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Preface

The Symposium on Topology, Geometry and Quantum Field Theory took
place in Oxford during the week 24–29 June 2002. Graeme Segal’s sixtieth
birthday was celebrated at a special dinner; his mathematics throughout the
meeting. These proceedings reflect the scientific excitement at the Symposium,
which more than 140 physicists, geometers and topologists attended.

The Symposium was financially supported by the EPSRC, the London
Mathematical Society and Oxford University. I would like to thank all the
speakers, participants and everyone who helped with the organization for mak-
ing the Symposium such a success. Special thanks are due to the contributors to
these proceedings and the referees. Brenda Willoughby not only offered tech-
nical help in putting this volume together but also typed Part II more than ten
years ago. Finally and foremost, I would like to thank Graeme Segal for his
consent (if reluctant) to holding this Symposium in honour of his birthday, and
publishing his influential manuscript as part of these proceedings.

Ulrike Tillmann
Oxford, June 2003
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Introduction
SIR MICHAEL ATIYAH

It is a great pleasure for me to write this introduction to the volume celebrating
Graeme Segal’s 60th birthday. Graeme was one of my first Ph.D. students but
he rapidly moved on to become a collaborator and colleague. Over the years we
have written a number of joint papers, but the publications are merely the tide-
marks of innumerable discussions. My own work has been subtly influenced
by Graeme’s point of view: teacher and student can and do interchange roles,
each educating the other.

Graeme has a very distinctive style. For him brevity is indeed the soul of
wit, arguments should be elegant and transparent, lengthy calculations are a
sign of failure and algebra should be kept firmly in its place. He only pub-
lishes when he is ready, when he is satisfied with the final product. At times
this perfectionist approach means that his ideas, which he generously pub-
licizes, get absorbed and regurgitated by others in incomplete form. But his
influence is widely recognized, even when the actual publication is long-
delayed.

Topology has always been at the heart of Graeme’s interests, but he has
interpreted this broadly and found fruitful pastures as far away as theoretical
physics. There was a time when such deviation from the strict path of pure
topology was deemed a misdemeanour, particularly when the field into which
Graeme deviated was seen as less than totally rigorous. But time moves on and
subsequent developments have fully justified Graeme’s ‘deviance’. He is one
of a small number of mathematicians who have had an impact on theoretical
physicists.

Of all his works I would single out his beautiful book on Loop Groups,
written jointly with his former student Andrew Pressley. In a difficult area,
straddling algebra, geometry, analysis and physics the book manages to main-
tain a coherent outlook throughout, and it does so with style. It is a real
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2 Topology, Geometry and Quantum Field Theory

treasure, a worthy successor in its way to Hermann Weyl’s The Classical
Groups.

Perhaps we should look forward to another book in the same mould – in
time for the 70th birthday?

Edinburgh, June 2003



Part I

Contributions





1

A variant of K -theory: K±
MICHAEL ATIYAH and MICHAEL HOPKINS

University of Edinburgh and MIT.

1 Introduction

Topological K -theory [2] has many variants which have been developed and
exploited for geometric purposes. There are real or quaternionic versions,
‘Real’ K -theory in the sense of [1], equivariant K -theory [14] and combina-
tions of all these.

In recent years K -theory has found unexpected application in the physics of
string theories [6] [12] [13] [16] and all variants of K -theory that had previ-
ously been developed appear to be needed. There are even variants, needed for
the physics, which had previously escaped attention, and it is one such variant
that is the subject of this paper.

This variant, denoted by K±(X), was introduced by Witten [16] in relation
to ‘orientifolds’. The geometric situation concerns a manifold X with an in-
volution τ having a fixed sub-manifold Y . On X one wants to study a pair
of complex vector bundles (E+, E−) with the property that τ interchanges
them. If we think of the virtual vector bundle E+ − E−, then τ takes this
into its negative, and K±(X) is meant to be the appropriate K -theory of this
situation.

In physics, X is a 10-dimensional Lorentzian manifold and maps � → X
of a surface � describe the world-sheet of strings. The symmetry require-
ments for the appropriate Feynman integral impose conditions that the putative
K -theory K±(X) has to satisfy.

The second author proposed a precise topological definition of K±(X)

which appears to meet the physics requirements, but it was not entirely clear
how to link the physics with the geometry.

In this paper we elaborate on this definition and also a second (but equiva-
lent) definition of K±(X). Hopefully this will bring the geometry and physics
closer together, and in particular link it up with the analysis of Dirac operators.

5



6 Atiyah and Hopkins

Although K±(X) is defined in the context of spaces with involution it is
rather different from Real K -theory or equivariant K -theory (for G = Z2),
although it has superficial resemblances to both. The differences will become
clear as we proceed, but at this stage it may be helpful to consider the analogy
with cohomology. Equivariant cohomology can be defined (for any compact
Lie group G), and this has relations with equivariant K -theory. But there is
also ‘cohomology with local coefficients’, where the fundamental group π1(X)

acts on the abelian coefficient group. In particular for integer coefficients Z the
only such action is via a homomorphism π1(X) → Z2, i.e. by an element of
H1(X; Z2) or equivalently a double-covering X̃ of X .

This is familiar for an unoriented manifold with X̃ its oriented double-cover.
In this situation, if say X is a compact n-dimensional manifold, then we do not
have a fundamental class in H n(X; Z) but in Hn(X; Z̃) where Z̃ is the local
coefficient system defined by X̃ . This is also called ‘twisted cohomology’.

Here X̃ has a fixed-point-free involution τ and, in such a situation, our group
K±(X̃) is the precise K -theory analogue of twisted cohomology. This will
become clear later.

In fact K -theory has more sophisticated twisted versions. In [8] Donovan
and Karoubi use Wall’s graded Brauer group [15] to construct twistings from
elements of H1(X; Z2)× H3(X; Z)torsion. More general twistings of K -theory
arise from automorphisms of its classifying space, as do twistings of equiv-
ariant K -theory. Among these are twistings involving a general element of
H3(X; Z) (i.e., one which is not necessarily of finite order). These are also
of interest in physics, and have recently been the subject of much attention
[3] [5] [9]. Our K± is a twisted version of equivariant K -theory,1 and this
paper can be seen as a preliminary step towards these other more elaborate
versions.

2 The first definition

Given a space X with involution we have two natural K -theories, namely
K (X) and K Z2(X) – the ordinary and equivariant theories respectively. More-
over we have the obvious homomorphism

φ : K Z2(X) → K (X) (2.1)

1 It is the twisting of equivariant K -theory by the non-trivial element of H1
Z2

(pt) = Z2. From

the point of view of the equivariant graded Brauer group, K±(X) is the K -theory of the graded
cross product algebra C(X) ⊗ M � Z2, where C(X) is the algebra of continuous functions on
X , and M is the graded algebra of 2 × 2-matrices over the complex numbers, graded in such
a way that (i, j) entry has degree i + j . The action of Z2 is the combination of the geometric
action given on X and conjugation by the permutation matrix on M .
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which ‘forgets’ about the Z2-action. We can reformulate this by introducing
the space (X × Z2) with the involution (x, 0) → (τ (x), 1). Since this action is
free we have

K Z2(X × Z2) ∼= K (X)

and (2.1) can then be viewed as the natural homomorphism for K Z2 induced
by the projection

π : X × Z2 → X. (2.2)

Now, whenever we have such a homomorphism, it is part of a long exact
sequence (of period 2) which we can write as an exact triangle

K ∗
Z2

(X)
φ→ K ∗(X)

↖ ↙ δ

K ∗
Z2

(π)

(2.3)

where K ∗ = K 0 ⊕ K 1, δ has degree 1 mod 2 and the relative group K ∗
Z2

(π)

is just the relative group for a pair, when we replace π by a Z2-homotopically
equivalent inclusion. In this case a natural way to do this is to replace the X
factor on the right of (2.2) by X × I where I = [0, 1] is the unit interval with
τ being reflection about the mid-point 1

2 . Thus, explicitly

K ∗
Z2

(π) = K ∗
Z2

(X × I, X × ∂ I ) (2.4)

where ∂ I is the (2-point) boundary of I.
We now take the group in (2.4) (with the degree shifted by one) as our def-

inition of K ∗±(X). It is then convenient to follow the notation of [1] where
R p,q = R p ⊕ Rq with the involution changing the sign of the first factor,
and we use K -theory with compact supports (so as to avoid always writing the
boundary). Then our definition of K± becomes

K 0
±(X) = K 1

Z2
(X × R1,0) ∼= K 0

Z2
(X × R1,1) (2.5)

(and similarly for K 1).

Let us now explain why this definition fits the geometric situation we began
with (and which comes from the physics). Given a vector bundle E we can
form the pair (E, τ ∗E) or the virtual bundle

E − τ ∗E .

Under the involution, E and τ ∗E switch and the virtual bundle goes into its
negative. Clearly, if E came from an equivariant bundle, then E ∼= τ ∗E and
the virtual bundle is zero. Hence the virtual bundle depends only the element
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defined by E in the cokernel of φ, and hence by the image of E in the next
term of the exact sequence (2.3), i.e. by

δ(E) ∈ K 0
±(X).

This explains the link with our starting point and it also shows that one
cannot always define K±(X) in terms of such virtual bundles on X. In general
the exact sequence (2.3) does not break up into short exact sequences and δ is
not surjective.

At this point a physicist might wonder whether the definition of K±(X)

that we have given is the right one. Perhaps there is another group which is
represented by virtual bundles. We will give two pieces of evidence in favour
of our definition, the first pragmatic and the second more philosophical.

First let us consider the case when the involution τ on X is trivial. Then
K ∗

Z2
(X) = R(Z2) ⊗ K ∗(X) and R(Z2) = Z ⊕ Z is the representation ring of

Z2 and is generated by the two representations:

1 (trivial representation)
ρ (sign representation).

The homomorphism φ is surjective with kernel (1 − ρ)K ∗(X) so δ = 0 and

K 0
±(X) ∼= K 1(X). (2.6)

This fits with the requirements of the physics, which involves a switch from
type IIA to type IIB string theory. Note also that it gives an extreme example
when ∂ is not surjective.

Our second argument is concerned with the general passage from physi-
cal (quantum) theories to topology. If we have a theory with some symmetry
then we can consider the quotient theory, on factoring out the symmetry. In-
variant states of the original theory become states of the quotient theory but
there may also be new states that have to be added. For example if we have a
group G of geometric symmetries, then closed strings in the quotient theory
include strings that begin at a point x and end at g(x) for g ∈ G. All this is
similar to what happens in topology with (generalized) cohomology theories,
such as K -theory. If we have a morphism of theories, such as φ in (2.1) then
the third theory we get fits into a long-exact sequence. The part coming from
K (X) is only part of the answer – other elements have to be added. In ordinary
cohomology where we start with cochain complexes the process of forming a
quotient theory involves an ordinary quotient (or short exact sequence) at the
level of cochains. But this becomes a long exact sequence at the cohomology
level. For K -theory the analogue is to start with bundles over small open sets
and at this level we can form the naı̈ve quotients, but the K -groups arise when
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we impose the matching conditions to get bundles, and then we end up with
long exact sequences.

It is also instructive to consider the special case when the involution is free
so that we have a double covering X̃ → X and the exact triangle (2.3), with X̃
for X , becomes the exact triangle

K ∗(X)
φ→ K ∗(X̃)

↖ ↙ δ

K ∗
Z2

(L)

(2.7)

Here L is the real line bundle over X associated to the double covering X̃
(or to the corresponding element of H1(X, Z2)), and we again use compact
supports. Thus (for q = 0, 1 mod 2)

K q
±(X̃) = K q+1(L). (2.8)

If we had repeated this argument using equivariant cohomology instead of
equivariant K -theory we would have ended up with the twisted cohomology
mentioned earlier, via a twisted suspension isomorphism

Hq(X, Z̃) = Hq+1(L). (2.9)

This shows that, for free involutions, K± is precisely the analogue of twisted
cohomology, so that, for example, the Chern character of the former takes
values in the rational extension of the latter.

3 Relation to Fredholm operators

In this section we shall give another definition of K± which ties in naturally
with the analysis of Fredholm operators, and we shall show that this definition
is equivalent to the one given in Section 2.

We begin by recalling a few basic facts about Fredholm operators. Let H
be complex Hilbert space, B the space of bounded operators with the norm
topology and F ⊂ B the open subspace of Fredholm operators, i.e. operators
A so that ker A and coker A are both finite-dimensional. The index defined by

index A = dim ker A − dim coker A

is then constant on connected components of F. If we introduce the adjoint A∗

of A then

coker A = ker A∗

so that

index A = dim ker A − dim ker A∗.
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More generally if we have a continuous map

f : X → F

(i.e. a family of Fredholm operators, parametrized by X ), then one can define

index f ∈ K (X)

and one can show [2] that we have an isomorphism

index : [X, F ] ∼= K (X) (3.1)

where [ , ] denotes homotopy classes of maps. Thus K (X) has a natural defi-
nition as the ‘home’ of indices of Fredholm operators (parametrized by X): it
gives the complete homotopy invariant.

Different variants of K -theory can be defined by different variants of (3.1).
For example real K -theory uses real Hilbert space and equivariant K -theory
for G-spaces uses a suitable H -space module of G, namely L2(G) ⊗ H. It is
natural to look for a similar story for our new groups K±(X). A first candidate
might be to consider Z2-equivariant maps

f : X → F

where we endow F with the involution A → A∗ given by taking the adjoint
operator. Since this switches the role of kernel and cokernel it acts as −1 on
the index, and so is in keeping with our starting point.

As a check we can consider X with a trivial involution, then f becomes a
map

f : X → F̂

where F̂ is the space of self-adjoint Fredholm operators. Now in [4] it is shown
that F̂ has three components

F̂+, F̂−, F̂∗

where the first consists of A which are essentially positive (only finitely many
negative eigenvalues), the second is given by essentially negative operators.
These two components are trivial, in the sense that they are contractible, but
the third one is interesting and in fact [4]

F̂∗ ∼ �F (3.2)

where � denotes the loop space. Since

[X, �F ] ∼= K 1(X)
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this is in agreement with (2.6) – though to get this we have to discard the two
trivial components of F̂, a technicality to which we now turn.

Lying behind the isomorphism (3.1) is Kuiper’s Theorem [11] on the con-
tractibility of the unitary group of Hilbert spaces. Hence to establish that our
putative definition of K± coincides with the definition given in Section 2 we
should expect to need a generalization of Kuiper’s Theorem incorporating the
involution A → A∗ on operators. The obvious extension turns out to be false,
precisely because F̂, the fixed-point set of ∗ on F, has the additional con-
tractible components. There are various ways we can get round this but the
simplest and most natural is to use ‘stabilization’. Since H ∼= H ⊕ H we can
always stabilize by adding an additional factor of H. In fact Kuiper’s Theorem
has two parts in its proof:

(1) The inclusion U (H) → U (H ⊕ H) defined by u → u ⊕ 1 is homotopic
to the constant map.

(2) This inclusion is homotopic to the identity map given by the isomorphism
H ∼= H ⊕ H.

The proof of (1) is an older argument (sometimes called the ‘Eilenberg
swindle’), based on a correct use of the fallacious formula

1 = 1 + (−1 + 1) + (−1 + 1) . . .

= (1 + −1) + (1 + −1) + . . .

= 0.

The trickier part, and Kuiper’s contribution, is the proof of (2).
For many purposes, as in K -theory, the stronger version is a luxury and one

can get by with the weaker version (1), which applies rather more generally. In
particular (1) is consistent with taking adjoints (i.e. inverses in U (H)), which
is the case we need.

With this background explanation we now introduce formally our second
definition, and to distinguish it temporarily from K± as defined in Section 2,
we put

K±(X) = [X, F ]s
∗ (3.3)

where ∗ means we use Z2-maps compatible with ∗ and s means that we use
stable homotopy equivalence. More precisely the Z2-maps

f : X → F(H) g : X → F(H)

are called stably homotopic if the ‘stabilized’ maps

f s : X → F(H ⊕ H) gs : X → F(H ⊕ H)
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given by f s = f ⊕ J, gs = g ⊕ J are homotopic, where J is a fixed (essen-
tially unique) automorphism of H with

J = J∗, J 2 = 1, +1 and −1 both of infinite multiplicity. (3.4)

Note that under such stabilization the two contractible components F̂+ and
F̂− of F̂(H) both end up in the interesting component F̂∗ of F̂(H ⊕ H).

The first thing we need to observe about K±(X) is that it is an abelian
group. The addition can be defined in the usual way by using direct sums of
Hilbert spaces. Moreover we can define the negative degree groups K−n

± (X)

(for n ≥ 1) by suspension (with trivial involution on the extra coordinates), so
that

K−n
± (X) = K±(X × Sn, X × ∞).

However, at this stage we do not have the periodicity theorem for K±(X). This
will follow in due course after we establish the equivalence with K±(X). As
we shall see our construction of (4.2) is itself closely tied to the periodicity
theorem.

Our aim in the subsequent sections will be to show that there is a natural
isomorphism

K±(X) ∼= K±(X). (3.5)

This isomorphism will connect us up naturally with Dirac operators and so
should tie in nicely with the physics.

4 Construction of the map

Our first task is to define a natural map

K±(X) → K±(X). (4.1)

We recall from (2.5) that

K±(X) = K Z2(X × R1,1)

= K Z2(X × S2, X × ∞)

where S2 is the 2-sphere obtained by compactifying R1,1, and ∞ is the added
point. Note that Z2 now acts on S2 by a reflection, so that it reverses its orien-
tation.

Thus to define a map (4.1) it is sufficient to define a map

K Z2(X × S2) → K±(X). (4.2)
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This is where the Dirac operator enters. Recall first that, if we ignore involu-
tions, there is a basic map

K (X × S2) → [X, F ] ∼= K (X) (4.3)

which is the key to the Bott periodicity theorem. It is given as follows. Let
D be the Dirac operator on S2 from positive to negative spinors and let V
be a complex vector bundle on X × S2, then we can extend, or couple, D
to V to get a family DV of elliptic operators along the S2-fibres. Converting
this, in the usual way, to a family of (bounded) Fredholm operators we get the
map (4.3).

We now apply the same construction but keeping track of the involutions.
The new essential feature is that Z2 reverses the orientation of S2 and hence
takes the Dirac operator D into its adjoint D∗. This is precisely what we need
to end up in K±(X) so defining (4.2).

Remark 4.1. Strictly speaking the family DV of Fredholm operators does not
act in a fixed Hilbert space, but in a bundle of Hilbert spaces. The problem can
be dealt with by adding a trivial operator acting on a complementary bundle W
(so that W + V is trivial).

5 Equivalence of definition

Let us sum up what we have so far. We have defined a natural homomorphism

K±(X) → K±(X)

and we know that this is an isomorphism for spaces X with trivial involution –
both groups coinciding with K 1(X). Moreover, if for general X , we ignore the
involutions, or equivalently replace X by X × {0, 1}, we also get an isomor-
phism, both groups now coinciding with K 0(X).

General theory then implies that we have an isomorphism for all X. We shall
review this general argument.

Let A, B be representable theories, defined on the category of Z2-spaces, so
that

A(X) = [X, A]

B(X) = [X, B]

where [ , ] denotes homotopy classes of Z2-maps into the classifying spaces
of A, B of the theories. A natural map A(X) → B(X) then corresponds to a
Z2-map A → B. Showing that A and B are isomorphic theories is equivalent
to showing that A and B are Z2-homotopy equivalent.
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If we forget about the involutions then isomorphism of theories is the same
as ordinary homotopy equivalence. Restricting to spaces X with trivial invo-
lution corresponds to restricting to the fixed-point sets of the involution on A

and B.

Now there is a general theorem in homotopy theory [10] which asserts (for
reasonable spaces including Banach manifolds such as F ) that, if a Z2-map
A → B is both a homotopy equivalence ignoring the involution and for the
fixed-point sets, then it is a Z2-homotopy equivalence. Translated back into the
theories A, B it says that the map A(X) → B(X) is an isomorphism provided
it holds for spaces X with the trivial Z2-action, and for Z2-spaces X of the
form Y × {0, 1}.

This is essentially the situation we have here with

A = K± B = K±.

Both are representable. The representability of the first

K±(X) ∼= K Z2(X × R1,1)

arises from the general representability of K Z2 , the classifying space being
essentially the double loop space of F(H ⊗C2) with an appropriate Z2-action.
The second is representable because

K±(X) = [X, F]s
∗ = [X, Fs]∗ (5.1)

where Fs is obtained by stabilizing F. More precisely

Fs = lim
n→∞ Fn

where Fn = F(H ⊗ Cn) and the limit is taken with respect to the natural
inclusions, using J of (3.4) as a base point. The assertion in (5.1) is easily
checked and it simply gives two ways of looking at the stabilization process.

We have thus established the equivalence of our two definitions K± and K±.

6 Free involutions

We shall now look in more detail at the case of free involutions and, follow-
ing the notation of Section 1, we shall denote the free Z2-space by X̃ and its
quotient by X.

The reason for introducing the stabilization process in Section 3 concerned
fixed points. We shall now show that, for free involutions, we can dispense
with stabilization. Let

F → Fs
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be the natural inclusion of F in the direct limit space. This inclusion is a
Z2-map and a homotopy equivalence, though not a Z2-homotopy equivalence
(because of the fixed points). Now given the double covering X̃ → X we can
form the associated fibre bundles FX and Fs

X over X with fibres F and Fs .

Thus

FX = X̃ ×Z2 F Fs
X = X̃ ×Z2 Fs

and we have an inclusion

FX → Fs
X

which is fibre preserving. This map is a homotopy equivalence on the fibres
and hence, by a general theorem [7] (valid in particular for Banach manifolds)
a fibre homotopy equivalence. It follows that the homotopy classes of sections
of these two fibrations are isomorphic. But these are the same as[

X̃ , F
]
∗

and
[

X̃ , F
]s

∗
= K±(X̃).

This show that, for a free involution, we can use F instead of Fs. Moreover it
gives the following simple description of K±(X̃)

K±(X̃) = Homotopy classes of sections of FX . (6.1)

This is the K -theory analogue of twisted cohomology described in Section 1.
A corresponding approach to the higher twist of K -theory given by an element
of H3(X; Z) will be developed in [3].

7 The real case

Everything we have done so far extends, with appropriate modifications, to
real K -theory. The important difference is that the periodicity is now 8 rather
than 2 and that, correspondingly, we have to distinguish carefully between
self-adjoint and skew-adjoint Fredholm operators. Over the complex num-
bers multiplication by i converts one into the other, but over the real numbers
there are substantial differences.

We denote by F1(R) the interesting component of the space of real self-
adjoint Fredholm operators F̂(R) on a real Hilbert space (discarding two
contractible components as before). We also denote by F−1(R) the space of
skew-adjoint Fredholm operators. Then in [4] it is proved that

[X, F1(R)] ∼= K O1(X) (7.1)

[X, F−1(R)] ∼= K O−1(X) ∼= K O7(X) (7.2)

showing that these are essentially different groups.
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Using (7.1), stabilizing, and arguing precisely as before, we define

K O±(X) = K O1
Z2

(X × R1,0) ∼= K OZ2(X × R1,7)

KO±(X) = [X, F(R)]s
∗

where (in (2.5)) the mod 2 periodicity of K has been replaced by the mod
8 periodicity of K O . But we cannot now just use the Dirac operator on S2

because this is not real. Instead we have to use the Dirac operator on S8, which
then gives us our map

K O±(X) → [X, F(R)]s
∗. (7.3)

The same proof as before establishes the isomorphism of (7.3), so that

K O±(X) ∼= KO±(X)

and more generally for q modulo 8

K Oq
±(X) ∼= KO

q
±(X). (7.4)

In [4] there is a more systematic analysis of Fredholm operators in relation to
Clifford algebras and using this it is possible to give more explicit descriptions
of K Oq

±(X), for all q , in terms of Z2-mappings into appropriate spaces of
Fredholm operators. This would fit in with the different behaviour of the Dirac
operator in different dimensions (modulo 8).
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1 Introduction

The work to be presented in this paper has been inspired by several of Pro-
fessor Graeme Segal’s papers. Our search for a geometrically defined elliptic
cohomology theory with associated elliptic objects obviously stems from his
Bourbaki seminar [28]. Our readiness to form group completions of symmet-
ric monoidal categories by passage to algebraic K -theory spectra derives from
his Topology paper [27]. Our inclination to invoke 2-functors to the 2-category
of 2-vector spaces generalizes his model for topological K -theory in terms of
functors from a path category to the category of vector spaces. We offer him
our admiration.

Among all generalized (co-)homology theories, a few hold a special position
because they are, in some sense, geometrically defined. For example, de Rham
cohomology of manifolds is defined in terms of cohomology classes of closed
differential forms, topological K -theory of finite CW complexes is defined in
terms of equivalence classes of complex vector bundles, and complex bordism
is defined in terms of bordism classes of maps from stably complex manifolds.
The geometric origin of these theories makes them particularly well suited to
the analysis of many key problems. For example, Chern–Weil theory associates
differential forms related to the curvature tensor to manifolds with a connec-
tion, whose de Rham cohomology classes are the Chern classes of the tangent
bundle of the manifold. The Atiyah–Segal index theory [2] associates formal
differences of vector bundles to parametrized families of Fredholm operators,
arising e.g. from complexes of elliptic pseudo-differential operators, and their
isomorphism classes live in topological K -theory. Moduli spaces of isomor-
phism classes of solutions to e.g. Yang–Mills gauge-theoretic problems can
generically yield maps from suitably structured manifolds, with well-defined
bordism classes in the corresponding form of bordism homology. On the other
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hand, Quillen’s theorem that the coefficient ring π∗(MU ) for complex bordism
theory is the Lazard ring that corepresents (commutative one-dimensional) for-
mal group laws has no direct manifold-geometric interpretation, and may seem
to be a fortuitous coincidence in this context.

From the chromatic point of view of stable homotopy theory, related to the
various periodicity operators vn for n ≥ 0 that act in many cohomology theo-
ries, these three geometrically defined cohomology theories detect an increas-
ing amount of information. De Rham cohomology or real singular cohomology
sees only rational phenomena, because for each prime p multiplication by
p = v0 acts invertibly on H∗(X; R). Topological K -theory only picks up Bott
periodic phenomena, because multiplication by the Bott class u ∈ π2(KU )

acts invertibly on KU∗(X), and u p−1 = v1 for each prime p. Complex bor-
dism MU∗(X) instead detects all levels of periodic phenomena. We can say
that real cohomology, topological K -theory and complex bordism have chro-
matic filtration 0, 1 and ∞, respectively. A precise interpretation of this is
that the spectra HR and KU are Bousfield local with respect to the Johnson–
Wilson spectra E(n) for n = 0 and 1, respectively, while MU is not E(n)-local
for any finite n. Traditionally, an elliptic cohomology theory is a complex ori-
ented Landweber exact cohomology theory associated to the formal group law
of an elliptic curve. It will have chromatic filtration 2 when the elliptic curve
admits a supersingular specialization, and so any cohomology theory of chro-
matic filtration 2 might loosely be called a form of elliptic cohomology. How-
ever, the formal group law origin of traditional elliptic cohomology is not of a
directly geometric nature, and so there has been some lasting interest in finding
a truly geometrically defined form of elliptic cohomology.

It is the aim of the present paper to introduce a geometrically defined coho-
mology theory that is essentially of chromatic filtration 2, or, more precisely,
a connective form of such a theory. It therefore extends the above list of dis-
tinguished cohomology theories one step beyond topological K -theory, to a
theory that will detect v2-periodic phenomena, but will ignore the complexity
of all higher vn-periodicities for n ≥ 3.

The theory that we will present is represented by the algebraic K-theory
spectrum K (V) of the Kapranov–Voevodsky 2-category of 2-vector spaces
[15]. A 2-vector space is much like a complex vector space, but with all occur-
rences of complex numbers, sums, products and equalities replaced by finite-
dimensional complex vector spaces, direct sums, tensor products and coherent
isomorphisms, respectively. It is geometrically defined in the sense that the 0th
cohomology group K (V)0(X) of a space X can be defined in terms of equiv-
alence classes of 2-vector bundles over X (or, more precisely, over the total
space Y of a Serre fibration Y → X with acyclic homotopy fibers, i.e., an
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acyclic fibration) (cf. Theorem 4.10). A 2-vector bundle over X is a suitable
bundle of categories, defined much like a complex vector bundle over X , but
subject to the same replacements as above. The previously studied notion of a
gerbe over X with band C∗ is a special case of a 2-vector bundle, correspond-
ing in the same way to a complex line bundle.

We conjecture in 5.1 that the spectrum K (V) is equivalent to the algebraic
K -theory spectrum K (ku) of the connective topological K -theory spectrum
ku, considered as a ‘brave new ring’, i.e., as an S-algebra. This is a special
case of a more general conjecture, where for a symmetric bimonoidal category
B (which is a generalization of a commutative semi-ring) we compare the cat-
egory of finitely generated free modules over B to the category of finitely gen-
erated free modules over the commutative S-algebra A = Spt(B) (which is a
generalization of a commutative ring) associated to B. The conjecture amounts
to a form of ‘positive thinking’, asserting that for the purpose of forming
algebraic K -theory spectra it should not matter whether we start with a semi-
ring-like object (such as the symmetric bimonoidal category B) or the ring-like
object given by its additive Grothendieck group completion (such as the com-
mutative S-algebra A). This idea originated with Marcel Bökstedt, and we are
indebted to him for suggesting this approach. We have verified the conjec-
ture in the case of actual commutative semi-rings, interpreted as symmetric bi-
monoidal categories that only have identity morphisms, and view this as strong
support in favor of the conjecture.

Continuing, we know that K (ku), or rather a spectrum very closely related
to it, is essentially of chromatic filtration 2. For connective spectra, such as all
those arising from algebraic K -theory, there is a more appropriate and flexible
variation of the chromatic filtration that we call the telescopic complexity of
the spectrum; cf. Definition 6.1. For example, integral and real cohomology
have telescopic complexity 0, connective and periodic topological K -theory
have telescopic complexity 1, and traditional elliptic cohomology has tele-
scopic complexity 2.

It is known, by direct non-trivial calculations [3], that K (�∧
p ) has telescopic

complexity 2, where �∧
p is the connective p-complete Adams summand of

topological K -theory and p ≥ 5. The use of the Adams summand in place
of the full connective p-complete topological K -theory spectrum ku∧

p , as well
as the hypothesis p ≥ 5, are mostly technical assumptions that make the calcu-
lations manageable, and it seems very likely that also K (ku∧

p ) will have tele-
scopic complexity 2 for any prime p. It then follows from [9], if we assume
the highly respectable Lichtenbaum–Quillen conjecture for K (Z) at p, that
also K (ku) has telescopic complexity 2. In this sense we shall allow ourselves
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to think of K (ku), and conjecturally K (V), as a connective form of elliptic
cohomology.

The definition of a 2-vector bundle is sufficiently explicit that it may carry
independent interest. In particular, it may admit notions of connective structure
and curving, generalizing the notions for gerbes [8, §5.3], such that to each
2-vector bundle E over X with connective structure there is an associated vir-
tual vector bundle H over the free loop space LX = Map(S1, X), generalizing
the anomaly line bundle for gerbes [8, §6.2]. If E is equipped with a curving,
there probably arises an action functional for oriented compact surfaces over
X (ibid.), providing a construction of an elliptic object over X in the sense of
Segal [28]. Thus 2-vector bundles over X (with extra structure) may have nat-
urally associated elliptic objects over X . However, we have not yet developed
this theory properly, and shall therefore postpone its discussion to a later joint
paper, which will also contain proofs of the results announced in the present
paper. Some of the basic ideas presented here were sketched by the first author
in [4].

The paper is organized as follows. In Section 2 we define a charted
2-vector bundle of rank n over a space X with respect to an open cover U

that is indexed by a suitably partially ordered set I. This corresponds to a
Steenrod-style definition of a fiber bundle, with standard fiber the category Vn

of n-tuples of finite-dimensional complex vector spaces, chosen trivializations
over the chart domains in U, gluing data that compare the trivializations over
the intersection of two chart domains and coherence isomorphisms that sys-
tematically relate the two possible comparisons that result over the intersec-
tion of three chart domains. We also discuss when two such charted 2-vector
bundles are to be viewed as equivalent, i.e., when they define the same abstract
object.

In Section 3 we think of a symmetric bimonoidal category B as a gen-
eralized semi-ring, and make sense of the algebraic K -theory K (B) of its
2-category of finitely generated free ‘modules’ Bn . We define the weak equiva-
lences Bn → Bn to be given by a monoidal category M = GLn(B) of weakly
invertible matrices over B, cf. Definition 3.6, in line with analogous construc-
tions for simplicial rings and S-algebras [33]. It is a key point that we allow
GLn(B) to contain more matrices than the strictly invertible ones, of which
there are too few to yield an interesting theory. We also present an explicit bar
construction BM that is appropriate for such monoidal categories. Our prin-
cipal example is the symmetric bimonoidal category V of finite-dimensional
complex vector spaces under direct sum and tensor product, for which the
modules Vn are the 2-vector spaces of Kapranov and Voevodsky.
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In Section 4 we bring these two developments together, by showing that the
equivalence classes of charted 2-vector bundles of rank n over a (reasonable)
space X is in natural bijection (Theorem 4.5) with the homotopy classes of
maps from X to the geometric realization |BGLn(V)| of the bar construction
on the monoidal category of weakly invertible n×n matrices over V. The group
of homotopy classes of maps from X to the algebraic K -theory space K (V) is
naturally isomorphic (Theorem 4.10) to the Grothendieck group completion
of the abelian monoid of virtual 2-vector bundles over X , i.e., the 2-vector
bundles E ↓ Y over spaces Y that come equipped with an acyclic fibration
a : Y → X . Hence the contravariant homotopy functor represented by K (V) is
geometrically defined, in the sense that virtual 2-vector bundles over X are the
(effective) cycles for this functor at X .

In Section 5 we compare the algebraic K -theory of the generalized semi-
ring B to the algebraic K -theory of its additive group completion. To make
sense of the latter as a ring object, as is necessary to form its algebraic
K -theory, we pass to structured ring spectra, i.e., to the commutative S-algebra
A = Spt(B). We propose that the resulting algebraic K -theory spectra K (B)

and K (A) are weakly equivalent (Conjecture 5.1), and support this assertion
by confirming that it holds true in the special case of a discrete symmetric
bimonoidal category B, i.e., a commutative semi-ring in the usual sense. In
the special case of 2-vector spaces the conjecture asserts that K (V) is the al-
gebraic K -theory K (ku) of connective topological K -theory ku viewed as a
commutative S-algebra.

In Section 6 we relate the spectrum K (ku) to the algebraic K -theory spec-
trum K (�∧

p ) of the connective p-complete Adams summand �∧
p of ku∧

p . The
latter theory K (�∧

p ) is known (Theorem 6.4, [3]) to have telescopic complex-
ity 2, and this section makes it plausible that also the former theory K (ku)

has telescopic complexity 2, and hence is a connective form of elliptic coho-
mology. Together with Conjecture 5.1 this says that (a) the generalized coho-
mology theory represented by K (ku) is geometrically defined, because its 0th
cohomology group, which is then represented by K (V), is defined in terms
of formal differences of virtual 2-vector bundles, and (b) that it has telescopic
complexity 2, meaning that it captures one more layer of chromatic complexity
than topological K -theory does.

2 Charted two-vector bundles

Definition 2.1. Let X be a topological space. An ordered open cover (U, I) of
X is a collection U = {Uα | α ∈ I} of open subsets Uα ⊂ X , indexed by a
partially ordered set I, such that
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(i) the Uα cover X in the sense that
⋃

α Uα = X , and
(ii) the partial ordering on I restricts to a total ordering on each finite subset

{α0, . . . , αp} of I for which the intersection Uα0,...,αp = Uα0 ∩ · · · ∩ Uαp

is non-empty.

The partial ordering on I makes the nerve of the open cover U an ordered
simplicial complex, rather than just a simplicial complex. We say that U is a
good cover if each finite intersection Uα0,...,αp is either empty or contractible.

Definition 2.2. Let X be a topological space, with an ordered open cover
(U, I), and let n ∈ N = {0, 1, 2, . . . } be a non-negative integer. A charted
2-vector bundle E of rank n over X consists of

(i) an n × n matrix

Eαβ = (Eαβ
i j )n

i, j=1

of complex vector bundles over Uαβ , for each pair α < β in I, such that
over each point x ∈ Uαβ the integer matrix of fiber dimensions

dim(Eαβ
x ) = (dim Eαβ

i j,x )
n
i, j=1

is invertible, i.e., has determinant ±1, and
(ii) an n × n matrix

φαβγ = (φ
αβγ

ik )n
i,k=1 : Eαβ · Eβγ

∼=−−−−→ Eαγ

of vector bundle isomorphisms

φ
αβγ

ik :
⊕n

j=1 Eαβ
i j ⊗ Eβγ

jk

∼=−−−−→ Eαγ

ik

over Uαβγ , for each triple α < β < γ in I, such that
(iii) the diagram

Eαβ · (Eβγ · Eγ δ)
α ��

id·φβγ δ

��

(Eαβ · Eβγ ) · Eγ δ

φαβγ ·id
��

Eαβ · Eβδ

φαβδ

�� Eαδ Eαγ · Eγ δ

φαγ δ

��

of vector bundle isomorphisms over Uαβγ δ commutes, for each chain α <

β < γ < δ in I.

Here α denotes the (coherent) natural associativity isomorphism for the matrix
product · derived from the tensor product ⊗ of vector bundles. We call the n×n
matrices Eαβ and φαβγ the gluing bundles and the coherence isomorphisms of
the charted 2-vector bundle E ↓ X , respectively.
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Definition 2.3. Let E and F be two charted 2-vector bundles of rank n over X ,
with respect to the same ordered open cover (U, I), with gluing bundles Eαβ

and Fαβ and coherence isomorphisms φαβγ and ψαβγ , respectively. An ele-
mentary change of trivializations (T α, ταβ) from E to F is given by

(i) an n × n matrix T α = (T α
i j )

n
i, j=1 of complex vector bundles over Uα , for

each α in I, such that over each point x ∈ Uα the integer matrix of fiber
dimensions dim(T α

x ) has determinant ±1, and
(ii) an n × n matrix of vector bundle isomorphisms

ταβ = (τ
αβ
i j )n

i, j=1 : Fαβ · T β
∼=−−−−→ T α · Eαβ

over Uαβ , for each pair α < β in I, such that
(iii) the diagram

Fαβ · Fβγ · T γ
id·τβγ

��

ψαβγ ·id
��

Fαβ · T β · Eβγ
ταβ ·id �� T α · Eαβ · Eβγ

id·φαβγ

��
Fαγ · T γ

ταγ
�� T α · Eαγ

(natural associativity isomorphisms suppressed) of vector bundle isomor-
phisms over Uαβγ commutes, for each triple α < β < γ in I.

Definition 2.4. Let (U, I) and (U′, I′) be two ordered open covers of X . Sup-
pose that there is an order-preserving carrier function c : I′ → I such that for
each α ∈ I′ there is an inclusion U ′

α ⊂ Uc(α). Then (U′, I′) is a refinement of
(U, I).

Let E be a charted 2-vector bundle of rank n over X with respect to (U, I),
with gluing bundles Eαβ and coherence isomorphisms φαβγ . Let

c∗Eαβ = Ec(α)c(β)|U ′
αβ

for α < β in I′ and

c∗φαβγ = φc(α)c(β)c(γ )|U ′
αβγ

for α < β < γ in I′, be n × n matrices of vector bundles and vector bun-
dle isomorphisms over U ′

αβ and U ′
αβγ , respectively. Then there is a charted

2-vector bundle c∗E of rank n over X with respect to (U′, I′), with gluing
bundles c∗Eαβ and coherence isomorphisms c∗φαβγ . We say that c∗E is an
elementary refinement of E.

More generally, two charted 2-vector bundles of rank n over X are said
to be equivalent 2-vector bundles if they can be linked by a finite chain of
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elementary changes of trivializations and elementary refinements. (This is the
notion of equivalence that appears to be appropriate for our representability
Theorem 4.5.)

Remark 2.5. A charted 2-vector bundle of rank 1 consists of precisely the
data defining a gerbe over X with band C∗, as considered e.g. by Giraud
[10], Brylinski [8] and Hitchin [13, §1]. There is a unitary form of the def-
inition above, with Hermitian gluing bundles and unitary coherence isomor-
phisms, and a unitary 2-vector bundle of rank 1 is nothing but a gerbe with
band U (1). In either case, the set of equivalence classes of C∗-gerbes or U (1)-
gerbes over X is in natural bijection with the third integral cohomology group
H3(X; Z) [8, 5.2.10].

Definition 2.6. Let E ↓ X be a charted 2-vector bundle of rank n, with notation
as above, and let a : Y → X be a map of topological spaces. Then there is
a charted 2-vector bundle a∗E ↓ Y of rank n obtained from E by pullback
along a. It is charted with respect to the ordered open cover (U′, I) with U′ =
{U ′

α = a−1(Uα) | α ∈ I}. It has gluing bundles a∗Eαβ obtained by pullback
of the matrix of vector bundles Eαβ along a : U ′

αβ → Uαβ , and coherence

isomorphisms a∗φαβγ obtained by pullback of the matrix of vector bundle
isomorphisms φαβγ along a : U ′

αβγ → Uαβγ . By definition there is then a map
of charted 2-vector bundles â : a∗E → E covering a : Y → X .

Definition 2.7. Let E ↓ X and F ↓ X be charted 2-vector bundles with respect
to the same ordered open cover (U, I) of X , of ranks n and m, with gluing bun-
dles Eαβ and Fαβ and coherence isomorphisms φαβγ and ψαβγ , respectively.
Their Whitney sum E ⊕ F ↓ X is then the charted 2-vector bundle of rank
(n + m) with gluing bundles given by the (n + m) × (n + m) matrix of vector
bundles

(
Eαβ 0

0 Fαβ

)

and coherence isomorphisms given by the (n + m) × (n + m) matrix of vector
bundle isomorphisms

(
φαβγ 0

0 ψαβγ

)
:

(
Eαβ 0

0 Fαβ

)
·
(

Eβγ 0
0 Fβγ

) ∼=−−−−→
(

Eαγ 0
0 Fαγ

)
.

There is an elementary change of trivializations from E ⊕ F to F ⊕ E given by
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the (n + m) × (n + m) matrix

T α =
(

0 Im

In 0

)

for each α in I, and identity isomorphisms ταβ . Here In denotes the identity
n × n matrix, with the trivial rank 1-vector bundle in each diagonal entry and
zero bundles elsewhere.

3 Algebraic K-theory of two-vector spaces

Let (B, ⊕, ⊗, 0, 1) be a symmetric bimonoidal category, with sum and tensor
functors

⊕, ⊗ : B × B −−−−→ B

and zero and unit objects 0, 1 in B. These satisfy associative, commutative and
distributive laws, etc., up to a list of natural isomorphisms, and these isomor-
phisms are coherent in the sense that they fulfil a (long) list of compatibility
conditions, as presented by Laplaza in [17, §1]. We say that B is a bipermu-
tative category if the natural isomorphisms are almost all identity morphisms,
except for the commutative laws for ⊕ and ⊗ and the left distributive law, and
these in turn fulfil the (shorter) list of compatibility conditions listed by May
in [20, §VI.3].

Suppose that B is small, i.e., that the class of objects of B is in fact a set. Let
π0(B) be the set of path components of the geometric realization of B. (Two
objects of B are in the same path component if and only if they can be linked
by a finite chain of morphisms in B.) Then the sum and tensor functors induce
sum and product pairings that make π0(B) into a commutative semi-ring with
zero and unit. We can therefore think of the symmetric bimonoidal category B

as a kind of generalized commutative semi-ring. Conversely, any commutative
semi-ring may be viewed as a discrete category, with only identity morphisms,
which is then a symmetric bimonoidal category.

The additive Grothendieck group completion Gr(π0(B)) of the commutative
semi-ring π0(B) is a commutative ring. Likewise, the geometric realization
|B| can be group completed with respect to the symmetric monoidal pairing
induced by the sum functor ⊕, and this group completion can take place at
the categorical level, say by Quillen’s construction B−1B [11] or its general-
ization B+ = EB ×B B2 due to Thomason [31, 4.3.1]. However, the tensor
functor ⊗ does not readily extend to B−1B, as was pointed out by Thomason
[32]. So B−1B is a symmetric monoidal category, but usually not a symmetric
bimonoidal category.
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Example 3.1. Let V be the topological bipermutative category of finite-
dimensional complex vector spaces, with set of objects N = {0, 1, 2, . . . } with
d ∈ N interpreted as the complex vector space Cd , and morphism spaces

V(d, e) =
{

U (d) if d = e,

∅ otherwise

from d to e. The sum functor ⊕ takes (d, e) to d + e and embeds U (d)×U (e)
into U (d + e) by the block sum of matrices. The tensor functor ⊗ takes (d, e)
to de and maps U (d) × U (e) to U (de) by means of the left lexicographic or-
dering, which identifies {1, . . . , d}×{1, . . . , e} with {1, . . . , de}. Both of these
functors are continuous. The zero and unit objects are 0 and 1, respectively.

In this case, the semi-ring π0(V) = N is that of the non-negative integers,
with additive group completion Gr(N) = Z. The geometric realization |V| =∐

d≥0 BU (d) is the classifying space for complex vector bundles, while its
group completion |V−1V| � Z × BU classifies virtual vector bundles. The
latter space is the infinite loop space underlying the spectrum ku = Spt(V)

that represents connective complex topological K -theory, which is associated
to either of the symmetric monoidal categories V or V−1V by the procedure
of Segal [27], as generalized by Shimada and Shimakawa [29] and Thomason
[31, 4.2.1].

Definition 3.2. Let (B, ⊕, ⊗, 0, 1) be a symmetric bimonoidal category. The
category Mn(B) of n × n matrices over B has objects the matrices V =
(Vi j )

n
i, j=1 with entries that are objects of B, and morphisms the matrices

φ = (φi j )
n
i, j=1 with entries that are morphisms in B. The source (domain) of φ

is the matrix of sources of the entries φi j , and similarly for targets (codomains).
There is a matrix multiplication functor

Mn(B) × Mn(B)
·−−−−→ Mn(B)

that takes two matrices U = (Ui j )
n
i, j=1 and V = (Vjk)

n
j,k=1 to the matrix

W = U · V = (Wik)
n
i,k=1 with

Wik =
n⊕

j=1

Ui j ⊗ Vjk

for i, k = 1, . . . , n. In general, we need to make a definite choice of how the
n-fold sum is to be evaluated, say by bracketing from the left. When the direct
sum functor is strictly associative, as in the bipermutative case, the choice does
not matter.
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The unit object In of Mn(B) is the n × n matrix with unit entries 1 on the
diagonal and zero entries 0 everywhere else.

Proposition 3.3. (Mn(B), ·, In) is a monoidal category.

In other words, the functor · is associative up to a natural associativity iso-
morphism

α : U · (V · W )
∼=−−−−→ (U · V ) · W

and unital with respect to In up to natural left and right unitality isomorphisms.
These are coherent, in the sense that they fulfil a list of compatibility con-
ditions, including the Mac Lane–Stasheff pentagon axiom. The proof of the
proposition is a direct application of Laplaza’s first coherence theorem from
[17, §7].

Definition 3.4. Let B be a commutative semi-ring with additive Grothendieck
group completion the commutative ring A = Gr(B). Let Mn(A) and Mn(B)

be the multiplicative monoids of n × n matrices with entries in A and B, re-
spectively, and let GLn(A) ⊂ Mn(A) be the subgroup of invertible n × n
matrices with entries in A, i.e., those whose determinant is a unit in A. Let the
submonoid GLn(B) ⊂ Mn(B) be the pullback in the diagram

GLn(B) ��
��

��

GLn(A)
��

��
Mn(B) �� Mn(A) .

Example 3.5. When B = N and A = Z, GLn(N) = Mn(N) ∩ GLn(Z) is the
monoid of n × n matrices with non-negative integer entries that are invertible
as integer matrices, i.e., have determinant ±1. It contains the elementary ma-
trices that have entries 1 on the diagonal and in one other place, and 0 entries
elsewhere. This is a larger monoid than the subgroup of units in Mn(N), which
only consists of the permutation matrices.

Definition 3.6. Let B be a symmetric bimonoidal category. Let GLn(B) ⊂
Mn(B) be the full subcategory with objects the matrices V = (Vi j )

n
i, j=1

whose matrix of path components [V ] = ([Vi j ])n
i, j=1 lies in the submonoid

GLn(π0(B)) ⊂ Mn(π0(B)). We call GLn(B) the category of weakly invert-
ible n × n matrices over B.
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Corollary 3.7. (GLn(B), ·, In) is a monoidal category.

Definition 3.8. Let (M, ·, e) be a monoidal category, and write [p] = {0 <

1 < · · · < p}. The bar construction BM is a simplicial category [p] �→ BpM.
In simplicial degree p the category BpM has objects consisting of

(i) triangular arrays of objects Mαβ of M, for all α < β in [p], and

(ii) isomorphisms

µαβγ : Mαβ · Mβγ
∼=−−−−→ Mαγ

in M, for all α < β < γ in [p], such that

(iii) the diagram of isomorphisms

Mαβ · (Mβγ · Mγ δ)
α ��

id·µβγ δ

��

(Mαβ · Mβγ ) · Mγ δ

µαβγ ·id
��

Mαβ · Mβδ

µαβδ

�� Mαδ Mαγ · Mγ δ

µαγ δ

��

commutes, for all α < β < γ < δ in [p].

Here α is the associativity isomorphism for the monoidal operation · in M.
The morphisms in BpM from one object (Mαβ

0 , µ
αβγ

0 ) to another

(Mαβ

1 , µ
αβγ

1 ) consist of a triangular array of morphisms φαβ : Mαβ

0 → Mαβ

1 in
M for all α < β in [p], such that the diagram

Mαβ

0 · Mβγ

0

µ
αβγ

0 ��

φαβ ·φβγ

��

Mαγ

0

φαγ

��
Mαβ

1 · Mβγ

1
µ

αβγ

1

�� Mαγ

1

commutes, for all α < β < γ in [p].
To allow for degeneracy operators f in the following paragraph, let Mαα =

e be the unit object of M, let µααβ and µαββ be the left and right unitality
isomorphisms for ·, respectively, and let φαα be the identity morphism on e.

The simplicial structure on BM is given as follows. For each order-
preserving function f : [q] → [p] let the functor f ∗ : BpM → BqM take
the object (Mαβ, µαβγ ) of BpM to the object of BqM that consists of the tri-
angular array of objects M f (α) f (β) for α < β in [q] and the isomorphisms
µ f (α) f (β) f (γ ) for α < β < γ in [q].
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Each monoidal category M can be rigidified to an equivalent strict monoidal
category Ms , i.e., one for which the associativity isomorphism and the left
and right unitality isomorphisms are all identity morphisms [18, XI.3.1]. The
usual strict bar construction for Ms is a simplicial category [p] �→ M

p
s , and

corresponds in simplicial degree p to the full subcategory of BpMs where all
the isomorphisms µαβγ are identity morphisms.

Proposition 3.9. The bar construction BM is equivalent to the strict bar con-
struction [p] �→ M

p
s for any strictly monoidal rigidification Ms of M.

This justifies calling BM the bar construction. The proof is an application
of Quillen’s theorem A [22] and the coherence theory for monoidal categories.

Definition 3.10. Let Ar M = Fun([1], M) be the arrow category of M, with
the morphisms of M as objects and commutative square diagrams in M as mor-
phisms. There are obvious source and target functors s, t : Ar M → M. Let
Iso M ⊂ Ar M be the full subcategory with objects the isomorphisms of M.

Lemma 3.11. Let (M, ·, e) be a monoidal category. The category B2M is the
limit of the diagram

M × M
·−−−−→ M

s←−−−− Iso M
t−−−−→ M .

For p ≥ 2 each object or morphism of BpM is uniquely determined by the
collection of its 2-faces in B2M, which is indexed by the set of monomorphisms
f : [2] → [p].

Consider the symmetric bimonoidal category B as a kind of generalized
semi-ring. The sum and tensor operations in B make the product category Bn

a generalized (right) module over B, for each non-negative integer n. The col-
lection of B-module homomorphisms Bn → Bn is encoded in terms of (left)
matrix multiplication by the monoidal category Mn(B), and we shall inter-
pret the monoidal subcategory GLn(B) as a category of weak equivalences
Bn ∼−→ Bn . This motivates the following definition.

Definition 3.12. Let B be a symmetric bimonoidal category. The algebraic
K -theory of the 2-category of (finitely generated free) modules over B is the
loop space

K (B) = 
B
(∐

n≥0

|BGLn(B)|).
Here |BGLn(B)| is the geometric realization of the bar construction on the
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monoidal category GLn(B) of weakly invertible n × n matrices over B. The
block sum of matrices GLn(B) × GLm(B) → GLn+m(B) makes the coprod-
uct

∐
n≥0 |BGLn(B)| a topological monoid. The looped bar construction 
B

provides a group completion of this topological monoid.
When B = V is the category of finite-dimensional complex vector spaces,

the (finitely generated free) modules over V are called 2-vector spaces, and
K (V) is the algebraic K -theory of the 2-category of 2-vector spaces.

Let GL∞(B) = colimn GLn(B) be the infinite stabilization with respect
to block sum with the unit object in GL1(B), and write B = π0(B) and
A = Gr(B). Then K (B) � Z × |BGL∞(B)|+ by the McDuff–Segal group
completion theorem [21]. Here the superscript ‘+’ refers to Quillen’s plus-
construction with respect to the (maximal perfect) commutator subgroup of
GL∞(A) ∼= π1|BGL∞(B)|; cf. Proposition 5.3 below.

4 Represented two-vector bundles

Let X be a topological space, with an ordered open cover (U, I). Recall that
all morphisms in V are isomorphisms, so Ar GLn(V) = Iso GLn(V).

Definition 4.1. A represented 2-vector bundle E of rank n over X consists of:

(i) a gluing map

gαβ : Uαβ −−−−→ |GLn(V)|
for each pair α < β in I, and

(ii) a coherence map

hαβγ : Uαβγ −−−−→ |Ar GLn(V)|
satisfying s ◦ hαβγ = gαβ · gβγ and t ◦ hαβγ = gαγ over Uαβγ , for each
triple α < β < γ in I, such that

(iii) the 2-cocycle condition

hαγ δ ◦ (hαβγ · id) ◦ α = hαβδ ◦ (id · hβγ δ)

holds over Uαβγ δ for all α < β < γ < δ in I.

There is a suitably defined notion of equivalence of represented 2-vector
bundles, which we omit to formulate here, but cf. Definitions 2.3 and 2.4.

Definition 4.2. Let E(d) = EU (d) ×U (d) Cd ↓ BU (d) be the universal Cd -
bundle over BU (d). There is a universal n × n matrix

E = (Ei j )
n
i, j=1
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of Hermitian vector bundles over |GLn(V)|. Over the path component

|GLn(V)D| =
n∏

i, j=1

BU (di j )

for D = (di j )
n
i, j=1 in GLn(N), the (i, j)th entry in E is the pullback of the

universal bundle E(di j ) along the projection |GLn(V)D| → BU (di j ).
Let |Ar U (d)| be the geometric realization of the arrow category Ar U (d),

where U (d) is viewed as a topological groupoid with one object. Each pair
(A, B) ∈ U (d)2 defines a morphism from C to (A, B) · C = BC A−1 so

|Ar U (d)| ∼= EU (d)2 ×U (d)2 U (d)

equals the Borel construction for this (left) action of U (d)2 on U (d). There are
source and target maps s, t : |Ar U (d)| → BU (d), which take the 1-simplex
represented by a morphism (A, B) to the 1-simplices represented by the mor-
phisms A and B, respectively. By considering each element in U (d) as a uni-
tary isomorphism Cd → Cd one obtains a universal unitary vector bundle

isomorphism φ(d) : s∗E(d)
∼=−→ t∗E(d).

There is a universal n × n matrix of unitary vector bundle isomorphisms

φ : s∗E ∼= t∗E

over |Ar GLn(V)|. Over the path component

|Ar GLn(V)D| =
n∏

i, j=1

|Ar U (di j )|

for D as above, the (i, j)th entry in φ is the pullback of the universal isomor-
phism φ(di j ) along the projection |Ar GLn(V)D| → |Ar U (di j )|.

Lemma 4.3. Let E be a represented 2-vector bundle with gluing maps gαβ and
coherence maps hαβγ . There is an associated charted 2-vector bundle with
gluing bundles

Eαβ = (gαβ)∗(E)

over Uαβ and coherence isomorphisms

φαβγ = (hαβγ )∗(φ) : Eαβ ·Eβγ = (gαβ ·gβγ )∗(E)
∼=−−−−→ (gαγ )∗(E) = Eαγ

over Uαβγ . This association induces a bijection between the equivalence
classes of represented 2-vector bundles and the equivalence classes of charted
2-vector bundles of rank n over X.
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Definition 4.4. Let 2-Vectn(X) be the set of equivalence classes of 2-vector
bundles of rank n over X . For path-connected X let

2-Vect(X) =
∐
n≥0

2-Vectn(X) .

Whitney sum (Definition 2.7) defines a pairing that makes 2-Vect(X) an
abelian monoid.

Theorem 4.5. Let X be a finite CW complex. There are natural bijections

2-Vectn(X) ∼= [X, |BGLn(V)|]
and

2-Vect(X) ∼= [X,
∐
n≥0

|BGLn(V)|] .

To explain the first correspondence, from which the second follows, we use
the following construction.

Definition 4.6. Let (U, I) be an ordered open cover of X . The Mayer–
Vietoris blow-up MV (U) of X with respect to U is the simplicial space with
p-simplices

MVp(U) =
∐

α0≤···≤αp

Uα0,...,αp

with α0 ≤ · · · ≤ αp in I. The i th simplicial face map is a coproduct of inclu-
sions Uα0,...,αp ⊂ Uα0,...,α̂i ,...,αp , and similarly for the degeneracy maps. The
inclusions Uα0,...,αp ⊂ X combine to a natural map e : |MV (U)| → X , which
is a (weak) homotopy equivalence.

Sketch of proof of Theorem 4.5. By Lemma 3.11, a simplicial map
g : MV (U) → |BGLn(V)| is uniquely determined by its components in sim-
plicial degrees 1 and 2. The first of these is a map

g1 : MV1(U) = ∐
α≤β Uαβ −−−−→ |B1GLn(V)| = |GLn(V)|

which is a coproduct of gluing maps gαβ : Uαβ → |GLn(V)|. The second is
a map

g2 : MV2(U) =
∐

α≤β≤γ

Uαβγ → |B2GLn(V)| .

The simplicial identities and Lemma 3.11 imply that g2 is determined by g1

and a coproduct of coherence maps hαβγ : Uαβγ → |Ar GLn(V)|. Hence such
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a simplicial map g corresponds bijectively to a represented 2-vector bundle of
rank n over X .

Any map f : X → |BGLn(V)| can be composed with the weak equivalence
e : |MV (U)| → X to give a map of spaces f e : |MV (U)| → |BGLn(V)|,
which is homotopic to a simplicial map g if U is a good cover, and for reason-
able X any open ordered cover can be refined to a good one. The homotopy
class of f corresponds to the equivalence class of the represented 2-vector
bundle determined by the simplicial map g.

Remark 4.7. We wish to interpret the 2-vector bundles over X as (effec-
tive) 0-cycles for some cohomology theory at X . Such theories are group-
valued, so a first approximation to the 0th cohomology group at X could be
the Grothendieck group Gr(2-Vect(X)) of formal differences of 2-vector bun-
dles over X . The analogous construction for ordinary vector bundles works
well to define topological K -theory, but for 2-vector bundles this algebraically
group completed functor is not even representable, like in the case of the
algebraic K -theory of a discrete ring. We thank Haynes Miller for reminding
us of this issue.

Instead we follow Quillen and perform the group completion at the space
level, which leads to the algebraic K -theory space

K (V) = 
B
(∐

n≥0

|BGLn(V)|)

� Z × |BGL∞(V)|+

from Definition 3.12. But what theory does this loop space represent? One
interpretation is provided by the theory of virtual flat fibrations, presented by
Karoubi in [16, Ch. III], leading to what we shall call virtual 2-vector bundles.
Another interpretation could be given using the homology bordism theory of
Hausmann and Vogel [12].

Definition 4.8. Let X be a space. An acyclic fibration over X is a Serre fibration
a : Y → X such that the homotopy fiber at each point x ∈ X has the integral
homology of a point, i.e., H̃∗(hofibx (a); Z) = 0. A map of acyclic fibrations
from a′ : Y ′ → X to a : Y → X is a map f : Y ′ → Y with a f = a′.

A virtual 2-vector bundle over X is described by an acyclic fibration
a : Y → X and a 2-vector bundle E ↓ Y . We write E ↓ Y

a−→ X . Given
a map f : Y ′ → Y of acyclic fibrations over X there is an induced 2-vector
bundle f ∗E ↓ Y ′. The virtual 2-vector bundles described by E ↓ Y

a−→ X
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and f ∗E ↓ Y ′ a′
−→ X are declared to be equivalent as virtual 2-vector bundles

over X .

Lemma 4.9. The abelian monoid of equivalence classes of virtual 2-vector
bundles over X is the colimit

colim
a : Y→X

2-Vect(Y )

where a : Y → X ranges over the category of acyclic fibrations over X. Its
Grothendieck group completion is isomorphic to the colimit

colim
a : Y→X

Gr(2-Vect(Y )) .

The functor Y �→ 2-Vect(Y ) factors through the homotopy category of
acyclic fibrations over X , which is directed.

The following result says that formal differences of virtual 2-vector bun-
dles over X are the geometric objects that constitute cycles for the con-
travariant homotopy functor represented by the algebraic K -theory space
K (V). Compare [16, III.3.11]. So K (V) represents sheaf cohomology for
the topology of acyclic fibrations, with coefficients in the abelian presheaf
Y �→ Gr(2-Vect(Y )) given by the Grothendieck group completion of the
abelian monoid of equivalence classes of 2-vector bundles.

Theorem 4.10. Let X be a finite CW complex. There is a natural group iso-
morphism

colim
a : Y→X

Gr(2-Vect(Y )) ∼= [X, K (V)]

where a : Y → X ranges over the category of acyclic fibrations over X. Re-
stricted to Gr(2-Vect(X)) (with a = id) the isomorphism extends the canonical
monoid homomorphism 2-Vect(X) ∼= [X,

∐
n≥0 |BGLn(V)|] → [X, K (V)].

Remark 4.11. The passage to sheaf cohomology would be unnecessary if we
replaced V by a different symmetric bimonoidal category B such that each
π0(GLn(B)) is abelian. This might entail an extension of the category of vec-
tor spaces to allow generalized vector spaces of arbitrary real, or even complex,
dimension, parallel to the inclusion of the integers into the real or complex
numbers. Such an extension is reminiscent of a category of representations
of a suitable C∗-algebra, but we know of no clear interpretation of this
approach.
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5 Algebraic K-theory of topological K-theory

Is the contravariant homotopy functor X �→ [X, K (V)] = K (V)0(X) part of a
cohomology theory, and, if so, what is the spectrum representing that theory?

The topological symmetric bimonoidal category V plays the role of a gen-
eralized commutative semi-ring in our definition of K (V). Its additive group
completion V−1V correspondingly plays the role of a generalized commuta-
tive ring. This may be tricky to realize at the level of symmetric bimonoidal
categories, but the connective topological K -theory spectrum ku = Spt(V)

associated to the additive topological symmetric monoidal structure of V is
an E∞ ring spectrum, and hence a commutative algebra over the sphere
spectrum S.

The algebraic K -theory of an S-algebra A can on the one hand be defined
as the Waldhausen algebraic K -theory [34] of a category with cofibrations
and weak equivalences, with objects the finite cell A-modules, morphisms the
A-module maps and weak equivalences the stable equivalences. Alternatively,
it can be defined as a group completion

K (A) = 
B
(∐

n≥0

BĜLn(A)
)

where ĜLn(A) is essentially the topological monoid of A-module maps An →
An that are stable equivalences. The former definition produces a spectrum, so
the space K (A) is in fact an infinite loop space, and its deloopings represent a
cohomology theory.

The passage from modules over the semi-ring object V to modules over
the ring object ku corresponds to maps |GLn(V)| → ĜLn(ku) and a map
K (V) → K (ku).

Conjecture 5.1. There is a weak equivalence K (V) � K (ku). More generally,
K (B) � K (A) for each symmetric bimonoidal category B with associated
commutative S-algebra A = Spt(B).

Remark 5.2. The conjecture asserts that the contravariant homotopy functor
X �→ [X, K (V)] with 0-cycles given by the virtual 2-vector bundles over X
is the 0th cohomology group for the cohomology theory represented by the
spectrum K (ku) given by the algebraic K -theory of connective topological
K -theory. We consider the virtual 2-vector bundles over X to be sufficiently
geometric objects (like complex vector bundles), that this cohomology theory
then admits as geometric an interpretation as the classical examples of de Rham
cohomology, topological K -theory and complex bordism.
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As a first (weak) justification of this conjecture, recall that to the eyes of

algebraic K -theory the block sum operation (g, h) �→
[

g 0
0 h

]
is identified with

the stabilized matrix multiplication (g, h) �→
[

gh 0
0 I

]
, where I is an identity

matrix. The group completion in the definition of algebraic K -theory adjoins
inverses to the block sum operation, and thus also to the stabilized matrix
multiplication. In particular, for each elementary n × n matrix ei j (V ) over B

with (i, j)th off-diagonal entry equal to an object V of B, the inverse matrix
ei j (−V ) is formally adjoined as far as algebraic K -theory is concerned. Hence
the formal negatives −V in B−1B are already present, in this weak sense.

A stronger indication that the conjecture should hold true is provided by the
following special case. Recall that a commutative semi-ring is the same as a
(small) symmetric bimonoidal category that is discrete, i.e., has only identity
morphisms.

Proposition 5.3. Let B be a commutative semi-ring, with additive
Grothendieck group completion A = Gr(B). The semi-ring homomorphism
B → A induces a weak equivalence

BGL∞(B)
�−−−−→ BGL∞(A)

and thus a weak equivalence K (B) � K (A). In particular, there is a weak
equivalence K (N) � K (Z).

A proof uses the following application of Quillen’s Theorem B [22].

Lemma 5.4. Let f : M → G be a monoid homomorphism from a monoid M
to a group G. Write mg = f (m) · g. Let Q = B(∗, M, G) be the category with
objects g ∈ G and morphisms (m, g) ∈ M × G from mg to g

mg
(m,g)−−−−→ g .

Then there is a fiber sequence up to homotopy

|Q| −−−−→ B M
B f−−−−→ BG .

Sketch of proof of Proposition 5.3. Applying lemma 5.4 to the monoids Mn =
GLn(B) and groups Gn = GLn(A) we obtain categories Qn for each nat-
ural number n. There are stabilization maps i : Qn → Qn+1, Mn → Mn+1

and Gn → Gn+1, with (homotopy) colimits Q∞, M∞ and G∞, and a quasi-
fibration

|Q∞| −−−−→ BGL∞(B) −−−−→ BGL∞(A) .
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It suffices to show that each stabilization map i : |Qn| → |Qn+1| is weakly
null-homotopic, because then |Q∞| is weakly contractible.

For each full subcategory K ⊂ Qn with finitely many objects, the restricted

stabilization functor i |K takes g to i(g) =
[

g 0
0 1

]
. It receives a natural transfor-

mation from a functor j : K → Qn+1 that maps g to j (g) = [ g v
0 1

]
for some

column vector v = v(g) with positive entries in B. The trick is to construct
v(g) inductively for the finite set of objects g of K , so that v(mg) is sufficiently
positive with respect to m · v(g) for all morphisms mg → g in K .

Furthermore, the finiteness of K ensures that there is a row vector w with
entries in B and an object h =

[
In 0

−w 1

]
of Qn+1 such that there is a natural

transformation from j to the constant functor to h. These two natural transfor-
mations provide a homotopy from i |K to a constant map. As K was arbitrary
with finitely many objects, this means that i is weakly null-homotopic.

Remark 5.5. If there exists a symmetric bimonoidal category W and a functor
V → W of symmetric bimonoidal categories that induces an additive equiva-
lence from V−1V to W, then most likely the line of argument sketched above
in the case of commutative semi-rings can be adapted to the symmetric bi-
monoidal situation. This could provide one line of proof toward Conjecture 5.1.
Similar remarks apply for a general symmetric bimonoidal category B in place
of V.

6 Forms of elliptic cohomology

In this section we shall view the algebraic K -theory K (A) of an S-algebra A

as a spectrum, rather than as a space.
We shall argue that the algebraic K -theory K (ku) of the connective topo-

logical K -theory spectrum ku is a connective form of elliptic cohomology,
in the sense that it detects homotopy theoretic phenomena related to v2-
periodicity, much like how topological K -theory detects phenomena related
to v1-periodicity (which is really the same as Bott periodicity) and how ra-
tional cohomology detects phenomena related to v0-periodicity. Furthermore,
from this point of view the homotopy type of K (ku) is robust with respect to
changes in the interpretation of the phrase ‘algebraic K -theory of topological
K -theory’.

We first introduce a filtration of the class of spectra that is related to the
chromatic filtration given by the property of being Bousfield local with respect
to some Johnson–Wilson theory E(n) (cf. Ravenel [24, §7]), but is more ap-
propriate for the connective spectra that arise from algebraic K -theory. Our



Two-vector bundles and forms of elliptic cohomology 39

notion is also more closely linked to aspects of vn-periodicity than to being
E(n)-local.

Let p be a prime, K (n) the nth Morava K -theory at p and F a p-local
finite CW spectrum. The least number 0 ≤ n < ∞ such that K (n)∗(F) is non-
trivial is called the chromatic type of F . (Only contractible spectra have infinite
chromatic type.) By the Hopkins–Smith periodicity theorem [14, Thm. 9], F
admits a vn-self map v : �d F → F such that K (m)∗(v) is an isomorphism
for m = n and zero for m �= n. The vn-self map is sufficiently unique for the
mapping telescope

v−1 F = Tel
(
F

v−−−−→ �−d F
v−−−−→ . . .

)
to be well-defined up to homotopy. The class of all p-local finite CW spectra
of chromatic type ≥ n is closed under weak equivalences and the formation
of homotopy cofibers, desuspensions and retracts, so we say that the full sub-
category that it generates is a thick subcategory. By the Hopkins–Smith thick
subcategory theorem [14, Thm. 7], any thick subcategory of the category of
p-local finite CW spectra has this precise form, for a unique number 0 ≤ n ≤
∞.

Definition 6.1. Let X be a spectrum, and let TX be the full subcategory of
p-local finite CW spectra F for which the localization map

F ∧ X −−−−→ v−1 F ∧ X

induces an isomorphism on homotopy groups in all sufficiently high degrees.
Then TX is a thick subcategory, hence consists of the spectra F of chro-
matic type ≥ n for some unique number 0 ≤ n ≤ ∞. We call this number
n = telecom(X) the telescopic complexity of X . (This abbreviation is due to
Matthew Ando.)

Lemma 6.2. If Y is the k-connected cover of X, for some integer k, then X and
Y have the same telescopic complexity.

Let X → Y → Z be a cofiber sequence and

m = max{telecom(X), telecom(Y )}.
If telecom(X) �= telecom(Y ) then telecom(Z) = m, otherwise telecom(Z) ≤
m.

If Y is a (de-)suspension of X then X and Y have the same telescopic com-
plexity.

If Y is a retract of X then telecom(Y ) ≤ telecom(X).
If X is an E(n)-local spectrum then X has telescopic complexity ≤ n.
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Examples 6.3. (1) Integral, rational, real and complex cohomology (HZ, HQ,
HR or HC) all have telescopic complexity 0.

(2) Connective or periodic, real or complex topological K -theory (ko, ku,
K O or KU ) all have telescopic complexity 1. The étale K -theory K et (R) of
a ring R = OF,S of S-integers in a local or global number field has telescopic
complexity 1, and so does the algebraic K -theory K (R) if the Lichtenbaum–
Quillen conjecture holds for the ring R.

(3) An Ando–Hopkins–Strickland [1] elliptic spectrum (E, C, t) has tele-
scopic complexity ≤ 2, and the telescopic complexity equals 2 if and only if
the elliptic curve C over R = π0(E) has a supersingular specialization over
some point of Spec(R).

(4) The Hopkins–Mahowald–Miller topological modular forms spectra tmf
and TMF have telescopic complexity 2.

(5) The Johnson–Wilson spectrum E(n) and its connective form, the
Brown–Peterson spectrum B P〈n〉, both have telescopic complexity n.

(6) The sphere spectrum S and the complex bordism spectrum MU have
infinite telescopic complexity.

Let V (1) be the four-cell Smith–Toda spectrum with B P∗(V (1)) =
B P∗/(p, v1). For p ≥ 5 it exists as a commutative ring spectrum. It has chro-
matic type 2, and there is a v2-self map v : �2p2−2V (1) → V (1) inducing mul-
tiplication by the class v2 ∈ π2p2−2V (1). We write V (1)∗(X) = π∗(V (1)∧ X)

for the V (1)-homotopy groups of X , which are naturally a graded module over
P(v2) = Fp[v2].

Let X(p) and X∧
p denote the p-localization and p-completion of a spec-

trum X , respectively. The first Brown–Peterson spectrum � = B P〈1〉 is the
connective p-local Adams summand of ku(p), and its p-completion �∧

p is the
connective p-complete Adams summand of ku∧

p . These are all known to be
commutative S-algebras.

The spectrum T C(�∧
p ) occurring in the following statement is the topolog-

ical cyclic homology of �∧
p , as defined by Bökstedt, Hsiang and Madsen [5].

The theorem is proved in [3, 0.3] by an elaborate but explicit computation of
its V (1)-homotopy groups, starting from the corresponding V (1)-homotopy
groups of the topological Hochschild homology T H H(�∧

p ).

Theorem 6.4 (Ausoni–Rognes). Let p ≥ 5. The algebraic K -theory spec-
trum K (�∧

p ) of the connective p-complete Adams summand �∧
p has telescopic

complexity 2. More precisely, there is an exact sequence of P(v2)-modules

0 → �2p−3Fp → V (1)∗K (�∧
p )

trc−−−−→ V (1)∗T C(�∧
p ) → �−1Fp → 0
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and an isomorphism of P(v2)-modules

V (1)∗T C(�∧
p ) ∼= P(v2) ⊗(

E(∂, λ1, λ2) ⊕ E(λ2){λ1td | 0 < d < p} ⊕ E(λ1){λ2tdp | 0 < d < p}).
Here ∂ , t , λ1 and λ2 have degrees −1, −2, 2p − 1 and 2p2 − 1, respectively.
Hence V (1)∗T C(�∧

p ) is free of rank (4p + 4) over P(v2), and agrees with its
v2-localization in sufficiently high degrees.

Since K (�∧
p ) has telescopic complexity 2, it has a chance to detect v2-

periodic families in π∗V (1). This is indeed the case. Let α1 ∈ π2p−3V (1)

and β ′
1 ∈ π2p2−2p−1V (1) be the classes represented in the Adams spectral se-

quence by the cobar 1-cycles h10 = [ξ̄1] and h11 = [ξ̄ p
1 ], respectively. There

are maps V (1) → v−1
2 V (1) → L2V (1), and Ravenel [23, 6.3.22] computed

π∗L2V (1) ∼= P(v2, v
−1
2 ) ⊗ E(ζ ){1, h10, h11, g0, g1, h11g0 = h10g1}

for p ≥ 5. Hence π∗L2V (1) contains twelve v2-periodic families. The tele-
scope conjecture asserted that v−1

2 V (1) → L2V (1) might be an equivalence,
but this is now considered to be unlikely [19]. The following detection result
can be read off from [3, 4.8], and shows that K (�∧

p ) detects the same kind of
homotopy theoretic phenomena as E(2) or an elliptic spectrum.

Proposition 6.5. The unit map S → K (�∧
p ) induces a P(v2)-module ho-

momorphism π∗V (1) → V (1)∗K (�∧
p ) which takes 1, α1 and β ′

1 to 1, tλ1

and t pλ2, respectively. Hence V (1)∗K (�∧
p ) detects the v2-periodic families in

π∗V (1) generated by these three classes.

Turning to the whole connective p-complete topological K -theory spectrum
ku∧

p , there is a map �∧
p → ku∧

p of commutative S-algebras. It induces a natural
map K (�∧

p ) → K (ku∧
p ), and there is a transfer map K (ku∧

p ) → K (�∧
p ) such

that the composite self-map of K (�∧
p ) is multiplication by (p − 1). Hence the

composite map is a p-local equivalence.

Lemma 6.6. The algebraic K -theory spectrum K (ku∧
p ) of connective p-

complete topological K -theory ku∧
p contains K (�∧

p ) as a p-local retract, hence
has telescopic complexity ≥ 2.

Most likely K (ku∧
p ) also has telescopic complexity exactly 2. It may be pos-

sible to prove this directly by computing V (1)∗T C(ku∧
p ), by similar methods

as in [3], but the algebra involved for ku∧
p is much more intricate than it was for
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the Adams summand. Some progress in this direction has recently been made
by Ausoni.

The following consequence of a theorem of the second author [9, p. 224]
allows us to compare the algebraic K -theory of ku∧

p to that of the integral
spectra ku and K (C).

Theorem 6.7 (Dundas). Let A be a connective S-algebra. The commutative
square

K (A) ��

��

K (A∧
p )

��
K (π0(A)) �� K (π0(A

∧
p ))

becomes homotopy Cartesian after p-completion.

We apply this with A = ku or A = K (C). Also in the second case
A∧

p � ku∧
p , by Suslin’s theorem on the algebraic K -theory of algebraically

closed fields [30]. Then π0(A) = Z and π0(A
∧
p ) = Zp. It is known that

K (Zp) has telescopic complexity 1, by Bökstedt–Madsen [6], [7] for p odd
and by the third author [26] for p = 2. It is also known that K (Z) has tele-
scopic complexity 1 for p = 2, by Voevodsky’s proof of the Milnor conjecture
and Rognes–Weibel [25]. For p odd it would follow from the Lichtenbaum–
Quillen conjecture for K (Z) at p that K (Z) has telescopic complexity 1, and
this now seems to be close to a theorem by the work of Voevodsky, Rost and
Positselski.

Proposition 6.8. Suppose that K (Z) has telescopic complexity 1 at a prime
p ≥ 5. Then K (ku) and K (K (C)) have the same telescopic complexity as
K (ku∧

p ), which is ≥ 2.

More generally it is natural to expect that K (K (R)) has telescopic complex-
ity 2 for each ring of S-integers R = OF,S in a local or global number field
F , including the initial case K (K (Z)). A discussion of such a conjecture has
been given in lectures by the third author, but should take place in the context
of étale covers or Galois extensions of commutative S-algebras, which would
take us too far afield here.

The difference between the connective and periodic topological K -theory
spectra ku and KU may also not affect their algebraic K -theories greatly.
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There is a (localization) fiber sequence

K (CKU (ku)) → K (ku) → K (KU )

where CKU (ku) is the category of finite cell ku-module spectra that become
contractible when induced up to KU -modules [34, 1.6.4]. Such spectra have
finite Postnikov towers with layers that are induced from finite cell HZ-module
spectra via the map ku → HZ, and so it is reasonable to expect that a gener-
alized form of the dévissage theorem in algebraic K-theory applies to identify
K (CKU (ku)) with K (Z).

Proposition 6.9. If there is a fiber sequence K (Z) → K (ku) → K (KU )

and K (Z) has telescopic complexity 1, at a prime p ≥ 5, then the algebraic
K-theory spectrum K (KU ) of the periodic topological K -theory spectrum
KU has the same telescopic complexity as K (ku), which is ≥ 2.

Remark 6.10. Unlike traditional elliptic cohomology, the spectrum K (ku) is
not complex orientable. For the unit map of K (Z) detects η ∈ π1(S) and fac-
tors as S → K (ku) → K (Z), where the first map is the unit of K (ku) and
the second map is induced by the map ku → HZ of S-algebras. Hence the
unit map for K (ku) detects η and cannot factor through the complex bordism
spectrum MU , since π1(MU ) = 0. This should not be perceived as a problem,
however, as e.g. also the topological modular forms spectrum tmf is not com-
plex orientable. It seems more likely that K (KU ) can be complex oriented,
where KU is an ‘algebraic closure’ of KU in the category of commutative
S-algebras.
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[17] Laplaza, Miguel L. Coherence for distributivity. In Coherence in Categories,

pages 29–65. Lecture Notes in Math., Vol. 281. Springer, Berlin, 1972.
[18] Macl, Lane, Saunders. Categories for the Working Mathematician. Graduate

Texts in Mathematics, Vol. 5. Springer-Verlag, New York, 1971.
[19] Mahowald, Mark, Douglas Ravenel and Paul Shick. The triple loop space

approach to the telescope conjecture. In Homotopy Methods in Algebraic
Topology (Boulder, CO, 1999) volume 271 of Contemp. Math., pages 217–284.
Amer. Math. Soc., Providence, RI, 2001.

