates, is the set of focal points of the quadric Q
defined by the Fermat polynomial z2

0 + · · ·+ z2
n = 0. Conversely, the quadric Q is

the set of focal points of Π.

Thus, both manifolds Q and Π can be regarded as caustics in CP
n, i.e.,

they are the critical values of the corresponding co-normal maps of Π and Q,
respectively (see [13]).

Let us consider now the action of SO(n+1, R) on CP
n, regarded as a subgroup

of the complex orthogonal group O(n + 1, C). This action leaves Q invariant and



146 Chapter V. Geometry and Topology of Quadrics

it is by isometries with respect to the Fubini-Study metric. An isometry of CP
n

that leaves Q invariant necessarily carries the set of focal points of Q into itself.
Hence Π is also an invariant set for the action of SO(n + 1, R). We know already
that Q is the Grassmannian Gn+1,2

∼= SO(n + 1, R)/(SO(n − 1, R) × SO(2, R)),
so the action of SO(n + 1, R) is transitive on Q. Thus Q is one single orbit, and
so is Π. Let us look at the orbit of a point w ∈ CP

n − (Q ∪Π). We claim that its
orbit is the manifold (Fn+1

+ (2, 1)× t) passing through w. For this we use again the
normal map:

NQ : ν(Q)→ CP
n .

By the previous discussion, this map is a diffeomorphism from the open disc bundle
in ν(Q) of radius π

2 into CP
n − Π and the image of the fibres are the leaves of

F1. Hence each point w ∈ CP
n − (Q ∪Π) is in the image of the normal map NQ,

i.e., there is a (unique) vector vw ∈ ν(Q) normal to Q, such that w = NQ(vw);
the norm of vw equals the distance dw = d(w, Q) from w to Q, which is > 0 and
< π/2. That is, w corresponds, via NQ, to a point in the sphere bundle Sdw(ν(Q))
of radius dw in ν(Q). We claim that the SO(n+1, R)-orbit Ow of w is the image of
this sphere bundle, i.e., Ow = NQ(Sdw (ν(Q))). For this we notice that the group
SO(n + 1, R) also acts on the tangent bundle T (CPn) via the differential, and
this action preserves the (C∞) splitting T (CP

n)|Q ∼= TQ ⊕ ν(Q). This induces
an action of SO(n + 1, R) on the normal bundle ν(Q) of Q, and this action is
isometric and commutes with NQ, proving the claim. Hence the SO(n + 1, R)-
orbits are all manifolds (Fn+1

+ (2, 1)× t), for some t ∈ (0, 1), with two exceptional
orbits which are Q and Π, corresponding to t = 0 and t = 1. By [106, 1.1], this
implies that Q and Π are minimal submanifolds of CP

n, which is obvious for Q,
being a complex submanifold. The orbits of maximal dimension, which in this case
are diffeomorphic to Fn+1

+ (2, 1), are called principal orbits.
The previous arguments also show that each SO(n + 1, R)-orbit in CP

n is at
constant distance from Q, and also from Π, and these distances go from 0 to π

2 .
This proves that the space of SO(n+1, R)-orbits in CPn is the interval [0, π

2 ], with
the two special orbits corresponding to the end-points of the interval. But one can
actually be more precise about this statement. Let us consider again the geodesic
l̂z described above, in the construction of the foliation F2. In fact we are interested
in half of this geodesic segment. To construct this “half geodesic segment”, that
we shall denote by ľ, we can start with any complex projective CR-line L. This
line intersects Π in a real projective line, and it meets Q orthogonally at two
conjugate points, say w and w̄. Now we choose a point z0 ∈ Π ∩ L. Then ľ is the
geodesic (of length π

2 ) in L joining the points z0 and w, and it is a geodesic in
CPn because L is totally geodesic. This geodesic ľ starts at z0 ∈ Π and finishes
at w ∈ Q. Hence it meets each SO(n + 1, R)-orbit orthogonally in exactly one
point, since the orbits are the level sets of the function distance to Π. Hence ľ
parametrizes the orbits of SO(n + 1, R). This shows that the SO(n + 1, R)-action
on CP

n is a hyperpolar isometric action of cohomogeneity 1, which is already well
known (see for instance [98]). In fact, cohomogeneity 1 means that the principal
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orbits have codimension 1, and we know that this happens in our case (see the
following section). An isometric action is said to be polar if there exists a closed,
connected submanifold Σ that meets all orbits orthogonally. In our case this can
be, for instance, the complete geodesic in L determined by ľ. Such a manifold is
called a section. If one can chose such a section to be also flat, one says that the
action is hyperpolar. This is obviously satisfied in our case since the section is a
geodesic.

We have thus proved the following:

3.3 Theorem.

(i) The natural SO(n+1, R)-action on CP
n is isometric, hyperpolar of cohomo-

geneity 1, with space of orbits the interval [0, π/2]. A section for this action
(i.e., a submanifold that intersects transversally each orbit at exactly one
point) can be constructed by considering some (any) CR-line L, choosing a
point z ∈ L ∩Π and taking the geodesic (a circle) in L that passes through z
and the two points where L meets Q.

(ii) There are three orbit types: two special orbits, Q and Π, which correspond
to the endpoints {0, π/2}, and the principal orbits, which are copies of the
partial flag manifold,

Fn+1
+ (2, 1) ∼= SO(n + 1, R)/(SO(n− 1, R)× Z2) ,

of oriented 2-planes in Rn+1 and lines in these planes.
The manifold Fn+1

+ (2, 1) is diffeomorphic to the unit sphere normal bundle
of Q in CP

n, and also diffeomorphic to the unit sphere tangent bundle of Pn
R
.

Each of the two special orbits is the set of focal points of the other, and they
are minimal submanifolds of CP

n.

(iii) The complex projective lines in CPn whose homogeneous coordinates are real,
i.e., the CR-lines, foliate CP

n−Π and they are everywhere transversal to the
orbits of SO(n+1, R) (away from Π). In particular, they are orthogonal to Q.

(iv) The real projective space Π ∼= Pn
R

is embedded in CP
n so that its normal

bundle is isomorphic to its tangent bundle. Its “tangent spaces” naturally
define a foliation of CPn−Q by embedded copies of Rn, which are everywhere
transversal to the orbits of SO(n + 1, R) (away from Q). In particular, they
are orthogonal to Π.

3.4 Remark. Let q : CP
n → [0, π/2] ⊂ R be the function q(Z) = [d(Z, Q)]2,

i.e., q is the square of the distance to Q. It is clear that q is constant along the
SO(n + 1, R)-orbits, which are its level sets. Hence q has the two special orbits Q
and Π as critical set. It is clear that if Σ is a small disc in CP

n orthogonal to Q
(or to Π), then the restriction of q to Σ is the ordinary quadratic map, so it is a
Morse function on Σ. This means, by definition, that q is a Morse-Bott function
(c.f. [33, 61]).
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V.4 Cohomogeneity 1-actions of SO(3) on CP2 and S4

We recall that a smooth manifold is said to be a homogeneous space if there is a Lie
group that acts transitively on it. More generally, given a connected Lie group G, a
smooth, connected manifold M and an action Φ : G×M →M , one has that the G-
orbits of highest dimension form a dense open set in M ; these are called principal
orbits while the others are the exceptional orbits (see for instance [106]). If the
principal orbits have codimension k we say that the action has cohomogeneity k.
If G and M are compact, cohomogeneity 1-actions have a simple global structure:
either there are no exceptional orbits and the space of orbits is a circle, or else
there are just two exceptional orbits and the quotient is the closed unit interval,
with the exceptional orbits corresponding to the end-points of the interval. See for
instance [175, 98].

In the previous sections we studied an example of such a cohomogeneity
1-action of SO(n + 1, R) on CP

n, whose principal orbits were the boundaries of
tubular neighborhoods of the quadric Q, or equivalently of the real projective space
RPn ↪→ CPn. This was a case where we had two exceptional orbits: the quadric
and RPn. When n = 2 the principal orbits are copies of the flag manifold F 3

+(2, 1)
and the quadric Q is diffeomorphic to the 2-sphere, since it is the Grassmannian of
oriented 2-planes in R3 (by Theorem 1.1 above), and every such plane corresponds
uniquely to a point in S2.

We notice that this action is very similar to a classical cohomogeneity 1-
action of SO(3) on the sphere S4, studied by Hsiang and Lawson in [106, Example
1.4], and by several other authors. To recall this action it is convenient to think
of the sphere in a non-canonical way that we describe now.

Let S be the vector space of real 3 × 3, traceless and symmetric matrices.
As a real vector space S is R5, and it can be equipped with a metric given by the
inner product (A, B) 
→ trace(AB). Let S(4) be the space of matrices in S with
norm 1. One has an obvious diffeomorphism S4 ∼= S(4), which becomes isometric
if we endow S4 with its usual round metric and S(4) with the metric given by the
inner product in S. We shall identify these two spaces in the sequel, denoting both
of them by S4 indistinctly. The group SO(3, R) acts on S by A 
→ OtAO, where
Ot is the transposed matrix (which is equal, in our case, to O−1). This induces an
isometric action Γ of SO(3, R) on S4. This action on S4 has two disjoint copies of
RP 2 as special fibres. The space of orbits is the interval [0, 1], with the endpoints
giving the special orbits. Each principal orbit (i.e., the orbits of highest dimension)
is a flag manifold:

F 3(2, 1) ∼= SO(3, R) / (Z2 × Z2) ∼= L(4, 1) / Z2 ,

of pairs (P, l) with P a plane in R3 and l line in P , where L(4, 1) is the lens space
S3 / (Z/4Z) ∼= SO(3, R) / Z2.

We notice that this decomposition of the sphere S4 into the orbits of the
SO(3)-action is very similar to that of CP2 described previously. In fact this
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similarity is even closer than we have seen so far. To explain this, let us give
a description of CP2 in the spirit of the one we just gave of S4.

Let
H(3, C) = {H ∈M(3, C) | H = H∗}

be the space of complex 3× 3 Hermitian matrices, where H∗ = H̄t is the adjoint
matrix of H , obtained by conjugating first each entry of H and then transposing
the matrix. We equip H(3, C) with the Hermitian inner product:

〈H1, H2〉 =
1
2

trace (H1H2) . (4.1)

As a vector space, with this inner product, H(3, C) is the ordinary Euclidean
space E9. Consider the subset P (2) of H(3, C) defined by:

P (2) = {H ∈ H(3, C) | H2 = H, and trace(H) = 1}. (4.2)

4.3 Lemma. The set P (2) is a manifold, diffeomorphic to CP
2. Moreover, if we

endow P (2) with the metric defined by (4.1), then P (2) is isometric to CP2 equipped
with the Fubini-Study metric (of constant holomorphic sectional curvature 4).

We remark that it is possible to describe CPn in a similar way, but we restrict
to n = 2 because this is all we need.

Proof. We claim that if H is in P (2), then it is an orthogonal projection over a
complex line. In fact, if H is in P (2), then it is diagonalizable by a unitary matrix
and its eigenvalues are 0 or 1, because H2 = H . Since the trace is 1, two eigenvalues
must be 0 and the other is 1. Hence H is a surjection of C3 over a complex line, and
this map has to be an orthogonal projection because H is Hermitian. Conversely,
it is clear that each line L ∈ C3 determines a unique orthogonal projection of
C3, and this is given by a matrix in P (2). The diffeomorphism in Lemma 4.3 is
achieved by the map that carries H into the corresponding line in C3. To prove
that this map gives a metric equivalence, we notice that the unitary group U(3)
acts on H(3, C) by: H 
→ U∗HU , and P (2) is an orbit of this action, with isotropy(
U(2)× U(1)

)
. Thus,

P (2) ∼= U(3)/
(
U(2)× U(1)

) ∼= CP2 ,

and the metric on P (2) is obviously U(3)-invariant. Hence the induced metric on
CP

2 is also U(3)-invariant, and this characterizes the Fubini-Study metric, up to
scaling. �

Now we notice that if LH is the complex line in C3 that corresponds to
a point of H ∈ P (2) under the diffeomorphism of Lemma 4.3, and if we pick a
non-zero point (z1, z2, z3) ∈ LH , then H is the point in CP2 with projective coordi-
nates [z1, z2, z3]. To the matrix H̄ corresponds the line with projective coordinates
[z̄1, z̄2, z̄3]. Therefore we have:
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4.4 Lemma. The involution j∗ of P (2) defined by j ∗ (H) = H̄, coincides with the
involution j of CP2 given by complex conjugation, [z1, z2, z3]

j
→ [z̄1, z̄2, z̄3].

Let us denote by j the complex conjugation on both P (2) or CP
2. It is easy

to see that the SO(3)-action commutes with complex conjugation on P (2) and
therefore descends to an SO(3)-action on the orbit space P (2)/j. Each principal
orbit becomes a copy of the flag manifold F 3(2, 1); the projective space RP 2

corresponds to the matrices in P (2) with real entries, so it is the fixed point set
of j. The other exceptional orbit is the quadric Q ∼= S2, and complex conjugation
on it corresponds to identifying opposite points, hence its quotient by j is another
copy of RP 2. Summarizing, the quotient P (2)/j admits an SO(3)-action with
two exceptional fibres, both copies of RP 2 and the principal orbits are copies
of F 3(2, 1). The space of orbits of this action on P (2)/j is the interval and the
two exceptional orbits correspond to the end-points of the interval. As noted by
Atiyah-Witten in [22], this is enough to deduce the classical Arnold-Kuiper-Massey
theorem (see [8, 10, 116, 159]), saying that CP2 modulo conjugation is the 4-sphere,
using the classification of closed 4-manifolds that admit a cohomogeneity 1-action
of SO(3). However we prefer, just as in [135, 17], to give a direct proof of this
theorem. This is what we do in the following section.

V.5 The Arnold-Kuiper-Massey theorem.

The previous discussion motivates an equivariant version of the Arnold-Kuiper-
Massey theorem In this section we give (following [135]) a proof of this theorem.
We construct an explicit algebraic map Φ : CP

2 → S4 which is equivariant with
respect to the cohomogeneity 1 isometric actions of SO(3, R) on CP2 and S4 and
induces a diffeomorphism CP

2/conjugation ∼= S4. This method for proving the
Arnold-Kuiper-Massey theorem is exactly the same method used by Atiyah and
Berndt in [17] and has the advantage of generalizing to other situations. In this
way they managed to prove that not only has one CP

2/conjugation ∼= S4, but
also one has the theorem of Arnold H2/SO(2) ∼= S7, where H2 is the quaternionic
projective plane, and also C2/Sp(1) ∼= S13, where C2 is now the projective Cayley
plane; this last result of was not known before. Furthermore, their diffeomorphisms
are all equivariant with respect to certain cohomogeneity 1 group actions.

To begin with, we notice that complex conjugation j on CP
2 has fixed points,

so it is not at all obvious that the quotient CP2/j is even a smooth manifold. This
is carefully explained in [153], so we only sketch here a few ideas. Away from the
fixed point set Π ∼= RP 2, the involution j is free, so the quotient is a smooth
manifold. The problem is on Π. A tubular neighborhood of Π in CP2 can be
regarded as a normal open disc bundle, and conjugation carries each normal fibre
into itself. Since the quotient of each normal 2-disc by the involution is again a
2-disc, it follows that the quotient CP2/j is a topological manifold. Making this
argument more carefully one gets that CP

2/j is in fact a PL-manifold, as noticed
in [116], and therefore it is smooth, since every piecewise linear 4-manifold is
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smooth. In [153] Marin defines the smooth structure on CP
2/j directly, without

using PL-structures. An important point is that the smooth structure on CP2/j
is such that the obvious projection CP

2 → CP
2/j is differentiable.

Let us denote by Γ the aforementioned isometric action of SO(3, R) on S4, and
denote by Γ̃ the standard action of SO(3, R) on CP2, which is by isometries with
respect to the Fubini-Study metric. This action is defined either by considering
SO(3, R) as a subgroup of O(3, C), acting on the space of lines in C3, or via the
action of SO(3, R) on the space of matrices P (2) ⊂ H(3, C) given by

(O, A) 
→ OtAO.

By Lemma 4.3, both metrics on CP
2 are equivalent; also for every O ∈ SO(3, R),

H ∈ P (2) and v ∈ C3 such that H(v) = v, one has: OtHO(O−1(v)) = O−1(v),
because O−1 = Ot. Hence both actions on CP2 ∼= P (2) are equivalent. Similarly,
given the SO(3, R)-action Γ̃ on CP2 and Γ on S4, we say that these actions are
equivariant if there exists a map Φ : CP

2 → S4, making commutative the following
diagram:

SO(3, R)× CP
2 Γ̃−−−−→ CP

2

Id×Φ

⏐⏐� Φ

⏐⏐�
SO(3, R)× S4 Γ−−−−→ S4

In this case we say that Φ conjugates the actions Γ and Γ̃. The map Φ carries
orbits into orbits, i.e., the decompositions of CP

2 and S4 into orbits are (smoothly)
equivalent.

Let us denote by Id3 the 3 × 3 identity matrix and by ‖A‖ = traceA2 the
norm of a real symmetric matrix. The real part of a Hermitian matrix H is denoted
Re(H).

5.1 Theorem. Identify S4 with the real 3×3 symmetric matrices A with trace(A) =
trace(A2) = 0, and identify CP

2 with the complex 3×3 Hermitian matrices H with
trace 1 and H2 = H. Then the map Φ : CP2 → S4 ,

Φ(H) =
1
3 Id3 − Re(H)
‖ 1

3 Id3 − Re(H)‖

is a well-defined 2-to-1 branched covering, ramified over a copy of RP 2 embed-
ded in S4. This map is SO(3, R)-equivariant and also invariant by the complex
conjugation j, inducing an equivariant diffeomorphism CP2/j ∼= S4.

We notice that Theorem 5.1, together with [106], imply that the image of
RP 2 ⊂ CP2 under the above map is the image of RP 2 by the classical Veronese
embedding (CP

2, RP 2) ↪→ (CP
5, S4).

The proof of Theorem 5.1 follows from several lemmas below.
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5.2 Lemma. Let A be a real (3× 3)-matrix. Then A is the real part of a matrix H
in P (2) if and only if it satisfies:

(i) A is symmetric with trace 1;
(ii) A has 0 as an eigenvalue and the other two eigenvalues λi and λj are roots

of an equation of the form:

λ2 − λ + k = 0 ,

for some constant k ∈ R with 0 ≤ k ≤ 1
4 .

If A and H are as above, and if O ∈ SO(3, R) is such that OtAO is a diagonal
matrix, then the imaginary part B of H, taken into its canonical form OtBO, has
only two possible non-zero entries, which are ±

√
k. In particular, if k = 0, then

H = A.

Proof. Let us consider a matrix H ∈ P (2) and we decompose it in its real and
imaginary parts: H = A + i B . Then one has: H̄t = At − i Bt . Also H = H̄t

because H is Hermitian. Hence A = At and B = −Bt , i.e., A is symmetric
and B is anti-symmetric. Thus the trace of A is 1, proving statement (i). One
also has:

H2 = A2 −B2 + i(AB + BA) ,

and H2 = H because H is in P (2). Therefore: A = A2−B2 and, B = AB+BA .
Now, A is symmetric, and so is A2; these two matrices obviously commute,

so they can be diagonalized simultaneously by a matrix O ∈ SO(3, R). Since
B2 = A2 −A, one knows that OtB2O is also diagonal:

OtB2O =

⎛⎝µ1 0 0
0 µ2 0
0 0 µ3

⎞⎠ ,

with µi = λ2
i − λi, for each i = 1, 2, 3, where the λi are the eigenvalues of A. But

B is antisymmetric and commutes with B2, which is symmetric. Hence the same
matrix O takes B to its canonical form:

OtBO =

⎛⎝ 0 a c
−a 0 b
−c −b 0

⎞⎠ ,

for some a, b, c ∈ C. This implies:

OtB2O = (OtBO)(OtBO) =

⎛⎝−a2 − c2 −bc ab
−bc −a2 − b2 −ac
ab −ac −b2 − c2

⎞⎠ ,

which we know is a diagonal matrix. Therefore two of the numbers a, b, c must be
zero. Assume for instance that a and b are 0, then both eigenvalues λ1 and λ3 are
roots of the polynomial:

λ2 − λ + c2 = 0 .
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This implies:
λ1 + λ3 = 1 , and λ1 · λ3 = c2 ≥ 0 .

Hence λ2 = 0 (because the trace of A is 1), so 0 is an eigenvalue of A. The other
eigenvalues λ1 and λ3 must be both ≥ 0 and ≤ 1, because their product is a non-
negative number and their sum is 1. Moreover the roots must be real, therefore
k = c2 ≤ 1

4 , proving statement (ii).
Also, in this case the eigenvalues of A determine the imaginary part B of H

up to sign:

B = ±O

⎛⎝ 0 0 c
0 0 0
−c 0 0

⎞⎠ Ot ,

with c2 = λ1 − λ2
3 = λ3 − λ2

3 , proving in this case the last statement of Lemma
5.2. The other cases, when either {a, c} or {b, c} are both zero, are similar to the
previous one. This proves that if A = Re(H) for some matrix H ∈ P (2), then
A is as stated in Lemma 5.2. Conversely, given A satisfying these conditions, the
arguments above tell us how to construct B so that these matrices are the real
and imaginary parts of some H in P (2). �

Now, given H ∈ P (2), its real part is Re(H) = 1
2 (H + H̄). Define

ψ : P (2)→M(3, R),

the space M(3, R) being the space of real (3 × 3)-matrices, by the formula:

ψ(H) =
1
3

Id3 − Re(H) ∈ M(3, R) , (5.3)

where Id3 is the (3 × 3)-identity matrix. In other words, ψ(H) is the real part of
the matrix (1

3Id3−H). Since H ∈ P (2), it follows that ψ(H) is actually contained
in S.

It is clear that the above action of SO(3, R) on P (2) given by conjugation is
equivalent, via the above diffeomorphism P (2) ∼= CP

2, with the standard action
studied above. It is also clear that, for every O ∈ SO(3, R), one has:

ψ(OtHO) =
1
3
Id3−

1
2
(
Ot(H + H̄)O

)
= Ot

(
1
3
Id3 −

1
2
(H + H̄)

)
O = Otψ(H)O .

Hence we have:

5.4 Lemma. The map ψ is equivariant. That is, for every O ∈ SO(3, R) and
H ∈ P (2) one has: ψ(OtHO) = Otψ(H)O .

5.5 Lemma. Given S ∈ S −{0}, there exists a unique positive t ∈ R, such that the
matrix (1

3Id3 − tS) is the real part of some matrix H ∈ P (2).
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Proof. By Lemma 5.4, we can assume S is diagonal. Hence the matrix Ŝt = (1
3Id3−

tS) is also diagonal, say

Ŝt =

⎛⎝λ1(t) 0 0
0 λ2(t) 0
0 0 λ3(t)

⎞⎠
with λi(t) = 1

3 − tµi, where the µi are the eigenvalues of S. We notice that for all
t ∈ R, one has

trace Ŝt = 1− t (trace S) = 1 ,

because S has trace 0. Hence all these matrices satisfy condition (i) of Lemma 5.2.
Let us look for the possible values of t that give solutions of Lemma 5.2. That

is, we want t > 0 for which one eigenvalue λi(t) is 0 and the others satisfy that
their sum is 1 and their product is ≥ 0 and ≤ 1

4 .
Let us number the eigenvalues of S so that µ1 ≤ µ2 ≤ µ3. Since their sum

is 0 and S is not the zero matrix, one must have µ1 < 0 and µ3 > 0. If we want
t as above, we must have that one λi(t) must vanish. Let us look for solutions
with λ1(t) = 0. This means t = 1

3µ1
< 0, and we want t > 0. Hence, there are no

solutions with λ1(t) = 0.
Now let us look for solutions with λ2(t) = 0. This implies t = 1

3µ2
; for this

to be possible we must have µ2 �= 0. If µ2 < 0, then t < 0 and we want t to be
positive. Thus, we only care about µ2 > 0. We have:

λ1(t) =
1
3
(1− µ1

µ2
) and λ3(t) =

1
3
(1− µ3

µ2
) .

We have µ1 < 0 < µ2, so λ1(t) > 0. If µ2 < µ3, then λ3(t) < 0, thus the
product λ1(t)λ3(t) is < 0, so there are no solutions like this that satisfy Lemma
5.5. The other possibility is µ2 = µ3; this implies λ3(t) = 0 too. In this case one
has λ1(t) = 1 and λ2(t) = λ3(t) = 0, and t = 1

3µ2
is positive. Hence we have a

solution, and this is unique because µ2 = µ3. If µ2 = 0, then λ2(t) cannot be 0
and we cannot find solutions like this.

Summarizing, so far we have seen that: (i) there are no solutions satisfying
Lemma 5.5 for which λ1(t) = 0; (ii) if µ2 ≤ 0, there are no such solutions for which
λ2(t) = 0; and (iii) if µ2 = µ3, then there is a unique solution satisfying Lemma
5.5, for which one has λ2(t) = λ3(t) = 0 and λ1(t) = 1.

Finally, let us look for solutions with λ3(t) = 0, i.e., with t = 1
3µ3

. We know,
by hypothesis, that µ2 ≤ µ3 and µ3 > 0. If µ2 = µ3, then we are in the previous
case and there is a unique positive t giving a solution satisfying Lemma 5.5. Let
us assume now that µ2 < µ3. Then we have:

λ1(t) =
1
3

(
1− µ1

µ3

)
and λ2(t) =

1
3

(
1− µ2

µ3

)
,

which are both ≥ 0. Since their sum is 1, it follows that each λi(t) is also ≤ 1.
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The product of λ1(t) and λ2(t) satisfies:

0 ≤ λ1(t) · λ2(t) =
1
9

(
1− µ1 + µ2

µ3
+

µ1µ2

µ3

)
=

1
9

(
2 +

µ1µ2

µ2
3

)
=

1
9

(
2 +

µ1µ2

(µ1 + µ2)2

)
≤ 1

4
,

since µ1 + µ2 + µ3 = 0 and µ1µ2
(µ1+µ2)2 ≤ 1

4 because the inequality 1
4 (a + b)2 ≥ ab is

valid for any pair of real numbers a and b (and equality occurs iff a = b). Hence
t = 1

3µ3
is the unique solution satisfying the conditions of Lemma 5.5. �

We now “normalize” the map ψ so that its image is contained in S4 ⊂ S. For
this we define a function

α(H) = [trace (ψ(H)2)]−
1
2 ,

i.e., α(H) is the inverse of the norm of ψ(H) in S, and we set:

Φ(H) = α(H)ψ(H) .

One has:

trace [ψ(H)2] = trace

[(
1
3

Id3 −
1
2

(H + H̄)
)2
]

= trace
[
1
9

Id3 −
1
3

(H + H̄) +
1
4
(H2 + H̄2 + HH̄ + H̄H)

]
=

1
6

+
1
4

trace (HH̄ + H̄H),

which is always positive since the matrix (HH̄ + H̄H) is positive semi-definite,
so its trace is ≥ 0. Hence the maps α and Φ are well defined. It is clear that the
image of Φ is contained in S4 ⊂ S, because the linearity of the trace implies:

[trace (Φ(H))]2 = α2(H) [trace ψ(H)]2 = 1 .

It is also clear that Φ is SO(3, R)-equivariant, since the trace is invariant under
conjugation and ψ is equivariant by Lemma 5.4. These considerations imply both
Lemma 5.5 and the following lemma.

5.6 Lemma. The map Φ is an equivariant surjection from P (2) over S4 ⊂ S, and
it is two-to-one, except over the image of the real matrices in P (2) where it is
one-to-one.

This gives the map in Theorem 5.1 that determines an equivariant diffeomor-
phism between S4 and CP

2 modulo the involution given by conjugation.
Then Φ is invariant under this involution, since Re(H) = Re(H̄), proving

Theorem 5.1. �
To complete the proof of Theorem 5.1 we notice that Φ is invariant under the

involution of P (2) that corresponds to complex conjugation in CP
2 (see Lemma

4.4 above).



Chapter VI

Real Singularities and
Complex Geometry

The topology of isolated complex singularities has long been studied by many au-
thors, as we know already, and there is a beautiful and well-developed theory in
this respect, though there are still many things to be understood. The previous
chapters are a sample of this. This chapter is a turning point for us, as from now on
we are concerned with the real counterpart of this theory, largely inspired by [168].
The theme here is the interplay between complex geometry and real analytic singu-
larities. We consider several classes of real hypersurface and complete intersection
singularities that arise naturally from complex geometry. The motivation for this
is the pioneering work of S. López de Medrano, L. Meersseman and A. Verjovsky
on new constructions of complex manifolds via holomorphic dynamics. These are
now called LVM-manifolds. The first step they take is to construct real analytic
complete intersection singularities associated to appropriate actions of Cm on Cn,
n > 2m. We briefly describe this in Sections 1 and 2 below. In Section 3 we give a
general method for constructing real analytic singularities using holomorphic vec-
tor fields in general, which is motivated by the constructions in Sections 1 and 2.
In Section 4 we look at a very simple construction of real singularities, motivated
by Section 3 and closely related to the material in Chapter VII of this text: the
real hypersurfaces that arise when we consider a C-valued holomorphic function
H on an open set U in Cn and we compose it with the projection onto a real
line through the origin in C. As a byproduct of this we get explicit real analytic
embeddings in R3 of closed oriented 2-manifolds of all genera.

VI.1 The space of Siegel leaves of a linear flow

This section is based on [50, 149, 150], which are our basic references. Let us
consider now a holomorphic vector field in Cn of the form F (z) = (λ1z1, . . . , λnzn),
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where the λi are non-zero complex numbers. The origin 0 ∈ Cn is the only zero
(or singularity) of this vector field. The solutions of F , other than 0, are Riemann
surfaces (non-compact), immersed in Cn. These are given by {z = eA T w}, with
T ∈ C, w ∈ Cn and A the diagonal matrix with (λ1, · · · , λn) in its diagonal.
The solutions of F give a 1-dimensional holomorphic foliation F with singular set
0 ∈ Cn.

We want to look at the set of points in Cn − 0 where the foliation F has
contacts with the codimension 1 real foliation S given by all the spheres in Cn

with centre at 0. That is, we want to look at the points where these two foliations
are tangent. Given z ∈ Cn− 0, we denote by Lz the leaf of F that passes through
z. It is clear that Lz is tangent at z to the sphere S(0, ‖z‖), with centre at 0 and
radius the norm of z, iff the complex line spanned by the vector F (z) is contained
in the tangent space Tz(S(0, ‖z‖)); this is equivalent to saying that the Hermitian
product of F (z) and z = (z1, . . . , zn) vanishes, i.e.,

〈F (z), z〉 =
n∑

i=1

λi|zi|2 = 0 .

In other words, the set of contacts of the two foliations F and S on Cn − 0 is the
real analytic variety M∗ = M − 0 defined by the intersection of the two quadrics:

VF =

{
z ∈ Cn | Re

(
n∑

i=1

λi|zi|2
)

= 0

}
∩
{

z ∈ Cn | Im
(

n∑
i=1

λi|zi|2
)

= 0

}
.

There are two drastically different cases according as the convex hull,

H(λ1, . . . , λn) ⊂ C ,

of the eigenvalues contains or does not contain the origin. To see why this fact
makes such a big difference, observe that the analytic set VF , being the set of
contacts of the two foliations, does not depend on the actual vector field F but only
on the holomorphic foliation F that it defines. If we multiply F by a unit complex
number eiθ, the spectrum of F is rotated by an angle θ, but the foliation remains
unchanged. Hence, if 0 /∈ H(λ1, . . . , λn) then, multiplying F by an appropriate
unit complex number if necessary, we can assume that all the eigenvalues have
positive real part. This implies that the equation:

Re

(
n∑

i=1

λi|zi|2
)

= 0 ,

does not have non-trivial solutions and therefore VF consists of 0 alone. This means
that every leaf of F in Cn − 0 is transversal to all the spheres around 0. We will
see that in the other case, when 0 ∈ H(λ1, . . . , λn), the variety VF has very rich
and interesting geometry and topology.
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1.1 Definition. If 0 ∈ H(λ1, . . . , λn) we say that the linear vector field F is in the
Siegel domain. Otherwise we say that F is in the Poincaré domain.

The analogous situation in the real case, which we can draw, would be a sink
(or a source) and a saddle point (see Figure 11).

VF

Figure 11: In the Poincaré domain in the Siegel domain.

The topology of the foliation F was studied in [50]. The case of linear flows
in the Poincaré domain is very interesting from the viewpoint of holomorphic
dynamics, but it is not relevant for this text, whose purpose is to study the topology
and geometry of analytic spaces, and for these vector fields the analytic space we
are looking at consists of the origin alone. So we will restrict from now on to linear
vector fields in the Siegel domain.

It is noted in [50] that the equality, and even real dependence, of two eigenval-
ues of F complicates the topology of F and VF very much. Therefore one usually
assumes the following generic hyperbolicity hypothesis: any two eigenvalues are
independent over R:

i �= j ⇒ λi /∈ Rλj , i, j = 1, . . . , n , (∗)

So we now let F be a linear vector field in the Siegel domain satisfying (*).
It is clear that a point z ∈ Cn − 0 is in VF iff the restriction of the real function
d(z) = ‖z‖2 =

∑n
i=1 |zi|2 to the leaf Lz through z has a critical point at z.

Furthermore, as noted in [50, §3], the fact that the solutions of F are parametrized
by exponential maps implies that the leaves of F are concave. Thus, if a leaf L
meets V ∗

F , then it has a unique point in VF and it is the point in L of minimal
distance to 0 ∈ Cn. Such a leaf is called a Siegel leaf. It is a copy of C embedded
in Cn and can be characterized by its unique point in VF . Furthermore, the fact
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that the intersection L∩VF of each leaf that meets VF is at a local minimal point
in L, implies that L ∩ VF is a transverse intersection. By the flow-box theorem
for complex differential equations, this means that we have at each z ∈ V ∗

F a
neighborhood of the form Uz×D2, where Uz is a disc of real dimension 2n−2 and
the second factor denotes small discs in the leaves. It follows that V ∗

F is a smooth
real submanifold of Cn of codimension 2. That is, VF is a real analytic complete
intersection in Cn and the union W = V ∗

F × C of all the Siegel leaves of F is an
open subset of Cn that can be identified with the total space of the normal bundle
of V ∗

F .
It is shown in [50] that W is actually dense in Cn. Notice that the n coordinate

axes of Cn are contained in the complement of W : it is also shown in [50] that the
complement Cn−W consists of the leaves of F that contain 0 in their closure; these
are called Poincaré leaves. It is an exercise to see that VF is globally embedded as
a cone with vertex at 0 and base the intersection M = VF ∩ S2n−1 with the unit
sphere, which is the link of the corresponding singularity.

We summarize part of the above discussion in the following theorem, which
re-phrases results in [50]:

1.2 Theorem. Let F (z) = (λ1z1, . . . , λnzn) be a linear vector field in the Siegel
domain, satisfying the hyperbolicity hypothesis. Then the real analytic variety:

VF =

{
z ∈ Cn | Re

(
n∑

i=1

λi|zi|2
)

= 0

}
∩
{

z ∈ Cn | Im
(

n∑
i=1

λi|zi|2
)

= 0

}
,

is a complete intersection of real codimension 2 with an isolated singularity at 0,
and the regular points of VF parametrize the Siegel leaves of F .

So now the natural problem from the viewpoint of singularities is to determine
the topology of the link M . This question was first addressed in general, and
beautifully answered, by S. López de Medrano in [149, 150], though there are
already a few remarks in this respect in [50]. This is closely related to a problem
studied by C.T.C. Wall [260] in relation to the topological stability of smooth
mappings. Let us describe briefly some of the results in [149, 150].

We begin by considering (as in [50]) the open set of unordered n-tuples of
points Λ = {λ1, . . . , λn} in C∗ satisfying the hyperbolicity hypothesis. This set
has a connected component which is the Poincaré domain, i.e., when 0 is not in
the convex hull H(λ); the other components form the Siegel domain, and this is
the one we are now interested in. It is clear that the topology of M = VF ∩S2n−1,
being a compact smooth manifold, does not change within each component of the
Siegel domain. It is pointed out in [50, p. 9] that the Siegel domain is connected
for n = 3, 4 and it has three components for n = 5. This means that for n = 3, 4
the diffeomorphism type of the link is constant and for n = 5 there are at most
three different diffeomorphism types. This was the starting point in [149]. Writing
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λj = αj + iβj we see that the equations that determine VF are:{
α1(x2

1 + y2
1) + · · ·+ αn(x2

n + y2
n) = 0 ,

β1(x2
1 + y2

1) + · · ·+ βn(x2
n + y2

n) = 0 ,
(1.3)

and one can consider, more generally, the variety V given by the equations:{
a1x

2
1 + · · ·+ anx2

n = 0 ,

b1x
2
1 + · · ·+ bnx2

n = 0 ,
(1.4)

where the Ai = (ai, bi) are pairs of real numbers. One would like to know what
are the “degenerate” cases and what is the topology of the link in the “non-
degenerate cases”. Obviously the first thing to look at is the case of a single
quadric

∑
aix

2
i = 0, where the answer is classical: non-degenerate means no ai is

zero, and the topology of the link is then given by the Morse index (or signature),
i.e., by the number q of negative ai and the number p of positive ai. The link is
then a product Sp−1 × Sq−1.

Let us look now at the case given by (1.4). We consider (following [149])
the points Ai = (ai, bi) ∈ R2. The natural non-degeneracy condition is that the
gradient vector fields of these two equations be linearly independent at each point
of V , i.e., that V is a complete intersection of codimension 2. It is easy to see that
this condition is equivalent to saying that the origin is not in the convex hull of
any pair Ai, Aj . This is called in [149] the weak hyperbolicity condition (w.h.c. for
short), a notation taken from work by M. Chaperon. Under this assumption, the
link M is a smooth submanifold of Rn of codimension 3.

To describe the topology of the link, consider the configurations of n points
Ai = (ai, bi) as an unordered set of n vectors in R2, some of which may coincide. If
one configuration satisfying the w.h.c. is deformed into another without breaking
this condition, then the corresponding links are diffeomorphic. Thus one needs to
describe the connected components of the space of configurations satisfying the
w.h.c., and in each such component one may deform the Ai to take them into
a “normal form”. It is noted that the points Ai come in “bunches” that can be
collapsed into one multiple point without breaking the w.h.c., and this multiple
point can be pushed into the unit circle. Furthermore, one can move these points
in the unit circle, preserving the w.h.c., so that they become the vertices of a
regular polygon (see [150]), and a standard graph theory argument shows that
this polygon has an odd number of vertices.

Thus one can associate to each system of equations as in (1.4) and satisfying
the w.h.c. a normal form determined by k = 2r + 1 vertices of a regular k-gon,
each having a certain multiplicity ni (the number of points Ai concentrated at
this vertex), and n = n1 + n2 + · · ·+ nk. This gives an odd cyclic partition of the
positive integer n, and one may define two such partitions to be equivalent iff they
differ by a rotation of the circle. Then one has ([150, Thm. 1]):
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1.5 Theorem. This association establishes a one-to-one correspondence between the
set of connected components of the space of configurations of points in R2 satisfying
the w.h.c. and the set of odd cyclic partitions of n.

Thus the partition n = n1 + n2 + · · ·+ nk plays for the system of equations
(1.4) the analogous role as the Morse signature n = p+q of a single non-degenerate
quadric; the diffeomorphism types of the corresponding link of the singularity are
given in terms of this partition [150, Thm. 2]:

1.6 Theorem. Let M be the link of the singularity determined by the partition
n = n1 + n2 + · · ·+ nk, k = 2r + 1. Then (up to diffeomorphism):

(i) If k = 1, then M = ∅.
(ii) If k = 3, then M is a product of spheres: M ∼= Sn1−1 × Sn2−1 × Sn3−1.

(iii) For k ≥ 5, M is “always” a connected sum of products of spheres. More
precisely, for each ni set di = ni + ni+1 + · · ·+ ni+r−1, one has: if k = 5 and
all di > 2, or if k > 5 and n �= 7, then M is the connected sum:

M ∼= #k
i=1 (Sdi−1 × Sn−di−2) .

The original systems of equations as in (1.3), corresponding to linear vector
fields in the Siegel domain with the hyperbolicity condition, correspond to systems
as in (1.4) with n and all ni even. In particular, for vector fields in C3 the link M
is always the 3-torus S1 × S1 × S1. One has in general [149, Theorems 1 & 2]:

1.7 Theorem. The components of the Siegel domain are in one-to-one correspon-
dence with the odd cyclic partitions n = n1 + · · · + nk of n into k > 1 positive
integers, and the link M of the corresponding singularity is:

(i) If k = 3, then M is a product of spheres: M ∼= S2n1−1 × S2n2−1 × S2n3−1.

(ii) If k = 2r + 1 > 3, then

M ∼= #k
i=1 (S2di−1 × S2n−2di−2) .

An important and difficult question is to determine how the topology of the
singularities defined by equation (1.3) varies as we pass from one component in the
Siegel domain to another one, i.e., as we break the weak hyperbolicity condition.
This is beautifully answered, in a more general setting, in the recent article of F.
Bosio and L. Meersseman [32]. This is a “wall-crossing” problem as they explain,
and they show that crossing a wall means performing a precise surgery, which they
describe. From the viewpoint of singularities, what we do when crossing a wall is
to put two of the above complete intersection singularities in a 1-parameter family
of singularities which are all complete intersections, except that they bifurcate
when crossing the wall.
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VI.2 Real singularities and the López de
Medrano-Verjovsky-Meersseman manifolds

We now follow [160, 161, 162, 32] and extend the previous constructions to sets of
m commuting vector fields on Cn. This type of situations were previously envisaged
by N. Kuiper in [116], but his interest was more in the dynamics rather than in
the geometry involved. In [160, 161, 162, 32], and also in [151], their interest is
focused essentially on constructing and studying complex manifolds which arise
as quotients of the links of the singularities that we describe here.

Let m and n be positive integers such that n > 2m. Let Λ = (Λ1, . . . ,Λn)
be an n-tuple of vectors in Cm, Λi = (λ1

i , . . . , λ
m
i ) for i = 1, . . . , n, and let

H(Λ1, . . . ,Λn) be the convex hull of Λ in Cm.

2.1 Definition. The n-tuple Λ = (Λ1, . . . ,Λn) is an admissible configuration if it
satisfies:

(i) the Siegel condition: 0 ∈ H(Λ); and
(ii) the weak hyperbolicity condition (w.h.c.): for every 2m-tuple of integers

(i1, . . . , i2m), 1 ≤ i1 < · · · < i2m ≤ n, we have 0 /∈ H(Λi1 , . . . ,Λi2m).

Geometrically this means that 0 is in the convex polytope H(Λ), but 0 is
not contained in any hyperplane passing through 2m of its vertices. Note that
conditions (i) and (ii) together form an open condition, so a small perturbation of
an admissible configuration is again admissible.

To an admissible configuration (Λ1, . . . ,Λn) we associate the holomorphic
foliation F of Cn generated by the m commuting vector fields (1 ≤ j ≤ m)

Fj : (z1, . . . , zn) ∈ Cn 
−→
n∑

i=1

λj
i zi

∂

∂zi
;

in other words, each vector field Fj has components (λj
1z1, . . . , λ

j
nzn). The fact that

these linear vector fields commute implies that they define together a holomorphic
action of Cm on Cn and the orbits of this action are the leaves of F . This foliation
is singular at the origin 0. In analogy with the previous case of m = 1, one has:

2.2 Definition. Let L be a leaf of F . If 0 is the closure of L, we say this is a Poincaré
leaf. Otherwise L is a Siegel leaf.

Let us consider the Siegel leaves of F and consider the set VΛ of contacts of
this foliation with the spheres around the origin. As in the previous case, this is
defined by the real analytic equations:

VΛ =

{
z ∈ Cn

∣∣ n∑
i=1

Λi |zi|2 = 0

}
= VF1 ∩ · · · ∩ VFm ,

where each VFj is the variety defined in the previous section, i.e., VFj − 0 is the
space of Siegel leaves of the vector field Fj . It is an exercise to show that the weak
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hyperbolicity condition implies that each VFj is a real codimension 2 complete
intersection in Cn, and they all meet transversally away from 0; the variety VΛ

is a global complete intersection in Cn of real codimension 2m and singular only
at 0. (This is proved in [160, I.1] and it is analogous to Hamm’s result in [96]
giving necessary and sufficient conditions for a set of Brieskorn varieties to define
a complete intersection, c.f. II.7 above.)

Again, the fact that the vector fields are linear implies that we can para-
metrize the leaves of F by exponential maps, and this implies that each Siegel leaf
has a unique point in VΛ − 0, which is the point in the leaf of minimal distance to
the origin. One has:

2.3 Theorem. Let (Λ1, . . . ,Λn) be an admissible configuration as above, let F be
the associated holomorphic foliation of Cn and let VΛ be the real analytic variety
defined by VΛ = { z ∈ Cn | ∑n

i=1 Λi |zi|2 = 0 } . Then:
(i) VΛ is a complete intersection in Cn of dimension 2n− 2m, and it is singular

only at 0.
(ii) The smooth manifold V ∗

Λ = VΛ − 0 parametrizes the Siegel leaves of F : each
such leaf has a unique point in V ∗

Λ ; this is the point in the leaf of minimal
distance to the origin.

(iii) The foliation F is everywhere transversal to V ∗
Λ and the leaves of F can be

identified with the fibres of the normal bundle of V ∗
Λ . Hence V ∗

Λ is, canonically,
a complex manifold of dimension n−m.

The last statement in this theorem, claiming that V ∗
Λ has a canonical complex

structure comes from the observation of A. Haefliger in [94], that if a smooth real
submanifold N of a complex manifold X is everywhere transversal to a holomor-
phic foliation of complementary dimension, then the holomorphic foliated atlas of
the foliation determines a holomorphic atlas for N . This does not mean however
that V ∗

Λ is embedded as a complex submanifold of Cn. Neither does this mean that
the germ of VΛ at 0 is complex analytic, which is false in general. For instance,
if m = 1 and n = 3, then we know from the previous section that the link is the
3-torus, and we know from [246] (see Chapter III above) that the 3-torus is not
the link of an isolated surface singularity. It would be interesting to know whether
or not these singularities are ever complex analytic, and I believe they are not (c.f.
Chapter VII below).

The results of [32] show that the topology of these singularities can be rather
complicated and interesting, as is already shown in the case m = 1 of the previous
section. These manifolds admit a natural action of the real torus Tn = (S1)n

given by:
((u1, . . . , un), (z1, . . . , zn)) 
−→ (u1z1, . . . , unzn) ∈ Cn ,

for (u1, . . . , un) ∈ Tn and (z1, . . . , zn) ∈ Cn. This action leaves invariant the link
MF and they show in [32] (in analogy with [149, 150] for m = 1) that this action
can be used to associate a natural convex polytope to MF/Tn, which captures the
topology of the link.
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The principal goal of [151, 160, 124] was to use the previous constructions to
obtain new families of compact, complex non-symplectic manifolds. These are now
called the López de Medrano-Verjovsky-Meersseman (LVM for short) manifolds.
A motivation for this comes from the generalized Hopf manifolds of [46, 94]. Recall
that the Hopf manifolds are constructed as follows: given a real number r > 1,
we can take in Cn − 0 the action of Z given by m · z = rmz. The quotient is a
manifold diffeomorphic to S2n−1× S1. Since the action is holomorphic and totally
discontinuous, the quotient inherits a natural complex structure. This construc-
tion was generalized by Haefliger taking quotients of Cn− 0 by other holomorphic
and totally discontinuous actions of Z, obtaining complex manifolds diffeomorphic
to S2n−1× S1 but with different complex structures. For this he used the observa-
tion just mentioned above, that a smooth manifold transversal to a holomorphic
foliation inherits a complex structure.