[20] May, J. Peter. E∞ Ring Spaces and E∞ Ring Spectra. With contributions by
Frank Quinn, Nigel Ray, and Jørgen Tornehave, Lecture Notes in Mathematics,
Vol. 577. Springer-Verlag, Berlin, 1977.

[21] McDuff, D. and G. Segal. Homology fibrations and the ‘group-completion’
theorem. Invent. Math., 31(3): 279–284, 1975/76.

[22] Quillen, Daniel. Higher algebraic K -theory. I. In Algebraic K -theory, I: Higher
K -theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), pages
85–147. Lecture Notes in Math., Vol. 341. Springer, Berlin, 1973.

[23] Ravenel, Douglas C. Complex Cobordism and Stable Homotopy Groups of
Spheres, volume 121 of Pure and Applied Mathematics. Academic Press Inc.,
Orlando, FL, 1986.

[24] Ravenel, Douglas C. Nilpotence and Periodicity in Stable Homotopy Theory,
volume 128 of Annals of Mathematics Studies. Princeton University Press,
Princeton, NJ, 1992. Appendix C by Jeff Smith.

[25] Rognes, J. and C. Weibel. Two-primary algebraic K -theory of rings of integers in
number fields, J. Amer. Math. Soc., 13(1): 1–54, 2000. Appendix A by Manfred
Kolster.



Two-vector bundles and forms of elliptic cohomology 45

[26] Rognes, John. Algebraic K -theory of the two-adic integers. J. Pure Appl.
Algebra, 134(3): 287–326, 1999.

[27] Segal, Graeme. Categories and cohomology theories. Topology, 13: 293–312,
1974.

[28] Segal, Graeme. Elliptic cohomology (after Landweber-Stong, Ochanine, Witten,
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construction
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Abstract

We apply the technique of localization for vertex algebras to the Segal–
Sugawara construction of an ‘internal’ action of the Virasoro algebra on affine
Kac–Moody algebras. The result is a lifting of twisted differential operators
from the moduli of curves to the moduli of curves with bundles, with arbi-
trary decorations and complex twistings. This construction gives a uniform
approach to a collection of phenomena describing the geometry of the moduli
spaces of bundles over varying curves: the KZB equations and heat kernels on
non-abelian theta functions, their critical level limit giving the quadratic parts
of the Beilinson–Drinfeld quantization of the Hitchin system, and their infinite
level limit giving a Hamiltonian description of the isomonodromy equations.

1 Introduction

1.1 Uniformization

Let G be a complex connected simply connected simple algebraic group with
Lie algebra g, and X a smooth projective curve over C. The geometry of
G-bundles on X is intimately linked to representation theory of the affine
Kac–Moody algebra ĝ, the universal central extension of the loop algebra
Lg = g ⊗ K, where K = C((t)). More precisely, let G(O), where O = C[[t]],
denote the positive half of the loop group G(K). There is a principal G(O)-
bundle over the moduli space (stack) BunG(X) of G-bundles on X , which
carries an infinitesimally simply transitive action of Lg. This provides an in-
finitesimal ‘uniformization’ of the moduli of G-bundles. Moreover, this uni-
formization lifts to an infinitesimal action of ĝ on the ‘determinant’ line bundle

We would like to thank Tony Pantev, Spencer Bloch, Sasha Beilinson, Dennis Gaitsgory and
Matthew Emerton for useful discussions, and Roman Fedorov for comments on an early draft.
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C on BunG(X), whose sections give the non-abelian versions of the spaces of
theta functions.

The geometry of the moduli space Mg,1 of smooth pointed curves of genus
g is similarly linked to the Virasoro algebra Vir, the universal central extension
of the Lie algebra Der K of derivations of K (or vector fields on the punctured
disc). Let Aut O denote the group of automorphisms of the disc. Then there
is a principal Aut O-bundle over Mg,1 which carries an infinitesimally transi-
tive action of Der K. This uniformization lifts to an infinitesimal action of the
Virasoro algebra on the Hodge line bundle H on Mg,1.

These uniformizations can be used, following [BB, BS], to construct local-
ization functors from representations of the Virasoro and Kac–Moody algebras
to sheaves on the corresponding moduli spaces. Using these localization func-
tors, one can describe sheaves of modules over (twisted) differential operators,
as well as sheaves on the corresponding (twisted) cotangent bundles over the
moduli spaces. The sheaves of twisted differential operators and twisted sym-
bols (functions on twisted cotangent bundles) themselves are particularly easy
to describe in this fashion: they are the localizations of the vacuum modules of
the respective Lie algebras.

The Virasoro algebra acts on the Kac–Moody algebra via its natural ac-
tion by derivations on the space K of Laurent series. Therefore we form the
semidirect product g̃ = V ir � ĝ, which uniformizes the moduli stack BunG,g,1

classifying G-bundles over varying pointed curves of genus g. There is now a
two-parameter family of line bundles Lk,c on which the (two-parameter) cen-
tral extension g̃ acts, and the corresponding two-parameter families of sheaves
of twisted differential operators and twisted symbols. Thus it is natural to look
to the structure of g̃ for information about the variation of G-bundles over the
moduli of curves.

1.2 The Segal–Sugawara construction

The interaction between the variation of curves and that of bundles on curves
is captured by a remarkable feature of affine Kac–Moody algebras, best seen
from the perspective of the theory of vertex algebras. The Segal–Sugawara
construction presents the action of the Virasoro algebra on ĝ as an internal
action, by identifying infinite quadratic expressions in the Kac–Moody gener-
ators which satisfy the Virasoro relations. More precisely, the Virasoro algebra
embeds in a certain completion of U ĝ, and hence acts on all smooth represen-
tations of ĝ of non-critical levels. From the point of view of vertex algebras, the
construction simply involves the identification of a conformal structure, i.e., a
certain distinguished vector, in the vacuum module over ĝ.
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Our objective in this paper is to draw out the different geometric conse-
quences of this construction in a simple uniform fashion. Our approach in-
volves four steps:

• We consider the Segal–Sugawara construction as defining a G(O)–
invariant embedding of the vacuum module of the Virasoro algebra into
the vacuum module of the Virasoro and Kac–Moody algebra g̃.

• Twists of the vacuum modules form sheaves of algebras on the relevant
moduli spaces, and the above construction gives rise to a homomor-
phism of these sheaves of algebras.

• The sheaves of twisted differential operators on the moduli spaces are
quotients of the above algebras, and the vertex algebraic description of
the Segal–Sugawara operators guarantees that the homomorphism de-
scends to a homomorphism between sheaves of differential operators.

• All of the constructions vary flatly with respect to the Kac–Moody level
and the Virasoro central charge and possess various ‘classical’ limits
which may be described in terms of the twisted cotangent bundles to
the respective moduli spaces.

Our main result is the following theorem. Let � : BunG,g → Mg denote the
projection from moduli of curves and bundles to moduli of curves, k, c ∈ C

(the level and charge), µg = h∨ dim g and ck = c − k dim g

k + h∨ . We denote

by Dk,c, Dk/Mg , and Dck respectively the corresponding sheaves of twisted
differential operators on BunG,g , relative to Mg , and on Mg . The sheaves of
twisted symbols (functions on twisted cotangent bundles) with twists λ, µ on
Mg and BunG,g are denoted by O(T ∗

λ,µBunG,g) and O(T ∗
λµMg), respectively.

Theorem 1.1.
(1) Let k, c ∈ C with k not equal to minus the dual Coxeter number h∨. There

is a canonical homomorphism of sheaves of algebras on Mg

Dck −→ �∗Dk,c

and an isomorphism of twisted D-modules on BunG,g

Dk/Mg ⊗
O

�∗Dck
∼= Dk,c.

(2) Let c ∈ C, k = −h∨. There is an algebra homomorphism

O(T ∗
µg

M) −→ �∗D−h∨,c.

(3) For every λ, µ ∈ C there is a (λ-Poisson) homomorphism

O(T ∗
λµMg) −→ �∗O(T ∗

λ,µ BunG,g).



Geometric realization of the Segal–Sugawara construction 49

1.2.1

Moreover, the homomorphisms (2) and (3) are suitably rescaled limits of (1).
In fact we prove a stronger result, valid for moduli of curves and bundles with
arbitrary ‘decorations’. Namely, we consider moduli of curves with an arbi-
trary number of marked points, jets of local coordinates and jets of bundle
trivializations at these points. (For the sake of simplicity of notation, we work
with the case of a single marked point or none – the multipoint extension is
straightforward.)

1.3 Applications

The homomorphism (1) allows us to lift vector fields on Mg to differential
operators on BunG,g , which are first order along the moduli of curves and
second order along moduli of bundles. In the special case of k ∈ Z+ and
no decorations, this gives a direct algebraic construction of the heat opera-
tors acting on non-abelian theta functions (the global sections of Lk,c along
BunG(X)) constructed by different means in [ADW, Hi2, BK, Fa1]. Our ap-
proach via vertex algebras makes clear the compatibility of this heat equation
with the projectively flat connection on the bundle of conformal blocks coming
from conformal field theory ([TUY, FrS]) – the Knizhnik–Zamolodchikov–
Bernard (KZB) equations, or higher genus generalization of the Knizhnik–
Zamolodchikov equations, [KZ]. This compatibility has also been established
in [La]. The important feature of our proof which follows immediately from
part (1) of the above theorem is that the heat operators depend on two complex
parameters k and c, allowing us to consider various limits. This answers some
of the questions raised by Felder in his study of the general KZB equations over
the moduli space of pointed curves for arbitrary complex levels (see [Fel], §6).

The geometric significance of the two classical limit statements (2), (3)
comes from the identification of the twisted cotangent bundles of Mg and
BunG(X) as the moduli spaces T ∗

1 Mg = Proj g of algebraic curves with pro-
jective structures and T ∗

1 BunG(X) = Conn G(X) of G–bundles with holo-
morphic connections, respectively. As the parameter k approaches the critical
level −h∨, the component of the heat kernels along the moduli of curves drops
out, and we obtain commuting global second-order operators on the moduli
BunG(X) (for a fixed curve X ) from linear functions on the space of projective
structures on X . Thus we recover the quadratic part of the Beilinson–Drinfeld
quantization of the Hitchin Hamiltonians (see [BD1]) in part (2). When we
take k, c to infinity in different fashions, we obtain the classical limits in
part (3). For λ, µ = 0 (i.e., as the symbols of our operators) we recover the
quadratic part of the Hitchin integrable system [Hi1], namely, the Hamiltonians
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corresponding to the trace of the square of a Higgs field. For λ �= 0 we ob-
tain a canonical (non-affine) decomposition of the twisted cotangent bundle
T ∗

λ,µ BunG = ExConnλ,µ
G,g , the space of extended connections ([BS, BZB2]),

into a product over Mg of the spaces of projective structures and flat connec-
tions. This recovers a construction of Bloch–Esnault and Beilinson [BE]. (This
decomposition is also described from the point of view of kernel functions in
[BZB1], where it is related to the Klein construction of projective connections
from theta functions and used to give a conjectural coordinate system on the
moduli of bundles.)

For λ �= 0, the homomorphism (3) gives a Hamiltonian action of the vec-
tor fields on Mg on the moduli space of flat G-bundles. This gives a time-
dependent Hamiltonian system (see [M]), or flat symplectic connection, on the
moduli Conn G,g of flat connections, with times given by the moduli of dec-
orated curves. By working with arbitrary level structures, we obtain a similar
statement for moduli spaces of connections with arbitrary (regular or irregu-
lar) singularities. We show that this is in fact a Hamiltonian description of the
equations of isomonodromic deformation of meromorphic connections with
respect to variation of the decorated curve. In particular, since all of the maps
of the theorem come from a single multi-parametric construction, Theorem 1.2
immediately implies the following picture suggested by the work of [LO] (see
also [I]), with arrows representing degenerations:

Quadratic Hitchin System ←− Isomonodromy Equations
↑ ↑

Quadratic Beilinson–Drinfeld System ←− Heat Operators/KZ Equations

Namely, the isospectral flows of the Hitchin system arise as a degeneration
of the isomonodromy equations as λ → 0 (see also [Kr]), and the isomon-
odromy Hamiltonians appear as a degeneration of the KZB equations, previ-
ously proved for the Schlesinger equations (isomonodromy for regular singu-
larities in genus zero) in [Res] (see also [Har]).

1.3.1 Outline of the paper.

We begin in Section 2 with a review of the formalism of localization and the
description of twisted differential operators and symbols from vacuum mod-
ules following [BB]. We then apply this formalism in the special case when
the Lie algebras are the affine Kac–Moody and the Virasoro algebras. First,
we review the necessary features of these Lie algebras in Section 3. Theo-
rem 3.3.1 provides the properties of the Segal–Sugawara construction at the
level of representations. Next, we describe in Section 4 the spaces on which
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representations of these Lie algebras localize. These are the moduli stacks of
curves and bundles on curves. In Section 5 we describe the implications of
the Segal–Sugawara constructions for the sheaves of differential operators on
these moduli spaces. Finally, we consider the classical limits of the localization
and their applications to the isomonodromy questions in Section 6.

2 Localization

In this section we review the localization construction for representations of
Harish–Chandra pairs as modules over algebras of twisted differential opera-
tors or sheaves on twisted cotangent bundles. In particular we emphasize the
localization of vacuum representations, which give the sheaves of twisted dif-
ferential operators or twisted symbols (functions on twisted cotangent bundles)
themselves.

2.1 Deformations and limits

We first review the standard pattern of deformations and limits of algebras (see
[BB]).

First recall that by the Rees construction, a filtered vector space B = ⋃
i Bi

has a canonical deformation to its associated graded gr B over the affine line
A1 = Spec C[λ], with the fiber at the point λ isomorphic to B for λ �= 0, and to
gr B for λ = 0. The corresponding C[λ]-module is just the direct sum

⊕
i Bi ,

on which λ acts by mapping each Bi to Bi+1.
Let g be any Lie algebra. The universal enveloping algebra Ug has the

canonical PBW filtration. The Rees construction then gives us a one-parameter
family of algebras Uλg, with the associated graded algebra U0g = Sym g

being the symmetric algebra. The λ-deformation rescales the bracket by λ,
so that taking the λ-linear terms defines the standard Poisson bracket on the
Sym g = C[g∗].

Let

0 → C1 → ĝ → g → 0

be a one-dimensional central extension of g. We define a two-parameter family
of algebras

Uk,λ̂g = Uλ̂g/(1 − k · 1)

which specializes to Uλg when k = 0. When λ = 1 we obtain the family
Uk ĝ of level k enveloping algebras of ĝ, whose representations are the same as
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representations of ĝ on which 1 acts by k · Id. This family may be extended to
(k, λ) ∈ P1 × A1, by defining a C[k, k−1]-algebra

Û = ⊕
(

λ

k

)i

(Uk,λ̂g)≤i

and setting

U∞,λ̂g = Û/k−1Û .

Equivalently, we consider the C[k−1]-lattice � inside Uk,λ (for k ∈ A1 \ 0)
generated by 1 and x = λ

k x for x ∈ g. The algebra U∞,λ̂g is then identified
with �/k−1�. (Note that the algebras Uk,λ̂g may also be obtained from the
standard λ-deformation of the filtered algebras Uk ĝ = Uk,1̂g.)

Let us choose a vector space splitting ĝ ∼= g ⊕ C1, so that the bracket in ĝ is
given by a two-cocycle 〈·, ·〉 on g

[x, y ]̂g = [x, y]g + 〈x, y〉 · 1

for x, y ∈ g ⊂ ĝ. If we let x denote λ
k x for x ∈ g ⊂ ĝ, the algebra Uk,λ̂g may

be described as generated by elements x, x ∈ g and 1, with the relations

[x, y] = λ

k

(
[x, y]g + λ〈x, y〉 · 1

)
, [1, x] = 0.

In particular, in the limit k → ∞ we obtain a commutative algebra

U∞,λ̂g ∼= Symλ ĝ = Sym ĝ/(1 − λ)

with a Poisson structure.
The algebra Symλ ĝ is nothing but the algebra of functions C[̂g∗

λ] on the
hyperplane in ĝ∗ consisting of functionals, whose value on 1 is λ. The func-
tions on ĝ∗ form a Poisson algebra, with the Kirillov–Kostant–Poisson bracket
determined via the Leibniz rule by the Lie bracket on the linear functionals,
which are elements of ĝ itself. Since 1 is a central element, Symλ ĝ inherits a
Poisson bracket as well.

Thus, we have defined a two-parameter family of ‘twisted enveloping alge-
bras’ Uk,λ̂g for (k, λ) ∈ P1 × A1 specializing to Uk ĝ for λ = 1 and to the
Poisson algebras Symλ ĝ for k = ∞. The algebras Uk,0̂g with λ = 0 are all
isomorphic (as Poisson algebras) to the symmetric algebra Sym g.

2.1.1 Harish-Chandra pairs.

We now suppose that the Lie algebra g is part of a Harish-Chandra pair (g, K ).
Thus K is an algebraic group, and we are given an embedding k = Lie K ⊂ g

and an action of K on g compatible with the adjoint action of K on k and the
action of k on g. Suppose further that we have a central extension ĝ, split over
k. Then the action of K lifts to ĝ and (̂g, K ) is also a Harish-Chandra pair.
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It follows that the subalgebra of Uk,λ̂g generated by the elements x for x ∈ k

is isomorphic to Uλ/kk, degenerating to Sym k for λ = 0 or λ = ∞. Moreover,
the action of k on Uk,λ̂g given by bracket with x = k

λ
x preserves the lattice �

and thus is well-defined in the limit k = ∞. (In this limit the action is generated
by Poisson bracket with k ⊂ Sym k ⊂ Symλ ĝ.) In particular k acts on Uk,λ̂g

for all (k, λ) ∈ P1×A1, and so it makes sense to speak of (Uk,λ̂g, K )-modules.

2.2 Twisted differential operators and twisted cotangent bundles

We review briefly the notions of sheaves of twisted differential operators and
of twisted symbols (functions on twisted cotangent bundles) following [BB].

Let M be a smooth variety equipped with a line bundle L. The Atiyah se-
quence of L is an extension of Lie algebras

0 → OM → TL
a−→ �M → 0

where TL is the Lie algebroid of infinitesimal automorphisms of L, �M is the
tangent sheaf, and the anchor map a describes the action of TL on its subsheaf
OM .

We can generalize the construction of the family of algebras Uk,λ̂g from
Section 2.1 to the Lie algebroid TL. We first introduce the sheaf of unital as-
sociative algebras Dk generated by the Lie algebra TL, with 1 ∈ OM ⊂ TL

identified with k times the unit. Due to this identification, Dk is naturally a
filtered algebra. Thus we have the Rees λ-deformation Dk,λ from Dk to its
associated graded algebra at λ = 0. Specializing to λ = 0 we obtain the sym-
metric algebra Sym �M with its usual Poisson structure, independently of k.
We may also define a limit of the algebras Dk,λ as k goes to infinity. In order
to do so we introduce a C[k, k−1]–algebra Dλ,k as

Dλ,k =
∞⊕

i=0

(
λ

k

)i

· D≤i (L
⊗k)

and define the limit algebra

D∞,λ = Dλ,k/k−1 · Dλ,k .

This algebra is commutative, and hence inherits a Poisson structure from the
deformation process.

2.2.1 Twisted differential operators.

Consider the sheaf D(L) of differential operators acting on sections of L. This
is a sheaf of filtered associative algebras, and the associated graded sheaf is
identified with the sheaf of symbols (functions on the cotangent bundle) as
Poisson algebras. Similarly, the sheaf of differential operators D(L⊗k) for any
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integer k is also a sheaf of filtered associative unital O-algebras, whose associ-
ated graded is commutative and isomorphic (as a Poisson algebra) to the sheaf
of functions on T ∗M . The sheaf Dk defined above for an arbitrary k ∈ C shares
these properties, which describe it as a sheaf of twisted differential operators.
For k ∈ Z there is a canonical isomorphism of sheaves of twisted differential
operators Dk ∼= D(L⊗k). In particular, the subsheaf D(L⊗k)≤1 of differential
operators of order at most one is identified with the subsheaf (Dk)≤1, which
is nothing but TL with the extension rescaled by k. The sheaf Dk for general
k may also be described as a subquotient of the sheaf of differential operators
on the total space of L×, the complement of the zero section in L (namely, as
a quantum reduction by the natural action of C×).

2.2.2 Twisted cotangent bundles.

We may also associate to L a twisted cotangent bundle of M . This is the affine
bundle Conn L of connections on L, which is a torsor for the cotangent bundle
T ∗M . For λ ∈ C we have a family of twisted cotangent bundles T ∗

λ M , which
for λ ∈ Z are identified with the T ∗M-torsors Conn L⊗λ of connections on
L⊗λ. Let L× denote the principal C×-bundle associated to the line bundle L.
Then the space T ∗

λ M is identified with the Hamiltonian reduction (at λ ∈ C =
(Lie C×)∗) of the cotangent bundle T ∗L× by the action of C×. In particular,
T ∗

λ M carries a canonical symplectic structure for any λ.
Thus the twisted symbols, i.e., functions on T ∗

λ M (pushed forward to M)
form a sheaf of OM -Poisson algebras O(T ∗

λ M). Its subsheaf of affine functions
O(T ∗

λ M)≤1 on the affine bundle T ∗
λ M forms a Lie algebra under the Poisson

bracket. It is easy to check that there is an isomorphism of sheaves of Poisson
algebras D∞,λ

∼= O(T ∗
λ M), identifying O(T ∗

λ M)≤1 with TL (with the bracket
rescaled by λ).

Thus to a line bundle we have associated a two–parameter family of algebras
Dk,λ for (k, λ) ∈ P1 × A1. This specializes for k ∈ Z, λ = 1 to the differential
operators D(L⊗k), for λ = 0 and k arbitrary to symbols O(T ∗M), and for
k = ∞, λ ∈ Z to the Poisson algebra of twisted symbols, O(Conn L⊗λ).

2.3 Localization

In this section we combine the algebraic picture of Section 2.1 with the geo-
metric picture of Section 2.2 following [BB, BD1] (see also [FB], Ch. 16).

Let g, ĝ, K be as in Section 2.1. We will consider the following geometric
situation: M̂ is a smooth scheme equipped with an action of (g, K ), in other
words, an action of the Lie algebra g on M̂ which integrates to an algebraic
action of the algebraic group K . Let M = M̂/K be the quotient, which is a
smooth algebraic stack, so that π : M̂ → M is a K -torsor. Thus if the g action
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on M̂ is infinitesimally transitive, then given x̂ ∈ M̂ and x ∈ M its K -orbit,
the formal completion of M at x is identified with the double quotient of the
formal group exp(g) of g: by the formal group exp(k) of k on one side, and the
formal stabilizer of x̂ on the other.

Let L denote a K -equivariant line bundle on M̂ and the corresponding line
bundle on M. We assume that the action of g on M̂ lifts to an action of ĝ on L,
so that 1 acts as the identity. For k, λ ∈ P1×A1, we have an algebra Uk,λ̂g from
Section 2.1 and a sheaf of algebras Dk,λ on M̂ from Section 2.2. The action of
ĝ on L matches up these definitions: we have an algebra homomorphism

O
M̂

⊗ Uk,λ̂g −→ Dk,λ, (k, λ) ∈ P1 × A1.

This may also be explained by reduction. Namely, ĝ acts on the total space L×

of the C×-bundle associated to L. Therefore U ĝ maps to differential operators
on L×. It also follows that ĝ acts in the Hamiltonian fashion on T ∗L×, so
that Sym ĝ maps in the Poisson fashion to symbols on L×. The actions of
Uk ĝ → Dk and Symλ ĝ → O(T ∗

λ M̂) are then obtained from the quantum
(respectively, classical) Hamiltonian reduction with respect to the C× action
on L× and the moment values k (respectively, λ).

2.3.1 Localization functor.

The action of the Harish–Chandra pair (̂g, K ) on M̂ and L may be used to
construct localization functors from (̂g, K )-modules to sheaves on M. Let M
be a Uk,λ̂g-module with a compatible action of K . We then consider the sheaf
of Dk,λ-modules

�̂(M) = Dk,λ ⊗
Uk,λĝ

M

on M̂, whose fibers are the coinvariants of M under the stabilizers of the ĝ-
action on L̂×. (By our hypotheses, these lift to ĝ the stabilizers of the g-action
on M̂.) The sheaf �̂(M) is a K -equivariant Dk,λ-module, and so it descends
to a Dk,λ-module �k,λ(M) on M, the localization of M

�k,λ(M) = (π∗(Dk,λ ⊗
Uk,λĝ

M))K .

Equivalently, we may work directly on M by twisting. Let

M = M̂ ×
K

M = π∗(OM̂
⊗ M)K

denote the twist of M by the K -torsor M̂ over M (i.e., the vector bundle on
M associated to the principal bundle M̂ and representation M). Then there is
a surjection

M � �k,λ(M) (2.1)
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and �k,λ(M) is the quotient of M by the twist (gstab)M̂ ⊂ (g)
M̂

of the sheaf
of stabilizers.

Remark 2.1. The localization functor �k,λ ‘interpolates’ between the local-
ization

�k : (Uk ĝ, K ) − mod −→ Dk − mod

as modules for twisted differential operators, and the classical localization

�λ : (Symλ ĝ, K ) − mod −→ O(T ∗
λ M) − mod

as quasicoherent sheaves on T ∗
λ M. The latter assigns to a module over the

commutative ring Symλ ĝ a quasicoherent sheaf on T ∗
λ M̂ via the embedding

of Symλ ĝ into global twisted symbols. This K -equivariant sheaf descends to
M, where it becomes a module over the sheaf of twisted symbols O(T ∗

λ M)

and therefore we obtain a sheaf on the twisted cotangent bundle.

2.4 Localizing the vacuum module

The fundamental example of a (g, K )-module is the vacuum module

Vg,K = IndUg

Uk
C = Ug/(Ug · k)

(we will denote it simply by V when the relevant Harish-Chandra pair (g, K )

is clear). The vector in Vg,K corresponding to 1 ∈ C is denoted by |0〉 and
referred to as the vacuum vector. It is a cyclic vector for the action of g on Vg,K .
The vacuum representation has the following universality property: given a
k-invariant vector m ∈ M in a representation of g, there exists a unique g-
homomorphism m∗ : Vg,K → M with m∗(|0〉) = m.

An important feature of the localization construction for Harish-Chandra
modules is that the sheaf of twisted differential operators Dk itself arises as
the localization �(Vg,K ) of the vacuum module. This is a generalization of the
description of differential operators on a homogeneous space G/K as sections
of the twist

Vg,K = PK ×
K

Vg,K

by the K -torsor PK = G over G/K . Informally, the general statement follows
by applying reduction from G/K to M, which is (formally) a quotient of the
formal homogeneous space exp(g)/ exp(k).

Recall that π : M̂ → M denotes a K -torsor with compatible g-action. We
assume K is connected and affine. In particular, the functor π∗ is exact.
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Proposition 2.2.

(1) The twist V = M̂ ×
K

V , its subsheaf of invariants VK = OM ⊗ V K , and

the localization �(V ) are sheaves of algebras on M.
(2) The localization �(V ) is naturally identified with the sheaf D of differen-

tial operators on M.
(3) The natural maps

OM ⊗ V K −→ V −→ �(V ) = DM

are algebra homomorphisms.
(4) For any (g, K )-module M, the sheaves

OM ⊗ M K −→ M −→ �(M)

are modules over the corresponding algebras in (3).

Proof. The vector space V K = [Ug/Ug · k]k is naturally an algebra, isomor-
phic to the quotient N (I )/I of the normalizer N (I ) of the ideal I = Ug · k by
I . It is also isomorphic to the algebra (Endg(V ))opp (with the opposite multi-
plication), thanks to the universality property of V , and thus to the algebra of
endomorphisms of the functor of K -invariants (with the opposite multiplica-
tion). Hence OM ⊗ V K is an OM-algebra.

The sheaf O
M̂

⊗ Ug is a sheaf of algebras, where Ug acts on O
M̂

as differ-
ential operators, and so is A = π∗(OM̂

⊗ Ug). Let K be the sheaf of OM-Lie
algebras π∗(OM̂

⊗ k) (note that the action of k on O
M̂

is π−1(OM)-linear).
Then we have

V = [π∗(OM̂
⊗ V )]K

= [π∗(OM̂
⊗ V )]K

= [A/A · K]K

which is thus a sheaf of algebras (again as the normalizer of an ideal modulo
that ideal).

On the other hand, the localization

�(V ) = [π∗(DM̂
⊗Ug V )]K

= [π∗(DM̂
/D

M̂
· K)]K

= DM

since K is the sheaf of vertical vector fields. This is in fact the common descrip-
tion of differential operators on a quotient as the quantum hamiltonian (BRST)
reduction of differential operators upstairs. The obvious maps are compatible
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with this definition of the algebra structures. This proves parts (1)–(3) of the
proposition.

Finally, for part (4), observe that the Ug-action on M descends to a V-action
on M, since the ideal K acts trivially on the K-invariants M = π∗(OM̂

⊗M)K.
Equivalently, the Lie algebroid M̂ ×

K
g on M acts on the twist M, and the

action descends to the quotient algebroid M̂ ×
K

g/k, which generates V. The

compatibility with the actions of invariants on MK and of the localization D

on the D-module �(W ) follow

Corollary 2.3. The space of invariants V K is naturally a subalgebra of the
algebra �(M, D) of global differential operators on M.

2.4.1 Changing the vacuum.

Let K ⊂ K be a normal subgroup. Then a minor variation of the proof estab-
lishes that the twist of K -invariants VK ↪→ V is a subalgebra. Note moreover
that VK depends only on the induced K/K -torsor N̂ = (K/K )

M̂

VK = N̂ ×K/K V K .

Now suppose (a, K ) is a sub-Harish-Chandra pair of (g, K ) (i.e. k ⊂ a ⊂ g).
Then we have the two vacuum modules V = Vg,K ⊃ Va,K and the module
Vg,a = Indg

a C, which is not literally the vacuum module of a Harish-Chandra
pair unless a integrates to an algebraic group.

By Proposition 2.2, the twist Va,K and the localization �(Va,K ) – with re-
spect to the Harish-Chandra pair (a, K ) – are sheaves of algebras, and act on
V and �(V ) respectively. We then have:

Lemma 2.4. The quotients V/(Va,K · V) and �(V )/(�(Va,K ) · �(V )) are
isomorphic, respectively, to the twist Vg,a and the localization �(Vg,a) with
respect to the Harish-Chandra pair (g, K ).

2.4.2 Twisted and deformed vacua.

In general, we define the twisted, classical and deformed vacuum representa-
tions Vk (̂g), V λ(̂g) and Vk,λ of Uk ĝ, Symλ ĝ and Uk,λ̂g, respectively, as the
induced representations

Vk = Uk ĝ ⊗
Uk

C

V λ = Symλ ĝ ⊗
Sym k

C

Vk,λ = Uk,λ̂g ⊗
Uk,λ̂k

C

where we use the observation (Section 2.1.1) that Uk̂k is isomorphic to Uk for
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k �= ∞ and to Sym k for k = ∞. All of these representations carry compatible
K -actions.

We then have a general localization principle, describing twisted differential
operators and twisted symbols on M in terms of the corresponding vacuum
representations. The proof of Proposition 2.2 generalizes immediately to the
family Vk,λ over P1 × A1. This is deduced formally from the analogous state-
ment for homogeneous spaces G/K , twisted by an equivariant line bundle. In
that case the algebra of functions on the cotangent space T ∗G/K |1K = (g/k)∗

is identified with

V 0 = Sym(g/k) = Sym g ⊗
Sym k

C

and sections of the twist of V 0 give the sheaf of functions on T ∗G/K . Note
that V λ is a (commutative) algebra; however, it only becomes Poisson after
twisting or localization. To summarize, we obtain the following:

Proposition 2.5. The localization �k,λ(Vk,λ) is canonically isomorphic to the
sheaf of algebras Dk,λ, for (k, λ) ∈ P1 × A1. In particular �k(Vk) ∼= Dk , and
�λ(V λ) ∼= O(T ∗

λ M) as Poisson algebras.

3 Virasoro and Kac–Moody algebras

In this section we introduce the Lie algebras to which we wish to apply the
formalism of localization outlined in the previous sections. These are the
affine Kac–Moody algebras, the Virasoro algebra and their semi-direct prod-
uct. We describe the Segal–Sugawara construction which expresses the action
of the Virasoro algebra on an affine algebra as an ‘internal’ action. We inter-
pret this construction in terms of a homomorphism between vacuum repre-
sentations of the Virasoro and Kac–Moody algebras, and identify the critical
and classical limits of these homomorphisms. In the subsequent sections we
will use the localization of this construction to describe sheaves of differential
operators on the moduli spaces of curves and bundles on curves.

3.1 Virasoro and Kac–Moody algebras

Let g be a simple Lie algebra. It carries an invariant bilinear form (·, ·) normal-
ized in the standard way so that the square length of the maximal root is equal
to 2. We choose bases {J a}, {Ja} dual with respect to this bilinear form. The
affine Kac–Moody Lie algebra ĝ is a central extension

0 → CK → ĝ → Lg → 0
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of the loop algebra Lg = g ⊗ K of g, with (topological) generators {J a
n =

J a ⊗ tn}n∈Z and relations

[J a
n , J b

m] = [J a, J b]n+m + (J a, J b)δn,−mK. (3.2)

The central extension splits over the Lie subalgebra g(O) ⊂ g(K) (topologi-
cally spanned by J a

n , n ≥ 0), so that the affine proalgebraic group G(O) acts
on ĝ. Thus we have a Harish-Chandra pair (̂g, G(O)). We denote by

Vk = Vk( ĝ ) = Uk ĝ ⊗
Ug(O)

C

the corresponding vacuum module (see Section 2.4). More generally, let
m ⊂ O denote the maximal ideal tC[[t]]. Let gn(O) = g ⊗ mn ⊂ g(O)

denote the congruence subalgebra of level n, and Gn(O) ⊂ G(O) the corre-
sponding algebraic group, consisting of loops which equal the identity to order
n. We denote by

V n
k = V n

k ( ĝ) = Uk ĝ ⊗
Ugn(O)

C

the vacuum module for ( ĝ, Gn(O)).
Let Vir denote the Virasoro Lie algebra. This is a central extension

0 → CC → Vir → Der K → 0

of the Lie algebra of derivations of the field K of Laurent series. It has (topo-
logical) generators Ln = −tn+1∂t , n ∈ Z, and the central element C, with
relations

[Ln, Lm] = (n − m)Ln+m + 1

12
(n3 − n)δn,−mC. (3.3)

The central extension splits over the Lie subalgebra Der O ⊂ Der K, topologi-
cally spanned by Ln, n ≥ −1. Consider the module

Virc = UcVir ⊗
U Der O

C.

Since Der O is not the Lie algebra of an affine group scheme, Virc is not strictly
speaking a vacuum module of a Harish-Chandra pair.

The affine group scheme Aut O of all changes of coordinates on the disc
fixes the closed point t = 0, so that L−1 = −∂t is not in its Lie algebra, which
we denote by Der 1O. More generally, we set

Der n(O) = mnDer O ∼= tnC[[t]]∂t

and let Autn(O) ⊂ Aut0(O) = Aut O be the corresponding algebraic sub-
groups (for n ≥ 0). Then we have Harish-Chandra pairs (Vir, Autn O) and the
corresponding vacuum modules Virn

c (thus we may denote Virc = Vir0
c).
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The Virasoro algebra acts on ĝ, via its action as derivations of K. In terms
of our chosen bases this action is written as follows

[Ln, J a
m] = −m J a

n+m .

Let g̃ be the resulting semidirect product Lie algebra Vir � ĝ. Thus g̃ has topo-
logical generators

J a
m (m ∈ Z, J a ∈ g), Ln (n ∈ Z), K, C

with relations as above.
The central extension splits over the semidirect product g̃+ = Der O�g(O).

We let

Vk,c (̃g) = Indg̃

g̃+⊕C1 Ck,c = U g̃ ⊗
U (̃g+⊕C1)

Ck,c

where Ck,c is the one-dimensional representation of g̃+ ⊕ CK ⊕ CC ⊂ g̃ on
which g̃+ acts by zero and K, C act by k, c. Let

g̃n(O) = Der 2n(O) � gn(O) = m2nDer O � mng(O).

Remark 3.1. This normalization above, by which we pair gn(O) with
Der 2n(O), is motivated by the Segal–Sugawara construction, cf. Proposi-
tion 3.3: the Virasoro generators will be constructed from quadratic expres-
sions in ĝ. Thus in geometric applications of the Segal–Sugawara operators
the orders of trivializations or poles along the Virasoro (moduli of curves) di-
rections will turn out to be double those along the Kac–Moody (moduli of
bundles) directions (for example the quadratic Hitchin hamiltonians double
the order of the pole of a Higgs field).

3.1.1

The corresponding representation

V n
k,c = Uk,c̃g ⊗

U g̃n(O)
C

agrees with Vk,c for n = 0, while for n > 0 it is identified as the vacuum
module for the Harish-Chandra pair (̃g, G̃n(O)) where G̃n(O) = Aut2n O �

Gn(O). We will also denote by G̃(O) the semidirect product Aut O � G(O).
The pattern of deformations and limits from Section 2.1 applies to the Kac–

Moody and Virasoro central extensions, giving rise to two families of algebras
which we denote Uk,λ̂g and Uc,µVir. Thus for λ = µ = 1 and k = c = 0,
Uk,λ̂g = Ug(K) and Uc,µVir = U Der K, etc. For k = c = ∞ we obtain the
Poisson algebras Symλ ĝ and Symµ Vir.
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We also have classical vacuum modules V λ(̂g) for (Sym ĝ, G(O)) and
V µ(Vir) for (Sym Vir, Aut O) and the interpolating families Vk,λ(̂g) and
Vc,µ(Vir).

3.2 Vertex algebras

The vacuum representations Vk, Virc and Vk,c have natural structures of vertex
algebras, and V n

k , Virn
c and V n

k,c are modules over the respective vertex algebras
(see [FB] for the definition of vertex algebras and in particular the Virasoro and
Kac–Moody vertex algebras).

The vacuum vector |0〉 plays the role of the unit for these vertex algebras.
Moreover, all three vacuum modules carry natural Harish-Chandra actions of
(Der O, Aut O): these are defined by the natural action of Der O on ĝ, Vir and
g̃, preserving the positive halves and hence giving rise to actions on the cor-
responding representations. These actions give rise to a grading operator L0

and a translation operator T = L−1 = −∂z ∈ Der O. The vertex algebra Vk is
generated by the fields

J a(z) = Y (J a
−1|0〉, z) =

∑
n∈Z

J a
n z−n−1

associated to the vectors J a
−1|0〉 ∈ Vk , which satisfy the operator product ex-

pansions

J a(z)J b(w) = k(J a, J b)

(z − w)2
+ [J a, J b](w)

z − w
+ · · ·,

where the ellipses denote regular terms. This may be seen as a shorthand form
for the defining relations (3.2). This structure extends to the family Vk,λ. Ex-
plicitly, introduce the C[λ, k−1]-lattice � in Vk,λ generated by monomials in
J

a
n = λ

k J a
n . These satisfy relations

[J
a
n, J

b
m] = λ

k
([J a, J b]n+m + λ(J a, J b))δn,−m,

or in shorthand

[J , J ] = λ

k
(J + λ(· · · ))

The vertex algebra structure is defined by replacing the J operators by the
rescaled versions J . In particular we see that we recover the commutative ver-
tex algebra V λ(g) when k = ∞. Recall from [FB], Ch. 15, that a commutative
vertex algebra is essentially the same as a unital commutative algebra with
derivation and grading. Thus the classical vacuum representations V λ(g), Virµ
and V λ,µ(g) are naturally commutative vertex algebras.
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Moreover, the description as a degeneration endows V λ(g) with a vertex
Poisson algebra structure. The Poisson structure comes with the following re-
lations

{J
a
n, J

b
m} = [J a, J b]n+m + λ(J a, J b)δn,−m .

Likewise, the vertex algebra Virc is generated by the field

T (z) = Y (L−2|0〉, z) =
∑
n∈Z

Lnz−n−2 (3.4)

satisfying the operator product expansion

T (z)T (w) = c/2

(z − w)4
+ 2T (w)

(z − w)2
+ ∂wT (w)

z − w
+ · · · (3.5)

encapsulating the relations (3.3). The µ-deformation Virc,µ is straightforward.
The commutation relations for the generators Ln = µ

c Ln read

[Ln, Lm] = µ

c
(n − m)Ln+m + µ2

c

1

12
(n3 − n)δn,−m

or simply

[L, L] = µ

c
(L + µ(· · · )).

In the limit c = ∞ we obtain a vertex Poisson algebra structure on V µ(g).
(As a commutative algebra with derivation it is freely generated by the single
vector L−2|0〉.) The Poisson operators L have relations

{L, L} = L + µ(· · · ).
The space Vk,c also carries a natural vertex algebra structure, so that Virc ⊂

Vk,c(g) is a vertex subalgebra, complementary to Vk (̂g) ⊂ Vk,c(g), which is a
vertex algebra ideal. In particular, the vertex algebra is generated by the fields
J a(z) and T (z), with the additional relation

T (z)J a(w) = J a(w)

(z − w)2
+ ∂w J a(w)

z − w
+ · · ·. (3.6)

We may combine the above deformations into a two-parameter deformation
of Vk,c. We introduce the C[k−1, c−1]-lattice � in Vk,c generated by monomi-

als in J a
n = λ

k
J a

n and Ln = µ

c
Ln . These satisfy relations

[J , J ] = λ

k
(J + λ), [L, L] = µ

c
(L + µ), [L, J ] = µ

c
J .

If we impose λ = µ = 0, we obtain the deformation of the enveloping
vertex algebra Vk,c to the symmetric vertex Poisson algebra associated to g̃.



64 Ben-Zvi and Frenkel

We will denote this limit vertex Poisson algebra by V 0,0(g). We may also spe-
cialize µ to 0, making the L generators central. Thus in this limit we have a
noncommutative vertex structure on the Kac–Moody part, while the Virasoro
part degenerates to a vertex Poisson algebra. Note however that if we keep µ

nonzero but specialize λ = 0, the Kac–Moody generators become commu-
tative but not central. Hence the Kac–Moody part does not acquire a vertex
Poisson structure, and we do not obtain an action of the Kac–Moody vertex
Poisson algebra on Vk,c in this limit.

In order to obtain a vertex Poisson structure, we need a vertex subalgebra
which becomes central, together with a ‘small parameter’ or direction of defor-
mation, in which to take the linear term. The ‘generic limit’ we consider is ob-
tained by letting k, c → ∞, but with the constraint that our small parameter is

λ

k
= µ

c
.

In other words, we take terms linear in either one of these ratios. In this
limit, the entire vertex algebra becomes commutative, as can be seen from
the relations above. Thus in the limit we obtain a vertex Poisson algebra,
generated by L, J with relations

{J , J } = J + λ {L, L} = L + µ {L, J } = J .

The resulting vertex Poisson algebra will be denoted by V λ,µ(g), for λ, µ ∈ C.

3.3 The Segal–Sugawara vector

To any vertex algebra V we associate a Lie algebra U (V ) topologically
spanned by the Fourier coefficients of vertex operators from V (see [FB]).
This Lie algebra acts on any V -module. In the case of the Kac–Moody vertex
algebra Vk , the Lie algebra U (Vk) belongs to a completion of the enveloping
algebra Uk ĝ. An important fact is that it contains inside it a copy of the Vira-
soro algebra (if k �= −h∨). In vertex algebra terminology, this means that the
Kac–Moody vacuum modules are conformal vertex algebras.

The conformal structure for Vk,c is automatic. Let ωV = L−2|0〉 ∈ Vk,c(g).
This is a conformal vector for the vertex algebra Vk,c(g): the field T (z) it gen-
erates satisfies the operator product expansion (3.5), and hence its Fourier co-
efficients Ln (see (3.4)) give rise to a Virasoro action. The operator L0 is the
grading operator and L−1 is the translation operator T on Vk,c. The action of
Der O induced by the Ln (n ≥ −1) preserves the Kac–Moody part Vk ⊂ Vk,c,
but the negative Lns take us out of this subspace.
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For level k not equal to minus the dual Coxeter number h∨ of g, the vertex
algebra Vk itself carries a Virasoro action, and in fact a conformal structure,
given by the Segal–Sugawara vector. This means that we have a conformal
vector ωS ∈ Vk( ĝ ) ⊂ Vk,c(g) such that the corresponding field satisfies the
Virasoro operator product expansion (3.5). This conformal vector is given by

ωS = S−2

k + h∨ , S−2 = 1

2

∑
a

J a
1 Ja,−1. (3.7)

The corresponding Virasoro algebra has central charge
k dim g

k + h∨ . In other words

Y (ωS, z) =
∑
n∈Z

L S
n z−n−2 (L S

n ∈ End Vk,c(g))

and we have

[L S
n , J a

m] = −m J a
n+m (3.8)

[L S
n , L S

m] = (n − m)L S
n+m + 1

12

k dim g

k + h∨ (n3 − n)δn,m . (3.9)

We will continue to take the vector ωV as the conformal vector for Vk,c,
and use the notation Ln for the coefficients of the corresponding field T (z).
Due to the above commutation relations, ωS is not a conformal vector for Vk,c,
because L S

0 and L S
−1 do not act as the grading and translation operators on the

Virasoro generators.
Note that the commutator [Ln, J a

m] coincides with the right-hand side of
formula (3.8), and therefore [Ln, L S

m] is given by the right-hand side of formula
(3.9).

The above construction of the Virasoro algebra action on Vk is nontrivial
from the Lie algebra point of view. Indeed, the operators L S

n are given by in-
finite sums of quadratic expressions in the J a

n , which are nonetheless well-
defined as operators on Vk

Y (ωS, z) = 1

2(k + h∨)

∑
a

: J a(z)Ja(z) :

so that

L S
n = 1

2(k + h∨)

∑
a

∑
m

: J a
m Ja,n−m :

= 1

2(k + h∨)

∑
a

(∑
m<0

J a
m Ja,n−m +

∑
m≥0

Ja,n−m J a
m

)
.
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In fact, since this action is given by a vertex operator in Vk , it follows im-
mediately that any module over the vertex algebra Vk, k �= −h∨, carries a
compatible action of the Virasoro algebra. This may also be expressed using
completions of the enveloping algebras of ĝ and g̃. These are the completions
which act on all smooth representations, i.e., those in which every vector is
stabilized by a deep enough congruence subgroup G̃n(O), n ≥ 0. Namely, we
define a completion of Uk,c̃g as the inverse limit

Ûk,c̃g = lim←− Uk,c̃g/(Uk,c̃g · g̃n(O)).

This is a complete topological algebra, since the multiplication on Uk,c( g̃ )

is continuous in the topology defined by declaring the left ideals generated by
g̃n(O) to be base of open neighborhoods of 0. We define a completion of Uk ĝ in
the same way. These completions contain the Lie algebras U (Vk,c) and U (Vk),
and in particular for k �= −h∨ they contain the Virasoro algebra generated by
the Segal–Sugawara operators L S

n , n ∈ Z. Hence any smooth representation of
g̃ or ĝ of level k �= −h∨ inherits a Virasoro action. In particular, the algebra
Ûk,c (̃g) acts on the vacuum modules V n

k,c

Proposition 3.2. For any k �= −h∨, the Segal–Sugawara operators L S
m, m ∈

Z, define (Vir, Aut2n O)-action of central charge

c = k dim g

k + h∨

on the vacuum modules V n
k and V n

k,c. Together with the action of (̂g, Gn(O)),

this (Vir, Aut2n O)-action combines into a (̃g, G̃n(O))-action on V n
k .

Proof. The action of the L S
m given by the Segal–Sugawara operators is well-

defined on V n
k because V k

n is a smooth ĝ-module. Next, we claim L S
m · |0〉n = 0

for m ≥ 2n − 1. For (precisely) such m, for each term:J a
m−i Ja,i : at least one

of the two factors lies in g̃n(O), either immediately annihilating |0〉n or first
passing through the other factor to annihilate |0〉n , leaving a commutator of
degree m which also annihilates |0〉n .

Observe that gn(O) acts locally nilpotently on V n
k , Der2nO acts locally nilpo-

tently on ĝ/gn(O) and Der 2nO annihilates |0〉n . This shows that Der 2nO acts
locally nilpotently on V n

k . It follows that this action may be exponentiated to
the pro-unipotent group Aut2n(O). The arguments for V n

k,c are identical.
The fact that the Virasoro action on V n

k defined by the Segal–Sugawara
operators is compatible with the action of ĝ follows from commutation re-
lations (3.8).
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3.3.1 The Segal–Sugawara singular vector.

We now have two Virasoro actions on the representations V n
k,c: one given by the

operators Lm and one given by the operators L S
m . Moreover, both actions have

the same commutation relations with the Kac–Moody generators J a
n . Their

difference now defines a third Virasoro action, which has the crucial feature
that it commutes with ĝ. Indeed, setting Sm = Lm − L S

m , we have

[Sl , Sm] = [Ll , Lm] + ([L S
l , L S

m] − [Ll , L S
m] − [L S

l , Lm])

= [Ll , Lm] − [L S
l , L S

m]

= (l − m)Sl−m + ck

12
(l3 − l)δl,−m

and

[Sm, J a
l ] = 0

where we have introduced the notation

ck = c − k dim g

k + h∨ (3.10)

for the central charge of the Sm .
These operators are also defined from the action of a vertex operator. Define

the Segal–Sugawara singular vector S ∈ Vk,c as the difference S = ωV − ωS ,
for k �= −h∨. The corresponding field

S(z) =
∑
m∈Z

Sm z−m−2

generates the action of the Sms on V n
k,c. The crucial property of S is that it is a

singular vector for the Kac–Moody action, i.e., it is g(O)-invariant

J a
n · S = 0, n ≥ 0.

In what follows we consider Vir2n
ck

as a g̃-module, where ĝ ⊂ g̃ acts by zero.
By Proposition 3.2, V n

k is also a g̃-module for k �= −h∨. Therefore their tensor
product is a g̃-module.

Proposition 3.3. Let k, c ∈ C with k �= −h∨.

(1) The action of the Sm on V n
k,c defines an embedding Sn

k,c : Vir2n
ck

−→ V n
k,c

of Vir-modules.

(2) Sn
k,c is a homomorphism of G̃n(O)-modules with respect to the standard

action of G̃n(O) on V n
k,c and the trivial action of Gn(O) on Vir2n

ck
.
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(3) There is an isomorphism of (̃g, G̃n(O))-modules

sk,c : V n
k ⊗

C

Vir2n
ck

−→ V n
k,c

such that sk,c(|0〉 ⊗ v) = Sn
k,c(v).

Proof. The morphism Sn
k,c is uniquely determined by the requirement that it

intertwine the Virasoro action on Vir2n
ck

with the action of the Virasoro algebra
generated by the Sms on V n

k,c, which annihilate the vacuum vector for m ≥
2n − 1. (In particular, for n = 0, ωV is sent to the Segal–Sugawara singular
vector S = S−2 · |0〉n .) To show that this is an embedding, note that for m <

2n − 1 the operators Lm act freely on V n
k,c, hence so do the Sms, which have

the same leading term with respect to the filtration on V n
k,c by the order in the

Lm operators.
The Segal–Sugawara operators commute with the action of ĝ. It follows

that the subspace Sk,c(Vir2n
ck

) of V n
k,c generated by the action of the Sms

on |0〉n is gn(O)-invariant, and hence G(O)-invariant. Therefore any vector
v ∈ Sn

k,c(Vir2n
ck

) ⊂ V n
k,c determines a unique ĝ-homomorphism v∗ : V n

k → V n
k,c

with v∗(|0〉n) = v. Hence we have a natural embedding of Sn
k,c(Vir2n

ck
) in

Homĝ(V n
k , V n

k,c), and therefore a ĝ-homomorphism

sn
k,c : V n

k ⊗ Vir2n
ck

−→ V n
k,c. (3.11)

The fact that this is a homomorphism of V ir -modules, and therefore of g̃-
modules, of this map is immediate from the formula Sn = Ln − L S

n for the
Virasoro action, where L S

n and Ln denote the Virasoro actions on V n
k and V n

k,c,
respectively. In particular, we see that the map Sn

k,c, identified with the inclu-

sion Vir2n
ck

→ |0〉 ⊗ Vir2n
ck

, followed by sn
k,c, is a homomorphism of G̃n(O)-

modules, since the actions of G̃n(O) fix the vector |0〉 ⊂ V n
k .

We claim that the map sn
k,c in (3.11) is an isomorphism. By the Poincaré–

Birkhoff–Witt Theorem, V n
k,c has a basis of monomials of the form

J a1
m1

· · · J al
mk

Ln1 · · · Lnl |0〉n (mi < n, n j < 2n − 1)

where we choose an ordering on the Kac–Moody and Virasoro generators. It
follows that the same holds with the Ln j replaced by Sm j . The map sn

k,c acts
as follows

(J a1
m1

· · · J al
mk

|0〉) ⊗ (Ln1 · · · Lnl |0〉) �→ J a1
m1

· · · J ak
mk

Sn1 · · · Snl |0〉n .

Hence it is indeed an isomorphism as claimed.
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3.4 Limits of Segal–Sugawara

We would like to describe the behavior of the homomorphisms Sn
k,c, or equiva-

lently, of the vector S ∈ V n
k,c which generates them, as we vary the parameters

k, c. In order to describe the different limits, it is convenient to introduce the
parameters λ, µ and consider the full four-parameter family Vk,c,λ,µ of ver-
tex algebras. The vector S = ωV − ωS is a well-defined element of Vk,c,λ,µ

for k ∈ C \ −h∨, c ∈ C and λ, µ ∈ C \ 0. It has a first-order pole when

k = −h∨, since the Segal–Sugawara central charge ck = c − k dim g

k + h∨ does. It

also has a second-order pole along λ = 0, since it contains a term quadratic
in the J generators; a first-order pole along µ = 0 and c = ∞, since it is
first order in the L generators; and a first-order pole along k = ∞, since it is
quadratic in the J s but divided by k +h∨. Thus in these limits it is necessary to
normalize S by its leading term to obtain well-defined, non-zero limits of the
map Sk,c.

3.4.1 Critical level.

We would like to specialize the vector S and morphism Sk,c to the critical level
k = −h∨. Introduce the rescaled operators

Sm = (k + h∨)Sm = (k + h∨)(Lm − L S
m)

which are generated by the vertex operator S(z) associated to

S = (k + h∨)S = (k + h∨)L−2 − S−2.

Thus when k = −h∨, the vector S is well-defined and equal to −S−2. The
operators Sm satisfy

[Sl , Sm] = (k + h∨)((l − m)Sl+m + (k + h∨)(k dim g)

12
(l3 − l)δl,−m). (3.12)

Let us introduce the notation

µg = h∨ dim g.

We see that as k approaches the critical level −h∨, as the central charge of
the Virasoro action of the Sm becomes infinite, the renormalized operators Sm

become commuting elements, and moreover satisfy the Poisson relations of
the classical Virasoro algebra

U∞,µg
Vir = Symµg

Vir.

Proposition 3.4. The action of the operators Sm defines a G(O)–invariant

homomorphism S
n
−h∨,c : Vir

2n
µg

−→ V n
−h∨,c of Symµg

Vir-modules. For
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n = 0, S−h∨,c defines a homomorphism of vertex Poisson algebras Virµg
→

Z(V−h∨,c(g)) to the center of the Virasoro and Kac–Moody vertex algebra.

Proof. The morphism S
n
−h∨,c is defined by the universal mapping property

of the vacuum module Vir
n
µg

of Symµg
Vir. The centrality of S (and hence

the map) for k = −h∨ follows from the fact that the commutators of Sn =
(k+h∨)Sn (for k �= −h∨) with the Ln and J a

n are divisible by k+h∨. That this
is a morphism of vertex Poisson algebras is immediate from the commutation
relation (3.12).

3.4.2 Infinite limit.

Now we would like to study the ‘generic’ classical limit of the Segal–Sugawara
construction in V λ,µ. In order to do so we approach the plane c = k = ∞
along the direction

λ

k
= µ

c
, which is the direction we used to define the vertex

Poisson structure on V λ,µ(g). The Segal–Sugawara operators are rescaled as

follows: Sm = λ2

k Sm . These are the Fourier modes of the vertex operator S(z)
associated to the vector

S = λ2

k
S ∈ Vk,c,λ,µ

which is regular for k �= 0, −h∨ and c, λ, µ arbitrary. In terms of the regular
elements L and J , we have

S = λL−2 − 1

2(k + h∨)

∑
a

J
a
−1 J a,−1 + · · · .

Thus when λ = 0 the linear term drops out and we recover the symbol,

− 1

2(k + h∨)
S−2. The commutation relations for the Sm are as follows

[Sl , Sm] = λ4

k2
[Sl , Sm] (3.13)

= λ
λ

k
((l − m)Sl−m + λµ

12
(l3 − l)δl,−m + · · · ). (3.14)

We have used the relation µ = λc

k
, and that

λ2

k

k dim g

k + h∨ = λ2 dim g

k + h∨

vanishes in the limit k → ∞. Therefore in this limit the Sms satisfy the re-
lations of the Virasoro Poisson algebra Symλµ Vir, with the bracket rescaled
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by λ. We will refer to a morphism which is a homomorphism after rescaling
by λ as a λ-homomorphism. We therefore obtain the following analogue of
Proposition 3.4:

Proposition 3.5. The action of the Segal–Sugawara operators Sm defines a

λ-homomorphism S
n
λ,µ : Vir

2n
λµ −→ V

n
λ,µ of Symλµ Vir-modules. The image

is G(O)-invariant, and Sλ,µ is a λ-homomorphism of vertex Poisson algebras.

4 Moduli spaces

In this section we describe the spaces on which representations of the Virasoro
and Kac–Moody algebras and their semidirect product localize. These are the
moduli spaces of curves, of bundles on a fixed curve and bundles on varying
curves, respectively. We will consider these localization functors following the
general formalism outlined in Section 2. Note that the above moduli spaces
are not algebraic varieties, but algebraic stacks. However, as explained in [BB,
BD1], the localization formalism is applicable to them because they are ‘good’
stacks, i.e., the dimensions of their cotangent stacks are equal to the twice their
respective dimensions.

4.1 Moduli of bundles

Let X be a smooth projective curve over C. Denote by BunG(X) the mod-
uli stack of principal G-bundles on X , and P the tautological G-bundle on
the product X × BunG(X). (Its restriction to X × {P}, for P ∈ BunG(X), is
identified with P.)

Given x ∈ X , we denote by BunG(X, x, n) the moduli stack of G-bundles
with an nth-order jet of trivialization at x , and by B̂unG(X, x) the moduli stack
of G-bundles with trivializations on the formal neighborhood of x (the lat-
ter moduli stack is in fact a scheme of infinite type). For now we fix a for-
mal coordinate t at x , so that the complete local ring Ox is identified with
O = C[[t]]. Later we will vary this coordinate by the Aut O-action. The
group scheme G(O) acts on B̂unG(X, x) by changing the formal trivializa-
tion, making B̂unG(X, x) → BunG(X) into a G(O)-torsor. More generally
B̂unG(X, x) → BunG(X, x, n) is a Gn(O)-torsor.

Theorem 4.1. (Kac–Moody Uniformization.)

(1) The Gn(O) action on the moduli space B̂unG(X, x) extends to a formally
transitive action of the Harish-Chandra pair (g(K), Gn(O)).
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(2) ([BL1, BL2, DSi]) For G semisimple, the action of the ind-group G(K) on
B̂unG(X, x) is transitive, and there are isomorphisms

B̂unG(X, x) � G(K)out\G(K), BunG(X) � G(K)out\G(K)/G(O).

4.1.1 Line bundles on BunG(X).

We refer to [Sor] for a detailed discussion of the line bundles on BunG(X).
They are classified by integral invariant forms on g, which also label the Kac–
Moody central extensions of LG. The action of ĝ on B̂unG(X, x) lifts with
level one to the line bundle C given by the corresponding invariant form. This
line bundle may be defined by using Theorem 4.1 from the action of the Kac–
Moody group Ĝ(K) (the central extension splits over G(X \ x) and hence
gives rise to a line bundle on G(X \ x)\Ĝ(K) = B̂unG(X, x), which descends
to BunG(X)).

For example, if G = SLn , the line bundle C may be identified with the de-
terminant of the cohomology of the universal vector bundle E = P ×

SLn

Cn over

X × BunSLn (X), det Rπ2∗E (where π2 : X × BunG(X) → BunG(X)). This
identification however is not canonical (it is not valid for bundles over vary-
ing curves, see Section 4.3). More generally, for any simple algebraic group G
powers of C can be defined as determinant line bundles associated to represen-
tations of G.

4.1.2 Localization.

For every n the triple

(M̂,M,L) = (B̂unG(X, x), BunG(X, x, n), C)

defined above carries a transitive Harish-Chandra action of (̂g, Gn(O)) as in
Section 2.3. Therefore we have localization functors from (̂g, Gn(O))-modules
to twisted D-modules on BunG(X, x, n) (we denote these functors by � as
before). In particular, according to Proposition 2.2 (2), for the vacuum mod-
ule V n

k , the sheaf �(V n
k ) on BunG(X, x, n) is just the corresponding sheaf of

twisted differential operators, which we denote uniformly by Dk . Furthermore,
the twist Vn

k = Vĝ,Gn(O) is a sheaf of algebras on BunG(X, x, n), and we have
a surjective homomorphism Vn

k → Dk .
The corresponding classical vacuum representations V

n
k localize to

give the Poisson sheaves of functions on the twisted cotangent bundles
T ∗

λ BunG(X, x, n) = Conn Cλ corresponding to C. Recall that the cotan-
gent space T ∗

P BunG(X) at a bundle P is the space of gP-valued differentials
H0(X, gP ⊗ �). Therefore we obtain
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Proposition 4.2 ([Fa1, BS]). The twisted cotangent bundle T ∗
1 BunG(X, x, n)

is canonically identified, as a torsor over T ∗ BunG(X, x, n), with the moduli
stack Conn G(X, x, n) of bundles with connections with a pole of order at most
n at x.

4.2 Moduli of curves

Let Mg denote the moduli stack of smooth projective curves of genus g, and
π : Xg → Mg the universal curve. The stack Xg is identified with the moduli
stack Mg,1 of pointed genus g curves. More generally, we denote by Mg,1,n

the moduli stack of pointed curves with an nth order jet of coordinate at the
marked point, and M̂g,1 = Mg,1,∞ the moduli scheme of curves with a marked
point and formal coordinate (i.e. classifying triples (X, x, z), where (X, x) ∈
Mg,1 and z is a formal coordinate on X at x). The group scheme Aut O acts
on M̂g,1 by changing the coordinate z, making M̂g,1 into an Aut O–torsor over
Mg,1 and an Autn O–torsor over Mg,1,n .

For any family of curves π : X → S, we have the Hodge line bundle H on
S, defined by

H = det Rπ∗ωX/S,

the determinant of the cohomology of the canonical line bundle of X over
S. By abuse of notation we will denote by H the Hodge line bundle of an
arbitrary family of curves. Over the moduli stack M, Mumford has shown that
(for g > 1) H generates the Picard group Pic M ∼= Z · H.

Theorem 4.3. [BS, TUY, ADKP, K] (Virasoro Uniformization.) The Aut O
action on the moduli space M̂g,1 of pointed, coordinatized curves extends
to a formally transitive action of the Harish-Chandra pair (Vir, Aut O) (of
level 0). The action of Vir lifts to an action with central charge −2 on the line
bundle H.

4.2.1 Localization.

The pattern of localization from Section 2.3 applies directly to the Autn O–
bundle M̂g,1 → Mg,1,n and the Harish-Chandra pairs (Vir, Autn O). There-
fore we have localization functors from (Vir, Autn O)–modules to twisted D–
modules on Mg,1,n . In particular, the localization of the vacuum module Virn

c
gives us the sheaf of twisted differential operators on Mg,1,n , denoted by Dc,
and their classical versions give us Poisson algebras of functions on twisted
cotangent bundles. Furthermore, the twist Virn

c = VVir,Autn(O) is a sheaf of
algebras on Mg,1,n , and we have a surjective homomorphism Virn

c → Dc.
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A similar picture holds for the fibration M̂g,1 → Mg and the pair
(Vir, Der O), except that Der O does not integrate to a group (only to an ind-
group, see [FB], Ch. 5), and M̂g,1 → Mg is not a principal bundle, so that the
definition of localization does not carry over directly. Nevertheless, we obtain
the desired description of differential operators on Mg by first localizing Virc

on Mg,1 (or Mg,1,n), using the fact that the corresponding D-modules descend
along the projection π : Mg,1 → Mg:

Proposition 4.4. The localization of the Virasoro module Virc on Mg,1 is iso-
morphic to the pullback π∗Dc of the sheaf of twisted differential operators
on Mg.

Proof. By Lemma 2.4, the localization �(Virc) is the quotient of �(Vir0
c) =

Dc by the action of the partial vacuum representation �(VDer O,Der 0O). How-
ever, the latter is readily identified as the sheaf of relative differential oper-
ators, �(VDer O,Der 0O) = Dc/Mg . Indeed the action of Der O on M̂g is free

and generates the relative vector fields on the universal curve – the M̂g twist
(Der O/Der 0O)

M̂g
is precisely the relative tangent sheaf of Mg,1 over Mg .

But the quotient of the sheaf of differential operators by the ideal generated
by vertical vector fields is the pullback of the sheaf of differential operators
downstairs, whence the proposition.

4.2.2

Recall (see, e.g., [FB]) that the space of projective structures on X is a tor-
sor over the quadratic differentials H0(X, �⊗2), which is the cotangent fiber
of Mg at x . The Virasoro uniformization of Mg , together with the canonical
identification of projective structures on the punctured disc with a hyperplane
in Vir∗, give us the following:

Corollary 4.5. ([BS]) There is a canonical identification of the twisted cotan-
gent bundles T ∗

λ Mg = Proj g (for λ = 12).

4.2.3

Similarly the twisted cotangents to the moduli Mg,1,n of curves with marked
points and level structures are identified with the moduli Proj λ

g,1,n of λ-
projective structures with poles at the corresponding points.

4.3 Moduli of curves and bundles

The discussions of the moduli spaces Mg and BunG(X) above may be gener-
alized to the situation where we vary both the curve and the bundle on it. Let
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BunG,g denote the moduli stack of pairs (X, P), where X is a smooth projec-
tive curve of genus g, and P is a principal G-bundle on X . Thus we have a
projection

� : BunG,g −→ Mg

with fiber over X being the moduli stack BunG(X). Let BunG,g,1 denote the
moduli stack classifying G-bundles on pointed curves, i.e., the pullback of the
universal curve to BunG,g

BunG,g,1 = Mg,1 ×
Mg

BunG
πG−→ BunG,g .

We denote by �0 : BunG,g,1 → Mg,1 the map forgetting the bundles. We let
BunG,g,1,n denote the moduli stack of quintuples (X, x, P, z, τ ) consisting of
a G-bundle P with an nth-order jet of trivialization τ on a pointed curve (X, x)

with 2nth-order jet of coordinate z. We let �n : BunG,g,1,n → Mg,1,2n denote
the map forgetting (P, τ ). For n = ∞ we obtain the moduli scheme B̂unG,g of
bundles with formal trivialization on pointed curves with formal coordinates.

There is a natural two-parameter family of line bundles on BunG,g . Namely,
there is a Hodge bundle H associated to the family of curves πG : BunG,g,1 →
BunG,g (which is the � pullback of the Hodge bundle on Mg). The universal
principal G-bundle P lives on this universal curve BunG,g,1, so we may also
consider the line bundle C associated to the principal bundle P. The bundle
C is trivial on the section triv : Mg → BunG.g sending a curve to the trivial
G-bundle. Let Lk,c = C⊗k ⊗ H⊗c. For simply connected G this assignment
gives an identification Pic(BunG,g) ∼= Z ⊕ Z (see [La]).

For G = SLn we may consider the determinant bundle det Rπ2∗E as before,
where π2 is the projection from the universal curve and E = P ×SLn Cn is the
universal vector bundle. The determinant of the cohomology of the trivial rank
n bundle gives the nth power of the Hodge line bundle, while for fixed curve
the determinant bundle may be identified with C. Thus we have the Riemann–
Roch identification

det Rπ2∗E ∼= C ⊗ H⊗n = L1,n .

(In this case the determinant and Hodge bundles also span the Picard group.) In
general we have determinant line bundles Lρ for any representation ρ : G →
SLn .

4.3.1 Extended connections.

For each λ, µ ∈ C, we have the corresponding twisted cotangent bun-
dle T ∗

λ,µ BunG,g , which is Conn (Lλ,µ) when λ, µ are integral. Following
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[BZB2, BZB1], we will refer to points of ExConnλ,µ
G,g = T ∗

λ,µ BunG,g as (λ, µ)-
extended connections. Using the short exact sequence of cotangent bundles

0 → �∗T ∗Mg → T ∗ BunG,g → T ∗
/M BunG,g → 0

and the description (see Proposition 4.1.2) of the relative twisted cotangent
bundle of BunG,g , we obtain an affine projection

ExConnλ,µ
G,g → Conn λ

G,g (4.15)

with fibers affine spaces over quadratic differentials. Here Conn G,g denotes the
moduli space of curves equipped with G-bundles and λ-connections, which is
identified as the relative twisted cotangent bundle

Conn λ
G,g

∼= Conn /MLλ,µ

for any µ ∈ C. (Note that L0,µ = �∗Hµ has a canonical connection relative
to M, so that Conn /MLλ,µ

∼= Conn /MLλ,0 for any µ.)

Remark: kernel functions 4.6. See also [BZB2] where a concrete description
is given of the identification of projective structures, connections and extended
connections with the twisted cotangent bundles of the moduli of curves and
bundles using kernel functions along the diagonal (in particular the Szegö ker-
nel), in the spirit of [BS].

4.3.2

The group schemes G̃n(O) act on B̂unG,g , changing the coordinate z and triv-
ialization τ . This action makes B̂unG,g into a G̃n(O)-torsor over BunG,g,1,n .

Theorem 4.7. (Virasoro–Kac–Moody Uniformization.) The G̃n(O)-action on
the moduli stack B̂unG,g extends to a formally transitive action of the Harish-
Chandra pair (̃g, G̃n(O)) (of level and central charge 0). The action of g̃ lifts
to an action with level k and central charge c on the line bundle Lk,c.

4.3.3 Localization

The pattern of localization from Section 2.3 again applies directly to
BunG,g,1,n and the Harish-Chandra pairs (̃g, G̃n(O)). Therefore we have
localization functors from (̃g, G̃n(O))-modules to twisted D-modules on
BunG,g,1,n . In particular, the localization of the vacuum module V n

k,c gives
us the sheaf of twisted differential operators on BunG,g,1,n , denoted by Dk,c.
As in Section 4.2.1, we would like to show that the corresponding sheaves de-
scend along the projection πG : BunG,g,1 → BunG,g to the moduli of curves
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and bundles itself. The argument of Proposition 4.2.1 carries over directly to
this setting, and we obtain:

Proposition 4.8. The localization of the Virasoro–Kac–Moody module Vk,c on
BunG,g,1 is isomorphic to the pullback π∗

GDk,c of the sheaf of twisted differen-
tial operators on BunG,g.

Note that we now have a two-parameter family of line bundles Lk,c, and
hence the pattern of deformations of Section 2.1 can be ‘doubled’, to match up
with the picture of the Virasoro–Kac–Moody vertex algebra Vk,c. Thus, we in-
troduce deformation parameters λ, µ coupled to the level and charge k, c. This
defines a four-parameter family of algebras Dλ,µ(Lk,c), to which the analo-
gous quasi-classical localization statements apply.

5 The Segal–Sugawara homomorphism

In this section we apply the techniques of Lie algebra localization and vertex
algebra conformal blocks to the Segal–Sugawara construction from Section 3.
We interpret the result as a homomorphism between sheaves of twisted differ-
ential operators on the moduli stacks introduced in the previous section, and
as heat operators on spaces of non-abelian theta functions. Various classical
limits of this construction will be considered in the next section.

5.1 Homomorphisms between sheaves of differential operators

Let k, c ∈ C with k �= −h∨. Let Vn
k,c = Vg̃,G̃n(O) be the sheaf on BunG,g,1,n

obtained as the twist of the vacuum module V n
k,c over ( g̃, G̃n(O)) following

the construction of Section 2.4. By Proposition 2.4, this is a sheaf of algebras,
equipped with a surjective homomorphism to the sheaf of (k, c)-twisted differ-
ential operators �(V n

k,c) = Dk,c.
According to Corollary 2.3, the subspace of invariants (V n

k,c)
G̃n(O) give rise

to global differential operators on BunG,g,1,n . Unfortunately, for k �= −h∨

the space (V n
k,c)

G̃n(O) is one-dimensional, spanned by the vacuum vector.
However, the Segal–Sugawara construction provides us with a large space
of invariants for the smaller group Gn(O) ⊂ G̃n(O). Namely, by Proposi-
tion 3.3.1, the Gn(O)-invariants contain a copy of the Virasoro vacuum module
Sn : Vir2n

ck
→ (V n

k,c)
Gn(O). We will use this fact to obtain a homomorphism

Dck → �n∗Dk,c of sheaves on Mg,1,2n . The first step is the following assertion.
Consider Vir2n

ck
as a g̃-module by letting ĝ act by zero. Then the twist Vir2n

ck
=

Vg̃,G̃n(O) becomes a sheaf of algebras on Mg,1,2n .
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Proposition 5.1. There is a homomorphism of sheaves of algebras on Mg,1,2n

Sn
k,c : Vir2n

ck
−→ �n

∗V
n
k,c.

Proof. Note that the map Sn : Vir2n
ck

→ (V n
k,c)

Gn(O) is a homomorphism of

G̃n(O)-modules (where the subgroup Gn(O) of G̃n(O) acts by zero). Hence
its gives rise to a homomorphism of the corresponding twists by the G̃n(O)-
torsor B̂unG,g → BunG,g,1,n

B̂unG,g ×
BunG,g,1,n

Vir2n
ck

−→ B̂unG,g ×
BunG,g,1,n

(V n
k,c)

Gn(O) −→

−→ Vn
k,c = B̂unG,g ×

BunG,g,1,n

V n
k,c. (5.16)

The first two sheaves are pullbacks from Mg,1,2n . Indeed, since the actions of
G̃n(O) on Vir2n

ck
and (Vn

k,c)
Gn(O) factor through Aut2n O, their twists depend

only on the associated Aut2n O-torsor, which is nothing but the �n-pullback of
the Aut2n O-torsor π2n : M̂g,1 → Mg,1,2n . Therefore the maps (5.16) may be
written as

(�n)∗Vir2n
ck

−→ (�n)∗(Vn
k,c)

Gn(O) −→ Vn
k,c.

By adjunction, we obtain the following maps on Mg,1,2n

Vir2n
ck

−→ (Vn
k,c)

Gn(O) −→ �n
∗V

n
k,c.

We claim that these sheaves are algebras and these maps are algebra homo-
morphisms. The third term is the pushforward of an algebra, hence an algebra.
The first term is the twist of the vacuum module for (Vir, Aut2n O), so its alge-
bra structure comes from Proposition 2.2. Next, note that the Harish-Chandra
pair (̃g, G̃n(O)) acts on M̂g,1 through the quotient (Vir, Aut2n O), so that the
Aut2n O-twist of the Gn(O)-invariants in V n

k,c may be rewritten in terms of the

semidirect product G̃n(O)

(Vn
k,c)

Gn(O) =
[
πn∗(OM̂g,1

⊗ V n
k,c)

]G̃n(O)

.

Thus as in Proposition 2.4 the sheaves (Vn
k,c)

Gn(O) on Mg,1,2n or BunG,g,1,n

are naturally sheaves of algebras. This structure is clearly compatible with that
on �n∗Vn

k,c.

Finally, the maps Vir2n
ck

→ V n
k,c are induced from the homomorphism

U (Virck ) → Ûk,c̃g into the completion of the enveloping algebra of g̃. This ho-
momorphism maps the subalgebra UDer 2nO to the left ideal generated by the
Lie subalgebra g̃n(O). Hence we obtain a homomorphism of the corresponding
vacuum modules, because V n

k,c can be defined as the quotient of the completed
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algebra Ûk,c̃g by the left ideal generated by the Lie subalgebra g̃n(O). It fol-
lows that the map Vir2n

ck
−→ (Vn

k,c)
Gn(O) above respects algebra structures.

More precisely, this map comes from the above homomorphism of enveloping
algebras by passing to the normalizers of ideals on both sides, hence it remains
a homomorphism.

5.1.1

By Proposition 5.1, we have a diagram of algebra homomorphisms on Mg,1,2n

Virn
ck

S
n
k,c−→ �n∗Vn

k,c
↓ ↓

Dck �n∗Dk,c

We wish to show that the homomorphism Sn
k,c descends to the sheaves of

twisted differential operators. It will then automatically be a homomorphism
of algebras of differential operators.

Theorem 5.2. The homomorphism Sn
k,c of descends to a homomorphism of

algebras

Sn
k,c : Dck −→ �n

∗Dk,c.

5.1.2 Spaces of coinvariants

Equivalently, we need to show that up on BunG,g,1,n , the morphism
(�n)∗Virn

ck
→ Vn

k,c descends to (�n)∗Dck → Dk,c, since the morphism on
Mg,1,2n is obtained from the former by adjunction.

If we apply the Virasoro and Kac–Moody localization functor � on
BunG,g,1,n to the (̃g, G̃n(O))-modules Vir2n

ck
and V n

k,c, we obtain the desired

sheaves (�n)∗Dck and Dk,c. However, the embedding Vir2n
ck

→ Vk,c of Propo-
sition 3.3 is not a homomorphism of g̃-modules: it intertwines the Virasoro
action on Virn

ck
with the action on Vk,c of the Virasoro algebra generated by

the Sn’s, not the Lns. Because of that, it is not immediately clear that the map
Vir2n

ck
→ Vk,c gives rise to a morphism of sheaves (�n)∗Dck → Dk,c. In or-

der to prove that, we must use Proposition 5.3 below to pass from Lie algebra
coinvariants to vertex algebra coinvariants.

Let us recall some results from [FB] on the spaces of (twisted) coinvariants
of vertex algebras.

Let V be a conformal vertex algebra with a compatible ĝ-structure (see [FB],
Section 6.1.3). This means that V carries an action of the Harish-Chandra pair
(̃g, G̃(O)), such that the action of the Lie algebra g̃ is generated by Fourier
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coefficients of vertex operators. In particular, our vacuum modules Vk,c and
Virc are examples of such vertex algebras.

Given a vertex algebra of this type, we define its space of twisted coinvari-
ants as in [FB], Section 8.5.3. Namely, let R be a local C-algebra and (X, x, P)

an R-point of BunG,g , i.e., a pointed curve (X, x) and a G-bundle on X , all de-
fined over Spec R. Then X carries a natural G̃(O)-bundle P̂, whose fiber over
y ∈ X consists of pairs (z, t), where z is a formal coordinate at y and t is a
trivialization of P over the formal disc around y.

Set

VP = P̂ ×̃
G(O)

V .

This vector bundle carries a flat connection, and we define the sheaf h(VP⊗�)

as the sheaf of zeroth de Rham cohomology of VP ⊗ �. The vertex algebra
structure on V makes this sheaf into a sheaf of Lie algebras. In particular, the
Lie algebra UP(Vx ) of sections of h(VP ⊗ �) over the punctured disc D×

x
is isomorphic to the Lie algebra U (V ) topologically spanned by the Fourier
coefficients of all vertex operators from V . It acts on VP

x , the fiber of VP at x .
Let UP

X\x (Vx ) be the image of the Lie algebra �(X\x, h(VP ⊗ �)) in

UP(Vx ) = �(D×
x , h(VP ⊗ �)). The space HP(X, x, V ) of twisted coinvari-

ants of V is by definition the quotient of VP
x by the action of UP

X\x (Vx ).

Let AP be the Atiyah algebroid of infinitesimal symmetries of P. We have
the exact sequence

0 → gP → AP → �X → 0

where gP is the sheaf of sections of the vector bundle P ×
G

g.