The construction in [46] of compact manifolds that generalizes those of Hopf
is given by considering the Brieskorn singularities

V(a0,...,an) = {za0
0 + · · ·+ zan

n = 0} ,

and taking the quotient of V ∗ = V(a0,...,an)− 0 by the analogous Z-action: given a
real number r > 1, define a Z-action on V ∗ by

m · (z1, . . . , zn) = (rm/a0z0, . . . , r
m/anzn) .

The quotient V ∗/Z is a compact complex manifold diffeomorphic to M×S1, where
M is the link. Even when the link is the standard sphere, some of these complex
structures are different to those obtained in [94].

Another motivation for the LVM-manifolds comes from [49, 268]. Calabi and
Eckmann [49] generalized Hopf’s construction to give complex structures on all
products of spheres S2n−1 × S2m−1, n, m > 1. Each of these manifolds is the total
space of a principal bundle

S2n−1 × S2m−1 → CP
n−1 × CP

m−1 ,

with fibre the 2-torus; endowing the torus with the structure of an elliptic curve
one turns S2n−1×S2m−1 into a complex manifold. The Calabi-Eckmann manifolds
were generalized by Loeb-Nicolau in [268], inspired in Haefliger’s work. They con-
sider a linear vector field F in Cn+m in the Poincaré domain, satisfying a weak
hyperbolicity hypothesis (weaker than the one in §1 above). Then they prove that
there is an embedding of S2n−1 × S2m−1 in Cn+m which is transversal to the fo-
liation F of F , and therefore (by [94]) inherits a complex structure from that of
F . In this way they get a large class of complex structures on these products of
spheres, including those of [49].

The LVM-manifolds combine all these ideas to give a new construction of
compact complex manifolds. This class contains “most” of the manifolds con-
structed in [94, 268], and many more, where “most” means that in both cases
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the LVM-manifolds leave out certain complex structures that arise by considering
vector fields with a certain type of resonances which are valid in [94, 268] but not
in [151, 160, 124].

To construct the LVM-manifolds we start with an admissible configuration
Λ = (Λ1, . . . ,Λn) as above, let F be the associated holomorphic foliation of Cn

and let VΛ be the real analytic variety defined by

VΛ = { z ∈ Cn |
n∑

i=1

Λi |zi|2 = 0 } ,

so that V ∗
Λ = VΛ − 0 is the space of Siegel leaves of the Cm-action. Let S ⊂ Cn

be the union of all the Siegel leaves, so that S is V ∗
Λ saturated by the Cm-action.

Observe that the usual C∗-action:

t · (z1, . . . , zn) 
→ (tz1, . . . , tzn)

commutes with the Cm-action and both actions have S as an invariant set. There-
fore they give together a free action of Cm×C∗ on S by holomorphic transforma-
tions. The quotient

N = NΛ = S
/
(Cm × C∗)

is a complex manifold. To prove that it is compact we observe that the quotient
S
/
Cm is the manifold V ∗

Λ , hence N is nothing but the projectivization of V ∗
Λ . This

can also be regarded as the quotient of the link M of 0 in VΛ divided by the S1-
action induced from that of C∗. We also observe that one can follow the method
of [46] described above and construct Z-actions on V ∗

Λ so that the orbit space is
a compact, complex manifold which is a principal bundle over N with fibre an
elliptic curve.

The manifold N is, by definition, an LVM-manifold. These manifolds have
fascinating geometry and topology. Their topology is beautifully described in [32].
In [160] it is shown (using [143]) that the m vector fields defined by the admissible
configuration Λ give rise to m holomorphic vector fields on N which define a
(non-singular) holomorphic foliation G of dimension m (recall N has complex
dimension (n−m−1) ≥ m). And if the configuration Λ satisfies a certain “rational
condition (K)”, then [162, Theorem A] this foliation is by compact, complex
tori. Furthermore, in this case the quotient N

/
G is a projective (quasi-regular)

toric variety equipped with an orbifold structure. The projection N → N
/
G is a

generalized Calabi-Eckmann fibration, in the notation of [162] Corollary C, and
they also show that every LVM manifold has an arbitrary small deformation of its
complex structure so that the deformed manifold is the total space of a generalized
Calabi-Eckmann fibration. Conversely, Theorem G and Corollary H in [162] tell
us that every projective toric manifold, and every projective quasi-regular toric
variety, can be realized as a quotient N

/
G, for an appropriate LVM-manifold N .
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VI.3 Real singularities and holomorphic vector fields

Let us now give a method for constructing codimension 2 real analytic complete
intersection singularities in Cn with a very rich geometry and topology; this is
motivated by the constructions in Section 1 and is reminiscent of the geometry
of complex singularities. This construction, taken from [226], is actually inspired
by [88], where the goal is to study the topology of holomorphic vector fields near
an isolated singularity, in a similar way to the one used by Milnor to study the
topology of an analytic space near an isolated singularity. It would be interesting
to make a similar study for singularities of higher codimension, using ideas of §2
above.

Let χ(Cn, 0) denote the space of all germs of continuous vector fields at
0 ∈ Cn, and let F, X be elements in χ(Cn, 0). One has a continuous map,

ψF,X : Cn ∼= R2n → C ∼= R2 ,

defined by ψF,X(z) = 〈F (z), X(z)〉, where

〈F (z), X(z)〉 =
n∑

i=1

Fi(z) ·Xi(z)

is the usual Hermitian product. We note that if F and X are both differentiable
of class Cr , then ψF,X is of class Cr; if F and X are both real analytic, then ψF,X

is also real analytic, but even if both F and X are complex analytic, ψF,X is not
complex analytic, unless X is constant.

3.1 Examples.

(i) Let F be a linear vector field in Cn, F (z) = (λ1z1, . . . , λnzn), and let X be the
radial vector field X(z) = (z1, . . . , zn). Then

ψF,X(z) =
n∑

i=1

λi |zi|2

is the map envisaged in §1 and its zero-set VF,X = ψ−1
F,X(0) consists of the origin

union the set of contacts of the foliation F of F with the foliation given by all
the spheres around 0. Thus, if F is in the Poincaré domain, then VF,X = {0}, and
if F is in the Siegel domain and satisfies the weak hyperbolicity condition, then
VF,X − 0 is the space of Siegel leaves of F .
(ii) Let f : C2 → C be the Pham-Brieskorn polynomial f(z) = zp

1 + zq
2 , with

p, q > 2, let F be the Hamiltonian vector field F =
(

∂f
∂z2

, − ∂f
∂z1

)
, and let X = (a, b)

be constant. Then
ψF,X = a

∂f

∂z2
− b

∂f

∂z1

and VF,X is the polar curve of f and a linear form (much studied by B. Teissier,
Lê Dũng Tráng and others).
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(iii) Let F be holomorphic and let X be the gradient vector field of a real analytic
function f : Cn → R. Then VF,X is the union of the zeroes of F , the zeroes of X
and the polar variety of the foliations F (defined by F ) and the one given by the
level surfaces of f , i.e., the set of points in Cn where the two foliations are tangent
(c.f. [251]). If f is the square of the function distance to the origin, then this is
example i).

Although some of the things we say below hold in general for F and X
continuous vector fields, we restrict ourselves to the case of this last example, F
holomorphic and X the gradient vector field of a real analytic function f : Cn → R,
where the geometry is very rich and interesting.

Let VF,X = ψ−1
F,X(0) be the polar variety of F and the level surfaces of f ,

that we denote by S. So VF,X is defined by the real analytic equations:

Re 〈F (z), X(z)〉 = 0 and Im 〈F (z), X(z)〉 = 0 .

Away from VF,X these two foliations meet transversally, defining a foliation Γ by
real curves which are tangent to both foliations.

In order to study the geometry of VF,X it is convenient to modify the function
that determines it by composing ψF,X with the automorphism ι : C→ C given by
ι(z) = i z̄. The composition ψ̂F,X = ι ◦ ψ is the map z 
→ i 〈F (z), X(z)〉 . Clearly
one has VF,X = ψ̂−1

F,X(0).

3.2 Lemma. The foliation Γ is given by the integrals of the real analytic vector field

τ(z) = ψ̂F,X(z) · F (z) ,

whose zero locus is VF,X .

Proof. It is clear that τ(z) is always tangent to F , because at each point z ∈ Cn,
τ(z) is F (z) multiplied by a complex number. To prove that τ(z) is tangent to S
we must prove that τ(z) is normal to X(z). One has:

〈τ(z), X(z)〉 = 〈 (i 〈F (z), X(z)〉 ) · F (z), X(z) 〉
= (i 〈F (z), X(z)〉 ) · 〈F (z), X(z) 〉 = i ‖〈F (z), X(z)〉‖2.

Hence Re 〈τ(z), X(z)〉 = 0 , so τ(z) is normal to X(z) because the real part of the
Hermitian product is the usual inner product in R2n ∼= Cn. �

This vector field τ describes the behavior of F in the direction determined
by the level surfaces of f . For instance, if X(z) = z and F is a linear vector
field in the Poincaré domain with generic eigenvalues, then one knows by work of
Guckenheimer that τ is Morse-Smale, a fact used in [50] to prove that the vector
field F is structurally stable.

The following immediate consequence of Lemma 3.2 gives a geometric inter-
pretation of the map ψ̂F,X . For simplicity set ψ̂ = ψ̂F,X .
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3.3 Proposition. For each z ∈ Cn − VF,X , the argument of the complex number
ψ̂(z) is the angle by which we must rotate the vector F (z) in its complex line
(counter-clock-wise) to make it tangent to the level surface of f at z.

Let us now look at the map φ = φF,X : Cn − VF,X → S1 ⊂ C given by

z
φ
−→ arg(ψ̂(z)) =

ψ̂(z)

|ψ̂(z)|
=

i 〈F (z), X(z)〉
|〈F (z), X(z)〉|

and set Eθ = φ−1(eiθ). For each θ ∈ [0, π) ⊂ R we define a map Cn ψθ−→ R by

ψθ(z) = Re 〈eiθ F (z), X(z)〉 ,

and we set Vθ = ψ−1
θ (0). One has the following decomposition theorem, which is

reminiscent of Milnor’s fibration theorem, but so far we are not claiming anything
in this respect. We will return to that point in Chapter VII.

3.4 Theorem. The union of all Vθ covers Cn; their intersection is the polar variety
VF,X and each pair of antipodal fibres Eθ and Eθ+π are naturally glued along VF,X

forming the variety Vθ. That is, for θ ∈ [0, π) one has:

Cn = ∪Vθ ; VF,X = ∩ ∪ Vθ ; and Mθ = Eθ ∪ VF,X ∪Eθ+π .

The proof of this result is exactly the same as the proof of 4.1 below.
We now recall that X is the gradient ∇f of a function f . By restricting f

to the leaves of F one gets a vector field XF whose solutions are contained in the
leaves of F ; locally, for z /∈ VF,X , XF(z) is obtained by projecting X(z) to the
complex line spanned by F . The zeroes (or singularities) of XF form precisely the
variety VF,X . We say (following Thom [251]) that a point z ∈ VF,X is a generic
contact of the two foliations if none of them is singular at z and the corresponding
zero of XF is non-degenerate. This means that the restriction of f to the leaf
has a Morse singularity at z. Hence these contacts are either non-degenerate local
minimal points in the leaves of F (with respect to the level surfaces of f), or local
maximal points, or saddle points. Just as in the case of the varieties of Siegel leaves
in Sections 1 and 2, one has that in either case of a generic contact, each leaf of
F , which is (real) 2-dimensional, is locally contributing to VF,X with one point.
It follows that at a generic contact the polar variety VF,X is smooth of real codi-
mension 2. Furthermore, with a little more work one can prove that the converse
also holds and one has the following theorem (we refer to [88, 2.3] for details).

3.5 Theorem. Assume that the function f and the vector field F vanish only at 0.
Then the variety of contacts VF,X is a real analytic geometric complete intersection
in Cn of real codimension 2 and smooth away from 0 if and only if all the contacts
of F and the level surfaces of f are generic.

Of course in all this discussion we can consider F and X to be defined only
on an open set U of Cn and not on the whole space.
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VI.4 On the topology of certain real
hypersurface singularities

This section is taken from [228] and it is motivated by [168, 197] and by the
previous section. Consider now a connected open set D ⊂ Cn+1, 0 ∈ D, and let

H : (D, 0)→ (C, 0)

be a continuous function. For each real line Lθ ⊂ C passing through the origin
with an angle θ, θ ∈ [0, π) , we let πθ : C → Lθ be the orthogonal projection; set
hθ = πθ ◦H , so that h0 and hπ

2
are, respectively, the real and the imaginary parts

of H . We set Mθ = h−1
θ (0) and V = H−1(0). We define the map φ̃ : D− V → S1

by φ̃(z) = iH(z)
||H(z)|| . For each eiθ ∈ S1, we set Eθ = φ̃−1(eiθ).

The following lemma establishes that one has in general a decomposition
similar to the one in Theorem 3.4 above:

4.1 Lemma. One has: D = ∪Mθ and V = ∩Mθ , for θ ∈ [0, π). Also, for each
θ ∈ [0, π) one has: Mθ = Eθ ∪ V ∪ Eθ+π . Similarly, if Sε is a sphere embedded in
D with centre at 0, one has,

Sε = ∪(Mθ ∩ Sε) V ∩ Sε = ∩(Mθ ∩ Sε) ; and
(M ∩ Sε) = (Eθ ∩ Sε) ∪ (V ∩ Sε) ∪ (Eθ+π ∩ Sε) .

Proof. If z ∈ Mθ, then H(z) is contained in the line passing through 0 with an
angle θ± π

2 . Hence z ∈Mθ1 ∩Mθ2 if and only if z ∈ V , where θ1 = θ2 +kπ , k ∈ Z.
We prove that V = ∩Mθ for each θ ∈ [0, π). It is clear that each point in D is
either in V itself or else it is in a certain Eθ. So the claim D = ∪Mθ follows from
the claim Mθ = Eθ ∪ V ∪Eθ+π . We prove this last claim. For this we notice that
Mθ is the set of points z ∈ Cn+1 such that eiθH(z) is a purely imaginary number.
One has:

Mθ = {z ∈ Cn+1 |Re eiθH(z) = 0} .

It is now clear that V ⊂Mθ. Let us prove that Eθ ⊂Mθ . If z ∈ Eθ, then

iH(z)
||H(z)|| = eiθ , which implies

e−iθiH(z)
||H(z)|| = 1 ,

hence

Re
eiθ H(z)
||H(z)|| = 0 .

Thus one has z ∈Mθ. Similarly, if z ∈ Eθ+π , then

iH(z)
||H(z)|| = ei(θ+π) = −eiθ , so e−iθ iH(z)

||H(z)|| = −1 ,
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which implies Re e−iθH(z) = 0. Hence one has Eθ+π ⊂Mθ . Conversely, if z ∈Mθ,
then Re e−iθH(z) = 0 . If H(z) = 0, one has z ∈ V and there is nothing to prove.
If H(z) �= 0, then

e−iθ iH(z)
||H(z)|| = ±1 ,

so z is in Eθ or in Eθ+π, according to its sign, and we arrive at the formula
above. To prove the second statement in the lemma we just restrict the previous
discussion to the sphere Sε. �

4.2 Theorem. Assume now that H is holomorpic; let hθ = πθ ◦H be as before and
let

φ =
H

||H || : Sε −K → S1

be the usual Milnor fibration, where K = V ∩ Sε is the link of 0. Then:

(i) Each Mθ = h−1
θ (0) is a real analytic hypersurface in D, whose singular set is

the singular set of V .

(ii) Each pair of antipodal fibres Fθ and Fθ+π of φ are naturally glued together
along K, forming a real analytic variety isomorphic to Nθ = Mθ ∩ Sε.

Proof. The second statement in Theorem 4.2 is a consequence of the lemma above,
because the map φ̃ is φ followed by the diffeomorphism z → iz of C. Hence the
intersection of each Mθ with each sphere Sε is a real analytic variety of dimension
2n; since Mθ is a cone near 0, by [168], we know that Mθ is a real hypersurface.
Its singular set consists of the critical points of hθ, i.e., the points where all the
partial derivatives of hθ vanish. This set does not change if we multiply hθ by the
number e−iθ. Thus, to prove the claim about the singularities of Mθ, it is enough
to consider the case θ = 0, i.e., for the real part of H , f = Re H . One has,

f =
1
2
(H + H) ,

where H is the complex conjugate of H . Therefore,

2∆f =
(∂H

∂z1
,
∂H

∂z1
, . . . ,

∂H

∂zn+1
,

∂H

∂zn+1

)
,

because the partial derivatives of H with respect to the zi are all 0, the partial
derivatives of H with respect to the zi are all 0 and ∂H

∂zi
= ∂H

∂zi
. Thus, the critical

points of H are the critical points of f . �

This theorem tells us that the link Nθ of Mθ is, in some sense, the double of
the Milnor fibre of H , but Nθ is singular if K is singular. We recall (see Ch. I.6
above) that even in this case there is a Milnor fibration

H : H−1(S1
δ) ∩Bε → S1

δ ,
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where S1
δ is a small circle centred at 0 ∈ C and Bε is a small open ball in Cn+1.

The closure of each fibre Eθ = H−1(eiθ) in this fibration is a compact non-singular
variety with boundary K̃, while the closure of the Milnor fibre F is the union of
F with the link K, which may be singular. I thank Lê Dũng Tráng for explaining
to me that there is a natural contraction function from K̃ onto K; this can be
constructed by lifting to Cn+1 a radial vector field in C around 0. It would be
interesting to study the relation of this function to our construction (c.f. [163]).
Equivalently, one may study the relation between the double of the Milnor fibre,
which is a closed manifold, and the link Nθ of the real analytic variety Mθ =
h−1

θ (0).

We notice that M0 and M π
2

are, respectively, the sets of points where
Re H(z) = 0 and Im H(z) = 0.

If the singular set of V consists of an isolated point, one has the following
theorem:

4.3 Theorem. If 0 ∈ D is an isolated critical point of H, then the Mθ
′s are non-

singular away from 0, and they are all homeomorphic. The link Nθ = Mθ ∩ Sε

is diffeomorphic to the double of the Milnor fibre F of H, hence Nθ is (n − 1)-
connected; Nθ is always stably parallelizable, and it is actually parallelizable if and
only if n is odd and the Milnor number µ of H is 1.

We recall that a manifold M is parallelizable if its tangent bundle TM is
trivial; M is stably parallelizable if TM ⊕ (k) is trivial, where (k) is a trivial
bundle over M , or equivalently, if M can be embedded in some sphere SN with
trivial normal bundle.

Since the topology of the Milnor fibre of H and the link K are well under-
stood, these theorems determine the topology of the real hypersurfaces Mθ.

Proof. The claims that the Mθ are regular away from 0, that they are all home-
omorphic (actually diffeomorphic away from 0) and the link is diffeomorphic to
the double of the Milnor fibre of f , are all consequences of Theorem 4.2. That
Nθ is connected follows because F is connected, by [168]. Furthermore, if n > 1,
then K is connected and F is simply connected, by [168]. Hence Van Kampen’s
Theorem [239, p. 151] implies that Nθ is simply connected. Moreover, by [168], F
is a wedge of n-spheres and K is (n− 2)-connected, thus Mayer-Vietoris (reduced
if n=2) implies that one has

H1(Nθ; Z) ∼= · · · ∼= Hn−1(Nθ; Z) ∼= 0 .

Therefore Hurewicz’s isomorphism [239, p. 397] implies that Nθ is (n − 1)-
connected. Finally, Nθ is stably parallelizable because it is a codimension 1, ori-
ented submanifold of Sε. Thus, [112, Th. IX], Nθ is parallelizable if and only if
its Euler-Poincaré characteristic χ(Nθ) vanishes. One has:

χ(Nθ) = 2χ(F ) = 2 + 2(−1)n µ ,
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where µ > 0 is the Milnor number of H , since Nθ is the double of F , and F is a
wedge of µ n-spheres. So χ(Nθ) = 0 if and only if n is odd and µ = 1. �

The following corollary is actually a special case of the theorem above, but
we think it deserves to be stated on its own.

4.4 Corollary. Let f : (Cn+1, 0) → (C, 0) be a holomorphic map with an isolated
critical point at 0 ∈ Cn+1 and let F be the Milnor fibre of f , so F = f−1(t) ∩Bε

for some small ball Bε and some t with |t| sufficiently small. Let M0 be the link
of the real part of f , i.e., of the function Re f : (Cn+1, 0) → (R, 0). Then M0 is
diffeomorphic to the double of F .

4.5 Example. Consider again the polynomial f(z1, z2) = zp
1 + zq

2 , with p, q > 1.
The topology of this singularity is well understood (see Ch. I). Its link K is a torus
link (or knot if p, q are relatively prime) and its Milnor number µ is (p− 1)(q− 1);
we recall that the Milnor fibre F is in this case an oriented surface in the 3-sphere,
with boundary K and the homotopy type of µ circles. Now consider the real and
the imaginary parts of f ,

f1 = Re f = zp
1 + zq

2 + z̄p
1 + z̄q

2 ,

f2 = Im f = zp
1 + zq

2 − z̄p
1 − z̄q

2 .

Both define real hypersurfaces in C2, which are cones over their links L1, L2. By
the theorem above, L1 and L2 are homeomorphic, actually diffeomorphic, and
they are the double of the Milnor fibre F . Hence L1 and L2 are closed, oriented
surfaces of genus (p− 1)(q − 1) in the 3-sphere S3 ⊂ C2.

This can be interesting because it provides explicit analytic embeddings of
surfaces of all genera in S3 ⊂ C2. For instance, if p = 2 = q, then K is the Hopf
link, F is a cylinder S1 × I and L1, L2 are tori S1 × S1, obtained by taking two
copies of F and gluing them along their boundary. The link K is the intersection
of the tori L1, L2.



Chapter VII

Real Singularities with
a Milnor Fibration

A map f : (Rn+k, 0) → (Rk, 0) , n, k > 0 , satisfies the Milnor condition at 0 if it
is a submersion at every point in a punctured neighborhood of 0 ∈ Rn+k. Milnor’s
fibration theorem says that every such map determines a locally trivial fibre bundle
Sε−M

φ→ Sk−1 for every sufficiently small sphere Sε ⊂ Rn centred at 0, where M
is the link. However this projection φ in general may not be given by the obvious
map f

|f | . The goal of this chapter is to construct real analytic singularities for
which Milnor’s condition holds and one actually has that the projection map is
f
|f | , just as it is for complex singularities. In this case we say that the singularity
satisfies the strong Milnor condition.

The results in this chapter are based on [226, 227, 214]. For completeness we
present also related results of [111, 218] where the authors discuss the difference
between the Milnor condition and the strong Milnor condition, and they give
sufficient conditions for a map f as above to satisfy the strong Milnor condition.
In particular, for weighted homogeneous maps both conditions are equivalent.

The constructions in this chapter are inspired by those in Chapter VI and the
singularities we get are reminiscent of the classical Pham-Brieskorn singularities,
so we call them twisted Pham-Brieskorn singularities.

VII.1 Milnor’s fibration theorem revisited

Let us consider real analytic functions f : (Rn, 0)→ (Rp, 0), n ≥ p.

1.1 Definition. We say that the map f satisfies the Milnor condition at 0 if the
derivative Df(x) has rank p at every point x ∈ U − 0, where U is an open neigh-
borhood of 0 ∈ Rn, i.e., if f is a local submersion at every point in a punctured
neighborhood of 0 ∈ Rn.
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One has the following theorem of Milnor, that we proved in Chapter I:

1.2 Theorem. If f satisfies the condition of Definition 1.1, then for every ε > 0
sufficiently small, and for every δ > 0 sufficiently small with respect to ε, one has
that

f |f−1(Cδ)∩Bε
: f−1(Cδ) ∩Bε −→ Cδ ,

is a fibre bundle, where Cδ ⊂ C is the circle in C of radius δ and centre at 0, and
Bε is the closed ball in Rn of radius ε and centre 0.