When V = Vk,c, the Lie algebra UP(Vk,c,x ) contains as a Lie subalgebra a
canonical central extension of the Lie algebra �(D×

x , AP) (it becomes isomor-
phic to g̃ if we choose a formal coordinate at x and a trivialization of P|Dx ).
Also, the Lie algebra UP

X\x (Vk,c,x ) contains

g̃P
out = �(X\x, AP)

as a Lie subalgebra (it is isomorphic to Vect(X\x) � g ⊗ C[X\x]).
Likewise, in the case when V = Virc, UP(Virc,x ) contains the Virasoro al-

gebra, and UP
X\x (Virc,x ) contains the Lie algebra Vect(X\x) of vector fields

on X\x . The homomorphism Virck → Vk,c of vertex algebra induces injective
homomorphisms of Lie algebras

UP(Virck ,x ) ↪→ UP(Vk,c,x )

UP
X\x (Virck ,x ) ↪→ UP

X\x (Vk,c,x )
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(since the action of ĝ on Virc is trivial, the Lie algebras on the left do not de-
pend on P). Note that though the Segal–Sugawara vertex operator is quadratic
in the generating fields of Vk,c, the elements of UP

X\x (Virck ,x ) (and other ele-

ments of UP
X\x (Vx )) cannot be expressed in terms of the Lie subalgebra g̃P

out

of UP
X\x (Vk,c,x ). Nevertheless, we have the following result which is proved in

[FB], Theorem 8.3.3 (see also Remark 8.3.10).

5.3 Proposition. For any smooth g̃P-module M (which is then automati-
cally a UP(Vk,c,x )-module), the space of coinvariants of M by the action of
UP

X\x (Vk,c,x ) is equal to the space of coinvariants of M by the action of g̃P
out.

Proof of Theorem 5.1.1. Fix an R-point (X, x, z, P, t) of BunG,g,1,n , i.e., a
pointed curve (X, x), a 2n-jet of coordinate z at x , a G-bundle P and an n-jet of
trivialization t of P at x , all defined over the spectrum of some local C-algebra
R. Let v be a vector in the fiber of the sheaf Vir2n

ck
over the R-point (X, x, z) of

Mg,1,2n , which lies in the kernel of the surjection Vir2n
ck

|R → Dck |R . In order
to prove the theorem, it is sufficient to show that the image of v in the fiber
of the sheaf Vn

k,c over the R-point (X, x, z, P, t) of BunG,g,1,n belongs to the
kernel of the surjection Vn

k,c|R → Dk,c|R .
But according to [FB], Lemmas 16.2.9 and 16.3.6, the kernel of the map

Vir2n
ck

|R → Dck |R is spanned by all vectors of the form s·A, where A ∈ Vir2n
ck

|R

and s ∈ Vect(X\x) (so that Dck |R is the space of coinvariants of Vir2n
ck

|R with
respect to Vect(X\x)). Likewise, the kernel of the map Vn

k,c|R → Dk,c|R is

spanned by all vectors of the form f · B, where B ∈ Vn
k,c|R and f ∈ g̃P

out (so

that Dk,c|R is the space of coinvariants of Vn
k,c|R with respect to g̃P

out).
So we need to show that the image of a vector of the above form s · A

in Vn
k,c|R is in the image of the Lie algebra g̃P

out. But by Proposition 5.3, the
space of coinvariants of Vn

k,c|R with respect to g̃out is equal to the space of

coinvariants of Vn
k,c|R with respect to UP

X\x (Vk,c,x ). This implies the state-
ment of the theorem, because according to the discussion of Section 5.1.2,
UP

X\x (Vk,c,x ) contains the image of Vect(X\x) ⊂ UX\x (Virck ,x ) as a Lie sub-
algebra.

5.1.3 Descent to Mg.

The homomorphism of Theorem 5.2 may be used to describe differential
operators on the moduli of unmarked curves and bundles, � : BunG,g → Mg .
To do so we first localize the corresponding ‘vacuum’ representations Virck

and Vk,c on BunG,g,1 and Mg,1 and then descend.
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Corollary 5.4. There is a canonical homomorphism Dck −→ �∗Dk,c of
sheaves of algebras on Mg.

Proof. We will construct a morphism of sheaves �∗Dck → Dk,c on BunG,g ,
which gives rise to the desired morphism on Mg by adjunction. This map
furthermore is constructed by descent from BunG,g,1. By Proposition 4.4 and
Proposition 4.8, the sheaves �ck (Virck ) and �k,c(Vk,c) on Mg,1 and BunG,g,1

are identified with π∗Dck and π∗
GDk,c. Moreover these identifications are

horizontal with respect to the relative connections inherited by the pullback
sheaves. We now need to construct a map between the pullback of π∗Dck

to BunG,g,1 and π∗
GDk,c which is flat relative to πG and hence descends to

BunG,g .
This morphism Sk,c may be constructed directly following Theorem 5.2, or

by applying the change of vacuum isomorphism Lemma 2.4 to the homomor-
phism S1

k,c. The connection along the curve πG : BunG,g,1 → BunG,g is de-
duced (by passing to subquotients) from the action of L−1 ∈ Der O on the vac-
uum modules Virck and Vk,c, which are compatible under the Segal–Sugawara
homomorphism (see Proposition 3.3). Hence the morphism is horizontal along
this curve and descends to BunG,g,1.

The morphism Sk,c on Mg is a homomorphism, since it is obtained by re-
duction (by change of vacuum, see Lemma 2.4) from the corresponding homo-
morphism S1

k,c on Mg,1.

5.2 Tensor product decomposition

By applying localization to the isomorphism of (̃g, G̃(O))-modules

sk,c : Vk ⊗ Vir2n
ck

∼−→ Vk,c

of Proposition 3.3, we obtain an isomorphism

�sk,c : �(Vk ⊗ Vir2n
ck

)
∼−→ �(Vk,c).

However, the functors of coinvariants and localization are not tensor functors.
Since Vk is a ĝ-submodule of Vk,c, we obtain a natural map �(Vk) → �(Vk,c).
The localization �(Vk) is naturally identified with the sheaf Dk/M ⊂ Dk,c of
relative differential operators. We now use the homomorphism Sk,c to lift the
Virasoro operators to Dk,c:

Theorem 5.5. There is an isomorphism of sheaves on Mg,1,2n

�n
∗Dk/M ⊗

O
Dck

∼= �n
∗Dk,c

compatible with the inclusions of the two factors as subalgebras of �n∗Dk,c.
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Proof. Consider the isomorphism of (̃g, G̃n(O))-modules

sn
k,c : V n

k ⊗
C

Vir2n
ck

−→ V n
k,c

of Proposition 3.3. Twisting by the G̃n(O)-torsor B̂unG,g → BunG,g,1,n we
obtain an isomorphism

Vn
k ⊗

O
Vir2n

ck
−→ Vn

k,c

of sheaves. This morphism restricts to Sn
k,c on |0〉 ⊗ Vir2n

ck
, and hence descends

to an isomorphism

�n
∗V

n
k ⊗

O
Vir2n

ck
−→ �n

∗V
n
k,c.

Thus we see that �n∗Vn
k,c is generated by its two subalgebras �n∗Vn

k and Virn
ck

.
The inclusion Vk → Vk,c of ĝ-modules gives rise to a natural algebra inclu-

sion

�(V n
k ) = Dk/M −→ �(V n

k,c) = Dk,c

from the sheaf of twisted differential operators relative to the moduli of
curves Mg,1,2n to the full sheaf of twisted differential operators. We define the
map

�n
∗Dk/M ⊗

O
Dck → �n

∗Dk,c

as one generated by the homomorphisms from �n∗Dk/M and Dck to �n∗Dk,c.
This map is surjective because it comes from the composition

Vn
k ⊗

O
Vir2n

ck
→ Vn

k,c → �(V n
k,c)

which is surjective because the first map is an isomorphism by Proposition 3.3
and the second map is surjective by definition. It remains to check that this
map is injective. We have a commutative diagram

Vn
k ⊗

O
Vir2n

ck

∼−→ Vn
k,c

↓ ↓
�(V n

k ) ⊗
O

�(Vir2n
ck

) −→ �(V n
k,c)

For an R-point of BunG,g,1,n as in the proof of Theorem 5.2, the kernel of the
right vertical map over Spec R is the image of the action of the Lie algebra
g̃P

out in Vn
k,c|R � Vk |R ⊗ Vir2n

ck
|R . But

g̃P
out · (Vk |R ⊗ Vir2n

ck
|R) ⊂ (gP

out · Vk |R) ⊗ Vir2n
ck

|R + Vk |R ⊗ (̃gP
out · Vir2n

ck
|R)

and so the right-hand side is in the kernel of the projection Vk |R ⊗ Vir2n
ck

|R
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→ (�(V n
k ) ⊗ �(Vir2n

ck
))|R . This proves that our map is injective and hence an

isomorphism.

Remark 5.6. The theorem may be applied to describe differential opera-
tors on the moduli of curves and bundles without level structure, following
Corollary 5.4. However, it is known ([BD1]) that for k �= −h∨, there are no
non-constant global twisted differential operators on BunG(X), in other words,
�∗Dk/M = OMg . Thus in this case the pushforward of twisted differential op-
erators Dk,c to Mg is simply identified with the differential operators Dck on
Mg .

5.3 Heat operators and projectively flat connections

Let π : M → S be a smooth projective morphism with connected fibers and
L → M a line bundle. Let DL be the sheaf of twisted differential operators
on L.

Definition 5.7. A heat operator on L relative to π is a lifting of the identity map
id : �S → �S to a sheaf homomorphism H : �S →π∗DL,≤1S to differential
operators, which are of order one along S, such that the corresponding map
�S →π∗DL,≤1S /OS is a Lie algebra homomorphism.

Suppose that the sheaf π∗L is locally free, i.e., is a sheaf of sections of
a vector bundle on S. Then a heat operator gives rise to a projectively flat
connection on this vector bundle (see [W, BK, Fa1]).

Consider the morphism � : BunG,g → Mg . Recall that C = Lk,0 is the line
bundle on BunG,g whose restriction to each BunG(X) is the ample generator of
the Picard group of BunG(X). For any k ∈ Z+ the sheaf �∗Ck is locally free,
and its fiber at a curve X ∈ Mg is the vector space H0(BunG(X), Ck) of non-
abelian theta functions of weight k. It is well-known that the corresponding
vector bundle (which we will also denote by �∗Ck), possesses a projectively
flat connection [Hi2, Fa1, BK]. This connection may be constructed using a
heat operator on Ck .

Theorem 5.7. ([BK]) For any k ≥ 0 the sheaf �∗Ck on Mg possesses a unique
flat projective connection given by a heat operator on Ck .

5.3.1

The existence and uniqueness of this projective connection are deduced for L

satisfying the vanishing of the composition

�S → R1π∗DL → R1π∗DL/S
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and the identification π∗DL/S = OS . The connection was also constructed by
Hitchin [Hi2] and Faltings [Fa1] by different means.

The connection on non-abelian theta functions has been explicitly identified
in [La] with the connection on the (dual of) the space of conformal blocks
for the basic integrable representation Lk( ĝ) of ĝ at level k ∈ Z+. The latter
connection, known as the KZB or WZW connection (and specializing to the
Knizhnik–Zamolodchikov connection in genus zero), is defined following the
general procedure of [FB], Ch. 16. Namely, for any conformal vertex algebra V
we defined a twisted D-module of coinvariants on Mg . Its fibers are the spaces
of coinvariants H(X, x, V ) (see Section 5.1.2), and the action of the sheaf Dc

of differential operators (where c is the central charge of V ) comes from the ac-
tion of the Virasoro algebra on V . In our case, we take as V the module Lk( ĝ).
For any positive integer k this module is a conformal vertex algebra with cen-
tral charge c(k) = k dim g/(k + h∨), with the conformal structure defined by
the Segal–Sugawara vector. In this case the sheaf of coinvariants is locally free
as an O-module, and so it is the sheaf of sections of a vector bundle with a pro-
jectively flat connection. The sheaf of sections of its dual vector bundle (whose
fibers are the spaces of conformal blocks of Lk( ĝ)) is therefore also a twisted
D-module, more precisely, a D−c(k)-module. The corresponding projectively
flat connection on the bundle of conformal blocks is the KZB connection.

On the other hand, in Theorem 5.2 we produced homomorphisms Sn
k,0 :

D−c(k) −→ �n∗Dk,0. Their restrictions Sk,0|≤1 to (D−c(k))≤1 give us heat op-
erators on Ck = Lk,0. But the sheaf �∗Ck is isomorphic to the sheaf of confor-
mal blocks on Mg,1 corresponding to Lk (̂g) [BL1, KNR, Fa2, Te]. Under this
identification, the projectively flat connection on �∗Ck obtained from the heat
operators Sk,0|≤1 tautologically coincides with the KZB connection, because
both connections are constructed by applying the Segal–Sugawara construc-
tion. Thus, we obtain.

Proposition 5.8.

(1) For every k ∈ Z+, the heat operator defining the projectively flat connec-
tion on the sheaf �∗Ck of non-abelian theta functions over Mg is given
by the restriction of the Segal–Sugawara map Sk,0|≤1 : (D−c(k))≤1 →
�∗Dk,0.

(2) For any n, Sn
k,0|≤1 gives heat operators defining a projectively flat connec-

tion on �n∗Lk,c(k) over Mg,1,2n.
(3) Under the identification between �∗Ck and the sheaf of conformal blocks

on Mg,1 corresponding to the integrable representation of ĝ of level k and
highest weight 0, the KZB connection on the sheaf of conformal blocks is
given by the heat operators Sk,0|≤1 on Ck .
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In the same way we obtain heat operators for any level structure (where the
morphisms �n are no longer projective). Note also that we can replace Ck by
Lk,c for any integer c, which have isomorphic restrictions to BunG(X) for any
X , and obtain analogous projectively flat connections.

6 Classical limits

In this section we describe the limits of the (suitably rescaled) Segal–Sugawara
operators at the critical level k = −h∨, and in the classical limit k, c → ∞.
In the former case the algebra of twisted differential operators Dck degener-
ates into the Poisson algebra of functions on the space of curves with pro-
jective structure, and the construction gives twisted differential operators on
BunG,g which are vertical (i.e. preserve BunG(X) for fixed X ) and commute.
We identify these operators with the quadratic part of the Beilinson–Drinfeld
quantization of the Hitchin system. When the level and charge become infi-
nite, both sides of the construction become commutative (Poisson) algebras,
and the Segal–Sugawara construction is interpreted as a map from the mod-
uli of extended connections to the moduli of projective structures or quadratic
differentials. We interpret this map as defining a symplectic connection over
the moduli of pointed curves on the moduli spaces of connections with ar-
bitrary poles. We also sketch the interpretation of this connection as a new
Hamiltonian form of the equations of isomonodromic deformation.

6.1 The critical level

Recall that we assume throughout that the group G is simply connected.
By the general formalism of localization (Proposition 2.2), we have an al-

gebra homomorphism (V n
k )G(O) → �(BunG(X, x, n), Dk) from the G(O)-

invariants of the vacuum (which are the endomorphisms of the vacuum repre-
sentation) to global differential operators on the moduli of bundles. For general
k this gives only scalars, but at the critical level k = −h∨ the space V G(O)

k be-
comes very large. In [FF] (see also [Fr1, Fr2]), Feigin and Frenkel identify
the algebra V G(O)

−h∨ canonically with the ring of functions C[OpG∨(D)] on the
space of opers on the disc, for the Langlands dual group G∨ of G. Opers, in-
troduced in [BD1] by Beilinson and Drinfeld, are G∨-bundles equipped with
a Borel reduction and a connection, which satisfies a strict form of Griffiths
transversality. For G∨ = P SL2 (so G = SL2), opers are identified with pro-
jective structures Proj (X). In fact for arbitrary G there is a natural projection
OpG∨(X) → Proj (X), which identifies the space of opers with the affine
space for the vector space HitchG(X) induced from the affine space Proj (X)
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for quadratic differentials H0(X, �⊗2
X ) ⊂ HitchG(X). (Similar considerations

apply to any level vacuum representations V n
k , replacing regular opers by opers

with singularities, which form an affine space for the meromorphic version of
the Hitchin space.)

Thus there is a homomorphism

C[OpG∨(D)] −→ �(BunG(X), D−h∨).

Beilinson and Drinfeld show that this homomorphism factors through func-
tions on global opers C[OpG∨(X)], is independent of the choice of x ∈ X
used in localization, and gives rise to an isomorphism

C[OpG∨(X)] ∼= �(BunG(X), D−h∨).

O(OpG∨(X)) → �∗Dk/M.

We wish to compare the restriction of this homomorphism to the sub-
algebra C[Proj (X)] of C[OpG∨(X)] with the critical level limit of the
Segal–Sugawara construction. Let OpG∨ → Mg denote the moduli stack of
curves with G∨-opers.

Recall the notation µg = h∨ dim g.

Theorem 6.1.

(1) For c ∈ C, the homomorphism (k + h∨)Sn
k,c is regular at k = −h∨,

defining an algebra homomorphism

S
n
−h∨,c : O(T ∗

µg
Mg,1,2n) −→ �n

∗D−h∨,c.

(2) The homomorphism S−h∨,c is the restriction of the Beilinson–Drinfeld ho-
momorphism to projective structures: we have a commutative diagram

O(Proj
µg

g )
S−h∨,c−→ �∗D−h∨,c

↓ ↑
O(OpG∨)

BD−→ �∗D−h∨/Mg

Proof. As described in Section 3.4.1 (see Proposition 3.4), the rescaled
Segal–Sugawara operators Sm = (k + h∨)Sm are regular at k = −h∨, and
define a homomorphism of vertex algebras. We may now repeat the construc-
tions of Section 5 leading to Theorem 5.2 for the rescaled Sugawara opera-
tors. Note that the classical vacuum representations Virµg

are (commutative)
vertex algebras – the vertex Poisson structure is not used in the definition of
coinvariants – and for commutative vertex algebras, the comparison of coin-
variants for a generating set and the algebra it generates is obvious. Identifying
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the localization of Vir
2n
µg

with O(T ∗
µg

Mg,1,2n) = O(Proj
µg

g,1,2n), we obtain the
first assertion.

Moreover, by Section 3.4.1, the critical Segal–Sugawara homomorphism
factors as follows

S
n
−h∨,c : Vir

2n
µg

↪→ (V n
−h∨)Gn(O) ↪→ (V n

−h∨,c)
Gn(O)

(since S = −S−2 lands inside V−h∨ ⊂ V−h∨,c). It follows that the localized
map on twisted differential operators also factors through the localization of
V−h∨ , which is the sheaf of relative differential operators. Thus the critical
Segal–Sugawara construction is part of the localization of the G(O)-invariants
in the vacuum representation, giving the Beilinson–Drinfeld operators.

6.2 The infinite level

Recall from Section 4 (see Proposition 4.2) that the C-twisted cotangent bun-
dle of the moduli stack of bundles BunG(X) is isomorphic to the moduli stack
Conn G(X) of bundles with regular connections on X , while the twisted cotan-
gent bundle of the moduli of bundles with n-jet of trivialization BunG(X, x, n)

is the moduli Conn G(X, x, n) of connections having at most nth-order poles
at x . Similarly, we may consider moduli BunG(X, x1, . . . , xm, n1, . . . , nm) of
bundles with several marked points and jets of coordinates, whose twisted
cotangent bundles are identified with moduli of connections with poles of the
corresponding orders. As elsewhere, we restrict to the one-point case for nota-
tional simplicity though all constructions carry over to the multipoint case in a
straightforward fashion.

By virtue of their identification as twisted cotangent bundles, the moduli
of meromorphic connections on a fixed curve carry canonical (holomorphic)
symplectic structures. As we vary X and x , the moduli stack Conn G,g,1,n

forms a relative twisted cotangent bundle to BunG,g,1,n over Mg,1,2n . To ob-
tain a symplectic variety, we consider the absolute twisted cotangent bun-
dles of BunG,g,1,n . The twisted cotangent bundle corresponding to the line
bundle Lλ,µ is the moduli of extended connections Conn BunG,g,1,n (Lλ,µ) =
ExConnλ,µ

G,g,1,n defined in Section 4.3. In the limit of infinite level the sheaves
of twisted differential operators on BunG,g,1,n and Mg,1,2n degenerate to the
commutative (and hence Poisson) algebra of functions on the moduli of ex-
tended connections and projective structures, respectively. Therefore it is con-
venient to reinterpret the infinite limit of the Segal–Sugawara homomorphism
as a morphism between these moduli spaces (rather than a homomorphism
between the corresponding algebras of functions), and examine its Poisson
properties.
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As in Section 3.4.2, we let k, c → ∞ by introducing auxiliary parameters

λ, µ with
λ

k
= µ

c
. Then the homomorphism

λ2

k
Sn

k,c is regular as k, c → ∞,

as is (for λ �= 0) the isomorphism sn
k,c : V n

k ⊗ Vir2n
ck

→ V n
k,c. We thus obtain

classical limits of Theorem 5.2 and Theorem 5.5.
Let Quadg,1,n = T ∗Mg,1,n and HiggsG,g,1,n = T ∗

/Mg,1,2n
BunG,g,1,n

denote the moduli stacks of curves equipped with a quadratic differential
and bundles with Higgs field, having at most nth-order pole at the marked
point, respectively. Let HitchG,g,1,n denote the target of the Hitchin map for
HiggsG,g,1,n , i.e.

HitchG,g,1,n =
�⊕

i=1

�(X, �(nx)di +1)

where � = rank g and di is the i th exponent of g.
Recall from Section 3.4.2 that a commutative algebra homomorphism

of Poisson algebras (and the corresponding morphism of spaces) is called
λ-Poisson if it rescales the Poisson bracket by λ.

Theorem 6.2.

(1) For every λ, µ ∈ C there is a λ-Poisson homomorphism

S
n
λ,µ : O(T ∗

λµMg,1,2n) −→ �n
∗O(T ∗

λ,µ BunG,g,1,n)

Equivalently, for every λ, µ ∈ C there is a λ-Poisson map

�n
λ,µ : ExConnλ,µ

G,g,1,n → Proj λµ
g,1,2n

lifting �n : BunG,g,1,n → Mg,1,2n.
(2) For λ �= 0, there is a canonical (non-affine) product decomposition over

the moduli of curves

ExConnλ,µ
G,g,1,n

∼= Conn λ
G,g,1,n ×

Mg,1,2n

Proj λµ
g,1,2n .

(3) For λ = µ = 0, �n
λ,µ factors through the quadratic Hitchin map

T ∗BunG,g,1,n
�n

0,0−→ Quadg,1,2n

↓ ↑
HiggsG,g,1,n

Hitch−→ HitchG,g,1,n

Proof. As in Theorem 6.1, the construction of the classical Segal–Sugawara
homomorphism Sλ,µ is identical to the proof of Theorem 5.2, appealing
to Proposition 3.5 for the description of the rescaled vertex algebra homo-

morphism. The localization of Vir
2n
µ is O(T ∗

µMg,1,2n) and that of V
n
λ,µ is
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O(T ∗
λ,µBunG,g,1,2n), while the Poisson bracket is rescaled by λ, by Proposi-

tion 3.4.2. The homomorphism S
n
λ,µ of OBunG,g -algebras defines, upon taking

Spec over the moduli of curves, a morphism T ∗
λ,µ BunG,g,1,n → T ∗

λµMg,1,2n

relative to Mg,1,2n , hence the geometric reformulation.
The morphism in (2) is given in components by the natural projection (4.15)

from extended connections to connections and the map �n
λ,µ. The spaces

ExConnλ,µ
G,g,1,n and Proj λµ

g,1,2n ×
Mg,1,2n

Conn λ
G,g,1,n are both torsors for quadratic

differentials over Conn G,g,1,n . It follows from the explicit form of the classi-
cal Segal–Sugawara vector that the resulting map of torsors over the space of
connections is an isomorphism (up to rescaling by λ). Equivalently, the asser-
tion (2) is the classical limit of Theorem 5.5 and may be proved identically,
replacing sn

k,c by its rescaled version.

For λ = µ = 0, the image of S
n
0,0 : Vir

2n
0 → V

n
0,0 lies strictly in

V
n
0 ⊂ V

n
0,0. It follows that the image of O(T ∗Mg,1,2n) = O(Quadg,1,2n) in

O(T ∗BunG,g,1,n) consists of functions which are pulled back from
T ∗

/Mg,1,2n
BunG,g,1,n . Therefore the map �n

0,0 descends to T ∗
/Mg,1,2n

BunG,g,1,n .

Restricting to fibers over a fixed curve X we obtain a map
T ∗ BunG(X, x, n) → T ∗Mg,1,2n|X = H0(X, �2(2nx)).

The quadratic Hitchin map is the map T ∗ BunG(X, x, n) → H0(X,

�2(2nx)) sending a Higgs bundle (P, η), η ∈ H0(X, gP ⊗ �(nx)) to
1

2
tr η2.

Using the pairing on Lg, this is identified with the map defined by the Segal–
Sugawara vector

S−2 = 1

2

∑
a

J a
−1 Ja,−1

as desired.

Remark 6.3. In [BZB1], the product decomposition (2) is described con-
cretely in terms of kernel functions along the diagonal (the necessary transla-
tion from vertex algebra language to kernel language is described in Chapter 7
of [FB]). Moreover, it is related, for µ �= 0, to the classical constructions of
projective structures on Riemann surfaces using theta functions due to Klein
and Wirtinger. Composing the projection �λ,µ with the canonical meromor-
phic sections of the twisted cotangent bundles over BunG,g given by non-
abelian theta functions (see also [BZB2]), this gives a construction of inter-
esting rational maps from the moduli of bundles to the spaces of projective
structures, and, more generally, opers.

Now we discuss various applications of the above results.
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6.2.1 The Bloch–Esnault and Beilinson connection.

Let X → S be a smooth family of curves, and E a vector bundle on X. The
vector bundle E defines a line bundle C(E) on S, the c2-line bundle defined in
[De] (whose Chern class is the pushforward of c2(E)) which differs from the
determinant of cohomology of E by the nth power of the Hodge line bundle
on S. In fact, this line bundle is identified canonically with the pullback of
C to S from the map S → BunG,g classifying E and X (see [BK]). Bloch–
Esnault and Beilinson [BE] construct a connection on C(E) from a regular
connection ∇X/S on E relative to S. It is easy to see that this connection can
be recovered from Theorem 6.2 (2) (more precisely, its straightforward version
for G = GLn and unpointed curves). Let λ = 1, µ = 0, so that Lλ,µ = C and
Conn (C) = ExConn1,0

G,g over BunG,g . We have a decomposition Conn (C) =
Conn G,g ×

Mg

T ∗Mg , and hence a canonical lifting from Conn G,g to Conn (C),

lying over the zero section of T ∗Mg . When pulled back to S by the classifying
map S → Conn G,g of (E, ∇X/S), this gives a connection on C(E) over S. The
compatibility with the construction of Bloch–Esnault and Beilinson follows
for example from the uniqueness of the splitting Conn G,g → ExConn1,0

G,g , due
to the absence of one–forms on Mg .

6.2.2 The Segal–Sugawara symplectic connection.

Suppose f : N → M is a smooth Poisson map of symplectic va-
rieties. It then follows that N carries a flat symplectic connection over
M , i.e., a Lie algebra lifting of vector fields on M to vector fields on
N (defining a foliation on N transversal to f ), which preserve the sym-
plectic form on fibers (see [GLS] for a discussion of symplectic connec-
tions). Namely, we represent local vector fields on M by Hamiltonian func-
tions, pull back to functions on N and take the symplectic gradient. The
Poisson property of f guarantees the flatness and symplectic properties of
the connection. (In the algebraic category, this defines the structure of D-
scheme or crystal of schemes on N over M , compatible with the symplectic
structure.)

The morphism �n
1,µ of Theorem 6.2 is such a Poisson morphism of sym-

plectic varieties, and hence defines a symplectic connection (or crystal struc-
ture) on ExConn1,µ

G,g,1,n over Proj µ
g,1,2n . When µ = 0 we may reduce this con-

nection as follows. First we restrict to the zero section Mg,1,2n ↪→ Proj 0
g,1,2n

of the cotangent bundle to obtain a connection on ExConn1,0
G,g,1,n over Mg,1,2n .

Next, the connection respects the product decomposition Theorem 6.2,(2) rel-
ative to Mg,1,2n , so that we obtain a flat symplectic connection on the moduli
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space Conn G,g,1,n of G–bundles with connections over the moduli Mg,1,2n of
decorated curves (with respect to the relative symplectic structure):

Corollary 6.4. The projection �n
1,0 defines a flat symplectic connection on the

moduli stack Conn G,g,1,n over Mg,1,2n.

6.2.3 Time-dependent Hamiltonians.

The structure of flat symplectic connection on a relatively symplectic P → M
variety can also be encoded in a closed two-form � on P , restricting to the
symplectic form on the fibers. The connection is then defined by the null-
foliation of �. If P is locally a product, then this structure can be encoded
in the data of Hamiltonian functions on P that are allowed to depend on the
‘times’ M . Thus, following [M], we may consider the data of such a form
as the general structure of a time-dependent (or non–autonomous) Hamilto-
nian system. In our case P = Conn G,g,1,n , we thus have three equivalent
formulations of a non-autonomous Hamiltonian system, with times given by
the moduli Mg,1,2n of decorated curves: the Hamiltonian functions S

n
1,0 (or

more precisely the functions on Conn G,g,1,n obtained from local vector fields
on Mg,1,2n , considered as linear functions on T ∗Mg,1,2n); the symplectic con-
nection induced by �n

1,0; and the two-form � on Conn G,g,1,n obtained by

restricting the symplectic form on ExConn1,0
G,g,1,n under the embedding (as in

Section 6.2.1) along the zero section of T ∗Mg,1,2n .

6.3 Isomonodromy

In this final section, we describe the algebraic definition of isomonodromic
deformation of arbitrary meromorphic connections over the moduli of deco-
rated curves and sketch its identification with the Segal–Sugawara symplectic
connection (as well as the compatibility with the analytic iso-Stokes connec-
tions of [JMU, Ma, Bo]). We thus obtain an algebraic time-dependent Hamil-
tonian description of the isomonodromy equations. It also follows that the
isomonodromy Hamiltonians are classical limits of the heat operators defin-
ing the KZB equations, and are non-autonomous deformations of the quadratic
Hitchin Hamiltonians.

6.3.1 Isomonodromic deformation.

The moduli spaces of G-bundles with regular connection Conn G,g carry a flat
connection (crystal structure) over the moduli of curves, namely the connec-
tion of isomonodromic deformation or non-abelian Gauss–Manin connection
(see [Si]). This connection is a manifestation of the topological description of
connections with regular singularities on a Riemann surface as representations
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of the fundamental group, which does not change under holomorphic deforma-
tions. Namely, given a family X → S of Riemann surfaces and a bundle with
(holomorphic, hence flat) connection on one fiber X , there is a unique exten-
sion of the connection to nearby fibers so that the monodromy representation
does not change. The families of connections relative to S one obtains this
way are uniquely characterized as those families which admit an absolute flat
connection over X, the total space of the family. This is captured algebraically
in the crystalline interpretation of flat connections: a flat connection on a
variety admits a unique flat extension to an arbitrary nilpotent thickening of
the variety. Thus algebraically one defines families of flat connections relative
to a base to be isomonodromic if they may be extended to an absolute flat
connection. It follows that the moduli spaces of flat connections on varieties
carry a crystal structure over the deformation space of the underlying variety
– the non-abelian Gauss–Manin connection of Simpson [Si].

More generally, there is an algebraic connection (crystal or D-scheme struc-
ture) on the moduli stack of Ĉonn G,g,1,n of meromorphic connections over
curves with formal coordinates, which is the pullback of Conn G,g,1,n to the
moduli of pointed curves with coordinates M̂g,1. This connection is defined
by ‘fixing’ connections around their poles and deforming them isomonodromi-
cally on the complement, combining the crystalline description of isomon-
odromy and the Virasoro uniformization of the moduli of curves. Namely,
given a family (X̃ , x̃, t̃) ∈ M̂g,1(S) of pointed curves with formal coordi-
nate over S, the spectrum of an Artinian local ring, and a connection (P,∇)

on the special fiber X with pole at x of order at most n, we must produce a
canonical extension of (P,∇) to X̃ . As explained in [FB], Ch. 15, p. 282, any
such deformation (X̃ , x̃) of pointed curves is given by ‘regluing’ X\x and the
formal disc Dx around x using the action of Aut K(S).

More precisely, we fix an identification of X̃ \ x̃ with (X \ x)× S and ‘glue’
it to Dx × S using an automorphism of the punctured disc over S. Now, given
(P,∇), we define an (absolute) flat connection on X̃ by extending our connec-
tion (P,∇) trivially (as a product, with the trivial connection along the second
factor) on to (X \ x) × S and on to Dx × S. Note that since the connection on
the nilpotent thickening X̃ \ x̃ � (X \ x) × S of X \ x is flat, it is uniquely
determined by (P,∇), independently of the trivialization of the deformation –
is the isomonodromic deformation of (P,∇)|X\x over S (in particular the sta-
bilizer of (X̃ , x̃) in Aut K(S) does not change the deformed connection.) This
defines the isomonodromy connection on M̂g,1.

Proposition 6.5. The Segal–Sugawara symplectic connection on Conn G,g,1,n

over Mg,1,2n pulls back to the isomonodromy connection on Ĉonn G,g,1,n.
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Proof. The compatibility between the two connections follows from the local
description of the isomonodromy connection through the action of Aut K on
meromorphic connections, and the description of the classical Segal–Sugawara
operators as the corresponding Hamiltonians. Namely, recall from [FB] that the
ind-scheme Conn G(D×) of connections on the trivial G-bundle on the punc-
tured disc is identified with ĝ∗

1, the level one hyperplane in the dual to the affine
Kac–Moody algebra. Moreover, this identification is equivariant with respect
to the natural actions of G(K) and Aut K, describing the transformation of
connections under gauge transformations and changes of coordinates. These
actions are Hamiltonian, in an appropriately completed sense. Namely, the
Fourier coefficients of fields from the vertex Poisson algebra V 1(g) form the
Lie subalgebra of local functionals on ĝ∗

1 in the Poisson algebra of all func-
tionals on ĝ∗

1. By the Segal–Sugawara construction, this Lie algebra contains
as Lie subalgebra Der K (as the Fourier coefficients Ln of the classical limit of
the conformal vector), thereby providing Hamiltonians for the action of Aut K.
The construction of the isomonodromy connection on M̂g,1 above is expressed
in local coordinates (as a flow on meromorphic connections on the disc at x)
by this action of Aut K on connections. Likewise, the Segal–Sugawara connec-
tion is defined by Hamiltonian functions, which are reductions of the classical
Segal–Sugawara operators to Conn G,g,1,n . Thus the compatibility of the two
connections is a consequence of the local statement.

6.3.2 Remark: analytic isomonodromy and Stokes data. In the complex
analytic setting, one can extend to irregular connections the description of
regular-singular connections by topological monodromy data, by introduc-
ing Stokes data describing the transitions between asymptotic fundamental
solutions to the connection in different sectors. One can thereby define an
‘iso-Stokes’ generalization of the isomonodromy equations, i.e., an analytic
symplectic connection on moduli of irregular holomorphic connections (see
[JMU, Ma] and recently [Bo, Kr]). Thus, one has an isomonodromic deforma-
tion with more ‘times’ than just the moduli of pointed curves (one may also
vary the most singular term of the connection).

It is easy to see our algebraic isomonodromic connection (with respect to
motions of pointed curves) agrees with the analytic one. Since we can choose
the gluing transformations in Aut K used to describe a given deformation to
be convergent rather than formal, it follows that we are not altering the iso-
morphism type of the connection on a small analytic disc around x , and hence
all Stokes data are automatically preserved. Thus it follows that the iso-Stokes
connection on Conn G,g,1,n is in fact algebraic.
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6.3.2 Conclusion: KZB, isomonodromy and Hitchin.

It follows from Proposition 6.5 and Theorem 6.2 that the moduli spaces
of meromorphic connections carry algebraic isomonodromy equations, which
form a time-dependent Hamiltonian system. Moreover, the isomonodromy
Hamiltonians are non-autonomous deformations of the quadratic Hitchin
Hamiltonians (see also [Kr]). Most significantly, it follows that the heat op-
erators Sn

k,c defining the KZB connection on the bundles of conformal block

quantize the isomonodromy Hamiltonians S
n
1,0. This makes precise the picture

developed in [I] and [LO] of the non-stationary Schrödinger equations defin-
ing the KZB connection on conformal blocks as quantizations of the isomon-
odromy equations or non-autonomous Hitchin systems. In genus zero we thus
generalize the result of [Res, Har] that the KZ connection on spaces of con-
formal blocks on the n-punctured sphere, viewed as a system of multi-time-
dependent Schrödinger equations, quantizes the Schlesinger equation, describ-
ing isomonodromic deformation of connections with regular singularities on
the sphere, which itself is a time-dependent deformation of the Gaudin system
(the Hitchin system corresponding to the n-punctured sphere). In genus one
we obtain a similar relation between KZB equations, the elliptic form of the
Painlevé equations and the elliptic Calogero–Moser system as in [LO].
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401–426.
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1 Introduction

Let X be an irreducible complex affine algebraic variety, and let D(X) be
the ring of (global, linear, algebraic) differential operators on X (we shall re-
view the definition in Section 2). This ring has a natural filtration (by order of
operators) in which the elements of order zero are just the ring O(X) of reg-
ular functions on X . Thus, if we are given D(X) together with its filtration,
we can at once recover the variety X . But now suppose we are given D(X)

just as an abstract noncommutative C-algebra, without filtration; then it is not
clear whether or not we can recover X . We shall call two varieties X and Y
differentially isomorphic if D(X) and D(Y ) are isomorphic.

The first examples of nonisomorphic varieties with isomorphic rings of dif-
ferential operators were found by Levasseur, Smith and Stafford (see [LSS]
and Section 9 below). These varieties arise in the representation theory of sim-
ple Lie algebras; they are still the only examples we know in dimension > 1
(if we exclude products of examples in lower dimensions). For curves, on the
other hand, there is now a complete classification up to differential isomor-
phism; the main purpose of this article is to review that case. The result is very
strange. It turns out that for curves, D(X) determines X (up to isomorphism)
except in the very special case when X is homeomorphic to the affine line A1

(we call such a curve a framed curve). There are uncountably many nonisomor-
phic framed curves (we can insert arbitrarily bad cusps at any finite number of
points of A1). However, the differential isomorphism classes of framed curves
are classified by a single non-negative integer n . This invariant n seems to us
the most interesting character in our story: it appears in many guises, some of
which we describe in Section 8.

The authors were partially supported by the National Science Foundation (NSF) grant DMS 00-
71792 and an A. P. Sloan Research Fellowship. The second author is grateful to the Mathematics
Department of Cornell University for its hospitality during the preparation of this article.

98



Differential isomorphism 99

We can also ask to what extent X is determined by the Morita equivalence
class of D(X): we call two varieties X and Y differentially equivalent if
D(X) and D(Y ) are Morita equivalent (as C-algebras). A complete classi-
fication of curves up to differential equivalence is not available; however, it
is known that the differential equivalence class of a smooth affine curve X
consists of all the curves homeomorphic to X . In particular, all framed curves
are differentially equivalent to each other: that is one reason why the invari-
ant n which distinguishes them has to be somewhat unusual. In dimension
> 1, there are already some interesting results about differential equivalence;
we include a (very brief) survey in Section 9, where we also mention some
generalizations of our questions to non-affine varieties.

At the risk of alienating some readers, we point out that most of the interest
in this paper is in singular varieties. For smooth varieties it is a possible con-
jecture that differential equivalence implies isomorphism: indeed, that is true
for curves. However, in dimension > 1 the conjecture would be based on no
more than lack of counterexamples.

Our aim in this article has been to provide a readable survey, suitable as
an introduction to the subject for beginners; most of the material is already
available in the literature. For the convenience of readers who are experts in
this area, we point out a few exceptions to that rule: Theorem 8.7 is new, and
perhaps Theorem 3.3; also, the formulae (7.1) and (8.3) have not previously
appeared explicitly.

2 Generalities on differential operators

We first recall the definition of (linear) differential operators, in a form ap-
propriate for applications in algebraic geometry (see [G]). If A is a (unital
associative) commutative algebra over (say) C , the filtered ring

D(A) =
⋃
r≥0

Dr (A) ⊂ EndC (A)

of differential operators on A may be defined inductively as follows. First, we
set D0(A) := A (here the elements of A are identified with the corresponding
multiplication operators); then, by definition, a linear map θ : A → A belongs
to Dr (A) if

θa − aθ ∈ Dr−1(A) for all a ∈ A.

The elements of Dr (A) are called differential operators of order ≤ r on A.
The commutator of two operators of orders r and s is an operator of order at
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most r + s − 1; it follows that the associated graded algebra

gr D(A) :=
⊕
r≥0

Dr (A)/Dr−1(A)

is commutative (we set D−1(A) := 0 ).
Slightly more generally, we can define the ring DA(M) of differential oper-

ators on any A-module M : the operators of order zero are the A-linear maps
M → M , and operators of higher order are defined inductively just as in the
special case above (where M = A).

Example 2.1. If A = C[z1, . . . , zm] , then D(A) = C[zi , ∂/∂zi ] is the mth
Weyl algebra (linear differential operators with polynomial coefficients).

Example 2.2. Similarly, if A = C(z1, . . . , zm), then D(A) = C(zi )[∂/∂zi ]
is the algebra of linear differential operators (in m variables) with rational
coefficients.

The definition of D(A) makes sense for an arbitrary C-algebra A; however,
in this paper we shall use it only in the cases when A is either the coordinate
ring O(X) of an irreducible affine variety X , or the field K ≡ C(X) of ratio-
nal functions on such a variety. Let us consider first the latter case. If we choose
a transcendence basis {z1, . . . , zm} for K over C (where m = dim X ), then
there are (unique) C-derivations ∂1, . . . , ∂m of K such that ∂i (z j ) = δi j , and
each element of Dr (K) has a unique expression in the form

θ =
∑
|α|≤r

fα∂α

(with fα ∈ K ), as in Example 2.2 above, in which X is the affine space
Am . In particular, D(K) is generated by D1(K) , as one would expect, and an
element of D1(K) is just the sum of a derivation and a multiplication operator.
Indeed, it is easy to show that this last fact is true for an arbitrary algebra A.

The case where the ring A is O(X) is more subtle; in this case D(A) is
denoted by D(X) and is called the ring of differential operators on X . Thus
the mth Weyl algebra (see Example 2.1) is the ring of differential operators on
Am . In general one does not have global coordinates on X , as in this example;
nevertheless, if X is smooth, the structure of D(X) is still well understood.

Proposition 2.3. Let X be a smooth (irreducible) affine variety. Then

(i) D(X) is a simple (left and right) Noetherian ring without zero divisors;

(ii) D(X) is generated as a C-algebra by finitely many elements of D1(X);
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(iii) the associated graded algebra gr D(X) is canonically isomorphic to
O(T ∗ X);

(iv) D(X) has global (that is, homological) dimension equal to dim X.

If X is singular, the situation is less clear. We can still consider the ring
�(X) of (C-linear) operators on O(X) generated by the multiplication oper-
ators and the derivations of O(X); however, in general, �(X) is smaller than
D(X). Our main reason to prefer D(X) to �(X) is the following. Each dif-
ferential operator on O(X) has a unique extension to a differential operator
(of the same order) on K , so we may view D(X) as a subalgebra of D(K).
Furthermore, a differential operator on K which preserves O(X) is a differ-
ential operator on O(X) (this last statement would in general not be true for
�(X) ). Thus we have:

Proposition 2.4. Let X be an affine variety with function field K . Then

D(X) = {D ∈ D(K) : D.O(X) ⊆ O(X)}.

For the purposes of the present paper we could well take this as the definition
of D(X) . It follows from Proposition 2.4 that D(X) is without zero divisors
also for (irreducible) singular varieties X .

Example 2.5. Let X be the rational curve with coordinate ring O(X) :=
C[z2, z3] (thus X has just one simple cusp at the origin). Then �(X) is gen-
erated by O(X) and the derivations {zr∂ : r ≥ 1} (we set ∂ := ∂/∂z ). But
D2(X) contains the operators ∂2 − 2z−1∂ and z∂2 − ∂ , neither of which
belongs to �(X).

To obtain a concrete realization of DA(M) similar to that in Proposition 2.4,
we need to suppose that M is embedded as an A-submodule of some K-vector
space; to fix ideas, we formulate the result in the case that will concern us,
where M has rank 1.

Proposition 2.6. Suppose M ⊂ K is a (nonzero) A-submodule of K . Then

DA(M) = {D ∈ D(K) : D.M ⊆ M}.

Notes.

1. To part (iii) of Proposition 2.3 we should add that the commutator on
D(X) induces on gr D(X) the canonical Poisson bracket coming from the
symplectic structure of T ∗ X ; that is, D(X) is a deformation quantization of
O(T ∗ X).
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2. For singular varieties, the rings �(X) and D(X) have quite different
properties: for example, �(X) is simple if and only if X is smooth (cf.
Theorem 3.2 below). It follows that if X is smooth, then �(X) is never iso-
morphic, or even Morita equivalent, to �(Y ) for any singular variety Y. Thus
the present paper would probably be very short and dull if we were to work
with �(X) rather than with D(X).

3. Nakai (cf. [Na]) has conjectured that D(X) = �(X) if and only if X is
smooth. The conjecture has been proved for curves (see [MV]) and, more gen-
erally, for varieties with smooth normalization (see [T]). In [Be] and [R] it is
shown that Nakai’s conjecture would imply the well known Zariski–Lipman
conjecture: if the module of derivations of O(X) is projective, then X is
smooth.

4. If X is singular, then in general D(X) may have quite bad properties. In
[BGG] it is shown that if X is the cone in A3 with equation x3 + y3 + z3 = 0,
then D(X) is not a finitely generated algebra, nor left or right Noetherian. In
this example X is a normal variety, and has only one singular point (at the
origin). In [SS], Section 7, it is shown that if X is a variety of dimension
≥ 2 with smooth normalization and isolated singularities, then D(X) is right
Noetherian but not left Noetherian.

5. In the situation of Proposition 2.6, it may happen that the ring B := D0
A(M)

is larger than A. In that case the ring DA(M) ⊂ D(K) would not change if
we replaced A by B ; thus there is no loss of generality if we restrict attention
to modules M for which B = A. We call such A-modules maximal.

6. Of course, all the statements in this section (and, indeed, in most of the other
sections) would remain true if we replaced C by any algebraically closed field
of characteristic zero. If we work over a field of positive characteristic, the
above definition of differential operators is still generally accepted to be the
correct one, but some of the properties of the rings D(X) are very different:
for example, D(X) is not Noetherian, or finitely generated, or without zero di-
visors (see, for example, [Sm]). In particular, in positive characteristic D(A1)

is not at all like the Weyl algebra.

7. A convenient reference for this section is the last chapter of the book [MR],
where one can find proofs of all the facts we have stated (except for Proposi-
tion 2.6, whose proof is similar to that of Proposition 2.4).

3 Differential equivalence of curves

From now on until Section 9, X will be an affine curve, probably singular. In
this case the problems mentioned in Section 2, Note 4 do not occur.
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Proposition 3.1. Let X be an (irreducible) affine curve. Then D(X) is a (left
and right) Noetherian ring, and is finitely generated as a C-algebra.

However, the associated graded ring gr D(X) is in general not a Noetherian
ring (and hence not a finitely generated algebra either). The following theorem
of Smith and Stafford shows that for our present purposes there is a very stark
division of curve singularities into ‘good’ and ‘bad’.

Theorem 3.2. Let X be an affine curve, and let X̃ be its normalization. Then
the following are equivalent:

(i) The normalization map π : X̃ → X is bijective.
(ii) The algebras D(X̃) and D(X) are Morita equivalent.

(iii) The ring D(X) has global dimension 1 (that is, the same as D(X̃) ).
(iv) The ring D(X) is simple.
(v) The algebra gr D(X) is finitely generated.

(vi) The ring gr D(X) is Noetherian.

Perhaps the most striking thing about Theorem 3.2 is that the ‘good’ singu-
larities (from our present point of view) are the cusps (as opposed to double
points, or higher-order multiple points). If X has even one double point, the
ring D(X) is somewhat wild; whereas if X has only cusp singularities, no
matter how ‘bad’, then D(X) is barely distinguishable from the ring of differ-
ential operators on the smooth curve X̃ .

Theorem 3.2 does not address the question of when two smooth affine curves
are differentially equivalent. However, the answer to that is very simple.

Theorem 3.3. Let X and Y be smooth affine curves. Then D(X) and D(Y )

are Morita equivalent (if and) only if X and Y are isomorphic.

Theorems 3.2 and 3.3 together determine completely the differential equiv-
alence class of a smooth curve X : it consists of all curves obtained from X by
pinching a finite number of points to (arbitrarily bad) cusps.

Notes.

1. Apparently, not much is known about the differential equivalence class
of a curve with multiple points. From Theorem 3.2 one might guess that if
π : Y → X is regular surjective of degree one, then X and Y are differen-
tially equivalent if and only if π is bijective. However, in [SS] (5.8) there is
a counterexample to the ‘if’ part of this statement. The paper [CH2] contains
some curious results about the Morita equivalence class of D(A) when A is
the local ring at a multiple point of a curve.
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2. Another natural question that is not addressed by Theorem 3.2 is: what is
the global dimension of D(X) if X has multiple points? In [SS] it is proved
that if the singularites are all ordinary multiple points, then the answer is 2; but
for more complicated singularities it seems nothing is known.

3. We have not found Theorem 3.3 stated explicitly in the literature, but it is an
easy consequence of the results of [CH1] and [M-L]: we will sketch a proof in
Section 6, Note 5.

4. Proposition 3.1 is proved in [SS] and (also in the case of a reducible (but
reduced) curve) in [M].

5. We refer to [SS] for the proofs of the various assertions in Theorem 3.2.
Here we mention only that a key role is played by the space

P ≡ D(X̃ , X) := {D ∈ D(K) : D.O(X̃) ⊆ O(X)} . (3.1)

Clearly, P is a right ideal in D(X̃) and a left ideal in D(X); the Morita equiv-
alence in Theorem 3.2 is defined by tensoring with the bimodule P. Another
notable property of P is the following: each of the statements in Theorem 3.2
is equivalent to the condition

P.O(X̃) = O(X) . (3.2)

The formulae (3.1) and (3.2) provide the starting point for the theory of
Cannings and Holland which we explain in Section 6; there P is replaced
by an arbitrary right ideal in D(X̃).

4 Differential isomorphism of curves

We now turn to our main question, concerning differential isomorphism. We
begin by sketching the history of this subject.

To our knowledge, the papers [St], [Sm] are the first that explicitly pose the
question: does D(X) 	 D(Y ) imply X 	 Y ? In [St], Stafford proved that this
is true if X is the affine line A1 (in which case D(X) is the Weyl algebra),
and also if X is the plane curve with equation y2 = x3, that is, the rational
curve obtained from A1 by introducing a simple cusp at the origin. The first
general result in the subject is due to L. Makar-Limanov (see [M-L]). His idea
was as follows. Recall that if we take the commutator (ad f )L := f L − L f
of a function f ∈ O(X) with an operator L ∈ D(X) of order n, then we get
an operator of order at most n − 1 (indeed, this is essentially the definition of
D(X) , see Section 2 above). It follows that (ad f )n+1L = 0 , so that f is a
(locally) ad-nilpotent element of D(X) . If it happens (as seems likely) that the
set N(X) of all ad-nilpotent elements of D(X) coincides with O(X) , then we
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have a purely ring-theoretical description of O(X) ⊂ D(X), namely, it is the
unique maximal abelian ad-nilpotent subalgebra (for short: mad subalgebra)
of D(X). So in this way D(X) determines X. Makar-Limanov’s main remark
was the following.

Lemma 4.1. Let K be the function field of a curve, and let D ∈ D(K) have
positive order. Let N ⊂ K be the set of elements of K on which D acts
ad-nilpotently. Then there is an element q in some finite extension field of K

such that N ⊆ C[q] .

If now X is a curve such that N(X) 
= O(X), that is, such that N(X)

contains an operator of positive order, then it follows from Lemma 4.1 that
O(X) ⊆ C[q] for suitable q. Equivalently:

Theorem 4.2. If N(X) 
= O(X), then the normalization X̃ of X is isomor-
phic to A1.

In his thesis (see [P1]), P. Perkins refined this result.

Theorem 4.3. Let X be an affine curve. Then N(X) 
= O(X) if and only if:

(i) X̃ is isomorphic to A1; and
(ii) the normalization map π : X̃ → X is bijective.

In other words, the differential isomorphism class of a curve X consists just
of (the class of) X itself, except, possibly, when X has the properties (i) and
(ii) above.

For short, we shall call a curve with these two properties a framed curve.
More precisely, by a framed curve we shall mean a curve X together with
a regular bijective map π : A1 → X : the choice of ‘framing’ (that is, of
the isomorphism X̃ 	 A1 ) is fairly harmless, because any two choices differ
only by an automorphism z �→ az + b of A1. The two curves considered by
Stafford are certainly framed curves: Stafford’s results do not contradict those
of Perkins, because, although the rings D(X) in these examples have many
ad-nilpotent elements not in O(X), their mad subalgebras are all isomorphic,
so we can still extract O(X) (up to isomorphism) from D(X). For a while it
might have seemed likely that the situation is similar for any framed curve; but
counterexamples were found by Letzter [L] and by Perkins [P2]. The following
example of Letzter is perhaps the simplest and most striking. Let X and Y be
the curves with coordinate rings

O(X) = C + z4C[z]; O(Y ) = C[z2, z5].

Each of X and Y is obtained from A1 by introducing a single cusp at the
origin; X and Y are clearly not isomorphic. Indeed, we have O(X) ⊂ O(Y ),
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so the singularity of X is strictly ‘worse’ than that of Y. Nevertheless, Let-
zter proved that X and Y are differentially isomorphic. This example, and
others in [P2], [L], shows that the problem of classifying framed curves up to
differential isomorphism is nontrivial.

This problem was solved completely in the thesis [K] of K. Kouakou. The
simplest way to state his result is as follows. For each n ≥ 0 , let Xn denote
the curve with coordinate ring

O(Xn) := C + zn+1C[z]. (4.1)

(Thus the curves considered by Stafford are X0 ≡ A1 and X1 , while the
curve X in Letzter’s example above is X3.)

Theorem 4.4. [Kouakou] Every framed curve X is differentially isomorphic
to one of the above curves Xn.

On the other hand, Letzter and Makar-Limanov (see [LM]) have proved the
following:

Theorem 4.5. No two of the curves Xn are differentially isomorphic to each
other.

It follows that each framed curve X is differentially isomorphic to exactly
one of the special curves Xn : we shall call this number n the differential genus
of X , and denote it by d(X).

Notes.

1. Of course, this is very unsatisfactory as a definition of the differential genus,
because it does not make sense until after we have proved the two nontrivial
Theorems 4.4 and 4.5. In Section 8 we discuss several more illuminating ways
to define d(X). We use the term ‘genus’ because d(X) is in some ways rem-
iniscent of the arithmetic genus of a curve: it turns out that it is a sum of local
contributions from each singular point, so it simply counts the cusps of our
framed curve with appropriate weights. In Section 8 we shall explain how to
calculate these weights: here we just mention that the weight of a simple (that
is, of type y2 = x3 ) cusp is equal to 1, so if all the cusps of X are simple,
then d(X) is just the number of cusps.

2. Recall from Theorem 3.2 that the algebras D(X) (for X a framed curve)
are all Morita equivalent to each other: thus the invariant d(X) that distin-
guishes them must be fairly subtle.
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3. Makar-Limanov’s Lemma 4.1 (in a slightly disguised form) plays a basic
role also in the theory of bispectral differential equations (compare the proof
in [M-L] with similar arguments in [DG] or [W1]).

4. There is no convenient reference where the reader can find a complete proof
of Kouakou’s theorem: Kouakou’s thesis has never been published, and the
(different) proof in [BW1] is mostly omitted. The proof that we shall explain
in the next three sections amplifies the sketch given in [W3]: it is not the most
elementary possible, but it seems to us the most natural available at present.

5 The adelic Grassmannian

It is actually easier to prove a more general theorem than Theorem 4.4, as fol-
lows. Let X be a framed curve, and let L be any rank 1 torsion-free coherent
sheaf over X ; it corresponds to a rank 1 torsion-free O(X)-module M. Then
we have the ring DL(X) ≡ DO(X)(M) of differential operators on (global)
sections of L. If L = OX is the sheaf of regular functions on X , then DL(X)

is just the ring D(X) discussed previously. Generalizing Theorem 4.4, we
have the following:

Theorem 5.1. Every algebra DL(X) is isomorphic to one of the algebras
D(Xn).

Of course, Theorem 4.5 shows that the integer n in this assertion is unique:
we call it the differential genus of the pair (X, L) and denote it by dL(X).

The reason Theorem 5.1 is easier to prove than Theorem 4.4 is that the space
of pairs (X, L) has a large group of symmetries that preserves the isomor-
phism class of the algebra DL(X) (but does not preserve the subset of pairs
of the form (X, OX )). In fact the isomorphism classes of these pairs form the
adelic Grassmannian Grad, a well-studied space that occurs in at least two
other contexts, namely, in the theory of the Kadomtsev–Petviashvili hierarchy
(cf. [Kr]) and in the problem of classifying bispectral differential operators
(see [DG], [W1]). The adelic Grassmannian is a subspace1 of the much larger
Grassmannian Gr studied in [SW]. We recall the definition of Grad. For each
λ ∈ C , we choose a λ-primary subspace of C[z] , that is, a linear subspace
Vλ such that

(z − λ)N C[z] ⊆ Vλ for some N .

We suppose that Vλ = C[z] for all but finitely many λ . Let V = ⋂
λ Vλ

1 It is perhaps the most interesting Grassmannian not mentioned explicitly in [SW] .
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(such a space V is called primary decomposable) and, finally, let

W =
∏
λ

(z − λ)−kλ V ⊂ C(z)

where kλ is the codimension of Vλ in C[z] . By definition, Grad consists of
all W ⊂ C(z) obtained in this way. The correspondence between points of
Grad and pairs (X, L) is a special case of the construction explained in [SW].
Given W , we obtain (X, L) by setting

O(X) := { f ∈ C[z] : f W ⊆ W }
and W is then the rank 1 O(X)-module corresponding to L. Conversely, given
(X, L), we let W be the space of global sections of L, regarded as a sub-
space of C(z) by means of a certain distinguished rational trivialization of L

(implicitly described above).

Proposition 5.2. This construction defines a bijection between Grad and the
set of isomorphism classes of pairs (X, L), where X is a framed curve and
L is a maximal rank 1 torsion-free sheaf over X.

‘Maximal’ here means that the O(X)-module corresponding to L is maxi-
mal in the sense of Note 5, Section 2.

Example 5.3. If Xn is the curve defined by (4.1), then O(Xn) is 0-primary,
and the corresponding point of Grad is Wn = z−nO(Xn). More generally,
let � ⊂ N be any (additive) semigroup obtained from N by deleting a finite
number of positive integers, and let O(X) be the subring of C[z] spanned by
{zi : i ∈ �}. Such a curve X is called a monomial curve; the corresponding
point of Grad is z−mO(X), where m is the number of elements of N \ �.

Example 5.4. If X has simple cusps at the (distinct) points λ1, . . . , λr ∈ C ,
then O(X) consists of all polynomials whose first derivatives vanish at these
points, and the corresponding point of Grad is

W =
r∏

i=1

(z − λi )
−1 O(X).

More generally, if in addition we choose α1, . . . , αr ∈ C , then

V = { f ∈ C[z] : f ′(λi ) = αi f (λi ) for 1 ≤ i ≤ r}
is primary decomposable, and the corresponding point of Grad is

W =
r∏

i=1

(z − λi )
−1 V .
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In the pairs (X, L) here, the curve X is the same as before, and as we vary
the parameters αi we get the various line bundles L over X .

The rings DL(X) that interest us are easy to describe in terms of Grad . If
W ∈ Grad , we define the ring of differential operators on W by

D(W ) := {D ∈ C(z)[∂] : D.W ⊆ W }

(as in Section 2, the dot denotes the natural action of differential operators on
functions). Proposition 2.6 shows:

Proposition 5.5. Let W ∈ Grad correspond to the pair (X, L) as in Proposi-
tion 5.2. Then there is a natural identification

D(W ) 	 DL(X).

It remains to discuss the symmetries of Grad . Some of them are fairly obvi-
ous. First, we have the commutative group 	 of the KP flows: it corresponds
to the action (X, L) �→ (X, L ⊗ L) of the Jacobian (that is, the group of
line bundles L over X ) on the space of pairs (X, L). If W an ⊃ W is the
space of analytic sections of L , then 	 is the group of maps of the form
W an �→ ep(z)W an, where p is a polynomial. Another fairly evident symmetry
is the adjoint involution c defined by

c(W ) = { f ∈ C(z) : res∞ f (z)g(z)dz = 0 for all g ∈ W }.

Like the KP flows, c is just the restriction to Grad of a symmetry of the Grass-
mannian Gr of [SW]. A more elusive symmetry of Grad is the bispectral invo-
lution b introduced in [W1]; it does not make sense on Gr, and does not have
a simple description in terms of the pairs (X, L). It can be characterized by
the formula

ψbW (x, z) = ψW (z, x)

where ψ is the stationary Baker function of W (see, for example, [SW]). Let
ϕ = bc, and let G be the group of symmetries of Grad generated by 	 and
ϕ. In view of Proposition 5.5, Theorems 4.4, 4.5 and 5.1 are all consequences
of:

Theorem 5.6

(i) Let V, W ∈ Grad . Then D(V ) and D(W ) are isomorphic if and only if
V and W belong to the same G-orbit in Grad.

(ii) Each orbit contains exactly one of the points Wn from Example 5.3.
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Although it is possible to formulate a proof of Theorem 5.6 within our
present context, the proof will appear more natural if we use two alternative
descriptions of Grad: we explain these in the next sections. First, in Section 6
we shall see that Grad can be identified with the space of ideals in the Weyl
algebra D(A1): the ring D(W ) then becomes the endomorphism ring of the
corresponding ideal, and G becomes the automorphism group of the Weyl al-
gebra. Part (i) of Theorem 5.6 then turns into a theorem of Stafford (see [St]).
In Section 7 we explain how Grad decomposes into the union of certain finite-
dimensional varieties Cn that have a simple explicit description in terms of
matrices; part (ii) of Theorem 5.6 then follows from the more precise assertion
that these spaces Cn are exactly the G-orbits. Since the action of G also has
a simple description in terms of matrices, part (ii) of the Theorem becomes a
problem in linear algebra.

Notes.

1. The fact that the action of 	 ⊂ G preserves the isomorphism class of
D(W ) is almost trivial. Indeed, if g ∈ 	 is given (as above) by multiplica-
tion by ep(z), then D(gW ) = ep(z)D(W )e−p(z) . It follows that D(gW ) is
even isomorphic to D(W ) as a filtered algebra. Thus the (filtered) isomor-
phism class of DL(X) depends only on the orbit of the Jacobian of X in the
space of rank 1 torsion-free sheaves; for example, if L is locally free, then
DL(X) is isomorphic to D(X). A direct proof that ϕ preserves the isomor-
phism class of D(W ) is also not too difficult: it follows from the facts that
D(bW ) and D(cW ) are anti-isomorphic to D(W ) (cf. [BW2], Sections 7
and 8). We regard the main assertions in Theorem 5.6 to be part (ii) and the
‘only if’ statement in part (i).

2. The spaces Wn are fixed by b , so b induces an involutory anti-
automorphism on each of the rings D(Xn). Thus Theorem 5.1 shows that the
distinction between isomorphism and anti-isomorphism in the preceding note
was immaterial.

3. If L is not locally free, then in general DL(X) is not isomorphic to D(X)

(see Example 8.4 below).

4. Details of the proof of Proposition 5.2 can be found in [W1]; see also [CH4],
1.4 and [E], p. 945.

6 The Cannings–Holland correspondence

In this section we explain a different realization of Grad (due to Cannings and
Holland) as the space of ideals in the Weyl algebra. Let A := C[z, ∂] from
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now on denote the (first) Weyl algebra, and let I be the set of nonzero right
ideals of A . Let S be the set of all linear subspaces of C[z]. If V, W ∈ S (or,
later, also if V and W are subspaces of C(z)) we set

D(V, W ) := {D ∈ C(z)[∂] : D.V ⊆ W }. (6.1)

We define maps α : S → I and γ : I → S as follows. If V ∈ S , we set

α(V ) := D(C[z], V ) (6.2)

and if I ∈ I , we set

γ (I ) := {D.C[z] : D ∈ I }. (6.3)

Theorem 6.1.

(i) We have αγ (I ) = I if and only if I ∩ C[z] 
= {0} .
(ii) We have γα(V ) = V if and only if V is primary decomposable.

(iii) The maps α and γ define inverse bijections between the set of primary
decomposable subspaces of C[z] and the set of right ideals of A that
intersect C[z] nontrivially.

(iv) If V and W are primary decomposable and I := α(V ), J := α(W )

are the corresponding (fractional) ideals, then

D(V, W ) = {D ∈ C(z)[∂] : DI ⊆ J } 	 HomA(I, J ).

Example 6.2. Let In be the right ideal

In := zn+1 A +
n∏

r=1

(z∂ − r) A.

The second generator kills z, z2, . . . , zn , so we find that γ (In) = O(Xn).

The assertions (iii) and (iv) in Theorem 6.1 follow at once from (i) and
(ii). Now, not every right ideal of A intersects C[z] nontrivially; but every
ideal is isomorphic (as right A-module) to one with this property (see [St],
Lemma 4.2). Furthermore, two such ideals I, J are isomorphic if and only
if pI = q J for some polynomials p(z), q(z). On the other hand, two pri-
mary decomposable subspaces V, W determine the same point of Grad if and
only if pV = qW for some polynomials p(z), q(z); and the bijections α

and γ are clearly compatible with multiplication by polynomials. Let R de-
note the set of isomorphism classes of nonzero right ideals of A (equivalently,
of finitely generated torsion-free rank 1 right A-modules). Combining the re-
marks above with Theorem 6.1, we get the following:
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Theorem 6.3.

(i) The maps defined by the formulae (6.2) and (6.3) define inverse bijections

α : Grad → R and γ : R → Grad .

(ii) For V, W ∈ Grad , there is a natural identification

D(V, W ) 	 HomA(α(V ), α(W )).

As a special case of (ii), we see that if W ∈ Grad and I := α(W ) is the
corresponding ideal in A , then the algebra D(W ) ≡ D(W, W ) is identified
with EndA(I ). On the other hand, if W corresponds to the pair (X, L), then
according to Proposition 5.5, D(W ) is just the algebra DL(X) that interests
us. In this way Theorem 6.3 translates any question about the algebras DL(X)

into a question about ideals in the Weyl algebra. It remains to give the trans-
lation into these terms of the group G of symmetries of Grad . Note that if
σ is an automorphism of A and I is finitely generated torsion-free rank 1
A-module, then σ∗(I ) is a module of the same type: thus the automorphism
group Aut(A) acts naturally on R .

Theorem 6.4. Under the bijection α , the action of the group 	 of KP
flows corresponds to the action on R induced by the automorphisms D �→
ep(z) De−p(z) of A; while the map ϕ corresponds to the map on R induced
by the formal Fourier transform (z �→ ∂, ∂ �→ −z) of A.

Now, if σ is an automorphism of (any algebra) A, and M is any A-module,
then it is trivial that EndA(M) 	 EndA(σ∗M). Thus Theorem 6.4 makes the
‘if’ part of Theorem 5.6(i) transparent.

Notes.

1. According to Dixmier (see [D]), the automorphisms mentioned in Theo-
rem 6.4 generate the full automorphism group of A; thus we may identify our
symmetry group G with Aut(A).

2. There are two routes available to prove the ‘only if’ part of Theorem 5.6(i). If
we use Dixmier’s theorem, we can simply note that it translates into a known
theorem of Stafford (see [St]): if I and J are two ideal classes of A , then
their endomorphism rings are isomorphic (if and) only if I and J belong to
the same orbit of Aut(A) in R. Alternatively, after we have classified the or-
bits, this fact will follow from Theorem 4.5 (whose proof in [LM] does not use
Stafford’s theorem, nor Dixmier’s).
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3. To get an idea of the depth of Stafford’s theorem, let us give a proof (fol-
lowing [CH3]) of a crucial special case: if I is an ideal of A whose endomor-
phism ring is isomorphic to EndA(A) = A, then I 	 A. Let (X, L) be the
pair corresponding to I ; then DL(X) is isomorphic to A, hence O(X) is iso-
morphic to a mad subalgebra of A. Another (nontrivial) theorem of Dixmier
(see [D]) says that all the mad subalgebras of A are isomorphic to C[z]; hence
X 	 A1 and L is the trivial line bundle (because this is the only rank 1
torsion-free sheaf over A1). According to Theorem 6.3, it follows that I 	 A.
The general case of Stafford’s theorem is a relatively formal consequence of
this special case (see [St], Corollary 3.2).

4. If we introduce the category P with objects the primary decomposable
subspaces of C[z] and morphisms D(V, W ), then we could summarize
Theorem 6.1 by saying that we have an equivalence of categories between P

and the category of ideals in A (regarded as a full subcategory of the category
of right A-modules).

5. Theorems 6.1 and 6.3 remain true (mutatis mutandis) if we replace the Weyl
algebra by the ring of differential operators on any smooth affine curve (see
[CH1]). Using this fact, we can sketch a proof of Theorem 3.3. Suppose that
X and Y are smooth affine curves such that D(X) is Morita equivalent to
D(Y ). Since these are Noetherian domains, that means that D(Y ) is isomor-
phic to the endomorphism ring of some ideal in D(X), and hence to D(V )

for some primary decomposable subspace V of O(X). This in turn is isomor-
phic to some ring DL(X ′), where X ′ is a curve with bijective normalization
X → X ′. If Y is not isomorphic to A1, then Theorem 4.2 shows that D(Y )

has only one mad subalgebra. The same is therefore true of DL(X ′); extract-
ing these mad subalgebras gives O(Y ) 	 O(X ′), hence Y 	 X ′. Since Y is
smooth, this implies X = X ′, hence Y 	 X . Finally, if Y is isomorphic to
A1, then D(Y ), and hence also DL(X ′), has more than one mad subalgebra,
so Lemma 4.1 implies that X 	 A1.

6. Theorem 6.1 is proved in [CH1]; Theorem 6.4 is proved in [BW2].

7. A different view of the construction of Cannings and Holland, and some
further generalizations, can be found in [BGK2].

7 The Calogero–Moser spaces

Our third realization of Grad involves the Calogero–Moser spaces Cn . For
each n ≥ 0, let C̃n be the space of pairs (X, Y ) of complex n × n matrices
such that

[X, Y ] + I has rank 1
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and let Cn := C̃n/GL(n, C) , where the action of g ∈ GL(n, C) is by simul-
taneous conjugation: (X, Y ) �→ (gXg−1, gY g−1). One can show that Cn is
a smooth irreducible affine variety of dimension 2n ( C0 is supposed to be a
point).

Theorem 7.1. There is a natural bijection

β : C :=
⊔
n≥0

Cn → Grad

such that:

(i) the action on Grad of the multiplication operators e{p(z)} ∈ 	 corresponds
to the maps (X, Y ) �→ (X + p′(Y ), Y ) on Cn;

(ii) the action of ϕ on Grad corresponds to the map (X, Y ) �→ (−Y, X) on
Cn;

(iii) the action of the group G on each Cn is transitive.

It follows from part (iii) of this theorem that the spaces β(Cn) are the orbits
of G in Grad. To complete the proof of Theorem 5.6 we have only to check
that β−1(Wn) belongs to Cn : that is done in Example 8.2 below.

The decomposition of Grad in Theorem 7.1 was originally obtained using
ideas from the theory of integrable systems (see [W2]). Here we sketch a dif-
ferent method. In view of Theorem 6.3, it is enough to see why the space R

of ideals in the Weyl algebra should decompose into the finite-dimensional
spaces Cn . That can be understood by analogy with the corresponding com-
mutative problem, namely, to describe the space R0 of isomorphism classes of
ideals in A0 := C[x, y] . This problem is easy, because each ideal class in A0

has a unique representative of finite codimension; hence R0 decomposes into
the disjoint union of the point Hilbert schemes Hilbn(A2) (that is, the spaces
of ideals of codimension n ) for n ≥ 0. It is elementary that Hilbn(A2) can
be identified with the space of pairs (X, Y ) of commuting n × n matrices
possessing a cyclic vector (see [N], 1.2); thus Hilbn(A2) is the commutative
analogue of the Calogero–Moser space Cn . Because the Weyl algebra has no
nontrivial ideals of finite codimension, it is not immediately clear how to adapt
this discussion to the noncommutative case; however, there is a less elementary
point of view which generalizes more easily. We may regard an ideal of A0 as
a rank 1 torsion-free sheaf over A2; it has a unique extension to a torsion-free
sheaf over the projective plane P2 trivial over the line at infinity. The classifi-
cation of ideals by pairs of matrices can then be regarded as a (trivial) special
case of Barth’s classification of framed bundles (of any rank) over P2 (see
[N], Ch. 2). In a similar way, an ideal of the Weyl algebra determines a rank 1
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torsion-free sheaf over a suitably defined quantum projective plane P2
q ; these

can then be classified much as in the commutative case.

Notes.

1. Let us try to give something of the flavour of the noncommutative projective
geometry needed to carry out the plan sketched above (see, for example [A],
[AZ] for more details). Let X ⊆ PN be a projective variety, and let A =
⊕k≥0 Ak be its (graded) homogeneous coordinate ring. To any quasicoherent
sheaf M over X we can assign the graded A-module

M :=
⊕
k∈Z

H0(X, M(k)).

A theorem of Serre (see [S]) states that this defines an equivalence between
the category of quasicoherent sheaves over X and a certain quotient of the
category of graded A-modules (we have to divide out by the so-called torsion
modules, in which each element is killed by some Ak ). Thus many results
about projective varieties can be formulated in a purely algebraic way, in terms
of graded A-modules; in this form the theory makes sense also for a noncom-
mutative graded ring A. The coordinate ring of the space P2

q referred to above
is the ring of noncommutative polynomials in three variables x, y, z of de-
gree 1 , where z commutes with everything, but [x, y] = z2. It turns out that
the homological properties of this ring are similar to those of the commutative
graded ring C[x, y, z] ; in particular, the classification of bundles (of any rank)
over P2

q is similar to that of bundles over P2 (see [KKO]).

2. The idea of using P2
q to classify the ideals in the Weyl algebra is due to L.

Le Bruyn (see [LeB]). However, Le Bruyn’s chosen extension of an ideal in A
to a sheaf over P2

q was in general not trivial over the line at infinity, so he did
not obtain the decomposition of R into the Calogero–Moser spaces. That was
done in [BW3] and (in a different way) in [BGK1].

3. The connection between the spaces Hilbn(A2) and Cn is actually much
closer than we have indicated: Hilbn(A2) is a hyperkähler variety, and Cn

is obtained by deforming the complex structure of Hilbn(A2) within the hy-
perkähler family. See [N], Ch. 3, especially 3.45.

4. The assertions (i) and (ii) in Theorem 7.1 are proved in [BW2] (using the
original construction of β), and in [BW3] (using the construction sketched
above). The fact that the two constructions agree is also proved in [BW3].

5. Parts (i) and (ii) of Theorem 7.1 reduce the proof of part (iii) (transitivity
of the G-action) to an exercise in linear algebra. Unfortunately, the exercise
seems to be quite difficult, and the published solution in [BW2] strays outside
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elementary linear algebra at one point (see Lemma 10.3 in [BW2]). P. Etingof
has kindly pointed out to us that transitivity also follows easily from the fact
that the functions (X, Y ) �→ tr(Xk) and (X, Y ) �→ tr(Y k) generate O(Cn) as
a Poisson algebra (see [EG], 11.33).

6. In [BW3], Section 5 we have given an elementary construction of the map
R → C , in a similar spirit to the elementary treatment of the commutative
case. It turns out that the inverse map C → R can also be written down ex-
plicitly, as follows. Let (X, Y ) ∈ Cn , and choose column and row vectors v, w

such that [X, Y ] + I = vw. Define2

κ := 1 − w(Y − z I )−1(X − ∂ I )−1v

(thus κ belongs to the quotient field of the Weyl algebra A ). Then the (frac-
tional) right ideal

det(Y − z I ) A + κ det(X − ∂ I ) A ⊂ C(z)[∂] (7.1)

represents the class in R corresponding to (X, Y ). Using these formulae, it
is possible to give a completely elementary proof that R decomposes into the
spaces Cn . More details will appear elsewhere.

8 The invariant n

Theorem 7.1 assigns to each W ∈ Grad a non-negative integer n, namely,
the index of the ‘stratum’ Cn containing β−1(W ). Using Proposition 5.2 and
Theorem 6.3, we may equally well regard n as an invariant of a pair (X, L),
or of an ideal (class) in the Weyl algebra A. In this section we discuss various
descriptions of this invariant. The first two begin with an ideal class in A.

n as a Chern class. We return to the quantum projective plane P2
q explained

at the end of Section 7. Let M be an ideal class of A, and let M denote its
unique extension to a sheaf over P2

q trivial over the line at infinity. Then we
claim that

n = dimC H1(P2
q , M(−1)). (8.1)

To see that, we need to give more details of the construction of the map R to C.
Recall that the homogeneous coordinate ring of P2

q has three generators
x, y, z. It turns out that multiplication by z induces an isomorphism

H1(P2
q , M(−2)) → H1(P2

q , M(−1) := V .

2 We get this formula by combining Remark 5.4 in [BW3] with formula (3.5) in [W2].
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If we use this isomorphism to identify these spaces, then multiplication by x
and y gives us a pair (X, Y ) of endomorphisms of V : this is the point of
C associated with M . Obviously, the size of the matrices (X, Y ) is given by
(8.1).

Note. By analogy with the commutative case (see [N], Ch. 2), we would like
to interpret n as the second Chern class c2(M). However, at the time of writ-
ing, Chern classes have not yet been discussed in noncommutative projective
geometry.

n as a codimension. Again, let M be an ideal of A . By [St], Lemma 4.2, we
may suppose that M intersects C[z] ⊂ A nontrivially; let I be the ideal in
C[z] generated by the leading coefficients of the operators in M , and let p(z)
be a generator of I. Then p−1 M ⊂ C(z)[∂] is a fractional ideal representing
the class of M . Define a map D �→ D+ from C(z)[∂] to A by(∑

i

fi∂
i
)

+
=

∑
i

( fi )+∂ i .

Here f+ denotes the polynomial part of a rational function f (that is, the
polynomial such that f − f+ vanishes at infinity). Then we claim that

n is the codimension of (p−1 M)+ in A.

A proof can be found in [BW3], Section 6, where it is shown that the quotient
space A/(p−1 M)+ can be identified with the (Čech) cohomology group on
the right of (8.1).

Note. The special representative for an ideal class that we used in this subsec-
tion is the same one as is given by the formula (7.1). It is the unique represen-
tative of the form D(C[z], W ) with W ∈ Grad (cf. Theorem 6.3).

The differential genus of a framed curve. The following characterization of
n was one of the main results of [W2].

Theorem 8.1. Let W ∈ Grad. Then the integer n that we have associated to
W is equal to the dimension of the open cell in Grad containing W .

This theorem leads easily to a simple formula for calculating n in concrete
examples (cf. [PS], 7.4). Recall from Section 5 that W is constructed from a
family of λ-primary subspaces Vλ ⊆ C[z] (one for each λ ∈ C , and almost
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all of them equal to C[z] ). In terms of these Vλ, we can calculate n as follows.
First, we have n = ∑

λ nλ, where nλ depends only on Vλ (and is zero if
Vλ = C[z] ). To find nλ, let

r0 < r1 < r2 < . . . (8.2)

be the numbers r such that Vλ contains a polynomial that vanishes exactly to
order r at λ. For large i we have ri = g + i , where g is the number of ‘gaps’
(non-negative integers that do not occur) in the sequence (8.2). Then we have

nλ =
∑
i≥0

(g + i − ri ). (8.3)

Example 8.2. For the 0-primary space V := O(Xn) defined by (4.1), the
sequence (8.2) is

0 < n + 1 < n + 2 < . . .

whence g = n, and the right-hand side of (8.3) is equal to n.

This calculation completes the proof of Theorem 5.6(ii), and shows that we
can identify the number n associated with a pair (X, L) with the differential
genus dL(X) introduced in Section 5.

Example 8.3. If Yr is the curve with coordinate ring O(Yr ) := C[z2, z2r+1],
then again O(Yr ) is 0-primary, and the sequence (8.2) is

0 < 2 < 4 < . . . < 2r < 2r + 1 < . . . .

Hence g = r , and d(Yr ) = r + (r − 1) + . . . + 2 + 1 = r(r + 1)/2.

In particular, d(Y2) = 3 so Y2 is differentially isomorphic to X3 , in agree-
ment with G. Letzter (see [L]).

Example 8.4. Here is the simplest example to show that in general dL(X)

depends on L, not just on X . Let V be the 0-primary space spanned by
{zi : i 
= 2, 3}. Then the the sequence (8.2) is

0 < 1 < 4 < 5 < . . .

whence n = 4. Clearly, V is a maximal module over the ring O(X3), and
thus corresponds to a maximal torsion-free (but not locally free) sheaf L over
X3. For this sheaf L we therefore have dL(X3) = 4, and the ring DL(X3) is
isomorphic to D(X4).
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The Letzter–Makar–Limanov invariant. Next, we describe the invariant
originally used in [LM] to distinguish the rings D(Xn). We return temporarily
to the case of any affine curve X , with normalization X̃ and function field K;
as usual (see Proposition 2.4), we view D(X) and D(X̃) as subalgebras of
D(K). In general, D(X) is not contained in D(X̃); however, the associated
graded algebra gr D(X) is always contained in gr D(X̃) (see [SS], 3.11). In
the case that most concerns us when X̃ = A1, this simply means that the lead-
ing coefficient of each operator in D(X) is a polynomial (although the other
coefficients may be rational functions, as we saw in Example 2.5). Continuing
Theorem 3.2, we have:

Theorem 8.5. Each of the conditions in Theorem 3.2 is equivalent to:

gr D(X) has finite codimension in gr D(X̃).

In our case, when X̃ = A1 and X is a framed curve, gr D(X) is a subal-
gebra of finite codimension in C[z, ζ ]; we call its codimension the Letzter–
Makar–Limanov invariant of X , and denote it by L M(X). The definition
of L M(X) uses the standard filtration on D(X); nevertheless, in [LM] it is
proved that it depends only on the isomorphism class of the algebra D(X); that
is, if X and Y are differentially isomorphic framed curves, then L M(X) =
L M(Y ). On the other hand, it is not hard to calculate that L M(Xn) = 2n (see
[LM], Section 5). Combined with Theorem 5.6, that gives:

Theorem 8.6. Let X be any framed curve. Then 2 d(X) = L M(X).

Notes.

1. Theorem 8.5 is proved (though not explicitly stated) in [SS], 3.12.

2. In [LM] the rings DL(X) (for L 
= OX ) are not considered; however, it is
not hard to extend the discussion to include that case. Thus we can define the
invariant L M(D(W )) for any W ∈ Grad , and Theorem 5.6 shows that it is
equal to 2n.

3. It is possible to prove directly (that is, without using Theorem 5.6) that
L M(D) is twice the number n defined by (8.1). The interested reader may
see [B].

All our descriptions of n so far have been specific to our particular situation.
It is natural to ask whether n is a special case of some general invariant of
rings that is able to distinguish between different Morita equivalent domains.
Our last two subsections are attempts in that direction.
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Pic and Aut. Let D momentarily be any domain (associative algebra with-
out zero divisors) over C . The following idea for obtaining subtle invariants
of the isomorphism class of D is due to Stafford (see [St]). Consider the
group3 Pic(D) of all Morita equivalences of D with itself, that is, of all self-
equivalences of the category Mod-D of (say right) D-modules. Each such
equivalence is given by tensoring with a suitable D-bimodule, so we may also
think of Pic(D) as the group of all invertible D-bimodules. Each automor-
phism of D induces a self-equivalence of Mod-D, so there is a natural map

ω : Aut(D) → Pic(D). (8.4)

Although the group Pic(D) is a Morita invariant of D, the automorphism
group and the map ω are not.

We return to our case, where D is one of the algebras EndA(I ) (or
DL(X)). In general, the kernel of ω consists of the inner automorphisms of
D; in our case these are trivial, so ω is injective. For the Weyl algebra A,
Stafford showed that ω is an isomorphism. We thus have a natural inclusion

Aut(D) ↪→ Pic(D) 	 Pic(A) = Aut(A)

(the isomorphism from Pic(D) to Pic(A) is defined by tensoring with the D-
A-bimodule I ). Recalling that the group Aut(A) acts transitively on Cn , one
can calculate that the isotropy group of the point in Cn corresponding to I is
exactly this subgroup Aut(D). It follows that we have a natural bijection

Cn 	 Pic(D)/Aut(D)

so it is tempting to claim that our invariant n is given by

2n = dimC Pic(D)/Aut(D). (8.5)

The flaw in this is that the structure of algebraic variety on the quotient ‘space’
in (8.5) has been imposed a posteriori, and has not been extracted intrinsically
from the algebra D.

Note. In view of the above, we may hope that there should be (at least for
some algebras D ) a natural structure of (infinite-dimensional) algebraic group
on Pic(D) for which Aut(D) would be a closed subgroup. In our case, we can
identify Pic(D) with Aut(A), which does indeed have a natural structure of
algebraic group; however, for this structure Aut(D) is not a closed subgroup
(see [BW2], Section 11 for more details).

3 More properly, we should write Pic
C

(D) to indicate that we consider only equivalences that
commute with multiplication by scalars. For a similar reason, we should write Aut

C
too.
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Mad subalgebras. The idea behind our final description of n is very simple,
namely: n should measure the ‘number’ of mad subalgebras of D(X). Let us
formulate a precise statement. For each W ∈ Grad with invariant n, we may
choose an isomorphism

φ : D(W ) → D(Xn).

Since D0(W ) is a mad subalgebra of D(W ), B := φ(D0(W )) is a mad
subalgebra of D(Xn). Furthermore, φ extends to an isomorphism of quotient
fields, in particular, it maps z ∈ C(z)[∂] to some element u := φ(z) in the
quotient field of B. Clearly, C[u] is the integral closure of B. According
to [LM], the integral closure B of any mad subalgebra B is isomorphic to
C[u]: we shall call a choice of generator for B a framing of B. Thus the
above isomorphism φ gives us a framed mad subalgebra (B, u) of D(Xn).
Any two choices of φ differ only by an automorphism of D(Xn), so the class
(modulo the action of Aut D(Xn)) of the framed mad subalgebra we have
obtained depends only on W. Moreover (cf. Section 5, Note 1), if we replace
W by gW , where g belongs to the group 	 of KP flows, then conjugation
by g defines an isomorphism of D(gW ) with D(W ) which is the identity on
D0, so the isomorphism

D(gW ) → D(W )
φ−→ D(Xn)

defines the same framed mad subalgebra as φ . It follows that we have con-
structed a well-defined map

Cn/	 → {classes of framed mad subalgebras in D(Xn)} . (8.6)

Theorem 8.7. The map (8.6) is a set-theoretical bijection.

We will explain the proof elsewhere. Since the (categorical) quotient Cn//	

is n-dimensional, we should like to interpret n as the dimension of the ‘space’
of (classes of framed) mad subalgebras of D(Xn). However, the word ‘space’
here is open to even more serious objections than in the preceding subsection.

Notes.

1. In the definition of a framed mad subalgebra (B, u) we did not assume a
priori that the curve Spec B was free of multiple points (indeed, that was not
proved in [LM]). This momentary inconsistency of terminology is resolved by
Theorem 8.7, which asserts (inter alia) that every mad subalgebra B arises
from the construction described above; in particular, that Spec B is a framed
curve as defined earlier.
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2. In the case n = 0, the left-hand side of (8.6) is a point, so Theorem 8.7
becomes a well-known result of Dixmier: in the Weyl algebra there is only one
class of mad subalgebras (see [D]).

9 Higher dimensions

The examples of Levasseur, Smith and Stafford. Let g be a simple complex
Lie algebra, and let O be the closure of the minimal nilpotent orbit in g. Let
g = n− ⊕ h ⊕ n+ be a triangular decomposition of g; then O ∩ n+ breaks
up into several irreducible components Xi . In [LSS] it is shown that in some
cases the ring D(Xi ) can be identified with U (g)/J , where J is a certain
distinguished completely prime primitive ideal of U (g) (the Joseph ideal).
The examples of differential isomorphism arise in the case g = so(2n, C)

(with n ≥ 5), because in that case there are two nonisomorphic components
X1 and X2 of this kind. They can be described quite explicitly: X1 is the
quadric cone

∑
z2

i = 0 in C2n−2, and X2 is the space of skew-symmetric
n×n matrices of rank ≤ 2. In contrast to what we saw for curves, these spaces
X1 and X2 are quite different topologically.

Morita equivalence. There are several papers that study differential equiv-
alence in dimension > 1. In view of Theorem 3.2, attention has focused on
the question of when a variety X is differentially equivalent to its normal-
ization X̃ . Of course, in dimension > 1 the normalization is not necessarily
smooth: in [J1] there are examples of differential equivalence in which X̃ is
not smooth (they can be thought of as generalizations of the monomial curves
of Example 5.3). Another point that does not arise for curves is that the con-
dition that X be Cohen–Macaulay plays an important role (we recall that
every curve is Cohen–Macaulay). For example, a theorem of Van den Bergh
states that if D(X) is simple, then X must be Cohen–Macaulay (see [VdB],
Theorem 6.2.5). For varieties with smooth normalization, there are good gener-
alizations of at least some parts of Theorem 3.2. For example, piecing together
various results scattered through the literature, we can get the following.

Theorem 9.1. Let X be an (irreducible) affine variety with smooth normal-
ization X̃ . Then the following are equivalent.

(i) The normalization map π : X̃ → X is bijective and X is Cohen–
Macaulay.

(ii) The algebras D(X̃) and D(X) are Morita equivalent.

(iii) The ring D(X) is simple.
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Beautiful examples are provided by the varieties of quasi-invariants of finite
reflection groups (see [BEG], [BC]): here X̃ is the affine space Am , so these
examples are perhaps the natural higher-dimensional generalizations of our
framed curves.

References for the proof of Theorem 9.1. For the implication ‘(1) ⇒ (2)’ in
Theorem 9.1 we are relying on the recent preprint [BN] (at least in dimen-
sion > 2: for surfaces it was proved earlier in [HS]). For the rest, the im-
plication ‘(2) ⇒ (3)’ is trivial, and the fact that D(X) simple implies X
Cohen–Macaulay is the theorem of Van den Bergh mentioned above. The only
remaining assertion in Theorem 9.1 is that if D(X) is simple then π is bijec-
tive. Suppose D(X) is simple. Then by [SS], 3.3, D(X) is isomorphic to the
endomorphism ring of the right D(X̃)-module P defined by (3.1); the dual
basis lemma then implies that P is a projective D(X̃)-module. It now fol-
lows from [CS], Theorem 3.1 that D(X) is a maximal order, then from [CS],
Corollary 3.4 that π is bijective.

Non-affine varieties. In this paper we have considered only affine varieties.
However, the problem of differential equivalence has an obvious generaliza-
tion to arbitrary (for example, projective) varieties X . Namely: on X we
have the sheaf DX of differential operators (whose sections over an affine
open set Spec A are the ring D(A) ), and given two varieties X and Y , we
can ask whether the categories of O-quasicoherent sheaves of modules over
DX and DY are equivalent. For X affine, the global section functor gives an
equivalence between the categories of DX -modules and of D(X)-modules,
so we recover our original problem. The available evidence (namely [SS]
and [BN]) suggests that results about the affine case carry over to this more
general situation.

The question of differential isomorphism does not make sense for sheaves;
however, we can always consider the ring D(X) of global sections of DX ,
and ask when D(X) and D(Y ) are isomorphic. In general, D(X) may be
disappointingly small: for example, if X is a smooth projective curve of genus
> 1, then we have no global vector fields, so D(X) = C. Probably the ques-
tion is a sensible one only if X is close to being a D-affine variety (for which
the global section functor still gives an equivalence between DX -modules and
D(X)-modules). As far as we know, there are not yet any papers on this sub-
ject: however, the question of Morita eqivalence of rings D(X) has been stud-
ied in [HoS] (where X = P1, this being the only D-affine smooth projective
curve); and in [J2] (where X is a weighted projective space). We should like
to state one of the results of [HoS], since it is very close to our framed curves.
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Let X be a ‘framed projective curve’, that is, we have a bijective normaliza-
tion map P1 → X . Then Holland and Stafford show that the rings D(X) (for
X singular) are all Morita equivalent to each other, but not to D(P1). A key
point is that, although P1 is D-affine, the singular curves X are not.
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Abstract

Let M be a closed, connected manifold, and L M its loop space. In this paper
we describe closed string topology operations in h∗(L M), where h∗ is a gen-
eralized homology theory that supports an orientation of M . We will show that
these operations give h∗(L M) the structure of a unital, commutative Frobenius
algebra without a counit. Equivalently they describe a positive boundary, two-
dimensional topological quantum field theory associated to h∗(L M). This im-
plies that there are operations corresponding to any surface with p incoming
and q outgoing boundary components, so long as q ≥ 1. The absence of a
counit follows from the nonexistence of an operation associated to the disk,
D2, viewed as a cobordism from the circle to the empty set. We will study
homological obstructions to constructing such an operation, and show that in
order for such an operation to exist, one must take h∗(L M) to be an appro-
priate homological pro-object associated to the loop space. Motivated by this,
we introduce a prospectrum associated to L M when M has an almost complex
structure. Given such a manifold its loop space has a canonical polarization
of its tangent bundle, which is the fundamental feature needed to define this
prospectrum. We refer to this as the ‘polarized Atiyah-dual’ of L M . An ap-
propriate homology theory applied to this prospectrum would be a candidate
for a theory that supports string topology operations associated to any surface,
including closed surfaces.

1 Introduction

Let Mn be a closed, oriented manifold of dimension n, and let L M be its free
loop space. The ‘string topology’ theory of Chas–Sullivan [3] describes a rich
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structure in the homology and equivariant homology of L M . The most basic
operation is an intersection-type product

◦ : Hq(L M) × Hr (L M) → Hq+r−n(L M)

that is compatible with both the intersection product in the homology of the
manifold, and the Pontrjagin product in the homology of the based loop space,
H∗(�M). Moreover this product structure extends to a Batalin–Vilkovisky
algebra structure on H∗(L M), and an induced Lie algebra structure on the
equivariant homology, H S1

∗ (L M). More recently Chas and Sullivan [4] de-
scribed a Lie bialgebra structure on the rational reduced equivariant homology,
H S1

∗ (L M, M; Q), where M is embedded as the constant loops in L M .
These string topology operations and their generalizations are parameterized

by combinatorial data related to fat graphs used in studying Riemann surfaces
[3][4][19][20][5]. The associated field theory aspects of string topology is a
subject that is still very much under investigation. In this paper we contribute
to this investigation in the following two ways.

Recall that a two-dimensional topological quantum field theory associates
to an oriented compact one manifold S a vector space, AS , and to any oriented
cobordism � between S1 and S2 a linear map, µ� : AS1 → AS2 . Such an
assignment is required to satisfy various well-known axioms, including a glu-
ing axiom. Recall also that if A = AS1 , such a TQFT structure is equivalent
to a Frobenius algebra structure on A [17][10][1]. This is a unital, commuta-
tive algebra structure, µ : A ⊗ A → A, together with a counit (or trace map)
θ : A → k, so that the composition θ ◦µ : A⊗ A → A → k is a nondegenerate
form. From the TQFT point of view, the unit in the algebra, u : k → A is the
operation corresponding to a disk D2 viewed as a cobordism from the empty
set to the circle, and the counit θ : A → k is the operation corresponding to
the disk viewed as a cobordism from the circle to the empty set. Without the
counit θ a Frobenius algebra is equivalent to a unital, commutative algebra A,
together with a cocommutative coalgebra structure, � : A → A ⊗ A without
counit, where � is a map of A-modules. From the TQFT point of view, a non-
counital Frobenius algebra corresponds to a ‘positive boundary’ TQFT, in the
sense that operations µ� are defined only when each component of the surface
� has a positive number of outgoing boundary components.

Let h∗ be a multiplicative generalized cohomology theory whose coefficient
ring, h∗(point) is a graded field (that is, every nonzero homogeneous element
is invertible). Besides usual cohomology with field coefficients, natural exam-
ples of such theories are periodic K -theory with field coefficients, or any of the
Morava K -theories. Any multiplicative generalized cohomology theory gives
rise to such a theory by appropriately localizing the coefficient ring.



A polarized view of string topology 129

Let h∗ be the associated generalized homology theory. Let Mn be a closed,
n-dimensional manifold which is oriented with respect to this theory. Our first
result, which builds on work of Sullivan [19], is that string topology operations
can be defined to give a two-dimensional positive boundary TQFT, with AS1 =
h∗(L M).

Theorem 1.1. The homology of the free loop space h∗(L M) has the struc-
ture of a Frobenius algebra without counit. The ground field of this algebra
structure is the coefficient field, h∗ = h∗(point).

The construction of the TQFT operations corresponding to a surface � will
involve studying spaces of maps from a fat graph �� associated to the sur-
face to M , and viewing that space as a finite codimension submanifold of a
(L M)p, where p is the number of incoming boundary components of �. We
will show that this allows the construction of a Thom collapse map for this
embedding, which will in turn define a push-forward map ι! : h∗(L M)⊗p →
h∗(Map(��; M)). The operation µ� will then be defined as the composition
ρout ◦ ι! : h∗(L M)⊗p → h∗(Map(��; M) → h∗(L M)⊗q where ρout is in-
duced by restricting a map from �� to its outgoing boundary components.

The second goal of this paper is to investigate the obstructions to construct-
ing a homological theory applied to the loop space which supports the string
topology operations, and permits the definition of a counit in the Frobenius
algebra structure, or, equivalently, would eliminate the ‘positive boundary’ re-
quirement in the TQFT structure. Let hmid∗ (L M) be such a conjectural theory.
In some sense this would represent a ‘middle dimensional’, or ‘semi-infinite’
homology theory associated to the loop space, because of the existence of a
nonsingular form hmid∗ (L M)⊗ hmid∗ (L M) → k analogous to the interesection
form on the middle-dimensional homology of an even-dimensional oriented
manifold.

We will see that defining a counit would involve the construction of a push-
forward map for the embedding of constant loops M ↪→ L M . Unlike the em-
beddings described above, this has infinite codimension. We will argue that this
infinite dimensionality will force the use of an inverse limit of homology the-
ories, or a ‘pro-homology theory’ associated to the loop space. Using previous
work of the first author and Stacey [8], we will show that there are obstruc-
tions to the construction of such a pro-object unless M has an almost complex
structure. In this case the tangent bundle of the loop space has a canonical
complex polarization, and we will use it to define the ‘polarized loop space’,
L M±. This space fibers over L M , where an element in the fiber over γ ∈ L M
is a representative of the polarization of the tangent space Tγ L M . We will
examine various properties of L M±, including its equivariant properties. We
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will show that the pullback of the tangent bundle T L M over L M± has a fil-
tration that will allow us to define a prospectrum L M−T L M

± , which we call the
(polarized) ‘Atiyah dual’ of L M . We will end by describing how the applica-
tion of an appropriate equivariant homology theory to this prospectrum should
be a good candidate for studying further field theory properties of string topol-
ogy. This will be the topic of future work, which will be joint with J. Morava
and G. Segal.

The paper is organized as follows. In Section 1 we will describe the type
of fat graphs needed to define the string topology operations. These are chord
diagrams of the sort introduced by Sullivan [19]. We will define the topology
of these chord diagrams using categorical ideas of Igusa [12][13]. Our main
technical result, which we will need to prove the invariance of the operations,
is that the space of chord diagrams representing surfaces of a particular dif-
feomorphism type is connected. In Section 2 we define the string topology
operations and prove Theorem 1. The operations will be defined using a ho-
motopy theoretic construction (the ‘Thom collapse map’) generalizing what
was done by the first author and Jones in [5]. In Section 3 we describe the ob-
structions to the existence of a counit or trace in the Frobenius algebra struc-
ture. Motivated by these observations, in Section 4 we describe the ‘polarized
Atiyah dual’ of the loop space of an almost complex manifold, and study its
properties.

2 Fat graphs and Sullivan chord diagrams

Recall from [15][18] that a fat graph is a graph whose vertices are at least
trivalent, and where the edges coming into each vertex come equipped with a
cyclic ordering. Spaces of fat graphs have been used by many different authors
as an extremely effective tool in studying the topology and geometry of moduli
spaces of Riemann surfaces. The essential feature of a fat graph is that when it
is thickened, it produces a surface with boundary, which is well defined up to
homeomorphism.

For our purposes, the most convenient approach to the space of fat graphs is
the categorical one described by Igusa [12][13]. In [12] (Chapter 8) he defined
a category Fatn(g) as follows. The objects of Fatn(g) are fat graphs (with
no lengths assigned to the edges), and the morphisms are maps of fat graphs
f : �1 → �2 (i.e maps of the underlying simplicial complexes that preserve
the cyclic orderings) satisfying the following properties:

(a) The inverse image of any vertex is a tree.

(b) The inverse image of an open edge is an open edge.
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Igusa proved that the geometric realization |Fatn(g)| is homotopy equiva-
lent to the classifying space, BMg,n , where Mg,n is the mapping class group
of genus g surfaces with n marked, ordered points (Theorem 8.6.3 of [12]). In
this theorem n ≥ 1 for g ≥ 1 and n ≥ 3 for g = 0. He also proved (Theorem
8.1.17) that |Fatn(g)| is homotopy equivalent to the space of metric fat graphs,
which we denote Fn(g), which is a simplicial space made up of fat graphs with
appropriate metrics. These spaces are closely related the simplicial sets stud-
ied by Culler and Vogtmann [9] and Kontsevich [14]. See [12] Chapter 8 for
details.

Following [9] there are ‘boundary cycles’ associated to a fat graph � defined
as follows. Pick an edge and choose an orientation on it. Traversing that edge
in the direction of its orientation leads to a vertex. Proceed with the next edge
emanating from that vertex in the cyclic ordering, and give it the orientation
pointing away from that vertex. Continuing in this way, one traverses several
edges, eventually returning to the original edge, with the original orientation.
This yields a ‘cycle’ in the set of oriented edges and represents a boundary
component. One partitions the set of all oriented edges into cycles, which enu-
merate the boundary components of the surface represented by �. The cycle
structure of the oriented edges completely determines the combinatorial data
of the fat graph.

In a metric fat graph each boundary cycle has an orientation and a metric
on it. Hence introducing a marked point for each boundary cycle would yield
a parameterization of the boundary components. Notice that it is possible that
two marked points lie on the same edge, and indeed a single point on an edge
might have a ‘double marking’ since a single edge with its two orientations
might lie in two different boundary cycles.

We call the space of metric fat graphs representing surfaces of genus g with
n boundary components, that come equipped with marked points on the the
boundary cycles, F

µ
n (g). This is the space of marked metric fat graphs. Using

Igusa’s simplicial set construction, one sees that F
µ
n (g) can be topologized so

that the projection map that forgets the markings

p : Fµ
n (g) → Fn(g) (2.1)

is a quasifibration whose fiber is the space of markings on a fixed fat graph,
which is homeomorphic to the torus (S1)n . The topology of the space of
marked metric fat graphs is studied in detail in [11] with applications to spe-
cific combinatorial calculations.

For the purposes of constructing the string topology operations, we will use
a particular type of fat graph due to Sullivan (Figure 1).
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Figure 1. Sullivan chord diagram of type (1;3,3)

Definition 2.1. A ‘Sullivan chord diagram’ of type (g; p, q) is a fat graph rep-
resenting a surface of genus g with p + q boundary components, that consists
of a disjoint union of p disjoint closed circles together with the disjoint union
of connected trees whose endpoints lie on the circles. The cyclic orderings of
the edges at the vertices must be such that each of the p disjoint circles is a
boundary cycle. These p circles are referred to as the incoming boundary cy-
cles, and the other q boundary cycles are referred to as the outgoing boundary
cycles.

The ordering at the vertices in the diagrams that follow are indicated by the
clockwise cyclic ordering of the plane. Also in a Sullivan chord diagram, the
vertices and edges that lie on one of the p disjoint circles will be referred to as
circular vertices and circular edges respectively. The others will be referred to
as ghost vertices and edges.

To define the topology on the space of metric chord diagrams, we first need
to define the space of metric fat graphs, Fp,q(g), of genus g, with p+q-ordered
boundary cycles, with the first p distinguished as incoming, and the remaining
q distinguished as outgoing. Igusa’s simplicial construction of Fn(g) defines
a model of Fp,q(g) as the geometric realization of a simplicial set. Moreover
this space is homotopy equivalent to the realization of the nerve of the category
Fatp,q(g) defined as above, with the additional feature that the objects come
equipped with an ordering of the boundary cycles, with the first p distinguished
as incoming cycles. The morphisms must preserve this structure.

Consider the space of ‘metric chord diagrams’, CFp,q(g) defined to be
the subspace of the metric fat graphs Fp,q(g) whose underlying graphs are
Sullivan chord diagrams of type (g; p, q). So if CFatp,q(g) is the full subcate-
gory of Fatp,q(g) whose objects are chord diagrams of type (g; p, q), then
Igusa’s argument shows that the space of metric chord diagrams CFp,q(g)

is homotopy equivalent to the realization of the nerve of the category
CFatp,q(g).

Given a metric chord diagram c ∈ CFp,q(g), there is an associated met-
ric fat graph, S(c), obtained from c by collapsing all ghost edges. There is
an induced cyclic ordering on the vertices of S(c) so that the collapse map
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(a) c (b) S(c)

Figure 2. Collapsing of ghost edges

π : c → S(c) is a map of fat graphs in Fatp,q(g). Figure 2 describes this
collapse map.

We will define a marking of a Sullivan chord diagram c to be a marking (i.e
a choice of point) on each of the boundary cycles of the associated fat graph
S(c). We let CF

µ
p,q(g) denote the space of all marked metric chord diagrams.

Like with the full space of marked fat graphs, this space can be topologized in
a natural way so that the projection map that forgets the markings

p : CFµ
p,q(g) ← CFp,q(g) (2.2)

is a quasifibration, with fiber over a metric chord diagram c equivalent to a
torus (S1)p+q . Again, the topology of these spaces of marked chord diagrams
will be studied in detail in [11].

The space of marked, metric chord diagrams CF
µ
p,q(g) will be used in the

next section to parameterize the string topology operations. Its topology, how-
ever, is far from understood. It is a proper subspace of a space homotopy
equivalent to the classifying space of the mapping class group, and thus mod-
uli space. However very little is known about the topology of this subspace.
We make the following conjecture, which would say that the parameterizing
spaces of string topology operations are homotopy equivalent to moduli spaces
of curves, thus potentially leading to a conformal field theory type structure.

Conjecture. The inclusion CF
µ
p,q(g) ↪→ CFp,q(g) is a homotopy equivalence,

and in particular CF
µ
p,q(g) is homotopy equivalent to the classifying space

BM
p+q
g , where M

p+q
g is the mapping class group of a surface of genus g with

p + q-ordered boundary components, and the diffeomorphisms preserve the
boundary components pointwise.

For the purposes of this paper we will need the following property of these
spaces.

Theorem 2.2. The space CF
µ
p,q(g) is path connected.
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v0
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Figure 3. �0

Proof. Because of quasifibration (2.2), it suffices to prove that the space
of unmarked metric chord diagrams CFp,q(g) is connected. However as re-
marked earlier, this space is homotopy equivalent to the nerve of the category
CFatp,q(g).

Now a morphism between objects a and b in a category determines a
path from a to b in the geometric realization of its nerve. Since a morphism
in CFatp,q(g) collapses trees to vertices, we refer to such morphisms as
‘collapses’. Now by reversing orientation, a morphism from b to a also de-
termines a path from a to b in the geometric realization. We refer to such a
morphism as an ‘expansion’ from a to b. Therefore to prove this theorem it
suffices to build, for any chord diagram in our space, a sequence of collapses
and and expansions from it to a fixed chord diagram �0. In the following dia-
grams, dashed lines will represent boundary cycles.

We will choose our basepoint �0 as in Figure 3. In �0, p−1 of the incoming
circles contain only one vertex. There is also a distinguished vertex vo in the
pth incoming circle (which we refer to as the ‘big circle’). Moreover q − 1
outgoing components share the same structure : they can be traced by going
from vo along a chord edge whose other vertex also lies on the big circle, going
along the next circle edge in the cyclic ordering, and then going along the
next chord edge back to vo. In the last outgoing boundary component positive
genus is produced by pairs of chord edges twisted, as shown. (These pairs add
two generators in the fundamental group of the surface but do not affect the
number of boundary components, therefore they ‘create genus’.) Notice also
that except for vo all of the vertices of �0 are trivalent. So, in �0 the complexity
is concentrated in the big incoming circle, the last outgoing boundary circle,
and one vertex vo.
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The ordering of the boundary cycles in �0 is given by making the first in-
coming cycle the one containing vo. The ordering of the other incoming bound-
ary components follows the cyclic ordering at vo (so that in Figure 3 the circle
on the right will come second and the one on the left last.) Similarly the cyclic
ordering at vo will give us an ordering of the outgoing boundary components
(in which the complicated boundary cycle is last).

To prove the theorem we start from any chord diagram (object) in
CFatp,q(g) and get to �0 by a sequence of collapses and expansions. In our
figures, the arrows follow the direction of the corresponding morphism in our
category CFatp,q(g). Note that since, in a Sullivan chord diagram, the incom-
ing boundaries are represented by disjoint circles, a chord edge between two
circular vertices cannot be collapsed. Remember also that the ghost edges need
to form a disjoint union of trees. Hence if both vertices of a circular edge
are part of the same tree of ghost edges (same connected component of the
ghost structure), this circular edge cannot be collapsed. We will call an edge
‘essential’ if it cannot be collapsed. That is, it is either a circular edge and its
collapse would create a non-trivial cycle among the ghost edges, or it is a chord
edge between two circular vertices.

Throughout this proof, letters from the beginning of the alphabet will be
used to label edges that are on the verge of being collapsed, and letters from
the end of the alphabet will be used to label edges that have just been created,
via an expansion. We will start by assuming that all nonessential edges have
been collapsed.

The first step will be to find a path to a chord diagram with a distinguished
vertex vo, the only one with more than three edges emanating from it. Choose
vo to be any vertex on the first incoming boundary cycle. For any vertex v,
other than vo, having more than three edges, we will ‘push’ the edges of v

toward vo by a sequence of expansions and collapses. This is done as follows.
Since all edges are essential, the vertices of any circular edge are part of the

same connected component of the ghost structure. We can therefore choose
a path γ from v to vo contained completely in the ghost structure. Following
Figure 4, we can push the edges of v a step closer to vo. Repeating this process
completes this step.

v

0

toward
v

vv

A

ZZ A

Figure 4. Pushing edges



136 Cohen and Godin

0v
0v

A
0v

XX A

Figure 5. Getting rid of one edge
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Figure 6. Pushing edges towards vo

We now have a distinguished vertex vo, which is the only vertex with more
than one ghost edge. Note that there is a unique ordering of the edges ema-
nating from vo that is compatible with the cyclic order such that one of the
circular edges of vo is first in the order, and the other circular edge is last in the
order. We will think of this ordering of edges as passing from left to right.

We will next simplify the incoming circles. In this step all of the incoming
cycles but the first will be brought down to one edge. Notice first that all ghost
edges have vo as one of their vertices. A ghost edge between two other vertices
would be in itself a connected component of the ghost structure. But a circular
edge joining two different components can be collapsed without creating a
‘ghost cycle’. Since all the edges of our graphs are essential, we know that all
ghost edges have vo as a vertex.

Now take any ‘small’ incoming boundary circle containing more than one
edge. As seen in Figure 5, the addition of an edge X close to vo, renders A
nonessential and it can be collapsed.

After this has been done, there will be three non-trivalent vertices. The pro-
cedure shown in Figure 6 brings this number back down to one. Observe that
in this procedure there is no risk of collapsing an essential edge. Repeating
this process reduces the number of vertices on these incoming circles down to
one per circle. Notice that our chord diagram still has a unique non-trivalent
vertex vo.

Now the p − 1 small incoming circles have a unique vertex with a unique
ghost edge linking it with vo on the big incoming circle. Using their simple
structure we will be able to switch the order at vo of their ghost edges and any
other ghost edge (see Figure 7).
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Figure 7. Switching an incoming circle and an edge

The next step is to simplify the structure of q − 1 outgoing boundary com-
ponents (all but the last one). This will be achieved by lowering the number
of edges involved in the tracing of these boundary cycles to a minimum (three
edges for most). We will use the term ‘clean’ to refer to this simple form.

Now each of the outgoing boundaries has an edge on the big circle. (The
cleaned boundaries will only have one such edge.) Assume by induction that
the first k − 1 outgoing boundaries have already been cleaned. Assume also
that these cleaned boundaries have been pushed to the left of the big incom-
ing circle, meaning that unique incoming edge is situated to the left of all the
incoming edges associated to the uncleaned boundaries (no uniqueness here)
and that their ghost edges at vo are attached left of all other ghost edges. As-
sume that the cleaned boundaries have been ordered. Assume also that at least
two outgoing boundaries still need to be cleaned. Firstly, we will clean the
next outgoing boundary wk and, secondly, we will push it left to its proper
position.

Since all the clean boundaries are to the left, we will have two successive
circular edges, Ak and As , on our big circle such that Ak is part of wk the
next outgoing boundary component to be cleaned, and As belongs to ws with
s > k. We will argue the case where Ak is to the left of As . The other situation
is argued similarly.

Let v be the common circular vertex of Ak and Am and let Bk be the ghost
edge coming into v. Notice that the cycles representing both wk and wm in-
clude Bk (with different orientations). We now push all the extra edges in-
volved in the tracing of wk to the right of Bk and hence into wm . Since all the
ghost edges involved in the cycle representing wk start at vo and end on the
big circle, the cycle traced by wk is (Bk−1, . . . ,Cm−1, Em , Dm , Cm , Bk , Ak)
where the Es and the Cs are ghost edges from vo to the big circle, and the
Ds are circular edges on the big circle. See Figure 8. In Figure 9 the start of
Bk is glided along the edges Cm Dm and Em . (Bk is thickened on each of the
pictures to help visualize this process.) After these glidings wk will not include
Em , Dm and Cm . We can repeat this process until only Bk , Ak and Bk−1 are
left in the tracing of wk .
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Figure 10. Moving boundary 1 to the left

To make sure we do not interfere with this boundary cycle when making
subsequent rearrangements, we will move it to the left of all the remaining
uncleaned boundaries. Follow Figure 10 to see how to switch this boundary
(labelled 1) with the one directly on the left of it. By induction we can clean
all of the outgoing boundaries but the last one.

We are now very close to our goal. We have the incoming and the outgoing
boundaries in the right order and in the right form. The only issue rests with
the last outgoing boundary component. The one that includes all the ‘genus
creating’ edges. To finally reach �0, we need to untangle these into twisted
pairs. This is done by induction on the number of pairs of such edges left to
untangle.

Choose M to be first genus creating edge (in the ordering at vo) that has not
yet been paired in our inductive process. Our first step is to find an edge that
‘crosses it’, meaning that it starts on the right of M at vo and ends up on the left
of M on the big circle. Take P to be the next edge at vo. If P ends up on the left
of M , we have our edge and we are ready to apply the second step. If this is not
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Figure 11. Moving P away

P

M

N Z

A

Y
B X

C
W

WX C

D

DBYZ A

Figure 12. Separating the pair M-P from N

the case, we’ll move P along M as shown in Figure 11 and consider the next
edge. Since both orientation of M are part of the last boundary component, the
tracing of this component moves from the edges on the right of M to the edges
on the left of M . This implies that there is at least one edge that starts on the
right of M at vo and ends on the left of M on the big circle. So by moving
through the edges P we will find one of these crossing edges and this step will
be completed.

Now we have our pair of edges M and P . But we would like to have M
and P completely separate from the other edges as in �0. Any edge N that is
intertwined with M and P needs to be moved. Since everything on the left of
M and P at vo is already in proper order, this N will always start on the right
of M and P at vo (and end up on the big circle). But there are still two ways
that N might be intertwined with our pair: it could either end up between M
and P or on the left of these edges. Figure 12 shows how to glide the edge
N along first M and then P . A similar operation would get rid of the edges
landing between M and P .

Before restarting these steps for isolating the next pair, we need to bring
a lot of edges back to vo. For example in Figure 11 P ends up completely
disconnected from vo and from the rest of the ghost structure. To achieve this
we will first collapse all nonessential edges and then we will reduce the number
of edges on the non-vo vertices down to three as done in Figure 4. Note that M
and P can be kept isolated while all of this is done.

After this process, all the genus edges are paired and twisted properly. We
can finally put the ghost edges connecting the small circles to vo in their cor-
rect position. Our chord diagram has now one big incoming circle and a spe-
cial vertex vo, the only non-trivalent vertex. It has p − 1 small ‘one-vertexed’
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incoming circles linked with vo by one ghost edge landing in the last outgoing
boundary cycle and ordered properly. It has q − 1 simple outgoing boundary
components positioned on the left of the big incoming circle. The last outgo-
ing component contains all the genus edges isolated into twisted pairs and the
ghost edges linking the big incoming circles with the small ones. This means
that the cycles associated to the different boundary components are exactly the
same in this chord diagram and in �0. But we know that these cycles deter-
mine completely a fat graph. We have shown how to connect a random chord
diagram to �0 by a sequence of collapses and expansions. This proves the
theorem. �

3 The Thom collapse map and string topology operations

In this section we use fat graphs to define the string operations, and will prove
Theorem 1.1 stated in the introduction.

Let L M denote the space of piecewise smooth maps, γ : S1 → M . Let �

be an oriented surface of genus g with p + q boundary components.
For c ∈ CF

µ
p,q(g), let Map∗(c, M) be the space of continuous maps

f : c → M , smooth on each edge, which is constant on each ghost edge.
Equivalently, this is the full space of maps S(c) → M where S(c) is the marked
metric fat graph described in the previous section (obtained from c by collaps-
ing each ghost component to a point). Since each ghost component is a tree
and therefore contractible, this mapping space is homotopy equivalent to the
space of all continuous maps, c → M , which in turn is homotopy equivalent to
the smooth mapping space, Map(�, M). Furthermore, the markings on S(c)
induce parameterizations of the incoming and outgoing boundary cycles of c,
so restriction to these boundary cycles induces a diagram

(L M)q ρout←−−−− Map∗(c, M)
ρin−−−−→ (L M)p. (3.1)

Since Map∗(c, M) is the same as the space of all continuous maps
Map(S(c), M), it is clear that the restriction to the incoming boundary com-
ponents

ρin : Map∗(c, M) → (L M)p

is an embedding of infinite-dimensional manifolds, but it has finite codimen-
sion. We now consider its normal bundle.

Let v(c) be the collection of circular vertices of a chord diagram c. Let σ(c)
be the collection of vertices of the associated graph S(c). The projection map
π : c → S(c) determines a surjective set map, π∗ : v(c) → σ(c). For a
vertex v ∈ σ(c), we define the multiplicity, µ(v), to be the cardinality of the
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preimage, #π−1(v). Let Mσ(c) and Mv(c) be the induced mapping spaces from
these vertex collections. Then π induces a diagonal map

�c : Mσ(c) → Mv(c).

The normal bundle of this diagonal embedding is the product bundle

ν(�c) =
∏

v∈σ(c)

(µ(v) − 1)T M →
∏

v∈σ(c)

M = Mσ(c).

Here k · T M is the k-fold Whitney sum of the tangent bundle. Since∑
v∈σ(c) µ(v) = v(c), the fiber dimension of this bundle is (v(c) − σ(c))n.

An easy exercise verifies that (v(c) − σ(c)) = −χ(�c), minus the Euler char-
acteristic of a surface represented by c.

Now remember that the markings of the incoming boundary components
of S(c) define parameterizations of the incoming boundary components of
c, since these cycles only consist of circular edges. Now using these pa-
rameterizations we can identify (L M)p with Map(c1 � · · · � cp, M), where
c1, · · · , cp are the p incoming boundary cycles of c. Consider the evaluation
map ec : (L M)p → Mv(c) defined on an element of γ ∈ (L M)p by evaluating
γ on the circular vertices. Similarly, define

ec : Map∗(c, M) → Mσ(c)

by evaluating a map f : S(c) → M on the vertices. These evaluation maps are
fibrations, and notice that the following is a pull-back square

Map∗(c, M)
ρin−−−−→
↪→

(L M)p

ec

� �ec

Mσ(c) ↪→−−−−→
�c

Mv(c)

(3.2)

By taking the inverse image of a tubular neighborhood of the embedding
�c, one has the following consequence.

Lemma 3.1. ρin : Map∗(c, M) ↪→ (L M)p is a codimension −χ(�c)n em-
bedding, and has an open neighborhood ν(c) diffeomorphic to the total space
of the pullback bundle, e∗

c (ν(�c)) = e∗
c (

∏
v∈σ(c)(µ(v) − 1)T M). The fiber of

this bundle over a map f : c → M is therefore given by

ν(c) f =
⊕

v∈σ(c)

⊕
(µ(v)−1)

T f (v)M
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where
⊕

(µ(v)−1) T f (v)M refers to taking the direct sum of µ(v) − 1 copies of
T f (v)M.

Let Map∗(c, M)ν(c) be the Thom space of this normal bundle. This result
allows us to define a Thom collapse map τ : (L M)p → Map∗(c, M)ν(c)

defined, as usual, to be the identity inside the tubular neighborhood, and the
basepoint outside the tubular neighborhood.

Now let h∗ be a generalized cohomology theory as before. By the above
description of the bundle ν(c) we see that since M is h∗-oriented, the bundle
ν(c) is h∗-oriented. This defines a Thom isomorphism

t : h∗(Map∗(c, M)ν(c)) ∼= h∗+χ(�c)n(Map∗(c, M)).

Now, since we are assuming that the coefficient ring h∗ = h∗(point) is a
graded field, the Kunneth spectral sequence collapses, and hence

h∗(X × Y ) ∼= h∗(X) ⊗h∗ h∗(Y ).

From now on we take all tensor products to be over the ground field h∗. We
can therefore make the following definitions:

Definition 3.2. Fix c ∈ CF
µ
p,q(g).

(a) Define the push-forward map (ρin)! : h∗(L M)⊗p → h∗+χ(�c)n(Map∗
(c, M)) to be the composition

(ρin)! : h∗(L M)⊗p ∼= h∗((L M)p)
τ∗−−−−→ h∗(Map∗(c, M)ν(�c))

t−−−−→∼=
h∗+χ(�c)n(Map∗(c, M)).

(b) Define the operation µc : h∗(L M)⊗p → h∗(L M)⊗q to be the compo-
sition

µc : h∗(L M)⊗p (ρin)!−−−−→ h∗+χ(�c)n(Map∗(c, M))

(ρout )∗−−−−→ h∗+χ(�c)n((L M)q).

In order to use these operations to prove Theorem 1.1 we will first need to
verify the following.

Theorem 3.3. The operations µc : h∗(L M)⊗p → h∗(L M)⊗q do not depend
on the choice of marked metric chord diagram c ∈ CF

µ
p,q(g). In other words,

they only depend on the topological type (g; p,q) of the chord diagram.
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Proof. We show that if γ : [0, 1] → CF
µ
p,q(g) is a path of chord diagrams,

then µγ(0) = µγ(1). By the connectivity of CF
µ
p,q(g) (Theorem 2.2), this will

prove the theorem. To do this we parameterize the construction of the opera-
tion. Namely, let

Map∗(γ, M) = {(t, f ) : t ∈ [0, 1], f ∈ Map∗(γ (t), M)}.
Then there are restriction maps to the incoming and outgoing boundaries,
ρin : Map∗(γ, M) → (L M)p, and ρout : Map∗(γ, M) → (L M)q . Let
p : Map∗(γ, M) → [0, 1] be the projection map.

Then Lemma 3.1 implies the following.

Lemma 3.4. The product ρin × p : Map∗(γ, M) ↪→ (L M)p × [0, 1] is a
codimension −χ(�c)n embedding, and has an open neighborhood ν(γ ) dif-
feomorphic to the total space of the vector bundle whose fiber over (t, f ) ∈
Map∗(γ, M) is given by

ν(γ )(t, f ) =
⊕

v∈σ(γ (t))

⊕
(µ(v)−1)

T f (v)M.

This allows us to define a Thom collapse map, τ : (L M)p × [0, 1] →
(Map∗(γ, M))ν(γ ) which defines a homotopy between the collapse maps τ0 :
(L M)p → Map∗(γ (0), M)ν(γ (0)) ↪→ Map∗(γ, M)ν(γ ) and τ1 : (L M)p →
Map∗(γ (1), M)ν(γ (1)) ↪→ Map∗(γ, M)ν(γ ).

One can then define the push-forward map

(ρin)! : h∗((L M)p × [0, 1])
τ∗−−−−→ h∗((Map∗(γ, M))ν(γ ))

t−−−−→∼=
h∗+χ ·n((Map∗(γ, M))

and then an operation

µγ = (ρout )∗ ◦ (ρin)! : h∗((L M)p × [0, 1]) → h∗+χ ·n((Map∗(γ, M))

→ h∗+χ ·n((L M)q).

The restriction of this operation to h∗((L M)p×{0}) ↪→ h∗((L M)p×[0, 1]) is,
by definition, µγ(0), and the restriction to h∗((L M)p × {1}) ↪→ h∗((L M)p ×
[0, 1]) is µγ(1). This proves that these two operations are equal.

Now that we have Theorem 3.3 we can introduce the notation µp,q(g) to
stand for µc : h∗(L M)⊗p → h∗(L M)⊗q for any Sullivan chord diagram
c ∈ CF

µ
p,q(g). µp,q(g) is an operation that lowers the total degree by (2g −

2 + p + q)n.
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Figure 13. Gluing c1 and c2

Remark. The above argument is easily modified to show that any element α ∈
h∗(CF

µ
p,q(g)) defines a string topology operation µp,q(g)(α). The operations

we are dealing with correspond to the class 1 ∈ h0(CF
µ
p,q(g)).

In order to complete the proof of Theorem 1.1, by the correspondence be-
tween two-dimensional TQFT’s and Frobenius algebras [10][1], it suffices to
show that these operations respect the gluing of surfaces.

Theorem 3.5. µq,r (g2) ◦ µp,q(g1) = µp,r (g1 + g2 + q − 1) : h∗(L M)⊗p →
h∗(L M)⊗q → h∗(L M)⊗r .

Proof. Let c1 ∈ CF
µ
p,q(g1) and c2 ∈ CF

µ
q,r (g2). Notice that we can glue c1 to

c2 to obtain a Sullivan chord diagram in c1#c2 ∈ CF
µ
p,r (g1 + g2 + q − 1) in

the following way.
Identify the outgoing boundary circles of c1 with the incoming boundary

circles of c2 using the parameterizations, and input the vertices and ghost
edges of c2 into the diagram c1 using these identifications. Figure 13 gives
an example of this gluing procedure with c1 ∈ CF

µ
1,2(0), c2 ∈ CF

µ
2,2(0), and

c1#c2 ∈ CF
µ
1,2(1). For clarity the vertices have been labeled in these diagrams,

both before and after gluing.
Note. We are not claiming that this gluing procedure is continuous, or even
well-defined. The ambiguity in definition occurs if, when one identifies the
outgoing boundary circle of c1 with an incoming boundary circle of c2, a cir-
cular vertex x of c2 coincides with a circular vertex v of c1 that lies on a ghost
edge in the boundary cycle. Then there is an ambiguity over whether to place
x at v or at the other vertex of the ghost edge. However for our purposes, we
can make any such choice, since the operations that two such glued surfaces
define are equal, by Theorem 3.3.
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Notice that the parameterizations give us maps of the collapsed fat graphs

φ1 : S(c1) → S(c1#c2) and φ2 : S(c2) → S(c1#c2).

These induce a diagram of mapping spaces

Map∗(c2, M)
φ̄2←−−−− Map∗(c1#c2, M)

φ̄1−−−−→ Map∗(c1, M)

The next two lemmas follow from a verification of the definitions of the
mapping spaces and the maps φi .

Lemma 3.6. φ̄1 : Map∗(c1#c2, M) → Map∗(c1, M) is an embedding,
whose image has a neighborhood diffeomorphic to the total space of the
bundle φ̄∗

2 (ν(c2)), where ν(c2) → Map∗(c2, M) is the normal bundle of
ρin : Map∗(c2, M) ↪→ (L M)p described in Lemma 3.1.

This allows the definition of a Thom collapse map τφ1 : Map∗(c1, M) →
Map∗(c1#c2, M)φ̄

∗
2 (ν(c2)) and therefore a push-forward map in homology,

(φ̄1)! : h∗(Map∗(c1, M)) → h∗+χ(c2)n(Map∗(c1#c2, M)).

Lemma 3.7. The following diagram commutes

(L M)r =−−−−→ (L M)r

ρout (2)

� �ρout (1#2)

Map∗(c2, M)
φ̄2←−−−− Map∗(c1#c2, M)

ρin(1#2)−−−−→ (L M)p

ρin(2)

� �φ̄1

�=

(L M)q ←−−−−
ρout (1)

Map∗(c1, M) −−−−→
ρin(1)

(L M)p.

The indexing of the restriction maps corresponds to the indexing of the chord
diagrams in the obvious way.

By the naturality of the Thom collapse map, and therefore the homological
pushout construction, we therefore have the following corollary.

Corollary 3.8. 1. (ρin(1#2))! = (φ̄1)! ◦ (ρin(1))! : h∗((L M)p) →
h∗+χ(c1#c2)·n(Map∗(c1#c2, M))

2. (φ̄2)∗ ◦ (φ̄1)! = (ρin(2))! ◦ (ρout (1))∗ : h∗(Map(c1, M)) →
h∗+χ(c2)·n(Map∗(c2, M))

3.(ρout (1#2))∗ = (ρout (2))∗◦(φ̄2)∗ : h∗(Map∗(c1#c2, M)) → h∗((L M)r ).
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We may now complete the proof of Theorem 3.5. We have

µp,r (g1 + g2 + q − 1) = µc1#c2 =(ρout (1#2))∗ ◦ (ρin(1#2))!

=(ρout (1#2))∗ ◦ (φ̄1)! ◦ (ρin(1))!

=(ρout (2))∗ ◦ (φ̄2)∗ ◦ (φ̄1)! ◦ (ρin(1))!

=(ρout (2))∗ ◦ (ρin(2))! ◦ (ρout (1))∗ ◦ (ρin(1))!

=µc2 ◦ µc1

=µq,r (g2) ◦ µp,q(g1).

As observed in [1], a Frobenius algebra without counit is the same thing as
a positive boundary topological quantum field theory. We have now verified
that the string topology operations define such a theory for any generalized
cohomology theory h∗ satisfying the conditions described above. Recall that
it was observed in [3] [5], that the unit in the algebra structure of h∗(M) is
the fundamental class, [M] ∈ hn(M) ↪→ hn(L M), where the second map
is induced by the inclusion of the manifold in the loop space as the constant
loops, ι : M ↪→ L M . Thus h∗(L M) is a unital Frobenius algebra without a
counit. This proves Theorem 1.1.

4 Capping off boundary components: issues surrounding
the unit and counit

The unit in the Frobenius algebra stucture can be constructed in the same way
as the other string topology operations as follows.

Consider the disk D2 as a surface with zero incoming boundary component
and one outgoing boundary component. A graph cD that represents D2 can be
taken to be a point (i.e a single vertex). Formally, the restriction to the zero
incoming boundary components is the map

ρin : M = Map∗(cD, M) → Map(∅, M) = point.

The push-forward map in this setting

(ρin)! : h∗(point) → h∗+n(M)

is the h∗-module map defined by sending the generator to [M] ∈ hn(M). The
restriction to the outgoing boundary component is the map

ρout : M = Map∗(cD, M) → L M

which is given by ι : M ↪→ L M . Thus the unit is given by the h∗ module
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homomorphism

µD2 = (ρout )∗ ◦ (ρin)! = ι∗ ◦ (ρin)! : h∗ → hn(M) → hn(L M)

which sends the generator to the fundamental class.
The issue of the existence (or nonexistence) of a counit in the Frobenius

algebra structure given by Theorem 1.1 is formally the same (or dual) to
the existence of a unit, but is geometrically much more difficult and subtle.
Namely, for this operation one must consider D2 as a surface with one in-
coming boundary, and zero outgoing boundary components. In this setting the
roles of the restriction maps ρin and ρout are reversed, and one obtains the
diagram

Map(∅, M)
ρout←−−−− Map∗(cD, M)

ρin−−−−→ L M

or, equivalently

point
ε←−−−− M

ι−−−−→ L M.

where ε : M → point is the constant map.
Now notice that in this case, unlike when any of the other fat graphs were

considered, the embedding of Map∗(cD, M) ↪→ L M (i.e ι : M ↪→ L M) is
of infinite codimension. Therefore to find a theory h∗ that supports a counit
in the Frobenius algebra structure of h∗(L M), one needs to be able to define
a push-forward map for this infinite codimensional embedding. Now in their
work on genera of loop spaces, [2], Ando and Morava argued that if one has a
theory where this push-forward map exists, one would need that the Euler class
of the normal bundle e(ν(ι)) ∈ h∗(M) is invertible. So let us now consider this
normal bundle.

The embedding of M as the constant loops in L M is S1-equivariant where
S1 acts triviallly on M . When M is a simply connected almost complex mani-
fold, the normal bundle has the following description (see [2], for example).

Lemma 4.1. The normal bundle ν(ι) → M of the embedding ι : M ↪→ L M
is equivariantly isomorphic to the direct sum

ν(ι) ∼=
⊕
k �=0

T M ⊗C C(k)

where C(k) is the one-dimensional representation of S1 of weight k.

This says that the Euler class of the normal bundle will have the formal
description

e(ν(ι)) =
∏
k �=0

e(T M ⊗ C(k)). (4.1)
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Thus a theory h∗(L M) that supports a counit in a Frobenius algebra structure
should have the following properties:

(1) h∗ should be an S1-equivariant theory in order to take advantage of the
different equivariant structures of the summands T M ⊗ C(k).

(2) h∗ should be a ‘pro-object’ – an inverse system of homology groups, so
that it can accommodate this infinite product.

5 The polarized loop space and its Atiyah dual

Motivated by these homological requirements, in this section we show that
the loop space of an almost complex manifold has a natural equivariant pro-
object (a ‘prospectrum’) associated to it. The ideas for the constructions in this
section stem from conversations with Graeme Segal. Throughout this section
we assume that M is a simply connected, oriented, closed n-manifold.

Let −T M be the virtual bundle (K -theory class) given by the opposite of
the tangent bundle. Let M−T M be its Thom spectrum. We refer to M−T M as
the ‘Atiyah dual’ of M+ because of Atiyah’s well-known theorem stating that
M−T M is equivalent to the Spanier Whitehead dual of M+. (Here M+ is M
together with a disjoint basepoint.) This gives M−T M the structure of a ring
spectrum, whose multiplication m : M−T M ∧ M−T M → M−T M is dual to
the diagonal � : M → M × M . When one applies homology and the Thom
isomorphism, this multiplication realizes the intersection product (∩), meaning
that the following diagram commutes

H∗(M−T M ) ⊗ H∗(M−T M )
m∗−−−−→ H∗(M−T M )

t

�∼= ∼=
�t

H∗+n(M) ⊗ H∗+n(M) −−−−→
∩

H∗+n(M).

Here H∗(M−T M ) refers to the spectrum homology of M−T M .
It is therefore natural to expect that an appropriate pro-object that carries

the string topology operations, including a counit (i.e a 2-dimensional TQFT,
or Frobenius algebra structure), would be a prospectrum model for the Atiyah
dual of the loop space, L M−T L M .

In studying homotopy theoretic aspects of symplectic Floer homology, Jones
and Segal used pro-spectra associated to certain infinite-dimensional bundles
[6]. The construction was the following. If E → X is an infinite-dimensional
bundle with a filtration by finite-dimensional subbundles

· · · ↪→ Ei ↪→ Ei+1 ↪→ · · · E
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such that
⋃

i Ei is a dense subbundle of E , then one can define the prospectrum
X−E to be the inverse system

· · · ← X−Ei−1
ui←−−−− X−Ei

ui+1←−−−− X−Ei+1 ← · · ·
where u j : X−E j → X−E j−1 is the map defined as follows. Let e j : E j−1 ↪→
E j be the inclusion. Assume for simplicity that E j is embedded in a large-
dimensional trivial bundle, and let E⊥

j and E⊥
j−1 be the corresponding or-

thogonal complements. One then has an induced inclusion of complements,
e⊥

j : E⊥
j → E⊥

j−1. The induced map of Thom spaces then defines a map of

Thom spectra, u j : X−E j → X−E j−1 . A standard homotopy theoretic tech-
nique allows one to define this map of Thom spectra even if E j is not embed-
dable in a trivial bundle, by restricting E j to finite subcomplexes of X where
it is.

Under the assumption that M is an almost complex manifold of dimen-
sion n = 2m, then we are dealing with an infinite-dimensional vector bundle
(T L M) whose structure group is the loop group LU (m). In [8], Cohen and
Stacey studied obstructions to finding an appropriate filtration of an infinite-
dimensional LU (m) bundle. In particular for T L M → L M it was proved
that if such a filtration (called a ‘Fourier decomposition’ in [8]) exists, then
the holonomy of any unitary connection on T M , h : �M → U (m) is null
homotopic. This ‘homotopy flat’ condition is far too restrictive for our pur-
poses, but we can get around this problem by taking into account the canonical
polarization of the tangent bundle T L M of an almost complex manifold.

Recall that a polarization of a Hilbert space E is an equivalence class of
decomposition, E = E+ ⊕ E−, where two such decompositions E+ ⊕ E− =
E ′+ ⊕ E ′− are equivalent if the composition E+ ↪→ E → E ′+ is Fredholm,
and E+ ↪→ E → E ′− is compact (see [16] for details). The restricted general
linear group of a polarized space GLres(E) consists of all elements of GL(E)

that preserve the polarization.
A polarized vector bundle ζ → X is one where every fiber is polarized, and

the structure group reduces to the restricted general linear group. If M2m is an
almost complex manifold, and γ ∈ L M , then the tangent space Tγ L M is the
space of L2 vector fields of M along γ , and the operator

j
d

dθ
: Tγ L M → Tγ L M

is a self-adjoint Fredholm operator. Here d
dθ

is the covariant derivative, and j is
the almost complex structure. The spectral decomposition of j d

dθ
polarizes the

bundle T L M according to its positive and negative eigenspaces. The structure



150 Cohen and Godin

group in this case is GLres(L2(S1, Cm)), where the loop space L2(S1, Cm) is
polarized according to the Fourier decompostion. That is, we write

L2(S1, Cn) = H+ ⊕ H−

where H+ = Hol(D2, Cn) is the space of holomorphic maps of the disk, and
H− is the orthogonal complement.

For a polarized space E , recall from [16] that the restricted Grassmannian
Grres(E) consists of closed subspaces W ⊂ E such that the projections
W ↪→ E → E+ is Fredholm, and W ↪→ E → E− is Hilbert–Schmidt.
In the case under consideration, the tangent space Tγ L M , is a LC- module,
and therefore a module over the Laurent polynomial ring, C[z, z−1]. Define
Gr0

res(Tγ L M) ⊂ Grres(Tγ L M) to be the subspace

Gr0
res(Tγ L M) = {W ∈ Grres(Tγ L M) : zW ⊂ W }.

For M2m a simply connected almost complex manifold, we can then define
the polarized loop space L M± to be the space

L M± = {(γ, W ) : γ ∈ L M, W ∈ Gr0
res(Tγ L M)}. (5.1)

We now consider the S1-equivariance properties of L M±. The following
theorem will be an easy consequence of the results of [16], chapter 8.

Theorem 5.1. The natural projection p : L M± → L(M2m) is an S1-
equivariant fiber bundle with fiber diffeomorphic to the based loop space,
�U (m). The S1-fixed points of L M± form a bundle over M with fiber the
space of group homomorphisms, Hom(S1, U (m)).

Proof. Let γ ∈ L M . The tangent space, Tγ L M = �S1(γ ∗(T M)), is the
space of L2 sections of the pullback of the tangent bundle over the circle.
The S1-action on L M differentiates to make the tangent bundle T L M an S1-
equivariant bundle. If σ ∈ Tγ L M , and t ∈ S1, then tσ ∈ Ttγ L M is defined
by tσ(s) = σ(t + s). Since this action preserves the polarization, it induces an
action

S1 × L M± → L M± (5.2)

t × (γ, W ) → (tγ, tW ) (5.3)

where tW = {tσ ∈ Ttγ L M : σ ∈ W }. The fact that the projection map
p : L M± → L M is an S1-equivariant bundle is clear. The fiber of this bun-
dle can be identified with Gr0

res(L2(S1, Cm)), which was proved in [16] to
be diffeomorphic to �U (m). The induced action on �U (m) was seen in [16]
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(chapter 8) to be given as follows. For t ∈ S1 = R/Z, and ω ∈ �U (m),
t ·ω(s) = ω(s + t)ω(t)−1. The fixed points of this action are the group homo-
morphisms, Hom(S1, U (m)). The theorem now follows.

Remark. Since the group homomorphisms, Hom(S1, U (m)) are well under-
stood, one can view the above theorem as saying that the equivariant homotopy
type of L M± is directly computable in terms of the equivariant homotopy type
of L M .

By this theorem, the pullback of the tangent bundle, p∗T L M → L M± is
an S1-equivariant bundle. Our final result implies that even though one cannot
generally find a prospectrum modeling the Atiyah dual L M−T L M , one can find
a pro-spectrum model of the ‘polarized Atiyah dual’, L M−T L M

± .
The following theorem says that one can build up the bundle p∗(T L M) →

L M± by finite-dimensional subbundles.

Theorem 5.2. There is a doubly graded collection of finite dimensional, S1-
equivariant subbundles of p∗(T L M) → L M±

Ei, j → L M±, i < j

satisfying the following properties:

(1) There are inclusions of subbundles

Ei, j ↪→ Ei−1, j and Ei, j ↪→ Ei, j+1

such that
⋃

i, j Ei, j is a dense subbundle of p∗(T L M).
(2) The subquotients

Ei−1, j/Ei, j and Ei, j+1/Ei, j

are m-dimensional S1-equivariant complex vector bundles that are
nonequivariantly isomorphic to the pullback of the tangent bundle
p̃∗T M, where p̃ : L M± → M is the composition of p : L M± → L M
with the map e1 : L M → M that evaluates a loop at the basepoint
1 ∈ S1.

Remark. Such a filtration is a ‘Fourier decomposition’ of the loop bundle
p∗(T L M) → L M± as defined in [8]

Proof. We first define certain infinite-dimensional subbundles Ei ⊂
p∗(T L M) → L M±. Define the fiber over (γ, W ) ∈ L M± to be

(Ei )(γ,W ) = z−i W ⊂ Tγ (L M).



152 Cohen and Godin

We note that Ei is an equivariant subbundle, with the property that zEi ⊂ Ei .
Furthermore there is a filtration of subbundles

· · · ↪→ Ei ↪→ Ei+1 ↪→ · · · p∗(T L M)

with
⋃

i Ei a dense subbundle of p∗(T L M). Notice that for j > i , the
subquotient E j/Ei has fiber at (γ, W ) given by z− j W ∩ (z−i W )⊥ where
(z−i W )⊥ ⊂ Tγ L M is the orthogonal complement of z−i W . For j − i = 1, an
easy argument (done in [8]) gives that the composition

z− j W ∩ (z−( j−1)W )⊥ ↪→ Tγ L M
e1−−−−→ Tγ (1)(M) (5.4)

is an isomorphism. For i < j we define the bundle Ei, j → L M± to
be the quotient E j/Ei . It is the vector bundle whose fiber over (γ, W ) is
z− j W ∩(z−i W )⊥. By (5.4), the subquotient of the bundle E j−1, j is (nonequiv-
ariantly) isomorphic to the pullback of the tangent bundle T M → M un-
der the composition L M±

p−−−−→ L M
e1−−−−→ M . In general the bundle

Ei, j is nonequivariantly isomorphic to the Whitney sum of j − i copies of
p̃∗(T M).

Now since z− j W ∩(z−i W )⊥ is a subspace of both z−( j+1)W ∩(z−i W )⊥ and
of z− j W ∩ (z−(i−1)W )⊥, we have inclusions Ei, j ↪→ Ei, j+1 and Ei, j ↪→
Ei−1, j . Clearly

⋃
i, j Ei, j is a dense subbundle of p∗(T L M). The theorem

follows.

Since the bundles Ei, j → L M± are finite-dimensional S1-equivariant
bundles, we can construct the Thom spectrum of the S1-equivariant virtual
bundle, −Ei, j , which we denote by (L M±)−Ei, j . Notice the inclusions of bun-
dles Ei, j ↪→ Ei, j+1 and Ei, j ↪→ Ei−1, j induce maps of virtual bundles,
τi, j : −Ei, j+1 → −Ei, j and σi, j : −Ei−1, j → −Ei, j , which yields an in-
verse system of S1-equivariant spectra

...
...

σi−1, j

� �σi−1, j+1

(L M±)−Ei−1, j
τi−1, j←−−−− (L M±)−Ei−1, j+1

τi−1, j+1←−−−− · · ·
σi, j

� �σi, j+1

(L M±)−Ei, j
τi, j←−−−− (L M±)−Ei, j+1

τ i, j+1←−−−− · · ·
σi+1, j

� �σi+1, j+1

...
...
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This system defines a pro-object in the category of S1-equivariant spectra that
we call the polarized Atiyah dual, L M−T L M

± . If one applies an equivariant ho-
mology theory to this prospectrum, one gets a pro-object in the category of
graded abelian groups. Notice that in cohomology, the structure maps τi, j and
σi, j will induce multiplication by the equivariant Euler classes of the orthogo-
nal complement bundles of these inclusions. As seen above, these orthogonal
complement bundles are nonequivariantly isomorphic to the pull back of the
tangent bundle, T M . However, they have different equivariant structures. In
future work we will study those equivariant cohomology theories for which
these Euler classes are units, with the goal being to prove that such theories,
when applied to this prospectrum, support the string topology operations in-
cluding one that corresponds to a disk viewed as a cobordism from a circle to
the empty set. By gluing, this will allow the construction of string topology
operations for closed surfaces as well as surfaces with a positive number of
outgoing boundary components.
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Random matrices and Calabi–Yau geometry
ROBBERT DIJKGRAAF

University of Amsterdam

Abstract

I review certain more mathematical aspects of recent work done in collabora-
tion with C. Vafa [1, 2, 3] that has led to a direct connection between the theory
of random matrices and string theory invariants associated to (non-compact)
Calabi-Yau manifolds.

1 String invariants of Calabi–Yau manifolds

1.1 Moduli and periods

Let X be a Calabi–Yau three-fold, i.e. a Kähler manifold of complex dimension
three with vanishing first Chern class c1(X) = 0. We will assume for the mo-
ment that X is compact, although we will relax this condition later. Such a CY
manifold has a unique (up to scalars) holomorphic (3, 0) form denoted as �.

Let M be the moduli space of inequivalent complex structures on the topo-
logical manifold X . It carries a natural line bundle L, whose fiber is given by
the complex line H3,0(X). The total space of L parameterizes pairs (X, �) up
to equivalence.

The moduli space M has an elegant description in terms of the period map
of Hodge theory. Recall that the vector space H3(X, C) carries a natural sym-
plectic structure ω given by the intersection form

ω(α, β) =
∫

X
α ∧ β.

The period map

π : M → P(H3(X, C))

assigns to a given complex structure the complex line generated by the holo-
morphic (3,0) form �

π(X) = H3,0(X) ∼= C · �.

155
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A standard result is the following:

Theorem[4]. The period map π is injective and its image in H3(X) is a
Lagrangian cone.

This implies that in canonical coordinates (qi , pi ) on H3(X) with

ω = dpi ∧ dqi

the image is given by the graph of the differential dF0 for some function F0(q),
with q = (q1, . . . , qn). To be a bit more concrete, let Ai , B j be a canonical
symplectic basis of H3(X), i.e. a basis in which the only non-vanishing inter-
section is

Ai ∩ B j = δi j .

This basis of H3(X) induces local symplectic coordinates (qi , pi ) on H3(X).
In terms of these coordinates the period map for a given complex structure
X ∈ M takes the form∫

Ai

� = qi (X),

∫
Bi

� = pi (X).

These periods now satisfy the following properties. First of all the variables qi

can be seen as homogeneous local coordinates on M. Second, the dual periods
pi can be expressed as

pi = 1

2π i

∂F0

∂qi
.

This is usually referred to as special geometry in the physics literature (see
e.g. [5]). The prepotential F0(q) is homogeneous of degree two and should
therefore more geometrically be thought of as a section of the line bundle L⊗2

over the moduli space M.
The proof of all this follows essentially from Griffith’s transversality of the

variation of Hodge structures. The variation of the holomorphic (3, 0) form
contains at most a (2, 1) form, that is

∂�

∂qi
∈ H3,0 ⊕ H2,1.

Therefore, using the ‘Riemann bilinear identities’, we immediately have the
integrability condition

∂p j

∂qi
− ∂pi

∂q j
=

∫
X

∂�

∂qi
∧ ∂�

∂q j
= 0.
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Similarly, the homogeneity of F0(q) is obtained by the relation∫
X

� ∧ ∂�

∂qi
= 0.

1.2 Remarks

(1) A Lagrangian in a symplectic vector space, locally given by the graph of
dF0, can be regarded as the classical limit of a quantum state. Quantization will
associate to this Lagrangian a full quantum wave-function, that in the semi-
classical WKB approximation is given by

�(q) ∼ eF0(q)/�.

More precisely, the wave-function has an expansion of the form

�(q) = exp
∑
g≥0

�g−1Fg(q).

In the present context one often writes

� = g2
s

with gs the string coupling constant. The function F0(q) should therefore be
regarded as the first of an infinite series of invariants Fg(q) associated to the
quantization of the family of CYs. According to the formalism of (topological)
string theory, the quantum invariants Fg are related to maps 	g → X , with 	g

a Riemann surface of genus g. In this so-called topological B-model these
maps are in general ‘almost constant’. That is, only completely degenerate
nodal rational curves contribute to Fg [6] [7].

The general definition of Fg≥2 is complicated [7], but the leading correction
F1 has an elegant definition in terms of the Ray–Singer analytic torsion of X ,
a particular combination of determinants of Laplacians

F1 =
∑

0≤p,q≤3

(−1)p+q pq log det ′
p,q .

Here 
p,q = ∂∂ + dd is the Laplacian on (p, q) forms.

(2) Mirror symmetry will relate the invariants Fg of the B-model to the
Gromov–Witten invariants of a mirror CY threefold X̂ (the so-called A-
model). The coordinates q on the moduli space MX are related to the natural
variable t ∈ H 1,1(X̂; C) that parameterizes the complexified Kähler forms on
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X̂ . The general relation between q and t is very nontrivial. In terms of this new
coordinate t we have an expansion

Fg(t) =
∑

d

GWg,d exp(−dt)

with GWg,d the Gromov–Witten invariant of X̂ for genus g and degree d ∈
H2(X̂) (roughly, the ‘number’ of holomorphic curves on X̂ , or, more precisely,
the pairing with the virtual fundamental class of the Kontsevich moduli space
of stable maps).

1.3 Non-compact Calabi–Yau

It has proven very interesting to generalize this formalism to non-compact
Calabi–Yau manifolds. Instead of giving a general analysis we will confine
ourselves here to an instructive class of examples given by an affine hypersur-
face X in C4, given by an equation of the general form

X : f (u, v, x, y) = 0.

Such an affine hypersurface always has c1 = 0, and a canonical choice for an
holomorphic (3,0)-form is given by

� = du ∧ dv ∧ dx ∧ dy

d f
.

If we assume that the function f is homogeneous of degree one (where
the coordinates are given (possibly fractional) degrees di ), then it has been
proven [8] that X can carry a Calabi–Yau metric that looks conical at infinity
if ∑

di > 1.

We will be mainly interested in families of the form

F(x, y) − uv = 0

where this relation is always satisfied. To such a family there is naturally an
associated affine planar curve given by

C : F(x, y) = 0.

If we consider X as a fibration over the (x, y)-plane, with as fiber the rational
curve uv = F , then the curve C is the locus on which this fiber degenerates.
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It is not difficult to show that in this case the periods of the holomorphic
three-form on the threefold X , which here takes the form

� = du ∧ dx ∧ dy

u

reduce to the periods of the associated one-form

η = ydx

on the curve C , roughly by integrating first along the fiber as in∫
� =

∫
du

u
dxdy =

∫
F≥0

dxdy =
∫

F=0
ydx .

1.4 Conifold

A relevant example of such a non-compact CY is the case of the ‘conifold’,
given by

x2 + y2 − uv = q. (1.1)

Here q is a parameter. For q = 0 this describes a conical singularity. For q �= 0
the smooth manifold is actually diffeomorphic to T ∗S3. In this case there are
two relevant homology 3-cycles: the A-cycle is represented by the zero-section
S3; the dual B-cycle is one of the fibers.

The associated Riemann surface is in this case the rational curve

x2 + y2 = q.

The period of the meromorphic one-form ydx around the A-cycle is easily
evaluated to be

1

2π i

∮
A

ydx = q.

The period around the non-compact period B diverges logarithmically (a com-
mon problem for all these non-compact CY spaces) and has to be regularized
by a cut-off point � (with |�|  |q|). This then gives

∫
B

ydx =
∫ �

0
y(x)dx ∼ 1

2
q2 log(q/�).

2 Random matrix theory

The theory of random matrices (see for example [9]) was initiated by Wigner in
his study of the spectral properties of Hermitian matrices of large rank. Instead
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of actually diagonalizing a particular matrix he considered a statistical ensem-
ble of matrices and only made probabilistic statements about the distribution
of eigenvalues. In the classical case this distribution is given by a Gaussian
weight – the so-called Gaussian ensemble.

2.1 Wigner’s Gaussian ensemble

More precisely, let HN be the space of N × N Hermitian matrices. One can
think of HN as the Lie algebra of U (N ) equipped with the adjoint action of
U (N ). The probability density on the linear space of these matrices  is then
taken to be the U (N )-invariant measure

dµ() = 1

VN
e− 1

gs
Tr2

d.

This measure is conveniently normalized by the volume of the unitary group

VN = vol(U (N ))

as computed in the induced measure from HN .
A Hermitian matrix  can be diagonalized

 = U ·




λ1 . . . 0
...

. . .
...

0 . . . λN


 · U−1

and has an associated spectral density

ρ(x) = 1

N

∑
δ(x − λI ).

We want to take the limit N → ∞ such that the average density in the ensem-
ble becomes a smooth function. In order to do this one has to simultaneously
scale the parameter gs → 0 such that the combination

q = gs N

(known in the physics literature as the ’t Hooft coupling) remains finite. The
classical result of Wigner is that for the Gaussian ensemble in this large N
limit the eigenvalues spread out from their classical locus λI = 0 and form
a ‘cut’ [−√

q,
√

q] along the x-axis. More precisely, the limiting eigenvalue
distribution is given by the so-called semi-circle law

ρ(x) = 2

πq

√
q − x2.
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We will see in a moment how this (half of a) circle is related to the complex
algebraic curve

x2 + y2 = q

and more generally the conifold geometry (1.1).

2.2 Ribbon graphs and matrix models

There is a beautiful connection between matrix integrals and combinatorics of
ribbon diagrams that originates in the work of ’t Hooft [10]. This connection
naturally emerges if one considers more general ensembles, given by measures
of the form

1

VN
e− 1

gs
Tr W ()d

with W () a general polynomial, say of degree n + 1

W () =
n+1∑
k=1

1

k
tk

k .

One way to analyze this case is to consider it as a perturbation of the quadratic
Gaussian. To this end one introduces the expectation values in the Gaussian
ensemble

〈 f ()〉 =
∫

dµ() · f ()∫
dµ() · 1

.

We can now write the general matrix integral

Z = 1

vol U (N )

∫
d exp

[
− 1

gs
Tr W ()

]
(2.1)

in terms of the expectation value

Z = Z0 ·
〈

exp

(
− 1

gS

∑
k≥3

1

k
tkTr k

)〉
.
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Here Z0 is the Gaussian integral

Z0 = 1

VN

∫
HN

e− 1
gs

Tr 2
d

and we assumed that, after a suitable redefinition of , we have t1 = 0 and
t2 = 1.

Now we can use combinatorical techniques to evaluate the expectation val-
ues as a perturbative series in the couplings tk using Wick’s theorem. Recall
that a ribbon graph is a graph with a cyclic ordering of edges at each ver-
tex. Such an orientation can be induced by drawing the graph on the plane
and thinking of the edges as two-dimensional strips (ribbons) which have an
(infinitesimal) thickness. For example, there are two possibilities to realize a
‘two-loop’ graph as an (orientable) ribbon graph

By ‘fattening’ such a graph we obtain a topological surface with boundaries.
We will assume the ribbon graph and therefore this surface to be oriented.
Its genus will be denoted as g, and h will be the number of holes (boundary
components). For example, the previous two graphs correspond to the surfaces

of (g, h) = (0, 3) and (1, 1) respectively. The Euler number, of both the graph
and the surface of course, is χ = 2−2g−h. Let mk furthermore be the number
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of vertices of valency k (i.e. the vertices at which k edges end). Then there is
the following combinatorial standard result [11]〈

exp
∑
k≥3

tk
λ

Tr k

〉
∼

∑
ribbon graphs �

1

|Aut(�)|g−χ(�)
s N h(�)

∏
k≥3

tmk (�)
k .

Note that the only dependence on the rank N of the matrix is through the factor
N h , with h the number of holes. Combining this with the dependence on the
string coupling gs , which keeps track of the Euler number through the factor
g2g−2+h

s , we see that this expression behaves well in the ’t Hooft limit

N → ∞, gs → 0, gs N = q fixed.

We simply have to rewrite the factor N h g2g−2+h
s as qh g2g−2

s , and then we can
freely sum over the number of holes h. As always in combinatorics, the loga-
rithm of this partition function is expressed as a sum over connected surfaces
(or graphs)

log Z =
∑
g≥0

Fg(q; tk)λ
2g−2.

That is, Fg is given by the sum over all connected surfaces of genus g.

3 Periods and matrix integrals

We will now proceed to explain how this interpretation of random matrix in-
tegrals in terms of Riemann surfaces can be related to string invariant of CY
geometries.

3.1 Critical points

Up to now we considered the stationary phase approximation of the matrix
integral

Z = 1

vol U (N )

∫
d exp

[
− 1

gs
Tr W ()

]

around the critical point  = 0, viewing the polynomial W () as a small per-
turbation of the quadratic form 2. However, there are of course more critical
points where such an approximation becomes more involved. If we assume
that the polynomial

W ′(x) =
n∏

i=1

(x − ai )
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is non-degenerate, so that the polynomial W (x) has n distinct critical points
at x = a1, . . . , an , then the critical point of the matrix function Tr W () are
naturally labeled by partitions of N into n parts. Indeed, one can diagonalize
 as

 = U ·




λ1 . . . 0
...

. . .
...

0 . . . λN


 .U−1

and consider the function Tr W () as a function of these eigenvalues λI . Then
at a critical point each of the eigenvalues λI will have to satisfy the equation

W ′(λI ) = 0.

Therefore the stationary points of the matrix integral are given by the various
distributions of the N eigenvalues λI among the n critical points ai of the
polynomial W ′. Let

N = N1 + · · · + Nn

be such a distribution with

Ni = #{eigenvalues λI = ai }.
We will consider the limit where these ‘filling factions’ Ni tend to infinity,
while keeping the quantities

qi = gs Ni

finite. We will still write

q =
∑

qi = gs N .

In the large Ni limit the critical points of the matrix integral will now form a
continuum moduli space labeled by the real numbers

q = (q1, . . . , qn).

We will see that the quantities that we compute will turn out to be analytic
functions in the variables qi , and therefore we can consider the qi in the end
to be complex valued. So, locally, the moduli space associated to the matrix
integral is given by an open domain in Cn .

We will now define the quantities Fg(q) through the stationary phase ap-
proximation

log Z ∼
∑
g≥0

g2g−2
s Fg(q)

of the matrix integral around the critical point q.
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To really make sense of these stationary phase approximations it is neces-
sary to consider a generalized matrix integral, in which one does not integrate
over Hermitian matrices, but over a particular contour in the space of complex
matrices. If this contour is in a generic position, the corresponding matrices
will still be diagonalizable, but now with complex eigenvalues. So, alterna-
tively, one can think in terms of a contour integral in the space of complexified
eigenvalues. The contour can then be picked in such a way that the saddle-point
expansions make sense.