Of course every complex-valued holomorphic function with an isolated criti-
cal point in its domain satisfies these conditions, and so does if we compose such
function with a real analytic diffeomorphism of the target C. The interesting point
here is to find examples which are honestly real analytic. Milnor exhibited the fol-
lowing examples in his book, suggested to him by N. Kuiper, of functions satisfying
the condition of Definition 1.1, and therefore giving rise to fibrations. Let A denote
either the complex numbers, the quaternions or the Cayley numbers, and define

h : A×A→ A× R ,

by h(x, y) = (2xȳ, |y|2− |x|2). Milnor first proves ([168, 11.6]) that this mapping
carries the unit sphere of A × A to the unit sphere of A × R by a Hopf fibration
(see [242, p. 109]). Then he defines, more generally,

f : An ×An → A× R ,

by
f(x, y) = (2〈x, y〉, ‖y‖2 − ‖x‖2) ,

where 〈·, ·〉 is the Hermitian inner product in A. One has that this map is a local
submersion on a punctured neighborhood of (0, 0) ∈ An ×An. The link M of the
corresponding singularity is the Stiefel manifold of 2-frames in An and the Milnor
fibre in this case is a disc bundle over the unit sphere of An.

Milnor asked a number of questions regarding his theorem for real singular-
ities. As Milnor pointed out in his book, the hypothesis of Df having maximal
rank everywhere near 0 is too strong and it is difficult to find examples, even for
p = 2. There are in fact pairs (n, p) as above for which no such examples ex-
ist, see [53, 208]. For p = 2, which is the most relevant case for this work, what
is generic is to have real curves in R2 converging to (0, 0), whose inverse image
consists of points where the Jacobian matrix has rank less than 2. Consider for
instance the maps ψ : Cn ∼= R2n → C ∼= R2 of Chapter VI:

ψ(z) = 〈F (z), z〉 =
n∑

i=1

λi|zi|2 ,

where F = (λ1z1, . . . , λnzn) is a linear vector field. We know from the previous
chapter that if F is in the Siegel domain and satisfies the weak hyperbolicity
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condition, then the zeroes of ψ define a codimension 2 real complete intersection
in R2n with an isolated singularity at 0, and it has a very rich geometry and
topology. These maps are reminiscent of Milnor’s examples above and could be
natural examples for maps satisfying the Milnor condition at 0. However it is an
exercise to see that, regardless of what the eigenvalues of F are, the derivative of
these maps has rank less than 2 on the n axis of Cn.

Milnor actually asked whether there exist “non-trivial” examples satisfying
the condition of Definition 1.1 when p = 2. This question was answered positively
by Looijenga [145] for n even and by Church and Lamotke [53] for n odd, using
Looijenga’s technique. However, no explicit examples of such singularities are given
in those articles. Roughly speaking, their proof consists in showing that on one
hand, if Df has maximal rank everywhere near 0, then the pair (Sε, M) is a
Neuwirth-Stallings pair (c.f. [188, 240]), where M = Sε ∩ f−1(0) is the link of the
singularity; and conversely, a Neuwirth-Stallings pair with appropriate conditions
determines an isolated singularity as above. Then they use an inductive process
to show that for p = 2 one can always construct such a Neuwirth-Stallings pair,
proving the existence of non-trivial examples for all n > 1.

The first explicit non-trivial example of a real analytic singularity with target
R2 satisfying the Milnor condition at 0, other than those of Milnor, was given by
A’Campo [2]. This is given by the map Cm+2 → C defined by

(u, v, z1, . . . , zm) 
−→ uv(ū + v̄) + z2
1 + · · ·+ z2

m ,

which is not holomorphic due to the presence of complex conjugation. In §3 be-
low we construct, following [227, 214], infinite families of singularities satisfying
Milnor’s condition, which are in the same vein as that of A’Campo.

VII.2 The strong Milnor condition

The problem of studying real singularities satisfying the Milnor condition at 0,
for which the map f

|f | extends to all of Sε −M → Sp−1 as the projection of a
fibre bundle (as in the case of holomorphic maps), was first studied in [111], and
this turns out to be quite subtle. When p = 2 such singularities define open book
decompositions on the spheres with the link M as binding; M is a fibred knot (or
maybe a link), with the Milnor fibre f−1(0) ∩ Dε being a Seifert surface for M.

We recall (Theorem 1.2 above) that given an analytic map f : Rn → R2

satisfying the Milnor condition at 0, for each small circle Cδ ⊂ R2 around the
origin, the restriction of f to f−1(Cδ)∩Bε, where Bε is a small closed disc around
0 ∈ Rn, is a fibre bundle over the circle with projection map f . Then using a vector
field we may inflate the tube f−1(Cδ)∩Bε to make it become the complement (of
a tubular neighborhood) of the link M in the sphere Sn−1

ε and in this way we have
Sn−1

ε −M fibreing over Cδ
∼= S1. The point is that when we inflate the tube to

carry it into the sphere we lose control, in general, of what map we end up having
on the sphere. It is also hard to keep control of the behavior of the fibres as we
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get closer to the link. When n is even and f is holomorphic, then Milnor showed
that you can keep control of this process, so that you end up having the map f as
projection (or f

/
|f | if we want the image to be the unit circle S1 ⊂ C).

2.1 Definition. Let f = (f1, f2) : (Rn, 0) → (R2, 0) be analytic and satisfy the
Milnor condition at 0. Let M be the link; f satisfies the strong Milnor condition
at 0 if for every sufficiently small sphere Sε around 0, the map

f

|f | : Sε −M → S1

is the projection of a fibre bundle.

The strong Milnor condition is not always satisfied by maps that satisfy
the Milnor condition, as noticed by Milnor in [168, p. 99]. Jacquemard gave
two conditions that were sufficient to guarantee that f

|f | actually extends to all
of Sε − M as the projection map of a fibre bundle. The first condition (A) is
geometric: that the angle between the gradient vector fields of these two functions
be bounded; the second condition (B) is algebraic:

2.2 Theorem. (Jacquemard) Let f : (Rn, 0)→ (R2, 0) be an analytic map-germ. If
the component functions f1 and f2 of f satisfy the following two conditions, then
f satisfies the strong Milnor condition. These conditions are:
A) there exists a neighborhood U of the origin in Rn and a real number 0 < ρ < 1

such that for all x ∈ U − 0 one has:

|〈grad f1(x), grad f2(x)〉|
|| grad f1(x)|| · || grad f2(x)|| ≤ 1− ρ ,

where 〈·, ·〉 is the usual inner product in Rn; and,
B) if εn denotes the local ring of analytic map-germs at the origin in Rn, then

the integral closures in εn of the ideals generated by the partial derivatives( ∂f1

∂x1
,

∂f1

∂x2
, . . . ,

∂f1

∂xn

)
and

( ∂f2

∂x1
,

∂f2

∂x2
, . . . ,

∂f2

∂xn

)
(2.3)

coincide.

Again, no explicit examples of such maps were given in [111] (other than
complex polynomials with an isolated critical point).

It was noted in [214] that the above condition (B) can be relaxed and still
have sufficient conditions to guarantee the strong Milnor condition. For this we
recall the notion of the real integral closure of an ideal as given in [86].

2.4 Definition. Let I be an ideal in the ring εm. The real integral closure of I,
denoted by IR, is the set of h ∈ εm such that for all analytic ϕ : (R, 0)→ (Rm, 0),
we have h ◦ ϕ ∈ (ϕ∗(I))ε1.
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Given f : (Rn, 0)→ (R2, 0) as above, let us set:

Condition BR: The real integral closures of the Jacobian ideals (2.3) coincide.

For complex analytic germs both conditions (B) and (BR) are equivalent
(see [248], [86]). As pointed out in [214], essentially the same proof of Jacquemard
in [111] gives:

2.5 Theorem. Let f : (Rn, 0)→ (R2, 0) be an analytic map-germ that satisfies the
Milnor condition. If its components f1, f2 satisfy the condition (A) of Theorem
2.2 and condition (BR), then f satisfies the strong Milnor condition.

This improvement of Theorem 2.2 was used in [214] to prove a stability
theorem for real singularities with the strong Milnor condition (see §6 below).
This was also used in [218] to find a theorem in the spirit of Theorem 2.5 but
using “regularity conditions” instead of Jacquemard’s conditions. This is inspired
in [226, 227] and related to VI.4 above. To explain this we need to introduce some
concepts from [26, 27].

Let M be a smooth n-manifold, and let X , Y be submanifolds of M such
that Y ⊂ X.

2.6 Definition. The pair (X, Y ) is (a)-regular at y0 ∈ Y if for each sequence of
points {xi} → y0 such that the corresponding sequence of tangent spaces {TxiX}
of X at xi converges to some T in the Grassmannian of (dim X)-planes in Rn,
then one has Ty0Y ⊂ T . We say that (X, Y ) is (a)-regular if it is (a)-regular at
every y0 in Y.

2.7 Definition. Let ρ : M → R be a smooth non-negative function such that
ρ−1(0) = Y . The pair (X, Y ) is C-regular at y0 ∈ Y with respect to the control
function ρ if for each sequence of points {xi} → y0 such that the sequence of planes
{ker Dρ(xi)∩TxiX} converges to a plane T in the Grassmannian of (dim X − 1)-
planes in Rn, then Ty0Y ⊂ T . The pair (X, Y ) is C-regular with respect to the
control function ρ if it is C-regular for every point y0 ∈ Y with respect to the
function ρ.

It is easy to see that C-regularity implies (a)-regularity.
Now consider a map-germ f : (Rn, 0) → (R2, 0) as above, satisfying the

Milnor condition at 0. Just as in the previous chapter, let πθ : C → L−θ be
the linear projection to the line L−θ forming angle −θ with the horizontal axis in
C = R2, and consider the family fθ = πθ◦f . The projections πθ are all submersions,
hence the {fθ} are all real-valued maps with an isolated critical point at 0. For each
θ ∈ [0, π), set V ∗

θ = f−1
θ (0)−{0} ⊂ Rn. Now consider the map F : (Rn× [0, π))→

R×R defined by F (x, θ) = fθ(x), and set Xf = F−1(0)−(0×[0, π)), Yf = 0×[0, π).
Thus Yf ⊂ Xf and Xf =

⋃
V ∗

θ for all θ ∈ [0, π).

2.8 Definition. The family {fθ} is C-regular at y0 ∈ Y with respect to a control
function ρ if the pair (Xf , Yf ) is C-regular at y0 with respect to ρ.
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The main result of [218] is:

2.9 Theorem. Let f : (Rn, 0)→ (R2, 0) be a real analytic map-germ with an isolated
critical point at the origin, such that f satisfies the Milnor condition at 0 and the
family fθ : (Rn, 0)→ (R, 0) satisfies the C-regularity condition with respect to the
function ρ(x, θ) =

∑
i x2

i . Then, f satisfies the strong Milnor condition.

Let us give an outline of their proof. First they notice (Lemma 2.6 in [214])
that one has a decomposition of the ambient space as given in VI.§4 above: there
is a neighborhood U ⊂ Rn of 0 such that for every x ∈ U − {0}:

(i) U = ∪θ(Vθ ∩ U), 0 ≤ θ < π ; Vθ = f−1
θ (0).

(ii) V = ∩θVθ = Vθ1 ∩ Vθ2 , where V = f−1(0), θ1 �= θ2 ; θ1, θ2 ∈ [0, π).

(iii) For each θ ∈ [0, π), Vθ = Eθ ∪ V ∪ Eθ+π, where Eα = φ̃−1(eiα) with φ̃ :

U − V → S1, φ̃(x) = i f(x)
|f(x)| .

Furthermore, one also has:
(iv) If f satisfies the Milnor condition at 0, then for each θ ∈ [0, π), V ∗

θ = Vθ−{0}
is a real smooth submanifold of real codimension 1 of U − {0}, given by the
union of Eθ, Eθ+ π

2
and V − {0}.

Now, by [26, 255], the C-regularity condition of the family fθ implies that
there exists a family of germs of homeomorphisms hθ : (Rn, 0) → (Rn, 0), with
h0 = Id and ‖hθ(x)‖ = ‖x‖, ∀x ∈ f−1

θ (0) (preserving small spheres centred at the
origin), such that fθ ◦ hθ(x) = f0(x). Hence the hypersurfaces Vθ are homeomor-
phic. It then follows from [26] that there exists a sufficiently small ε > 0 such that
each Vθ meets the sphere Sn−1

ε transversally for all θ. Each Eθ is a submanifold of
U , and Vθ ∩ Sn−1

ε = (Eθ ∩ Sn−1
ε ) ∪ (V ∩ Sn−1

ε ) ∪ (Eθ+ π
2
∩ Sn−1

ε ). One can thus get
a decomposition of the sphere Sn−1 satisfying properties similar to (i)–(iv) above.
Let Fθ := Eθ ∩ Sn−1

ε . It follows from (iii) that letting Mε = V ∩ Sε one has:

Vθ ∩ Sn−1
ε = Fθ ∪Mε ∪ Fθ+π .

For each θ1, θ2 one has (fθ1 ◦ hθ1)−1(0) = f−1
0 (0) = (fθ2 ◦ hθ2)−1(0). Then,

h−1
θ1

(Vθ1) = h−1
θ2

(Vθ2). Hence hθ2 ◦ h−1
θ1

(Vθ1 ∩ Sn−1
ε ) = Vθ2 ∩ Sn−1

ε .
Using this one can define an R-action on the sphere, Γα : R×Sn−1

ε → Sn−1
ε ,

by x 
−→ hθ ◦ h−1
α (x) for x ∈ Mα. Since ‖hα(x)‖ = ‖x‖ one has that Γα is well

defined and for all α ∈ R and x ∈ Fα one has:

hθ ◦ h−1
α (Fα) = hθ ◦ h−1

α (Eα ∩ Sn−1
ε ) = Eθ ∩ Sn−1

ε = Fθ .

Moreover, the action Γα is transversal to the fibres and satisfies

Γα(Kε) = Γα(M ∩ Sn−1
ε ) = Γα(M) ∩ Sn−1

ε = M ∩ Sn−1
ε = Kε .

Hence it leaves the link invariant. Now, proceeding as in [168] Theorem 4.8, we
get that f

|f | is the projection map of a locally trivial fibre bundle. �
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As a corollary they obtain a generalization of Theorem 4.0.2 of [214]. For
this we recall (c.f. III.1 above) that a polynomial h in m real variables is weighted
homogeneous if there exist non-zero integers (q1, . . . , qm) and a positive integer d,
such that:

h(tq1x1, . . . , t
qnxm) = td h(x1, . . . , xm) .

Equivalently, we demand that there exist non-zero rational numbers (w1, . . . , wm),
called the weights of h, for which h is a sum of monomials zi1

1 · · · zim
n such that

i1
w1

+ · · ·+ in
wm

= 1 .

A singular variety V (or a map-germ) is said to be quasi-homogeneous if it is
defined by polynomials in m real variables which are weighted homogeneous of the
same weights.

2.10 Corollary. Let f : (Rn, 0)→ (R2, 0) be a quasi-homogeneous polynomial map-
germ. Then f satisfies the Milnor condition at 0 iff it satisfies the strong Milnor
condition at 0.

This follows from Theorem 2.9 since it is well known that in this case the
family fθ is C-regular (see [26]).

2.11 Remarks.

(i) It is worth saying that the proof of Theorem 2.9 is similar in spirit to that of
Theorem 4.2 below, which is more elementary since in that case the R-action
that gives the local triviality of the fibres can be given explicitly, so one does
not need to use Bekka’s regularity. This has the advantage that one gets for
free the monodromy map of the corresponding Milnor fibrations.

(ii) M.A. Ruas and R.N.A. Santos in [218, Theorems 4.4 and 4.8] prove that
Theorem 2.9 is stronger than Theorem 2.5 and 2.2: if a map-germ satisfies
Jacquemard’s conditions (A) and (B), or (BR), then it satisfies C-regularity,
but not conversely.

VII.3 Real singularities of the Pham-Brieskorn type

We recall that the Pham-Brieskorn singularities are defined by

{ z ∈ Cn+1 | za1
1 + · · ·+ zan

n = 0 ; ai ≥ 2 ∀ i = 1, . . . , n} ,

and one may consider more generally the variety defined by the complex polyno-
mial

f(z) = λ1z
a1
1 + · · ·+ λnzan

n ,

where the λi are non-zero complex numbers, which is essentially the same. We
have seen in Chapter I of this book, and in almost every other chapter, several re-
markable geometric and topological features of these singularities. Let us consider
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now the following real analytic analogues of them:

ψ(z) = λ1z
a1
1 z1 + · · ·+ λnzan

n zn ,

or more generally,
ψ(z) = λ1z

a1
1 zσ1 + · · ·+ λnzan

n zσn ,

where σ = {σ1, . . . , σn} is a permutation of the set {1, . . . , n}.
3.1 Definition. A twisted Pham-Brieskorn real singularity of class {a1, . . . , an; σ}
is a singularity in Cn defined by a polynomial map

ψ(z) = λ1z
a1
1 zσ1 + · · ·+ λnzan

n zσn ,

where each ai ≥ 2, i = 1, . . . , n, the λi are non-zero complex numbers and σ =
{σ1, . . . , σn} is a permutation of the set {1, . . . , n}. We call weights the exponents
{a1, . . . , an}, and the permutation σ is the twisting.

So for instance, if n = 2 then the maps in question are of two classes:

λ1z
a1
1 z1 + λ2z

a2
2 z2 or λ1z

a1
1 z2 + λ2z

a2
2 z1 .

For n = 3, one has three essentially different classes:

λ1z
a1
1 z1 + λ2z

a2
2 z2 + λ3z

a3
3 z3 ; λ1z

a1
1 z2 + λ2z

a2
2 z1 + λ3z

a3
3 z3 or

λ1z
a1
1 z2 + λ2z

a2
2 z3 + λ3z

a3
3 z1 ,

and so on.
In Section 5 below we prove that if the twisting σ is the identity, then the

corresponding singularity is topologically equivalent to the Pham-Brieskorn sin-
gularity za1−1

1 + · · ·+ zan−1
n = 0 , where the ai are the weights.

In this section we prove that for all twisted Pham-Brieskorn singularities,
the corresponding variety V = ψ−1(0) is a codimension 2 complete intersection in
Cn with a unique singularity at 0, and the corresponding maps satisfy the Milnor
condition at 0. In the following section we prove that they further satisfy the
strong Milnor condition at 0.

We observe that if we let F, X be holomorphic vector fields of the form:

F = (k1z
a1
σ1

, . . . , knzan
σn

) , X = (t1zb1
1 , . . . , tnzbn

n ) ,

where the ki and the ti are non-zero complex numbers, the ai and bi are positive
integers and {σ1, . . . , σn} is a permutation of the set {1, . . . , n}, and if we let

ψF,X(z) : Cn → C

be the real analytic function defined (as in Chapter VI) by

ψF,X(z) = 〈F (z), X(z)〉 =
n∑

i=1

ki · ti · zai
σi
· zbi

i ,
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then the twisted Pham-Brieskorn singularities correspond to the case when the
exponents bi are all 1.

The purpose of this section is to classify the vector fields F and X as above,
for which the corresponding map ψF,X satisfies the Milnor condition at 0 ∈ Cn ∼=
R2n. This has the advantage of giving us more singularities that satisfy the Milnor
condition, other than the twisted Pham-Brieskorn singularities. For this we think
of ψ := ψF,X as a map into R2 and we let (ψ1, ψ2) be its components, which
correspond to the real and imaginary parts of ψ. We want to determine the rank
of its derivative. Suppose first that F is of the form F (z) = (k1z

a1
1 , . . . , knzan

n ) and
X = (zb1

1 , . . . , zbn
n ) , i.e., the permutation σ is the identity. In this case one has:

ψ1 =
1
2

n∑
i=1

(kiz
ai

i zbi

i + kiz
ai

i zbi

i ) , ψ2 =
1
2

n∑
i=1

(kiz
ai

i zbi

i − kiz
ai

i zbi

i ) .

Let us consider the 2 × 2 minor of ψ corresponding to the partial derivatives of
(ψ1, ψ2) with respect to zi and zi. Its determinant (multiplied by −2) is:

||ki||2a2
i ||zi||2ai−2||zi||2bi − ||ki||2b2

i ||zi||2ai ||zi||2bi−2 ,

so this is 0 iff zi = 0 or ai = bi. Hence, if zi �= 0 and ai �= bi for all i, then ψF,X is
a submersion. Conversely, if ai = bi for some i, then the rank of ψ(z) is less than
2 whenever we are on the zi-axis, proving that in this case the function ψF,X does
not satisfy the Milnor condition at 0.

Given F and X as above, let us set: F̂ = (k1t1z
a1
σ1

, . . . , knt̄nzan
σn

) , and X̂ =
(zb1

1 , . . . , zbn
n ) , then kiti is in C∗ for each i, and one has:

ψF,X = ψF̂ ,X̂ .

Thus we can assume, with no loss of generality, that each ti is 1.
Now, given F = (k1z

a1
σ1

, . . . , knzan
σn

) , where σ is a permutation of {1, . . . , n},
we can split σ into cycles of length r ≥ 1. Consider such a cycle and re-label the
components so that the corresponding components of F are (k1z

a1
2 , . . . , kr−1z

ar−1
r ,

krz
ar
1 ). In this case ψ is of the form:

ψ(z) = (k1z
a1
2 zb1

1 + · · ·+ krz
ar
1 zbr

r ) + (terms in other variables).

Hence, to determine whether or not ψ satisfies the Milnor condition at 0, we only
need to look at the minors of the Jacobian matrix determined by the various cycles
of σ. In other words, it is enough to consider the case when F is a vector field in
Cr of the form F (z) = (k1z

a1
2 , k2z

a2
3 , . . . , krz

ar
1 ) , and X = (zb1

1 , . . . , zbr
r ). The case

r = 1 was discussed above, so we assume r > 1. In this case the determinant of
the minor of ψ corresponding to the partial derivatives of (ψ1, ψ2) with respect to
zi, zi, multiplied by −2, is:

||ki−1||2a2
i−1||zi||2ai−1−2||zi−1||2bi−1 − ||ki||2b2

i ||zi+1||2ai ||zi||2bi−2 .
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If the rank of Dψ at a point z = (z1, . . . , zr) is less than 2, then all these determi-
nants must vanish; making λi = ||ki||2 and νi = ||zi||2 for all i = 1, . . . , r, we get
the system of equations:

(3.2) λ1a
2
1ν

a1−1
2 νb1

1 = λ2b
2
2ν

a2
3 νb2−1

2 ,

λ2a
2
2ν

a2−1
3 νb2

2 = λ3b
2
3ν

a3
4 νb3−1

3 ,

...

λra
2
rν

ar−1
1 νbr

r = λ1b
2
1ν

a1
2 νb1−1

1 .

Suppose now that each ai is greater than 1, and also that one bi is greater than
1, say bj > 1. Let us assume first that r ≥ 5. Considering the indices as integers
modulo r, there are exactly three equations that involve νj+1, these are:

λi−1a
2
i−1ν

ai−1−1
i ν

bi−1
i−1 = λib

2
i ν

ai

i+1ν
bi−1
i ,

for i = j , j + 1 , j + 2 . It is then clear that the rank of Dψ is less than 2 at
all points in Cr satisfying zj−1 = zj = zj+2 = zj+3 = 0 . Hence, if some bi is
more than 1, then ψ is not a submersion on a punctured neighborhood of 0. The
cases r = 2, 3, 4 can be easily worked out case by case, using the same technique
as above. Conversely, we claim that ψ is in fact a submersion near 0 when bi = 1
for all i (in fact this statement also holds if each bi is either 0 or 1). This is
proved in [227] and it is a straightforward computation using the above system
of equations (3.2): first we note that if (ν1, . . . , νr) satisfies the system (3.2) and
some νi = 0, then νi = 0 for all i, so the solution is trivial. Thus we can assume
νi > 0 for all i. Multiplying the left-hand side and the right-hand side of all the
equations in (3.2) we get:

n∏
i=1

[λia
2
i ν

ai−1
i ] =

n∏
i=1

[λiν
ai−1
i ] .