The generating functions again have a combinatorial interpretation, in this
case as a sum over colored ribbon graphs. The holes of the graph carry here a
label i ∈ {1, . . . , n}. The edges therefore carry two labels. The Feynman rules
are very simple to derive from the potential W and are given in [12].

3.2 Matrices and Calabi–Yau manifolds

We now have the following main result that relates random matrix integrals
and string theory invariants of Calabi–Yau geometries.

Theorem. (1) The functions Fg(q) that appear in the saddle-point approxi-
mation of the matrix integral (2.1) are the quantum prepotentials associated to
the family of CY geometries

X : y2 + W ′(x)2 + f (x) − uv = 0. (3.1)

This result requires some explanation. The function W ′(x) must be consid-
ered here as a fixed polynomial. The above family of geometries (3.1) is there-
fore encoded in the deformation f (x), which is by definition a polynomial of
degree n − 1

f (x) =
n−1∑
k=0

bk xk .

As we will see in a moment, the coefficients bk are in one-to-one correspon-
dence with the moduli qi of the matrix integral. This particular set of deforma-
tions of the singular three-fold (a natural generalization of the conifold)

y2 + W ′(x)2 − uv = 0

are picked out because they preserve the behavior of the holomorphic three-
form � at infinity. More precisely, for these kinds of deformations we have a
bound ∫

δ� ≤ c ·
∫

�.
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As we explained before, the periods of � on a hypersurface X of the type
(3.1) can be written in terms of periods on the associated plane curve, which
here takes the form of a hyperelliptic curve

C : y2 + W ′(x)2 + f (x) = 0 (3.2)

doubly branched cover of the x-plane. Let Ai , Bi now be a basis of homology
cycles for this curve. On the Riemann surface they can be chosen as

A
1

B
1

A
2

A
3

B
2

B
3

In the x-plane they encircle and cross respectively the branch cuts

We now claim that the leading genus zero contribution to the matrix model
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integral F0(q) is encoded through the period maps of the CY geometry

qi = 1

2π i

∮
Ai

ydx

and

∂F0

∂qi
=

∫
Bi

ydx .

Furthermore, the eigenvalue density is directly obtained from the one-form
ydx through the relation

ρ(x) = disc Im
y(x)

πq
.

This last result is therefore a direct generalization of Wigner’s observation
that results in the Gaussian case

W () = 1

2
2.

The eigenvalue profile is now given not by a half of a circle, but by a half of a
hyperelliptic curve

3.3 Higher genus invariants

One can also compute explicitly the higher genus corrections Fg for g > 0 in
the matrix model, and confirm that they indeed compute the higher quantum
invariants of the CY. For example, the genus one contribution can be expressed
in terms of the geometry of the hyperelliptic curve as [13] [14]

F1(q) = −1

2
log det A − 1

12
D.
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Here D is the discriminant of the hyperelliptic curve C given by (3.2). That is,
if we write the curve as

y2 =
2n∏

i=1

(x − xi )

with xi the branch points, then

D =
2n∏

i< j

(xi − x j )
2.

The matrix A is given by the period integrals

Ai j =
∮

Ai

x j−1

y
dx .

More importantly, we can express F1 as

F1 = −1

2
log det 


with 
 the scalar determinant on C . This realizes the expected relation with
the analytic torsion on the CY, here suitably reduced to the underlying curve
C .

3.4 Sketch of proof

Let us briefly sketch how these results can be proven. The starting point is the
(holomorphic, gauged) matrix integral

Z = 1

vol U (N )

∫
d exp

[
1

gs
Tr W ()

]
.

This integral can be reduced to eigenvalues, with the measure∏
di j = dU

∏
I

dλI

∏
I<J

(λI − λJ )2.

Here dU is the Haar measure on U (N ) and the last factor is the famous
Vandermonde determinant. This gives the following integral over the eigen-
values

Z =
∫ ∏

dλI

∏
I<J

(λI − λJ ) exp
∑

I

1

gs
W (λI ) (3.3)

=
∫ ∏

dλI exp
1

gs
S(λ1, . . . , λN ) (3.4)
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with ‘effective action’

S(λ1, . . . , λN ) =
∑

I

W (λI ) + 2gs

∑
I<J

log(λI − λJ ).

The saddle-point equations now read

∂S

∂λI
= W ′(λI ) + 2gs

∑
J �=I

1

λI − λJ
= 0.

It proves convenient to think of adding an extra eigenvalue λN+1 = x to the
matrix and to study the dependence on x . To this end introduce the notation

y(x) := ∂S

∂x
= W ′(x) + 2gs

∑
I

1

x − λI
.

The differential dS = y(x)dx is a meromorphic one-form on the complex
x-plane. It has a single pole at the position of each eigenvalue. It is closely
related to the matrix resolvent

ω(x) = 1

N

∑
I

1

x − λI
= 1

N
Tr

1

x − 
.

In fact, in terms of the resolvent and the ’t Hooft coupling q = gs N we have

y(x) = W ′(x) + 2qω(x).

It is now a standard result in the theory of random matrices that the resolvent
ω(x) and therefore also the variable y(x) satisfy a differential equation (the
loop equation) that reduces to an algebraic equation in the large N (genus
zero) limit.

This is proven by simply squaring the resolvent which gives

ω(x)2 = 1

N 2

(∑
I

1

x − λI

)2

(3.5)

= 1

N 2

∑
I �=J

1

(x − λI )(x − λJ )
+ 1

N 2

∑
I

1

(x − λI )2
(3.6)

= 1

N 2

∑
I �=J

2

(x − λI )(λI − λJ )
− 1

N
ω′(x). (3.7)

In the large N limit we can now drop the last term, since ω(x) and therefore
also ω′(x) are normalized in such a way that they remain finite in this limit.
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Now we can further manipulate the resulting expression as

ω(x)2 ∼ 1

N 2gs

∑
I

−W ′(λI )

x − λI
(3.8)

= 1

q

[∑
I

1

N

W ′(x) − W ′(λI )

x − λI
− W ′(x)

∑
I

1

N

1

x − λI

]
(3.9)

= 1

4q2
f (x) − 1

q
ω(x)W ′(x) (3.10)

where the quantum correction is defined by

f (x) := 4q
∑

I

1

N

W ′(x) − W ′(λI )

x − λI
.

This is by inspection a polynomial of degree n − 1. Rewriting this all in terms
of y(x) we recover the curve

y2 = W ′(x)2 + f (x).

The relations with the period map are now easily obtained. First of all, we
recall that y has single poles at the location of the eigenvalues. Therefore the
period around a branch cut measures the number of eigenvalues

1

2π i

∮
Ai

y(x)dx = gs Ni = qi .

Integrating ydx = dS over the noncompact Bi cycles, corresponds to adding
or removing an eigenvalue. Therefore we have∫

Bi

ydx =
∫ �

ai

dS = ∂F0

∂qi
.

4 Generalizations

The relation between random matrices and Calabi–Yau geometries goes much
further than in the simple example considered above. For example, multi-
matrix models of quiver type [2] naturally give rise to geometries of the form

F(x, y) − uv = 0

with F(x, y) a general polynomial.
More involved two-matrix models lead to the geometries discussed in [15],

which are hypersurfaces that are essentially complex surfaces, not curves, of
the form

F(x, y, u) − v2 = 0.
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In fact, one can make a bold conjecture that all solvable matrix models (that
is, matrix models that can be reduced in some way to eigenvalues) will neces-
sarily reduce to CY three-folds. Perhaps, even non-solvable matrix models can
still be interpreted as a kind of non-commutative CY spaces. It would be very
interesting to explore this deep connection further.
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Abstract

The special structures that arise in symplectic topology (particularly Gromov–
Witten invariants and quantum homology) place as yet rather poorly under-
stood restrictions on the topological properties of symplectomorphism groups.
This article surveys some recent work by Abreu, Lalonde, McDuff, Polterovich
and Seidel, concentrating particularly on the homotopy properties of the action
of the group of Hamiltonian symplectomorphisms on the underlying manifold
M. It sketches the proof that the evaluation map π1(Ham(M)) → π1(M) given
by {φt } �→ {φt (x0)} is trivial, as well as explaining similar vanishing results for
the action of the homology of Ham(M) on the homology of M . Applications
to Hamiltonian stability are discussed.

1 Overview

The special structures that arise in symplectic topology (particularly Gromov–
Witten invariants and quantum homology) place as yet rather poorly under-
stood restrictions on the topological properties of symplectomorphism groups.
This article surveys some recent work on this subject. Throughout (M, ω) will
be a closed (ie compact and without boundary), smooth symplectic manifold
of dimension 2n, unless it is explicitly mentioned otherwise. Background in-
formation and more references can be found in [24] [23] [27].

The symplectomorphism group Symp(M, ω) consists of all diffeomor-
phisms φ : M → M such that φ∗(ω) = ω, and is equipped with the C∞-
topology, the topology of uniform convergence of all derivatives. We will
sometimes contrast this with the C0 (i.e. compact-open) topology. The (path)

* Partially supported by NSF grant DMS 0072512.
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connected component containing the identity is denoted Symp0(M, ω). (Note
that Symp is locally path connected.) This group Symp0 contains an important
normal subgroup called the Hamiltonian group Ham(M, ω) whose elements
are the time-1 maps of Hamiltonian flows. These are the flows φH

t , t ∈ [0, 1],
that at each time t are tangent to the symplectic gradient X H

t of the function
Ht : M → R, i.e.

φ̇H
t = X H

t , ω(X H
t , ·) = −d Ht .

When H1(M, R) = 0 the groups Ham and Symp0 coincide. In general, there
is a sequence of groups and inclusions

Ham(M, ω) ↪→ Symp0(M, ω) ↪→ Symp(M, ω) ↪→ Diff+(M)

where Diff+ denotes the orientation preserving diffeomorphisms. Our aim is
to understand and contrast the properties of these groups.

We first give an overview of basic results on the group Symp0. Then we
describe results on the Hamiltonian group, showing how a vanishing theorem
for its action on H∗(M) implies various stability results. Finally, we sketch the
proof of this vanishing theorem. It relies on properties of the Gromov–Witten
invariants for sections of Hamiltonian fiber bundles over S2, that can be sum-
marized in the statement (essentially due to Floer and Seidel) that there is a
representation of π1(Ham(M, ω)) into the automorphism group of the quan-
tum homology ring of M . The proof of the vanishing of the evaluation map
π1(Ham(M)) → π1(M) is easier: it relies on a “stretching the neck” argu-
ment, see Lemma 3.2 below. A different but also relatively easy proof of this
fact may be found in [23].

1.1 Basic facts

We begin by listing some fundamentals.

Dependence on the cohomology class of ω

The groups Symp(M, ω) and Ham(M, ω) depend only on the diffeomorphism
class of the form ω. In particular, since Moser’s argument implies that any path
ωt , t ∈ [0, 1], of cohomologous forms is induced by an isotopy ψt : M → M
of the underlying manifold (i.e. ψ∗

t (ωt ) = ω0, ψ0 = id), the groups do not
change their topological or algebraic properties when ωt varies along such
a path. However, as first noticed by Gromov (see Proposition 1.3 below),
changes in the cohomology class [ω] can cause significant changes in the ho-
motopy type of these groups.
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Stability properties of Symp(M) and Symp0(M)

By this we mean that if G denotes either of these groups, there is a C1-
neighbourhood N(G) of G in Diff(M) that deformation retracts on to G.
This follows from the Moser isotopy argument mentioned above. In the case
G = Symp(M), take

N(Symp) = {φ ∈ Diff(M) : (1 − t)φ∗(ω) + tω is nondegenerate for t ∈ [0, 1]}.
By Moser, one can define for each such φ a unique isotopy ψt (that depends
smoothly on φ∗(ω)) such that ψ∗

t (tφ∗(ω) + (1 − t)ω) = ω for all t . Hence
φoψ1 ∈ Symp(M). Similarly, when G = Symp0(M) one can take N(G) to
be the identity component of N(Symp). Note also that these neighborhoods
are uniform with respect to ω. For example, given any compact subset K of
Symp0(M, ω) there is a C∞-neighbourhood N(ω) of ω in the space of all
sympletic forms such that K may be isotoped into Symp0(M, ω′) for all ω′ ∈
N(ω). These statements, that we sum up in the rubric symplectic stability,
exhibit the fiabbiness, or lack of local invariants, of symplectic geometry.

The above two properties are ‘soft’, i.e. they depend only on the Moser argu-
ment. By way of contrast, the next result is ‘hard’ and can be proved only by
using some deep ideas, either from variational calculus (Ekeland–Hofer), gen-
erating functions/wave fronts (Eliashberg, Viterbo) or J -holomorphic curves
(Gromov).

The group Symp(M, ω) is C0-closed in Diff(M)

This celebrated result of Eliashberg and Ekeland–Hofer is known as symplec-
tic rigidity and is the basis of symplectic topology. The proof shows that even
though one uses the first derivatives of φ in saying that a diffeomorphism φ

preserves ω, there is an invariant c(U ) (called a symplectic capacity) of an
open subset of a symplectic manifold that is continuous with respect to the
Hausdorff metric on sets and that is preserved by a diffeomorphism φ if and
only if φ∗(ω) = ω. (When n is even, one must slightly modify the previous
statement to rule out the case φ∗(ω) = −ω). There are several ways to define
a suitable invariant c. Perhaps the easiest is to take Gromov’s width

c(U ) = sup{πr2 : B2n(r) embeds symplectically in U }.
Here B2n(r) is the standard ball of radius r in Euclidean space R2n with the
usual symplectic form ω0 = ∑

i dx2i−1 ∧ dx2i .
It is unknown whether the identity component Symp0(M) is C0-closed in

Diff(M). In fact this may well not hold. For example, it is quite possible that
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the group Sympc(R2n) (of compactly supported symplectomorphisms of Eu-
clidean space is disconnected when n > 2. (When n = 2 this group is con-
tractible by Gromov [8].) Hence for some closed manifold M there might be
an element in Symp(M)\Symp0(M) that is supported in a Darboux neigh-
bourhood U (i.e. an open set symplectomorphic to an open ball in Euclidean
space). Such an element would be in the C0-closure of Symp0(M) since by
conformal rescaling in U one could isotop it to have support in an arbitrarily
small neighbourhood of a point in U .

We discuss related questions for the group Ham(M) in Section 2 below.
Though less is known about the above questions, some very interesting new
features appear. Before doing that we shall give a brief summary of what is
known about the homotopy groups of Symp(M).

1.2 The homotopy type of Symp(M)

In dimension 2 it follows from Moser’s argument that Symp(M, ω) is homo-
topy equivalent to Diff+. Thus Symp(S2) is homotopy equivalent to the ro-
tation group SO(3); Symp0(T 2) is homotopy equivalent to an extension of
SL(2, Z) by T 2; and for higher genus the symplectomorphism group is homo-
topy equivalent to the mapping class group. In dimensions 4 and above, almost
nothing is known about the homotopy type of Diff+. On the other hand, there
are some very special 4-manifolds for which the (rational) homotopy type of
Symp is fully understood. The following results are due to Gromov [8]. Here
σY denotes (the pullback to the product of) an area form on the Riemann sur-
face Y with total area 1.

Proposition 1.1. (Gromov)

(i) Sympc(R4, ω0) is contractible:

(ii) Symp(S2 × S2, σS2 + σS2) is homotopy equivalent to the extension of
SO(3) × SO(3) by Z/2Z where this acts by interchanging the factors;

(iii) Symp(CP2, ωFS) is homotopy equivalent to PU(3), where ωFS is the
Fubini–Study Kähler form.

It is no coincidence that these results occur in dimension 4. The proofs use
J -holomorphic spheres, and these give much more information in dimension
4 because of positivity of intersections.

In Abreu [1] and Abreu–McDuff [5] these arguments are extended to other
symplectic forms and (some) other ruled surfaces. Here are the main results,
stated for convenience for the product manifold � × S2 (though there are
similar results for the nontrivial S2 bundle over �.) Consider the following
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family1 of symplectic forms on Mg = �g × S2 (where g is genus(�))

ωµ = µσ� + σS2 , µ > 0.

Denote by Gg
µ the subgroup

Gg
µ := Symp(Mg, ωµ) ∩ Diff0(Mg)

of the group of symplectomorphisms of (Mg, ωµ). When g > 0, µ ranges
over all positive numbers. However, when g = 0 there is an extra symmetry –
interchanging the two spheres gives an isomorphism G0

µ
∼= G0

1/µ – and so we
take µ ≥ 1. Although it is not completely obvious, there is a natural homotopy
class of maps from Gg

µ to Gg
µ+ε for all ε > 0. To see this, let

Gg
[a,b] =

⋃
µ∈[a,b]

{µ} × Gg
µ ⊂ R × Diff(Mg).

It is shown in [5] that the inclusion Gg
b → Gg

[a,b] is a homotopy equivalence.

Therefore we can take the map Gg
µ → Gg

µ+ε to be the composite of the inclu-
sion Gg

µ → Gg
[µ,µ+ε] with a homotopy inverse Gg

[µ,µ+ε] → Gg
µ+ε. Another,

more geometric definition of this map is given in [22].

Proposition 1.2. As µ → ∞, the groups Gg
µ tend to a limit Gg

∞ that has the
homotopy type of the identity component D

g
0 of the group of fiberwise diffeo-

morphisms of Mg = �g × S2 → �g.

Proposition 1.3. When 	 < µ ≤ 	 + 1 for some integer 	 ≥ 1

H∗(G0
µ, Q

) = 
(t, x, y) ⊗ Q[w	],

where 
(t, x, y) is an exterior algebra over Q with generators t of degree 1,
and x, y of degree 3 and Q[w	] is the polynomial algebra on a generator w	

of degree 4	.

In the above statement, the generators x, y come from H∗(G0
1) =

H∗(SO(3) × SO(3)) and t corresponds to an element in π1(G0
µ), µ > 1

found by Gromov in [8]. Thus the subalgebra 
(t, x, y) is the pullback of
H∗(D0

0, Q) under the map G0
µ → D0

0. The other generator w	 is fragile, in the
sense that the corresponding element in homology disappears (i.e. becomes
null homologous) when µ increases. It is dual to an element in π4	 that is a
higher order Samelson product and hence gives rise to a relation (rather than
a new generator) in the cohomology of the classifying space. Indeed, when

1 Using results of Taubes and Li–Liu, Lalonde–McDuff show in [14] that these are the only sym-
plectic forms on � × S2 up to diffeomorphism.
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	 < µ ≤ 	 + 1

H∗(BG0
µ

) ∼= Q[T, X, Y ]

{T (X − Y ) . . . (	2 X − Y ) = 0}
where the classes T, X, Y have dimensions 2, 4, 4 respectively and are the de-
loopings of t, x, y.

Anjos [2] calculated the full homotopy type of G0
µ for 1 < µ ≤ 2. Her re-

sults has been sharpened in Anjos–Granja [3] where it is shown that this group
has the homotopy type of the pushout of the following diagram in the category
of topological groups

SO(3)
diag→ SO(3) × SO(3)

↓
S1 × SO(3).

Thus G0
µ is a amalgamated free product of two compact subgroups, SO(3) ×

SO(3), which is the automorphism group of the product almost complex struc-
ture, and S1 × SO(3). The latter appears as the automorphism group of the
other integrable almost complex structure with Kähler form ωµ, namely the
Hirzebruch structure on P(L2 ⊕ C) where the line bundle L2 → CP1 has
Chern number 2. As mentioned in [3], this description has interesting parallels
with the structure of some Kac–Moody groups.

McDuff [22] proves that the homotopy type of G0
µ is constant on all in-

tervals (	 − 1, 	], 	 > 1. However, their full homotopy type for µ > 2 is
not yet understood, and there are only partial results when g > 0. Apart
from this there is rather little known about the homotopy type of Symp(M).
There are some results due to Pinsonnault [26] and Lalonde–Pinsonnault [19]
on the one point blow up of S2 × S2 showing that the homotopy type of
this group also depends on the symplectic area of the exceptional divisor.
Also Seidel [31, 30] has done some very interesting work on the symplectic
mapping class group π0(Symp(M)) for certain 4-manifolds, and on the case
M = CPm × CPn .

2 The Hamiltonian group

Now consider the Hamiltonian subgroup Ham(M). It has many special prop-
erties: it is the commutator subgroup of Symp0(M) and is itself a simple group
(Banyaga). It also supports a biinvariant metric, the Hofer metric, which gives
rise to an interesting geometry. Its elements also have remarkable dynamical
properties. For example, according to Arnold’s conjecture (finally proven by
Fukaya–Ono and Liu–Tian based on work by Floer and Hofer–Salamon) the



Topological properties of symplectomorphism groups 179

number of fixed points of φ ∈ Ham may be estimated as

#Fix φ ≥
∑

k

rank Hk(M, Q)

provided that the fixed points are all nondegenerate, i.e. that the graph of φ is
transverse to the diagonal.

Many features of this group are still not understood, and it may not even be
C1-closed in Symp0. Nevertheless, we will see that there are some analogs of
the stability properties discussed earlier for Symp. Also the action of Ham(M)

on M has special properties.

2.1 Hofer geometry

Because the elements of the Hamiltonian group are generated by functions Ht ,
the group itself supports a variety of interesting functions. First of all there is
the Hofer norm [10] that is usually defined as follows

‖φ‖ := inf
φH

1 =φ

∫ 1

0

(
max
x∈M

Ht (x) − min
x∈M

Ht (x)

)
dt.

Since this is constant on conjugacy classes and symmetric (i.e. ‖φ‖ = ‖φ−1),
it gives rise to a biinvariant metric d(φ, ψ) := ‖ψφ−1‖ on Ham(M, ω). There
are still many open questions about this norm – for example, it is not yet known
whether it is always unbounded: for a good introduction see Polterovich’s
lovely book [27].

Recently, tools (based on Floer homology) have been developed that allow
one to define functions on Ham or its universal cover H̃am by picking out
special elements of the action spectrum Spec(φ̃) of φ̃ ∈ H̃am. This spectrum
is defined as follows. Choose a normalized time periodic Hamiltonian Ht that
generates φ̃, i.e. so that the following conditions are satisfied∫

Htω
n = 0, t ∈ R, Ht+1 = Ht , t ∈ R, φ̃ = φ̃H := (φH

1 ,
{
φH

t

}
t∈[0,1]).

Denote by L̃(M) the cover of the space L(M) of contractible loops x in M
whose elements are pairs (x, u), where u : D2 → M restricts to x on ∂ D2 =
S1. Then define the action functional AH : L̃(M) → R by setting

AH (x, u) =
∫ 1

0
Ht (xt )dt −

∫
D2

u∗(ω).

The critical points of AH are precisely the pairs (x, u) where x is a contractible
1-periodic orbit of the flow φH

t . Somewhat surprisingly, it turns out that the set
of critical values of AH depends only on the element φ̃H ∈ H̃am defined by
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the flow {φH
t }t∈[0,1]; in other words, these values depend only on the homotopy

class of the path φH
t rel endpoints. Thus we set

Spec(φ̃H ) := {all critical values of AH }.

There are variants of the Hofer norm that pick out certain special
homologically visible elements from this spectrum: see for example Schwarz
[28] and Oh [25].

Even more interesting is a recent construction by Entov–Polterovich [7] that
uses these spectral invariants to define a nontrivial continuous and homoge-
neous quasimorphism µ on H̃am(M, ω), when M is a monotone manifold
such as CPn that has semisimple quantum homology ring. A quasimorphism
on a group G is a map µ : G → R that is a bounded distance away from being
a homomorphism, i.e. there is a constant c = c(µ) > 0 such that

|µ(gh) − µ(g) − µ(h)| < c, g, h ∈ G.

It is called homogeneous if µ(gm) = mµ(g) for all m ∈ Z, in which case it
restricts to a homomorphism on all abelian subgroups. Besides giving infor-
mation about the bounded cohomology of G, quasimorphisms can be used to
investigate the commutator lengths and dynamical properties of its elements.
The example constructed by Entov–Polterovich extends the Calabi homomor-
phism defined on the subgroups H̃amU of elements with support in sufficiently
small open sets U . Moreover, in the case of CPn , it vanishes on π1 (Ham) and
so descends to the Hamiltonian group Ham (which incidentally equals Symp0
since H1(CPn) = 0.) It is not yet known whether H̃am(M) or Ham (M) sup-
ports a nontrivial quasimorphism for every M . Note that these groups have no
nontrivial homomorphisms to R because they are perfect.

2.2 Relation between Ham and Symp0

The relation between Ham and Symp0 is best understood via the Flux ho-

momorphism. Let S̃ymp0(M) denote the universal cover of Symp0(M). Its
elements φ̃ are equivalence classes of paths {φt }t∈[0,1] starting at the identity,
where {φt } ∼ {φ ′

t } iff φ1 = φ′
t and the paths are homotopic rel endpoints. We

define

Flux(φ̃) =
∫ 1

0
[ω(φ̇t , ·)] ∈ H1(M, R).

That this depends only on the homotopy class of the path φt (rel endpoints)
is a consequence of the following alternative description: the value of the
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cohomology class Flux(φ̃) on a 1-cycle γ : S1 → M is given by the integral

Flux(φ̃)(γ ) =
∫

φ̃.(γ )

ω (1)

where φ̃∗(γ ) is the 2-chain I × S1 → M : (t, s) �→ φt (γ (s)). Thus Flux is
well defined. It is not hard to check that it is a homomorphism.

One of the first results in the theory is that the rows and columns in the
following commutative diagram are short exact sequences of groups. (For a
proof see [24, Chapter 10].)

π1(Ham(M)) −→ π1(Symp0(M))
Flux−→ ω

↓ ↓ ↓
H̃am(M) −→ S̃ymp0(M)

Flux−→ H1(M, R)

↓ ↓ ↓
Ham(M) −→ Symp0(M)

Flux−→ H1(M, R)/ω.

(2)

Here ω is the so-called flux group. It is the image of π1(Symp0(M)) under
the flux homomorphism.

It is easy to see that Ham(M) is C1-closed in Symp0(M) if and only if ω is
a discrete subgroup of H1(M, R).

Question 2.1. Is the subgroup ω of H1 (M, R) always discrete?

The hypothesis that ω is always discrete is known as the Flux conjecture.
One might think it would always hold by analogy with symplectic rigidity.
In fact it does hold in many cases, for example if (M, ω) is Kähler or from
(1) above if [ω] is integral, but we do not yet have a complete understand-
ing of this question. One consequence of Corollary 2.3 is that the rank of
ω is always bounded above by the first Betti number (see Lalonde–McDuff–
Polterovich [17] [18]; some sharper bounds are found in Kedra [11]), but the
argument does not rule out the possibility that ω is indiscrete for certain val-
ues of [ω]. Thus, for the present one should think of Ham(M) as a leaf in a
foliation of Symp0(M) that has codimension equal to the first Betti number
of M .

2.3 Hamiltonian stability

When ω is discrete, the stability principle extends: there is a C1-
neighbourhood of Ham(M, ω) in Diff(M) that deformation retracts into
Ham(M, ω). Moreover, if this discreteness were uniform with respect to ω

(which would hold if (M, ω) were Kähler), then the groups Ham(M, ω) would
have the same stability with respect to variations in ω as do Symp0 and Symp.
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To be more precise, suppose that for each ω and each ε > 0 there is a
neighbourhood N(ω) such that when ω′ ∈ N(ω) ω′ contains no nonzero el-
ement of norm ≤ ε. Then for any compact subset K of Ham(M, ω) there
would be a neighbourhood N(ω) such that K isotops into Ham(M, ω′) for
each ω′ ∈ N(ω). For example if K = {φt } is a loop (image of a circle) in
Ham(M, ω) and ωs, 0 ≤ s ≤ 1, is any path, this would mean that any smooth
extension {φs

t }, s ≤ 0, of {φt } to a family of loops in Symp (M, ωs) would be
homotopic through ωs-symplectic loops to a loop in Ham(M, ωs).

Even if this hypothesis on ω held, it would not rule out the possibility of
global instability: a loop in Ham(M, ω) could be isotopic through (nonsym-
plectic) loops in Diff(M) to a nonHamiltonian loop in some other far away
symplectomorphism group Symp(M, ω′). One of the main results in Lalonde–
McDuff–Polterovich [18] is that this global instability never occurs; any ω′-
symplectic loop that is isotopic in Diff(M) to an ω-Hamiltonian loop must be
homotopic in Symp(M, ω′) to an ω′-Hamiltonian loop regardless of the rela-
tion between ω and ω′ and no matter whether any of the groups ω are discrete.
This is known as Hamiltonian rigidity and is a consequence of a vanishing
theorem for the Flux homomorphism: see Corollary 2.3 below. As we now
explain this extends to general results about the action of Ham(M) on M .

2.4 Action of Ham(M) on M

There are some suggestive but still incomplete results about the action of
Ham(M) on M . The first result below is folklore. It is a consequence of the
proof of the Arnold conjecture, but as we show below (see Lemma 3.2) also fol-
lows from a geometric argument. The second part is due to Lalonde–McDuff
[15]. Although the statements are topological in nature, both proofs are based
on the existence of the Seidel representation, a deep fact that uses the properties
of J-holomorphic curves.

Proposition 2.2.

(i) The evaluation map π1 (Ham(M) → π1(M) is zero.
(ii) The natural action of H∗(Ham(M), Q) on H∗(M, Q) is trivial.

Here the action trφ : H∗(M) → H∗+k(M) of an element φ ∈ Hk(Ham(M))

is defined as follows:

if φ is represented by the cycle t �→ φt for t ∈ V k and c ∈ H∗(M) is represented by
x �→ c(x) for x ∈ C then trφ(c) is represented by the cycle

V k × C �→ M : (t, x) �→ φt (c(x)).

It is just the action on homology induced by the map Ham(M) × M → M .
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It extends to the group (M M )id of self-maps of M that are homotopic to the
identity, and hence depends only on the image of φ in Hk(M M )id . To say it is
trivial means that

trφ(c) = 0 whenever c ∈ Hi (M), i > 0.

Note that this does not hold for the action of H1(Symp0(M)). Indeed by (1) the
image under the Flux homomorphism of a loop λ ∈ π1(Symp0(M)) is simply

Flux(λ)(γ ) = 〈ω, trλ(γ )〉. (3)

The rigidity of Hamiltonian loops is an immediate consequence of Proposi-
tion 2.2.

Corollary 2.3. Suppose that φ ∈ π1(Symp(M, ω)) and φ′ ∈ π1(Symp
(M, ω′)) represent the same element of π1((M M )id). Then

Fluxω(φ) = 0 ⇐⇒ Fluxω′(φ′) = 0

Proof. If Fluxω(φ) = 0 than φ is an ω-Hamiltonian loop and Proposition
2.2(ii) implies that trφ : H1(M) → H2(M) is the zero map. But, for each
γ ∈ H1(M), (3) implies that

Fluxω′(φ′)(γ ) = Fluxω′(φ)(γ ) = 〈ω′, trφ(γ )〉 = 0.

This corollary is elementary when the loops are circle subgroups since then
one can distinguish between Hamiltonian and nonHamiltonian loops by look-
ing at the weights of the action at the fixed points: a circle action is Hamilto-
nian if and only if there is a point whose weights all have the same sign. One
can also consider maps K → Ham(M, ω) with arbitrary compact domain
K . But their stability follows from the above result because πk(Ham(M)) =
πk(Symp0(M)) when k > 1 by diagram (2). For more details see [16].

Thus one can compare the homotopy types of the groups Ham(M, ω) (or of
Symp(M, ω)) as [ω] varies in H2(M, R). More precisely, as Buse points out
in [6], any element α in π∗(Ham(M, ω)) has a smooth extension to a family
αt ∈ π∗(Ham(M, ωt )) where [ωt ] fills out a neighborhood of [ω0] = [ω] in
H2(M, R). Moreover the germ of this extension at ω = ω0 is unique. Thus
one can distinguish between robust elements in the homology or homotopy
of the spaces Ham(M, ω0) and BHam(M, ω0) whose extensions are nonzero
for all t near 0 and fragile elements whose extensions vanish as [ωt ] moves
in certain directions. For example, any class in H∗(BHam(M, ω0)) that is de-
tected by Gromov–Witten invariants (i.e. does not vanish on a suitable space
of J-holomorphic curves as in Le–Ono [20]) is robust, while the classes w	 of
Proposition 1.3 are fragile. For some interesting examples in this connection,
see Kronheimer [13] and Buse [6].
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2.5 c-splitting for Hamiltonian bundles

From now on, we assume that (co)homology has rational coefficients. Since the
rational cohomology H∗(G) of any H-space (or group) is freely generated by
the dual of its rational homotopy, it is easy to see that part (ii) of Proposition
2.2 holds if and only if it holds for all spherical classes φ ∈ Hk(Ham(M)).
Each such φ gives rise to a locally trivial fiber bundle M → Pφ → Sk+1

with structural group Ham(M). Moreover, the differential in the corresponding
Wang sequence is precisely trφ . In other words, there is an exact sequence

. . . Hi (M)
trφ→Hi+k(M) → Hi+k(Pφ)

∩[M]→ Hi−1(M) → . . . (4)

Hence trφ = 0 for k > 0 if and only if this long exact sequence breaks up into
short exact sequences

0 → Hi+k(M) → Hi+k(Pφ)
∩[M]→ Hi−1(M) → 0.

Thus Proposition 2.2(ii) is equivalent to the following statement.

Proposition 2.4. For every Hamiltonian bundle P → Sk+1, with fiber (M, ω)

the rational homology H∗(P) is isomorphic as a vector space to the tensor
product H∗(M) ⊗ H∗(Sk+1).

Observe that the corresponding isomorphism in cohomology need not pre-
serve the ring structure. We say that a bundle M → P → B is c-split if the ra-
tional cohomology H∗(P) is isomorphic as a vector space to H∗(M)⊗H∗(B).

Question 2.5. Is every fiber bundle M → P → B with structural group
Ham(M) c-split?

It is shown in [15] that the answer is affirmative if B has dimension ≤ 3 or
is a product of spheres and projective spaces with fundamental group of rank
≤ 3. By an old result of Blanchard, it is also affirmative if (M, ω) satisfies the
hard Lefschetz condition, i.e. if

∧[ω]k : Hn−k(M, R) → Hn+k(M, R)

is an isomorphism for all 0 < k < n. (This argument has now been somewhat
extended by Haller [9] using ideas of Mathieu about the harmonic cohomology
of a symplectic manifold.) If the structural group of P → B reduces to a finite
dimensional Lie group G, then c-splitting is equivalent to a result of Atiyah–
Bott [4] about the structure of the equivariant cohomology ring H∗

G(M). This
is the cohomology of the universal Hamiltonian G-bundle with fiber M

M → MG = EG ×G M → BG
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and was shown in [4] to be isomorphic to H∗(M) ⊗ H∗(BG) as a H∗(BG)-
module. Hence a positive answer to Question 2.5 in general would imply that
this aspect of the homotopy theroy of Hamiltonian actions is similar to the
more rigid cases, when the group is finite dimensional or when the manifold is
Kähler. For further discussion see [15] [16] and Kedra [12].

Note finally that all results on the action of Ham(M) on M can be phrased
in terms of the universal Hamiltonian bundle

M → MHam = EHam ×Ham M → BHam(M).

For example, Proposition 2.2 part (i) states that this bundle has a section
over its 2-skeleton. Such a formulation has the advantage that it immedi-
ately suggests further questions. For example, one might wonder if the bundle
MHam → BHam always has a global section. However this fails when M = S2

since the map π3(Ham(S2)) = π3(SO(3)) → π3(S2) is nonzero.

3 Symplectic geometry of bundles over S2

The proofs of Propositions 2.2 and 2.4 above rely on properties of Hamiltonian
bundles over S2. We now show how the Seidel representation

π1(Ham(M, ω)) → (QHev(M))×

of π1(Ham(M, ω)) into the group of even units in quantum homology gives in-
formation on the homotopy properties of Hamiltonian bundles. As preparation,
we first discuss quantum homology.

3.1 The small quantum homology ring QH∗(M)

There are several slightly different ways of defining the small quantum homol-
ogy ring. We adopt the conventions of [18] [21].

Set c1 = c1(TM) ∈ H2(M, Z). Let 
 be the Novikov ring of the group H =
H S

2 (M, R)/∼ with valuation Iω where B ∼ B ′ if ω(B−B ′) = c1(B−B ′) = 0.
Then 
 is the completion of the rational group ring of H with elements of the
form ∑

B∈H

qB eB

where for each κ there are only finitely many nonzero qB ∈ Q with ω(B) >

−κ . Set

QH∗(M) = QH∗(M, 
) = H∗(M) ⊗ 
.
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We may define an R grading on QH∗(M, 
) by setting

deg(a ⊗ eB) = deg(a) + 2c1(B)

and can also think of QH∗(M, 
) as Z/2Z-graded with

QHev = Hev(M) ⊗ 
, QHodd = Hodd(M) ⊗ 
.

Recall that the quantum intersection product

a ∗ b ∈ QHi+ j−2n(M), for a ∈ Hi (M), b ∈ Hj (M)

is defined as follows

a ∗ b =
∑
B∈H

(a ∗ b)B ⊗ e−B (5)

where (a ∗ b)B ∈ Hi+ j+2n+2c1(B)(M) is defined by the requirement that

(a ∗ b)B · c = GWM (a, b, c; B) for all c ∈ H∗(M). (6)

Here GWM (a, b, c; B) denotes the Gromov–Witten invariant that counts
the number of B-spheres in M meeting the cycles a, b, c ∈ H∗(M), and we
have written · for the usual intersection pairing on H∗(M) = H∗(M, Q). Thus
a ·b = 0 unless dim(a)+dim(b) = 2n in which case it is the algebraic number
of intersection points of the cycles.

Alternatively, one can define a ∗ b as follows: if {ei } is a basis for H∗(M)

with dual basis {e∗
i }, then

a ∗ b =
∑

i

GWM (a, b, ei ; B) e∗
i ⊗ e−B .

The product ∗ is extended to Q H∗(M) by linearity over 
, and is associative.
Moreover, it preserves the R-grading in the homological sense, i.e. it obeys the
same grading rules as does the intersection product.

This product ∗ gives Q H∗(M) the structure of a graded commutative ring
with unit 1 = [M]. Further, the invertible elements in QHev(M) form a com-
mutative group (QHev(M, 
))× that acts on QH∗(M) by quantum multipli-
cation. By Poincaré duality one can transfer this product to cohomology. Al-
though this is very frequently done, it is often easier to work with homology
when one wants to understand the relation to geometry.

3.2 The Seidel representation �

Consider a smooth bundle π : P → S2 with fiber M. Here we consider S2

to be the union D+ ∪ D− of two copies of D, with the orientation of D+. We
denote the equator D+ ∩ D− by ∂ , oriented as the boundary of D+, and choose
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some point ∗ on ∂ as the base point of S2. We assume also that the fiber M∗
over ∗ has a chosen identification with M.

Since every smooth bundle over a disc can be trivialized, we can build any
smooth bundle P → S2 by taking two product manifolds D± × M and gluing
them along the boundary ∂ × M by a based loop λ = {λt } in Diff(M). Thus

P = (D+ × M) ∪ (D− × M)/ ∼, (e2π i t , x)− ≡ (e2π i t , λt (x))+.

A symplectic bundle is built from a based loop in Symp(M) and a Hamil-
tonian bundle from one in Ham(M). Thus the smooth bundle P → S2 is
symplectic if and only if there is a smooth family of cohomologous symplec-
tic forms ωb on the fibers Mb. It is shown in [29] [24] [15] that a symplectic
bundle P → S2 is Hamiltonian if and only if the fiberwise forms ωb have
a closed extension �. (Such forms � are called ω-compatible.) Note that in
any of these categories two bundles are equivalent if and only if their defining
loops are homotopic.

From now on, we restrict to Hamiltonian bundles, and denote by Pλ → S2

the bundle constructed from a loop λ ∈ π1(Ham(M)). By adding the pullback
of a suitable area form on the base we can choose the closed extension � to
be symplectic. The manifold Pλ carries two canonical cohomology classes, the
first Chern class of the vertical tangent bundle

cvert = c1
(
TPvert

λ

) ∈ H2(Pλ, Z)

and the coupling class uλ i.e. the unique class in H2(Pλ, R) such that

i∗(uλ) = [ω], un+1
λ = 0

where i : M → Pλ is the inclusion of a fiber.
The next step is to choose a canonical (generalized) section class in σλ ∈

H2(Pλ, R)/∼. By definition this should project on to the positive generator of
H2(S2, Z). In the general case, when c1 and [ω] induce linearly independent
homomorphisms H S

2 (M) → R, σλ is defined by the requirement that

cvert(σλ) = uλ(σλ) = 0 (7)

which has a unique solution modulo the given equivalence. If either [ω] or c1

vanishes on H S
2 (M) then such a class σλ still exists.2 In the remaining case (the

2 See [21, Remark 3.1] for the case when [ω] = 0 on H S
2 (M). If c1 = 0 on H S

2 (M) but
[ω] �= 0 then we can choose σλ so that uλ(σλ) = 0. Since cvert is constant on section
classes, we must show that it always vanishes. But the existence of the Seidel representation
implies every Hamiltonian fibration P → S2 has some section σP with n ≤ cvert(σP ) ≤ 0
(since it only counts such sections), and the value must be 0 because cvert(σPλ#P−λ) =
cvert(σPλ) + cvert(σP−λ): see [21, Lemma 2.2].
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monotone case), when c1 is some nonzero multiple of [ω] �= 0 on H S
2 (M), we

choose σλ so that cvert(σλ) = 0.

We then set

�(λ) =
∑
B∈H

aB ⊗ eB (8)

where, for all c ∈ H∗(M)

aB·M c = GWPλ([M], [M], c; σλ − B). (9)

Note that �(λ) belongs to the strictly commutative part QHev of QH∗(M).
Moreover deg(�(λ)) = 2n because cvert(σλ) = 0. Since all ω-compatible
forms are deformation equivalent, � is independent of the choice of �.

Here is the main result.

Proposition 3.1. For all λ1, λ2 ∈ π1(Ham(M))

�(λ1 + λ2) = �(λ1) ∗ �(λ2), �(0) = 1

where 0 denotes the constant loop. Hence �(λ) is invertible for all λ and �

defines a group homomorphism

� : π1(Ham(M, ω)) → (QHev(M, 
))×.

In the case when (M, ω) satisfies a suitable positivity condition, this is a variant
of the main result in Seidel [29]. The general proof is due to McDuff [21] using
ideas from Lalonde–McDuff–Polterovich [18]. It uses a refined version of the
ideas in the proof of Lemma 3.2 below.

3.3 Homotopy theoretic consequences of the existence of �

First of all, note that because �(λ) �= 0 there must always be J -holomorphic
sections of Pλ → S2 to count. Thus every Hamiltonian bundle π : P → S2

must have a section S2 → P. If we trivialize P over the two hemispheres D±
of S2 and homotop the section to be constant over one of the discs, it becomes
clear that there is a section if and only if the defining loop λ of P has trivial
image under the evaluation map π1(Ham(M)) → π1(M). This proves part (i)
of Proposition 2.2.

In fact one does not need the full force of Proposition 3.1 in order to arrive
at this conclusion, since we only have to produce one section.

Lemma 3.2. Every Hamiltonian bundle P → S2 has a section.
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Sketch of Proof. Let λ = {λt } be a Hamiltonian loop and consider the family
of trivial bundles Pλ,R → S2 given by

Pλ,R = (D+ × M) ∪ (S1 × [−R, R] × M) ∪ (D− × M)

with attaching maps

(e2π i t , λt (x))+ ≡ (e2π i t , −R, x), (e2π i t , R, x) ≡ (e2π i t , λt (x))−.

Thus, Pλ,R can be thought of as the fiberwise union (or Gompf sum) of Pλ

with P−λ over a neck of length R. It is possible to define a family �R of
ω-compatible symplectic forms on Pλ,R in such a way that the manifolds
(Pλ,R, �R) converge in a well-defined sense as R → ∞. The limit is a sin-
gular manifold Pλ ∪ P−λ → S∞ that is a locally trivial fiber bundle over the
nodal curve consisting of the one point union of two 2-spheres. To do this,
one first models the convergence of the 2-spheres in the base by a 1-parameter
family SR of disjoint holomorphic spheres in the one point blow up of S2 × S2

that converge to the pair S∞ = �+∪�− of exceptional divisors at the blow up
point. Then one builds a suitable smooth Hamiltonian bundle

πX : (X, �̃) → S

with fiber (M, ω) where S is a Leighbourhood of �+∪�− in the blow up
that contains the union of the spheres SR, R ≥ R0: see [21] §2.3.2. The al-
most complex structures J̃ that one puts on X should be chosen so that the
projection to S is holomorphic. Then each submanifold Pλ,R : π−1

X (SR) is

J̃ -holomorphic.
The bundles (Pλ,R, �R) → S2 are all trivial, and hence there is one J̃ -

holomorphic curve in the class σ0 = [S2 × pt] through each point qR ∈ Pλ,R .
(It is more correct to say that the corresponding Gromov–Witten invariant
GWPλ,R ([M], [M], pt; σ0) is one; i.e. one counts the curves with appropriate
multiplicities.) Just as in gauge theory, these curves do not disappear when one
stretches the neck, i.e. lets R → ∞. Therefore as one moves the point qR to
the singular fiber the family of J̃ -holomorphic curves through qR converges to
some cusp-curve (stable map) C∞ in the limit. Moreover, C∞ must lie entirely
in the singular fiber Pλ ∪ P−λ and projects to a holomorphic curve in S in the
class [�+] + [�−]. Hence it must have at least two components, one a section
of Pλ → �+ and the other a section of P−λ → �+. There might also be some
bubbles in the M-fibers, but this is irrelevant. �

The above argument is relatively easy, in that it only uses the compactness
theorem for J -holomorphic curves and not the more subtle gluing arguments
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needed to prove things like the associativity of quantum multiplication. How-
ever the proof of the rest of Proposition 2.2 is based on the fact that each el-
ement �(λ) is a multiplicative unit in quantum homology. The only known
way to prove this is via some sort of gluing argument. Hence in this case
it seems that one does need the full force of the gluing arguments, whether
one works as here with J -holomorphic spheres or as in Seidel [29] with Floer
homology.

We now show how to deduce part (ii) of Proposition 2.2 from Proposition
3.1. So far, we have described �(λ) as a unit in QH∗(M). This unit induces an
automorphism of QH∗(M) by quantum multiplication on the left

b �→ �(λ) ∗ b, b ∈ QH∗(M).

The next lemma shows that when b ∈ H∗(M) then the element �(λ) ∗ b can
also be described by counting curves in Pλ rather than in the fiber M.

Lemma 3.3. If {ei } is a basis for H∗(M) with dual basis {e∗
i }, then

�(λ) ∗ b =
∑

i

GWPλ([M], b, ei ; σλ − B) e∗
i ⊗ eB .

Sketch of Proof : To see this, one first shows that for any section class σ the
invariant GWPλ([M], b, c; σ) may be calculated using a fibered J (i.e. one for
which the projection π : P → S2 is holomorphic) and with representing cycles
for b, c that each lie in a fiber. Then one is counting sections of P → S2. If the
representing cycles for b, c are moved into the same fiber, then the curves must
degenerate. Generically the limiting stable map will have two components, a
section in some class σ − C together with a C curve that meets b and c. Thus,
using much the same arguments that prove the usual 4-point decomposition
rule, one shows that

GWPλ([M], b, c; σ)

=
∑
A,i

GWPλ([M], [M], ei ; σ − A) · GWM (e∗
i , b, c; A). (10)

But �(λ) = �qi e∗
j ⊗ eB where

q j = GWPλ([M], [M], e j ; σλ − B) ∈ Q.
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Therefore

�(λ) ∗ b

=
∑
C,k

GWM (�(λ), b, ek; C) e∗
k ⊗ e−C

=
∑

B,C, j,k

GWPλ([M], [M], e j ; σλ − B) · GWM (e∗
j , b, ek; C) e∗

k ⊗ eB−C

=
∑
A,k

GWPλ([M], b, ek; σλ − A) e∗
k ⊗ eA

where the first equality uses the definition of ∗, the second uses the definition
of �(λ) and the third uses (10) with σ = σλ − (B − C). For more details, see
[21, Prop 1.2].

Since �(λ) is a unit, the map b �→ �(λ) ∗ b is injective. Hence for every
b ∈ H∗(M) there has to be some nonzero invariant, GWPλ([M], b, c; σλ − B)

in Pλ. In particular, the image i∗(b) of the class b in H∗(Pλ) cannot vanish.
Thus the map

i∗ : H∗(M) → H∗(Pλ)

of rational homology groups is injective. By (4), this implies that the homol-
ogy of Pλ is isomorphic to the tensor product H∗(S2) ⊗ H∗(M). Equivalently,
the map

trλ : H∗(M) → H∗+1(M)

is identically zero. This proves Proposition 2.2 (ii) in the case of loops. The
proof for the higher homology H∗(Ham) with ∗ > 1 is purely topological.
Since H∗(Ham) is generated multiplicatively by elements dual to the homo-
topy, one first reduces to the case when φ ∈ πk(Ham). Thus we need only see
that all Hamiltonian bundles M → P → B with base B = Sk+1 are c-split,
i.e. that Proposition 2.4 holds. Now observe:

Lemma 3.4.

(i) Let M → P ′ → B ′ be the pullback of M → P → B by a map B′ → B
that induces a surjection on rational homology. Then if M → P ′ → B ′ is
c-split, so is M → P → B.

(ii) Let F → X → B be a Hamiltonian bundle in which B is simply con-
nected. Then if all Hamiltonian bundles over F and over B are c-split, the
same is true for Hamiltonian bundles over X.

(The proof is easy and is given in [15].) This lemma implies that in order to
establish c-splitting when B is an arbitrary sphere it suffices to consider the
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cases B = CPn, B =, the 1-point blow up Xn of CPn, and B = T 2 × CPn .

But the first two cases can be proved by induction using the lemma above and
the Hamiltonian bundle

CP1 → Xn → CPn−1

and the third follows by considering the trivial bundle

T 2 → T 2 × CPn → CPn .

This completes the proof of Proposition 2.4. Though these arguments can be
somewhat extended, they do not seem powerful enough to deal with all Hamil-
tonian bundles. For some further work in this direction, see Kedra [12].
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K -theory from a physical perspective
GREGORY MOORE

Rutgers University

Abstract

This is an expository paper which aims at explaining a physical point of view
on the K -theoretic classification of D-branes. We combine ideas of renormal-
ization group flows between boundary conformal field theories, together with
spacetime notions such as anomaly cancellation and D-brane instanton effects.
We illustrate this point of view by describing the twisted K-theory of the spe-
cial unitary groups SU (N ).

1 Introduction

This is an expository paper devoted to explaining some aspects of the
K -theoretic classification of D-branes. Our aim is to address the topic in ways
complementary to the discussions of [1], [2]. Reviews of the latter approaches
include [3], [4], [5], [6]. Our intended audience is the mathematician who is
well-versed in conformal field theory and K -theory, and has some interest in
the wider universe of (nonconformal) quantum field theories.

Our plan for the paper is to begin in Section 2 by reviewing the rela-
tion of D-branes and K-theory at the level of topological field theory. Then
in Section 3 we will move on to discuss D-branes in conformal field the-
ory. We will advocate a point of view emphasizing 2-dimensional conformal
field theories as elements of a larger space of 2-dimensional quantum field
theories. ‘D-branes’ are identified with conformal quantum field theories on
2-dimensional manifolds with boundary. From this vantage, the topological
classification of D-branes is the classification of the connected components of
the space of 2-dimensional theories on manifolds with boundary which only
break conformal invariance through their boundary conditions.

In Section 4 we will turn to conformal field theories which are used to build
string theories. In this case, there is a spacetime viewpoint on the classification

194
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of D-branes. We will present a viewpoint on D-brane classification, based on
anomaly cancellation and ‘instanton effects’, that turn out to be closely related
to the Atiyah–Hirzebruch spectral sequence.

In Section 5 we examine a detailed example, that of branes in WZW
models, and show how, using the approach explained in Sections 3 and 4,
we can gain an intuitive understanding of the twisted K -theory of SU (N ).
The picture is in beautiful harmony with a rigorous computation of
M. Hopkins.

Let us warn the reader at the outset that in this modest review we are only
attempting to give a broad brush overview of some ideas. We are not attempting
to give a detailed and rigorous mathematical theory, nor are we attempting to
give a comprehensive review of the subject.

2 Branes in 2-dimensional topological field theory

The relation of D-branes and K -theory can be illustrated very clearly in the
extremely simple case of 2-dimensional (2D) topological field theory. This
discussion was developed in collaboration with Graeme Segal [7].

We will regard a ‘field theory’ along the lines of Segal’s contribution to
this volume. It is a functor from a geometric category to some linear category.
In the simple case of 2D topological field theory the geometric category has
as objects disjoint collections of circles and as morphisms diffeomorphism
classes of oriented cobordisms between the objects. The target category is the
category of vector spaces and linear transformations. Recall that to give a 2D
topological field theory of closed strings is to give a commutative, finite dimen-
sional Frobenius algebra C. For example, the algebra structure follows from
Figure 1.

Figure 1. The 3-holed surface corresponds to the basic multiplication of the Frobenius
algebra
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c

a

b

a

b

c

Figure 2. Multiplication defining the nonabelian Frobenius algebra of open strings

Let us now enlarge our geometric category to include open as well as
closed strings. Now there are ingoing/outgoing circles and intervals, while
the morphisms are surfaces with two kinds of boundaries: ingoing/outgoing
boundaries as well as ‘free-boundaries’, traced out by the endpoints of the
in/outgoing intervals. These free boundaries must be labelled by ‘boundary
conditions’ which, for the moment, are merely labels a, b, . . . .

Because we have a functor, to any pair of boundary conditions we associate
a vector space (‘a statespace’) Hab. Moreover, there is a coherent system of
bilinear products

Hab ⊗ Hbc → Hac (2.1)

defined by Figure 2. This leads us to ask the key question: What boundary
conditions are compatible with C? ‘Compatibility’ means coherence with
‘sewing’ or ‘gluing’ of surfaces; more precisely, we wish to have a well-defined
functor. Thus, just the way Figure 1 defines an associative commutative alge-
bra structure on C, Figure 2, in the case a = b = c, defines a (not neces-
sarily commutative) algebra structure on Haa . Moreover Haa is a Frobenius
algebra. Next there are further sewing conditions relating the open and closed
string structures. Thus, for example, we require that the operators defined by
Figures 3 and 4 be equal, a condition sometimes referred to as the ‘Cardy
condition.’

As observed by Segal some time ago [8], the proper interpretation of (2.1)
is that the boundary conditions are objects a, b, . . . in an additive category
with

Hab = Mor(a, b). (2.2)
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a b

a b

Figure 3. In the open string channel this surface defines a natural operator

π : Haa → Hbb on noncommutative Frobenius algebras

a

a

b

b

Figure 4. In the closed string channel this surface defines a composition of

open–closed and closed–open transitions ιc−oιo−c : Haa → Hbb that factors through

the center

Therefore, we should ask what the sewing constraints imply for the category
of boundary conditions. This question really consists of two parts: First, co-
herence of sewing is equivalent to a certain algebraic structure on the target
category. Once we have identified that structure we can ask for a classifica-
tion of the examples of such structures. The first part of this question has been
completely answered: The open–closed sewing conditions were first analyzed
by Cardy and Lewellen [9], [10], and the resulting algebraic structure was de-
scribed in [7], [11]. The result is the following:

Proposition. To give an open and closed 2D oriented topological field theory
is to give

(1) A commutative Frobenius algebra C.
(2) Frobenius algebras Haa for each boundary condition a.
(3) A homomorphism ιa : C → Z(Haa), where Z(Haa) is the center, such

that ιa(1) = 1, and such that, if ιa is the adjoint of ιa then

π a
b = ιbι

a . (2.3)

Here π a
b : Haa → Hbb is the morphism, determined purely in terms

of open string data, described by Figure 3. When Hab is the nonzero vec-
tor space it is a Morita equivalence bimodule and π a

b can be written as
π a

b (ψ) = ∑
ψµψψµ where ψµ is a basis for Hab and ψµ is a dual basis
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for Hba . More invariantly

θb(π
a

b (ψ)χ) = TrHab (L(ψ)R(χ)) (2.4)

where θb is the trace on Hbb and L(ψ), R(χ) are the left- and right-
representations of Haa , Hbb on Hab, respectively.

The second step, that of finding all examples of such structures was analyzed
in [7] in the case where C is a semisimple Frobenius algebra. The answer turns
out to be very crisp:

Theorem 2.1. Let C be semisimple. Then the set of isomorphism classes of
objects in the category of boundary conditions is

K 0(Spec(C)) = K0(C). (2.5)

There are important examples of the above structure when C is not semisim-
ple, such as the topological A- and B-twisted N = 2 supersymmetric sigma
models. As far as we are aware, the classification of examples for non-
semisimple C is an open problem.

Even in this elementary setting, there are interesting and nontrivial gener-
alizations. When a 2D closed topological field theory has a symmetry G it
is possible to ‘gauge it’. The cobordism category is enhanced by considering
cobordisms of principal G-bundles. In this case the closed topological field
theory corresponds to a choice of ‘Turaev algebra’, [12], [7], a G-equivariant
extension of a Frobenius algebra which, in the semisimple case, is charac-
terized by a ‘spacetime’ consisting of a discrete sets of points (correspond-
ing to the idempotents of the algebra), a ‘dilaton’, encoding the trace of the
Frobenius algebra on the various idempotents, and a ‘B-field’. In this case we
have

Theorem 2.2. The isomorphism classes of objects in the category of boundary
conditions for a G-equivariant open and closed theory with spacetime X and
‘B-field’ [b] ∈ H2

G(X; C∗) are in 1–1 correspondence with the K-group of
G-equivariant, b-twisted K -theory classes: KG,b(X).

These results are, of course, very elementary. What I find charming about
them is precisely the fact that they are so primitive: they rely on nothing but
topological sewing conditions and a little algebra, and yet K-theory emerges
ineluctably.

A more sophisticated category-theoretic approach to the classification of
branes in rational conformal field theories has been described in [13], [14].
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3 K-theory and the renormalization group

3.1 Breaking conformal invariance on the boundary

Let us now consider the much more difficult question of the topological classi-
fication of D-branes in a full conformal field theory (CFT). This immediately
raises the question of what we even mean by a ‘D-brane’. Perhaps the most
fruitful point of view is that D-branes are local boundary conditions in a 2D
CFT C which preserve conformal symmetry. While there is an enormous liter-
ature on the subject of D-branes, the specific branes which have been studied
are really a very small subset of what is possible.

One way to approach the classification of D-branes is to consider the space
of 2D quantum field theories (QFTs), defined on surfaces with boundary, which
are not conformal, but which only break conformal invariance via their bound-
ary conditions. Formally, there is a space B of such boundary QFT’s compat-
ible with a fixed ‘bulk’ CFT, C. The tangent space to B is the space of local
operators on the boundary because a local operator O can be used to deform
the action on a surface � by

Sworldsheet = SbulkCFT +
∫

∂�

dsO. (3.1)

Here ds is a line element. Note that in general we have introduced explicit
metric-dependence in this term, thus breaking conformal invariance on the
boundary.

As a simple example of what we have in mind, consider a massless scalar
field xµ : � → IRn with action

Sworldsheet =
∫

�

∂xµ∂̄xµ +
∫

∂�

dsT
(
xµ(τ)

)
(3.2)

where T (xµ) is ‘any function’ on IRn and τ is a coordinate on ∂�. Then the
boundary interaction in

¯
can be expanded

O = T (x) + Aµ(x)
dxµ

dτ
+ Bµ(x)

d2xµ

dτ 2
+ Cµν(x)

dxµ

dτ

dxν

dτ
+ · · · (3.3)

The coefficients T (x), Aµ(x), . . . are viewed as spacetime fields on the target
space IRn .1

We expect that B can be given a topology such that renormalization group
flow (see below) is a continuous evolution on this space. In this topology B is a
disconnected space. The essential idea is that the connected components of this
space are classified by some kind of K -theory. For example, if the conformal
field theory is supersymmetric and has a target space interpretation in terms

1 G. Segal points out to me that the proper formulation of the tangent space to a boundary CFT
would naturally use the theory of jets.
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of a nonlinear σ model, we expect the components of B to correspond to the
K -theory of the target space X

π0(B) = K (X). (3.4)

Remarks:

(1) In equation .we are being deliberately vague about the precise form of
K -theory (e.g. K , vs. K O, K R, K± etc.). This depends on a discrete
set of choices one makes in formulating the 2D field theory.

(2) From this point of view the importance of some kind of supersymme-
try on the worldsheet is clear. As an example in the next section makes
clear, the RG flow corresponding to taking O to be the unit operator
always flows to a trivial fixed point with ‘no boundary’. Therefore, un-
less the unit operator can be projected out, there cannot be interesting
path components in B. In spacetime terms, we must cancel the ‘zero
momentum tachyon’.

(3) One might ask what replaces (3.4) when the CFT does not have an
obvious target space interpretation. One possible answer is that one
should define some kind of algebraic K -theory for an open string ver-
tex operator algebra. There has been much recent progress in under-
standing more deeply Witten’s Chern–Simons open string field theory
(see, e.g. [15], [16], [17], [18], [19]). This holds out some hope that the
K -theory of the open string vertex algebra could be made precise. In
string field theory D-branes are naturally associated to projection op-
erators in a certain algebra, so the connection between K -theory and
branes is again quite natural. See also Section 3.5 below.

(4) The space B appeared in a proposal of Witten’s for a background-
independent string field theory [20] (Witten’s ‘other’ open string field
theory).

(5) It is likely that the classification of superconformal boundary condi-
tions in the supersymmetric Gaussian model is complete [21], [22],
[23]. The classification is somewhat intricate and it would be interest-
ing to see if it is compatible with the general proposal of this paper.

3.2 Boundary renormalization group flow

One way physicists explore the path components of B is via ‘renormalization
group (RG) flow’. Since conformal invariance is broken on the boundary, we
can ask what happens as we scale up the size of the boundary. This scaling
defines 1-dimensional flows on B. These are the integral flows of a vector field
β on B usually referred to as the ‘beta function’. A D-brane, or conformal fixed
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point, corresponds to a zero of β. Two D-branes which are connected by RG
flow are in the same path component, and therefore have the same ‘K-theory
charge’.

Let us recall a few facts about boundary RG flow. For a good review see [24].
For simplicity we will consider the bosonic case. A boundary condition a ∈ B

is a zero of β. At such an RG fixed point the theory is conformal, and hence
the Virasoro algebra acts on the tangent space TaB. We may choose a basis of
local operators such that L0Oi = �iOi . Here L0 is the scaling operator in the
Virasoro algebra. We may then choose coordinates O = ∑

i λiOi such that, in
an open neighborhood of a ∈ B

β ∼= −
∑

i

(1 − �i )λ
i d

dλi
(3.5)

Thus, as usual, perturbations by operators with �i < 1 correspond to unstable
flows in the infrared (IR). It turns out there is an analog of Zamolodchikov’s
c-theorem. Boundary RG flow is gradient flow with respect to an ‘action func-
tional’. To construct it one introduces the natural function on B given by the
disk partition function. Then set

g := (1 + β)Zdisk. (3.6)

Next one introduces a metric on B. Recalling that the local operators are to be
identified with the tangent space we write

G(O1, O2) =
∮

dτ1dτ2 sin2(
τ1 − τ2

2
)〈O1(τ1)O2(τ2)〉disk. (3.7)

Then, the ‘g-theorem’ states that

ġ = −β iβ j Gi j . (3.8)

The main nontrivial statement here is that ι(β)G is a locally exact one-form.

Remarks:

(1) The g-theorem was first proposed by Affleck and Ludwig [25], [26],
who verified it in leading order in perturbation theory. An argument for
the g-theorem, based on string field theory ideas, was proposed in [27],
[28].

(2) In the Zamolodchikov theorem, the c-function at a conformal fixed
point is the value of the Virasoro central charge of the fixed point con-
formal field theory. It is therefore natural to ask: ‘What is the meaning
of g at a conformal fixed point?’ The answer is the ‘boundary entropy’.
For example, when the CFT C is an RCFT with irreps Hi , i ∈ I of
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the chiral algebra, the boundary CFT’s preserving the symmetry are la-
belled by i ∈ I and the g-function for these conformal fixed points is
expressed in terms of the modular S-matrix via

g = S0i√
S00

(3.9)

where 0 denotes the unit representation. It is notable that this can also
be interpreted as a regularized dimension of the open string statespace√

dim Hi i . If the CFT is part of a string theory with a target space
interpretation then we can go further. In a string theory we have gravity
and in this context the value of g at a conformal fixed point is the brane
tension, or energy/volume of the brane [29].

(3) In the case of N = 1 worldsheet supersymmetry we should take instead
[28], [30], [31]

g := Zdisk. (3.10)

(4) In an interesting series of papers Connes and Kreimer have re-
interpreted perturbative renormalization of field theory and the renor-
malization group in terms of the structure of Hopf algebras [32], [33].
We believe that the case of boundary RG flow in two-dimensions might
be a very interesting setting in which to apply their ideas.

3.3 Tachyon condensation from the worldsheet viewpoint

Here is a simple example of the g theorem. Consider a single scalar field on
the disk x : D → IR, where the disk D has radius r . Then

Zdisk =
∫

[dx]e− ∫
D ∂x ∂̄x+∮

∂ D T (x). (3.11)

Let us just take T (x) = t = constant. Then, trivially, Zdisk(t) =
Zdisk(0)e−2πr t = Zdisk(0)e−2π t (r). Then

β t := − ∂t (r)

∂(log r)
= −t ⇒ β = −t

d

dt
(3.12)

and an easy computation shows the metric is

ds2 = e−t (dt)2. (3.13)

The g-function, or action, in this case is

g(t) = (1 + β)Zdisk = (1 + 2πr t)e−2πr t g(0) = (1 + 2π t (r))e−2π t (r)g(0).

(3.14)
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At t = 0, Zdisk is r -independent (hence conformally invariant) if we choose,
say, Neumann boundary conditions for x . Thus at t = 0 we begin with an
open/closed CFT consisting of a ‘D1-brane’ wrapping the target IR direction.
Under RG flow to the IR, t → ∞. At t = ∞ all boundary amplitudes are
infinitely suppressed and ‘disappear’. We are left with a theory only of closed
strings!

Remarks:

(1) The RG flow (3.14) is unusual in that we can give exact formulae. This
is due to its rather trivial nature. Moreover, note that this boundary
interaction cancels out of all normalized correlators. Nevertheless, we
feel that the above example nicely captures the essential idea. A less
trivial example based on the boundary perturbation

∮
u X2 is analyzed

in [34], [35], [27].
(2) Let us return to remark (1) of section 3.1. It is precisely the zero-

momentum tachyon (i.e. the unit operator) whose flow we wish to sup-
press in order to define a space B with interesting path components.

(3) The example of this section is essentially the ‘boundary string field the-
ory’ (BSFT) interpretation of Sen’s tachyon condensation [36]. In [20]
Witten introduced an alternative formulation of open string field the-
ory, in which (at least when ghosts decouple), the function g is the
spacetime action. This theory was further developed by Witten and
Shatashvili in [34], [37], [38], [39]. Interest in the theory was revived
by [40], [41], [35], [27], [28]. These papers showed, essentially using
the above example, that the dependence of the spacetime effective po-
tential on the tachyon field is

V (T ) ∼ (T + 1)e−T (3.15)

for the bosonic string and

V (T ) ∼ e−T 2
(3.16)

for the type IIA string (on an unstable D9 brane). The tachyon poten-
tial is minimized by T → ∞, and at its minimum the open strings
‘disappear’.

3.4 g-function for the nonlinear sigma model

Suppose the closed CFT C is a σ -model with spacetime X , dilaton �, metric
gµν and ‘gerbe connection’ Bµν . A typical boundary condition involves, first
of all, a choice of topological K -homology cycle [42], that is, an embedded
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subvariety ι : W ↪→ X with Spinc structure (providing appropriate Dirichlet
boundary conditions for the open strings) together with a choice of (complex)
vector bundle

E → W (3.17)

modulo some equivalence relations. We say a ‘D-brane wraps W with Chan–
Paton bundle E’.

In the supersymmetric case the most important boundary interaction is a
choice of a (unitary) connection Aµ on E and a (non-abelian) section of the
normal bundle. In this paper we will set the normal bundle scalars to zero
(although they are very interesting). Thus the g-function becomes

g = 〈
TrE P exp

(∮
∂ D

dτ Aµ(x(τ ))ẋµ(τ) + Fµνψ
µψν + · · ·

)〉
(3.18)

where ψµ are the susy partners of xµ. When E is a line bundle, g can be
computed for a variety of backgrounds and turns out to be the Dirac–Born–
Infeld (DBI) action [43]

g =
∫

W
e−�

√
det
µν

(
gµν + Bµν + Fµν

) + O((DF)2). (3.19)

If E has rank ≥ 1 to get a nice formula we need to add the condition Fµν � 1.
In this case we have

g = rank(E)

∫
e−�

√
det(g + B) +

∫
X

e−�Tr
(
F ∧ ∗F

) + · · · (3.20)

Remarks:

(1) It follows from (3.20) that in the long-distance limit the gradient flows
of the ‘g-theorem’ generalize nicely some flows which appeared in the
work of Donaldson on the Hermitian–Yang–Mills equations [44].2 Let
X be a Calabi–Yau manifold. To X we associate an N = (2, 2) su-
perconformal field theory C. The boundary interaction (3.18) preserves
N = 2 supersymmetry iff F is of type (1, 1), i.e., iff F2,0 = 0 [45],
[46]. RG flow preserves N = 2 susy, and hence preserves the (1, 1)

condition on the fieldstrength. A boundary RG fixed point is defined
(in the α′ → 0 limit) by an Hermitian Yang–Mills connection. The RG
flow is precisely the flow

d Aµ

dt
= Dν Fν

µ. (3.21)

2 This remark is based on discussions with M. Douglas.
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Thus, one can view the flow from a perturbation of an unstable bundle
to a stable one as an example of tachyon condensation. It might be
interesting to think through systematically the implications for tachyon
condensation of Donaldson’s results on the convergence of these flows.

(2) The tachyon condensation from unstable D9 branes (or D9D9 branes)
to lower dimensional branes involves the Atiyah–Bott–Shapiro con-
struction and Quillen’s superconnection in an elegant way. This has
been demonstrated in the context of BSFT advocated in this section
in [28], [47], [48]. Given the boundary data in (3.18) one is naturally
tempted to see a role for the ‘differential K-theory’ described in [49].
However, the non-abelian nature of the normal bundle scalars show
that this is only part of the story. See [50], [51], [52] for some relevant
discussions.

3.5 The Dirac–Ramond operator and the topology of B

Let us now make some tentative remarks on how one might try to distinguish
different components of B. There are many indications that K -homology is a
more natural framework for thinking about the relation of D-branes and K -
theory [53], [4], [54], [55], [56], [57], [50], [51], [6]. It was pointed out some
time ago by Atiyah that the Dirac operator defines a natural K -homology class
[58]. Indeed, abstracting the crucial properties of the Dirac operator leads to
the notion of a Fredholm module [59].

Now, in string theory, the Dirac operator is generalized to the Dirac–Ramond
operator, that is, the supersymmetry operator Q; (often denoted G0) acting
in the Ramond sector of a superconformal field theory. Q is a kind of Dirac
operator on loop space as explained in [60], [61], [63], [64].

In the case of open strings it is still possible to define Q in the Ramond sec-
tor, and Q still has an interpretation as a Dirac operator on a path space. For
example, suppose the N = 1 CFT has a sigma model interpretation with closed
string background data gµν + Bµν . Suppose that the open string boundary con-
ditions are x(0) ∈ W1, x(π) ∈ W2, where the submanifolds Wi are equipped
with vector bundles Ei with connections Ai . The supersymmetry operator will
take the form

Q =
∫ π

0
dσψµ(σ)

(
δ

δxµ(σ )
+ gµν(x(σ ))

dxν

dσ
+ (

ωµνλ + Hµνλ

)
ψνψλ

)

+ ψµ(0)A1,µ(x(0)) − ψµ(π)A2,µ(x(π)) (3.22)

where ωµνλ is the Riemannian spin connection on X , and Hµνλ is the field-
strength of the B-field. Just as in the closed string case, Q can be understood
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more conceptually as a Dirac operator on a bundle over the path space

P(W1, W2) = {x : [0, π ] → X |x(0) ∈ W1, x(π) ∈ W2} (3.23)

(Preservation of supersymmetry imposes further boundary conditions on x .
See, for example, [64], [65], [66] for details.) Quantization of ψµ(σ) for fixed
xµ(σ ) produces a Fermionic Fock space. This space is to be regarded as a spin
representation of an infinite dimensional Clifford algebra. These Fock spaces
fit together to give a Hilbert bundle S over P(W1, W2). The data gµν + Bµν

induce a connection on this bundle, as indicated in (3.22). The effect of the
boundaries is merely to change the bundle to

S → ev∗
0(E1) ⊗ (ev∗

π (E2))
∗ ⊗ S (3.24)

where ev is the evaluation map. The connections A1, A2 induce connections
on (3.24). In the zeromode approximation Q becomes the Dirac operator on
E1 ⊗ E∗

2 → W1 ∩ W2

Q → /DE1⊗E∗
2

+ · · · (3.25)

Now let us consider RG flow. If RG flow connects boundary conditions a to
a′ then the target space interpretation of the superconformal field theories Hab

and Ha′b′ can be very different. For example, tachyon annihilation can change
the dimensionality of W. Another striking example is the decay of many
D0-branes to a single D2-brane discussed in Section 5.5 below. It follows
that any formulation of an RG invariant involving geometrical constructions
such as vector bundles over path space is somewhat unnatural. However,
what does make sense throughout the renormalization group trajectory is
the supersymmetry operator Q (so long as we restrict attention to N = 1
supersymmetry-preserving flows). Moreover, it is physically ‘obvious’ that Q
changes continuously under RG flow. This suggests that the components of B

should be characterized by some kind of ‘homotopy class’ of Q.
The conclusion of the previous paragraph immediately raises the question

of where the homotopy class of Q should take its value. We need to define a
class of operators and define what is meant by continuous deformation within
that class. While we do not yet have a precise proposal we can again turn to the
zero-slope limit for guidance. In this limit, as we have noted, Q → /DE1⊗E∗

2
,

and /D defines, in a well-known way, a ‘θ -summable K -cycle’ for A, the C∗

algebra completion of C∞(W1 ∩ W2), acting on the Hilbert space of L2 sec-
tions of S ⊗ E1 ⊗ E∗

2 over W1 ∩ W2. That is [(H, /D)] ∈ K 0(A) [59]. What
is the generalization when we do not take the zeroslope limit? One possibility,
in the closed string case, has been discussed in[67], [68], [69], [59]. Another
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possibility is that one can define a notion of Fredholm module for vertex oper-
ator algebras. This has the disadvantage that it is tied to a particular conformal
boundary condition a. It is possible, however, that the open string vertex oper-
ator algebras Aaa for different boundary conditions a are ‘Morita equivalent’
and that the homotopy class of Q defines an element of some K -theory (which
remains to be defined) ‘K 0(Aaa)’. This group should be independent of a and
only depend on C. (See Section 6.4 of [70] and [7] for some discussion of this
idea.)

Remarks:

(1) For some boundary conditions a it is also possible to introduce a
‘tachyon field’. In this case the connection term ψµ(0)Aµ(x(0)) is re-
placed by Quillen’s superconnection. This happens, for example, if a
represents a D−D̄ pair with ZZ2-graded bundle E+⊕E−. If the tachyon
field T ∈ End(E+, E−) is everywhere an isomorphism then boundary
conditions with a are in the same component as the trivial boundary
condition, essentially by the example of Section 3.3.

(2) One strong constraint on the above considerations is that the Witten
index

TrHR
ab

(−1)F e−βQ2
(3.26)

must be a renormalization group invariant. In situations where we have
the limit (3.25) we can use the index theorem to classify, in part, the
components of B. Of course, this will miss the torsion elements of the
K -theory.

4 K -theory from anomalies and instantons

In this section we consider the question of understanding the connected com-
ponents of B in the case where there is a geometrical target space interpreta-
tion of the CFT. We will be shifting emphasis from the worldsheet to the target
space. We will use an approach based on a spacetime picture of branes as ob-
jects wrapping submanifolds of X to give an argument that (twisted) K -theory
should classify components of B.

For concreteness, suppose our CFT is part of a background in type II string
theory in a spacetime

X9 × IR (4.1)

where the IR factor is to be thought of as time, while X9 is compact and spin.
Suppose moreover that spacetime is equipped with a B-field with fieldstrength
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H . This can be used to introduce a twisted K -group K H (X9).3 We will show
how K H (X9), arises naturally in answering the question: What subvarieties
of X9 can a D-brane wrap? The answer involves anomaly cancellation and
instanton effects, and leads to the slogan: ‘K -theory = anomalies modulo in-
stantons.’ As an example of this viewpoint, we apply it to compute the twisted
K -theory K H (SU (N )) for N = 2, 3. We will be following the discussion of
[71]. For other discussions of the relation of twisted K -theory to D-branes see
[2], [72], [73], [74], [75], [49]. The point of view presented here has been fur-
ther discussed in [76], [77].

4.1 What subvarieties of X9 can a D-brane wrap?

Since we are discussing topological restrictions and classification, we will
identify D-brane configurations which are obtained via continuous defor-
mation. Traditionally, then, we would replace the cycle W wrapped by a
D-brane by its homology class. This leads to the ‘cohomological classifica-
tion of D-branes.’ In the cohomological classification of branes we follow two
rules:

(A) Free branes4 can wrap any nontrivial homology cycle, if ι∗(HDR) is
exact.

(B) A brane wrapping a nontrivial homology cycle is absolutely stable.

In the K -theoretic classification of branes we have instead the modified
rules:

(A′) D-branes can wrap W ⊂ X9 only if W3(W) + [H ]|W = 0
in H3(W, ZZ).

(B ′) Branes wrapping homologically nontrivial W can be unstable if, for
some W′ ⊂ X9, P D(W ⊂ W′) = W3(W

′) + [H ]|W′ .

Here and below, W3(W) := W3(NW) is the Stiefel–Whitney class of the
normal bundle of W in X9.

We will first explain the physical reason for (A′) and (B ′) and then explain
the relation of (A′) and (B ′) to twisted K -theory.

To begin, condition (A′) is a condition of anomaly cancellation. Consider
a string worldsheet D with boundary on a D-brane wrapping W × IR as in
Figure 5. The g-function is, schematically

3 In fact, H should be refined to a 3-cocycle for integral cohomology. In the examples considered
in detail below this refinement is not relevant.

4 i.e., branes considered in isolation, with no other branes ending on them.
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D

W

Figure 5. A disk string worldsheet ends on a D-brane worldvolume W

g =
∫

[Dx][Dψ] e− ∫
D ∂x ∂̄x+ψ∂ψ+··· ei

∫
D B Pfaff( /DD) TrE Pei

∮
∂ D A. (4.2)

The measure of the path integral must be well-defined on the space of all maps

{x : D → X9 : x(∂ D) ⊂ W}. (4.3)

By considering a loop of paths such that ∂ D sweeps out a surface in W it is
easy to see that, at the level of the DeRham complex

ι∗(HDR) = dF (4.4)

must be trivialized. Heuristically F := F+ι∗(B), although neither F nor ι∗(B)

is separately well-defined. Note that it is the combination F which appears in
the g-function (3.19), and hence must be globally well-defined on the brane
worldvolume W × IR. The equation dF = ι∗(HDR) means HDR is a magnetic
source for F on the brane worldvolume W × IR.

A more subtle analysis of global anomaly cancellation by Freed and Witten
[78] shows that

ι∗[H ] + W3(T W) = 0 (4.5)

at the level of integral cohomology. (See also the discussion of [72].)
Let us now turn to the stability condition (B ′). Suppose there is a cycle

W′ ⊂ X9 on which

W3(W
′) + [H ]|W′ �= 0. (4.6)

As we have just seen, anomaly cancellation implies that we cannot wrap a
D-brane on W′. However, while a free brane wrapping W′ is anomalous, we
can cancel the anomaly by adding a magnetic source for F. A D-brane ending
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t

t0

WW'

Figure 6. A D-brane wrapping spatial cycle W propagates in time and terminates on a
configuration W′ localized in time. This configuration of D-branes is
anomaly-free

on a codimension 3-cycle W ⊂ W′ provides such a magentic source. Hence,
we can construct an anomaly free configuration by adding a D-brane wrapping
a cycle IR− × W that ends on W ⊂ W′, where W is such that

P D(W ⊂ W′) = W3(W
′) + [H ]|W′ . (4.7)

Here IR− should be regarded as a semiinfinite interval in the time-direction as
in Figure 6.

Figure 6 suggests a clear physical interpretation. A brane wraps a spatial
cycle W, propagates in time, and terminates on a D-‘instanton’ wrapping W′.
This means the brane wrapping a spatial cycle W can be unstable, and de-
cays due to the configuration wrapping W′.5 The basic mechanism is closely
related to the ‘baryon vertex’ discussed by Witten in the AdS/CFT correspon-
dence [79].

4.2 Relation to K-theory via the Atiyah–Hirzebruch spectral sequence

(A′) and (B ′) are in fact conditions of K-theory. In order to understand
this, let us recall the Atiyah–Hirzebruch spectral sequence (AHSS). Let X
be a manifold. A K-theory class x ∈ K 0(X) determines a system of inte-
gral cohomology classes: ci (x) ∈ H2i (X, ZZ), while x ∈ K 1(X) determines
ω2i+1(x) ∈ H2i+1(X, ZZ). Let us ask the converse. Given a system of coho-
mology classes, (ω1, ω3, . . . ) does there exist an x ∈ K 1(X)? The AHSS is a
successive approximation scheme: E∗

1 , E∗
3 , E∗

5 , . . . for describing when such
a system of cohomology classes (ω1, ω3, . . . ) arises from a K-theory class.

In order to relate the AHSS to D-branes we regard P D(ωk) in X as the
spatial cycle of a (potentially unstable) brane of spatial dimension dim X − k.

5 While we use the term ‘instanton’ for brevity, the process illustrated in Figure 6 need not be non-
perturbative in string theory. Indeed, the example of Section 5.5 below is a process in classical
string theory. The decay process is simply localized in the time direction.
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In this way, a system (ω1, ω3, . . . ) determines a collection of branes, and hence
the AHSS helps us decide which subvarieties of X can be wrapped. Now let us
look at the AHSS in more detail.

The first approximation is the cohomological classification of D-branes.

K 0(X) ∼ E0
1(X) := H even(X, ZZ)

K 1(X) ∼ E1
1(X) := Hodd(X, ZZ). (4.8)

The first nontrivial approximation is

K 0(X) ∼ E0
3(X) := (

Ker d3|H even
)
/
(
Im d3|Hodd

)
K 1(X) ∼ E1

3(X) := (
Ker d3|Hodd

)
/
(
Im d3|H even

)
(4.9)

with

d3(a) := Sq3(a) + [H ] � a. (4.10)

Let us pause to define Sq3(a). Let us suppose, for simplicity, that the
Poincaré dual P D(a) can be represented by a manifold W and let ι : W ↪→ X9

be the inclusion. Then we let

Sq3(a) = ι∗(W3(W)) (4.11)

where ι∗ is a composition of three operations: first take the Poincaré dual of
W3(W) within W, then push forward the homology cycle, and then take the
Poincaré dual in X9. Equivalently, regard a as a class compactly supported in a
tubular neighborhood of W and consider the class W3(W) � a where W3(W)

is pulled back to the tubular neighborhood.
Returning to the AHSS, in general one must continue the approximation

scheme. This is true, for example, when computing the twisted K -theory of
SU (N ) for N ≥ 3.

Now, let us interpret the procedure of taking d3 cohomology in physical
terms. To interpret Ker d3 note that from (4.11) it follows that

d3(a) = 0 ⇔
(

W3(W) + [H ]

)
� a = 0. (4.12)

Recall that global anomaly cancellation for a D-brane wrapping W implies

W3(W) + [H ]|W = 0 (4.13)

and this in turn implies d3(a) = 0. Thus, the physical condition (A′) implies
P D(W) ∈ Kerd3.
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Next, let us interpret the quotient by the image of d3 in (4.9). Suppose a =
d3(a′) = (Sq3 + [H ])(a′). Then, choose representatives

P D(a) = W P D(a′) = W′ (4.14)

where W is codimension 3 in W′. A D-brane terminating on W can be the
magnetic source for the D-brane gauge field on W′ and

P D
(
W ↪→ W′) = W3(W

′) + [H ]|W′ ⇒ a = d3(a
′) (4.15)

Therefore, the physical process of D-instanton induced brane instability im-
plies one should take the quotient by the image of d3 [80], [71]. (In fact, con-
ditions (A′), (B ′) contain more information than d3.)

4.3 Examples: Twisted K -groups of SU (N )

As an illustration of the above point of view let us consider the twisted K -
groups of SU (2) and SU (3).

Consider first K H (SU (2)). Then H = kω where ω gener-
ates H3(SU (2); ZZ). In the cohomological model of branes we have
H even(SU (2)) = H0 ∼= H3 = ZZ, corresponding to ‘D3-branes’ (or D2-
instantons) while Hodd(SU (2)) = H3 ∼= H0 = ZZ corresponding to ‘D0-
branes’. Now condition (A′) shows that we can only have D0-branes. Indeed,
D2-instantons wrapping SU (2) = S3 violate D0-brane charge by k units as in
Figure 7. For this reason if we take SU (2) as the cycle W′ in condition (B ′)
then it follows that a system with k D0-branes is in the same connected compo-
nent of B as a system with no D0-branes at all. In Section 5.5 we will explain
in more detail how this can be.

In this way we conclude that

K 0
H (SU (2)) = 0

K 1
H (SU (2)) = ZZ/kZZ (4.16)

as is indeed easily confirmed by rigorous mathematical arguments.

Figure 7. k D0-branes terminate on a wrapped D2-brane instanton in the SU (2) level k
theory
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Let us now consider K H (SU (3)). Here the AHSS is not powerful enough to
determine the K -group. However, it is important to bear in mind that the phys-
ical conditions A′, B ′ contain more information, and are stronger, than the d3-
cohomology. Once again we take H = kω, where ω generates H3(SU (3); ZZ).

In the cohomological model we have Hodd ∼= H3 ⊕ H5. Now, 3-branes
cannot wrap SU (2) ⊂ SU (3) since [H ]DR �= 0. But 5-branes can wrap the
cycle M5 ⊂ SU (3), where M5 is Poincaré dual to ω. Now∫

SU (3)

ωSq2ω = 1 (4.17)

and hence

ι∗(ω) = W3(M5) (4.18)

is nonzero. (In fact, it turns out that the cycle M5 can be represented by
the space of symmetric SU (3) matrices. This space is diffeomorphic to
SU (3)/SO(3) and is a simple example of a non-Spinc manifold.)

It follows from (4.18) that if M5 is wrapped r times, anomaly cancellation
implies

r(k + 1)W3 = 0. (4.19)

The D-brane instantons relevant to condition (B ′) are just the D2-branes wrap-
ping SU (2). We thus conclude that

K 1
H=kω(SU (3)) =

{
ZZ/kZZ k odd
2ZZ/kZZ k even.

(4.20)

Let us now turn to the even-dimensional branes, H even ∼= H0 ⊕ H8. 8-branes
are anomalous because [H ]DR �= 0, but 0-branes are anomaly-free.

Now, D0-brane charge is not conserved because of the standard process of
Figure 8. There is, however, a more subtle instanton, illustrated in Figure 9, in
which a 3-chain ends on a nontrivial element in H2(M5; ZZ) ∼= ZZ2. This instan-
ton violates D0-charge by 1

2 k units, when k is even. In this way we conclude
that

SU(2)

SU(3)

Figure 8. k D0-branes terminate on a wrapped D2-brane instanton in an SU (2)
subgroup of SU (3)
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SU(3)

M5

Figure 9. When k is even 1
2 k D0-branes can terminate on a hemisphere of SU (2)

which terminates on a generator of H5(SU (3),ZZ)

K 0
H (SU (3)) =

{
ZZ/kZZ k odd
ZZ/ k

2ZZ k even
(4.21)

One could probably extend the above procedure to compute the twisted
K -theory of higher rank groups using (at least for SU (N )), Steenrod’s cell-
decomposition, but this has not been done. In part inspired by the above re-
sults (and the result for D0-charge quantization explained in the next section)
M. Hopkins computed the twisted K -homology of SU (N ) rigorously. He finds
that, for H = kω

K H,∗(SU (N )) = (Z/dk,N Z) ⊗ �Z [w5, . . . , w2N−1] (4.22)

where

dk,N = gcd
[(k

1

)
,

(
k

2

)
, . . . ,

(
k

N − 1

)]
. (4.23)

We find perfect agreement for G = SU (2), SU (3) above.
It is interesting to compare (4.22) with

H∗(SU (N )) = �Z [w3, w5, . . . , w2N−1]. (4.24)

Recall that SU (N ) ∼ S3×S5×· · · S2N−1, rationally. Evidentally, the topologi-
cally distinct D-branes can be pictured as wrapping different cycles in SU (N ),
subject to certain decay processes. In the next section we will return to the
worldsheet RG point of view to explain the most important of these decay pro-
cesses. We will also give a simple physical argument (which in fact predated
Hopkins’ computation) for why the group of charges should be torsion of order
dk,N .

5 The example of branes in SU (N ) WZW models

In this section we will use the theory of ‘symmetry-preserving branes’ to deter-
mine the order dk,N of the D0-charge group for SU (N ) level k WZW model.
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Different versions of the argument are given in [81], [82], [71], [83]. For re-
views with further details on the material of this section see [84], [85], [86]
and references therein.

Let us summarize the strategy of the argument here:

(1) We define the ‘elementary’ or ‘singly-wrapped’ symmetry-preserving
boundary conditions algebraically using the formalism of boundary
conformal field theory. These boundary conditions are labelled by the
unitary irreps λ ∈ P+

k of the centrally extended loop group.
(2) We give a semiclassical picture of these boundary conditions as branes

wrapping special regular conjugacy classes with a nontrivial Chan–
Paton line bundle. See equations (5.14) and (5.24) below.

(3) We then discuss how it is that ‘multiply-wrapped’ symmetry preserv-
ing branes can lie in components of B corresponding to certain singly
wrapped branes. For example, a ‘stack of L D0-branes’ can be contin-
uously connected by RG flow to a symmetry-preserving brane labelled
by λ, provided the number of D0-branes L is equal to the dimension
d(λ) of the representation λ of the group G.

(4) This implies that the symmetry-preserving brane λ has, in some sense,
D0-charge L . On the other hand, as we have seen in the previous sec-
tion, the D0-charge must be finite and cyclic. Thus the D0-charge is
d(λ)moddk,N , for some integer dk,N .

(5) Finally we note that symmetry-preserving branes for different values of
λ can sometimes be related by a rigid rotation continuously connected
to 1. Such branes are obviously in the same component of B, and this
suffices to determine the order dk,N of the torsion group.

5.1 WZW Model for G = SU (N )

Let us set our notation. The WZW field g : � → G has action

S = k

8π

∫
�

TrN [(g−1∂g)(g−1∂̄g)] + 2πk
∫

ω (5.1)

where the trace is in the fundamental representation. The target space G =
SU (N ) has a metric

ds2 = −k

2
TrN (g−1dg ⊗ g−1dg) (5.2)

and a ‘B-field’ with fieldstrength

H = kω, ω := − 1

24π2
Tr(g−1dg)3 (5.3)
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where [ω] generates H3(G; Z) ∼= Z . The CFT state space is

Hclosed ∼= ⊕P+
k
Hλ ⊗ H̃λ∗ (5.4)

where Hλ, H̃λ∗ are the left- and right-moving unitary irreps of the loop group
L̃Gk , as described in [87].

Amongst the set of conformal boundary conditions (i.e. branes) there is a
distinguished set of ‘symmetry-preserving boundary conditions’ leaving the
diagonal sum of left-and right-moving currents J + J̃ unbroken (see [84], [85]
for more details). Since there is an unbroken affine symmetry the open string
morphism spaces H

open
ab are themselves representations of L̃Gk . Accordingly,

these are objects in the category of boundary conditions labelled by λ ∈ P+
k .

The decomposition of the morphism spaces as irreps of L̃Gk is given by

H
open
λ1,λ2

= ⊕λ3∈P+
k

Nλ3
λ1,λ2

Hλ3 (5.5)

where Nλ3
λ1,λ2

are the fusion coefficients.
The most efficient way to establish (5.5) is via the ‘boundary state formal-

ism’. In the 2D topological field theory of Section 2, the boundary state as-
sociated to boundary condition a is defined to be ιa(1a) where 1a is the unit
in the open string algebra Haa . This is an element of the closed string alge-
bra C which ‘creates’ a free boundary with boundary condition a. Similarly,
in boundary CFT, to every conformal boundary condition a one associates a
corresponding ‘boundary state’

|B(a)〉〉 ∈ Hclosed. (5.6)

For the symmetry-preserving WZW boundary conditions the corresponding
boundary state is given by the Cardy formula

|B(λ)〉〉 =
∑

λ′∈P+
k

S λ′
λ√
Sλ′

0

1Hλ′ ∈ Hclosed (5.7)

where S λ′
λ is the modular S-matrix, 0 denotes the basic representation, and we

think of the closed string statespace as

Hclosed ∼= ⊕P+
k

Hλ ⊗ H̃λ∗ ∼= ⊕P+
k

Hom(Hλ, Hλ) (5.8)

Applying the Cardy condition to (5.7) we get (5.5).
Since the disk partition function is the overlap of the ground state with the

boundary state, Zdisk = 〈0|B(λ)〉〉, the g-function for these conformal fixed
points follows immediately from (5.7)

g(λ) = Sλ,0/
√

S00. (5.9)
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Finally, as we noted before, it is important to introduce worldsheet super-
symmetry in order to have any stable branes at all. It suffices to introduce
N = 1 supersymmetry, although when embedded in a type II string back-
ground the full background can have N = 2 supersymmetry. It is also impor-
tant to have a well-defined action by (−1)F on the conformal field theory. This
distinguishes the cases where the rank of G is odd and even. When the rank is
odd we can always add an N = 1 Feigin–Fuks superfield, as indeed is quite
natural when building a type II string background.

5.2 Geometrical interpretation of the symmetry-preserving branes

We would like to discuss the geometrical interpretation of the symmetry-
preserving boundary condition labelled by λ. That is, we would like some
semiclassical picture of the brane as an extended object in the group manifold.
In this section we explain how that is derived.

Let us first recall how the geometry of the compact target space is recovered
in the WZW model. In the WZW model the metric is proportional to k, so the
path integral measure has weight factor

∼ e−kS . (5.10)

Thus, we expect semiclassical pictures to emerge in the limit k → ∞. In
this limit the vertex operator algebra ‘degenerates’ to become the algebra of
functions on the group G. For example, CFT correlators become integrals over
the group manifold

〈F̂1(g(z1, z̄1)) · · · F̂n(g(zn, z̄n))〉 →
∫

G
dµ(g)F1(g) · · · Fn(g) (5.11)

On the left-hand side, F̂i are suitable vertex operators of dimension ∼ 1/k. On
the right-hand side, Fi are corresponding L2 functions on G. Roughly speak-
ing, the CFT statespace degenerates as

Hclosed ∼= ⊕P+
k
Hλ ⊗ H̃λ∗ → L2(G) ⊗ Hstring (5.12)

where L2(G) is the limit of the primary fields and Hstring contains the ‘oscil-
lator excitations’. In this limit the boundary state degenerates

|B(λ)〉〉 → Bλ + · · · (5.13)

where Bλ ∈ L2(G) and becomes a distribution in the k → ∞ limit. While
(5.12) is clearly heuristic, (5.13) has a well-defined meaning because the over-
laps of |B(λ)〉〉 with primary fields of dimension ∼ 1/k have well-defined
limits.
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Figure 10. Distinguished conjugacy classes in SU (2). These are the semiclassical
worldvolumes of the symmetry-preserving branes

Using equation (5.7), the formulae for the modular S-matrix, and the Peter–
Weyl theorem one finds that the function Bλ is concentrated on the regular
conjugacy class

Oλ,k :=
[

exp
(
2π i

λ + ρ

k + h

)]
(5.14)

leading to the semiclassical picture of branes in Figure 10. Here ρ is the
Weyl vector and h is the dual Coxeter number. (As usual, replace k →
k − h, λ ∈ P+

k−h for the supersymmetric case.) See [88], [89], [71] for more
details.

Remarks:

(1) Since k is the semiclassical expansion parameter we only expect to
be able to localize the branes to within a length-scale �string ∼ 1/

√
k

when using closed string vertex operators [90]. Let t be the the Lie
algebra of the maximal torus, and let χ ∈ t parametrize conjugacy
classes. Then the metric ds2 ∼ k(dχ)2 and hence vertex operators
can only ‘resolve’ angles δχ ≥ 1√

k
. This uncertainty encompasses

many different conjugacy classes (5.14). Nevertheless, the semiclassi-
cal geometrical pictures give exact results for many important physical
quantities. The reason for this is that the relevant exact CFT results are
polynomials in 1/k, and hence can be exactly computed in a semiclas-
sical expansion.

(2) The basic representation λ = 0 gives the ‘smallest’ brane. We will refer
to this as a ‘D0-brane’. In a IIA string compactification built with the
WZW model this state is used to construct a D0-brane. Note, however,
that in this description it is not pointlike, but rather has a size of order
the string length ∼ 1/

√
k.
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a

b

Figure 11. Using a D0-brane as boundary condition a we can probe for the location of
brane b by studying the lowest mass of the stretched strings

5.3 Using CFT to measure the distance between branes

To lend further support to the geometrical picture advocated above, let us show
that D-branes can be rotated in the group, and that the distance between them
can then be measured using CFT techniques.

First, we explain how to ‘rotate’ D-branes. GL × G R acts on Hclosed, and
therefore we can consider the boundary state

gL gR |B(λ)〉〉. (5.15)

In the k → ∞ limit this state has a limit similar to (5.13). In particular, it is
supported on the subset

gLOλ,k gR ⊂ G. (5.16)

Now, let us consider the open string statespace H
open
ba with a corresponding

to a rotated D0-brane, a = gL · |B(λ = 0)〉〉 and b = |B(λ)〉〉. A typical
string in this space may be pictured as in Figure 11. This picture suggests a
way to ‘measure the distance’ between the two branes, and thereby to define
the positions of branes in the spirit of [91], [92], [93]. The picture suggests that
the open string channel partition function has an expansion for small qo

TrHopen
b,a

q L0
o

?= q
(T f D)2

o + · · · (5.17)

where D is the geodesic distance between the center of the D0-brane at gL

and the brane b. T f is the fundamental string tension (we set α′ = 1 here, so
T f = 1/(2π)).

We can actually compute the qo expansion of (5.17) using the expression for
the boundary state together with the Cardy condition

TrHb,a q L0−c/24
o = 〈〈B(λ)|q

1
2 (L0+L̃0−c/12)

c ρL(g)|B(0)〉〉 (5.18)
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where qc = e2π iτc , qo = e−2π i/τc = e2π iτo . The computation is straightfor-
ward. Let us quote the result for SU (2). If gL is conjugate to

(
eiχ 0
0 e−iχ

)
(5.19)

with 0 ≤ χ ≤ π , then, in the Ramond sector, the leading power of qo in (5.17)
is

k

(
χ̂ j − χ

2π

)2

. (5.20)

Here χ̂ j = π(2 j + 1)/k, and the brane b is labelled by j ∈ {0, 1
2 , . . . , k−2

2 }.
The formula (5.20) is precisely (T f D)2, as naı̈vely expected. Again, we see
that the geometrical picture of the branes is beautifully reproduced from the
conformal field theory.6 Very similar remarks hold for the D-branes in coset
models [89].

5.4 Why are the branes stable?

The geometrical picture advocated in the previous sections raises an interesting
puzzle. We will now describe this puzzle, and its beautiful resolution in [94],
[95].

Consider a D-brane wrapping Oλ,k ⊂ G once, as in Figure 10. In the context
of the type II string theory, the brane has a nonzero tension T , with units of
energy/volume. Hence, wrapping a submanifold W with a brane costs energy
E ∼ T vol(W). However, the regular conjugacy classes Oλ,k ⊂ G are homo-
logically trivial. For example, for SU (2), O = S2 ⊂ S3. We therefore expect
the brane to be unstable and to contract to a point.

This leads to a paradox: We know from conformal field theory that the brane
is absolutely stable. From the expression for the boundary state we can com-
pute the spectrum of operators in the open string statestate from

TrHλ,λ
q L0−c/24 (5.21)

and we find all �i ≥ 1. According to (3.5) it follows that there are no unstable
flows under β away from this point!

The resolution of the paradox lies in the fact that D-branes also have gauge
theory degrees of freedom on them. The brane carries a U (1) line bundle

6 In the bosonic case (5.20) turns out to be k+2
4

(
χ̂ j −χ

π

)2
+ 1

2
χ
π (1 − χ

π ) − 1
4(k+2)

so it is only

for k(δχ)2 � 1 that the conclusion holds.
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L → O with connection. If this bundle is twisted then there is a stabilizing
force opposing the tension.

To illustrate the resolution in the simplest terms, consider the example of
SU (2) with conjugacy class O = S2, of radius R = √

k sin χ . If the Chan–
Paton line bundle of the brane has Chern class n ∈ ZZ, then

∫
O F = 2πn. It

follows that the Yang–Mills action is∫
S2

F ∧ ∗F ∼ n2

R2
(5.22)

and hence we can evaluate the g-function (3.20)

g(χ) ∼ R2 + n2

R2
. (5.23)

This has a minimum at χ ∼ πn/k, and hence we expect an RG flow in the
sector of B determined by n to evolve to this configuration.

The above arguments have been generalized from SU (2) to higher rank
groups in [71], [96]. The result that emerges is that |B(λ)〉〉 can be pictured,
semiclassically, as wrapping the conjugacy class Oλ,k . The brane is singly
wrapped, and its Chan–Paton line bundle Lλ → Oλ,k has first Chern class

c1(Lλ) = λ + ρ ∈ H2(G/T ; Z) ∼= �weight (5.24)

(for further details see [71]).
It is interesting to study the g-function and its approximation by the DBI

action in this problem. We restrict attention to the bosonic WZW model. Let χ

parametrize the conjugacy classes in G. For the Chan–Paton line bundle (5.24)
the DBI action

gDB I (χ) :=
∫

Oχ

√
det(g + F + B) (5.25)

as a function of χ is minimized at χ∗ = 2π(λ + ρ)/(k + h), where it takes the
value

gDB I (χ∗)/gDB I (0) =
∏
α>0

(
k sin 1

2α · χ

πα · ρ

)
. (5.26)

Here the product is over positive roots. This compares remarkably well with
the exact CFT answer

g(λ)/g(0) =
∏
α>0

(
sin πα · (λ + ρ)/(k + h)

sin πα · ρ/(k + h)

)
. (5.27)

Note that the right-hand side is the quantum dimension dq(λ), in harmony with
(5.9) above.
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5.5 How collections of D0-branes evolve to symmetry-preserving branes

The semiclassical picture of the symmetry-preserving branes we have just de-
scribed raises an important new point. In type II string compactification, if a
brane carries a topologically nontrivial Chan–Paton bundle then it carries a
nontrivial induced D-brane charge. In the present case since the Chan–Paton
line bundle has

∫
W ec1(L) �= 0 it carries D0-charge. This suggests that the con-

formal fixed point characterized by |B(λ)〉〉 is in the same component of B as
the fixed point corresponding to a ‘collection of D0-branes’. In this section we
review why that is true.7

By a ‘stack of D0-branes’ physicists mean the boundary state L|B(0)〉〉 for
some positive integer L . By definition, the open string sectors for such a stack
of D0-branes have state spaces

H
open
L B(0),b = CL ⊗ H

open
B(0),b (5.28)

for any boundary condition b.
Claim: If λ ∈ P+

k and L = d(λ), then L|B(0)〉〉 is in the same component
of B as |B(λ)〉〉.

Note that

g(B(λ))

g(L B(0))
= Sλ,0

L S00
= dq(λ)

d(λ)
< 1 (5.29)

so the claim is nicely consistent with the g-theorem. In particular, if these fixed
points can be connected by RG flow then L D0s are unstable to λ, and not vice
versa. We sometimes refer to this instability as the ‘blowing up effect’.

The RG flow in question arises in the theory of the Kondo effect and was
studied by Affleck and Ludwig [25], [26]. Their results were applied in the
present context by Schomerus and collaborators. See [84], and references
therein. Kondo model trajectories are obtained by perturbing a conformal fixed
point by the holonomy of the unbroken current algebra in some representation.
The flow, which should take L|B(0)〉〉 to |B(λ)〉〉, is given by considering the
disk partition function

Z(u) = 〈Trλ

(
P exp

∮
dτu J (τ )

)
〉. (5.30)

As explained in [84], the results of Affleck and Ludwig lend credence to the
main claim.

7 Actually, the most obvious embedding of the SU (2) WZW model into a type IIA background
using a Feigin–Fuks superfield produces a background for which the definition of RR D0-charge
is in fact subtle. The relevant U (1) RR gauge group is spontaneously broken to ZZk due to the
condensation of a spacetime scalar field of charge k. See [97] for more discussion.
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Actually, it is important to take into account N = 1 supersymmetry in this
problem.8 In the supersymmetric WZW model we have a superfield

Ja(z) = ψa(z) + θ Ia(z) (5.31)

where we have chosen an orthonormal basis for the Lie algebra, labelled by
a = 1, . . . , dim G. The OPE’s are [99], [100], [101]

Ia(z)Ib(w) ∼ kδab

(z − w)2
+ f c

ab
Ic(w)

z − w
+ · · ·

Ia(z)ψb(w) ∼ f c
ab ψc(w)

z − w
+ (5.32)

ψa(z)ψb(w) ∼ kδab

(z − w)
+ · · ·

By a standard argument the currents Ja = Ia + 1
2k fabcψbψc decouple from the

fermions and satisfy a current algebra with level k − h. The Hamiltonian and
supersymmetry charge are given (in the Ramond sector) by

Q =
∮

dz

(
1

k
Jaψa − 1

6k2
fabcψaψbψc

)

H = 1

2k

∮
dz (: Ja Ja : +∂ψaψa) . (5.33)

The supersymmetry transformations are [Q, ψa] = Ia and [Q, Ia] = ∂ψa .
Now, let us add a Kondo-like boundary perturbation preserving N = 1 su-

persymmetry. This is given by choosing a representation λ of G and taking

g(u) = 〈Trλ

(
P exp

∮
dτuI (τ )

)
〉. (5.34)

Using [Q, Ia] = ∂ψa to vary the perturbed action in (5.34) we may compute
the perturbed supercharge Qu . This operator acts on CL ⊗ Hopen as

Qu = Q + uψa(0)Sa

= Q + u
∑
n∈ZZ

ψa
n Sa (5.35)

In the first line we have passed to a Hamiltonian formalism for the open string
on a space [0, π] (and we are only modifying the boundary condition at σ = 0),
and we have introduced explicit generators Sa for the finite-dimensional rep-
resentation CL of the group G. In the second line we have used the doubling

8 The following argument combines elements from [84], [98], [71].
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trick to express the result in terms of modes of a single-valued chiral vertex
operator on the plane C. We can now compute the perturbed Hamiltonian

Hu = Q2
u = H + uI a(0)Sa + u2(ψa(0)Sa)2. (5.36)

The third term in (5.36) is singular, but the renormalization of this term is fixed
by the requirement of supersymmetry. The Hamiltonian can be written as

Hu = 1

2k

∑
n

(
: (J a

n + ukSa)(J a
−n + ukSa) : +nψa

n ψa
−n

)

+ 1

2
u

(
u − 1

k

) ∑
n,m

f abcψa
n ψb

m Sc (5.37)

so that the vacuum of the theory evolves in a complicated way as a function of
u. Note that, exactly for u = u∗ = 1/k, the Hamiltonian simplifies into

H∗ = 1

2k

∑
n

(
: Ja

nJa
−n : +nψa

n ψa
−n

)
(5.38)

where

Ja
n := J a

n + Sa (5.39)

also satisfy a current algebra with level k − h. Thus, at u = u∗, we can build a
new superconformal algebra with these currents.

The previous paragraph strongly suggests that u∗ = 1/k is a second critical
point for the boundary conformal field theory. Now, we can use an observation
of Affleck and Ludwig. If Hλ′ is a representation of J a

n , then with respect to a
new current algebra Ja

n we can decompose

CL ⊗ Hλ′ ∼= ⊕λ′′∈P+
k

Nλ′′
λ,λ′Hλ′′ . (5.40)

(An easy way to prove (5.40) is to consider the cabling of Wilson lines in 3D
Chern–Simons theory, and use the Verlinde algebra.) Therefore it follows that

Trλ1

(
P exp

∮
u∗ I

)
|B(λ2)〉〉 =

∑
λ3

Nλ3
λ1,λ2

|B(λ3)〉〉 (5.41)

where the boundary states on the RHS are constructed using Ja
n . It would be

worthwhile to give a direct proof of (5.41). The identity has been verified at
large k in [98].

Let us close this subsection with a number of remarks.

(1) Note that when there is more than one term on the right-hand side of
(5.40) a local boundary condition has evolved into a (mildly) nonlocal
boundary condition. Regrettably, this muddies the proposed definition
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of D-branes as local boundary conditions preserving conformal
invariance.

(2) The instability of a stack of L D0-branes to decay to a symmetry-
preserving brane has been much discussed in the literature in the
framework of noncommutative gauge theory (see [84] and references
therein). The arguments show that the ‘D-brane instantons’ of the pre-
vious section should be viewed as real-time processes taking place in
classical string theory.

(3) The Kondo flows are integrable flows. The g function has been studied
in [102], [103], [104], [105], [106], [107] in several examples and for
certain boundary conditions related to the free fermion construction of
current algebras. It is possible that the techniques of [102], [103], [104]
can be used to give exact results for how the boundary state evolves
along the RG trajectory. This could be very interesting indeed.

(4) The ‘blowing up effect’ is closely related to some work of [108], [109].
These authors study families of Fredholm operators over the space of
gauge fields on S1. The perturbed supersymmetry operator along the
RG flow is related to the family of Fredholm operators studied in [108],
[109].

(5) One of the most remarkable aspects of the blowing-up effect is the
disappearance of k D0-branes ‘into nothing’. Let us stress that this is
an effect studied in the laboratory! One studies electrons coupled to a
magnetic ‘impurity’. Translating this system into conformal field the-
ory terms [110], [105] reveals the boundary SU (2) model with k = 1;
the presence of the magnetic impurity, in the high temperature regime,
translates into the presence of a single D0-brane. The RG flow pa-
rameter is the temperature, and, as T → 0, the magnetic impurity is
screened and ‘disappears’. The absence of the magnetic impurity cor-
responds to the disappearance of the D0-brane.

(6) The effect we are discussing can be related, by U-duality, to the Myers
effect [111]. (Apply S-duality to a IIB solitonic 5-brane.)

(7) Actual evaluation of the standard D0-brane charge formula
∫
Oλ,k

eF+B

yields a quantum dimension for the group. As far as we know, this
curious fact has not yet been properly understood.

5.6 The D0-charge group

At this point we have two notions of D0-brane charge. On the one hand, we
have naı̈ve D0-charge L = d(λ). On the other hand, as we explained in Sec-
tion 4, due to D-brane instantons, the true D0-charge, which we denote by q(λ),
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j

k/2 -j 

Figure 12. Two symmetry-preserving branes related by a rigid rotation

must be a torsion. Indeed, we know that D-brane instanton effects will impose
a relation

q(λ) = d(λ)mod dk,N (5.42)

for some integer dk,N , but (without Hopkins) it is hard to account for all pos-
sible D-brane instantons. So, we will now determine the order, dk,N , of the
torsion group using the blowing up effect and a simple observation regarding
rotated branes.

Recall from Section 5.3 that we can rotate our branes by GL × G R . Some-
times it can happen that the special conjugacy classes can be rotated into one
another

gLOλ,k gR = Oλ′,k . (5.43)

For example, if G = SU (2) the conjugacy classes O j,k and Ok/2− j,k can be
rotated into each other

(−1) · O j,k = O 1
2 k− j,k (5.44)

as in Figure 12. Let us ask which representations are related in this way.
In order to answer this question we use the well-known relation between

the center of a compact connected, simply-connected Lie group G and the
automorphisms of the extended Dynkin diagram. For example, if G = SU (N ),
Z(G) ∼= Z N , and Z N acts on the extended Dynkin diagram by rotation. Next,
the automorphisms of the extended Dynkin diagram act on the space of level k
integrable representations P+

k . For example, for SU (2)

j → j ′ = 1

2
k − j (5.45)

while for ŜU (N )k the generator of Z(G) acts on the Dynkin labels by

λ = (a1, . . . , aN−1) → λ′ = (k −
∑

ai , a1, . . . , aN−2). (5.46)

A beautiful result of group theory is that if z ∈ Z(G) then

zOλ,k = Oz·λ,k (5.47)
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Now we can use (5.47) to determine the order of the D0-charge group. To
see this note first that two branes related by a rigid rotation must have the same
D0-charge! On the other hand, λ and z ·λ have different dimensions, and hence
have different naı̈ve D0-charge. Therefore, we seek an integer dk,N such that

d(z · λ) = ±d(λ)mod dk,N ∀z ∈ Z(G), λ ∈ P+
k (5.48)

where the sign ± depends on z and the rank of G, and accounts for orientation
(see [71] for more details). It turns out that this condition determines dk,N

dk,N = gcd
[(k

1

)
,

(
k

2

)
, . . . ,

(
k

N − 1

)]
. (5.49)

in perfect agreement with Hopkins’ result! (See [82], [71] for details of some
of the arithmetic involved.)

Remarks:

(1) The generalization of dk,N to other compact simple Lie groups has been
discussed in [112].

(2) After my talk at the conference, M. Hopkins made a curious remark
which I would like to record here. There is a simple mathematical rela-
tion between twisted equivariant K-theory and twisted K-theory of G
which has several of the same ingredients as the physical discussion we
have just given. If π1(G) is torsion free the Kunneth formula of [113],
[114] suggests that the two twisted K-theories are related by

ZZ ⊗R(G) KG,H (G) = K H (G). (5.50)

Here the representation ring R(G) is to be thought of as the ring of
functions on the representation variety G/T with T acting by conju-
gation. R(G) acts on 1 ∈ ZZ by the dimension of the representation,
while KG,H (G) is the Verlinde algebra, thanks to the theorem of Freed,
Hopkins, and Teleman [115], [116], [117]. Curiously, from the point
of view of algebraic geometry this means that the special conjugacy
classes have an intersection with the identity element, when considered
as varieties over ZZ.

5.7 Comment on cosets

The point of view explained above has potentially interesting applications to
branes in coset models. Roughly speaking, if L ⊂ G is a subgroup then the
branes in the N = 1 supersymmetric coset model G/L should be classified
by the twisted equivariant K-theory KL ,H (G), where the twisting comes from
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the WZW G-theory. The branes in such coset models have been studied in
many papers. See [118], [89], [86], [119] [121], [122] for a sampling. For the
SU (2)/U (1) model the stable A-banes described in [89] are in perfect accord
with the twisted equivariant K -theory. The higher rank situation is somewhat
more subtle and is currently under study by S. Schafer-Nameki [123].

6 Conclusion

Our goal in this talk was not to establish rigorous mathematical theorems
but to explain how physics can suggest some intuitions for K-theory which
are complementary to the more traditional (and rigorous!) approaches to the
subject. Such alternative viewpoints and heuristics can sometimes suggest
new and surprising directions for enquiry, or can suggest simple heuristics
for already known results. The above ‘derivation’ of the twisted K -theory of
SU (N ) is just one example, but there are others. For example, the symmetry-
preserving branes are precisely the branes which descend to branes in the
G/G gauged WZW model. The reason is that the gauge group acts on G
by conjugation, and only the symmetry-preserving boundary conditions pre-
serve this gauge symmetry. Now, the G/G WZW model is a topological field
theory whose Frobenius algebra is the Verlinde algebra. This provides a sim-
ple perspective on the physics underlying the result of Freed, Hopkins, and
Teleman [115], [116], [117]. (This remark is also related to the discussion of
[115].)

Let us conclude by mentioning some future directions which might prove to
be interesting to the mathematics community, and which are suggested by the
more physical approach to K-theory advocated in this paper.

First, in the context of spacetime supersymmetric models a special class
of boundary conditions, the so-called ‘BPS states’ might have an interesting
product structure [124], [125]. Thus, perhaps the category of boundary condi-
tions (or an appropriate subcategory) can also be given the structure of a tensor
category.

Second, the RG approach to D-branes suggests an interesting generaliza-
tion of the McKay correspondence to non-crepant toric resolutions of orbifold
singularities [126].

Finally, the K -theoretic classification of D-branes in type II string the-
ory must somehow be compatible with the U-duality symmetries these the-
ories enjoy, and must somehow be compatible with 11-dimensional M-theory.
Only bits and pieces of this story are at present understood. It is possible
that the full resolution will be deep and will have interesting mathematical
applications.
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Heisenberg groups and algebraic topology
JACK MORAVA

Abstract

We study the Madsen–Tillmann spectrum CP∞
−1 as a quotient of the Mahowald

pro-object CP∞−∞, which is closely related to the Tate cohomology of circle
actions. That theory has an associated symplectic structure, whose symmetries
define the Virasoro operations on the cohomology of moduli space constructed
by Kontsevich and Witten.

1 Introduction

A sphere Sn maps essentially to a sphere Sk only if n ≥ k, and since we usu-
ally think of spaces as constructed by attaching cells, it follows that algebraic
topology is in some natural sense upper-triangular, and thus not very self-dual:
as in the category of modules over the mod p group ring of a p-group, its
objects are built by iterated extensions from a small list of simple ones.

Representation theorists find semi-simple categories more congenial, and
for related reasons, physicists are happiest in Hilbert space. This paper is con-
cerned with some remarkable properties of the cohomology of the moduli
space of Riemann surfaces, discovered by physicists studying two-dimensional
topological gravity (an enormous elaboration of conformal field theory), which
appear at first sight quite unfamiliar. Our argument is that these new phenom-
ena are forced by the physicists’ interest in self-dual constructions, which leads
to objects which are (from the point of view of classical algebraic topology)
very large [1, §2].

Fortunately, equivariant homotopy theory provides us with tools to manage
these constructions. The first section below is a geometric introduction to the

I owe thanks to many people for help with the ideas in this paper, but it is essentially a collage of
a lifetime’s conversations with Graeme Segal, who more or less adopted me when we were both
very young.
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Tate cohomology of the circle group; the conclusion is that it possesses an in-
trinsic symplectic module structure, which pairs positive and negative dimen-
sions in a way very useful for applications. Section 2 studies operations on this
(not quite cohomology) functor, and exhibits the action of an algebraic analog
of the Virasoro group on it. The third section relates rational Tate cohomology
of the circle to that of the infinite loopspace QCP∞+ considered by Madsen
and Tillmann in recent work on Mumford’s conjecture.

2 Geometric Tate cohomology

2.1. Let G be a compact Lie group of dimension d. We will be concerned with
a cobordism category of smooth compact G-manifolds, with the action free
on the boundary: this can be regarded as a categorical cofiber for the forgetful
functor from manifolds with free G-action to manifolds with unrestricted ac-
tion. Under reasonable assumptions this cofiber category is closed under Carte-
sian products (given the diagonal action).

If E is a geometric cycle theory (e.g. stable homotopy, or classical homol-
ogy) then the graded E-bordism group of free G-manifolds is isomorphic to
E∗+d(BG+). On the other hand, the homotopy quotient of a G-manifold is
a bundle of manifolds over the classifying space BG, and Quillen’s conven-
tions [22] associate to such a thing, a class in the graded cobordism group
E−∗(BG+). The forgetful functor from free to unrestricted G-manifolds de-
fines a long exact sequence

· · · → E∗−d(BG+) → E−∗(BG+) → t−∗
G (E) → E∗−d−1(BG+) → · · ·

which interprets the relative groups as the (Tate–Swan [28]) E-bordism of
manifolds with G-action free on the boundary. The geometric boundary ho-
momorphism

∂E : t−∗
G (E) → E∗−d−1(BG+) → E∗−d−1

sends a manifold with G-free boundary to the quotient of that action on the
boundary; it will be useful later.

Remarks:

(1) tG(E) is a ring-spectrum if E is; in fact it is an E-algebra, at least in some
naı̈ve sense;

(2) Tom Dieck stabilization [4] extends this geometric bordism theory to an
equivariant theory;

(3) the functor tG sends cofibrations to cofibrations, but it lacks good limit
properties: it is defined by a kind of hybrid of homology and cohomology,
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and Milnor’s limit fails. In more modern terms [11], the construction sends
a G-spectrum E to the equivariant function spectrum [EG+, E] ∧ ẼG+.

(4) The eventual focus of §9.2 is the case when G is the circle group T, and E
is ordinary cohomology: this is closely related to cyclic cohomology [2],
but I do not know enough about that subject to say anything useful.

2.2. Suppose now that E is a general complex-oriented ring-spectrum; then
E∗(BT+) is a formal power series ring generated by the Euler (or first Chern)
class e. If E∗ is concentrated in even degrees, then the cofiber sequence above
reduces for dimensional reasons to a short exact sequence

0 → E∗(BT+) = E∗[[e]] → t∗
T

E = E∗((e)) → E−∗−2(BT+) → 0

with middle group the ring of formal Laurent series in e. By a lemma of [12,
§2.4] we can think of t∗

T
E as the homotopy groups of a pro-object

S2CP∞
−∞ ∧ E := {S2Th(−kη) ∧ E | k > −∞}

in the category of spectra, constructed from the filtered vector bundle

· · · (k − 1)η ⊂ kη ⊂ (k + 1)η ⊂ · · ·
defined by sums of copies of the tautological line bundle over CP∞ ∼= BT,
as discussed in the appendix to [6] (see also [18]). More precisely: the Thom
spectrum can be taken to be

Th(−kη) := lim
n

S−2(n+1)kCPkη⊥
n

where η⊥ is the orthogonal complement to the canonical line η in Cn+1.
When E is not complex-orientable, tT E can behave very differently: the

Segal conjecture for Lie groups implies that, up to a profinite completion [10]

tT S0 ∼ S0 ∨ S[
∏

BT/C]

where the product runs through proper subgroups C of T (and S denotes
suspension).

In the universal complex-oriented case, the class e−1 ∈ t−2
T

MU is repre-
sented geometrically by the unit disk in C with the standard action of T as
unit complex numbers; more generally, the unit ball in Ck represents e−k . The
geometric boundary homomorphism sends that T-manifold to CPk−1; this ob-
servation can be restated, using Mishchenko’s logarithm, as the formula

∂E ( f ) = rese=0 f (e) d logMU(e) : t∗
T

MU → MU−∗−2

where the algebraic residue homomorphism

rese=0 : MU∗−2((e)) → MU∗

is defined by rese=0 ek de = δk+1,0, cf. [19] [21] [29].



238 Morava

2.3. The relative theory of manifolds with free group action on the boundary
alone defines bordism groups τ ∗

G(E) analogous to a truncation of Tate coho-
mology, with useful geometric applications. In place of the long exact sequence
above, we have

· · · → E−∗(S0) → τ−∗
G (E) → E∗−d−1(BG+) → · · ·

compatible with a natural transformation t∗G(E) → τ ∗
G(E) which forgets the

interior G-action. In our case (when E is complex-oriented), this is just the
E-homology of the collapse map

CP∞
−∞ → CP∞

−1 := Th(−η)

defined by the pro-spectrum in the previous paragraph.
A Riemann surface with geodesic boundary is in a natural way an orientable

manifold with a free T-action on its boundary, and a family of such things,
parametrized by a space X , defines an element of

τ−2
T

MU(X+) ∼= [X, CP∞
−1 ∧ MU] .

The Hurewicz image of this element in ordinary cohomology is the homomor-
phism

H∗(CP∞
−1, Z) → H∗(X+, Z)

defined by the classifying map of Madsen and Tillmann, which will be
considered in more detail below.

3 Automorphisms of classical Tate cohomology

3.1. There are profound analogies – and differences – among the Tate coho-
mology rings of the groups Z/2Z, T, and SU(2) [3]. A property unique to the
circle is the existence of the nontrivial involution I : z → z−1.

When E is complex oriented, the symmetric bilinear form

f, g �→ ( f, g) = ∂E ( f g)

on the Laurent series ring t∗
T

E is nondegenerate, and the involution on T

defines a symplectic form

{ f, g} = (I ( f ), g)

which restricts to zero on the subspace of elements of positive (or negative) de-
gree. This Tate cohomology thus has an intrinsic inner product, with canonical
polarization and involution.

This bilinear form extends to a generalized Kronecker pairing

tT E∗(X) ⊗E tT E∗(X) → E∗−2
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which can be interpreted as a kind of Spanier–Whitehead duality be-
tween tT E∗, viewed as a pro-object as in §2.1, and the direct system
{E∗(Th(−kη)) | k > −∞} defined by the cohomology of that system. This
colimit again defines a Laurent series ring, but this object is not quite its own
dual: a shift of degree two intervenes, and it is most natural to think of the (non-
existent) functional dual of tT E as S−2tT E . The residue map tT E → S2 E can
thus be understood as dual to the unit ring-morphism E → tT E .

3.2. The Tate construction is too large to be conveniently represented, so the
usual Hopf-algebraic approach to the study of its automorphisms is technically
difficult. Fortunately, methods from the theory of Tannakian categories can be
applied: we consider automorphisms of tT E as E varies, and approximate the
resulting group-valued functor by representable ones. There is no difficulty in
carrying this out for a general complex-oriented theory E , but the result is a
straightforward extension of the case of ordinary cohomology.

To start, it is clear that the group(scheme, representing the functor

A �→ G0(A) = {g(x) =
∑
k≥0

gk xk+1 ∈ A[[x]] | g0 = 1}

on commutative rings A) of automorphisms of the formal line acts as mul-
tiplicative natural transformations of the cohomology-theory-valued functor
A �→ t∗

T
H A, with g ∈ G0(A) sending the Euler class e to g(e). [I am treating

these theories as graded by Z/2Z, with A concentrated in degree zero; but one
can be more careful.]

Clearly G0 is represented by a polynomial Hopf algebra on generators gk ,
with diagonal

(�g)(x) = (g ⊗ 1)((1 ⊗ g)(x)).

However, G0 is a subgroup of a larger system G of natural automorphisms,
which is a colimit of representable functors (though not itself representable):
following [16], let

A �→ G(A) = {g(x)=
∑

k−∞
gk xk+1 ∈ A((x)) | g0 ∈ A×, gk ∈√

A if 0 > k}

be the group of invertible nil-Laurent series, i.e. Laurent series with g0 a
unit, and gk nilpotent for negative k. It is clear that G is a monoid, but in fact
[20] it possesses inverses. The Lie algebra of G is spanned by the derivations
xk+1∂x , k ∈ Z: it is the algebra of vector fields on the circle.

3.3. A related group-valued functor preserves the symplectic structure defined
above: to describe it, I will specialize even further, and work over a field
in which two is invertible: R, for convenience. Thus let Ǧ be the (ind-pro)-
algebraic groupscheme defined by invertible nil-Laurent series over the field
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R((
√

x)) obtained from R((x)) by adjoining a formal square root of x , and let
Ǧodd denote the subgroup of odd invertible series ǧ(

√
x) = −ǧ(−√

x). The
homomorphism

ǧ �→ g(x) := ǧ(
√

x)2 : Ǧodd → G

is then a kind of double cover.
The functor Ǧ acts by symplectic automorphisms of the module R((

√
x)),

given the bilinear form

〈u, v〉 := π resx=0 u(x) dv(x)

[27]; it is in fact a group of restricted symplectic automorphisms of this mod-
ule. The Galois group of R((

√
x))/R((x)) defines a Z/2Z-action, and the sub-

group Ǧodd preserves the subspace R((
√

x))odd of odd power series.

Proposition. The linear transformation

t∗
T

HR → R((
√

x))odd

defined on normalized basis elements by

ek �→ γ−k− 1
2
(x)

(where γs(x) = �(1 + s)−1xs denotes a divided power), is a dense symplectic
embedding.

Proof: We have

{ek, el} = (−1)k rese=0 ek+l de = (−1)kδk+l+1,0

while

〈γs, γt 〉 = resx=0 γs(x)γt−1(x) dx = π

�(t)�(1 + s)
δs+t,0 .

The assertion then follows from the duplication formula for the Gamma
function.

The half-integral divided powers lie in Q((
√

x)), aside from distracting pow-
ers of π . The remaining rational coefficients involve the characteristic ‘odd’
factorials of 2D topological gravity [8, 15], e.g. when k is positive

�(k + 1
2 ) = (2k − 1)!! 2−k√π.

4 Symmetries of the stable cohomology of the Riemann moduli space

The preceding sections describe the construction of a polarized symplectic
structure on the Tate cohomology of the circle group. The algebra of symmetric
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functions on the Lagrangian submodule

H∗(CP∞
+ , Q) ⊂ tT HQ

of that cohomology can be identified with the homology of the infinite
loopspace

QCP∞
+ = lim

n
	n Sn CP∞

+ .

On the other hand, this module of functions admits a canonical action of the
Heisenberg group associated to its defining symplectic module [24, §9.5].

The point of this paper is that the homology of this infinite loopspace, con-
sidered in this way as a Fock representation, manifests the Virasoro represen-
tation constructed by Witten and Kontsevich on the stable cohomology of the
moduli space of Riemann surfaces, identified with H∗(QCP∞+ , Q) through the
work of Madsen, Tillman, and Weiss. Some of those results are summarized
in the next two subsections; a more thorough account can be found in Michael
Weiss’s survey in these Proceedings. The third subsection below discusses their
connection with representation theory.

4.1. Here is a very condensed account of one component of [17]: if F ⊂ Rn

is a closed connected two-manifold embedded smoothly in a high-dimensional
Euclidean space, its Pontrjagin–Thom construction Rn+ → Fν maps compact-
ified Euclidean space to the Thom space of the normal bundle of the embed-
ding. The tangent plane to F is classified by a map τ : F → Grass2,n to the
Grassmannian of oriented two-planes in Rn , and the canonical two-plane bun-
dle η over this space has a complementary (n − 2)-plane bundle, which I will
call (n−η). The normal bundle ν is the pullback along τ of (n−η); composing
the map induced on Thom spaces with the collapse defines the map

Rn
+ → Fν → Grass(n−η)

2,n .

The space Emb(F) of embeddings of F in Rn becomes highly connected as
n increases, and the group Diff(F) of orientation-preserving diffeomorphisms
of F acts freely on it, defining a compatible family

Rn
+ ∧Diff Emb(F) → Grass(n−η)

2,n

which can be interpreted as a morphism

BDiff(F) → lim 	nGrass(n−η)

2,n := 	∞CP∞
−1 .

This construction factors through a map∐
g≥0

BDiff(Fg) → Z × B�+
∞ → 	∞CP∞

−1
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of infinite loopspaces. Collapsing the bottom cell defines a cofibration

S−2 → CP∞
−1 → CP∞

+

of spectra; the fiber of the corresponding map

	2 QS0 → 	∞CP∞
−1 → QCP∞

+

of spaces has torsion homology, and the resulting composition

Z × B�+
∞ → QCP∞

+ ∼ QS0 × QCP∞

is a rational homology isomorphism which identifies Mumford’s polynomial
algebra on classes κi , i ≥ 1, with the symmetric algebra on positive powers of
e. The rational cohomology of QS0 adds a copy of the group ring of Z, which
can be interpreted as a ring of Laurent series in a zeroth Mumford class κ0.

The standard convention is to write bk for the generators of H∗CP∞+ dual
to ek , and to use the same symbols for their images in the symmetric algebra
H∗(QCP∞+ , Q). The Thom construction defines a map

CP∞ → MU

which extends to a ring isomorphism

H∗(QCP∞, Q) → H∗(MU, Q)

sending the bk to classes usually denoted tk , with k ≥ 1; but it is convenient to
extend this to allow k = 0.

4.2. The homomorphism

lim MU∗+n−2(Th(n − η)) → MU∗−2(BDiff(F))

defined on cobordism by the Madsen–Tillmann construction sends the Thom
class to a kind of Euler class: according to Quillen, the Thom class of n − η

is its zero-section, regarded as a map between manifolds. Its image is the class
defined by the fiber product. This is the space of equivalence classes, under
the action of Diff(F), of pairs (x, φ), with x ∈ φ(F) ⊂ Rn a point of the
surface (i.e., in the zero-section of ν), and φ an embedding. Up to suspension,
this image is thus the element

[Zn → Rn
+ ∧Diff Emb] �→ MUn−2(Sn BDiff(F))

defined by the tautological family F ×Diff EDiff(F) of surfaces over the clas-
sifying space of the diffeomorphism group. It is primitive in the Hopf-like
structure defined by gluing: in fact it is the image of∑

k≥1

κk tk+1 ∈ MU−2(B�+
∞) ⊗ Q.
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If v is a formal indeterminate of cohomological degree two, then the class

 = exp(vTh(−η)) ∈ MU0
Q

(	∞CP∞
−1)[[v]]

defined by finite unordered configurations of points on the universal surface
(with v a book-keeping indeterminate of cohomological degree two) is a kind
of exponential transformation

̃∗ : H∗(QCP∞
+ , Q) → H∗(MU, Q[[v]]).

From this perspective it is natural to interpret the Thom class in
MU−2(CP∞

−1) ⊗ Q as the sum
∑

k≥−1 tk+1ek , with t0 = v−1e.

4.3. A class in the cohomology group

H2
Lie(V, R) ∼= �2(V ∗)

of a real vector space V defines a Heisenberg extension

0 → T → H → V → 0.

The representation theory of such groups, and in particular the construction of
their Fock representations, is classical [5]. What is important to us is that these
are projective representations of V , with positive energy; such representations
have very special properties.

The loop group of a circle is a key example; it possesses an intrinsic sym-
plectic form, defined by formulae much like those of §2 [23 §5, §7b]. Diffeo-
morphisms of the circle act on any such loop group, and it is a deep property of
positive-energy representations, that they extend to representations of the re-
sulting semidirect product of the loop group by DiffS1. Therefore by restriction
a positive-energy representation of a loop group automatically provides a rep-
resentation of DiffS1. This [Segal–Sugawara [25 §13.4]] construction yields
the action of Witten’s Virasoro algebra on the Fock space

Symm(H∗(CP∞
+ )) ∼= Q[tk | k ≥ 0] .

In Kontsevich’s model, the classes tk are identified with the symmetric
functions

Trace γ
k− 1

2
(�2) ∼ −(2k − 1)!! Trace �−2k−1

of a positive-definite Hermitian matrix �.
Note, however, that the deeper results of Kontsevich and Witten [31] are in-

accessible in this toy model: that theory is formulated in terms of compactified
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moduli spaces Mg of algebraic curves. The rational homology of Q(
∐

Mg)

(suitably interpreted, for small g) contains a fundamental class

exp
( ∑

g≥0

[Mg]v3(g−1)
)

for the moduli space of not necessarily connected curves. Witten’s tau-function
is the image of this ‘highest-weight’ vector under the analog of ̃; it is killed
by the subalgebra of Virasoro generated by the operators Lk with k ≥ −1.

5 Concluding remarks

5.1. Witten has proposed a generalization of 2D topological gravity which en-
compasses surfaces with higher spin structures: for a closed smooth surface F
an r -spin structure is roughly a complex line bundle L together with a fixed
isomorphism L⊗r ∼= TF of two-plane bundles, but for surfaces with nodes
or marked points the necessary technicalities are formidable [14]. The group
of automorphisms of such a structure is an extension of its group of diffeo-
morphisms by the group of r th roots of unity, and there is a natural analog
of the group completion of the category defined by such surfaces. The gener-
alized Madsen–Tillmann construction maps this loopspace to the Thom spec-
trum Th(−ηr ), and it is reasonable to expect that this map is equivariant with
respect to automorphisms of the group of roots of unity. This fits with some
classical homotopy theory: if (for simplicity) r = p is prime, multiplication
by an integer u relatively prime to p in the H -space structure of CP∞ defines
a morphism

Th(−ηp) → Th(−ηup)

of spectra, and the classification of fiber-homotopy equivalences of vector bun-
dles yields an equivalence of Th(−ηup) with Th(−ηp) after p-completion.
There is an analogous decomposition of tT HZp and a corresponding decom-
position of the associated Fock representations [20 §2.4].

5.2. Tillmann has also studied categories of surfaces above a parameter space
X ; the resulting group completions have interesting connections with both
Tate and quantum cohomology. When X is a compact smooth almost-complex
manifold, its Hodge-deRham cohomology admits a natural action of the Lie
algebra generated by the Hodge dimension operator H together with multi-
plication by the first Chern class (E) and its adjoint (F = ∗E∗) [26]. Re-
cently Givental [9 §8.1] has shown that earlier work of (the schools of) Eguchi,
Dubrovin, and others can be reformulated in terms of structures on t∗,∗

T
Hdg(X),

given a symplectic structure generalizing that of §3. In this work, the relevant
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involution is

IGiv = exp( 1
2 H) exp(−E) I exp(E) exp(− 1

2 H).

it would be very interesting if this involution could be understood in terms of
the equivariant geometry of the free loopspace of X [7].

5.3. Nothing forces us to restrict the construction of Madsen and Tillmann to
two-manifolds, and I want to close with a remark about the cobordism cat-
egory of smooth spin four-manifolds bounded by ordinary three-spheres. A
parametrized family of such objects defines, as in §2.3, an element of the trun-
cated equivariant cobordism group

τ−4
SU(2)MSpin(X+) .

On the other hand, it is a basic fact of four-dimensional life that

Spin(4) = SU(2) × SU(2)

so the Madsen–Tillmann spectrum for the cobordism category of such spin
four-folds is the twisted desuspension

BSpin(4)−ρ = (HP∞ × HP∞)−V ∗⊗H V

of the classifying space of the spinor group by the representation ρ defined by
the tensor product of two standard rank one quaternionic modules over SU(2)

[13 §1.4]. Composition with the Dirac operator defines an interesting rational
homology isomorphism

(HP∞ × HP∞)−V ∗⊗H V → HP−V
∞ ∧ MSpin → HP−V

∞ ∧ kO

related in low dimensions to the classification of unimodular even indefinite
lattices [27, 30]. This suggests that the Tate cohomology t∗SU(2)kO may have
an interesting role to play in the study of topological gravity in dimension four.
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1 Introduction

In these notes we propose an approach towards enriched elliptic objects over
a manifold X . We hope that once made precise, these new objects will be-
come cocycles in the generalized cohomology theory tmf ∗(X) introduced by
Hopkins and Miller [Ho], in a similar way as vector bundles over X repre-
sent elements in K ∗(X). We recall that one important role of K ∗(X) is as the
home of the index of a family of Fredholm operators parametrized by X , e.g.
the family of Dirac operators of a fiber bundle E → X with spin fibers. This
is the parametrized version of the Â-genus in the sense that the family index
in K ∗(X) reduces to the Â-genus of the fiber if X is a point. Similarly, one
important role of tmf ∗(X) is that it is the home of the parametrized version
of the Witten genus in the sense that a fiber bundle E → X whose fibers are
string manifolds (cf. section 5) gives rise to an element in tmf ∗(X) [HBJ].
If X is a point this reduces to the Witten genus [Wi1] of the fiber (modulo
torsion).

It would be very desirable to have a geometric/analytic interpretation
of this parametrized Witten genus along the lines described above for the
parametrized Â-genus. For X = pt, a heuristic interpretation was given
by Witten who described the Witten genus of a string manifold M as the
S1-equivariant index of the ‘Dirac operator on the free loop space’ of M
[Wi1] or as the ‘partition function of the super symmetric non-linear σ -model’
with target M [Wi2]; alas, neither of these have been rigorously constructed
yet. The construction of the parametrized Witten genus in tmf ∗(X) is instead
purely homotopy theoretic; the main ingredient is a Thom-isomorphism in
tmf-cohomology for vector bundles with string structures. This is completely
analogous to a description of the Â-genus based on the Thom isomorphism in
K -theory for spin vector bundles.

The cohomology theory tmf ∗(X) derives from cohomology theories of the
‘elliptic’ flavor. The first such theory was constructed by Landweber and Stong
[La] using Landweber’s Exact Functor Theorem and the elliptic genus intro-
duced by Ochanine [Och]. Ochanine’s genus can be interpreted as coming from
the formal group law associated to a particular elliptic curve; varying the el-
liptic curve used in the Landweber–Stong construction leads to a plethora of
elliptic cohomology theories. The cohomology theory tmf ∗(X) is not strictly
speaking one of these, but essentially the ‘inverse limit’ (over the category
of elliptic curves) of all these cohomology theories. (There are considerable
technical difficulties with making this precise, in fact so far no complete writ-
ten account is available.) Since integral modular forms can be defined as an
inverse limit of an abelian group valued functor over the same category of
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elliptic curves, the elements of tmf ∗(pt) are called topological modular forms.
There is a ring homomorphism from tmf ∗(pt) to the ring of integral modular
forms which is rationally an isomorphism.

Unfortunately, the current geometric understanding of elliptic cohomology
still is very much in its infancy despite the efforts of various people; see [Se1],
[KS], [HK], [BDR]. The starting point of our new approach are the elliptic
objects suggested by Graeme Segal in [Se1], which we call Segal elliptic
objects. Segal’s idea was to view a vector bundle E → X with connection as a
1-dimensional field theory over X in the following sense: To each point x ∈ X ,
the bundle E associates a vector space Ex , and to each path in X the connec-
tion on E associates a linear map between these vector spaces. Segal suggested
that a 2-dimensional conformal field theory over X could be used as a cocycle
for some elliptic cohomology theory. It would associate Hilbert spaces to loops
in X , and Hilbert–Schmidt operators to conformal surfaces (with boundary)
in X .

The main problem with Segal elliptic objects is that excision does not seem
to hold. One of our contributions is to suggest a modification of the definition
in order to get around this problem. This is where von Neumann algebras (as-
sociated to points in X ) and their bimodules (associated to arcs in X ) enter the
picture. We will explain our modification in detail in the coming sections of
this introduction. In the case X = pt, we obtain in particular a modification
of the notion of a vertex operator algebra (which was shown to be equivalent
to a Segal elliptic object in [Hu], at least for genus zero surfaces; the super
symmetric analogue appeared in [Ba]).

Another, more technical, problem in Segal’s definition is that he had to in-
troduce ‘riggings’ of 1- and 2-manifolds. These are certain additional struc-
tures (like parametrizations of the boundary circles) which we shall recall after
Definition 4.1. Our first observation is that one can avoid these extra structures
alltogether by enriching the conformal surfaces with fermions, and that these
fermions give rise naturally to the degree of an elliptic object. This degree co-
incides for closed surfaces with the correct power of the determinant line as
explained in [Se2] and in fact the space of fermions is a natural extension of
the determinant line to surfaces with boundary (in the absence of parametriza-
tions).

In Definition 4.3 we explain the resulting Clifford elliptic objects of degree n
which includes a ‘super symmetric’ aspect. The reader should be warned that
there remains an issue with how to make this super symmetric aspect precise;
we formulate what we need as Hypothesis 3.29 and use it in the proof of The-
orem 1.2 below.
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We motivate these Clifford elliptic objects by first explaining carefully the
K -theoretic analogues in Section 3. It turns out that the idea of a connec-
tion has to be modified because one needs the result of ‘parallel transport’
to depend on the length of the parametrizing interval. In other words, we
explain how a K -cocycle is given by a super symmetric 1-dimensional Eu-
clidean field theory, see Definition 3.5. In this simpler case, we do formulate
the super symmetric aspect in detail and we discuss why it is essential for K -
theory. As is well known, the best way to define K -theory in degree n, K n(X),
is to introduce the finite dimensional Clifford algebras Cn . We shall explain
how these algebras arise naturally when enriching intervals with fermions.
We conclude in Section 10.3.2 the following new description of the K -theory
spectrum:

Theorem 1.1. For any n ∈ Z, the space of super symmetric 1-dimensional
Euclidean field theories of degree n has the homotopy type of K−n, the (−n)th
space in the �-spectrum representing periodic K -theory.

There is an analogous statement for periodic K O-theory, using real field
theories.

Roughly speaking, Segal’s idea, which we are trying to implement here,
was to replace 1-dimensional by 2-dimensional field theories in the above the-
orem in order to obtain the spectrum of an elliptic cohomology theory. The
following result is our first point of contact with modular forms and hence
with tmfn(X).

Theorem 1.2. Given a degree n Clifford elliptic object E over X, one gets
canonically a Laurent series

M F(E) ∈ K −n(X)[[q]][q−1].

Moreover, if n is even and X = pt, then M F(E) ∈ Z[[q]][q−1] is the q-
expansion of a ‘weak’ modular form of weight n/2. This means that the product
of M F(E) with a sufficiently large power of the discriminant � is a modular
form.

In terms of our new definition of K -theory, the map E �→ M F(E) is given
by crossing with the standard circle S1, and hence is totally geometric. As we
shall explain, the length of an interval is very important in K -theory, and by
crossing with S1 it is turned into the conformal modulus of an annulus. The
above result shows that the modularity aspects of an elliptic object are satisfied
with only minor modifications of Segal’s original definition. This is related to
the fact that for X = pt the deficiency regarding excision is not present.
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In Section 4 we make a major modification of Segal’s elliptic objects and
explain our enriched elliptic objects which are defined so that excision can
be satisfied in the theory. Each enriched elliptic object gives in particular a
Clifford elliptic object (which is closely related to a Segal elliptic object) but
there are also data assigned to points and arcs in X , see Definition 1.4. Roughly
speaking, in addition to Hilbert spaces associated to loops in X , we assign von
Neumann algebras A(x) to points x ∈ X and bimodules to arcs in X , in a way
that Segal’s Hilbert space can be decomposed as a Connes fusion of bimodules
whenever the loop decomposes into arcs, see Section 1.2. One purpose of the
paper is to make these statements precise. We shall not, however, give the
ultimate definition of elliptic cocycles because various aspects of the theory
have not been completely worked out yet.

Our main result, which to our mind justifies all definitions, is the following
analogue of the tmf-orientation for string vector bundles [Ho, §6], [AHS]. As
the underlying Segal elliptic object, we in particular recover in the case E =
T X the ‘spinor bundle’ over the loop space L X . Our enrichment expresses
the locality (in X ) of this spinor bundle. We expect that this enriched elliptic
object will play the role of an elliptic Euler class and, in a relative version, of
the elliptic Thom class.

Theorem 1.3. Let E be an n-dimensional vector bundle over a manifold X.
Assume that E comes equipped with a string structure and a string connection.
Then there is a canonical degree n enriched elliptic object over X such that for
all x ∈ X the algebras A(x) are hyperfinite type III1 factors. Moreover, if one
varies the string connection then the resulting enriched elliptic objects are
isomorphic.

A vector bundle over X has a string structure if and only if the characteristic
classes w1, w2 and p1/2 vanish. In Section 5 we define a string structure on
an n-dimensional spin bundle as a lift of the structure group in the following
extension of topological groups

1 −→ PU (A) −→ String(n) −→ Spin(n) −→ 1.

Here A is an explicit hyperfinite type III1 factor, the ‘local fermions on the
circle’, cf. Example 4.5. Its unitary group is contractible (in the strong oper-
ator topology) and therefore the resulting projective unitary group PU (A) =
U (A)/T is a K (Z, 2). The extension is constructed so that π3 String(n) = 0,
which explains the condition on the characteristic class p1/2. This interpreta-
tion of string structures is crucial for our construction of the enriched elliptic
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object in Theorem 1.3, the relation being given by a monomorphism

String(n) −→ Aut(A)

which arises naturally in the definition of the group extension above. It should
be viewed as the ‘fundamental representation’ of the group String(n). The no-
tion of a string connection, used in the above theorem, will be explained before
Corollary 5.20.

1.1 Segal elliptic objects and excision

A Segal elliptic object over X [Se1, p. 199] associates to a map γ of a closed
rigged 1-manifold to a target manifold X a topological vector space H(γ ), and
to any conformal rigged surface � with map � : � → X a vector �(�) in the
vector space associated to the restriction of � to ∂� (we will define riggings
in Definition 4.2 below). This is subject to the axiom

H(γ1 � γ2) ∼= H(γ1) ⊗ H(γ2)

and further axioms for � which express the fact that the gluing of surfaces
(along closed submanifolds of the boundary) corresponds to the composition
of linear operators. Thus an elliptic object over a point is a conformal field
theory as axiomatized by Atiyah and Segal: it is a functor from a category
C(X) to the category of topological vector spaces. Here the objects in C(X)

are maps of closed rigged 1-manifolds into X , and morphisms are maps of
conformal rigged surfaces into X .

Originally, the hope was that these elliptic objects would lead to a geometric
description of elliptic cohomology. Unfortunately, excision for the geometric
theory defined via elliptic objects did not seem to work out. More precisely,
consider the Mayer–Vietoris sequence

· · · −→ En(X) −→ En(U ) ⊕ En(V ) −→ En(U ∩ V ) −→ · · ·
associated to a decomposition X = U ∪ V of X into two open subsets U, V ⊂
X . This is an exact sequence for any cohomology theory X �→ En(X). For
K -theory the exactness of the above sequence at En(U )⊕ En(V ) comes down
to the fact that a vector bundle E → X can be reconstructed from its restric-
tions to U and V .

Similarly, we expect that the proof of exactness for a cohomology theory
built from Clifford elliptic objects of degree n would involve being able to
reconstruct an elliptic object over U ∪ V from its restriction to U and V . This
does not seem to be the case: suppose (H, �) is an elliptic object over U ∪ V
and consider two paths γ1, γ2 between the points x and y. Assume that the path
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γ1 lies in U , that γ2 lies in V , and denote by γ̄2 the path γ2 run backwards. Then
the restriction of (H, �) to U (resp. V ) contains not enough information on
how to reconstruct the Hilbert space H(γ1 ∪ γ̄2) associated to the loop γ1 ∪ γ̄2

in U ∪ V .

1.2 Decomposing the Hilbert space

Our basic idea on how to overcome the difficulty with excision is to notice
that in the basic geometric example coming from a vector bundle with string
connection (see Theorem 1.3), there is the following additional structure: To
a point x ∈ X the string structure associates a graded type III1-factor A(x)

and to a finite number of points xi it assigns the spatial tensor product of the
A(xi ). Moreover, to a path γ from x to y, the string connection gives a graded
right module B(γ ) over A(∂γ ) = A(x)op⊗̄A(y). There are canonical iso-
morphisms over A(∂γ̄ ) = A(y)op⊗̄A(x) (using the ‘conjugate’ module from
Section 4.3)

B(γ̄ ) ∼= B(γ ).

The punchline is that Hilbert spaces like H(γ1 ∪ γ̄2) discussed above can be
decomposed as

H(γ1 ∪ γ̄2) ∼= B(γ1) �A(∂γi ) B(γ̄2)

where we used the fusion product of modules over von Neumann algebras in-
troduced by Connes [Co1, V.B.δ]. Following Wassermann [Wa], we will refer
to this operation as Connes fusion. Connes’ definition was motivated by the
fact that a homomorphism A → B of von Neumann algebras leads in a natural
way to an B − A-bimodule such that composition of homomorphisms corre-
sponds to his fusion operation [Co1, Prop. 17 in V.B.δ]. In [Wa], Wassermann
used Connes fusion to define the correct product on the category of positive
energy representations of a loop group at a fixed level.

We abstract the data we found in the basic geometric example from
Theorem 1.3 by giving the following preliminary

Definition 1.4 (Preliminary!). A degree n enriched elliptic object over X is a
tuple (H, �, A, B, φB, φH ), where:

(1) (H, �) is a degree n Clifford elliptic object over X . In particular, it gives
a Hilbert space bundle over the free loop space L X .

(2) A is a von Neumann algebra bundle over X .
(3) B is a module bundle over the free path space P X . Here the end point map

P X → X × X is used to pull back two copies of the algebra bundle A
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to P X , and these are the algebras acting on B. The modules B(γ ) come
equipped with gluing isomorphisms (of A(x1)

op⊗̄A(x3)-modules)

φB(γ, γ ′) : B(γ ∪x2 γ ′)
∼=−→ B(γ ) �A(x2) B(γ ′)

if γ is a path from x1 to x2, and γ ′ is a path from x2 to x3.

(4) φH is an isomorphism of Hilbert spaces associated to each pair of paths γ1

and γ2 with ∂γ1 = ∂γ2

φH (γ1, γ̄2) : H(γ1 ∪∂γi γ2)
∼=−→ B(γ1) �A(∂γi ) B(γ̄2).

All algebras and modules are Z/2-graded and there are several axioms that we
require but have not spelled out above.

Remark 1.5. This is only a preliminary definition for several reasons. Among
others:

• We left out the conditions for surfaces glued along non-closed parts of their
boundary. The vectors �(�) of a Clifford elliptic objects compose nicely
when two surfaces are glued along closed submanifolds of the boundary,
compare Lemma 2.24. Our enriched elliptic objects compose in addition
nicely when two surfaces are glued along arcs in the boundary, see Proposi-
tion 4.12.

• We left out the super symmetric part of the story. We will explain in Sec-
tion 3.2 why super symmetric data are essential even in the definition of
K -theory.

• We left out the fermions from the discussions. These will be used to define
the degree n of an elliptic object, and there are extra data needed so that a
conformal spin surface actually gives a vector in the relevant Hilbert space.
If the surface � is closed, then a fermion is a point in the nth power of the
Pfaffian line of �. Since the Pfaffian line is a square-root of the determinant
line, this is consistent with the fact that a degree n elliptic object should
give a modular form of weight n/2 when evaluated on tori, see Sections 3.3
and 4.1.

• Segal’s Hilbert space associated to a circle will actually be defined by 4
above, rather than introducing the isomorphisms φH . So it will not play a
central role in the theory, but can be reconstructed from it. At this point, we
wanted to emphasize the additional data needed to resolve the problem with
excision, namely a decomposition of Segal’s Hilbert space.

Most of these deficiencies will be fixed in Section 4 by defining a degree n en-
riched elliptic object as a certain functor from a bicategory Dn(X) made from
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d-manifolds (with n fermions) mapping into X , d = 0, 1, 2, to the bicategory
vN of von Neumann algebras, their bimodules and intertwiners.

We end this introduction by making a brief attempt to express the meaning
of an enriched elliptic object over X in physics lingo: it is a conformal field
theory with (0, 1) super symmetry (and target X ), whose fermionic part has
been quantized but whose bosonic part is classical. This comes from the fact
that the Fock spaces are a well-established method of fermionic quantization,
whereas there is up to date no mathematical way of averaging the maps of a
surface to a curved target X . Moreover, the enriched (0-dimensional) aspect of
the theory is some kind of an open string theory. It would be very interesting
to relate it to Cardy’s boundary conformal field theories.

1.3 Disclaimer and acknowledgments

This paper is a survey of our current understanding of the geometry of elliptic
objects. Only ideas of proofs are given, and some proofs are skipped all to-
gether. We still believe that it is of service to the research community to make
such work in progress accessible.

It is a pleasure to thank Dan Freed, Graeme Segal and Antony Wassermann
for many discussions about conformal field theory. Graeme’s deep influence is
obvious, and Dan’s approach to Chern–Simons theory [Fr1] motivated many
of the considerations in Section 5. Antony’s groundbreaking work [Wa] on
Connes fusion for positive energy representations was our starting point for
the central definitions in Section 4. He also proof-read the operator algebraic
parts of this paper, all remaining mistakes were produced later in time.

Many thanks go to Vincente Cortez, Mike Hopkins, Justin Roberts, Markus
Rosellen and Hans Wenzl for discussions about various aspects of this paper.
Part of this project was developed during our stay at the Max-Planck Insti-
tute in Bonn, and we are very grateful for the wonderful research environment
it provided. In March 2002, we held a preliminary workshop at the Sonder-
forschungsbereich in Münster, and we thank all the participants for their sup-
port, and in particular Wolfgang Lück for initiating that workshop.

2 Field theories

Following Graeme Segal [Se2], we explain in this section the axiomatic ap-
proach to field theories, leading up to a definition of ‘Clifford linear field
theories of degree n’ (cf. Definitions 2.26 and 2.29) after introducing the nec-
essary background on Fock spaces, spin structures and Dirac operators.



256 Stolz and Teichner

2.1 d-dimensional field theories

Roughly speaking, a d-dimensional field theory associates to a closed manifold
Y of dimension d − 1 a Hilbert space E(Y ) and to a bordism � from Y1 to Y2

a Hilbert Schmidt operator E(Y1) → F(Y2) (a bounded operator T is Hilbert–
Schmidt if the sum of the norm squares of its matrix elements is finite). The
main requirement is that gluing bordisms should correspond to composing the
associated operators. As is well-known, this can be made precise by defining a
d-dimensional field theory to be a functor

E : Bd −→ Hilb

from the d-dimensional bordism category Bd to the category Hilb of complex
Hilbert spaces which are compatible with additional structures on these cate-
gories spelled out below. The precise definition of the categories Bd and Hilb
is the following:

• The objects of the d-dimensional bordism category Bd are closed oriented
manifolds of dimension d − 1, equipped with geometric structures which
characterize the flavor of the field theory involved (see remarks below). If Y1,
Y2 are objects of Bd , the orientation preserving geometric diffeomorphisms
from Y1 to Y2 are morphisms from Y1 to Y2 which form a subcategory of Bd .
There are other morphisms, namely oriented geometric bordisms from Y1

to Y2; i.e., d-dimensional oriented manifolds � equipped with a geometric
structure, together with an orientation preserving geometric diffeomorphism
∂� ∼= Ȳ1 � Y2, where Ȳ1 is Y1 equipped with the opposite orientation. More
precisely, two bordisms � and �′ are considered the same morphism if they
are orientation preserving geometric diffeomorphic relative boundary. Com-
position of bordisms is given by gluing; the composition of a bordism �

from Y1 to Y2 and a diffeomorphism Y2 → Y3 is again the bordism �, but
with the identification ∂� ∼= Ȳ1 � Y2 modified by composition with the
diffeomorphism Y2 → Y3.

• The objects of Hilb are separable Hilbert spaces (over the complex
numbers). The morphisms from H1 to H2 are the bounded operators
T : H1 → H2; the strong topology on the space of bounded operators makes
Hilb a topological category.

Without additional geometric structures on the objects and the bordisms,
such a field theory would be referred to as a topological field theory. If the
geometric structures are conformal structures on bordisms and objects, the
associated field theory is called conformal (for short CFT). If the conformal
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structure is replaced by a Riemannian metric, one obtains what is usually re-
ferred to as a Euclidean field theory (EFT) to distinguish it from the Lorentz
case. We sometimes use the term field theory (FT) if the geometric structures
are not specified.

The main examples of field theories in these notes will have at least a con-
formal structure on the manifolds, and in addition all manifolds under consid-
eration will be equipped with a spin structure (see Definition 2.18 for a careful
explanation of spin structures on conformal manifolds). It is important to point
out that every spin manifold has a canonical involution associated to it (which
does not move the points of the manifold but flips the two sheets of the spin
bundle). This has the effect that all algebraic objects associated to spin man-
ifolds will be Z/2-graded. This is the first step towards super symmetry and
our reason for introducing spin structures in the main Definitions 2.26 and
2.29. We should point out that those definitions (where the categories of ge-
ometric manifolds are denoted by CB2

n respectively EB1
n) introduce the spin

structures (and the degree n) for the first time. The following warm-up discus-
sions, in particular Definition 2.3, only use an orientation, not a spin structure
(even though the notation CB2 respectively EB1 is very similar).

Summarizing, the reader should expect spin structures whenever there is a
degree n in the discussion. Indeed, we will see that the degree makes sense
only in the presence of spin structures.

Definition 2.1 (Additional structures on the categories Bd and Hilb).

• Symmetric monoidal structures. The disjoint union of manifolds (respec-
tively the tensor product of Hilbert spaces) gives Bd (resp. Hilb) the struc-
ture of symmetric monoidal categories. The unit is given by the empty set
and C, respectively.

• Involutions and anti-involutions. There are involutions Bd → Bd and
Hilb → Hilb. On the category Bd this involution is given by reversing the
orientation on the d-manifold (objects) as well as the bordisms (morphisms);
this operation will be explained in detail in Definition 2.15. We note that if
� is a bordism from Y1 to Y2, then � with the opposite orientation can be
interpreted as a bordism from Ȳ1 to Ȳ2. For an object H ∈ Hilb, H̄ is the
space H with the opposite complex structure; for a morphism f : H1 → H2,
the morphism f̄ : H̄1 → H̄2 is equal to f as a map of sets.

There are also anti-involutions (i.e., contravariant functors) ∗ : Bd → Bd

and ∗ : Hilb → Hilb. These are the identity on objects. If T : H1 → H2

is a bounded operator, then T ∗ : H2 → H1 is its adjoint; similarly, if �

is a bordism from Y1 to Y2, then �∗ is � with the opposite orientation,
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considered as a morphism from Y2 to Y1. Finally, if φ is a diffeomorphism

from Y1 to Y2 then φ∗ def= φ−1.