This implies ai = 1 for all i, because λi and νi are both non-zero for all i, which
is a contradiction. Thus we arrive at Theorem 3.3 below; we recall that F, X are
vector fields of the form:

F = (k1z
a1
σ1

, . . . , knzan
σn

) , X = (t1zb1
1 , . . . , tnzbn

n ) ,

where the ki and the ti are non-zero complex numbers, all ai and bi are positive
integers, {σ1, . . . , σn} is some permutation of the set {1, . . . , n} and ψF,X(z) =
〈F (z), X(z)〉 .
3.3 Theorem. Assume ai > 1 for all i = 1, . . . , n. Then ψF,X satisfies the Milnor
condition at 0 ∈ Cn if and only if either one of the following two conditions is
satisfied:

(i) The permutation σ is the identity, so that F (z) = (k1z
a1
1 , . . . , knzan

n ), and
one has ai �= bi for each i = 1, . . . , n.



VII.3. Real singularities of the Pham-Brieskorn type 185

(ii) Split σ into cycles σ1, . . . , σm, where each σj is a permutation of length
oj . Then: for each j = 1, . . . , m such that oj = 1, one must have that the
corresponding exponents satisfy ai �= bi; for each j = 1, . . . , m such that
oj > 1, the exponents bi corresponding to these components are all 1.

3.4 Remark. We notice that in the cases above, whenever ψF,X is a submersion
away from 0, one actually has that ψF,X is a submersion on all of Cn − {0}. This
is not always the case. For instance, if F = (k1z

a
2 , k2z1), a > 1, and X = (z1, z2),

then ψF,X is a submersion near 0 ∈ C2, but the rank of Dψ drops at every point
(0, z2) such that ||z2||a−1 = ||k2||/||k1||. As we will see, this is related to the fact
that the singularities in Theorem 3.3 are all quasi-homogeneous.

Let us motivate the following theorem with an example:

3.5 Example. Let F (z) = (k1z
a1
2 , k2z

a2
3 , k3z4, k4z1) , a1 ≥ 1 , a2 ≥ 1 , and X =

(z1, z2, z3, z4). The system of equations (3.2) becomes

λ1a
2
1ν

a1−1
2 ν1 = λ2ν

a2
3 ; λ2a

2
2ν

a2−1
3 ν2 = λ3ν4 ; λ3ν3 = λ4ν1 ; λ4ν4 = λ1ν

a1
2 ,

where νi = ||zi||2. If a2 = 1, then every z ∈ C4 of the form z = (0, z2, 0, z4) , with

ν4 =
λ2

λ3
ν2 , νa1−1

2 =
λ2λ4

λ1λ3
,

is a point where ψF,X is not a submersion. If a1 = 1, this implies |k1k3| = |k2k4|
or else z is the origin.

3.6 Theorem. We now let F be as above, but we allow the ai to be ≥ 1 , and
X = (z1, . . . , zn) . Then the function ψF,X satisfies the Milnor condition at 0 iff it
satisfies the following conditions:

(i) For each permutation of σ of odd length, there is at least one ai strictly bigger
than 1.

(ii) For each permutation of σ of even length, either there is at least one ai strictly
bigger than 1, or else the corresponding coefficients ki, . . . , ki+2m+1 satisfy:

||ki ki+2 . . . ki+2m|| �= ||ki+1 ki+3 . . . ki+2m+1|| .

Proof. As in the proof of Theorem 3.3 above, we can assume σ has only one cycle.
In this case the system of equations (3.2) becomes:

(3.7) λ1a
2
1ν

a1−1
2 ν1 = λ2ν

a2
3 ,

λ2a
2
2ν

a2−1
3 ν2 = λ3ν

a3
4 ,

...

λn−1a
2
n−1ν

an−1−1
n νn−1 = λnνan

1 ,

λna2
nνan−1

1 νn = λ1ν
a1
2 .
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If n is odd, one has that if νi = 0 for some i, then νi = 0 for all i, so the solution is
trivial. Hence we can assume νi is non-zero for all i. Then, as before, multiplying
the left-hand side of these equations, and the right-hand side, we obtain:

n∏
i=1

[λia
2
i ν

ai−1
i ] =

n∏
i=1

[λiν
ai−1
i ] .

Therefore ai = 1 for all i, or else νi = 0 for all i and we have the trivial solution.
Hence, if we assume that at least one ai is greater than 1, then ψF,X is a submersion
on Cn−0. Conversely, if n = 2m+1 and ai = 1 for all i, then one can easily verify
that the system of equations (3.7) has non-trivial solutions given by:

ν2m+1 =
λ2m−1

λ2m
ν2m−1 = · · · =

λ2m−1λ2m−3 . . . λ3λ1

λ2mλ2m−2 . . . λ2
ν1 ;

ν2m =
λ2m−2

λ2m−1
ν2m−2 = · · · =

λ2m−2λ2m−4 . . . λ2

λ2m−1λ2m−3 . . . λ3
ν2 ;

ν2 =
λ2m+1λ2m−1 . . . λ3

λ2mλ2m−2 . . . λ2
ν1 ;

where ν1 = ||z1||2 can be taken as near to 0 as we please, proving statement (i) in
the theorem.

Assume now n = 2m is even and at least one ai > 1; for simplicity we assume
a1 > 1. It is easy to see that if one νeven is 0 then νi is 0 for all i. However, if a νodd

is zero, this only implies that all the νodd are 0. Hence, as in the example above,
one has in this case that a point z ∈ Cn of the form z = (0, z1, 0, z2, . . . , 0, z2m) is
a solution of (3.7) iff it satisfies:

ν2m =
λ1

λ2m
νa1
2 ; ν2m−2 =

λ2m−1

λ2m−2
ν

a2m−1
2m , . . . , ν2 =

λ3

λ2
νa3
4 ,

and

ν
a1a3...a2m−1−1
2 =

1
λ3
λ2

(λ5
λ4

)
a3(λ7

λ6
)
a3a5

. . . ( λ1
λn

)
a3a5...an−1 .

Hence every non-trivial solution is at a bounded distance away from 0 ∈ Cn,
thus ψF,X is a submersion on a punctured neighborhood of 0. Finally assume
n = 2m and ai = 1 for all i. Then the system of equations (3.7) splits into the two
independent systems of m-equations given by: λ1ν1 = λ2ν3 , λ3ν3 = λ4ν5 , . . . ,
and λ2ν2 = λ3ν4 , λ4ν4 = λ5ν6 , . . . ; in either case, the corresponding system of
equations has a non-trivial solution iff:

||λi λi+2 . . . λi+2m|| = ||λi+1 λi+3 . . . λi+2m+1|| ,

proving the theorem. �
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VII.4 Twisted Pham-Brieskorn singularities and
the strong Milnor condition

In this section we prove that all the twisted Pham-Brieskorn singularities satisfy
the strong Milnor condition. We also prove that they are all quasi-homogeneous
singularities (which is not obvious). Hence the fact that they satisfy the strong Mil-
nor condition is a consequence of Corollary 2.10 and Theorem 3.3 above. However
we prove this fact directly, using only Theorem 3.3 and not Corollary 2.10, because
this is almost as hard as proving that they are quasi-homogeneous (which we must
prove anyhow), and it throws light into the geometry of these singularities, since
we obtain the monodromy map of the corresponding Milnor fibrations.

More generally, in this section we classify the vector fields F and X as above,

F = (k1z
a1
σ1

, . . . , knzan
σn

) and X = (t1zb1
1 , . . . , tnzbn

n ) ,

such that the function ψ := ψF,X satisfies the strong Milnor condition at 0.
For each θ ∈ R, define a map ψθ : Cn → R by:

ψθ(z) = Re〈eiθF (z), X(z)〉 =
1
2

n∑
i=1

(eiθFi(z)Xi(z) + e−iθF i(z)Xi(z)) ,

and set Vθ := ψ−1
θ (0). It is clear that Vθ = Vθ+πr for all r ∈ Z. One also has

ψθ(z) = Re eiθψ(z), so that ψθ is ψ followed by the projection from C onto the
line L−θ that passes through the origin in C with an inclination of −θ radians.
Thus ψθ is a surjection whenever ψ is a surjection.

We recall that, just as in VI.4 and in the proof of 2.8, one has a decomposition
of Cn in the Vθ satisfying:

(i) Cn is the union of all Vθ , θ ∈ [0, π) .

(ii) V = ∩θ∈[0,π) Vθ = Vθ1 ∩ Vθ2 , for any distinct θ1 θ2 ∈ [0, π) .

(iii) For each θ ∈ [0, π) , one has

Vθ = Eθ ∪ V ∪ Eθ+π ,

where Eα = φ̃−1(eiα) and φ̃ : Cn − V → S1 is the function

φ̃(z) = arg(i〈F (z), z〉) .

(iv) If ψ satisfies the Milnor condition at 0, then each V ∗
θ := Vθ−{0} is a smooth

real submanifold of Cn of codimension 1.
For every sufficiently small sphere Sε in Cn with centre at 0, we let Mε =

V ∩ Sε be the link of V and we set

φε = φ =
ψ

|ψ| : S2n−1
ε −Mε → S1 . (4.1)
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4.2 Theorem. Let F = (k1z
a1
σ1

, . . . , knzan
σn

) and X = (t1zb1
1 , . . . , tnzbn

n ) be vector
fields as above, and assume the following conditions are satisfied:

(i) for each cycle of σ of length 1, the corresponding exponents satisfy ai �= bi;
(ii) for each cycle of length r > 1 , r odd, one has ai ≥ 1, bi = 1 and at least one

ai is strictly bigger than 1, for each i = 1, . . . , r .
(iii) for each cycle of σ of length r > 1 , r even, for each i = 1, . . . , r , one has

ai ≥ 1, bi = 1 and at least two ai, say ai1 and ai2 , are strictly bigger than 1,
with i1 being odd and i2 even in the cycle.

Then ψF,X satisfies the strong Milnor condition at 0. That is, for every suffi-
ciently small sphere S2n−1

ε , (4.1) is a C∞ fibre bundle. Each pair of antipodal fibres
φ−1(eiθ) , φ−1(ei(θ+π)), are glued together along Mε forming the smooth (2n− 1)-
manifold:

Vθ ∩ S2n−1
ε = {z ∈ S2n−1

ε ⊂ Cn | Re 〈eiθF (z), z〉 = 0} ,

and the monodromy of this bundle is the first return map of the S1-action in
Lemma 4.3 below.

Notice that the twisted Pham-Brieskorn singularities satisfy the hypothesis
of Theorem 4.2 and therefore the statements of this theorem hold for them.

From now on we assume F, X are vector fields satisfying the conditions of
Theorem 4.2, so we know already, by Section 3, that ψF,X satisfies the Milnor
condition at 0. Theorem 4.2 will be a consequence of the previous results in §3
and the following two lemmas:
4.3 Lemma. There exists a norm-preserving, smooth action γλ of S1 on Cn, per-
muting the Vθ. More precisely, if we think of this action as an R-action, via the
identification S1 ∼= R mod (π), then for every λ ∈ R, γλ carries Vθ into V[θ+λ],
where [θ+λ] means the residue class of (θ+λ) modulo π. Hence, V is an invariant
set for this action.

This lemma is proved by constructing explicitly the S1-action. Before we do
this, let us observe that Lemma 4.3 implies that the V ∗

θ of Theorem 4.2 are all
diffeomorphic and the map φ̃ : Cn − V → S1 is the projection map of a locally
trivial C∞-fibre bundle. It is clear that φ̃(z) is φ followed by the diffeomorphism
of C̃ given by z 
→ iz. Therefore one has that φ : Cn − V → S1 is also a locally
trivial fibre bundle. To prove Theorem 4.2 we shall prove that the restriction of φ̃
to every sphere around 0 ∈ Cn, is also the projection map of a locally trivial fibre
bundle (notice this is more than we need: it would be sufficient to prove this claim
for small spheres). This is an immediate consequence of the previous discussion
and the following lemma:

4.4 Lemma. With the above hypotheses, there exists a flow {ft} on Cn, whose orbits
are transversal to every sphere around 0 ∈ Cn, except for 0 itself, which is a fixed
point, and they converge to 0 ∈ Cn when the time tends to −∞. This flow leaves
invariant each Vθ, thus it also leaves V invariant.
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Of course Lemma 4.4 implies that each Vθ is embedded (globally) as a cone
in Cn, intersecting transversally each sphere around 0 ∈ Cn, and so does V .

Before proving these lemmas, let us state a result which is a corollary of the
proof of Lemma 4.4.

4.5 Corollary. If F and X satisfy the conditions of Theorem 4.2, then the polyno-
mial in R2n ∼= Cn defined by ψF,X , is weighted homogeneous.

To prove Lemmas 4.3 and 4.4, let us split Cn into direct summands, according
to the cycles of σ, and construct the corresponding flows on each of these direct
summands.

Proof of Lemma 4.4. We shall construct an action Γ : R+ × Cn → Cn of the form
Γ(t,(z1,...,zn))=(tm1z1,...,t

mnzn), mi ∈ Q, mi > 0, such that ψ(Γ(t, z)) = tψ(z).
It is clear that this implies Lemma 4.4 and Corollary 4.5. Consider first a 1-cycle (if
there is any). This corresponds to a monomial in ψ := ψF,X of the form kiz

ai

i zbi

i .
Define w := Γ(t, zi) = (t

1
(ai+bi) zi). Then kiw

ai

i wbi

i = t(kiz
ai

i zbi

i ), as we wanted.
Now consider an r-cycle, r > 1, and let ψ(r) be the polynomial consisting

of the monomials in ψ containing the variables in this cycle. We re-label the
components so that this cycle is (k1z

a1
2 , . . . , kr−1z

ar−1
r , krz

ar
1 ). Let B be the r× r-

matrix, ⎛⎜⎜⎜⎜⎜⎜⎝
a2 1 0 0 . . . . . . 0
0 a3 1 0 . . . . . . 0
: : : : :
: : : : :
0 0 0 0 . . . ar 1
1 0 0 0 . . . 0 a1

⎞⎟⎟⎟⎟⎟⎟⎠ .

Observe that its determinant is a1 . . . ar + (−1)r+1 �= 0 , since ai > 0 for all i
and at least one of them is > 1. Define Γ(t, (z1, . . . , zr)) = (tm1z1, . . . , t

mrzr),
where m := (m1, . . . , mr) is the unique solution to the linear system B · m =
(1, . . . , 1). These are rational numbers because B has integer coefficients. Then one
has ψ(r)(Γ(t, (z1, . . . , zr)) = tψ(r)(z1, . . . , zr) as wanted. It remains to prove that
the solutions of this flow are transversal to all the spheres centred at 0 and they
converge to 0 when the time goes to −∞. This is a consequence of the following
claim: mi > 0 for every i = 1, . . . , r. To prove this claim we first compute the mi

explicitly. We find:

m1 =
1− a1 + a1ar − a1arar−1 + · · ·+ (−1)r−1a1arar−1 . . . a3

1 + (−1)r−1a1a2 . . . ar
,

m2 =
1− a2 + a2a1 − a2a1ar + · · ·+ (−1)r−1a2a1ar . . . a4

1 + (−1)r−1a1a2 . . . ar
,

m3 =
1− a3 + a3a2 − a3a2a1 + · · ·+ (−1)r−1a3a2a1 . . . a5

1 + (−1)r−1a1a2 . . . ar
,

and so on.
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Assume r is odd, r = 2h + 1. It is clear that the denominator qi of each
mi = pi/qi is positive. We claim pi > 0 for each i. This is a consequence of the
following lemma:

4.6 Lemma. Let b1, . . . , b2h be positive integers. Then

1− b1 + b1b2 −+ · · ·+ b1b2 . . . b2h > 0 .

Proof. We prove this by induction. If h = 1 we have 1− b1 + b1b2 = 1− b1(1− b2) .
If b2 > 1 , then b1(1− b2) < 0 , so 1− b1 + b1b2 > 1 . If b2 = 1, then 1− b1 + b1b2 =
1 > 0 . Now suppose (induction hypothesis) the claim holds when we have 2h > 2
numbers, let us prove it for 2h + 2. Set α = 1− b1 + b1b2 −+ · · ·+ b1b2 . . . b2h+2.
Then, α = 1 − b1(1 − b2(β)) , where β = 1 − b3 + b3b4 − + · · · + b3 . . . b2h+2 . By
the induction hypothesis one has β > 0. Hence 1− b2(β) ≤ 0, so α ≥ 1. �

Now we take a cycle of even length r = 2h as in Theorem 4.2, so ai ≥ 1 and
at least two ai, say ai1 and ai2 are strictly bigger than 1, with i1 being odd and
i2 even in the cycle. In this case the denominator qi of each mi is negative; we
claim pi is also < 0, so that mi > 0. We prove this by induction. If h = 1, one
has p1 = 1− a1, p2 = 1− a2 and a1, a2 are both > 1 by hypothesis, so each pi is
negative. Similarly, for r = 4 one has p1 = 1− a1(1− a4(1− a3)), and necessarily
a1 > 1 or a3 > 1; in either case one has p1 < 0, and similarly for p2, p3, p4. Now
assume (induction hypothesis) the claim holds for 2h > 2, and we want to prove
it for r = 2h + 2 numbers. We have: p1 = 1− a1(1 − ar(β)), where

β = 1− a2h+1 + a2h+1a2h −+ · · · − a2h+1 . . . a3 .

By hypothesis one aodd is > 1 (notice that a2 does not appear in the formula for
p1, so this could be the aeven > 1 that we have by hypothesis). If this aodd > 1 is
one of the ai appearing in the expression for β, then by the induction hypothesis
one has β < 0. Thus 1 − ar(β) > 1, hence p1 < 0. If all the aodd appearing in β
are 1, then β = 0 and a1 > 1 by hypothesis, so p1 < 0 as claimed. The proof for
the other pi is similar. �
Proof of Lemma 4.3. We construct an action Γ̂ : R×Cn → Cn, Γ̂(λ, (z1, . . . , zn)) =
(eiλs1z1, . . . , e

iλsnzn), si ∈ Q, such that ψθ(Γ̂(λ, z)) = ψθ+λ(z). This implies

Lemma 4.3. On a 1-cycle, define Γ̂(λ, (zj)) = e
iλ

aj−bj . To define it on an r-cycle,
consider the r × r-matrix A,⎛⎜⎜⎜⎜⎜⎜⎝

−1 a1 0 . . . . . . 0
0 −1 a2 0 . . . 0
: : : : :
: : : : :
0 0 0 0 −1 ar−1

ar 0 0 . . . 0 −1

⎞⎟⎟⎟⎟⎟⎟⎠
whose determinant is (−1)r(1− a1 . . . ar) �= 0. Let s = (s1, . . . , sr) be the unique
solution to the linear system A · s = (1, . . . , 1) and define Γ̂ as above, with these
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weights si, which are in Q because A is integral. Doing this for each cycle of σ we
obtain a flow with the properties of Lemma 4.3. �

4.7 Example. Consider the Pham-Brieskorn polynomial,

f(z1, . . . , z2n) = za1
1 + · · ·+ zan

2n , ai > 2 for all i .

One has the Milnor fibration of f as given in [168]:

f

||f || : S4n−1 −M → S1 ,

where M is the link. Let F be one of the Hamiltonian vector fields obtained
from the gradient vector field ( ∂f

∂z1
, . . . , ∂f

∂z2n
) by permuting by pairs the partial

derivatives of f and changing the sign to one derivative in each pair. For example:

F (z1, . . . , z2n) = (a2z
a2−1
2 ,−a1z

a1−1
1 , . . . , a2nza2n−1

2n ,−a2n−1z
a2n−1−1
2n−1 ) .

Then F is holomorphic and its solutions are tangent to the fibres of f . Every such
vector field F satisfies the hypotheses of Theorem 4.2, taking X(z) = (z1, . . . , zn),
so it has an associated fibration “à la Milnor” given by Theorem 4.2. It would
be interesting to understand how these fibrations are related to Milnor’s original
fibration.

VII.5 On the topology of the twisted

Pham-Brieskorn singularities

We recall that a real singularity is a twisted Pham-Brieskorn singularity if it is
defined in Cn by a polynomial map of the form

ψ(z) = λ1z
a1
1 zσ1 + · · ·+ λnzan

n zσn ,

where each ai ≥ 2, i = 1, . . . , n, the λi are non-zero complex numbers and σ =
{σ1, . . . , σn} is a permutation of the set {1, . . . , n}. We can re-label the variables
(z1, . . . , zn) so that this singularity takes the form:

ψ̂(z) = λ1 za1
σ1

z1 + λ2 za2
σ2

z2 + · · ·+ λn zan
σn

zn .

This can be regarded as being 0 ∈ Cn union the polar variety in Cn−0 of the non-
singular foliations F and S, where F is the holomorphic 1-dimensional foliation
defined by the vector field

F (z) = (λ1z
a1
σ1

, . . . , λnzan
σn

) ,

and S is the foliation given by the spheres around 0.



192 Chapter VII. Real Singularities with a Milnor Fibration

Given this vector field F , define as before

φF (z) =
〈F (z), z〉
|〈F (z), z〉| : S2n−1 −M −→ S1 ,

where M = V ∩ S2n−1 is the link, which can be regarded as the intersection of V
with the unit sphere.

The theorem below is essentially a summary of results proved in Chapter VI
(Sections 3, 4) and in the previous sections of this chapter.

5.1 Theorem.

(i) The link M is a smooth, codimension 2, oriented submanifold of the sphere.
(ii) The map φ is the projection of a C∞ (locally trivial) fibre bundle, which

defines an open book decomposition of the sphere.
(iii) Each fibre is a parallelizable, open manifold of dimension 2n− 2, that can be

compactified by attaching its boundary M .
(iv) Each pair of antipodal fibres {Eθ, Eθ+π} is naturally glued together along M

forming the real analytic variety of points where the vector field eiθF (z) is
tangent to the unit sphere (as a real vector field).

(v) In particular, the double of the fibre Eθ (compactified by attaching its bound-
ary) is the link of the real hypersurface given by the real part of the function
〈F (z), z〉.
The obvious next thing we want is to study the topology of the link of these

singularities, as well as that of the corresponding fibrations. Alas this is not easy
and the only known cases so far are: a) when the permutation σ is the identity;
and b) when n = 2. Let us consider first case (a).

Following [214] we actually consider, more generally, F and X vector fields
of the form F = (za1

1 , . . . , zan
n ), X = (zb1

1 , . . . , zbn
n ) , such that the corresponding

exponents satisfy ai > bi ≥ 1 for each i = 1, . . . , n. Let ψ = ψF,X be defined as
before,

ψ = 〈F (z), X(z)〉 =
n∑

i=1

zai

i z̄bi

i .

By Theorem 4.2 we know that ψ satisfies the strong Milnor condition at 0, so one
has an associated Milnor fibration. Let us set ci = ai − bi for each i. One has:

5.2 Theorem. The singular variety V̂ = ψ−1(0) is homeomorphic to the Brieskorn
variety Vc1,...,cn , and the corresponding Milnor fibrations are topologically equiv-
alent. More precisely, there exists a homeomorphism h : (Cn, 0) → (Cn, 0) such
that ψ = f ◦ h, where f is the Pham-Brieskorn polynomial:

f(z1, . . . , zn) = zc1
1 + · · ·+ zcn

n .

The proof is straightforward. Let E ⊂ Cn be the divisor { z1z2 . . . zn = 0 },
and define h : (Cn − E) → (Cn − E) by: h(z1, . . . , zn) = (w1, . . . , wn) , where
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wi = ||zi||
2bi
ci zi. Then h is clearly a real analytic diffeomorphism that extends to

a homeomorphism of Cn into itself. Furthermore, for each i = 1, . . . , n one has:

zai

i z̄bi

i = zci

i ||zi||2bi = (||zi||
2bi
ci zi)ci = wci

i .