• Adjunction transformations. There are natural transformations

Bd(∅, Y1 � Y2) −→ Bd(Ȳ1, Y2) Hilb(C, H1 ⊗ H2) −→ Hilb(H̄1, H2)

On Bd this is given by reinterpreting a bordism � from ∅ to Y1 � Y2 as a
bordism from Ȳ1 to Y2. On Hilb we can identify Hilb(C, H1 ⊗ H2) with the
space of Hilbert–Schmidt operators from H1 to H2 and the transformation is
the inclusion from Hilbert–Schmidt operators into all bounded operators. It
should be stressed that neither transformation is in general surjective: in the
category Bd , a diffeomorphism from Y1 to Y2 is not in the image; in Hilb,
not every bounded operator is a Hilbert–Schmidt operator. For example, a
diffeomorphism φ gives a unitary operator E(φ) (if the functor E preserves
the anti-involution ∗ above). In infinite dimensions, a unitary operator is
never Hilbert–Schmidt.

Remark 2.2. In the literature on field theory, the functor E always respects the
above involution, whereas E is called a unitary field theory if it also respects
the anti-involution. It is interesting that in our honest example in Section 4.3
there are actually 3 (anti) involutions which the field theory has to respect.

Definition 2.3. The main examples of field theories we will be interested in
are 2-dimensional conformal field theories and 1-dimensional Euclidean field
theories. We will use the following terminology: A conformal field theory or
CFT is a functor

E : CB2 → Hilb

compatible with the additional structures on the categories detailed by Defi-
nition 2.1 where CB2 is the ‘conformal’ version of B2, i.e., the bordisms in
this category are 2-dimensional and equipped with a conformal structure. A
Euclidean field theory or EFT is a functor

E : EB1 → Hilb

compatible with the additional structures of Definition 2.1 where EB1 is the
‘Euclidean’ version of B1, i.e., the bordisms in this category are 1-dimensional
and equipped with a Riemannian metric.

Example 2.4. Let M be a closed Riemannian manifold, let H = L2(M) be
the Hilbert space of square integrable functions on M and let � : H → H be
the Laplace operator. Then we can construct a 1-dimensional EFT E : EB1 →
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Hilb by defining

E(pt) = H E(It ) = e−t� E(St ) = tr(e−t�).

Here pt is the one-point object in EB1, It is the interval of length t , considered
as a morphism from pt to pt, and St ∈ EB1(∅, ∅) is the circle of length t . We
note that unlike the Laplace operator � the heat operator e−t� is a bounded
operator, even a trace class operator and hence it is meaningful to take the trace
of e−t�.

It is not hard to show that the properties in Definition 2.1 allow us to extend
E uniquely to a real EFT. More interestingly, the operator E(�) : E(Y1) →
E(Y2) associated to a bordism � from Y1 to Y2 can be described in terms of a
path integral over the space of maps from � to M . This is the Feynman–Kac
formula, which for � = It gives e−t�.

Definition 2.5. More generally, if X is a manifold, we may replace the cat-
egory Bd above by the category Bd(X), whose objects are closed oriented
(d − 1)-manifolds equipped with a piecewise smooth map to X ; similarly
the morphisms of Bd(X) are oriented bordisms equipped with maps to X
and orientation preserving diffeomorphisms compatible with the given maps
to X . We note that Bd(X) can be identified with Bd if X is a point. The
four structures described above on the bordism category Bd can be extended
in an obvious way to the category Bd(X). We define a d-dimensional field
theory over X to be a functor E : Bd(X) → Hilb which is compatible
with the monoidal structure, (anti)-involutions, and adjunction transformations
mentioned above. Analogously, we can form the categories CB2(X) (resp.
EB1(X)) of 2-dimensional conformal bordisms over X (resp. 1-dimensional
Euclidean bordisms over X ).

Example 2.6. This is a ‘parametrized’ version of Example 2.4 (which in the
notation below is the case X = pt and Z = M). Suppose that π : Z → X
is a Riemannian submersion. Then we can construct a 1-dimensional EFT
E : EB1(X) → Hilb over X as follows. On objects, E associates to a map
γ from a 0-manifold Y to X the Hilbert space of L2-functions on the space of
lifts {γ̃ : Y → Z | π ◦ γ̃ = γ } of γ ; in particular if Y = pt and γ (pt) = x ,
then E(Y, γ ) is just the space of L2-functions on the fiber over x . We can
associate an operator E(�, �) : E(Y1, γ1) → E(Y2, γ2) to a bordism (�, �)

from (Y1, γ1) to (Y2, γ2) by integrating over the space of maps �̃ : � → Z
which are lifts of � : � → X . For � = It and if � maps all of � to the point
x , then the operator constructed this way is via the Feynman–Kac formula just
e−t�x , where �x is the Laplace operator on the fiber over x .
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2.2 Clifford algebras and Fock modules

Definition 2.7 (Clifford algebras). Let V be a real or complex Hilbert space
equipped with an isometric involution α : V → V , v �→ v̄ = α(v) (C-anti-
linear in the complex case). This implies that

b(v, w)
def= 〈v̄, w〉

is a symmetric bilinear form (here 〈 , 〉 is the inner product on V , which is
C-anti-linear in the first and linear in the second slot in the complex case).

The Clifford algebra is the quotient of the real resp. complex tensor algebra
generated by V by imposing the Clifford relations

v · v = −b(v, v) · 1 v ∈ V .

Suppressing the dependence on the involution in the notation, we’ll just write
C(V ) for this algebra. It is a Z/2-graded algebra with grading involution
ε : C(V ) → C(V ) induced by v �→ −v for v ∈ V ; the inner product on
V extends to an inner product on the Clifford algebra C(V ).

We will write −V for the Hilbert space furnished with the involution −α. We
will adopt the convention that if an involution α on V has not been explicitly
specified, then it is assumed to be the identity. For example:

• Cn
def= C(Rn) is the Clifford algebra generated by vectors v ∈ Rn subject to

the relation v · v = −|v|2 · 1;

• C−n
def= C(−Rn) is the Clifford algebra generated by vectors v ∈ Rn subject

to the relation v · v = |v|2 · 1; and

• Cn,m
def= C(Rn ⊕−Rm) is the Clifford algebra generated by vectors v ∈ Rn ,

w ∈ Rm subject to the relations v · v = −|v|2 · 1, w · w = |w|2 · 1,
v · w + w · v = 0. We will use repeatedly that Cn,n is of real type for all n

Cn,n ∼= M2n (R).

The reader should be warned that conventions in the literature concerning Clif-
ford algebras vary greatly; our conventions with regards to Cn and Cn,m agree
for example with [Ka, Ch. III, 3.13] and [LM, Ch. I, §3].

Remark 2.8 (Properties of Clifford algebras). Useful properties of the con-
struction V �→ C(V ) include natural isomorphisms

C(V ⊕ W ) ∼= C(V ) ⊗ C(W ) and C(−V ) ∼= C(V )op. (2.1)

Here as throughout the paper ⊗ stands for the graded tensor product; here the
adjective ‘graded’ stipulates that the product of elements a⊗b, a′⊗b′ ∈ A⊗ B
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is defined by

(a ⊗ b) · (a′ ⊗ b′) def= (−1)|b||a′|aa′ ⊗ bb′

where |b|, |a′| are the degrees of b and a′ respectively. The opposite Bop of a
graded algebra B is B as graded vector space but with new a multiplication

∗ defined by a ∗ b
def= (−1)|a||b|b · a for homogeneous elements a, b ∈ B of

degree |a|, |b| ∈ Z/2, respectively. Any graded left A ⊗ B-module M can be
interpreted as a bimodule over A − Bop via

a · m · b
def= (−1)|m||b|(a ⊗ b)m

for homogeneous elements a ∈ A, b ∈ B, m ∈ M) and vice-versa. In partic-
ular, a left module M over C(V ⊕ −W ) may be interpreted as a left module
over C(V ) ⊗ C(W )op; or equivalently, as a C(V ) − C(W )-bimodule, and we
will frequently appeal to this move. We note that this construction is compat-
ible with ‘passing to the opposite module’, where we define the opposite of a
graded A − B-module M , denoted M , to be M with the grading involution ε

replaced by −ε and the right B-action modified by the grading automorphism
of B. This is consistent (by the above formula) with changing the grading and
keeping the same A ⊗ Bop-module structure.

Definition 2.9 (Fermionic–Fock spaces). Let V be a Hilbert space with an
isometric involution as in Definition 2.7. There is a standard construction of
modules over the resulting Clifford algebra C(V ) (cf. [PS, Ch. 12], [A]); the
input datum for this construction is a Lagrangian L ⊂ V . By definition, this
means that L is closed, b vanishes identically on L and that V = L ⊕ L̄ .
Note that the existence of L is a serious condition on our data, for example a
Lagrangian cannot exist if the involution on V is trivial.

Given a Lagrangian L , the exterior algebra

�(L̄) = �ev(L̄) ⊕ �odd(L̄) =
⊕

p even
�p(L̄) ⊕

⊕
p odd

�p(L̄)

is a Z/2-graded module over the Clifford algebra C(V ):

• for v̄ ∈ L̄ ⊂ V ⊂ C(V ), the corresponding operator c(v̄) : �(L̄) → �(L̄)

is given by exterior multiplication by v̄ (‘creation operator’),
• for v ∈ L , the operator c(v) is given by interior multiplication by v (‘an-

nihilation operator’); i.e., c(v) acts as a graded derivation on �(L̄), and for
w̄ ∈ L̄ = �1(L̄) we have c(v)w̄ = b(v, w̄) = 〈w, v〉.

We define the fermionic Fock space F(L) to be the completion of �(L̄) with
respect to the inner product induced by the inner product on L̄ ⊂ V . We
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will refer to Falg(L)
def= �(L̄) as the algebraic Fock space; both of these

C(V )-modules will play an important role for us.
We note that the adjoint c(v)∗ of the operator c(v) : F(L) → F(L) is given

by c(v)∗ = −c(v̄) for any v ∈ V . It is customary to call 1 ∈ �0 L̄ ⊂ F(L)

the vacuum vector and to write � ∈ F(L) for it. It is easy to see that � is a
cyclic vector and hence F(L) is a graded irreducible module over C(V ). The
classification of these modules is given by the following well-known result (cf.
[A]).

Theorem 2.10. [I. Segal–Shale equivalence criterion] Two Fock representa-
tions F(L) and F(L ′) of C(V, b) are isomorphic if and only if the composition
of orthogonal inclusion and projection maps

L ′ ↪→ V � L̄

is a Hilbert–Schmidt operator. Moreover, this isomorphism preserves the grad-
ing if and only if dim(L̄ ∩ L ′) is even.

We recall that an operator T : V → W between Hilbert spaces is a Hilbert–
Schmidt operator if and only if the sum

∑∞
i=1 ||T ei ||2 converges, where {ei } is

a Hilbert space basis for V . We note that the space L̄ ∩ L ′ is finite dimensional
if the map L ′ → L̄ is a Hilbert–Schmidt operator.

Remark 2.11 (Orientations and bimodules). Let V be a real inner product
space of dimension n < ∞. Then there is a homeomorphism

{isometries f : Rn → V } −→ L
def= {Lagrangian subspaces L ⊂ V ⊕ −Rn}

given by sending an isometry f to its graph. By passing to connected compo-
nents, we obtain a bijection between orientations on V and π0L. According
to the Segal–Shale Theorem (plus the fact that in finite dimensions any irre-
ducible module is isomorphic to some Fock space), sending a Lagrangian L to
the Fock space F(L) induces a bijection between π0L and the set of isomor-
phism classes of irreducible graded (left) C(V ⊕ −Rn)-modules; as explained
in (2.1), these may in turn be interpreted as C(V )−Cn-bimodules. Summariz-
ing, we can identify orientations on V with isomorphism classes of irreducible
C(V ) − Cn-bimodules S(V ). We observe that the opposite bimodule S(V ),
defined above 2.9, corresponds to the opposite orientation.

Remark 2.12 (Functorial aspects of the Fock space construction). Let
V1, V2 be Hilbert spaces with involutions as in Definition 2.7 and let L1 ⊂
V2 ⊕ −V1 be a Lagrangian. The associated algebraic Fock space Falg(L1) (cf.
Definition 2.9) is then a graded module over the Clifford algebra C(V2⊕−V1);
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alternatively we can view it as a bimodule over C(V2) − C(V1). We wish
to discuss in which sense the constructions V �→ C(V ) and L �→ Falg(L)

give a functor (cf. [Se2, §8]). Here the objects of the ‘domain category’ are
Hilbert spaces V with involutions, and morphisms from V1 to V2 are La-
grangian subspaces of V2 ⊕ −V1. Given morphisms L1 ⊂ V2 ⊕ −V1 and
L2 ⊂ V3 ⊕−V2, their composition is given by the Lagrangian L3 ⊂ V3 ⊕−V1

obtained by ‘symplectic’ reduction from the Lagrangian L
def= L2⊕L1 ⊂ V

def=
V3 ⊕ −V2 ⊕ V2 ⊕ −V1, namely

L red def= L ∩ U⊥b/L ∩ U ⊂ V red def= V ∩ U⊥b/U.

Here U is the isotropic subspace U = {(0, v2, v2, 0) | v2 ∈ V2} ⊂ V and U⊥b

is its annihilator with respect to the bilinear form b. We note that the reduced
space V red can be identified with V3 ⊕ −V1.

The objects of the ‘range category’ are graded algebras; the morphisms from
A to B are pointed, graded B − A-bimodules; the composition of a pointed
B − A-bimodule (M, m0) and a pointed C − B-bimodule (N , n0) is given by
the C−A-bimodule (N⊗B M, n0⊗m0). The following lemma shows that in the
type I case composition of Lagrangians is compatible with the tensor product
of pointed bimodules, i.e., the construction V �→ C(V ), L �→ (Falg(L), �)

is a (lax) functor. Here ‘type’ refers to the type of the von Neumann algebra
generated by C(V ) in B(F(L)) as explained in Section 4.3. Type I is the easiest
case where the von Neumann algebra is just the bounded operators on some
Hilbert space. This corresponds geometrically to gluing along closed parts of
the boundary. Gluing along, say, arcs in the boundary corresponds to type III
for which a more difficult gluing lemma is needed: Connes fusion appears, see
Proposition 4.12. It actually covers all types, so we restrict in the arguments
below to the finite-dimensional case. That is all one needs for 1-dimensional
EFT’s, i.e. for K -theory.

Gluing Lemma 2.13. If the von Neumann algebra generated by C(V2) has
type I, there is a unique isomorphism of pointed, graded C(V3) − C(V1) bi-
modules

(Falg(L2) ⊗C(V2) Falg(L1), �2 ⊗ �1) ∼= (Falg(L3), �3).

Here we assume that Li intersect Vj trivially (which is satisfied in the geomet-
ric applications if there are no closed components, cf. Definition 2.23).

Proof. We note that Falg(L2) ⊗C(V2) Falg(L1) is the quotient of Falg(L2) ⊗
Falg(L1) = Falg(L2 ⊕ L1) = Falg(L) modulo the subspace Ū Falg(L). Here
Ū ⊂ V is the subspace obtained from U defined above by applying the invo-
lution v �→ v̄; explicitly, Ū = {(0, −v2, v2, 0) | v2 ∈ V2}; we observe that for
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ū = (0, −v2, v2, 0) ∈ Ū , and ψi ∈ Falg(Li ) we have

c(ū)(ψ2 ⊗ ψ1) = (−1)|ψ2|(−ψ2c(v2) ⊗ ψ1 + ψ2 ⊗ c(v2)ψ1).

We recall that an element ū ∈ Ū ⊂ V , which decomposes as ū = u1 +
ū2 ∈ V = L ⊕ L̄ with ui ∈ L acts on Falg(L) = �(L̄) as the sum c(u1) +
c(ū2) of the ‘creation’ operator c(u1) and the ‘annihilation’ operator c(ū2). We
observe that by assumption the map L red ⊕ Ū → L given by (v, ū) �→ v + u1

is an isomorphism. In finite dimensions, a filtration argument shows that the
C(V red)-linear map

�(L̄ red) −→ �(L̄ red ⊕ U )/c(Ū )�(L̄ red ⊕ Ū )

is in fact an isomorphism.

Definition 2.14 (Generalized Lagrangian). For our applications to geom-
etry, we will need a slightly more general definition of a Lagrangian. This
will also avoid the assumption in the gluing lemma above. A generalized La-
grangian of a Hilbert space V with involution is a homomorphism L : W → V
with finite-dimensional kernel so that the closure LW ⊂ V of the image of L
is a Lagrangian. In the geometric situation we are interested in, W will be the
space of harmonic spinors on a manifold �, V will be the space of all spinors
on the boundary ∂�, and L is the restriction map. Then we define the algebraic
Fock space

Falg(L)
def= �top(ker L)∗ ⊗ �(L̄W )

where �top(ker L)∗ = �dim(ker L)(ker L)∗ is the top exterior power of the dual
space of the kernel of L . The algebraic Fock space is a module over the Clifford
algebra C(V ) via its action on �(L̄W ).

Unlike the case discussed previously, this Fock space has only a canonical
vacuum element � = 1 ⊗ 1 if ker L = 0. Otherwise the vacuum vector is
zero which is consistent with the geometric setting where it corresponds to
the Pfaffian element of the Dirac operator: it vanishes, if there is a nontrivial
kernel. Therefore, the gluing Lemma 2.24 in the following section has to be
formulated more carefully than the gluing lemma above.

2.3 Clifford linear field theories

We recall that a d-dimensional field theory is a functor E : Bd → Hilb; in par-
ticular on objects, it assigns to a closed oriented (d − 1)-manifold Y a Hilbert
space E(Y ). It is the purpose of this section to define Clifford linear field theo-
ries E of degree n (for d = 1, 2). Such a theory assigns to Y as above a Hilbert
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space E(Y ) which is a right module over C(Y )⊗n , where C(Y ) is a Clifford al-
gebra associated to Y . The formal definition (see Definition 2.26 for d = 2 and
Definition 2.29 for d = 1) is quite involved. The reader might find it helpful to
look first at Example 2.17, which will be our basic example of a Clifford linear
field theory (for d = 1) and which motivates our definition. This example is a
variation of Example 2.4 with the Laplace operator replaced by the square of
the Dirac operator.

Definition 2.15 (Spin structures on Riemannian vector bundles). Let V be
an inner product space of dimension d . Motivated by Remark 2.11 we define
a spin structure on V to be an irreducible graded C(V ) − Cd -bimodule S(V )

(equipped with a compatible inner product as in the case of Fock spaces).
If W is another inner product space with spin structure, a spin isometry
from V to W is an isometry f : V → W together with an isomorphism

f̂ : S(V )
∼=→ f ∗S(W ) of graded C(V ) − Cd -bimodules with inner products.

We note that f ∗S(W ) is isomorphic to S(V ) if and only if f is orientation
preserving; in that case there are two choices for f̂ . In other words, the space
of spin isometries Spin(V, W ) is a double covering of the space SO(V, W )

of orientation preserving isometries. It is clear that spin isometries can be
composed and so they can be regarded as the morphisms in a category of inner
product spaces with spin structures.

Now we can use a ‘parametrized version’ of the above to define spin
structures on vector bundles as follows. Let E → X be a real vector bundle
of dimension d with Riemannian metric, i.e., a fiberwise positive definite
inner product. Let C(E) → X be the Clifford algebra bundle, whose fiber
over x is the Clifford algebra C(Ex ). A spin structure on E is a bundle
S(E) → X of graded irreducible C(E) − Cd -bimodules. It is tempting (at
least for topologists) to think of two isomorphic bimodule bundles as giving
the same spin structure. However, it is better to think of the ‘category of spin
structures’ (with the obvious morphisms), since below we want to consider
the space of sections of S(E) and that is a functor from this category to the
category of vector spaces. Then the usual object topologists are interested in
are the isomorphism classes of spin structures. The group H1(X; Z/2) acts
freely and transitively on the set of isomorphism classes.

To relate this to the usual definition of spin structure expressed in terms of
a principal Spin(d)-bundle Spin(E) → X (cf. [LM, Ch. II, §1]), we note that
we obtain a C(E) − Cd -bimodule bundle if we define

S(E)
def= Spin(E) ×Spin(d) Cd .

Moreover, we note that S(E) determines an orientation of E by Remark 2.11.
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We define the opposite spin structure on E to be S(E) (whose fiber over
x ∈ X is the bimodule opposite to S(Ex ) in the sense of Remark 2.11); this
induces the opposite orientation on E .

Remark 2.16. We note that there is a functor F from the category of spin
structures on E ⊕ R to the category of spin structures on E . Given a spin
structure on E ⊕ R, i.e., a C(E ⊕ R) − Cd+1-bimodule bundle S → X over,

we define F(S)
def= S+(E ⊕ R), the even part of S(E ⊕ R). This is a graded

C(E) − Cd -bimodule, if we define the grading involution on S+(E ⊕ R) by
ψ �→ e1ψe1 (e1 ∈ R is the standard unit vector), the left action of v ∈ E ⊂
C(E) by ψ �→ ve1ψ and the right action of w ∈ Rd ⊂ Cd by ψ �→ ψe1w.
The functor F is compatible with ‘passing to the opposite spin structure’ in the
sense that there is an isomorphism of spin structures F(S) ∼= F(S), which is
natural in S.

Example 2.17 (EFT associated to a Riemannian spin manifold). Let M be
a closed manifold of dimension n with a spin structure; i.e., a spin structure on
its cotangent bundle T ∗M . In other words, M comes equipped with a graded
irreducible C(T ∗M)−Cn-bimodule bundle S → M . A Riemannian metric on
M induces the Levi-Civita connection on the tangent bundle T M which in turn
induces a connection ∇ on S. The Dirac operator D = DM is the composition

D : C∞(M; S)
∇−→ C∞(M; T ∗M ⊗ S)

c−→ C∞(M; S)

where c is Clifford multiplication (given by the left action of T ∗M ⊂ C(T ∗M)

on S). The Dirac operator D is an (unbounded) Fredholm operator on the real
Hilbert space L2(M; S) of square integrable sections of S. As in Example 2.4
we can construct a 1-dimensional EFT E : EB1 → Hilb by defining

E(pt) = L2(M; S) ⊗R C E(It ) = e−t D2
.

However, there is more structure in this example: the fibers of S and hence the
Hilbert space L2(M; S) is a Z/2-graded right module over Cn (or equivalently
by Remark 2.8, a left module over Cop

n = C−n). Moreover, D and hence E(It )

commute with this action. It should be emphasized that we are working in the
graded world; in particular, saying that the odd operator D commutes with the
left C−n-action means D(c · x) = (−1)|x |c · D(x) for a homogeneous element
c ∈ C−n of degree |c| and x ∈ E(pt).

Definition 2.18 (Spin structures on conformal manifolds). Let � be a man-
ifold of dimension d and for k ∈ R let Lk → � be the oriented real line
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bundle (and hence trivializable) whose fiber over x ∈ � consists of all maps
ρ : �d(Tx�) → R such that ρ(λω) = |λ|k/dρ(ω) for all λ ∈ R. Sections of
Ld are referred to as densities; they can be integrated over � resulting in a real
number.

Now assume that � is equipped with a conformal structure (i.e., an equiv-
alence class of Riemannian metrics where we identify a metric obtained by
multiplication by a function with the original metric). We remark that for
any k �= 0 the choice of a metric in the conformal class corresponds to the
choice of a positive section of Lk . Moreover, the conformal structure on �

induces a canonical Riemannian metric on the weightless cotangent bundle

T ∗
0 �

def= L−1 ⊗ T ∗�.
A spin structure on a conformal d-manifold � is by definition a spin struc-

ture on the Riemannian vector bundle T ∗
0 �. The opposite spin structure on

� is the opposite spin structure on the vector bundle T ∗
0 �. We will use the

notation �̄ for � equipped with the opposite spin structure.
If �′ is another conformal spin d-manifold, a conformal spin diffeomor-

phism from � to �′ is a conformal diffeomorphism f : � → �′ together with
an isometry between the C(T ∗

0 �)− Cd -bimodule bundles S(�) and f ∗S(�′).
We observe that every conformal spin manifold � has a canonical spin invo-
lution ε = ε� , namely the identity on � together with the bimodule isometry
S(�) → S(�) given by multiplication by −1.

Example 2.18 (Examples of spin structures). The manifold � = Rd has
the following ‘standard’ spin structure: identifying T ∗

0 � with the trivial bun-

dle Rd , the bundle S
def= Rd × Cd → Rd becomes an irreducible graded

C(T ∗
0 �) − Cd -bimodule bundle. Restricting S we then obtain spin structures

on codimension zero submanifolds like the disc Dd ⊂ Rd or the interval
It = [0, t] ⊂ R.

The above spin structure on Rd makes sense even for d = 0; here R0 con-
sists of one point and S = R is a graded bimodule over Cd = R (i.e., a graded
real line). We will write pt for the point equipped with this spin structure, and
pt for the point equipped with its opposite spin stucture (the bimodule for pt is
an ‘even’ real line, while the bimodule for pt is an ‘odd’ real line).

If � has a boundary ∂�, we note that the restriction T ∗
0 �|∂� is canonically

isometric to T ∗
0 ∂� ⊕ R. It follows by Remark 2.16 that a spin structure on �,

i.e., a C(T ∗
0 �) − C(Rd)-bimodule bundle S → � restricts to a spin structure

S+ → ∂� on the boundary ∂�. In particular, the standard spin structure on D2

restricts to a spin structure on S1 = ∂ D2, which we refer to as the zero-bordant
or anti-periodic spin structure; we’ll use the notation Sap.
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Definition 2.19 (The Cd−1-Hilbert space V (Y )). If Yd−1 is a conformal
spin manifold with spinor bundle S → Y , we define

V (Y )
def= L2(Y, L

d−1
2 ⊗ S)

the space of square-integrable sections of the real vector bundle E = L
d−1

2 ⊗S.
We note that using the fiberwise inner product of the spinor bundle S, we can
pair sections ϕ, ψ of E to obtain a section of Ld−1 which in turn may be
integrated over Y to obtain a real valued inner product 〈ϕ, ψ〉 on the space of
smooth sections of E ; completion then gives the real Hilbert space V (Y ). We
note that each fiber of E is a graded right Cd−1-module, which induces the
same structure on V (Y ).

Definition 2.20 (The Clifford algebra C(Y ), d = 1, 2). Let Y d−1 be a con-
formal spin manifold and let V (Y ) be as above. In particular, for d = 1, V (Y )

is just a graded real Hilbert space; for d = 2, the Clifford algebra Cd−1 is iso-
morphic to C and hence V (Y ) is a complex vector space on which the grading
involution acts by a C-anti-linear involution. After extending the R-valued in-
ner product to a C-valued hermitian product, we can regard V (Y ) as a graded
complex Hilbert space. So for d = 1, 2, V (Y ) has the structures needed to

form the Clifford algebra C(Y )
def= C(V (Y )) as described in Definition 2.7.

Here the involution α is given by the grading involution (which for d = 2
anticommutes with the action of C1 = C).

Example 2.21 (Examples of Clifford algebras C(Y )). If pt, pt are the point
equipped with its standard resp. its opposite spin structure as defined in Defi-
nition 2.18, then C(pt) = C1 and C(pt) = C−1.

If Y = ∅, then V (Y ) is zero-dimensional and consequently, C(∅) = R (for
d = 1) resp. C(∅) = C (for d = 2).

Definition 2.22 (The generalized Lagrangian L(�) : W (�) → V (∂�)).
Let �d be a conformal spin manifold. Picking a Riemannian metric in the given
conformal class determines the Levi–Civita connection on the tangent bundle
of �, which in turn determines connections on the spinor bundle S = S(T ∗

0 �),
the line bundles Lk and hence Lk ⊗ S for all k ∈ R. The corresponding Dirac
operator D = D� is the composition

D : C∞(�; Lk ⊗ S)
∇−→ C∞(�; T ∗� ⊗ Lk ⊗ S)

= C∞(�; Lk+1 ⊗ T ∗
0 � ⊗ S)

c−→ C∞(�; Lk+1 ⊗ S) (2.2)
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where c is Clifford multiplication (given by the left action of T ∗
0 � ⊂ C(T ∗

0 �)

on S). It turns out that for k = d−1
2 the Dirac operator is in fact independent of

the choice of the Riemannian metric.
According to Green’s formula, we have

〈Dψ, φ〉 − 〈ψ, Dφ〉 = 〈c(ν)ψ|, φ|〉 ψ, φ ∈ C∞(�, L
d−1

2 ⊗ S)

where ψ|, φ| is the restriction of ψ resp. φ to ∂� and ν is the unit conormal
vector field (the section of T ∗

0 �|∂� corresponding to 1 ∈ R under the natural
isomorphism T ∗

0 �|∂�
∼= T ∗

0 ∂� ⊕ R). Replacing ψ by ψe1 in the formula
above and using the fact that multiplication by e1 is skew-adjoint, we obtain

〈Dψe1, φ〉 + 〈ψ, Dφe1〉 = 〈c(ν)ψ|e1, φ|〉. (2.3)

Let W (�)
def= ker D+ where D+ has domain C∞(�, L

d−1
2 ⊗ S+) and consider

the restriction map to the boundary

L(�) : W (�) −→ L2(∂�, L
d−1

2 ⊗ S) = V (∂�).

The closure L� of the image of L(�) is the Hardy space of boundary values of

harmonic sections of L
d−1

2 ⊗ S+. The kernel of L(�) is the space of harmonic
spinors on � which vanish on the boundary. If �0 ⊆ � denotes the subspace of
closed components of � then ker L(�) = ker D+

�0
is the (finite-dimensional)

subspace of harmonic spinors on �0.
The Green formula shows that L� is isotropic with respect to the bilinear

form b(v, w) = 〈ε(v), w〉, where the involution ε is given by ε(v) = c(ν)ve1.
Comparison with Remark 2.16 shows that ε is precisely the grading involution
on S+ defining the spin structure on ∂� and it agrees with the grading involu-
tion on V (∂�). Analytically, much more involved arguments show that L� is
in fact a Lagrangian subspace [BW]. This implies that L(�) is a generalized
Lagrangian in the sense of Definition 2.14.

Moreover, the map L(�) : W (�) → V (∂�) is linear with respect to Cev
d =

Cd−1, since the Dirac operator D commutes with the right Cd -action.

We give the following definition only for dimensions d = 1, 2 because these
are the cases where Cd−1 is commutative and hence one has a good definition
of the ‘exterior algebra’ over Cd−1. For higher dimensions, one could ignore
the Cd−1-action, but we will not discuss this case as it is not important for our
applications.

Definition 2.23 (The C(∂�)-modules Falg(�) and F(�)). Using the gen-

eralized Lagrangian from the previous definition, we define Falg(�)
def=

Falg(L(�)), the algebraic Fock module over C(∂�) from Definition 2.14. This
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is a real vector space for d = 1 and a complex vector space for d = 2. Recall
that

Falg(L(�)) = �top(ker L(�))∗ ⊗ �(L̄�) (2.4)

and that L̄� (and hence the exterior algebra) is equipped with a natural
inner product. If �0 ⊆ � denotes again the subspace of closed compo-
nents of � then ker L(�) = ker D+

�0
. We note that D+

�0
is is skew-adjoint

by equation (2.3) with respect to the natural hermitian pairing between the
domain and range of this operator: for ψ ∈ C∞(�; L(d−1)/2 ⊗ S+) and
φ ∈ C∞(�; L(d+1)/2 ⊗ S−) the point-wise inner product of ψ · e1 and φ

gives a section of L2 which may be integrated over � to give a complex
number; this allows us to identify L2(�, L(d+1)/2 ⊗ S−) with the dual of
L2(�, L(d−1)/2 ⊗ S+). In particular, �top(ker L(�))∗ = �top(ker D+

�0
)∗ is the

Pfaffian line Pf(�) of the skew-adjoint operator D+
�0

, which comes equipped
with the Quillen metric [BF] (this is a real line for d = 1 and a complex line
for d = 2). Hence both factors on the right-hand side of equation (2.4) are
equipped with natural inner products and we obtain a Hilbert space F(�) as
the completion of Falg(�), which is still a module over C(∂�). We note that
the Fock space F(�) can be regarded as a generalization of the Pfaffian line,
since for a closed � the Fock space F(�) is equal to Pf(�). For d = 1 we
have Falg(�) = F(�) because both are finite-dimensional.

If � is a conformal spin bordism from Y1 to Y2, then F(�) is a left module
over C(∂�) = C(Y1)

op ⊗ C(Y2); in other words, a C(Y2) − C(Y1)-bimodule.

We need to understand how these Fock modules behave under gluing sur-
faces together (we shall not discuss the 1-dimensional analogue explicitly but
the reader will easily fill this gap). So let �i be conformal spin surfaces with
decompositions

∂�1 = Y1 ∪ Y2, ∂�2 = Y2 ∪ Y3

where Yi ∩ Yi+1 could be nonempty (but always consists of the points ∂Yi ).

Let �3
def= �1 ∪Y2 �2, then this geometric setting leads to the algebraic setting

in Remark 2.12. We have Vi
def= V (Yi ) and Li

def= L�i , so that we can derive a
gluing isomorphism. Note that there are two cases, depending on the type of the
von Neumann algebra generated by C(V2) = C(Y2). If Y is closed then we are
in type I, and if Y has boundary we are in type III where a more sophisticated
gluing lemma is needed. Note also that we really have generalized Lagrangians
L(�i ) which are used in the gluing lemma below. It follows from our algebraic
gluing lemma (for type I) together with the canonical isomorphisms of Pfaffian
lines for disjoint unions of closed surfaces.
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Gluing Lemma 2.24. If Y2 is a closed 1-manifold, there are natural isomor-
phisms of graded C(Y3) − C(Y1) bimodules

Falg(�2) ⊗C(Y2) Falg(�1) ∼= Falg(�3).

Again there is a refined version of this lemma for all types of von Neumann
algebras which uses Connes fusion, see Proposition 4.12. It will actually imply
that the above isomorphism are isometries and hence carry over to the comple-
tions F(�i ).

Remark 2.25. A different way to see the isometry for completions is to ob-
serve that our assumption on Y2 being closed (i.e. that the von Neumann alge-
bra A(Y2) is of type I) implies that A(Yi ) ∼= B(Hi ) for some Hilbert spaces Hi

and also that

F(�1) ∼= H S(H2, H1), F(�2) ∼= H S(H3, H2), F(�3) ∼= H S(H3, H1).

Then the isomorphism for Lemma 2.24 is just given by composing these
Hilbert–Schmidt operators. Note that if Yi bound conformal spin surfaces Si

then we may choose Hi = F(Si ) in which case everything becomes canonical.
It is important to note that in the case relevant for string vector bundles, this
last assumption will be satisfied because we will be working in a relative situ-
ation where Yi consists of two copies of the same manifold, one with a trivial
bundle, and with a nontrivial bundle over it.

After these preliminaries, we are now ready to define Clifford linear field
theories of degree n. To motivate the following definition, we recall Example
2.17 of a 1-dimensional EFT: here the Hilbert space E(pt) associatated to the
point pt has additional structure: E(pt) is a Z/2-graded left module over the
Clifford algebra C−n = (C(pt)op)⊗n (see Example 2.21). Roughly speaking, a
Clifford field theory of degree n is a field theory (of dimension d = 1 or 2) with
extra structure ensuring that the Hilbert space E(Y ) associated to a manifold Y

of dimension d−1 is a graded left module over the Clifford algebra C(Y )−n def=
(C(Y )op)⊗n . To make this precise, we define Clifford linear field theories of
degree n as functors from CB2

n (resp. EB1
n) to the category of Hilbert spaces;

here CB2
n (resp. EB1

n) are ‘larger’ versions of the categories CB2 (resp. EB1)
such that the endomorphisms of the object given by Y contains the Clifford
algebra C(Y )−n . This implies that for such a functor E the Hilbert space E(Y )

is left module over C(Y )−n (or equivalently, a right module over C(Y )⊗n).

Definition 2.26 (CFT of degree n). A Clifford linear conformal field theory
of degree n ∈ Z is a continuous functor

E : CB2
n −→ Hilb
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compatible with the additional structures in Definition 2.1 on both cate-
gories. We recall that these are the monodial structures, involutions and anti-
involutions, and adjunction transformations on both categories. In addition we
require that the functor E is compatible with the linear structure on morphisms
in the sense that the equations (2.5) below hold. For brevity’s sake, we will re-
fer to such a theory also just as CFT of degree n (we note that we have defined
the notion of ‘degree’ only for these Clifford linear theories).

The objects of CB2
n are closed conformal spin 1-manifolds Y . If Y1, Y2 are

objects of CB2
n , there are two types of morphisms from Y1 to Y2, namely:

• pairs ( f, c) consisting of a spin diffeomorphism f : Y1 → Y2 and an element
c ∈ C(Y1)

−n ; here C(Y1)
k stands for the graded tensor product of |k| copies

of C(Y1) if k ≥ 0 resp. C(Y1)
op if k < 0. In particular, there are morphisms

f
def= ( f, 1 ∈ C(Y1)

−n) ∈ CB2
n(Y1, Y2) and c

def= (1Y1 , c) ∈ CB2
n(Y1, Y1)

• pairs (�, �), where � is a conformal spin bordism from Y1 to Y2, and � ∈
Falg(�)−n . Here F = Falg(�) is the algebraic Fock space, and Fk stands
for the graded tensor product of |k| copies of F if k ≥ 0 resp. of F̄ if k ≤ 0.
A conformal spin bordism � from Y1 to Y2 is a conformal spin manifold
together with a spin diffeomorphism ∂� ∼= Ȳ1 � Y2. More precisely, we
identify the morphisms (�, �) and (�′, � ′) if there is a conformal spin
diffeomorphism � → �′ compatible with the boundary identification with
Ȳ1 � Y2 such that � is sent to � ′ under the induced isomorphism on Fock
spaces. We recall from Definition 2.23 that if � has no closed components,
then Falg(�) is a Fock space which by definition 2.9 has a canonical cyclic
vector �. Then �−n ∈ Falg(�)−n and we will write

�
def= (�, �−n) ∈ CB2

n(Y1, Y2).

We note that every 1-manifold has a unique conformal structure; hence our
definition of spin structure and the construction of the Clifford algebra C(Y )

applies to every oriented 1-manifold Y . Composition of morphisms is given as
follows:

• If ( f1, c1) is a morphism from Y1 to Y2, and ( f2, c2) is a morphism from Y2

to Y3, then ( f2, c2)◦( f1, c1) = ( f2 ◦ f1, f ∗
1 c2 ·c1). In particular, interpreting

as above a spin diffeomorphism f : Y1 → Y2 as a morphism from Y1 to Y2,
and an element c ∈ C(Y1)

−n as an endomorphism of Y1 we have ( f, c) =
f ◦ c.

• If (�1, �1) is a morphism from Y1 to Y2, and (�2, �2) is a morphism from
Y2 to Y3, their composition is given by (�2 ∪Y2 �1, �2 ∪Y2 �1), where
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�3 = �2 ∪Y2 �1 is obtained by ‘gluing’ along the common boundary com-
ponent Y2, and the fermion �3 = �2 ∪Y2 �1 on �3 is obtained by ‘gluing’
the fermions �2 and �1, i.e., it is the image of �2 ⊗ �1 under the ((−n)th
power of the) ‘fermionic gluing homomorphism’ from Lemma 2.24

Falg(�2) ⊗C(Y2) Falg(�1) −→ Falg(�3).

In the present context where Y2 is closed, the assumptions of Lemma 2.24
are indeed satisfied.

• Composing a morphism (�, �) from Y1 to Y2 with a diffeomorphism
f : Y2 → Y3 is again (�, �), but now regarding � as a bordism from Y1 to
Y3, and Falg(�) as a bimodule over C(Y3)− C(Y1) by means of f . Precom-
position of (�, �) by a diffeomorphism is defined analogously.

• For ci ∈ C(Yi )
−n ⊂ CB2

n(Yi , Yi ) we have

c2 ◦ (�, �) = (�, c2 · �) and (�, �) ◦ c1 = (�, � · c1).

We note that Falg(�) is a C(Y2) − C(Y1)-bimodule and hence Falg(�)−n

is a C(Y2)
−n − C(Y1)

−n-bimodule, which explains the products c2 · � and
� · c1.

We require that a CFT E : CB2
n → Hilb is compatible with the linear struc-

ture on morphisms in the sense that given a spin diffeomorphism f : Y1 → Y2

or a conformal spin bordism � from Y1 to Y2 the maps

C(Y1)
−n −→ Hilb(E(Y1), E(Y1)), Falg(�)−n −→ Hilb(E(Y1), E(Y2)) (2.5)

given by c �→ E( f, c) (resp. � �→ E(�, �)) are linear maps.

Remark 2.27 (Basic properties of Clifford conformal field theories). Let �

be a bordism from Y1 to Y2 with no closed components. Then �−n is a cyclic
vector in the C(Y2)

−n − C(Y1)
−n-bimodule Falg(�)−n and hence every mor-

phism (�, �) can be written as (�, c2�
−nc1) = c2◦(�, �−n)◦c1. This shows

that the morphisms in the category CB2
n are generated by diffeomorphisms f ,

Clifford elements c, and conformal bordisms � = (�, �−n) (with no closed
components).

We note that the spin involution ε = εY (see Definition 2.18) on a con-
formal spin 1-manifold Y induces the grading involution on the associatated
Clifford algebra C(Y ). This implies that as morphisms in the category CB2

n , it
commutes with the even elements of the Clifford algebra C(Y )−n , while it anti-
commutes with the odd elements. In particular, if E : CB2

n → Hilb is a CFT
of degree n, then the Hilbert space E(Y ) is a graded left C(Y )−n-module (or
equivalently, a right C(Y )n-module). If � is a conformal spin bordism from Y1
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to Y2, then the ‘spin involution’ ε� restricts to εYi on the boundary and hence
we have the relation

εY2 ◦ � = � ◦ εY1

in CB2
n . In particular, the corresponding bounded operator E(�) : E(Y1) →

E(Y2) is even.
We claim that E(�) is in fact a Hilbert–Schmidt operator from E(Y1) to

E(Y2). To see this, observe that � ∈ CB2
n(Y1, Y2) is in the image of the natural

transformation

CB2
n(∅, Ȳ1 � Y2) −→ CB2

n(Y1, Y2)

by regarding � as a bordism from ∅ to Ȳ1 � Y2. This implies that E(�) is in
the image of the corresponding natural transformation in Hilb

Hilb(C, E(Y1) ⊗ E(Y2)) −→ Hilb(E(Y1), E(Y2))

which consists exactly of the Hilbert–Schmidt operators from E(Y1) to E(Y2).

Remark 2.28. We note that if � is a bordism from Y1 to Y2, and E is a Clifford
linear theory of degree n then the map F(�)−n −→ Hom(E(Y1), E(Y2)),
� �→ E(�, �) in fact induces a C(Y2)

−n-linear map

E(�) : F(�)−n ⊗C(Y1)
−n E(Y1) −→ E(Y2)

Definition 2.29 (EFT of degree n). A Clifford linear 1-dimensional Eu-
clidean field theory of degree n is a continuous functor

EB1
n −→ Hilb

compatible with the additional structures in Definition 2.1 and the linear struc-
ture on the morphisms (equation (2.5)). Here the 1-dimensional degree n bor-
dism category EB1

n is defined as for CB2
n , except that the dimension of all

manifolds involved is down by one: the objects of EB1
n are 0-dimensional spin

manifolds Y and the bordisms � are 1-dimensional; furthermore the geomet-
ric structure on these bordisms are Riemannian metrics rather than conformal
structures. We want to emphasize that now the Clifford algebras C(Y ) and the
Fock spaces F(�) are finite-dimensional real vector spaces.

We note that we can define real EFT’s; these are functors from EB1
n to the

category HilbR of real Hilbert spaces with the same properties. In fact our
motivating example 2.17 is the complexification of a real EFT.

It should be pointed out that there are no naı̈ve ‘real’ versions of CFT’s, since
e.g. the map C(Y )−n → Hilb(E(Y ), E(Y )) is required to be linear, which
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means complex linear if Y is 1-dimensional (in which case C(Y ) is an algebra
over C). Consequently, we can not restrict the vector spaces E(Y ) to be real.

Definition 2.30 (Clifford linear field theories over a manifold X ). As in
Definition 2.5 we define Clifford linear field theories over a manifold X as
follows. Let CB2

n(X) resp. EB1
n(X) be categories whose objects are as in the

categories CB2
n resp. EB1

n except that all objects Y (given by manifolds of
dimension 1 resp. 0) come equipped with piecewise smooth maps to X . Sim-
ilarly all bordisms � come with piecewise smooth maps to X . The additional
structures on CB2

n and EB1
n extend in an obvious way to CB2

n(X) and EB1
n(X),

respectively. We define a Clifford linear CFT of degree n over X to be a functor
E : CB2

n → Hilb compatible with the additional structures.
Similarly a Clifford linear EFT of degree n over X is a functor

E : EB1
n(X) → Hilb compatible with the additional structures.

Example 2.31 (Basic example of a Clifford linear EFT over X ). Let ξ → X
be an n-dimensional spin vector bundle with metric and compatible connec-
tion over a manifold X . Let S(ξ) → X be the associated spinor bundle (a
C(ξ) − Cn-bimodule bundle, see Definition 2.15). Then there is a Clifford lin-
ear EFT over X of degree n: this is a functor E : EB1

n(X) → Hilb which maps
the object of EB1

n(X) given by pt �→ x ∈ X to the Hilbert space S(ξ)x ; on
morphisms, E(c) for c ∈ C(pt)−n = Cop

n is given by the right Cn-module
structure on S(ξ). If γ : It → X is a path from x to y representing a morphism
in EB1

n , then E(γ ) : S(ξ)x → S(ξ)y is given by parallel translation along γ .
The properties of a Clifford linear field theory then determine the functor E .

2.4 Twisted Clifford algebras and Fock modules

In this section we shall generalize all the definitions given in Section 2.3 to
the twisted case, i.e. where the manifolds are equipped with vector bundles
and connections. This is a straightforward step, so we shall be fairly brief. At
the end of the definition of the twisted Clifford algebra (respectively twisted
Fock module), we will explain the relative version of the constructions, which
involves the twisted and untwisted objects. It is these relative objects which
will be used in Section 5.

Definition 2.32 (The Cd−1-Hilbert space V (ξ)). Let Y d−1 be a conformal
spin manifold with spinor bundle S, and let ξ → Y be a vector bundle,
equipped with a Riemannian metric. Define

V (ξ)
def= L2(Y, L

d−1
2 ⊗ S ⊗ ξ)
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the space of square-integrable sections of the real vector bundle E = L
d−1

2 ⊗
S ⊗ ξ . Each fiber of E is a graded right Cd−1-module, which induces the same
structure on V (ξ).

Definition 2.33 (The Clifford algebras C(ξ) and C(γ )). The above defini-
tion gives for d = 1 a graded real Hilbert space V (ξ); for d = 2, the Clifford
algebra Cd−1 is isomorphic to C and hence V (ξ) is a complex vector space
on which the grading involution acts by a C-anti-linear involution. As in Def-
inition 2.20, V (ξ) has thus the structures needed to form the Clifford algebra

C(ξ)
def= C(V (ξ)) for d = 1, 2.

In case that ξ = γ ∗E is the pullback of an n-dimensional vector bundle
E → X via a smooth map γ : Y → X , we define the following relative
Clifford algebra

C(γ )
def= C(γ ∗E) ⊗ C(Y )−n .

For example, if Y = pt and γ (pt) = x ∈ X then this gives the algebra C(x) =
C(Ex ) ⊗ C−n . Recall that a spin structure on Ex can then be described as a
graded irreducible (left) C(x)-module.

Definition 2.34 (The generalized Lagrangian L(ξ) : W (ξ) → V (∂ξ)).
Let �d be a conformal spin manifold with boundary Y . Assume that the bun-
dle ξ extends to a vector bundle with metric and connection on �. We denote
it again by ξ and let ∂ξ be its restriction to Y . Let S be the spinor bundle of
� and recall from Definition 2.18 that the restriction of S+ to Y is the spinor
bundle of Y . Consider the twisted (conformal) Dirac operator

Dξ : C∞(�; L
d−1

2 ⊗ S ⊗ ξ)
∇−→ C∞(�; T ∗� ⊗ L

d−1
2 ⊗ S ⊗ ξ)

= C∞(�; L
d+1

2 ⊗ T ∗
0 � ⊗ S ⊗ ξ)

c−→ C∞(�; L
d+1

2 ⊗ S ⊗ ξ) (2.6)

where ∇ is the connection on L
d−1

2 ⊗ S ⊗ ξ determined by the connection

on ξ and the Levi–Civita connection on L
d−1

2 ⊗ S for the choice of a metric

in the given conformal class. Let W (ξ)
def= ker D+

ξ where D+
ξ has domain

C∞(�, L
d−1

2 ⊗ S+ ⊗ ξ) and consider the restriction map to the boundary

L(ξ) : W (ξ) −→ L2(∂�, L
d−1

2 ⊗ S ⊗ ξ) = V (∂ξ).

The closure Lξ of the image image of L(ξ) is the twisted Hardy space of

boundary values of harmonic sections of L
d−1

2 ⊗ S+ ⊗ ξ . ker L(ξ) is the space
of twisted harmonic spinors which vanish on the boundary. If �0 ⊆ � denotes
the subspace of closed components of � and ξ0 is the restriction of ξ , then
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ker L(ξ) = ker D+
ξ0

is the (finite-dimensional) subspace of twisted harmonic
spinors on �0. As before, one shows that L(ξ) is Cd−1-linear and that Lξ is a
Lagrangian subspace of V (∂ξ).

Definition 2.35 (The C(∂ξ)-modules Falg(ξ) and F(ξ)). We define

Falg(ξ)
def= Falg(L(ξ)), the algebraic Fock module over C(∂ξ) determined by

the generalized Lagrangian L(ξ) : W (ξ) → V (∂ξ), see Definition 2.14. As
before, this is a real Hilbert space for d = 1 and a complex Hilbert space for
d = 2. As in Definition 2.23, Falg(ξ) can be completed to the Hilbert space
F(ξ) = F(L(ξ)).

In case that ξ = �∗E is the pullback of an n-dimensional vector bundle
E → X via a smooth map � : � → X , we define the following relative Fock
modules

F(�)
def= F(�∗E) ⊗ F(�)−n and Falg(�)

def= Falg(�
∗E) ⊗ Falg(�)−n .

These are left modules over the relative Clifford algebra C(γ ) from Defini-
tion 2.33, where γ = �|Y . It is important to note that the vacuum vector for �

is by definition �� ∈ Falg(�
∗E). If � is closed then Pf(�)

def= Falg(�) is the
relative Pfaffian line.

There are again gluing laws for twisted Fock spaces as in Lemma 2.24 and
Proposition 4.12.

3 K-theory and 1-dimensional field theories

3.1 The space of 1-dimensional Euclidean field theories

We recall from Definition 2.29 that an EFT of degree n is a continuous functor
E from the Euclidean bordism category EB1

n to the category Hilb of Hilbert
spaces compatible with the symmetric monoidal structure, the (anti-) involu-
tions ∗ and ·̄, the ‘adjunction transformations’ (see 2.1) and the linear structure
on morphisms (see equation (2.5)). An important feature is that the Hilbert
space E(pt) associated to the point is a graded left C−n-module, or equiv-
alently, a graded right Cn-module. In our basic Example 2.17, E(pt) is the
space of square integrable sections of the spinor bundle S → M of a spin
n-manifold, where the right Cn-action is induced by the right Cn-action on S.

It might be important to repeat the reason why the algebra C−n comes up.
The geometric example dictates that E(pt) be a right Cn-module. (This goes
back to the fact that a frame for a vector space V is an isometry Rn → V ,
and hence O(n) acts on the right on these frames.) However, from a functorial
point of view, the endomorphisms of an object in a category act on the left.
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This is preserved under the covariant functor E . Since we built in C−n as the
endomorphisms of the object pt ∈ EB1

n , E(pt) becomes a left C−n-module.
Equivalently, this is a right Cn-module, exactly what we want.

In this subsection we consider the space of EFT’s. We want to assume that
the (right) Cn-module E(pt) is a submodule of some fixed graded complex
Hilbert space H (equipped with a right Cn-action such that all irreducible mod-
ules occur infinitely often) in order to obtain a set of such functors.

Proposition 3.1. There is a bijection

{EFTs of degree n} R−→ Hom(R+, H Sev,sa
Cn

(H)).

Here R+ is the additive semi-group of positive real numbers, and
H Sev,sa

Cn
(H) is the semi-group of Clifford linear, even (i.e., grading preserv-

ing), self-adjoint Hilbert–Schmidt operators with respect to composition.

Definition 3.2 (Construction of R). Let R be equipped with the standard spin
structure (see Example 2.18). We note that the translation action of R on itself
is by spin isometries, allowing us to identify all the spin 0-manifolds {t} with
the object pt of the bordism category EB1

n . We recall C(pt) = C1 (Example
2.21) and hence C(pt)−n = C−n .

For t > 0 let It ∈ EB1
n(pt, pt) be the endomorphism given by the Rie-

mannian spin 1-manifold [0, t] ⊂ R. We note that the composition It ◦ It ′ is
represented by gluing together the spin 1-manifolds [0, t ′] and [0, t], identify-
ing 0 ∈ [0, t] with t ′ ∈ [0, t ′] by means of the translation t ′ ∈ R+. This results
in the spin 1-manifold [0, t + t ′]. We note that I ∗

t = It , since reflection at the
midpoint of the interval It is a spin structure reversing isometry.

As discussed in Remark 2.27, if E : EB1
n → Hilb is a Clifford linear EFT

of degree n, then E(pt) is a right Cn-module and E(It ) : E(pt) → E(pt) is an
even, Clifford linear Hilbert–Schmidt operator. Furthermore, due to I ∗

t = It ,
and the required compatibility of E with the anti-involution ∗, the operator
E(It ) is self-adjoint. The relation It ◦ It ′ = It+t ′ in the category EB1

n implies
that

R+ −→ H Sev,sa
Cn

(E(pt)) t �→ E(It ) (3.1)

is a semi-group homomorphism. Extending the Hilbert–Schmidt endomor-
phism E(It ) of E(pt) ⊂ H to all of H by setting it zero on E(pt)⊥ defines
the desired semi-group homomorphism R(E) : R+ → H Sev,sa

Cn
(H).

Sketch of proof of Proposition 3.1. Concerning the injectivity of the map R,
we observe that the functor E : EB1

n → Hilb can be recovered from E(pt) (as
graded right module over Cn) and E(It ) as follows. Every spin 0-manifold Z
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is a disjoint union of copies of pt and p̄t and hence E(Z) is determined by
the Hilbert space E(pt), E(pt) = E(pt) and the requirement that E sends dis-
joint unions to tensor products. Concerning the functor E on morphisms, we
note that E(c) for c ∈ C(pt)−n = C−n ⊂ EB1

n(pt, pt) is determined by the
(left) C−n-module structure on E(pt) ⊂ H . Similarly, the image of the endo-
morphism ε ∈ Bn

1 (pt, pt) is the grading involution on E(pt). Now the mor-
phisms of the category EB1

n are generated by It , c ∈ C(pt)−n and ε using the
operations of composition, disjoint union, the involution ·̄ and the adjunction
transformations EB1

n(∅, Z1 � Z2) → EB1
n(Z1, Z2). For example, It can be

interpreted as an element of EB1
n(pt, pt) or EB1

n(∅, pt � pt) or EB1
n(pt �pt, ∅).

The second and third interpretation correspond to each other via the involu-
tion ·̄; the first is the image of the second under the natural transformation
EB1

n(∅, pt � pt) → EB1
n(pt, pt). It can be shown that the composition

∅ It−→ pt � pt
It ′−→ ∅ (3.2)

is the circle Sap
t+t ′ of length t + t ′ with the anti-periodic spin structure, while

∅ It−→ pt � pt
ε�1−→ pt � pt

It ′−→ ∅ (3.3)

is Sper
t+t ′ , the circle of length t + t ′ with the periodic spin structure. The best way

to remember this result is to embed I as the upper semi-circle into the complex
plane. For x ∈ I , the real line S+

x (I ) can be identified with the complex num-
bers whose square lies in Tx I ⊂ C. It follows that the spinor bundle S+(I )
is a band twisted by π/2 (or a ‘quarter twist’). This is consistent with the fact
that S(∂ I ) consists of one even line, and one odd line (which are orthogonal).
Gluing two such quarter twisted bands together gives a half twisted band (i.e.
the anti-periodic spin structure on the corresponding circle). This also follows
from the fact that this circle bounds a disk in the complex plane, and is thus
spin zero-bordant. Gluing together two quarter twisted bands using the half
twist ε gives a fully twisted band (i.e. the periodic spin structure on S1).

The fact that the morphisms in EB1
n are generated by It , ε and c ∈ C(pt)−n

implies that the functor E is determined by the semi-group homomorphism
E(It ). Hence the map E �→ E(It ) is injective. Surjectivity of this map
is proved by similar arguments by analyzing the relations between these
generators.

Remark 3.3. As in our motivating Example 2.17 for a Clifford linear field
theory, let M be a Riemannian spin manifold of dimension n and consider the
semi-group of Hilbert–Schmidt operators t �→ e−t D2

acting on the Hilbert
space L2(M; S). Then Proposition 3.1 (or rather its version for real EFT’s)
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shows that there is a real Clifford linear EFT of degree n with E(pt) =
L2(M; S) and E(It ) = e−t D2

.
This EFT contains interesting information, namely the Clifford index of D,

an element of K On(pt), see [LM, §II.10]. We recall (see e.g. [LM, Ch. I, The-
orem 9.29]) that K On(pt) can described as K On(pt) = M(Cn)/ i∗M(Cn+1),
where M(Cn) is the Grothendieck group of graded right modules over the Clif-
ford algebra Cn , and i∗ is induced by the inclusion map Cn → Cn+1. Hence the
Cn-module ker D2 represents an element of K On(pt). The crucial point is that
[ker D2] ∈ K On(pt) is independent of the choice of Riemannian metric used
in the construction of D. The argument is this: the eigenspace Eλ of D2 with
eigenvalue λ is a Cn-module; for λ > 0 the automorphism λ−1/2εD of Eλ has
square −1 and anti-commutes with right multiplication by v ∈ Rn ⊂ Cn . In
other words, the graded Cn-module structure on Eλ extends to a Cn+1-module
structure. This shows that [ker D2] = [E<ρ] ∈ K On(pt), where E<ρ(D2) for
ρ > 0 is the (finite-dimensional) sum of all eigenspaces Eλ with eigenvalue
λ < ρ. Choosing a ρ not in the spectrum of D2, the Cn-module E<ρ(D2) can
be identified with E<ρ((D′)2) for any sufficiently close operator D′, in par-
ticular for Dirac operators corresponding to slightly deformed metrics on M .
This shows that [E<ρ(D2)] ∈ K On(pt) is independent of the choice of ρ > 0
as well as the metric on M . We note that in terms of the EFT, the Clifford
index can be described as [E>ρ(E(It ))] ∈ K On(pt), where E>ρ(E(It )) is
the sum of all eigenspaces of E(It ) with eigenvalue > ρ (a finite-dimensional
graded Cn-module); the argument above shows that this is independent of t
and ρ > 0.

This example suggests that the space of 1-dimensional EFT’s of de-
gree n contains interesting ‘index information’ and that we should ana-
lyze its homotopy type. Unfortunately, the result is that it is contractible!
To see this, use Proposition 3.1 to identify this space with the space of
semi-groups t �→ Pt of even, self-adjoint, Cn-linear Hilbert–Schmidt op-
erators. We note that if Pt is such a semi-group, then so is t �→ st Pt

for any s ∈ [0, 1], which implies that the space of these semi-groups is
contractible.

3.2 Super symmetric 1-dimensional field theories

After the ‘bad news’ expressed by the last remark, we will bring the ‘good
news’ in this section: if we replace 1-dimensional EFTs by super symmetric
EFTs, then we obtain a space with a very interesting homotopy type. Before
stating this result and explaining what a super symmetric EFT is, let us moti-
vate a little better why super symmetry is to be expected to come in here.



What is an elliptic object? 281

Remark 3.4. Let E be a real EFT of degree n. Then motivated by Remark 3.3,
one is tempted to define its Clifford index in K On(pt) to be represented by the
Cn-module E>ρ(E(It )) (the sum of the eigenspace of E(It ) with eigenvalue
> ρ). However, in general, this does depend on t and ρ; moreover, for fixed
t, ρ replacing the semi-group E(It ) by the deformed operator st E(It ) leads to
a trivial module for sufficiently small s! This simply comes from the fact that
this operator has no Eigenvalues > ρ for sufficiently small s.

What goes wrong is this: the arguments in Remark 3.14 show that there is a
non-negative, self-adjoint, even operator A (not bounded!) on some subspace
H ′ ⊂ H , which is an infinitesimal generator of the semi-group E(It ) in the
sense that E(It ) = e−t A ∈ H Sev,sa

Cn
(H ′) ⊂ H Sev,sa

Cn
(H) (this inclusion is

given by extending by 0 on the orthogonal complement of H ′ in H ). However,
in general, A is not the square of an odd operator D, and so the argument
in Remark 3.3 showing that [E>ρ(E(It ))] ∈ K On(pt) is independent of t, ρ
fails.

The argument goes through for those semi-groups R+ → H Sev,sa
Cn

(H)

whose generators are squares of odd operators; we will see that these are
precisely those semi-group which extend to ‘super homomorphims’ R

1|1
+ →

H Ssa
Cn

(H).

Definition 3.5 (Susy EFT of degree n). A super symmetric 1-dimensional
Euclidean field theory (or susy EFT) of degree n is a continuous functor

E : SEB1
n −→ Hilb

satisfying the compatibility conditions 2.1. Here SEB1
n is the ‘super’ version

of the 1-dimensional bordism category EB1
n , where 1-dimensional Rieman-

nian manifolds (which are morphisms in EB1
n) are replaced by super manifolds

of dimension (1|1) with an appropriate ‘super’ structure corresponding to the
metric.

We refer to [DW] or [Fr2] for the definition of super manifolds. To a super
manifold M of dimension (n|m) we can in particular associate:

• its ‘algebra of smooth functions’ C∞(M), which is a Z/2-graded, graded
commutative algebra;

• an ordinary manifold M red of dimension n so that C∞(M red) (the smooth
functions on M red) is the quotient of C∞(M) by its nil radical.

One assumes that C∞(M) is a locally free module over C∞(M red). A basic
example of a super manifold of dimension (n|m) is Rn|m with

(Rn|m)red = Rn and C∞(Rn|m) = C∞(Rn) ⊗ �∗Rm .
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More generally, if � is a manifold of dimension n and E → � is a real
vector bundle of dimension m, then there is an associated super manifold M of
dimension (n|m) with

M red = � and C∞(M) = C∞(�, �∗E∗)

where C∞(�, �∗E∗) is the algebra of smooth sections of the exterior algebra
bundle �∗E∗ generated by the dual vector bundle E∗.

In particular, if � is a spin bordism between 0-manifolds Y1 and Y2, then
we can interpret � as a super manifold of dimension (1|1) (using the even
part S+ → � of the spinor bundle) and Y1, Y2 as super manifolds of dimen-
sion (0|1); in fact then � is a ‘super bordisms’ between Y1 and Y2 with �red

being the original bordism between Y red
1 and Y red

2 . The question is what is
the relevant geometric structure on �, which reduces to the Riemannian met-
ric on the underlying 1-manifold �red? We note that a Riemannian metric on
an oriented 1-manifold determines a unique 1-form which evaluates to 1 on
each unit vector representing the orientation. Conversely, a nowhere vanish-
ing 1-form determines a Riemannian metric. We generalize this point of view
by defining a metric structure on a (1|1)-manifold � to be an even 1-form ω

(see [DW, §2.6] for the theory of differential forms on super manifolds) such
that

• ω and dω are both nowhere vanishing (interpreted as sections of vector bun-
dles over �red) and

• the Berezin integral of ω over (0|1)-dimensional submanifolds is positive.

On �red ⊂ � such a form ω restricts to a nowhere vanishing 1-form which in
turn determines a Riemannian metric on �red.

Example 3.6. For example, on the (1|1)-dimensional super manifold R1|1

with even coordinate t and odd coordinate θ , the form ω = dz + ηdη is a met-
ric structure (we note that dω = dη ∧ dη �= 0; the form dη is an odd 1-form
and hence commutes with itself according to equation (2.6.3) in [DW]). The
Berezin integral of ω over {t} × R0|1 gives the value 1 for every t (the form
dt − ηdη gives the value −1 and hence is not a metric structure). The form
ω restricts to the standard form dz on (R1|1)red = R by setting η = 0. In
particular, the metric structure ω induces the standard Riemannian metric on
(R1|1)red = R.

With this terminology in place we can define SEB1
n . It is a category (en-

riched over super manifolds!) and its morphisms consist of ‘super bordisms’ as
in EB1

n , except that 1-dimensional spin bordisms � equipped with Riemannian
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metrics are replaced by (1|1)-dimensional super bordisms equipped with a
metric structure. In particular, the endomorphism spaces of each object are
now super semi-groups; compare Definition 3.9.

1-EFTs and the K-theory spectrum. We can now give a precise formulation
of Theorem 1.1 from the introduction. It says that the space EFTn of susy EFTs
of degree n has the homotopy type of K−n , the (−n)th space in the �-spectrum
K representing periodic complex K -theory. Here K0 = �∞K is the 0th space
in the spectrum K , and all the spaces Kn , n ∈ Z are related to each other by
�Kn � Kn−1. Note that this implies that the connected components of the
space of susy EFTs of degree n are the homotopy groups of the spectrum.

π0(EFTn) = π0(K−n) = K −n(pt) = Kn(pt). (3.4)

Remark 3.7. There is an R-version of the above result (with the same proof),
namely that the space EFTR

n of real susy EFT’s of degree n is homotopy equiv-
alent to K O−n , the (−n)th space in the real K -theory spectrum K O .

To convince the reader that one can really do explicit constructions in terms
of these spaces of field theories, we will describe the Thom class of a spin
vector bundle and the family Dirac index of bundle with spin fibers in terms of
maps into these spaces (see Remarks 3.23 and 3.22).

The ‘super’ analog of Proposition 3.1 is then the following result.

Proposition 3.8. There is a bijection

EFTn
R−→ Hom(R

1|1
+ , H Ssa

Cn
(H)).

Here H Ssa
Cn

(H) is the super (Z/2-graded) algebra of self-adjoint Cn-linear
Hilbert–Schmidt operators on a Hilbert space H which is a graded right mod-
ule over Cn (containing all irreducible Cn-modules infinitely often). The ‘super
semi-group’ R

1|1
+ and homomorphisms between super semi-groups are defined

as follows.

Definition 3.9 (The super group R1|1). We give R1|1 the structure of a ‘super
group’ by defining a multiplication

R1|1 × R1|1 −→ R1|1 (t1, θ1), (t2, θ2) �→ (t1 + t2 + θ1θ2, θ1 + θ2).

Here the points of R1|1 are parametrized by pairs (t, θ), where t is an even and
θ is an oddvariable.

What do we mean by ‘odd’ and ‘even’ variables, and how do we make sense
of the above formula? A convenient way to interpret these formulas is to extend
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scalars by some exterior algebra � and form R1|1(�)
def= (R1|1 ⊗ �)ev, called

the �-points of R1|1. Here R1|1 = R ⊕ R is just considered as a graded vector
space, with one copy of R in even, the other copy of R of odd degree, so that
(R1|1 ⊗ �)ev = �ev ⊕ �odd. Now considering (t, θ) as an element of R1|1(�)

the formula in Definition 3.9 makes sense: for t1, t2 ∈ �ev and θ1, θ2 ∈ �odd,
we have t1 + t2 + θ1θ2 ∈ �ev and θ1 + θ2 ∈ �odd and it is easy to check
that in this fashion we have given R1|1(�) the structure of a group. But how
about a ‘super group structure’ on R1|1 itself? Well, in one approach to super
groups putting a super group structure on R1|1 is by definition the same as
putting a group structure on R1|1(�) for every �, depending functorially on
�. In particular, the formula in Definition 3.9 gives R1|1 the structure of a super
group.

Hopefully, the reader can now guess what a homomorphism A → B
between super groups is: it is a family of ordinary group homomorphisms
A(�) → B(�) depending functorially on �. A particularly interesting ex-
ample of a super homomorphism is given in Example 3.11.

Remark 3.10. It is well-known that the group of orientation preserving isome-
tries of R equipped with its standard orientation and metric can be identified
with R acting on itself by translations. Similarly the group of automorphisms
of the super manifold R1|1 preserving the metric structure ω = dz + ηdη can
be identified with the super group R1|1 acting on itself by translations. Let us
check that for (t, θ) ∈ R1|1 the translation

Tt,θ : R1|1 −→ R1|1 (z, η) �→ (t + z + θη, θ + η)

preserves the form ω

T ∗
t,θ dz = d(t + z + θη) = dz − θdη T ∗

t,θ dη = d(θ + η) = dη

and hence

T ∗
t,θω = (dz − θdη) + (θ + η)dη = dz + ηdη = ω.

The �-points R
1|1
+ (�) of the super space R

1|1
+ consist of all (t, θ) ∈ �ev+ ⊕

�odd, where the �0-component of t is positive. We note that the multiplication
on R1|1 restricts to a multiplication on R

1|1
+ , but there are no inverses; i.e.,

R
1|1
+ is a ‘super semi-group’. It is the analog of R+ (where ‘multiplication’ is

given by addition): we can interpret R+ as the moduli space of of intervals
equipped with Riemannian metrics; similarly, R

1|1
+ can be interpreted as the

moduli space of ‘super intervals with metric structures’. The multiplication on
R+ (resp. R

1|1
+ ) corresponds to the gluing of intervals (resp. super intervals).
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Example 3.11 (A super homomorphism). Let H be the Z/2-graded Hilbert
space of L2-sections of the spinor bundle on a compact spin manifold, let D
be the Dirac operator acting on H , and let H Ssa(H) be the space of self-
adjoint Hilbert–Schmidt operators on H . Then we obtain a map of super spaces
R

1|1
+ → H Ssa

C−n
(H) by defining it on �-points in the following way

R
1|1
+ (�) = �ev

+ × �odd −→ H Ssa(H)(�) = (H Ssa(H) ⊗ �)ev

(t, θ) �→ e−t D2 + θ De−t D2
.

Here e−t D2
is defined for real-valued t > 0 via functional calculus; for a gen-

eral t , we decompose t in the form t = tB + tS with tB ∈ R+ = �0+ and
tS ∈ ⊕∞

p=1 �2p (physics terminology: tB is the ‘body’ of t , while tS is the

‘soul’ of t). Then we use Taylor expansion to define e−t D2 = e−(tB+tS)D2
as

an element of H Ssa(H) ⊗ � (we note that the Taylor expansion gives a fi-
nite sum since tS is nilpotent). We note that θ and D are both odd, so that
e−t D2 + θ De−t D2

is indeed in the even part of the algebra H Ssa(H) ⊗ �. We
will check in the proof of Lemma 3.15 that the map defined above is in fact a
super homomorphism.

Definition 3.12 (Construction of R). We recall from Remark 3.10 that for
(t, θ) ∈ R1|1 the translation Tt,θ : R1|1 −→ R1|1 preserves the metric structure
given by the even 1-form ω = dz + ηdη from example 3.6. For t > 0, we
will write It,θ for the (1|1)-dimensional super manifold [0, t] × R0|1 ⊂ R1|1

equipped with the metric structure given by ω (the �-points of [0, t] × R0|1

consist of all (z, η) ∈ R1|1 such that zB , the ‘body’ of z is in the interval

[0, t]). We consider It,θ as a super bordism between pt
def= 0 × R0|1 and itself

by identifying 0 × R0|1 with {t} × R0|1 by means of the translation T(t,θ). The
composition of It1,θ1 and It2,θ2 in the category SEB1

n (given by gluing of these
‘super bordisms’) is then given by

It2,θ2 ◦ It1,θ1 = It1+t2+θ1θ2,θ1+θ2

since we use the translation Tt1,θ1 to identify [0, t2] × R0|1 with [t1, t1 + t2] ×
R0|1. This then ‘fits’ together with [0, t1] × R0|1 to form the bigger domain
[0, t1 + t2] × R0|1, the relevant identification between {0} × R0|1 and the right-
hand boundary {t1 + t2} × R0|1 of this domain is given by Tt2,θ2 ◦ Tt1,θ1 =
Tt1+t2+θ1θ2,θ1+θ2 .

This implies that

R(E) : R
1|1
+ −→ H S(E(pt)) ⊂ H S(H) (t, θ) �→ E(It,θ )

is a super homomorphism. As in Definition 3.2 it follows that E(It,θ ) is a
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self-adjoint operator. However, in general it will not be even; unlike the sit-
uation in the category EB1

n in the super bordism category SEB1
n the spin in-

volution ε = εpt (see Definition 2.18) does not commute with It,θ ; rather we
have

ε ◦ It,θ ◦ ε = It,−θ . (3.5)

To see this, we recall that the spin involution ε� of a conformal spin man-
ifold � is the identity on � and multiplication by −1 on the fibers of the
spinor bundle S(�) → �. If � is d-dimensional, this is an involution on the
(d|2d)-dimensional super manifold S(�). In particular for � = {0} ⊂ R, S(�)

can be identified with {0} × R0|1 ⊂ R1|1 on which ε acts by (z, η) �→ (z, −η).
It is easy to check that the translation Tt,θ and the involution ε (considered as
automorphism of R1|1) satisfy the relation ε ◦ Tt,θ ◦ ε = Tt,−θ . This in turn
implies the relation (3.5) between endomorphism of pt = {0} × R0|1.

The equation (3.5) shows that restricting a super symmetric EFT
E : SEB1

n → Hilb to the semi-group of morphisms It,θ ∈ SEB1
n(pt, pt) gives

a Z/2-equivariant semi-group homomorphism R(E) as desired.

The proof of Proposition 3.8 is analogous to the proof of Proposition 3.1, so
we skip it. The proof of Theorem 1.1 is based on a description of K -theory in
terms of homomorphisms of C∗-algebras. We recall that a C∗-algebra A is a
subalgebra of the algebra of bounded operators on some Hilbert space, which
is closed under the operation a �→ a∗ of taking adjoints and which is a closed
subset of all bounded operators with respect to the operator norm. Equivalently,
A is an algebra (over R or C) equipped with a norm and an anti-involution ∗
satisfying some natural axioms [BR], [Co1], [HR].

The examples of C∗-algebras relevant to us are:

• The C∗-algebra C0(R) of continuous real valued functions on R which
vanish at ∞ with the supremum norm and trivial ∗-operation. This is a
Z/2-graded algebra with grading involution ε : C0(R) → C0(R) induced
by t �→ −t for t ∈ R.

• The C∗-algebra K(H) of compact operators on a Hilbert space H ; if H
is graded, K(H) is a graded C∗-algebra. More generally, if H is a graded
module over the Clifford algebra Cn , then the algebra KCn (H) of Cn-linear
compact operators is a graded C∗-algebra.

If A, B are graded C∗-algebras, let C∗(A, B) be the space of grading preserv-
ing ∗-homomorphisms f : A → B (i.e., f (a∗) = f (a)∗; such maps are auto-
matically continuous) equipped with the topology of pointwise convergence,
i.e., a sequence fn converges to f if and only if for all a ∈ A the sequence
fn(a) converges to f (a).
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Theorem 3.13. [Higson–Guentner [HG]] Let H be a real Hilbert space
which is a graded right module over the Clifford algebra Cn (containing all
irreducible Cn-modules infinitely often). Then the space C∗(C0(R), KCn (H))

is homotopy equivalent to the (−n)th space in (the �-spectrum equivalent to)
the real K -theory spectrum K O.

Remark 3.14. This picture of K -theory is derived from Kasparov’s KK-
theory, see e.g. [HR]. It is also closely related to a geometric picture of
K O-homology due to Graeme Segal [Se3]. We note that if ϕ : C0(R) →
K(H) is a ∗-homomorphism (not necessarily grading preserving), then ϕ( f )

for f ∈ C0(R) is a family of commuting self-adjoint compact operators. By
the spectral theorem, there is a decomposition of H into mutually perpen-
dicular simultaneous eigenspaces of this family. On a particular eigenspace
the corresponding eigenvalue λ( f ) of ϕ( f ) determines a real number t ∈
R ∪ ∞ such that λ( f ) = f (t) (any algebra homomorphism C0(R) → C

is given by evaluation at some point t ∈ R ∪ ∞). The eigenspaces are nec-
essarily finite-dimensional (except possibly for t = ∞), and the only ac-
cumulation point of points t ∈ R corresponding to a non-trivial eigenspace
is ∞. Hence a C∗-homomorphism ϕ determines a configuration of points
on the real line with labels which are mutually perpendicular subspaces of
H (given by the corresponding eigenspaces); conversely, such a configura-
tion determines a C∗-homomorphism ϕ. The conjugation involution on the
space of all ∗-homomorphisms C0(R) → K(H) (whose fixed point set is
C∗(C0(R), K(H))) corresponds to the involution on the configuration space
induced by t �→ −t and the grading involution on H . We observe that this im-
plies that every grading preserving ∗-homomorphism ϕ : C0(R) → K(H) is of
the form f �→ f (D) ∈ K(H ′) ⊂ K(H), where H ′ ⊂ H is the subspace given
by the direct sum of all subspaces Et of H which occur as ‘labels’ of points
t ∈ R of the configuration corresponding to ϕ. The operator D : H ′ → H ′ has
Et as its eigenspace with eigenvalue t ; the equivariance condition implies that
D is an odd operator.

A geometric model for C∗(C0(R), KCn (H)) is obtained by requiring that
the points t ∈ R are labeled by Cn-linear subspaces of H .

Theorem 1.1 follows from Theorem 3.13 and the following result.

Lemma 3.15. The inclusion map H Ssa
C−n

(H) → Ksa
C−n

(H) induces a homo-
topy equivalence of the corresponding spaces of homomorphisms of super
groups from R

1|1
+ to H Ssa

C−n
(H) resp. Ksa

C−n
(H). Moreover, there is a home-

omorphism

C∗(C0(R), KCn (H))
≈−→ Hom(R

1|1
+ , Ksa

Cn
(H))
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Sketch of proof. Let us outline the proof of the second part. The home-
omorphism is given by sending a grading preserving ∗-homomorphism
ϕ : C0(R) → KCn (H) (which may be considered a super homomorphism!)

to the composition R
1|1
+

χ−→ C0(R)
ϕ−→ KCn (H), where χ is the map of

super spaces given on �-points by

R
1|1
+ (�) = �ev × �odd χ(�)−→ C0(R)(�) = (C0(R, �))ev

(t, θ) �→ e−t x2 + θxe−t x2
.

Here the expression e−t x2 +θxe−t x2
is interpreted the same way as in Example

3.11: for t ∈ R+ ⊂ �ev+ , e−t x2
, xe−t x2

are obviously elements of C0(R); for
general t = tB + tS we use Taylor expansion around tB .

Let us check that χ(�) is in fact a homomorphism

(e−t1x2 + θ1xe−t1x2
)(e−t2x2 + θ2xe−t1x2

)

= e−(t1+t2)x2 − θ1θ2x2e−(t1+t2)x2 + (θ1 + θ2)xe−(t1+t2)x2

= e−(t1+t2+θ1θ2)x2 + (θ1 + θ2)xe−(t1+t2)x2

= e−(t1+t2+θ1θ2)x2 + (θ1 + θ2)xe−(t1+t2+θ1θ2)x2
.

Here the minus sign in the second line comes from permuting the odd element
x past the odd element θ2; the second equality follows by taking the Taylor
expansion of e−(t1+t2+θ1θ2)x2

around the point t1 + t2; the third equality follows
from the observation that the higher terms of that expansion are annihilated by
multiplication by θ1 + θ2.

To finish the proof, one needs to show that the above map χ induces an
isomorphism of graded C∗-algebras

C∗(R1|1
+ ) ∼= C0(R)

where the left-hand side is the C∗-algebra generated by the super semigroup
R

1|1
+ .

Theorem 1.1 and its real analog identify in particular the components of
the space EFTn (resp. EFTR

n ) of complex (resp. real) super symmetric 1-field
theories of degree n; there is a commutative diagram

π0EFTR

n
�−−−−→∼=

K On(pt)
def= M(Cn)/ i∗M(Cn+1)� �

π0EFTn
�−−−−→∼=

Kn(pt)
def= MC(Cn)/ i∗MC(Cn+1)
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where the horizontal isomorphisms are given by the theorem and the ver-
tical maps come from complexification; M(Cn) (resp. MC(Cn)) is the
Grothendieck group of real (resp. complex) graded modules over the Clif-
ford algebra Cn , and i∗ is induced by the inclusion map Cn → Cn+1 (this
way of relating K -theory and Clifford algebras is well-known; see for exam-
ple [LM, Ch. I, Theorem 9.29]). Explicitly, the map � is given by associating
to a field theory E (real or complex) the graded Cn-module E>ρ(E(It )) (the
finite-dimensional sum of the eigenspaces of E(It ) with eigenvalue > ρ); the
argument in Remark 3.3 shows that its class in K -theory is independent of t, ρ
and depends only on the path component of E in EFTn .