Hence the theorem. �
So these singularities are real analytic singularities which are topologically

equivalent to the usual complex analytic Pham-Brieskorn singularities, but they
are not analytically equivalent because the corresponding maps have different al-
gebraic multiplicity.

5.3 Remarks.

(i) As a special case of Theorem 5.2 we have that if some ci is 1, then V̂ is actually
homeomorphic to Cn−1, because in this case the gradient of the polynomial f is
never vanishing, so that the corresponding variety V is non-singular and it is a
cone over the standard sphere. Furthermore, V̂ is also embedded in Cn as the cone
over the standard (2n − 3)-sphere, because the Milnor fibre is a (2n − 2)-disc in
this case.
(ii) This theorem also provides a new way for thinking of the Brieskorn manifolds
and their Milnor fibres. For instance, Poincaré’s homology sphere Σ is known to
be the Brieskorn manifold M(2,3,5), i.e., the link of the singularity in C3 defined
by {z2

1 + z3
2 + z5

3 = 0 }. By the previous theorem this manifold is homeomorphic
(and hence, in this case, also diffeomorphic) to the set of points in C3 where the
complex line field spanned by the vector field F = (z3

1 , z
4
2 , z6

3) is tangent to the unit
sphere S5 ⊂ C3. The corresponding Milnor fibre is the famous (open) manifold E8

and by the previous results, its double is the set of points where the real line field
spanned by F is tangent to S5.

Let us consider now the case when n = 2 and the permutation σ is not the
identity. The singularities in question are, up to isomorphism of the form:

V = {zp
1 · z̄2 − zq

2 · z̄1 = 0} .

The simplest case is when p = q = k > 1. This was considered in [226] and one
has:

5.4 Theorem. The link L of the singularity

V = {zk
2 · z̄1 − zk

1 · z̄2 = 0} ,

consists of k + 3 circles in the unit sphere S3 ⊂ C2, which are fibres of the Hopf
fibration S3 
→ S2. The monodromy h of the corresponding fibre bundle is the
periodic map h(z1, z2) = (e−

2πi
k−1 z1, e

− 2πi
k−1 z2) , of period k − 1, and the genus of

the fibres Eθ is:

g(Eθ) =
(k − 2)(k + 1)

2
.
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Thus, the link of the hypersurface Re
(
zk
2 · z̄1 − zk

1 · z̄2

)
= 0 is a closed oriented

surface in S3 of genus k2, equal to the Poincaré-Hopf index of the vector field
F = (zk

2 ,−zk
1 ).

The proof is straightforward and is given in detail in [226], so we do not
include it here. The idea is to prove first that the link L is a union of Hopf fibres,
which is done by giving an explicit parametrization of it. That the monodromy
is as stated is immediate from the construction of the flow in Lemma 4.3. The
interesting part is the computation of the genus of the fibres. Since L is a union of
Hopf-fibres, the complement of the link L in S3 is a product (S2 −{points})× S1,
so it also fibres over S2. Thus one has that S3−L is being fibred over S2−{points}
in two different ways: one is via the Hopf fibration, the other via the fibration in
Theorem 5.4. In both cases the fibres are transversal to the orbits of the Hopf
flow. Using this we get a ramified covering projection from the fibres in Theorem
5.4 to the fibres of the Hopf fibration regarded as a map S3 −L→ S2 − {points}.
Then Hurwitz’s formula gives the genus of the fibres in Theorem 5.4. This result
is anyhow a special case of the results in [202] that we describe in the following
chapter, where we study the singularities

V = {zp
1 · z̄2 − zq

2 · z̄1 = 0} .

VII.6 Stability of the Milnor conditions

under perturbations

A natural question to ask is whether the Milnor conditions are stable under pertur-
bations by high order terms. More precisely, if a given real singularity, say defined
by f : Rm → R2, satisfies the (strong) Milnor condition and f∗ is obtained from f
by adding to it terms of sufficiently high order, does f∗ satisfy the (strong) Milnor
condition, and are these singularities topologically equivalent? This was consid-
ered and answered affirmatively in [214], where precise orders for the perturbations
allowed are also given for the quasi-homogeneous singularities, as for example the
twisted Pham-Brieskorn real singularities. The key for this is to re-interpret these
conditions in terms of finite-determinacy of map-germs, using [261, 117, 212, 213].
Here we only make a few comments about this and state some of the results
in [214]. We refer to the literature for details.

Let C(n, p) be the space of smooth map-germs from (Rn, 0) into (Rp, 0), and
let J k(n, p) be the set of k-jets {jk} of elements of C(n, p). Let R be the group
of germs of C∞-diffeomorphisms (Rn, 0)→ (Rn, 0); R acts on C(n, p) by compo-
sition on the right. An element f ∈ C(n, p) is k-R-determined if the R-orbit of
f contains all germs whose k-jet at 0 coincides with the k-jet of f . Similarly, one
has the group Cl-R, of local diffeomorphisms of class Cl, l > 0, or homeomor-
phisms if l = 0, which acts on the corresponding space Cl(n, p). We will consider
rather the induced equivalence relation on C(n, p) and the corresponding notion of
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k-Cl-R-determinacy. One says that f is Cl-R-finitely determined if it is k-Cl-R-
determined for some k.

Let IR(f) be the ideal of C(n) generated by the p×p-minors of the Jacobian
matrix of f and NR(f) = det{(dfx)(dfx)t} = sum of squares of p × p-minors of
dfx. We say that NR(f) satisfies a Lojasiewicz condition of order r (> 0) if there
exists a constant c > 0 such that NR(f) ≥ c|x|r .

The condition that f be Cl-R-finitely determined for 0 ≤ l <∞ is equivalent
to the condition that NR(f) satisfies a Lojasiewicz condition for some r. Moreover,
this inequality provides precise estimates for the degree of Cl-R-determinacy of f .
This result was discovered by Kuo in [116] for the case p=1. The extension to higher
dimensions was considered by many authors. (See [261] for a complete account of
the subject, and [212] for precise estimates on the degree of Cl-determinacy of f .)

We recall that f ∈ C(n, p) analytic satisfies the Milnor condition at 0 if
its Jacobian matrix Df has rank p everywhere on a punctured neighborhood of
0 ∈ Rn.

The theorem below is implicit in [261] (see also [212], Proposition 2.4.d):

6.1 Theorem. Let f ∈ C(n, p) be analytic. Then f satisfies the Milnor condition
at 0 if and only if f is Cl-R-finitely determined for every l ∈ [0,∞).

Proof. For analytic germs, NR(f) satisfies a Lojasiewicz condition at zero if and
only if the variety of the ideal IR(f) reduces to 0 ([261], Lemma 6.2), and this
is clearly equivalent to the Milnor condition for f . Now the result follows, for
instance, from [212], Proposition 2.4. �

As a consequence one has:

6.2 Corollary. Let f ∈ C(n, p) be analytic and assume it satisfies the Milnor
condition at 0. Then every perturbation of f by terms of sufficiently high order
also satisfies the Milnor condition at 0 and is topologically equivalent to f .

When we consider a real analytic function from Cn into C, then regarded as a
function from R2n into R2, its real and imaginary parts are f1 = Re f = 1

2 (f + f)
and f2 = Im f = 1

2i(f − f) , respectively. So f1 is weighted homogeneous if and
only if f2 is weighted homogeneous, and in this case they have the same weights
and total degree. As mentioned above, for singularities as in Corollary 6.2 which
are quasi-homogeneous, one can get rather precise estimates of the least order
we need in the perturbations to guarantee that the Milnor condition is preserved
(see [214]).

Regarding the strong Milnor condition, it was proved in [214] that if f ∈
C(2n, 2) is analytic and its component functions f1 and f2 satisfy conditions A
and BR at 0 (hence f satisfies the strong Milnor condition), then there exists a
positive integer N such that for every map-germ f∗ whose N th jet at 0 coincides
with that of f , jNf∗(0) = jNf(0), the component functions f∗

1 and f∗
2 of the

map-germ f also satisfy conditions A and BR at 0.
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VII.7 Remarks and open problems

We know from the previous discussion that the twisted Pham-Brieskorn singular-
ities,

ψ(z) = λ1z
a1
1 zσ1 + · · ·+ λnzan

n zσn ,

are a class of real singularities which behave very much as complex singularities,
in the sense that their links define open book decompositions of the spheres. It
would be interesting to know more about the topology of these singularities.

As mentioned before, so far we only understand the cases when the pertur-
bation σ is the identity (the corresponding singularity is topologically equivalent
to a usual Pham-Brieskorn singularity) and the case n = 2 that we shall describe
in the following chapter. A consequence of the results in [202] that we present
in Chapter VIII is that for n = 2 the links are isotopic to the links of singulari-
ties of the form f ḡ, where both f, g are holomorphic functions C2 → C with no
common branch. However that can only happen in this dimension, because the
twisted Pham-Brieskorn singularities have an isolated singularity, while the vari-
eties {f = 0} and {g = 0}, with f, g holomorphic, must intersect in a variety of
dimension more than 0, if n > 2.

There are several open problems in this respect which I believe are interesting.
Essentially everything we know that holds for complex singularities is likely to have
a counterpart for these twisted singularities. For instance, one can stabilize them
adding terms z2

j in new variables, and presumably the new link is the suspension
over the previous one, one may look at the signature of the quadratic form of its
Milnor fibre, etc. Here are some of the problems that I consider fundamental in
this theory.

Problem 1: Study the topology of the link

a) For general reasons, for n > 2 the link M2n−3 is necessarily connected; how
connected is it? For instance, in the complex analytic case it is (n − 3)-
connected. What about its homology? In particular, it would be interesting
to know when the link is a homology (homotopy) sphere.

b) Is one getting new manifolds in this way, which are not links of complex
singularities? (either up homeomorphism or diffeomorphism) What about
the algebraic knots (S2n−1, M), where M is the link?

For instance, when n = 1 the link M is necessarily a finite union of circles embed-
ded in the 3-sphere, so the topology of M by itself is not exciting; what is inter-
esting is the corresponding algebraic knot (S3, M). As we prove in the following
chapter, the pairs we get in this way for the twisted Pham-Brieskorn singularities
are isotopic to links coming from complex singularities, but the various compo-
nents get different orientations and this causes the corresponding Milnor fibrations
to be different.

In dimension n = 2 the link is a Seifert 3-manifold and one should be able
to compute its Seifert invariants from the weights and the twisting σ (c.f. Chap-
ter III). Then, using [186] one can decide whether or not these are links of complex
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singularities. But again, “almost” every Seifert manifold is homeomorphic (maybe
reversing orientation) to a complex singularity link (see for instance [184]); how-
ever the Milnor fibrations one gets are sure not to be (in general) equivalent to
the Milnor fibrations of complex singularities. On the other hand we know from
the previous chapter that the 3-torus does arise from a real singularity of the type
we are considering (though it does not have a Milnor fibration) and it is not a
complex singularity link. And what about higher dimensions?

Of course a way for studying the topology of the link is to follow Milnor’s
program in [168], and study the link by looking at the Milnor fibre and the corre-
sponding monodromy. This brings us to:

Problem 2: Study the topology of the fibres

The only cases I know so far are when the twisting σ is the identity, and the
singularity is topologically equivalent to a complex one, so its fibre has the homo-
topy type of a bouquet of spheres of middle dimension, or when n = 2 and for
general topological reasons the fibre must have the homotopy type of a bouquet
of 1-spheres, i.e., circles. Are these special cases of a more general theorem?; has
the fibre in general the homotopy of a cw-complex of middle dimension?

A hint may be given by a surprising result in VIII.3.2 below, which generalizes
Theorem 5.4 above, stating that for n = 1 the double of the Milnor fibre of the
singularity zp

1 z̄2 + zq
2 z̄1 = 0 is p · q, the index of the vector field (zp

1 ,−zq
2) that

defines it.
On the other hand I believe it is sensible to think that in all these cases the

fibres are homeomorphic to Stein manifolds and therefore have the homotopy type
of CW-complexes of middle dimension (c.f. the next problem).

Problem 3: Understand the relation with the singularities fg

It is obvious that every twisted Pham-Brieskorn singularity is defined by a linear
combination of functions of the type fg with f, g holomorphic, and we know from
Theorem I.6.4 that whenever fg has an isolated critical value, one has a Milnor
fibration. Notice however that since f and g are holomorphic, their zero-sets are
hypersurfaces in Cn and therefore they must intersect in an analytic space of
complex codimension at most 2. This means that for n > 2 the hypersurface Vfg =
fg−1(0) necessarily has non-isolated singularities. This emphasizes the remarkable
regularity one has for the twisted Pham-Brieskorn singularities, where you always
get isolated singularities. This is surely a special case of a more general theorem
about linear combinations of functions of the type fg.

Notice that for n = 2 the only possible cases are (up to scalars) zp
1z1 + zq

2z2

and zp
1z2 + zq

2z1. We already know that in the first case these singularities are
topologically equivalent to the Pham-Brieskorn singularities zp−1

1 + zq−1
2 . In the

next chapter we will see that the second type of singularities have links isotopic to
the links defined by z1z2(z

p+1
1 + zq+1

2 ). Thus both cases yield links topologically
equivalent to links of singularities fg; but as remarked above, this cannot happen
in higher dimensions.
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The following problem is not fundamental for the study of these singularities,
but if there is a positive answer to it, this would open a very interesting line of
research, inspired in [151, 161, 162, 160]. I do not expect that answering Problem
4 should be too difficult, but I have not been able to do it.

Problem 4: Study the relation with complex geometry
More precisely, if M is the link of a twisted Pham-Brieskorn singularity and N =
M/S1 is the quotient of M by its canonical S1-action, is N (canonically) a complex
manifold? (maybe with some conditions on the weights and the twisting).

We recall from Chapter VI that if we consider the singularities

V = {λ1z1z̄1 + λ2z2z̄2 + · · ·+ λnznz̄n = 0 }

with the λi satisfying certain conditions (that their convex hull in C contains the
origin and they satisfy a weak hyperbolicity condition) then V ∗ = V − 0 is a real
analytic manifold in Cn of codimension 2 and transversal to the holomorphic fo-
liation F defined by the vector field F = (λ1z1, . . . , λnzn). Hence the transversal
holomorphic structure of F endows V ∗ with a complex structure. The canonical
C∗-action on V ∗ is by holomorphic transformations and the quotient N is a com-
plex manifold, diffeomorphic to the quotient M/S1, where M is the link and the
S1-action is the restriction of the C∗-action. These are the LVM-manifolds studied
in VI.2.

For the twisted Pham-Brieskorn singularities one has a similar picture and
the question is to decide whether (maybe with some extra conditions) the variety
V ∗ is transversal to the corresponding holomorphic foliation.



Chapter VIII

Real Singularities and
Open Book Decompositions
of the 3-sphere

In the previous chapter we introduced the singularities of the form

ψ(z) = λ1z
a1
1 zσ1 + · · ·+ λnzan

n zσn

and proved that if all ai are > 1, then these singularities behave in some respects
as complex singularities, in the sense that they define open book decompositions
of the sphere, and the corresponding projection map (S2n−1

ε −M) −→ S1, where
M is the link, is given by ψ/|ψ|. We proved that if the permutation σ is the iden-
tity, then these singularities are topologically equivalent to usual Pham-Brieskorn
singularities. This chapter is based on [202]. Here we study the other possible case
when n = 2, i.e., singularities of the form,

zp
1z2 + zq

2z1 = 0 , p, q > 1 .

We find the resolution graph of these singularities and from it, using [184, 200],
we compute the genus of the pages of the corresponding Milnor fibration and its
monodromy, thus giving the complete topological description of these fibrations.
For this we find a “topological” resolution π : X → C2 of the singularity {zp

1z2 +
zq
2z1 = 0 } via the usual technique for studying complex plane curves, i.e., by

performing appropriate blow-ups (Sections 4 and 5). The additional problem we
face is that, since the singularities in question are only real analytic, we have to
employ a “trick” to transform them by a homeomorphism, in some step of the
resolution process, in order to get a “divisor” with normal crossings. In this way
we obtain a topological resolution of f and then a decorated plumbing graph,
which gives the isotopy class of its link and the topology of these fibrations (using
[184, 200]).
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Sections 1–3 are a brief exposition of results in [75, 184, 259, 200] about
resolution of complex planes curves, the resolution graphs and the classification of
horizontal open book fibrations, restricting the discussion to Seifert links, which
is all we need (instead of the more general Waldhausen links).

The results of [202] that we present here prove that the link of the singularity
zp
1z2 + zq

2z1 = 0 is orientation-preserving isotopic to the link of

z1z2 (zp+1
1 + zq+1

2 ) = 0 ,

which is a singularity of the form f ḡ, with f, g holomorphic functions. Then [200]
implies that the corresponding open book decompositions are topologically equiv-
alent. In Section 7 we speak briefly about singularities of the type f ḡ in general,
and about the results of [199] in this respect.

VIII.1 On the resolution of embedded complex

plane curves

We recall that in IV.5 we spoke about resolution of singularities, and particularly
of curves and surfaces. Here we review more carefully the case of resolution of
plane curves, i.e., complex curves in C2. This material is classic and there are
several excellent expositions of the topic, as for instance [249], [44, III.8.4,5] and
Chapter V in [75], so we only sketch the arguments, both for completeness and to
introduce notation and arguments that we use later in this chapter.

Let X = C2 and consider its germ at 0. The set of lines through 0 is CP1.
The blowup of X at 0 is the space X̃ given by

X̃ = {(z, �) ∈ C2 × CP1 | z ∈ � } ,

with projection π : X̃ → X . If z �= 0, then there is exactly one � = �z ∈ C2

passing through z and 0, so π−1(z) consists of the single point (z, �z), while one
has π−1(0) = E ∼= CP1. Notice that if we let z = (z1, z2) denote the coordinates
in C2 and [w1 : w2] the homogeneous coordinates of points in CP1, then X̃ is the
subset of (z, �) ∈ C2 × CP

1 defined by the equation:

z1 w2 = z2 w1 ,

which has no critical points since w1, w2 cannot be both zero. Hence X̃ is a smooth
submanifold of C2 × CP1.

It is customary to cover X̃ with two coordinate charts, corresponding to the
usual charts for CP

1. These are:

U1 = {
(
(z1, z2), [w1, w2]

)
∈ X̃ |w1 �= 0 ; with coordinates v1 = z1 ; u1 = w2

/
w1 };

U2 = {
(
(z1, z2), [w1, w2]

)
∈ X̃ |w2 �= 0 ; with coordinates v2 = z2 ; u2 = w1

/
w2 }.



VIII.1. Resolution of complex plane curves 201

Both charts U1 and U2 are biholomorphic to C2. This means that X̃ is obtained
by taking two copies of C2, U1 and U2, and gluing them away from the axis by
the transition (or attaching) function for these two charts:

u2 = u−1
1 ; and v2 = u1 v1 .

Notice that the equation u2 = u−1
1 is the transition function for the usual decom-

position of S2 ∼= CP1 in two coordinate charts.
This process of blowing up is of course local, so that we may now pick a

preferred point (z1, �1) ∈ CP
1 ⊂ X̃ and blow it up to obtain a new complex

surface X̃2 with a projection π2 : X̃2 → X1 = X , and so on.
We now want to use this process of blowing ups to describe the embedded

resolution of singularities of curves in C2. By this we mean a non-singular complex
surface X̃s obtained by a finite number of blow-ups as above, together with the
projection map πs : X̃s → X1 = X , such that the proper (or strict) transform
C̃ ⊂ X̃s of the germ at 0 of a curve C ⊂ C2 is non-singular; in a neighborhood
of the exceptional divisor E = π−1

s (0) it is a disjoint union of r discs, where r is
the number of branches of C at 0. Moreover, we want E to be a “normal crossings
divisor”, as explained in IV.5, and that each component of C̃ meets E transversally
in a smooth point of E.

1.1 Example. Consider the map f : C2 → C defined by (z1, z2) → z1 · z2 and let
C = f−1(0), so that C consists of the two coordinate axis {z1 = 0} and {z2 = 0}.
The intersection C ∩ S3 is the Hopf link in S3. This is the standard double point,
which is resolved by a single blow-up, since this transformation separates the lines
through the origin. To see this analytically, let U1, U2 be the above coordinate
charts of X̃, the blow-up of C2 at 0, and let π be the projection map. In the chart
U1 corresponding to u1 �= 0, the projection π is given by π(v1, u1) = (v1, u1 ·v1), so
that π−1(C)∩U1 is given by the equations u2

1v1 = 0, and u1 �= 0 by hypothesis, so
one has v1 = 0. Similarly, on U2 one has π(v2, u2) = (u2 · v2, v2) and π−1(C) ∩ U2

is given by u2v
2
2 = 0 with u2 �= 0, so v2 = 0. Thus the proper transform of C

consists of the curve v1 = 0 in U1 ⊂ X̃, which is a copy of C, union v2 = 0 in
U2 ⊂ X̃, which is another copy of C. Both of these copies of C in X̃ are disjoint
and they meet the divisor E = π−1(0) transversally at each point.

It is clear that if we had, instead of the double crossing at 0 given by the
two coordinate axis of C2, r lines passing in C2 through the origin, then we could
resolve this singularity with a single blow-up; we would get r disjoint copies of C

embedded in X̃ and meeting the divisor E transversally.

1.2 Example. Consider now the singularity in C2 given by:

{ (z1, z2) | z2
1 + z3

2 = 0 } ,

whose link is the trefoil knot. It is an exercise to show that in this case the singular-
ity is again resolved with a single blow-up. However this resolution is not entirely
satisfactory because the proper transform C̃1 is tangent to the exceptional curve
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E1. By performing a second blow-up one gets a resolution where the exceptional
divisor E2 consists of two copies of CP1 meeting transversally in a double point
P , and the proper transform C̃2, which is of course smooth, meets E precisely at
P ; i.e., the total transform consists of three non-singular curves meeting at one
point. With a further blow-up we remove this triple crossing. We get a normal
crossings divisor E3 with three components, and the proper transform intersects
E3 transversally at a smooth point of E3.

1.3 Example. Consider, more generally, the singularity in C2 given by:

{ (z1, z2) | zp
1 + zq

2 = 0 } ; 2 ≤ p ≤ q .

We consider the blow-up X̃ as before. Notice that if p = q, then C consists of p
lines through the origin and therefore a blow-up resolves them as in the previous
Example 1.1. So we may assume p < q. The equation for π−1(C) ∩ U1 is:

vp
1 + (u1 v1)q = vp

1 (1 + uq
1 vq−p

1 ) = 0 ;

and the equation for π−1(C) ∩ U2 is:

(u2 v2)p + vq
2 = vp

2 (up
2 + vq−p

2 ) = 0 .

(Notice that this also applies for the case p = q and confirms that the resolution
consists of p disjoint complex lines that meet the divisor transversally.) We set
C1 = C̃, C1

1 = C1 ∩U1 and C1
2 = C1 ∩U2. Since p < q, C1

1 does not meet the line
{v1 = 0} and therefore it is non-singular.

Let us see what happens at the second coordinate chart U2. There are three
cases to consider according as q − p is <, =, or > p. When q − p = p, the curve
C1

2 consists of p lines which meet at 0 ∈ U2 and this can be resolved by a blow-up
as in Example 1.1.

In the other two cases the curve C1
2 is in general singular, or (as in the above

case p = 2, q = 3, it is smooth but tangent to the divisor), but in all cases one can
prove that the singularities have been “simplified” in a certain way that we will
not make precise here, and we refer to the literature for this. The point is that
one arrives at the following theorem, already stated in IV.5:

1.4 Theorem. (Embedded good resolution) Let C ⊂ C2 be a germ of a complex
analytic curve with a singularity at 0. Then there exists a non-singular complex
surface X̃ and a proper morphism π : X̃ → C2 which is a composition of a finite
number of blow-ups, such that:

(i) The exceptional divisor E has non-singular irreducible components, all copies
of CP1, which meet normally; thus each singularity of E, if there is more than
one irreducible component, is an ordinary double point.

(ii) The proper transform C̃ of C in X̃ (i.e., the closure of π−1(C−0)) consists of
a finite number of disjoint complex lines that meet E transversally at smooth
points of E.
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There are several methods for describing the (embedded) resolution of a
singularity, one of them is by their resolution graphs. These are similar to the
graphs used in Chapter IV to describe surface singularities. Given the germ at 0
of a complex plane curve C ⊂ C2, let π : X̃ → C2 be a good embedded resolution,
obtained by a sequence of blow-ups; let E = π−1(0) be the exceptional divisor,
E = E1 ∪ · · · ∪ Er its decomposition in irreducible components, and let C̃ be the
proper transform of C, with C̃ = C̃1∪· · ·∪ C̃s its connected components. So each
Ei is a copy of CP1 embedded in X̃ with a certain self-intersection number −wi =
E2

i , determined by the stage in which Ei appeared in the sequence of resolutions
that define π; this weight, an integer, measures the Euler number of the normal
bundle of Ei in X̃. Each C̃i is a complex line in X̃ that meets E transversally at
a smooth point in one of the components Ei. Given this information, we form the
resolution graph of X̃ as follows: to each Ei we associate a vertex vi with a weight,
which is −wi = E2

i ; two vertices are joined by a line if the corresponding curves
intersect. All vertices represent now curves of genus 0. By performing plumbing
according to this graph, as in Chapter IV, we recover the topology of X̃ and the
way the divisor E is embedded in X̃. Blowing down E to a point we obtain C2

and a projection π : X̃ → which is the resolution map.
It remains to describe the curve C̃ = C̃1 ∪ · · · ∪ C̃s: for each C̃j we draw an

arrow based at the vertex vi that represents the curve Ei where C̃j meets E. When
we blow down E, the lines C̃1, . . . , C̃s project into the s branches of C. Since the
projection π is a biholomorphism away from E, one has that for every sufficiently
small sphere S3

ε around 0 ∈ C2, the pair (S3
ε, L), where L = C ∩S3

ε is the link of C,
is diffeomorphic to the pair (∂X̃, ∂X̃ ∩ C̃), where ∂X̃ = π−1(S3

ε) is the boundary
of a regular neighborhood of the exceptional divisor E. Therefore, the topology of
the link L in S3

ε is entirely determined by the resolution graph.
Thus, the resolution graph consists of a plumbing graph, where all genera

are 0, which describes the topology of the space X̃, and a number of arrows that
represent the components of the link. Thus a resolution graph is called in [75, p.
134] a decorated plumbing graph (a tree in this case).

The point now is how to construct the resolution graph of a plane curve.
In general, this can be done using the Puiseux parameterization of (irreducible)
plane curves: it is well known that each germ of an irreducible complex analytic
curve C (or more generally, each branch of such curve) is homeomorphic to (C, 0).
Furthermore, if C is defined by f(x, y) = 0 then, making a change of coordinates
if necessary, one can solve this equation for y in terms of x, obtaining a solution
of the form:

y = a1 xm1/n1 + c2 xm2/n2 + · · · ,

called a Puiseux series for C, or a Puiseux parameterization C 
→ C, where the
ai are non-zero complex numbers, each pair (mi, ni) are relatively prime positive
integers and m1/n1 < m2/n2 < · · · . The existence of these parameterizations was
first shown by Newton, using what is now called the Newton polygon, but it was
Puiseux who investigated these parameterizations with more detail. The (mi, ni)
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are the Puiseux pairs of the irreducible curve C. The Puiseux pairs determine the
topology of C: we know already from Chapter I that C intersects transversally
every small sphere around 0 and C is locally embedded in C2 as the cone over its
intersection K = C ∩ S3

ε, which is a knot. The Puiseux pairs tell us exactly what
type of knot it is: the first Puiseux pair gives a torus knot K1 of type (m1, n1),
the second gives a cable knot of the previous one, i.e., a knot K2 embedded in the
boundary of a tubular neighborhood of K1, and the pair (m2, n2) describes this
embedding, and so on. One has that all but finitely many terms of the power series
can be removed without changing the topology of the knot. Thus we conclude that
the knots one gets in this way are all iterated torus knots, described by the Puiseux
pairs (see for instance [44, 8.3] or the Appendix to Chapter I in [75] where the
construction of these knots out of the Puiseux pairs is beautifully explained.)

The Puiseux pairs determine a resolution graph of the singularity (see, for
instance [44, 8.4, Th. 15]). In the following sections we give examples of this.

VIII.2 The resolution and Seifert graphs

This section is a brief summary of material in [75, 184], which are our basic refer-
ences here.

We recall (see III.1.10) that a compact oriented 3-dimensional manifold M is
a Seifert manifold if it admits an effective S1-action. The orbits of this action give
a fibreing π : M → B = M/S1, where B is a compact, connected 2-manifold with
or without boundary (according as M has boundary or not). We also recall that
a link in M means a disjoint, finite union of circles embedded in M . We assume
further that the base B is orientable.

A link L in M is reducible if M can be expressed as a non-trivial disjoint sum,
i.e., M can be expressed as a connected sum M = M1#M2 and this decomposition
separates L. Otherwise we say that L is irreducible.

2.1 Definition. An irreducible link L in a manifold M is a Seifert link if it is a
union of Seifert fibres of some Seifert fibration of M (c.f. [75, Chapter II]).

In the sequel, we avoid considering Seifert links whose complement in M is
a solid torus or a product (torus × [0, 1]). These degenerate cases do not appear
among the links of singularities considered in this work, except in the special cases
discussed in the remark at the end of of Section 5.

2.2 The Seifert graph. Given a Seifert link L, the uniqueness theorem of Wald-
hausen ([259] or [109, Theorem VI. 18]) implies that there exists a unique Seifert
fibration of M , up to isotopy, for which L is a union of Seifert fibres, and the iso-
topy class of L is characterized by its Seifert graph G(M, L). This graph G(M, L)
has a single vertex, to which one associates a weight and attaches arrows and
stalks, each with an associated pair of numbers (α, β). This is done as follows.

For each component of L (respectively for each exceptional Seifert fibre which
is not a component of L), one attaches to the vertex an arrow (respectively a stalk),
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whose extremity is weighted by the pair (α, β) of its corresponding normalized
Seifert invariants (0 ≤ β < α). These numbers are defined by the equation αa +
βb = 0 in H1(N, Z), where N is a small tubular neighborhood of the component of
the link (or of the corresponding exceptional fibre), saturated with Seifert fibres,
b is an oriented Seifert fibre on ∂N and a is an oriented curve on ∂N such that
the intersection a · b is +1 on ∂N , oriented as the boundary of N .

The vertex of the graph is endowed with a weight, which is the rational Euler
number e0 = e(M → B) of the Seifert fibration, introduced in (III.1.10). To define
e0 one defines first the usual Euler number e of the Seifert fibration. We recall that
if E is an oriented S1 bundle over an oriented 2-dimensional, compact, connected,
manifold B, then its usual Euler class is the primary (i.e., non-automatically zero)
obstruction for constructing a section of E (c.f. IV.1). This class lives in H2(B; Z)
and it becomes a number when we evaluate it on the orientation class of B. If B
has non-empty boundary, then H2(B; Z) ∼= 0, so the bundle is trivial. However, if
we fix a choice of a trivialization of E over ∂B, i.e., a section of τ : ∂B → E, then
one has an Euler class of E relative to τ , e(E; τ) ∈ H2(B, ∂B; Z) ∼= Z; evaluating
e(E; τ) on the orientation cycle of the pair (B, ∂B) we obtain an integer, which is
by definition, the Euler number of E relative to τ . Now, given an oriented Seifert
fibration π : M → B on a 3-manifold M , let us remove from B small, pairwise
disjoint, open discs around the points corresponding to the special fibres, and
denote by B0 what is left. Let E be π−1(B0), which is M minus a union of open
solid tori. This is an S1 bundle over B0. On each boundary torus Ti, one can
choose a unique (up to isotopy) oriented curve a which intersects each Seifert fibre
in exactly one point and satisfies that m = α[a] + β[b], where m is a meridian of
Ti, (α, β) are the corresponding reduced Seifert invariants, and [b] is the homology
class represented by one Seifert fibre. This curve a determines a section of E|Ti .
Doing this for each boundary torus we obtain a section of E over ∂B0. The Euler
number e = e(M) of the Seifert fibration π : M → B is defined to be the Euler
number of E relative to the given trivialization over ∂B0.

Then the rational Euler number of the Seifert fibration, which is the weight
of the vertex in the Seifert graph, is defined by:

e0 = e −
d∑

i=1

βi

αi
.

The number e0 has important geometric properties and it has been used by
several authors. For instance, in this work it appeared already in III.2.ii, where
it was denoted by e(M → B), following the notation of [186]. This number was
introduced in [187, 204] for Seifert manifolds in general and in [204, 186, 184] it
is shown that a closed Seifert manifold is the link of a surface singularity iff e0 is
negative.

The Seifert graphs provide a more compact way of describing the resolution
graphs of Seifert links; all the data of a resolution graph is encoded in the Seifert
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graph, and the way for passing from one to the other is standard, and very well
explained in [184, Th. 5.6].

For example, Figure 12 represents the Seifert graph of the torus knot (2, 3)
obtained from the complex singularity z2

1 + z3
2 = 0.

(2, 1)

(1, 0)

0,−1/6

(3, 2)

−1
−2

−3

Figure 12: Seifert graph Resolution graph.

These constructions generalize naturally to Waldhausen links, of which the
Seifert links are a special case; we refer to [259, 184, 200] for this.

VIII.3 Seifert links and horizontal fibrations

Let us present now some concepts and results of [200] that we need in the sequel.

3.1 Definition. Let L be a link in a 3-dimensional compact oriented manifold M .
An open book fibration of L is a C∞ locally trivial fibration Φ : M − L −→ S1

which equips M with an open book decomposition with binding L. (See I.5 for
the definition and basic properties of open books.)

In other words, for each component K of the link L there exists an open
tubular neighborhood N(K) of K in M − (L − K) and a homeomorphism τ :
S1 × D2 −→ N(K) such that for all (t, z) ∈ S1 × D2 one has:

(Φ ◦ τ)(t, z) =
z

|z| .

In this case the fibres of Φ are called the pages; each page is a 2-dimensional open
surface whose closure in M is a compact surface with boundary L. The link L is
called the binding of the open book. In the sequel, all the open book fibrations
considered have connected pages.

3.2 Definition. If (M, L) is a Seifert link and if one has an open book fibration Φ
of L, then such a fibration is said to be horizontal if the fibres of Φ are transverse
to the Seifert fibres, which are circles.

According to [259], this transversality is automatically realized for all Seifert
links up to isotopy, except in the degenerated cases avoided at the beginning of
this section.
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Now, let Φ : M − L −→ S1 be an open book fibration of the link L ∈ M

and let K be a component of L. Let us choose an orientation
−→
K of K. Let D

be a meridian disk of N(K) oriented so that one has intersection D · −→K = +1 in
M , and let us equip its boundary m with the induced orientation. One denotes
by ε(

−→
K) ∈ {−1, +1} the degree of the restriction of Φ to the oriented meridian

−→m. Note that if −−→K denotes K equipped with the opposite orientation, then
ε(−−→K) = −ε(

−→
K).

If L is a Seifert link and if Φ is horizontal, then there exist two natural
orientations of the link L. The first one, denoted by

−→
L flow is obtained as follows:

as the Seifert fibres of M − L are transversal to the fibres of Φ, one can orient
each Seifert fibre b by a flow which lifts, via Φ, the unit tangent vector field of
S1 = {z ∈ S; |z| = 1} compatible with the complex orientation. As the base of the
Seifert fibration is orientable, this orientation

−→
b flow is the same for each Seifert

fibre b of M − L and extends to an orientation
−→
L flow of L as a union of Seifert

fibres. In other words, we may think of the Seifert fibres as being the orbits of
an S1-action on M , and therefore the usual orientation on S1 ⊂ C induces an
orientation on the Seifert fibres.

On the other hand, we may equip the fibres F of Φ with their natural orien-
tation, defined by requiring F · −→b flow = +1. Then the second natural orientation
of L, denoted by

−→
L bound, is the orientation of L as boundary of F .

It follows from the definitions that ε(
−→
Kbound) = +1 for each component K

of L, while ε(
−→
Kflow) can be ±1. In [200], only the open book fibrations such that−→

L bound =
−→
L flow, i.e., ε(

−→
Kflow) = +1, are studied.

3.3 Definition. Two horizontal fibrations Φ : M−L −→ S1 and Φ′ : M ′−L′ −→ S1

are topologically equivalent if there exist orientation preserving homeomorphisms
H : (M, L) −→ (M ′, L′) and ρ : S1 −→ S1 such that:

(i) ρ ◦ Φ = Φ′ ◦H |(S3−L);

(ii) For each component K of L, ε(
−→
Kflow) = ε(

−−−→
H(K)flow).

Notice that these conditions imply that H(
−→
L flow) =

−→
L′

flow, i.e., that for
each component K of L, the orientation that the flow obtained via Φ induces on
K corresponds to the orientation on H(K) given by the flow obtained via Φ′.
We remark that Lemma 4.5 of [200] extends easily to the situation we consider
here and provides a classification of horizontal fibrations of Seifert links where
the ε(

−→
Kflow) are not necessarily +1. In fact, [200] deals with Waldhausen links in

general, while we consider only Seifert links. Thus condition (i) can be replaced by:

(i′) The fibres of Φ and Φ′ are diffeomorphic and their monodromies are conju-
gated in the mapping-class group of the fibre.

3.4. The Nielsen Graph. Given a Seifert link (M, L) and a horizontal fibration
Φ : M − L → S1 with connected fibre F := Φ−1(t), considered as an oriented
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surface in M with boundary L, the monodromy of Φ is a diffeomorphism h : F → F
defined by the first return map on F of the Seifert fibres, oriented by the flow. This
is a periodic diffeomorphism and one can use the work of Nielsen [191] to study it.
The Nielsen graph G(h) of h is a complete invariant defined in [200] which classifies
the monodromy up to conjugation. We recall that open book decompositions are
completely characterized, up to equivalence, by the topology of the fibres and the
monodromy maps (see Chapter I). So the Nielsen graph G(h) describes fully the
corresponding open book decomposition.

Let us recall briefly the construction of the graph G(h). Given an oriented
surface S and an orientation-preserving periodic diffeomorphism τ : S → S with
order N , denote by O the space of orbits of τ . The projection p : F → O is an n-
sheeted branched cyclic cover, ramified over a finite number of points P1, . . . , Pd′ ,
called the exceptional orbits. Let D1, . . . , Dd′ be disjoint open discs in O such
that Pi ∈ Di for all i = 1, . . . , d′; let us set Ci = ∂Di for all i = 1, . . . , d′,
and Ǒ = O −∐d′

i=1 Di. Denote also by Ci, i = d′ + 1, . . . , d′ + d, the boundary
components ofO. To each exceptional orbit Pi, i = 1, . . . , d′, and to each boundary
component Ci, i = d′+1, . . . , d′+d, of O one associates a triple (mi, λi, σi) defined
as follows. Let us endow O and Ǒ with the orientations induced, via p, from that
on F , and we equip each Ci, i = 1, . . . , d′+d, with the orientation opposite to that
of the boundary of Ǒ. The integer mi is the number of connected components of
p−1(Ci); then define λi by λimi = N , and σi is the integer modulo λi defined by
ρ([Ci]) = miσi, where ρ : H1(Ǒ, Z) −→ Z/NZ is the homomorphism associated
to the N -sheeted cyclic cover p|p−1(Ǒ). Then the Nielsen graph G(τ) consists of
a single vertex, weighted by N and by the genus of the quotient surface O, to
which d′ stalks and d boundary-stalks are attached, representing respectively the
exceptional orbits and the boundary components of O. The extremity of each stalk
or boundary-stalk is equipped with the corresponding triple (mi, λi, σi).

Figure 13 below tells us how to pass from the resolution (or Seifert) graph
G(S3, L) to the Nielsen graph of the corresponding monodromy. This is implied
by the following result of [202] which is an extension of ([200], Lemme 4.4), and
its proof is exactly the same as that in [200]. The theorem asserts that the Nielsen
graph is determined by the Seifert invariants of (M, L) and by the orientation of
the components of L regarded as boundaries of the fibres of Φ.

3.5 Theorem. Let Φ : M−L→ S1 be a horizontal fibration of a Seifert link (M, L),
with connected fibre F , and let h : F → F be the periodic representative of the
monodromy of Φ obtained by the first return on F of the Seifert fibres. Assume
the resolution graph is as in Figure 13 above. Then:

(i) The order N of the monodromy h is:

N = − 1
e0

∑d′+d
i=d′+1

εi

αi
.

(ii) The points in the orbits space O = F/h that correspond to the exceptional
orbits, are the intersection points of the fibre F with the exceptional fibres of
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{

{ {

{
d′ stalks

i = 1, . . . , d′

d arrows
i = 1, . . . , d

(α′
i, β

′
i)

(αi, βi)

d′ stalks
i = 1, . . . , d′

d boundary-stalks
i = 1, . . . , d

(N/α′
i, α

′
i, β

′
i)

(1, N, σi)

(g, e0) g, N

εi

Figure 13: Seifert graph G(S3, L) Nielsen graph G(h).

the Seifert fibration; and the triple (mi, λi, σi) attached to each exceptional
orbit of is given by the corresponding triple (N/αi, αi, βi).

(iii) The boundary component of O corresponding to the component Ki of L is
equipped with the triple (1, N, σi), where σi, modulo N , is given by the equal-
ity:

αiσi −Nβi + ε(
−→
Kiflow) = 0 ,

where (αi, βi) are the corresponding reduced Seifert invariants.

In particular the projection π : F → F/h provides a description of the fibre
F as an n-sheeted cyclic cover over the surface with genus g, branched over d′

points with branching indices αi, i = 1, . . . , d′ and N for the d remaining points.
Thus we know the topology of the fibre F : it has d boundary components and its
genus is obtained from the Hurwitz formula. One gets:

3.6 Corollary. With the notation of Theorem 3.5, the genus of the fibres of Φ is:

gF =
1
2

(
(N − 1)(d− 2) + Nd′ −

d′∑
i=1

N

α′
i

)
.

So we have that the Nielsen graph G(h) of the horizontal fibration describes
fully the open book decomposition, giving us the monodromy map of the fibration
and the genus of the fibres. And G(h) is determined by the Seifert invariants of
(M, L) together with the orientation of the components of L regarded as bound-
aries of the fibres of Φ.

VIII.4 An example

As a motivation for the following section, we study here the topology of the sin-
gularity

f(z1, z2) = z3
2 · z1 + z5

1 · z2 .

Following the method used for studying the topology of complex plane curves
(see for instance [75, 134]), let us try to describe the topology of the link L by
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performing a composition π : X −→ C2 of a finite number of blow-ups of points,
starting with the blow-up of the origin in C2. We will see that we need to consider
also a homeomorphism θ in such a way that the total transform (f ◦ π)−1(0)
has normal crossings (c.f. IV.5). One then identifies the 3-sphere S3

ε with the
boundary of a small semi-algebraic tubular neighborhood W of the exceptional
divisor E = π−1(0) and L with the intersection of the strict transform of f with
the boundary ∂W of W .

Let π1 : X1 → C2 be the blow-up of 0C2 and set Ψ1 = f ◦ π1. In the first
coordinate chart of X1, i.e., over C2−{z2 = 0}, the blow-up is given by: z1 
→ z1z2

and z2 
→ z2. The exceptional divisor E1 has equation z2 = 0 and one has:

Ψ1(z1, z2) = (f ◦π1)(z1, z2) = f(z1z2, z2) = z3
2z1z2 +z5

1z
5
2z2 = z3

2z2(z1 +z5
1z

2
2) .

In the total transform Ψ1(z1, z2) = 0, the factor z3
2z2 corresponds to the equation

of E1 := {z2 = 0}, while (z1 + z5
1z

2
2) = 0 is the equation of a smooth branch S1

of the strict transform of f , namely the complex curve with equation z1 = 0.
In the second chart of X1, i.e., over C2 − {z1 = 0}, the blow-up is given by

z1 
→ z1 and z2 
→ z1z2; E1 has equation z1 = 0 and

(f ◦ π1)(z1, z2) = z3
1z

3
2z1 + z5

1z1z2 = z3
1z1(z3

2 + z2
1z2) .

We notice that z3
2 + z2

1z2 = 0 is the equation of a singular real surface S, so we
have to resolve this singularity.

One branch of S has equation z2 = 0. Unfortunately, the presence of both
z2 and z2 in the equation of S does not allow one to factorize either z2 or z2.
Therefore it is useless trying to separate the branch z2 = 0 from the other branches
of S by performing additional blow-ups. Indeed, let us try an additional blow-up
π′ : X ′ → X . In the second chart we have,

(Ψ1 ◦ π′)(z1, z2) = Ψ1(z1, z1z2) = z5
1z1(z3

2z1 + z1z2) ,

and the factor (z3
2z1 + z1z2) still involves z2 and z2 with the same exponents as

before, so this singularity cannot be resolved by blow-ups.
Thus we start again with the term z3

2 + z2
1z2, defining S, and we use a trick:

we compose π1 with an orientation-preserving homeomorphism θ : X1 → X1 in
order to replace S by a complex plane curve. So we start with the term (z3

2 +z2
1z2)

and we write it as z2(
(

z2

|z2|
1
2

)4 + z2
1); now define the map θ : X1 → X1 by:

θ(z1, z2) = (z1,
z2

|z2|
1
2
)

in the second chart. This is well defined away from the two complex lines transverse
to E1 with equations z2 = 0 and z2 = ∞ and it extends in the obvious way to a
homeomorphism from X1 to X1. This homeomorphism coincides with the identity
map on the two lines and it is a diffeomorphism on their complement. In the second



VIII.4. An example 211

chart, the inverse map is θ−1(z1, z2) = (z1, z2|z2|), and the image of S by θ has
equation:

z2|z2|(z2
4 + z1

2) = 0 ,

or equivalently z2(z2
4 + z1

2) = 0 . The term z2
4 + z1

2 defines a complex analytic
plane curve, which can be resolved by a finite sequence of blow-ups of points in
the usual way. Let π2 : X2 −→ X1 be the blow-up of the point (z1, z2) = (0, 0)
of X1. In the second chart, the exceptional divisor E2 = π−1

2 (0, 0) has equation
z1 = 0 and the strict transform of θ(S) by π2 has equation:

z2 |z2| (z2
1z4

2 + 1) = 0 .

The factor z2 corresponds to a smooth branch S2 of the strict transform of f by
f ◦ π1 ◦ θ−1 ◦ π2. The term z2

1z
4
2 + 1 = 0 does not intersect the exceptional divisor,

so it has no contribution for the topology of L. In the first chart E2 has equation
z2 = 0 and the strict transform of θ(S) by π2 has equation

z2
2 + z1

2 = 0 ,

which corresponds to the equation of two transverse smooth complex curves S3

and S4, which are separated by performing the blow-up π3 : X3 → X2 of their
common point.

Therefore, if we let π = π3 ◦ π2 ◦ θ ◦ π1, then the total transform (f ◦ π)−1(0)
has normal crossings and the strict transform π−1(f−1(0)− {0}) consists of the
four smooth curves Si, i = 1, . . . , 4. The configuration of the divisor (f ◦π)−1(0) is
represented in Figure 14, each irreducible compact component Ej being weighted
by its self intersection in X .

Let us now identify π−1(S3
ε ) with a small tubular neighborhood W of π−1(0)

in X obtained by a plumbing process. The link L = f−1(0) ∩ S3
ε is, up to isotopy,

the intersection of S1 ∪ S2 ∪ S3 ∪ S4 with the boundary of W . Therefore L has
four components Ki = Si ∩ ∂W, i = 1, . . . , 4, and its isotopy class is encoded in
the dual plumbing graph Γ of the divisor (f ◦ π)−1(0), also represented in Figure
14. As this graph has a single rupture vertex (i.e., a vertex with more than three
incident edges or arrows), then the link L is a Seifert link. By using the plumbing
calculus of [184], one computes from Γ the Seifert graph G(S3, L), also represented
in Figure 14.

Before computing the degrees ε(
−→
Kiflow), let us introduce some definitions and

make some remarks.
Let C be an irreducible component of the total transform (f ◦π)−1(0). As in

[134, 1.3.2], define a curvette of C as a smooth complex curve in X intersecting
transversally C at a smooth point of (f ◦ π)−1(0). One defines the multiplicity
m(C) of f along C as the degree of the restriction of f to a curvette of C.

Remember that in a neighborhood of S1 in X, f ◦ π has the following local
expression:

(f ◦ π)(z1, z2) = (f ◦ π1)(z1, z2) = z3
2z2(z1 + z5

1z
2
2) ,
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where z2 = 0 is the equation of E1 and where z1 + z5
1z

2
2 = 0 is that of S1.

Therefore m(E1) is the degree of the map z2 
→ z3
2z2, that is m(E1) = 3−1 = +2,

and m(S1) is the degree of z1 
→ z1, so m(S1) = −1. Similarly, m(S2) = −1, and
m(S3) = m(S4) = +1 as S3 and S4 appear through holomorphic factors in the
local expression of f ◦ π.

Now, one remarks that, as in the usual resolution of complex plane curves,
the multiplicity of a compact irreducible component of the divisor created by the
blow-up of a point P is the sum of the multiplicities of the components of the
total transform passing through P . Therefore m(E2) = m(E1)+m(S2)+m(S3)+
m(S4) = 3, and m(E3) = m(E1) + m(E2) + m(S3) + m(S4) = 7.

At this step we can compute already the order of the periodic monodromy h
of f

|f | . Indeed, by definition, the periodic monodromy is the self-diffeomorphism on

a fibre of f◦π
|f◦π| given by the first return map of the flow determined by the Seifert

fibration. Therefore its degree is equal, up to sign, to the degree of f◦π
|f◦π| restricted

to a regular Seifert fibre of (S3, L) disjoint from L. But one of the main ideas of
the plumbing calculus is that a regular Seifert fibre of (S3, L) is, up to isotopy, the
intersection with ∂W of a curvette γ of the rupture component of the exceptional
divisor (i.e., that which corresponds to the rupture vertex of the dual resolution
graph). Then the order N of h is, up to sign, the degree of the restriction of f to
a curvette γ of E3, i.e., N = m(E3) = 7.

Let us now compute the degree ε(
−→
K1flow). Remember again that in a neigh-

borhood of S1,
(f ◦ π)(z1, z2) = z3

2z2(z1 + z5
1z2

2) .

In this local chart, W = {(z1, z2) ; |z2| ≤ η}, where η  1. Thus,

K1 = S1 ∩ ∂W = {(z1, z2) ; z1 = 0, |z2| = η}.

Let
−→
K1C be the knot K1 oriented as the boundary of the complex curve S1 ∩W .

Let us compute first ε(
−→
K1C). By definition, it is the degree of the restriction of

(f ◦ π)/|f ◦ π| to a small meridian of K1, which is nothing but the degree of the
restriction of f ◦ π to a curvette of S1. Therefore ε(

−→
K1C) = m(S1) = −1.

Let us now compare the orientations
−→
K1C and

−→
K1flow. Let γ be a curvette of

E3 and let us orient the Seifert fibre b = ∂W ∩ γ as the boundary of the complex
curve W ∩ γ. As m(E3) = 7 is positive,

−→
b C =

−→
b flow. Moreover, by plumbing

calculus, one knows that the orientation of
−→
K1C as a Seifert fibre is compatible

with that of
−→
b C. Therefore,

−→
K1C =

−→
K1flow, and then, ε(

−→
K1flow) = m(S1) = −1.

Similarly, ε(
−→
K2flow) = m(S2) = −1; ε(

−→
K3flow) = m(S3) = +1, and ε(

−→
K4flow) =

m(S4) = +1.
Using Theorem 3.5 one computes the Nielsen graph G(h) of the monodromy

of f
|f | from the Seifert graph G(S3, L) and from the degrees ε(

−→
Kiflow), i = 1, . . . , 4.

This is represented in Figure 14. In particular, one can recover from Theorem 3.5.i
that the order of the monodromy is 7.
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−1

−1

−1

−2−3

E1

E3

1

1

7
(1, 0)

(1, 0)

(1, 0)

(3, 2)

−1/6

(1, 7, 6)

(1, 7, 6)

(1, 7, 5)

(1, 7, 4)

Figure 14: The divisor, the Seifert graph and the Nielsen graph.

VIII.5 Resolution and topology of the singularities
zp
1 z̄2 + zq

2 z̄1 = 0

We now consider the general case of the function f : (C2, 0) → (C, 0) defined by
f(z1, z2) = zp

1z2 + zq
2z1 , with p and q integers, p ≥ q ≥ 2. The arguments of the

previous section generalize to the following result:

5.1 Theorem. Given f as above one has:

(i) The link L = f−1(0) ∩ S3 is a Seifert link with k + 2 components, where k =
gcd(p+1, q+1). Two of these components are the Hopf link ({z1z2 = 0})∩S3,
while the others are a torus link of type (p + 1, q + 1).

(ii) The degree ε(
−→
Kflow) equals −1 for the two components of the Hopf link, and

+1 for each of the k remaining components.

(iii) The monodromy of the fibration f
|f | : S3 − L −→ S1 has a periodic represen-

tative h whose order is N = kp′q′− p′− q′ = 1
k (pq− 1), where p′ = p+1

k and
q′ = q+1

k .

(iv) Each fibre Fθ = ( f
|f | )

−1(eiθ) has genus 1
2k(N − 1) = 1

2 (pq − 1− k).

(v) The plumbing graph of (S3, L), the Seifert graph G(S3, L) and the Nielsen
graph of h are represented in Figure 15, where p′σ1 − Nβ1 − 1 = 0 and
q′σ2 −Nβ2 − 1 = 0.

We remark that we stated the theorem above considering the unit sphere
S3 ⊂ C2 for simplicity, but one can replace this by any sphere centred at 0, of
arbitrary positive radius, by [227, Proposition 2.1] (see the previous chapter,
where we prove that these singularities are quasi-homogeneous). Chapter VII also
gives us an explicit representative of the monodromy of this fibration: this is given
by the map (z1, z2) 
→ (e−

2πi(p+1)
pq−1 z1 , e−

2πi(q+1)
pq−1 z2).

Proof. Let π1 : X1 → C2 be the blow-up of 0C2 . In the first chart, C2 − {z2 = 0},
one has:

(f ◦ π1)(z1, z2) = f(z1z2, z2) = zq
2z2(z1 + zp

1zp−q
2 ) ,
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-1

-1

{k components

N

1

1

(1, 0)

(1, 0)

−1/p′q′

(p′, β1)

(q′, β2)

(1, N, N − 1)

(1, N, N − 1)

(1, N, σ2)

Figure 15: The Seifert graph and the Nielsen graphs.

and z1 +zp
1zp−q

2 = 0 is the equation of a smooth branch S1 of the strict transform
of f , namely the complex curve with equation z1 = 0. Its multiplicity is the degree
of the map z1 
→ z1, then m(S1) = −1. In the second chart one has,

(f ◦ π1)(z1, z2) = zq
1z1 (zq

2 + zp−q
1 z2) ,

and, just as in Section 4, it is useless to keep making additional blow-ups to resolve
the singularity:

S = {zq
2 + zp−q

1 z2 = 0 } ,

due to the presence of both z2 and z2 in the equation. Thus we use the same trick
we did before. Let us write

zq
1z1 (zq

2 + zp−q
1 z2) = zq

1z1z2

(
(

z2

|z2|
2

q+1
)q+1 + zp−q

1

)
.

We now compose π1 with the homeomorphism θ : X1 → X1 defined in the second
chart by

θ(z1, z2) = (z1,
z2

|z2|
2

q+1
)

out of the two complex lines z2 = 0 and z2 =∞; this extends as the identity map on
these two lines. In the second chart, the inverse map is θ−1(z1, z2) = (z1, z2|z2|

2
q−1 ),

and θ(S) has equation:

z2|z2|
2

q−1 (z2
q+1 + z1

p−q) = 0 ,

or equivalently z2(z2
q+1 + z1

p−q) = 0 . This is the equation of a complex plane
curve, so it can be resolved by a finite sequence π′ : X −→ X1 of blow-ups of points
in the classical way. As in Section 4, after one blow-up the term z2 gives rise to
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a smooth branch S2 transverse to the new component of the exceptional divisor
which has multiplicity m(S2) = −1. After a finite sequence of additional blow-ups
one obtains k := gcd(p + 1, q + 1) other branches S3, . . . , Sk+2, all transverse to
the same component C of the exceptional divisor. To identify the link in S3 defined
by these k components of L we observe that in the chart {z1 �= 0} of the blow-up
X1, the equation zq+1

2 + zp−q
1 = 0 is the equation of the strict transform of the

holomorphic curve zq+1
2 + zp+1

1 = 0 , whose link is well known to be a torus link
of type k(p+1

k , q+1
k ), by [38] (see also [168]). Therefore, identifying π−1(S3

ε) with a
tubular neighborhood W of the divisor π−1(0), the link L has k + 2 components
Ki = Si ∩ ∂W , two of them, K1 and K2 consisting of the Hopf link, and the
remaining components K3, . . . , Kk+2 form a torus link of type k(p+1

k , q+1
k ).

This determines the resolution (plumbing) graph of the singularity. Again,
using classical computations of Seifert invariants and the plumbing calculus of
[184], one obtains from this the Seifert graph G(S3, L): there are two exceptional
Seifert fibres, which are K1 and K2, with Seifert invariants respectively α1 =
(p+1)/k = p′ and α2 = (q +1)/k = q′. As the ambient space is the 3-sphere, then
the rational Euler class of the Seifert fibration is e0 = − 1

p′q′ and the two classes
β1 mod p′ and β2 mod q′ are related by p′β2+q′β1 = 1 (see [110] for more details).

As in Section 4, one obtains the weights ε(
−→
Kiflow), i = 1, . . . , k + 2 by com-

puting the multiplicities m(Si), i = 1, . . . , k +2 of the branches of the strict trans-
form of f by π. These are ε(

−→
K1flow) = ε(

−→
K2flow) = −1, and ε(

−→
Kiflow) = +1,

i = 3, . . . , k + 2.
As in Section 4, we can already compute the order N of the periodic mon-

odromy of f/|f | by computing the multiplicity of the rupture component of the
exceptional divisor. In the complex case z1z2(zk+1

1 + zk+1
2 ) this multiplicity equals

kp′q′ + p′ + q′, the term kp′q′ coming from the k branches of zk+1
1 + zk+1

2 , and
the terms p′ and q′ from the two branches z1 and z2. In our real case, the com-
putations of the multiplicities following the sequence of blow-ups are the same as
in the complex case, except that the multiplicities of the branches corresponding
to the Hopf link (i.e., the branches z1 and z2) are counted negatively. Therefore,
N = kp′q′ − p′− q′. Using Section 3, one obtains the Nielsen graph and the genus
of the fibre. In particular, one can recover the order N of the monodromy from
the formula (i) from Theorem 3.5. We notice that in this case, the corresponding
Seifert decomposition of the 3-sphere has only two exceptional fibres (the Hopf
link), and both of them are components of L. Hence, in the Nielsen graph of the
monodromy, all the stalks are boundary-stalks. �

In order to state the following result we recall the constructions of the pre-
vious chapter and notice that the function f(z1, z2) = zp

1z2 + zq
2z1 in Theorem

5.1 can be regarded as the Hermitian product of the vector fields ξ = (zq
2 , z

p
1) and

ι = (z1, z2).

5.2 Corollary. With the hypothesis and notation of Theorem 5.1, each pair of an-
tipodal fibres Fθ and Fθ+π is naturally glued together along the link L forming a
smooth real analytic surface Sθ in S3. The genus of Sθ is p · q, the Poincaré-Hopf
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index at 0 of the vector field ξ, and Sθ is diffeomorphic to the set of points where
the real line field spanned by ξ is tangent to S3.

Proof. The only new statement here is the claim that the genus of Sθ is p · q. This
follows from Theorem 5.1 since each fibre Fθ has genus 1

2 (pq − 1− k) and it has
k + 2 boundary components. When we glue two such fibres along their boundary
to get Sθ, we create k + 1 handles. Hence the genus of Sθ is:

g(Sθ) = 2g(Fθ) + (k + 1) = p · q ,

as stated. Finally, that this number is the Poincaré-Hopf index of the vector field ξ
follows from the fact that this vector field is holomorphic, so its index at 0 equals
the dimension of the vector space OC2,0/(zq

2 , z
p
1). �

5.3 Remark. There are two special cases which are not envisaged in the previous
discussion, these are when p = q = 1 or p > q = 1. These are studied in detail
in [202]. When p = q = 1 one has (see §4 in the previous Chapter VII) that if
|λ1| = |λ2|, then f is not a submersion in a punctured neighborhood of 0 ∈ C2 and
the corresponding link L = f−1(0)∩S3

ε is not fibred. In fact, this link is not even a
1-dimensional manifold (see [202]). If |λ1| �= |λ2| the situation is more interesting.
In this case, as well as when p > q = 1, the results of [214] (see VII. 3, 4) imply
that f satisfies the Milnor condition at 0, but the methods used there do not say
anything about the strong Milnor condition and one cannot decide with those
techniques whether or not the map f

|f | defines an open book decomposition of S3
ε.

In [202] it is proved that they do; this is done by making a careful geometric study
of these singularities in a neighborhood of the link. It is proved that in both cases
the link L is the Hopf link {z1z2 = 0} and the map f

|f | is, on the complement of
L, the projection of a fibre bundle; the fibres are annuli and the monodromy is
the identity map.

VIII.6 On singularities of the form f ḡ

We know from the previous sections that the links of the singularities

V p,q = {zp
1z2 + zq

2z1 = 0 } , p , q ≥ 2 ,

are Seifert links in S3, being orbits of the S1-action on C2 given by:

(eit, (z1, z2)) 
→ (e−is1tz1, e
−is2tz2) ,

where s1 = 1+p
pq−1 and s2 = 1+q

pq−1 . The Hopf link S3 ∩ ({z1z2 = 0}) gives two
components of the link

L = V p,q ∩ S3 ,

the others being a torus link (or knot) of type (p + 1, q + 1). In fact these are the
links of type 5 in the classification of Seifert links in [75, 7.3, p. 63]. These links
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can also be obtained via complex singularities: they are isotopic to the links in S3

determined by
z1z2(z

p+1
1 + zq+1

2 ) = 0 .

So it is natural to ask whether the corresponding Milnor fibrations, and the open
book decompositions of S3, are topologically equivalent. Theorem 5.1 shows that
this is not the case. In fact one has that the open book fibration provided by
f(z1, z2) = zp

1z2 + zq
2z1 induces the “negative” orientation around the two compo-

nents of the Hopf link. As a consequence of this fact we obtained (using [200]) that
if we let k = gcd(p + 1, q + 1) be the greatest common divisor of these numbers,
and if we set p′ = p+1

k and q′ = q+1
k , then the genus of the fibres of f

|f | is

1
2
k(kp′q′ − p′ − q′ − 1) =

1
2
(pq − 1− k) ,

while the same method tells us that the genus of the fibres in the holomorphic
case is

1
2
k(kp′q′ + p′ + q′ + 1) .

Similarly, the monodromy for the above open book decompositions has period
kp′q′− p′− q′ = 1

k (pq− 1), whereas in the holomorphic case it has period kp′q′ +
p′ + q′.

One actually has that the link of f(z1, z2) = zp
1z2 + zq

2z1 is orientation-
preserving isotopic to the link of the singularity:

(z1, z2) 
−→ z̄1z̄2 (zp+1
1 + zq+1

2 ).

This fact, together with A’Campo’s example (c.f. VII.1 above)

(z1, z2) 
−→ z1z2(z̄1 + z̄2) ,

motivated the study in [199] of real singularities in R4 of the form f ḡ, with f
and g holomorphic functions (C2, 0) → (C, 0). It is clear that if the function f ḡ
has an isolated critical point at 0, so that it satisfies the Milnor condition for
having an associated Milnor fibration (see Chapter VII), then the link of this
function is L = Lf ∪ Lg, where Lf and Lg are the links of f and g. However,
due to complex conjugation, as in the previous case, the components of Lg get
the opposite orientation to the one induced by the Milnor fibration of g, thus the
corresponding fibrations differ in general. Moreover, that these singularities satisfy
the Milnor condition at 0 does not necessarily imply (a priori) that they satisfy
the strong Milnor condition and therefore define open book decompositions (c.f.
Chapter VII).

In fact this type of singularities already appeared in L. Rudolph’s article
[215], and his work suggested that given

f, g : (C2, 0)→ (C, 0) ,
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holomorphic with no common branch, one has that the real analytic map,

f ḡ : (R4, 0)→ (R2, 0) ,

has an isolated critical point at 0 iff the link L = Lf ∪ Lg is fibred. This was
recently proved by A. Pichon in [199]. She further proved that if this condition
holds, then the underlying Milnor fibration is an open book decomposition with
binding Lf ∪ Lg, and the projection map is f ḡ

/
|f ḡ| in a tubular neighborhood

of this link. She also found, using the resolution of the singularity of the holo-
morphic map-germ f g, a very simple combinatorial argument that allows one to
know whether or not the link Lf ∪ Lg is fibred. Using these results she was able
to show that a large family of fibrations of Waldhausen links in S3 arise as the
Milnor fibrations of real analytic germs f ḡ, other than those coming from complex
singularities. These results have been recently extended and improved in [201]. In
order to explain this we recall (c.f. [75]) that a multilink in S3 is the data of an
oriented link L = K1∪· · ·∪Kl together with a multiplicity ni ∈ Z associated with
each component Ki. We denote such a multilink by

L = n1K1 ∪ · · · ∪ nlKl ,

and we fix the convention that niKi = (−ni)(−Ki), where −Ki means Ki with
the opposite orientation.

Now, given a holomorphic map f : (C2, 0) → (C, 0), we may decompose it
into irreducible analytic factors,

f =
l∏

i=1

fni

i ,

where the ni are all positive integers; in this case the multilink associated with f is

Lf =
l⋃

i=1

niLfi ,

where Lfi = fi
−1(0) ∩ Se is the link of fi. One has a similar decomposition for

the holomorphic map g =
∏m

j=1 g
nj

j and the multilink associated to g is Lg =⋃m
i=1−njLgj . The link Lfg of fg is Lf ∪ −Lg.

6.1 Definition. A multilink L = n1K1 ∪ · · · ∪ nlKl in S3 is fibred if there exists a
map Φ : S3 \ L −→ S1 which satisfies the following two conditions:

(i) The map Φ is a C∞ locally trivial fibration.
(ii) For each i = 1, . . . , l, there exist a regular neighborhood N(Ki) of Ki in

M \ (L\Ki), an orientation-preserving diffeomorphism τ : S1×D2 → N(Ki)
such that τ(S1 × {0}) = Ki and an integer ki ∈ Z such that for all (t, z) ∈
S1 × (D2 \ {0}) one has:

(Φ ◦ τ)(t, z) =
(

z

|z|

)ni

tki .

In this case we say that Φ is a fibration of the multilink L.
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Notice that this is much stronger than just asking the link to be fibred in the
sense of Chapter I, which is the first condition in the definition above. Condition
(ii) demands that near the binding, the projection map φ takes into account the
multiplicity of each component of the multilink. In fact in [201] there is an example
showing a link which is fibred in the sense of Chapter I (it is the link D4) to which
different sets of weights are attached, making it a multilink in various ways. It is
shown that with some weights it fibres and with others it does not.

One has the following result [201, Theorem 2]:

6.2 Theorem. Let f : (C2, 0)→ (C, 0) and g : (C2, 0)→ (C, 0) be two holomorphic
germs without common branches. Then the following two conditions are equivalent:

(i) the real analytic germ fg : (C2, 0)→ (R2, 0) has an isolated critical value at
0 ∈ C;

(ii) the multilink Lfg is fibred.
Moreover, if these conditions hold, then the Milnor fibration of fg,

fg

|fg| : S3
e \ (Lf ∪ Lg)→ S1 ,

is a fibration of the multilink Lf − Lg.

In fact the theorem in [201] is stronger because it gives a third condition which
is equivalent to the two conditions above and is surprisingly easy to verify, making
it easy to know whether or not a given multilink is fibred. This improves the results
of [199] in two ways: first allowing the multiplicities to be �= ±1, i.e., asking only for
0 ∈ C to be an isolated critical value instead of demanding 0 ∈ C2 to be an isolated
critical point; and second giving that the projection map of the fibration is fg/|fg|
everywhere and not only on a neighborhood of the link. This last improvement is
possible thanks to Theorem I.6.4 (also proved in [201]). We remark that Theorem
6.2 allows us to use the machinery of [200] to study the topology of these fibrations,
just as in the previous examples in Sections 4 and 5 above.
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Paris Sér. A, 272:214–216, 1971.
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jectures de Poincaré. C. R. Acad. Sci. Paris Sér. I Math., 332:63–66, 2001.

[162] L. Meersseman and A. Verjovsky. Holomorphic principal bundles over toric vari-
eties. J. Reine Angew. Math., 2004.

[163] F. Michel and A. Pichon. On the boundary of the Milnor fibre of nonisolated
singularities. Int. Math. Res. Not., 43:2305–2311, 2003.

[164] J. Milnor. Construction of universal bundles II. Annals of Math., 63:430–436,
1956.

[165] J. Milnor. On manifolds homeomorphic to the 7-sphere. Ann. of Math., 64:399–
405, 1956.

[166] J. Milnor. Topology from the Differentiable Viewpoint. Univ. Press of Virginia,
Charlottesville, 1965.

[167] J. Milnor. On isolated singularities of hypersurfaces. 1966. Unpublished.

[168] J. Milnor. Singular Points of Complex Hypersurfaces. Annals of Maths. Study 61,
Princeton University Press, Princeton, 1968.

[169] J. Milnor. Morse Theory. Ann. of Math. Study 51, Princeton Univ. Press, 5th

printing, 1973.

[170] J. Milnor. Characteristic classes. Princeton University Press, 1974.

[171] J. Milnor. On the 3-dimensional Brieskorn manifolds M(p, q, r). In Knots, links
and 3-manifolds, ed. L. Neuwirth, Ann. of Maths. Studies 84, Princeton Univ.
Press, 1975.

[172] J. Milnor. Curvatures of left invariant metrics on Lie groups. Advances in Math.,
21:293–329, 1976.



Bibliography 229

[173] D. Mond and D. Van Straten. Milnor number equals Tjurina number for functions
on space curves. J. London Math. Soc., 63:177–187, 2001.

[174] P.S. Mostert. On a compact lie group acting on a manifold. Ann. of Maths.,
65:447–455, 1957.

[175] J. Mostovoy. Algebraic cycles and antiholomorphic involutions on projective
spaces. Bol. Soc. Mat. Mex., 6:151–170, 2000.

[176] D. Mumford. The topology of normal singularities of an algebraic surface and a
criterion for simplicity. Publ. Math. I.H.E.S., 9, 1961.

[177] D. Mumford. Theta characteristics of an algebraic curve. Ann. Sci. École Norm.
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14:123–142, 1971.



Bibliography 231

[217] R.N.A. Santos, Topological Triviality of Families of Real Isolated Singularities and
their Milnor Fibrations, Mathematica Scandinavica 96 (2005), 96–106.

[218] R.N.A. Santos and M.A. Ruas, Real Milnor Fibration and C-Regularity, Manus.
Math. 117 (2005), 207–218.

[219] N. Saveliev. Floer homology of Brieskorn homology spheres. J. Differential Geom.,
53:15–87, 1999.

[220] J. Scherk. CR structures on the link of an isolated singular point. CMS Conf.
Proc., Amer. Math. Soc., 6:397–403, 1986. Proceedings of the 1984 Vancouver
conference in algebraic geometry.
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Lê, D.T., 15, 23, 24, 28, 29, 167, 172
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