By Bott-periodicity, K2k+1(pt) = 0 and K2k ∼= Z. This isomorphism can be
described explicitly as follows.

Lemma 3.16. For n even, the map

MC(Cn)/ i∗MC(Cn+1) −→ Z [M] �→ str(γ ⊗n : M → M)

is an isomorphism. Here γ
def= 2−1/2i1/2e1 ∈ C1 ⊗C and γ ⊗n = γ ⊗· · ·⊗γ ∈

C�n = C�1 ⊗ · · · ⊗ C�1, where C�n = Cn ⊗R C is the complexified Clifford
algebra.

Proof. The complex Clifford algebra C�2 is isomorphic to the algebra of com-
plex 2 × 2-matrices. Let � = C2 be the irreducible module over C�2; make
� a graded module by declaring the grading involution ε to be multiplication
by the ‘complex volume element’ ωC = ie1e2 ∈ C�2 [LM, p. 34]. It is well
known that �⊗k (the graded tensor product of k copies of �) represents a
generator of MC(C2k)/ i∗MC(C2k+1) [LM, Ch. I, Remark 9.28]. We have

γ ⊗2 = γ ⊗ γ = i

2
e1e2 = 1

2
ωC ∈ C�1 ⊗ C�1 = C�2.

We note that for any homomorphism f : M → M on a graded vector space
with grading involution ε we have str( f ) = tr(ε f ). In particular, for M = �

with grading involution ε = ωC we obtain

str(ωC : � → �) = tr(ω2
C
) = tr(1�) = dim � = 2.

This implies str(γ ⊗2 : � → �) = 1 and hence str(γ ⊗2k : �⊗k → �⊗k) =
1.

The above lemma motivates the following

Definition 3.17. If M is a finite-dimensional graded Cn module we define its
Clifford super dimension as

sdimCn (M)
def= str(γ ⊗n : M → M).
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More generally, if f : M → M is a Cn-linear map then we define its Clifford
super trace as

strCn ( f )
def= str(γ ⊗n f : M → M).

We note that the definition of the Clifford super trace continues to make sense
for not necessarily finite-dimensional modules M , provided f is of trace class,
i.e., f is the composition of two Hilbert–Schmidt operators (this guarantees
that the infinite sums giving the super trace above converge).

The simplest invariants associated to a field theory E are obtained by con-
sidering a closed d-manifold � equipped with a fermion � ∈ Falg(�), and
to regard (�, �) as an endomorphism of the object ∅; then E(�, �) ∈
Hilb(E(∅), E(∅)) = Hilb(C, C) = C. For d = 1 we obtain the following
result:

Lemma 3.18. Let It the interval of length t, let Sper
t (resp. Sap

t resp. St ) be
the circle of length t with the periodic (resp. anti-periodic resp. unspecified)
spin structure. Let µ : Falg(It ) → Falg(St ) be the fermionic gluing map and let
� ∈ Falg(It )

−n. If E is a EFT, then

E(Sper
t , µ(�)) = str(E(It , �)) E(Sap

t , µ(�)) = tr(E(It , �)).

This lemma follows from decomposing Sper
t+t ′ resp. Sap

t+t ′ as in equation (3.2)
(resp. (3.3)) and noting that the algebraic analog of this chain of morphisms is
just the trace (resp. super trace) of E(It1 ◦ It2) = E(It1+t2).

Remark 3.19. We remark that unlike tr(E(It , �)) the function str(E(It , �))

is independent of t : super symmetry implies that the generator A of the semi-
group E(It ) = e−t A : E(pt) → E(pt) is the square of an odd operator. This
implies that for any c ∈ C(pt)−n = C−n the contributions to the super trace of
E(It , c�−n) = E(c)E(It ) = E(c)e−t A coming from eigenspaces of A with
non-zero eigenvalues vanish and hence str(E(c)e−t A) = str(E(c) : ker A →
ker A) is independent of t (cf. Remark 3.4).

Definition 3.20. If E is a EFT of degree n, we will call the function

Z E (t)
def= strCn (E(It )) = str(γ ⊗n E(It )) = E(Sper

t , µ(γ�)⊗n)

the partition function of E . The previous remark shows that this function is
constant if E is super symmetric. This terminology is motivated by the fact
that physicists refer to the analogous function for higher-dimensional field the-
ories as partition function (see Definition 3.26 for the case of 2-dimensional
conformal field theories).
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Putting Theorem 1.1, Lemma 3.16 and Lemma 3.18 together, we obtain:

Corollary 3.21. There is a bijection

π0EFT2k −→ Z

which sends the EFT E to its (constant) partition function Z E (t) ∈ Z.

It is desirable to describe certain important K -theory classes (like the fam-
ilies index or the Thom class) as maps to the space EFTn of field theories of
degree n. Below we do something a little less: we describe maps to the space
Hom(R

1|1
+ , H Ssa

Cn
(H)), which is homeomorphic to EFTn by Proposition 3.8;

in other words, we describe the associated EFT only on the standard super
interval It,θ .

Remark 3.22 (The index of a family of spin manifolds). Let π : Z → X
be a fiber bundle with fibers of dimension n. Assume that the tangent bun-
dle τ along the fibers has a spin structure; this implies that π induces a map
π∗ : K O(Z) → K O−n(X) called ‘Umkehr map’ or ‘integration over the
fiber’. If ξ → Z is a real vector bundle, the element

π∗(ξ) ∈ K O−n(X) = [X, K O−n] = [X, EFTR

n ]

can be described as follows. Let S → Z be the C(τ ) − Cn-bimodule bundle
representing the spin structure on τ . Then we obtain a Cn-bundle over X whose
fiber over x ∈ X is L2(Zx , (S ⊗ ξ)|Zx ), the Hilbert space Hx of L2-sections
of S ⊗ ξ restricted to the fiber Zx . The Dirac operator Dx ⊗ ξ on Zx ‘twisted
by ξ ’ acts on Hx and commutes with the (right) Cn-action on Hx induced by
the action on S. Since the space of Cn-linear grading preserving isometries
is contractible, we may identify Hx with a fixed real Hilbert space HR with
Cn-action. Then the map

X −→ Hom(R
1|1
+ , H Ssa

Cn
(HR)) ∼= EFTR

n x �→ ((t, θ) �→ ft,θ (Dx ⊗ ξ))

represents the element π∗(ξ); here ft,θ = e−t x2+θx = e−t x2 + θxe−t x2 ∈
C0(R) for (t, θ) ∈ R1|1; functional calculus can then be applied to the self-
adjoint operator Dx ⊗ ξ to produce the super semi-group ft,θ (Dx ⊗ ξ) of even
self-adjoint Hilbert–Schmidt operators.

Remark 3.23 (The K O-theory Thom class). Let π : ξ → X be an n-dimen-
sional vector bundle with spin structure given by the C(ξ) − Cn-bimodule
bundle S → X (see Remark 2.15). We may assume that there is a real Hilbert
space HR which is a graded Cn-module, and that S is a Cn-linear subbundle of
the trivial bundle X × HR. We note that for v ∈ ξ the Clifford multiplication
operator c(v) : Sx → Sx is skew-adjoint, and εc(v) is self-adjoint (ε is the
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grading involution); moreover, εc(v) commutes with the right action of the
Clifford algebra C−n = C(−Rn) if we let w ∈ Rn act via εc(w). Then the
map

ξ −→ Hom(R
1|1
+ , H Ssa

C−n
(HR)) ∼= EFTR

−n

v �→ (
(t, θ) �→ ft,θ (εc(v)

) ∈ H Ssa
C−n

(Sπ(v)) ⊂ H Ssa
C−n

(HR)

extends to the Thom space X ξ and represents the K O-theory Thom class of ξ

in K On(X ξ ) = [X ξ , EFTR−n].

3.3 Conformal field theories and modular forms

In this section we will show that CFTs of degree n (see Definition 2.26) are
closely related to modular forms of weight n/2. For a precise statement see
Theorem 3.25 below. Let us first recall the definition of modular forms (cf.
[HBJ, Appendix]).

Definition 3.24. A modular form of weight k is a function f : h → C which is
holomorphic (also at i∞) and which has the following transformation property

f ( aτ+b
cτ+d ) = (cτ + d)k f (τ ) for all

(
a b
c d

) ∈ SL2(Z). (3.6)

Let us recall what ‘holomorphic at i∞’ means. The transformation property
for the matrix

(
1 1
0 1

)
implies the translation invariance

f (τ + 1) = f (τ ).

It follows that f : h → C factors through h/Z, which is conformally equivalent
to the punctured open unit disc D2

0 by means of the map

h −→ D2
0 τ �→ q = e2π iτ .

Then f (τ ) is holomorphic at i∞ if the resulting function f (q) on D2
0 extends

over the origin (note that τ → i∞ corresponds to q → 0). Equivalently, in the
expansion

f (τ ) =
∑
n∈Z

anqn (3.7)

of f (q) as a Laurent series around 0 (this is called the q-expansion of f ), we
require that an = 0 for n < 0.

Theorem 3.25. If E is a CFT of degree n, then its partition function Z E : H →
C (see Definition 3.26 below) has the transformation Property (3.6) of a mod-
ular form of weight n/2.
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Definition 3.26 (Partition function). We recall from Definition 2.23 that for a
closed conformal spin surface � the fermionic Fock space Falg(�) is the Pfaf-

fian line Pf(�). Given a CFT E of degree n and an element � ∈ Pf−n(�)
def=

Falg(�)−n , the pair (�, �) represents a morphisms in the category CB2
n from

∅ to ∅; hence we can apply the functor E to (�, �) to obtain an element
E(�, �) ∈ Hilb(E(∅), E(∅)) = Hilb(C, C) = C. Since E(�, �) depends
linearly on �, we obtain an element

Z E (�) ∈ Pfn(�) = Hom(Pf−n(�), C) given by � �→ E(�, �).

We recall that if g : � → �′ is a conformal spin diffeomorphism and
g : Pf−n(�) → Pf−n(�′) is the induced isomorphism of Pfaffian lines, then
for any � ∈ Pf−n(�) the pairs (�, �) and (�′, g�) represent the same mor-
phism in CB2

n(∅, ∅). In particular we have

E(�, �) = E(�′, g�) ∈ C and g(Z E (�)) = Z E (�′) ∈ Pfn(�′). (3.8)

This property can be used to interpret Z E as a section of a complex line
bundle Pfn over the Teichmüller spaces of conformal spin surfaces, which is
equivariant under the action of the mapping class groups. The partition func-
tion of E is obtained by restricting attention to conformal surfaces of genus
one with the non-bounding spin structure. This spin structure is preserved up
to isomorphism by any orientation preserving diffeomorphism, i.e. by SL2(Z),
whereas the other 3 spin structure is permuted. This will ultimately have the
effect of obtaining a modular form for the full modular group SL2(Z) rather
than for an (index 3) subgroup.

Let us describe the Teichmüller space of this spin torus explicitly. Given a

point τ in the upper half plane h ⊂ C, let �τ
def= C/(Z + Zτ) be the con-

formal torus obtained as the quotient of the complex plane (with its standard
conformal structure) by the free action of the group Z + Zτ ⊂ C acting by
translations. Let Aτ be the conformal annulus obtained as a quotient of the
strip {z ∈ C | 0 ≤ im(z) ≤ im(τ )} by the translation group Z. The annulus
is a bordism from S1 = R/Z to itself if we identify R with the horizontal line
{z ∈ C | im(z) = im(τ )} via s �→ s + τ . So while Aτ as a manifold depends
only on the imaginary part of τ , the identification between ∂ Aτ and the disjoint
union of Sper (circle with periodic spin structure) and S̄per depends on the real
part of τ . Note that if we equip C with the standard spin structure given by the
bimodule bundle S = C × C2, then the translation action of C on itself lifts to
an action on S (trivial on the second factor). This implies that the spin structure
on C induces a spin structure on �τ (which is the non-bounding spin structure)
and Aτ .
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For Y = Sper the space Hilbert V (Y ) from Definition 2.19 can be identified
with complex valued functions on the circle. In particular, the constant real
functions give us an isometric embedding R ⊂ V (Sper) and hence an embed-
ding of Clifford algebras C1 = C(R) → C(Sper). Let � ∈ Falg(Aτ ) be the
vacuum vector, let γ ∈ C1 ⊗ C ⊂ C(Sper) ⊗ C be the element constructed in
Lemma 3.16, and let ξτ ∈ Falg(�τ ) be the image of γ� under the fermionic
gluing map µ : Falg(Aτ ) → Falg(�τ ). If E is a CFT of degree n (not necessar-
ily super symmetric), we define its partition function to be the function

Z E : h −→ C τ �→ E(�τ , ξ
−n
τ ).

We note that for g = (
a b
c d

) ∈ SL2(Z) and τ ∈ h the map C → C,
z �→ (cτ +d)−1z sends the lattice Z+Zτ to Z+Zgτ , gτ = aτ+b

cτ+d . This confor-
mal diffeomorphism lifts to a conformal spin diffeomorphism g : �τ → �gτ ,
which induces an isomorphism of Pfaffian lines g∗ : Pf(�τ ) → Pf(�gτ ).

Lemma 3.27. The induced map Pf(�τ )
⊗2 → Pf(�gτ )

⊗2 sends ξ⊗2
τ to

(cτ + d)ξ⊗2
gτ .

Proof of Theorem 3.25. We note that the previous lemma and equation (3.8)
implies that if E is a CFT of degree 2k, then

Z E (τ ) = E(�τ , ξ
−2k
τ ) = E(�gτ , g∗(ξ−2k

τ )) = E(�gτ , (cτ + d)−kξ−2k
gτ ))

= (cτ + d)−k E(�gτ , ξ
−2k
gτ ) = (cτ + d)−k Z E (gτ). (3.9)

This shows that the partition function of E has the transformation property
(3.6) of a modular form of weight k as claimed by Theorem 3.25.

Now we would like to discuss whether the partition function Z E (τ ) of a
conformal field theory E of degree 2k is a modular form of weight k; in other
words, whether Z E (τ ) is holomorphic and holomorphic at i∞. The key to
this discussion is the following result whose proof is analogous to that of the
corresponding result Lemma 3.18 for the partition function of a 1-dimensional
EFT.

Lemma 3.28. Z E (τ ) = str(E(Aτ , (γ�)−n)).

We note that E(Sper) is a graded module over the Clifford algebra C(Sper)−n

by letting c ∈ C(Sper)−n act on E(Sper) via the operator E(c). We note that the
operator E(Aτ ) does not commute with the action of the algebra C(Sper)−n ,
but it does commute with the subalgebra C−n = C−n

1 ⊂ C(Sper)−n generated
by constant functions. Expressing (Aτ , (γ�)−n)) ∈ CB2

n(Sper, Sper) as the
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composition γ −n ◦ Aτ we obtain the following alternative expression for the
partition function (cf. Definition 3.17)

Z E (τ ) = str(E(γ ⊗n)E(Aτ )) = strCn (E(Aτ )). (3.10)

The compatibility of E : CB2
n → Hilb with the involution ∗ on both cate-

gories implies that the homomorphism

h → H Sev
Cn

(E(Sper)) τ �→ E(Aτ ) (3.11)

is Z/2-equivariant, where Z/2 acts on h by τ �→ −τ̄ and on H SCn (H) by
taking adjoints. Any homomorphism ρ : h → H Sev

Cn
(H) has the form

ρ(τ) = q L0 q̄ L̄0 q = e2π iτ

where L0, L̄0 are two commuting, even, Cn-linear operators (in general un-
bounded), such that the eigenvalues of L0 − L̄0 are integral. Moreover, the
homomorphism is Z/2-equivariant if and only if the operators L0, L̄0 are self-
adjoint.

We want to emphasize that the homomorphism (3.11) is completely analo-
gous to the homomorphism

R+ −→ H Sev,sa
Cn

(E(pt)) t �→ E(It )

associated to a 1-dimensional EFT (see equation (3.1)). We’ve shown that
E(It ) is always of the form E(It ) = e−t A for an (unbounded) self-adjoint,
even operator A. Moreover, if E is the restriction of a super symmetric EFT,
i.e., if E extends from the bordism category EB1

n to the ‘super bordism cate-
gory’ SEB1

n , then A is the square of an odd operator. This had the wonderful
consequence that for any c ∈ Cn the super trace str(cE(It )) is in fact indepen-
dent of t .

Similarly, we would like to argue that if the Clifford linear CFT E is the
restriction of a ‘super conformal’ field theory of degree n, then the infinitesimal
generator L̄0 of

E(Aτ ) = q L0 q̄ L̄0 (3.12)

is the square of an odd self-adjoint operator Ḡ0. Here by ‘super conformal’
field theory of degree n we mean a functor E : SCB2

n → Hilb (satisfying the
usual requirements), where SCB2

n is the ‘super version’ of the category CB2
n , in

which the conformal spin bordisms are replaced by super manifolds equipped
with an appropriate ‘geometric super structure’, which induces a conformal
structure on the underlying 2-dimensional spin manifold. Unfortunately our
ignorance about super geometry has kept us from identifying the correct ver-
sion of this ‘geometric super structure’, but we are confident that this can be
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done (or has been done already). In this situation it seems reasonable to pro-
ceed assuming this. In other words, from now on the results in this section will
all be subject to the following.

Hypothesis 3.29. There is an appropriate notion of ‘super conformal struc-
ture’ with the following properties:

(1) on the underlying 2-dimensional spin manifold it amounts to a conformal
structure;

(2) if E : CB2
n → Hilb is a CFT of degree n which extends to a (yet unde-

fined) ‘super symmetric CFT of degree n’, then L̄0 is the square of an odd
operator Ḡ0 (where L̄0 is as in equation (3.12)).

We want to emphasize that the usual notion of ‘super conformal structure’
is not what is needed here; we will comment further in Remark 3.32.

Theorem 3.30. Assuming Hypothesis 3.29, the partition function Z E of a susy
CFT of degree n is a weak integral modular form of weight n

2 .

Definition 3.31 (Weak integral modular forms). A weak modular form is
a holomorphic function f : h → C with the transformation property (3.6),
whose q-expansion (3.7) has only finitely many terms with negative powers
of q; equivalently, the function f (q) on the disc has a pole, not an essential
singularity at q = 0.

A (weak) modular form is integral if all coefficients an in its q-expansion
are integers (this low-brow definition is equivalent to more sophisticated defi-
nitions). An example of an integral modular form is the discriminant � whose
q-expansion has the form

� = q
∞∏

n=1

(1 − qn)24.

Other examples of integral modular forms are the the Eisenstein series

c4 = 1 + 240
∑
k>0

σ3(k)qk c4 = 1 − 504
∑
k>0

σ5(k)qk

(modular forms of weight 4 respectively 6) where σr (k) = �d|kdr . The ring
of integral modular forms is equal to the quotient of the polynomial ring
Z[c4, c6, �] by the ideal generated by c3

4 − c2
6 − (12)3�.

Let us denote by M F∗ the graded ring of weak integral modular forms; it is
graded by the degree of a modular form to be twice its weight; the motivation
here being that with this definition the degree of the partition function of a
susy CFT E agrees with the degree of E . Recall that the discriminant � has a
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simple zero at q = 0. It follows that if f is a weak modular form, then f �N

is a modular form for N sufficiently large. As a consequence

M F∗ = Z[c4, c6, �, �−1]/(c3
4 − c2

6 − (12)3�).

Proof of Theorem 3.30. By equations (3.10) and (3.12) we have

Z E (τ ) = strCn (q
L0 q̄ L̄0).

We recall that the eigenvalues of L0 − L̄0 are integral; let Hk ⊂ E(Sper) be the
subspace corresponding to the eigenvalue k ∈ Z. According to our Hypothesis
3.29 we have L̄0 = Ḡ2

0. This allows us to calculate the partition function Z E (τ )

as follows

Z E (τ ) = strCn (q
L0 q̄ L̄0) = strCn (q

L0

| ker L̄0
) (3.13)

=
∑
k∈Z

strCn (q
L0

| ker L̄0∩Hk
) =

∑
k∈Z

qk sdimCn (ker L̄0 ∩ Hk). (3.14)

Here the second equality follows from the fact that the eigenspace of L̄0 with
non-zero eigenvalue does not contribute to the supertrace (see Remark 3.4);
the last equality follows from the fact that restricted to the kernel of L̄0 the
operator L0 = L0 − L̄0 which in turn is just multiplication by k on Hk . This
implies that Z E (τ ) is a holomorphic function with integral coefficients in its
q-expansion.

To see that all but finitely many coefficients ak with negative k must be zero,
we note that if ker L̄0 ∩ Hk were �= 0 for an infinite sequence of negative
values of k, we would run into a contradiction with the fact that q L0 q̄ L̄0 is a
Hilbert–Schmidt operator.

The above proof suggests to associate to a susy CFT E of degree n the
following homomorphism of super groups

ψk : R1|1 −→ H SCn (Hk) (t, θ) �→ e2π i(i t L̄0+i1/2θ Ḡ0).

By the result of the previous section, the super homomorphism ψk represents
an element �k(E) ∈ π0(EFTn) ∼= Kn(pt). Let us calculate the image of this
element under the isomorphism Kn(pt) ∼= Z (for n even), which is given by
associating to �k(E) its partition function. By the arguments leading to Corol-
lary 3.21, it is given by

strCn (e
2π i(i t L̄0) acting on Hk) = sdimCn (ker L̄0 ∩ Hk)

which is the coefficient ak in the q-expansion of Z E (τ ) by comparison with
the proof of Theorem 3.25.
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Sketch of proof of Theorem 1.2. This is a ‘parametrized’ version of the above
argument: if C is a Clifford elliptic object over X , then given a point x ∈ X ,
we obtain a susy Clifford linear CFT as the composition Ex : SCB2

n →
SCB2

n(X)
C−→ Hilb; here the first map is given by using the constant

map to x ∈ X . From Ex we manufacture a collection of homomorphisms
ψk(x) : R1|1 → H SCn (Hk) as above; these depend continuously on x . By the
results of the last subsection, the map ψk from X to the space of homomor-
phisms represents an element of K −n(X), giving the coefficient of qk in the
Laurent series M F(C) ∈ K −n(X)[[q]][q−1].

Remark 3.32. We would like to conclude this section with some comments
on our Hypothesis 3.29. The function ρ(τ) = q L0 q̄ L̄0 can be rewritten in the
form

ρ(τ) = q L0 q̄ L̄0 = e2π i[uL0+v L̄0]

where u = τ and v = −τ̄ . Geometrically, the new coordinates u, v can be
interpreted as follows: If we think of τ = x + iy with coordinates x, y of h ⊂
R2 and with Euclidean metric ds2 = dx2 + dy2, then the Wick rotation y �→
t = iy gives a new coordinate t with respect to which the metric becomes the
Minkowski metric dx2 − dt2. We note that u, v are the light cone coordinates
with respect to the Minkowski metric (i.e., the light cone consists of the points
with uv = 0). In other words, if we write R2

E for R2 with coordinates x, y
and the usual Euclidean metric and R2

M for R2 with x, t coordinates and the
Minkowski metric, then the Wick rotation gives us an identification R2

E ⊗C =
R2

M ⊗ C between the complexifications. Let ρ∗ : Lie(R2
E ) ⊂ Lie(R2

E )C →
EndCn (H) be the Lie algebra homomorphism induced by ρ, extended to the
complexification Lie(R2

E )C. Interpreting the translation invariant vectorfields
∂
∂x , ∂

∂y on R2
E as elements of Lie(R2

E ) and ∂
∂u , ∂

∂v
as elements of Lie(R2

M )C,
the above equation shows that

ρ∗
(

∂

∂u

)
= 2π i L0 ρ∗

(
∂

∂v

)
= 2π i L̄0.

Let R
2|1
M be the super Minkowski space (super space time) of dimension

(2|1) with even coordinates u, v and one odd coordinate θ (see [Wi2, §2.8]
or [Fr2, Lecture 3]). This comes equipped with a natural geometric ‘super
structure’ extending the Minkowski metric on the underlying R2

M . It has a
group structure such that the translation action on itself preserves that geo-
metric structure. The corresponding super Lie algebra is given by the space
of invariant vector fields; a basis is provided by the two even vector fields
∂
∂u , ∂

∂v
and the odd vector field Q = ∂θ + θ ∂

∂v
. The odd element Q commutes
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(in the graded sense) with the even elements; the crucial relation in this super
Lie algebra Lie(R2|1

M ) is (see [Wi2, p. 498])

1

2
[Q, Q] = Q2 = ∂

∂v
.

This shows that if the representation ρ : R2
M → EndCn (H) extends to a repre-

sentation of the super Poincaré group R
2|1
M , then the operator L̄0 is the square

of an odd operator.
We note that the usual ‘super conformal structure’ on super manifolds of

dimension (2|2) [CR], [Ba] is not the geometric structure we are looking for.
This is too much super symmetry in the sense that if a Clifford linear conformal
field theory E : CB2

n → Hilb would extend over these super manifolds, then
both generators L0 and L̄0 of the semi-group E(Aτ ) would be squares of odd
operators, thus making the partition function Z E (τ ) constant.

4 Elliptic objects

In this section we describe various types of elliptic objects (over a manifold
X ). We start by recalling Segal’s original definition, then we modify it by in-
troducing fermions. After adding a super symmetric aspect (as in Section 3.2)
we arrive at so-called Clifford elliptic objects. These are still not good enough
for the purposes of excision, as explained in the introduction. Therefore, we
add data associated to points, rather than just circles and conformal surfaces.
These are our enriched elliptic objects, defined as certain functors from a geo-
metric bicategory Dn(X) to the bicategory of von Neumann algebras vN.

4.1 Segal and Clifford elliptic objects

We first remind the reader of a definition due to Segal [Se1, p. 199].

Definition 4.1. A Segal elliptic object over X is a projective functor C(X) →
V satisfying certain axioms. Here V is the category of topological vector spaces
and trace class operators; the objects of C(X) are closed oriented 1-manifolds
equipped with maps to X and the morphisms are 2-dimensional oriented bor-
disms equipped with a conformal structure and a map to X . In other words,
C(X) is the subcategory of the bordism category CB2(X) (see Definition 2.5)
with the same objects, but excluding those morphisms which are given by dif-
feomorphisms.

The adjective ‘projective’ basically means that the vector space (resp. opera-
tor) associated to map of a closed 1-manifold (resp. a conformal 2-manifold) to
X is only defined up to a scalar. As explained by Segal in §4 of his paper [Se2]



300 Stolz and Teichner

(after Definition 4.4), a projective functor from C(X) to V can equivalently be
described as a functor

Ê : Cn(X) −→ V

where n ∈ Z is the central charge of the elliptic object. Here Cn(X) is some
‘extension’ of the category C(X), whose objects and morphisms are like those
of C(X), but the 1-manifolds and 2-manifolds (giving the objects resp. mor-
phisms) are equipped with an extra structure that we will refer to as n-riggings.
The functor Ê is required to satisfy a linearity condition explained below. We
will use the notation Ê for Segal elliptic objects and E for Clifford elliptic
objects (Definition 4.3).

The following definition of n-riggings is not in Segal’s papers, but it is an
obvious adaptation of Segal’s definitions if we work with manifolds with spin
structures as Segal proposes to do at the end of §6 in [Se1].

Definition 4.2 (Riggings). Let Y be a closed spin 1-manifold which is zero
bordant. We recall that associated to Y is a Clifford algebra C(Y ) (see Defini-
tions 2.19 and 2.20), and that a conformal spin bordism �′ from Y to the empty
set determines an irreducible (right) C(Y )-module F(�′) (the ‘Fock space’
of �′; see Definition 2.23). The isomorphism type of F(�′) is independent
of �′.

Given an integer n, we define an n-rigging of Y to be a right C(Y )−n-module
R isomorphic to F(�′)−n for some �′. In particular, such a conformal spin
bordism �′ from Y to ∅ determines an n-rigging for Y , namely R = F(�′)−n .
This applies in particular to the case Segal originally considered: if Y is
parametrized by a disjoint union of circles then the same number of disks can
be used as �′.

Let � be a conformal spin bordism from Y1 to Y2 and assume that Yi is
equipped with an n-rigging Ri . An n-rigging for � is an element λ in the
complex line

Pfn(�, R1, R2)
def= HomC(Y1)

⊗n (R1, R2 �C(Y2)
−n F(�)−n)

which is well defined since by Definition 2.23 F(�) is a left module over
C(Y1)

op ⊗ C(Y2). If � is closed, this is just the (−n)th power of the Pfaffian
line Pf(�) = F(�). More generally, if the riggings Ri come from conformal
spin bordisms �′

i from Yi to ∅, then the line Pfn(�, R1, R2) can be identified
with the (−n)th power of the Pfaffian line of the closed conformal spin surface
�′

2 ∪Y2 � ∪Y1 �
′
1.

We want to point out that our definition of a 1-rigging for a closed spin
1-manifold Y is basically the ‘spin version’ of Segal’s definition of a rigging
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(as defined in Section 4 of [Se2], after Definition 4.4). As Segal mentions in
a footnote in §6 of [Se2] a rigging (in his sense) is the datum needed on the
boundary of a conformal surface � in order to define the determinant line
Det(�) (which is the dual of the top exterior power of the space of holomophic
1-forms on � for a closed �). Similarly, an n-rigging on the boundary of a
conformal spin surface � makes it possible to construct the nth power of the
Pfaffian line of �.

Our notion of rigging for a conformal surface, however, is different from
Segal’s (see Definition 5.10 in [Se2]); his is designed to give the datum needed
to define non-integral powers of the determinant line Det(�) (correspond-
ing to a non-integral central charge). This is then used to resolve the phase
indeterminancy and get a non-projective functor. In our setting, only inte-
gral powers of the Pfaffian line arise, so that our definition has the same
effect.

A Segal elliptic object Ê : Cn(X) → V is required to be linear on morphisms
in the sense that the operator Ê(�, �, λ) associated to a bordism � equipped
with an n-rigging λ depends complex linearly on λ.

If � is a torus, Pf−2(�) is canonically isomorphic to the determinant line
Det(�). In particular, an n-rigging on a closed conformal spin torus amounts to
the choice of an element λ ∈ Detn/2(�). Evaluating a Segal elliptic object Ê
over X = pt of central charge n on the family of tori �τ = C/(Z + Zτ)

parametrized by points τ ∈ h of the upper half plane (equipped with the
non-bounding spin structure), we obtain a section of the complex line bundle
Pfn → h; it is given by τ �→ (λ �→ Ê(�τ , λ)) ∈ Hom(Pf−n(�τ ), C) (com-
pare Definition 3.26). By construction, this section is SL2(Z)-equivariant; it is
holomorphic by Segal’s requirement that the operator Ê(�, λ) associated to a
conformal spin bordism � equipped with a rigging λ depends holomorphically
on the conformal structure (the Teichmüller space of conformal structures on
� is a complex manifold); such CFTs are referred to as chiral. Moreover, the
section is holomorphic at infinity, thanks to the ‘contraction condition’ on Ê
(see [Se1, §6]). In other words, this construction associates a modular form of
weight n/2 to a Segal elliptic object over X = pt.

Chiral CFTs are ‘rigid’ in a certain sense so that they are not general enough
to obtain an interesting space of such objects (this is not to say that ellip-
tic cohomology could not be described in terms of chiral CFT’s; in fact it
might well be possible to obtain the elliptic cohomology spectrum from a
suitable symmetric monoidal category of chiral CFTs in the same way that
the K -theory spectrum is obtained from the symmetric monoidal category
of finite-dimensional vector spaces). We propose to study ‘super symmetric’
CFTs which are non-chiral, but whose partition functions are holomorphic as
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a consequence of the built-in super symmetry, see the proof of Theorem 1.2 in
Section 3.3.

Definition 4.3. A Clifford elliptic object over X is a Clifford linear 2-
dimensional CFT in the sense of Definition 2.30, together with a super sym-
metric refinement. The latter is given just like in the K -theoretic context de-
scribed in Section 3.2 by replacing conformal surfaces by their (complex)
(1|1)-dimensional partners. This is explained in more detail in Section 3.3.

Roughly speaking, the relationship between a Segal elliptic object of central
charge n and a Clifford elliptic object of degree n is analogous to the relation-
ship between the complex spinor bundle SC(ξ) and the Clifford linear spinor
bundle S(ξ) associated to a spin vector bundle ξ of dimension n = 2k over
a manifold X (see [LM, II.5]). Given a point x ∈ X the fiber SC(ξ)x is a
vector space, while S(ξ)x is a graded right module over Cn , or equivalently, a
graded left module over C−n = C(pt)−n ; we can recover SC(ξ) from S(ξ) as
SC(ξ) = �⊗k ⊗C−n S(ξ).

Similarly, given a Clifford elliptic object E over X of degree n, we can
produce an associated functor

Ê : Cn(X) −→ V

as follows:

• given an object of Cn(X), i.e. a closed spin manifold Y with a rigging R and
a map � : Y → X , we define Ê(Y, R, �) to be the Hilbert space R �C(Y )−n

E(γ );
• Given a morphism (�, λ, �) in Cn(X) from (Y1, γ1, R1) to (Y2, γ2, R2), i.e.

a conformal spin bordism � from Y1 to Y2 equipped with an n-rigging λ ∈
Pfn(�, R1, R2), we define the operator E(�, �, λ) to be the composition

Ê(γ1) = R1 �C(Y1)
−n E(γ1)

λ�1−→ R2 �C(Y2)
−n F(�)−n �C(Y1)

−n E(γ1)

1�E(�)−→ R2 �C(Y2)
−n E(γ2) = Ê(γ2) (4.1)

(see Remark 2.28 for the meaning of E(�)).

It should be emphazised that the resulting functor Ê is not a Segal elliptic
object: in general the operators Ê(�, λ) will not depend holomorphically on
the complex structure on �, since there is no such requirement for E(�) in the
definition of Clifford elliptic objects. However, as mentioned above, the built-
in super symmetry for E will imply that the partition function (for X = pt) of
Ê is holomorphic and so we obtain a (weak) modular form of weight n/2.
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4.2 The bicategory Dn(X) of conformal 0-,1-, and 2-manifolds

A bicategory D consists of objects (represented by points), 1-morphisms (hor-
izontal arrows) and 2-morphisms (vertical double arrows). There are compo-
sition maps of 1-morphisms which are associative only up to a natural trans-
formation between functors, and an identity 1-morphism exists (but it is only
an identity up to natural transformations). There are also compositions of 2-
morphisms (which are strictly associative) and strict identity objects. In par-
ticular, given objects a, b there is a category D(a, b) whose objects are the
1-morphisms from a to b and whose morphisms are the 2-morphisms between
two such 1-morphisms; the composition in D(a, b) is given by vertical com-
position of 2-morphisms in D. Given another object c, horizontal composition
gives a functor

D(b, c) × D(a, b) −→ D(a, c)

which is associative only up to a natural transformation. We refer to [Be] for
more details.

We will first describe the geometric bicategory Dn(X). The objects, mor-
phisms and 2-morphisms will be manifolds of dimension 0, 1 and 2, respec-
tively, equipped with conformal and spin structures, and maps to X as well as
the fermions from Definition 2.26. Note that the conformal structure is only
relevant for surfaces.

Following is a list of data necessary to define a bicategory. We only spell
out the case X = pt; in the general case one just has to add piecewise smooth
maps to X , for all the 0-,1-, and 2-manifolds below. So it will be easy for the
reader to fill in those definitions.

Objects: The objects of Dn = Dn(pt) are 0-dimensional spin manifolds Z ,
i.e. a finite number of points with a graded real line attached to each of them.

Morphisms: A morphism in Dn(Z1, Z2) is either a spin diffeomorphism
Z1 → Z2, or a 1-dimensional spin manifold Y , together with a spin diffeo-
morphism ∂Y → Z̄1 � Z2.

Composition of morphisms: For two diffeomorphisms, one uses the usual
composition, and for 2 bordisms, composition is given by gluing 1-manifolds,
and pictorially by

Z3 Z2
Y2�� Z1

Y1�� = Z3 Z1
Y2∪Z2 Y1�� .
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The composition of a diffeomorphism and a bordism is given as for the cate-
gory Bd , namely by using the diffeomorphism to change the parametrization
of one of the boundary pieces of the bordism.

2-morphisms: Given two bordism type morphisms Y1, Y2 from the object
Z1 to the object Z2, then a 2-morphism in Dn(Y1, Y2) consists either of a
spin diffeomorphism Y1 → Y2 (rel. boundary), or it is given by a conformal
spin surface � together with a diffeomorphism ∂� ∼= Y1 ∪Z1∪Z2 Y2; this is
schematically represented by the following picture

Z2 Z1

Y1

��

Y2

�� �

��

As in the category CBn
2, we need in addition the following datum for a

2-morphism from Y1 to Y2: In the case of a diffeomorphism, we have an el-
ement c ∈ C(Y1)

⊗n ; in the case of a bordism, we need a fermion � in the nth
power of the algebraic Fock space Falg(�) from Definition 2.23. Moreover, we
define two such pairs (�, �) and (�′, � ′) to give the same 2-morphism from
Y1 to Y2, if there is a conformal spin diffeomorphism α : � → �′ sending �

to � ′.
Given one spin diffeomorphism φ : Z1 → Z2 and one bordism Y , then

one can form a closed spin 1-manifold Yφ by gluing the ends of Y together
along φ. Then a 2-morphism from φ to Y is a conformal spin surface � to-
gether with a fermion in Falg(�) and a diffeomorphism ∂� ∼= Yφ . Again, two
such 2-morphisms are considered equal if they are related by a conformal spin
diffeomorphism.

Composition of 2-morphisms: Depending on the case at hand (horizontal
and vertical) composition in the 2-category Dn is either given by gluing sur-
faces or composing diffeomorphisms. This is very similar to the category CBn

2,
so details are omitted.

As for K -cocycles, it will be important that our enriched elliptic objects pre-
serve a symmetric monoidal structure, certain involutions on the bicategories,
as well as certain adjunction transformations. The monoidal structure on Dn is
simply given by a disjoint union, which has a unit given by the empty set.

The involutions in Dn . In the case of Bd we mentioned two involutions,
called ·̄ and ∗. The first reversed the spin structure on (d − 1)-manifolds, the
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second on d-manifolds. So in the case of Dn it is natural to have 3 involutions
in the game, each of which reverses the spin structure of manifolds exactly in
dimension d = 0, 1 respectively 2. We call these involutions (in that order),
op, ·̄ and ∗ even though it might seem funny to distinguish these names. Note
however, that there will be analogous involutions on the von Neumann bicat-
egory vN and we wish to be able to say which involutions are taken to which
by our enriched elliptic object.

The adjunction transformation in Dn . Given objects Z1, Z2 of Dn , there
is a functor

Dn(∅, Z1 � Z2) −→ Dn(Zop
1 , Z2). (4.2)

On objects, it reinterprets a bordism Y from ∅ to Z1�Z2 as a bordism from Zop
1

to Z2. Similarly, if Y1, Y2 are two such bordisms, and � is a morphism from Y1

to Y2 in the category Dn(∅, Z1�Z2), then it can be reinterpreted as a morphism
between Y1 and Y2 considered as morphisms in Dn(Zop

1 , Z2). This is natural
in Z1, Z2; expressed in technical terms, it is a natural transformation between
the two functors from Dn ×Dn to the category of topological categories given
by the domain resp. range of the functor (4.2). It is clear that the functor (4.2)
is not surjective on objects or morphisms, since no diffeomorphisms can lie in
the image.

4.3 Von Neumann algebras and their bimodules

References for this section are [vN], [Co1], [BR] and [Ta] for the general the-
ory of von Neumann algebras. For the fusion aspects we recommend in addi-
tion [J2], [J4] and [Wa]. We thank Antony Wassermann for his help in writing
this survey.

General facts on von Neumann algebras. A von Neumann algebra A is a
unital ∗-subalgebra of the bounded operators B(H), closed in the weak (or
equivalently strong) operator topology. We assume here that H is a complex
separable Hilbert space. For example, if S is any ∗-closed subset of B(H), then
the commutant (or symmetry algebra)

S′ def= {a ∈ B(H) | as = sa ∀s ∈ S}
is a von Neumann algebra. By von Neumann’s double commutant theorem,
any von Neumann algebra arises in this way. In fact, the double commutant
S′′ is exactly the von Neumann algebra generated by S. For example, given
two von Neumann algebras Ai ⊆ B(Hi ) one defines the spatial tensor product
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A1⊗̄A2 ⊆ B(H1 ⊗ H2) to be the von Neumann algebra generated by A1 and
A2.

Just like a commutative C∗-algebra is nothing but the continuous functions
on a topological space, one can show that a commutative von Neumann algebra
is isomorphic to the algebra of bounded measurable functions on a measure
space. The corresponding Hilbert space consists of the L2-functions which are
acted upon by multiplication.

On the opposite side of the story, one needs to understand factors which are
von Neumann algebras with center C. By a direct integral construction (which
reduces to a direct sum if the measure space corresponding to the center is
discrete), one can then combine the commutative theory with the theory of
factors to understand all von Neumann algebras.

The factors come in 3 types, depending on the range of the Murray-von
Neumann dimension function d(p) on projections p ∈ A. This function
actually characterizes equivalence classes of projections p, or equivalently,
isomorphism classes of A′-modules pH . Type I factors are those von Neu-
mann algebras isomorphic to B(H) where the range of the dimension is just
{0, 1, 2, . . . , dimC(H)} (where dimC(H) = ∞ is not excluded). For type II1

factors, d(p) can take any real value in [0, 1] and for type II∞ any value in
[0, ∞] (‘continuous dimension’). Finally, there are type III factors for which
the dimension function can only take the values 0 and ∞. Thus all nontriv-
ial projections are equivalent. It is an empirical fact that most von Neumann
algebras arising in quantum field theory are of this type.

Example 4.4 (Group von Neumann algebras). For a discrete countable
group � one defines the group von Neumann algebra as the weak operator
closure of the group ring C� in the bounded operators on �2(�). It is always of
type II1 and a factor if and only if each conjugacy class (of a nontrivial group
element) is infinite. There are many deep connections between such factors and
topology described for example in [Lu]. An application to knot concordance is
given in [COT].

Example 4.5 (Local Fermions). Consider the Fock space H = F(�) of a
conformal spin surface � as in Definition 2.23. If Y is a compact submanifold
of the boundary of � we can consider the Clifford algebra C(Y ) inside B(H).
The weak operator closure is a factor A(Y ) which is of type I if Y itself has
no boundary. Otherwise A(Y ) is a type III factor known as the local fermions
[Wa].

We remark that by taking an increasing union of finite-dimensional sub-
spaces of the Hilbert space of spinors V (Y ), it follows that A(Y ) is
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hyperfinite, i.e. it is (the weak operator closure of) an increasing union of finite-
dimensional von Neumann algebras. It is a much deeper fact that a group von
Neumann algebra as in Example 4.4 is hyperfinite if and only if the group is
amenable.

There is a classification of all hyperfinite factors due to Connes [Co1, p. 45]
(and Haagerup [H] in the III1 case). The complete list is very short:

In : A = B(H) where n = dimC(H) is finite or countably infinite.
II1: Group von Neumann algebras (of amenable groups with infinite conju-

gacy classes). All of these turn out to be isomorphic!
II∞: The tensor product of types I∞ and II1.
III0: The Krieger factor associated to a non-transitive ergodic flow.
IIIλ: The Powers factors, where λ ∈ (0, 1) is a real parameter coming from

the ‘flow of weights’.
III1: The local fermions explained in Example 4.5. Again, these are all iso-

morphic.

This classification is obtained via the modular theory to which we turn in the
next section. For example, a factor is of type III1 if and only if there is a vacuum
vector � for which the modular flow �i t on the vacuum representation only
fixes multiples of �.

Tomita–Takesaki theory. We start with a factor A ⊆ B(H0) and assume that
there is a cyclic and separating vector � ∈ H0. (Recall that this just means that
A� and A′� are both dense in H0.) Then H0 is called a vacuum representation
(or standard form) for A, and the vector � is the vacuum vector. It has the
following extra structure: Consider the (unbounded) operator a� �→ a∗� and
let S be its closure. Then S has a polar decomposition S = J�1/2, where J is
a conjugate linear isometry with J 2 = id and � is a positive operator (usually
unbounded). By functional calculus one gets a unitary flow �i t , referred to as
the modular flow corresponding to �, and the main fact about this theory is
that

J AJ = A′ and �i t A�−i t = A.

Note that in particular H0 becomes a bimodule over A by defining a right action

of A on H0 by π0(a)
def= Jπ(a)∗ J in terms of the original left action π(a). This

structure encodes the ‘flow of weights’ which classifies all hyperfinite factors
as explained in the previous section.

It turns out that up to unitary isomorphism, there is a unique pair (H0, J )

consisting of a (left) A-module H0 and a conjugate linear isometry J : H0 →
H0 with J AJ = A′; such a pair is referred to as vacuum representation of
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A. For a given von Neumann algebra A there is a more sophisticated con-
struction of such a pair, even in the absence of a cyclic and separating vector.
In this invariant definition (see [Co1, p. 527]), the vacuum representation is
denoted by L2(A), in analogy to the commutative case where A = L∞(X)

and L2(A) = L2(X) for some measure space X . Similarly, if A is a group
von Neumann algebra corresponding to � then L2(A) = �2(�). If one
chooses � to be the δ-function concentrated at the unit element of �, then
J (

∑
i ai gi ) = ∑

i āi g
−1
i and � = id.

Remark 4.6. A vacuum vector � defines a faithful normal state on A via

ϕ�(a)
def= 〈a�, �〉H0 .

Defining σ(a)
def= �1/2a�−1/2 ∈ A for entire elements a ∈ A (this is a dense

subset of A for which σ is defined, see [BR, I 2.5.3]) one can then verify the
relation [BR, I p. 96]

ϕ�(ba) = ϕ�(σ−1(a)σ (b))

for all entire elements a, b in A. It follows that ϕ� is a trace if and only if
� = id. Such vacuum vectors can be found for types I and II.

Remark 4.7. The independence from � implies that the image of the modular
flow (given by conjugation with �i t on A) defines a canonical central subgroup

of Out(A)
def= Aut(A)/ Inn(A). As discussed in the previous remark, this quo-

tient flow is nontrivial exactly for type III. Alain Connes sometimes refers to it
as an ‘intrinsic time’, defined only in the most noncommutative setting of the
theory.

Example 4.8. Consider the example of local fermions in the special case that
� = D2 and ∂� = Y ∪ Yc is the decomposition into the upper and lower
semi-circle. It was shown in [Wa] that in this case the operators J and �i t can
be described geometrically: J acts on the Fock space F(�) by reflection in the
real axis, which clearly is of order two and interchanges A(Y ) and A(Yc) =
A(Y )′. Moreover, the modular flow �i t on A(Y ) is induced by the Möbius flow
on D2 (which fixes ±1 = ∂Y ). This implies in particular that the Fock space
is a vacuum representation (with �� as the vacuum vector)

F(�) ∼= L2(A(Y )).

The last statement is actually true for any surface � and any Y ⊂ ∂� which
is not the full boundary. In the latter case, A(∂�) = B(F(�)), so F(�) is
not the vacuum representation of A(∂�)). In fact, the vacuum representation
L2(B(H)) of B(H) is given by the ideal of all Hilbert–Schmidt operators on
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H (with the operator J given by taking adjoints, and � = id). This is a good
example of a construction of the vacuum representation without any canonical
vacuum vector in sight.

Bimodules and Connes fusion. Given two von Neumann algebras Ai , an
A2 − A1-bimodule is a Hilbert space F together with two normal (i.e. weak
operator continuous) ∗-homomorphisms A2 → B(F) and Aop

1 → B(F)

with commuting images. Here Aop denotes the opposite von Neumann alge-
bra which is the same underlying vector space (and same ∗ operator) as A but
with the order of the multiplication reversed. One can imagine A2 acting on
the left on F and A1 acting on the right.

Given an A3−A2 bimodule F2 and an A2−A1 bimodule F1, on can construct
an A3 − A1 bimodule F2 �A2 F1 known as the Connes fusion of F2 and F1

over A2. This construction is not the algebraic tensor product but it introduces
a certain twist (by the modular operator �) in order to stay in the category of
Hilbert spaces.

Definition 4.9 (Connes fusion). It is the completion of the pre-Hilbert space
given by the algebraic tensor product F2 � F1, where

F2
def= BAop

2
(H0, F2)

are the bounded intertwiners from the vacuum H0 = L2(A2) to F2. An inner
product is obtained by the formula

〈x ⊗ ξ, y ⊗ η〉 def= 〈ξ, (x, y) · η〉F1 ξ, η ∈ F1, x, y ∈ F2

where we have used the following A2-valued inner product on F2

(x, y)
def= x∗y ∈ BAop

2
(H0, H0) = A2.

Note that this makes F2 into a right Hilbert module over A2 and that the Connes
fusion is nothing but the Hilbert module tensor product with F1 and its A2-
action. Since Aop

1 and A3 still act in the obvious way, it follows that the Hilbert
space F = F2 �A2 F1 is an A3 − A1-bimodule.

This definition looks tantalizingly simple, for example one can easily check
that the relations

xa ⊗ ξ − x ⊗ aξ = 0, a ∈ A2, ξ ∈ F1, x ∈ F2

are satisfied in F2 �A2 F1 (because this vector is perpendicular to all elements
of F2 � F1 with respect to the above inner product). This assertion is true using
the obvious Aop

2 -action on F2 for which xa(v) = x(av), v ∈ H0. However,
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if one wants to write elements in the Connes fusion in terms of vectors in
the original bimodules F1 and F2 (rather than using the intertwiner space F2),
then it turns out that this action has to be twisted by �. This can be seen more
precisely as follows: First of all, one has to pick a vacuum vector � ∈ H0 (or
at least a normal, faithful semifinite weight) and the construction below will
depend on this choice. There is an obvious embedding

i� : F2 ↪→ F2, x �→ x(�)

and the crucial point is that this map is not Aop
2 -linear. To do this calculation

carefully, write π(a) for the left A2 action on H0 and π0(a) for the right action.
Recall from the previous section that π0(a) = Jπ(a)∗ J which implies the
following formulas, using J� = � = �� and that S = J�1/2 has the
defining property S(π(a)�) = π(a)∗�.

x(�) · a = x(π0(a)�) = x(Jπ(a)∗ J�)

= x(J�1/2�−1/2π(a)∗�1/2�)

= x(S(�1/2π(a)�−1/2)∗�)

= x(�1/2π(a)�−1/2)�)

Recall from Remark 4.6 that σ(a) = �1/2a�−1/2 ∈ A2 is defined for entire
elements a ∈ A2. Then we see that i� has the intertwining property

i�(xσ(a)) = i�(x)a for all entire a ∈ A2. (4.3)

This explains the connection between the Connes fusion defined above and
the one given in [Co1, p. 533] as follows. Consider the Aop

2 -invariant subset
F2� = im(i�) of the bimodule F2. These are exactly the ‘ν-bounded vectors’
in [Co1, Prop.6, p. 531] where in our case the weight ν is simply given by
ν(a) = 〈a�, �〉H0 . One can then start with algebraic tensors

ξ2 ⊗ ξ1 with ξ1 ∈ F1, ξ2 ∈ F2� ⊂ F2

instead of the space F1 � F2 used above. This is perfectly equivalent except
that the σ -twisting of the map i� translates the usual algebraic tensor product
relations into the following ‘Connes’ relations which hold for all entire a ∈ A2

ξ2a ⊗ ξ1 = ξ2 ⊗ σ(a)ξ1 = ξ2 ⊗ �1/2a�−1/2ξ1, ξ1 ∈ F1, ξ2 ∈ F2� ⊂ F2.

Remark 4.10 (Symmetric form of Connes fusion). There is the following
more symmetric way of defining the Connes fusion which was introduced in
[Wa] in order to actually calculate the fusion ring of positive energy represen-
tations of the loop group of SU (n). One starts with the algebraic tensor product
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F2 � F1 and defines the inner product by

〈x2 ⊗ x1, y2 ⊗ y1〉 def= 〈x∗
1 y1�, x∗

2 y2�〉H0

= 〈y∗
2 x2x∗

1 y1�, �〉H0 for xi , yi ∈ Fi .

One can translate this ‘4-point formula’ to the definition given above by sub-
stituting ξ = x1(�), η = y1(�). It uses again that x∗

i yi ∈ A2 and also the
choice of a vacuum vector. After translating this definition into the subspaces
Fi� of Fi , one can also write the Connes relations (for entire a in A2) in the
following symmetric form

ξ2�
−1/4a�1/4 ⊗ ξ1 = ξ2 ⊗ �1/4a�−1/4ξ1, ξi ∈ Fi� ⊂ Fi .

Remark 4.11 (Subfactors). We should mention that the fusion of bimodules
has had a tremendous impact on low-dimensional topology through the work
of Jones, Witten and many others, see [J3] for a survey. In the context of the
Jones polynomial for knots, only the hyperfinite II1 factor was needed, so the
subtlety in the Connes fusion disappears (because � = id if one uses the trace
to define the vacuum). However, the interesting data came from subfactors
A ⊂ B, i.e. inclusions of one factor into another. They give rise to the A −
B bimodule L2(B). Iterated fusion leads to very interesting bicategories and
tensor categories, compare Remark 4.15.

The main reason Connes fusion arises in our context, is that we want to glue
two conformal spin surfaces along parts of their boundary. As explained in
Section 2.2, the surfaces lead naturally to Fock modules over Clifford alge-
bras. Using the notation from the Gluing Lemma 2.24, the question arises how
to express F(�3) as a C(Y3)−C(Y1) bimodule in terms of F(�2) and F(�1).
In Lemma 2.24 we explained the case of type I factors, where the modular
operator � = id so there is no difference between the algebraic tensor prod-
uct and Connes fusion. This case includes the finite-dimensional setting (and
hence K -theory) as well as the gluing formulas for Segal and Clifford elliptic
objects (as explained in Example 4.5, type I corresponds exactly to the case
where the manifold Y along which one glues is a closed 1-manifold).

After all the preparation, the following answer might not come as a surprise.
We only formulate it in the absence of closed components in �i , otherwise the
vacuum vectors might be zero. There is a simply modification in the general
case which uses isomorphisms of Pfaffian lines of disjoint unions of closed
surfaces. Similarly, there is a twisted version of this result which we leave
to the reader. We note that in the following the definition of fusion has to be
adjusted to take the grading on the Fock modules into account. This can be
done by the usual trick of Klein transformations.
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Proposition 4.12. There is a unique unitary isometry of C(Y3) − C(Y1)

bimodules

F(�2) �A(Y2) F(�1)
∼=−→ F(�3)

sending �2 ⊗ �1 to �3.

Recall that A(Y2) is the von Neumann algebra generated by C(Y2) in the
bounded operators on F(�2). One knows that F(�2) is a vacuum representa-
tion for A(Y2) with vacuum vector �2 [Wa]. Therefore, the above expression
�2 ⊗ �1 is well defined in the Connes fusion. The uniqueness of the isomor-
phism follows from the fact that both sides are irreducible C(Y3) − C(Y1)

bimodules.

The bicategory vN of von Neumann algebras. The objects of vN are von
Neumann algebras and a morphism from an object A1 to an object A2 is a an
A2 − A1 bimodule.

Composition of morphisms. Is given by Connes fusion which will be de-
noted pictorially by

A3 A2
F2�� A1

F1�� = A3 A1
F2�A2 F1�� .

Recall that this operation is associative up to higher coherence (which is fine
in a bicategory). Moreover, the identity morphism from A to A is the vac-
uum representation H0 = L2(A) which therefore plays the role of the ‘trivial’
bimodule. This is in analogy to the trivial 1-dimensional representation of a
group.

2-morphisms. Given two morphisms F1, F2 from the object A1 to the object
A2, then a 2-morphism from F1 to F2 is a bounded intertwining operator T ∈
BA2−A1(F1, F2), i.e. a bounded operator which commutes with the actions of
A1 and A2. Pictorially

A2 A1

F1

��

F2

�� T

��
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Vertical composition. Let Fi , i = 1, 2, 3 be three morphisms from A1 to A2,
let T1 be a 2-morphism from F1 to F2 and let T2 be a 2-morphism from F2 to
F3. Then their vertical composition is the 2-morphism T2 ◦ T1, which is just
the composition of the bounded operators T1 and T2. Pictorially

A2 A1

F1

�� F2��

F3

��

T1��

T2

��

= A2 A1

F1

��

F3

�� T2◦T1

��

Horizontal composition. The following picture should be self explaining

A3 A2

F3

��

F4

�� T2

��

A1

F1

��

F2

�� T1

��

= A3 A1

F3�A2 F1

��

F4�A2 F2

�� T2�T1

��

Additional structures on vN. The bicategory vN has a symmetric monoidal
structure given on objects by the spatial tensor product of von Neumann al-
gebras. There are also monodial structures on the categories of bimodules by
considering the Hilbert tensor product of the underlying Hilbert spaces.

Involutions on vN. There are also 3 involutions

A �→ Aop, F �→ F̄, T �→ T ∗

on the bicategory vN, where the first was explained above and the third is the
usual adjoint map. The conjugate A1−A2 bimodule F̄ (for a A2−A1 bimodule
F) is given by the formula

a1 · v̄ · a2
def= (a∗

2 · v · a∗
1), v ∈ F.

We leave it to the reader to extend the above definitions so that they really
define involutions on the bicategory vN. This should be done so that the func-
toriality agrees with the 3 involutions in the bicategory Dn(X) because our
enriched elliptic object will have to preserve these involutions.
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Adjunction transformations on vN. Just like in Dn(X), we are looking for
adjunction transformations of 1- respectively 2-morphisms

vN(C, A1⊗̄A2) −→ vN(Aop
1 , A2) and vN(C, F2 �A F1) −→ vN(F̄2, F1).

where the left-hand side is defined by considering the inclusion of the alge-
braic tensor product in A1⊗̄A2. The resulting bimodule is still referred to as a
A1⊗̄A2-module because the bimodule structure is in some sense boring.

To address the right-hand side, let A = A1⊗̄A2 and consider an A-module
F1 and an Aop-module F2 (both thought of as lying in the image of the left
hand side transformation). Then we may form the Connes fusion F2 �A F1 as
the completion of F2 � F1, see Definition 4.9. There is a natural map

� : F2 � F1 −→ BA(F̄2, F1), x ⊗ η �→ θx,η where θx,η(ȳ)
def= (y, x)η.

Here we have used again the A-valued inner product (y, x) = y∗x on F2, as
well as the linear isometry

F2 = BAop(H0, F2) −→ F̄2
def= BA(H0, F̄2) x �→ x̄

def= x J.

Recall that F̄2 is an A-module and so is F̄2.

Lemma 4.13. In the above setting, the mapping θx,η is indeed A-linear.

Proof. We use the careful notation used to derive equation (4.3), where π(a)

denotes the A-action on H0 and π0(a) = Jπ(a)∗ J the Aop-action. Then we
get that for a ∈ A and y ∈ F2

a ȳ = ȳπ0(a) = y J (Jπ(a)∗ J ) = (yπ(a)∗)J = ya∗.

This implies

θx,η(a ȳ) = (ya∗, x)η = (ya∗)∗xη

= ay∗xη = a(y, x)η

= aθx,η(ȳ)

which is exactly the statement of our lemma.

Note that � takes values in the Banach space of A-intertwiners with the oper-
ator norm. It actually turns out that it is an isometry with respect to the fusion
inner product. To check this statement, we assume for simplicity that A is
of type III. Then there is a unitary A-intertwiner U : H0 = L2(A) → F2

and hence y∗x = (y∗U )(U∗x) is a product of two elements in A and
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||y∗U || = ||ȳ||. Now let f = ∑
i xi ⊗ ηi be and arbitrary element in F2 � F1.

Then the norm squared of �( f ) is calculated as follows

||�( f )||2 = sup
0�=ȳ∈F̄2

|| ∑i (y, xi )ηi ||2
||ȳ||2

= sup
0�=ȳ∈F̄2

|| ∑i (y∗U )(U∗xi )ηi ||2
||ȳ||2

= ||
∑

i

(U∗xi )ηi ||2 =
∑
i, j

〈ηi , x∗
i UU∗x jη j 〉F1

=
∑
i, j

〈ηi , (xi , x j )η j 〉F1 = 〈
∑

i

xi ⊗ ηi ,
∑

j

x j ⊗ η j 〉F2�F1

= || f ||2F2�F1
.

This implies the following result because we have a functorial isometry which
for F2 = L2(A) clearly is an isomorphism. Note that the same result holds for
bimodules, if there are two algebras acting on the left of F2 respectively the
right of F1.

Proposition 4.14. The above map � extends to an isometry

� : F2 �A F1
∼=−→ BA(F̄2, F1).

In order to define our adjunction transformation announced above, we
now have to compare the right-hand side of the isometry to vN(F̄2, F1). If
one thinks of the latter as all A-intertwiners then there is a serious problem
in relating the two, because of the twisting property (4.3) of the inclusion
i� : F2 ↪→ F2. This is where the modular operator � has to come in. At
this moment in time, we do not quite know how to resolve the issue, but it
seems very likely that one has to change the definition of vN(F̄2, F1) slightly.
Note that one can not use the right-hand side of the above isometry because
these intertwiners cannot be composed, certainly not in an obvious way. This
problem is related to the fact that in the example of a string vector bundle, we
can only associate vectors in the fusion product to conformal spin surfaces.

Remark 4.15. It is interesting to point out the following special subcategories
of the bicategory above. In the Jones example for a subfactor A ⊂ B, there are
two objects (namely A and B) and the morphisms are all bimodules obtained
by iterated fusion from A L2(B)B . The crucial finite index property of Jones
guarantees that for all irreducible bimodules A FB that arise the vacuum repre-
sentation H0 is contained exactly once in F �B F̄ and F̄ �A F . This condition
expresses the fact that F has finite ‘quantum dimension’. In [Oc], these bicat-
egories were further developed and applied to obtain 3-manifold invariants.
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If one fixes a single von Neumann algebra A, then one can consider the
bicategory ‘restricted to A’. This means that one has only A − A bimodules
and their intertwiners, together with the fusion operation. This is an example
of a tensor category. Borrowing some notation from Section 5.4 we get the
following interesting subcategory: Fix a compact simply connected Lie group
G and a level � ∈ H 4(BG). Then there is a canonical III1-factor A and an
embedding

� : G ↪→ Out(A) = Aut(A)/ Inn(A).

We can thus consider those bimodules which are obtained from twisting L2(A)

by an element in Aut(A) which projects to �(g) for some g ∈ G. We believe
that a certain ‘quantization’ of this tensor category gives the category of posi-
tive energy representation of the loop group LG at level �.

4.4 Enriched elliptic objects and the elliptic Euler class

Definition 4.16. An enriched elliptic object of degree n over X is a contin-
uous functor Dn(X) → vN to the bicategory of von Neumann algebras. It
is assumed to preserve the monodial structures (disjoint union gets taken to
tensor product), the 3 involutions op, ·̄ and ∗, as well as the adjunction trans-
formations explained above. Finally, it has to be C-linear in an obvious sense
on Clifford algebra elements and fermions.

Again, this is only a preliminary definition because some of the categorical
notions have not been defined yet, and it does not contain super symmetry. The
main example of an enriched elliptic object comes from a string vector bundle,
hopefully leading to an Euler class and a Thom class in elliptic cohomology.
In fact, we hope that it will ultimately lead to a map of spectra

M String −→ tmf .

We explain the construction of the Euler class momentarily class but we shall
use several notions which are only developed in the coming sections. Thus the
following outline can be thought of as a motivation for the reader to read on.

We next outline the construction of a degree n enriched elliptic object cor-
responding to an n-dimensional vector bundle E → X with string connection.
This is our proposed ‘elliptic Euler class’ of E and it is the main example that
guided many of our definitions. In Remark 5.6 we explain briefly how the anal-
ogous K -theory Euler class is defined for a vector bundle with spin connection.
As usual, this will be our guiding principle.
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Recall from Definition 4.16 that an enriched elliptic object of degree n in
the manifold X is a certain functor between bicategories

EE : Dn(X) −→ vN.

So we have to explain the values of EE in dimensions d = 0, 1, 2. Let S be the
string connection on E as explained in Definition 5.8. This definition is crucial
for the understanding of our functor EE and we expect the reader to come back
to this section once she is familiar with the notion of a string connection.

The functor EE in dimension 0. This is the easiest case because we can just
set EE (xxx) = S(xxx) for a map xxx : Z → X of a 0-dimensional spin manifold
Z . Recall that S(xxx) is a von Neumann algebra which is completely determined
by the string structure on E (no connection is needed). By construction, the
monoidal structures on the objects of our bicategories are preserved.

The functor EE in dimension 1. For each piecewise smooth map γ : Y → X
of a spin 1-manifold Y , the string connection S(γ ) is a graded irreducible
C(γ ) − S(∂γ ) bimodule. Here C(γ ) is the relative Clifford algebra from Def-
inition 2.33. To define EE (γ ) we use the same Hilbert space but considered
only as a C(Y )−n − S(∂γ )-bimodule. Note that this means that the module is
far from being irreducible. If one takes orientations into account, one gets a bi-
module over the incoming–outgoing parts of ∂γ . The gluing law of the string
connection S translates exactly into the fact that our functor EE preserves com-
position of 1-morphisms, i.e. it preserves Connes fusion.

The functor EE in dimension 2. Consider a conformal spin surface � and a
piecewise smooth map � : � → X , and let Y = ∂� and γ = �|Y . Then the
string connection on � is a unitary isometry of left C(γ )-modules

S(�) : F(�) ∼= S(γ ).

Here we used the relative Fock module F(�) = F(�∗E) ⊗ F(�)−n from
Definition 2.35. Recall from the same definition that the vacuum vector �� of
� lies in F(�∗E). Given a fermion � ∈ Falg(�)−n , we may thus define

EE (�, �)
def= S(�)(�� ⊗ �) ∈ S(γ ) = EE (γ ).

This is exactly the datum we need on 2-morphisms (�, �) in D(X)n . The
behavior of the string connection with respect to a conformal spin diffeomor-
phism φ : � → �′ implies the following important condition on an enriched
elliptic object. Assuming that φ restricts to the identity on the boundary and
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noting that conformality implies ��′ = F(φ)(��), we may conclude that

EE (�′, F(φ)(�)) = S(�′)(F(φ)(�� ⊗ �) = S(�)(�� ⊗ �) = EE (�, �).

Finally, EE preserves horizontal and vertical composition by the gluing laws
of the string connection S as well as those of the vacuum vectors.

5 String structures and connections

Given an n-dimensional vector bundle E → X , we want to introduce a topo-
logical notion of a string structure and then the geometric notion of a string
connection on E . As usual we start with the analogy of a spin structure. It is the
choice of a principal Spin(n)-bundle P → X together with an isomorphism
of the underlying principal GL(n)-bundle with the frame bundle of E . In par-
ticular, one gets an inner product and an orientation on E because one can use
the sequence of group homomorphisms

Spin(n)
2→ SO(n) ≤ O(n) ≤ GL(n).

Recall that the last inclusion is a homotopy equivalence and that, for n > 8,
the first few homotopy groups of the orthogonal groups O(n) are given by the
following table:

k 0 1 2 3 4 5 6 7

πk O(n) Z/2 Z/2 0 Z 0 0 0 Z

It is well known that there are topological groups and homomorphisms

S(n) → Spin(n) → SO(n) → O(n)

which kill exactly the first few homotopy groups. More precisely, SO(n) is
connected, Spin(n) is 2-connected, S(n) is 6-connected, and the above maps
induce isomorphisms on all higher homotopy groups. This homotopy theoreti-
cal description of k-connected covers actually works for any topological group
in place of O(n) but it only determines the groups up to homotopy equivalence.
For the 0th and 1st homotopy groups, it is also well known how to construct
the groups explicitly, giving the smallest possible models: one just takes the
connected component of the identity, and then the universal covering. In our
case this gives SO(n), an index 2 subgroup of O(n), and Spin(n), the universal
double covering of SO(n). In particular, both of these groups are Lie groups.
However, a group S(n) cannot have the homotopy type of a Lie group since π3

vanishes. To our best knowledge, there has yet not been found a canonical con-
struction for S(n) which has reasonable ‘size’ and a geometric interpretation.
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The groups String(n). In Section 5.4 we construct such a concrete model for
S(n) as a subgroup of the automorphism group of ‘local fermions’ on the cir-
cle. These are certain very explicit von Neumann algebras, the easiest examples
of hyperfinite type III1 factors. We denote by String(n) our particular models
of the groups of homotopy type S(n), and we hope that the choice of this
name will become apparent in the coming sections. In fact, Section 5.4 deals
with the case of compact Lie groups rather than just Spin(n), and we thank
Antony Wassermann for pointing out to us this generalization. It is also his re-
sult that the unitary group U (A) of a hyperfinite III1-factor is contractible (see
Theorem 5.17). This is essential for the theorem below because it implies that

the corresponding projective unitary group PU (A)
def= U (A)/T is a K (Z, 2).

Theorem 5.1. Consider a compact, simply connected Lie group G and a level
� ∈ H4(BG). Then one can associate to it a canonical von Neumann alge-
bra AG,�, which is a hyperfinite factor of type III1. There is an extension of
topological groups

1 −→ PU (AG,�)
i−→ G� −→ G −→ 1

such that the boundary map π3G → π2 PU (AG,�) ∼= Z is given by � ∈
H4(BG) ∼= Hom(π3G, Z). Moreover, there is a monomorphism

� : G� ↪→ Aut(AG,�)

such that the composition � ◦ i is given by the inclusion of inner automor-
phisms into all of Aut(AG,�).

Applied to G = Spin(n) and � = p1/2 ∈ H4(B Spin(n)) (or ‘level 1’) this
gives type III1 factors An (∼= A⊗̄n

1 ) and groups String(n) as discussed above.

Definition 5.2. A G�-structure on a principal G-bundle is a lift of the struc-
ture group through the above extension. In particular, a string structure on a
vector bundle is a lift of the structure group from SO(n) to String(n) using the
homomorphisms explained above.

Corollary 5.3. A G�-structure on a principal G-bundle E → X gives a bun-
dle of von Neumann algebras over X.

This bundle is simply induced by the monomorphism � above, and hence
over each x ∈ X the fiber A(x) comes equipped with a G-equivariant map

αx : IsoG(G, Ex ) −→ Out(AG,�, A(x))

where Out(A, B)
def= Iso(A, B)/ Inn(A) are the outer isomorphisms. G-

equivariance is defined using the homomorphism �̃ : G → Out(A). It is not
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hard to see that the pair (A(x), αx ) contains exactly the same information as
the string structure on Ex . We shall use this observation in Definition 5.18 and
hence introduce the following notation (abstracting the case V = Ex above):

Definition 5.4. Given (G, �) and a G-torsor V , define a G�−V -pointed factor
to be a factor A together with a G-equivariant map

α : IsoG(G, V ) −→ Out(AG,�, A)

where G-equivariance is defined using the homomorphism �̃ : G → Out(A).
The choice of (A, α) is a G�-structure on V .

For the purposes of our application, it is actually important that all the von
Neumann algebras are graded. It is possible to improve the construction for
G = Spin(n) so that the resulting algebra is indeed graded by using local
fermions rather than local loops, see Section 5.4. The above algebra An is then
just the even part of this graded algebra.

Characteristic classes. The homotopy theoretical description given at the be-
ginning of Section 5 implies the following facts about existence and unique-
ness of additional structures on a vector bundle E in terms of characteristic
classes. We point out that we are more careful about spin (and string) structure
as is customary in topology: A spin structure is really the choice of a principal
Spin(n)-bundle, and not only up to isomorphism. In our language, we obtain
the usual notion of a spin structure by taking isomorphism classes in the cate-
gory of spin structures. Similar remarks apply to string structures. The purpose
of this refinement can be seen quite clearly in Proposition 5.5.

Let E be a vector bundle over X . Then

• E is orientable if and only if the Stiefel–Whitney class w1 E ∈ H1(X; Z/2)

vanishes. Orientations of E are in 1–1 correspondence with H0(X; Z/2).
• In addition, E has a spin structure if and only if the Stiefel–Whitney class

w2 E ∈ H1(X; Z/2) vanishes. Isomorphism classes of spin structures on E
are in 1–1 correspondence with H1(X; Z/2).

• In addition, E has a string structure if and only if the characteristic class
p1/2(E) ∈ H4(X; Z) vanishes. Isomorphism classes of string structures on
E are in 1–1 correspondence with H3(X; Z).

More generally, a principal G-bundle E (classified by c : X → BG) has a
G�-structure if and only if the characteristic class c∗(�) ∈ H4(X; Z) vanishes.
Isomorphism classes of G�-structures on E are in 1–1 correspondence with
H3(X; Z).
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In the next two sections we will enhance these topological data by geomet-
ric ones, namely with the notion of a string connection. These are needed to
construct our enriched elliptic object for a string vector bundle, just like a spin
connection was needed to define the K -cocycles in Section 3.

Since String(n) is not a Lie group, it is necessary to come up with a new
notion of a connection on a principal String(n)-bundle. We first present such a
new notion in the spin case, assuming the presence of a metric connection on
the bundle.

Spin connections. By Definition 2.15, a spin structure on an n-dimensional
vector bundle E → X with Riemannian metric is a graded irreducible bi-
module bundle S(E) over the Clifford algebra bundle C(E) − Cn . For a point
x ∈ X , we denote the resulting bimodule S(Ex ) by S(x). It is a left module
over the algebra C(x) = C(Ex )⊗C−n from Definition 2.33. We now assume in
addition that X is a manifold and that E is equipped with a metric connection.

Proposition 5.5. A spin connection S on E gives for each piecewise smooth

path γ from x1 to x2, an isomorphism between the following two C(∂γ )
def=

C(x1)
op ⊗ C(x2) (left) modules

S(γ ) : F(γ )
∼=−→ HomR(S(x1), S(x2))

where F(γ ) is the relative Fock module from Definition 2.35 (defined using
the connection on E). We assume that S varies continuously with γ and is
independent of the parametrization of I . Moreover, S satisfies the following
gluing condition: Given another path γ ′ from x2 to x3, there is a commutative
diagram

F(γ ′ ∪x2 γ )

∼=
��

S(γ ′∪x2 γ )
�� Hom(S(x1), S(x3))

F(γ ′) ⊗C(x2) F(γ ) ∼=
S(γ ′)⊗S(γ ) �� Hom(S(x2), S(x3)) ⊗C(x2) Hom(S(x1), S(x2))

◦ ∼=
		

where the left vertical isomorphism is the gluing isomorphisms from
Lemma 2.24.

Remark 5.6. The vacuum vectors in the Fock modules �γ ∈ F(γ ∗E) define
a parallel transport in S(E) as follows: Recall that F(γ ) = F(γ ∗E)⊗ F(I )−n

and that F(I ) = C1. Thus the vector �γ ∈ F(γ ∗E) together with the iden-
tity id ∈ C−n = F(I )−n gives a homomorphism from S(x1) to S(x2) via
S(γ )(�γ ⊗ id). One checks that this homomorphism is in fact Cn-linear and
coincides with the usual parallel transport in the spinor bundle S(E).
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It is interesting to observe that these vacuum vectors �γ exist for any vector
bundle E with metric and connection but it is the spin connection in the sense
above which makes it possible to view them as a parallel transport.

Remark 5.7. There is a unique spin connection in the setting of the above
proposition. In the usual language, this is well known and follows from the
fact that the fiber of the projection Spin(n) → SO(n) is discrete. For our def-
initions, existence and uniqueness follows from the fact that all the bimodules
are irreducible (and of real type) and hence the isometries S(γ ) are determined
up to sign. Since they vary continuously and satisfy the gluing condition above,
it is possible to see this indeterminacy in the limit where γ is the constant map
with image x ∈ X . Then the right-hand side contains a canonical element,
namely idS(x) and our gluing condition implies that it is the image under S(γ )

of �γ ⊗ id. Hence the indeterminacy disappears.

These are the data a spin structure associates to points in X and a spin con-
nection associates to paths in X . It is easy to extend the spin connection to give
data associated to arbitrary 0- and 1-dimensional spin manifolds mapping to
X , just like in Proposition 3.1.

In the next section, and in particular Lemma 5.12, we shall explain how all
these data are really derived from ‘trivializing’ a 2-dimensional field theory
(called Stiefel–Whitney theory in this paper). This derivation is necessary to
motivate our definition of a string connection as a ‘trivialization’ of the Chern–
Simons (3-dimensional) field theory. Because of the shift of dimension from 2
to 3, a string connection will necessarily have 0-, 1- and 2-dimensional data.
As above, it is enough to formulate the top-dimensional data for manifolds
with boundary (intervals in the case of spin, conformal surfaces in the case
of string), since the usual gluing formulas determine the data on closed mani-
folds. Also as above, the 0-dimensional data are purely topological, and in the
case of a string structure are given by the von Neumann algebra bundle from
Corollary 5.3.

String connections. We recall from Definition 2.33 that there is a (rela-
tive) complex Clifford algebra C(γ ) defined for every piecewise smooth map
γ : Y → X , where Y is a spin 1-manifold and X comes equipped with a met-
ric vector bundle E . If Y is closed then a connection on γ ∗E gives a preferred
isomorphism class of graded irreducible (left) C(γ )-modules as follows: Con-
sider the conformal spin surface Y × I and extend the bundle

γ ∗E ∪ Rdim(E) def= (γ ∗E × 0) � (Y × 1 × Rdim(E))
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over Y × {0, 1} to a bundle E ′ (with connection) on Y × I (this uses the fact
that E is orientable, and hence trivial over 1-manifolds). In Definition 2.35
we explained how to construct a Fock module F(E ′) from boundary values
of harmonic sections on Y × I . It is a graded irreducible C(γ ) module and
the isomorphism class of F(E ′) is independent of the extension of the bundle
with connection. It will be denoted by [F(γ )]. If � : � → X is a piecewise
smooth map of a conformal spin surface with boundary γ : Y → X , then a
connection on �∗E gives a particular representative F(�) in this isomorphism
class as explained in Definition 2.35.

Definition 5.8. Let E → X be an n-dimensional vector bundle with spin con-
nection. Assume further that a string structure on E has been chosen and de-
note by A(x) the fiber of the corresponding von Neumann algebra bundle. A
string connection S on E consists of the following data.

dim 0: For each map xxx : Z → X of a 0-dimensional spin manifold Z , S(xxx)

is a von Neumann algebra given by the von Neumann tensor product
A(x1)⊗̄ . . . ⊗̄A(xn) if xxx(Z) consists of the spin points x1, . . . , xn . By
definition, A(x̄) = A(x)op and S(∅) = C. All these data are com-
pletely determined by the string structure alone.

dim 1: For each piecewise smooth map γ : Y → X of a spin 1-manifold
Y , S(γ ) is a graded irreducible C(γ ) − S(∂γ ) bimodule. These fit
together to bimodule bundles over Maps(Y, X) and we assume that on
these bundles there are lifted actions S(φ) of the spin diffeomorphisms
φ ∈ Diff(Y, Y ′) which are the identity on the boundary. It is clear that
these are bimodule maps only if one takes the action of φ on C(γ ) into
account, as well as the action of φ|∂γ on S(∂γ ).

Given another such γ ′ : Y ′ → X with 0-dimensional intersection

on the boundary xxx
def= ∂γ ∩ ∂γ ′ = ∂inγ = ∂outγ

′, there are C(γ ∪xxx

γ ′) − S(∂(γ ∪xxx γ ′)) bimodule isomorphisms

S(γ, γ ′) : S(γ ∪xxx γ ′)
∼=−→ S(γ ) �S(xxx) S(γ ′)

where we used Connes fusion of bimodules on the right-hand side, and
also the identifications

C(γ ∪xxx γ ′) ∼= C(γ ) ⊗ C(γ ′) and S(∂(γ ∪xxx γ ′)) ⊂ S(∂γ )⊗̄S(∂γ ′).

The isomorphisms S(γ, γ ′) must satisfy the obvious associativity con-
straints. Note that for closed Y , we just get an irreducible C(γ )-module
S(γ ), multiplicative under disjoint union. We assume that S(γ ) is a
(left) module in the preferred isomorphism class [F(γ )] explained
above.



324 Stolz and Teichner

dim 2: Consider a conformal spin surface � and a piecewise smooth map � :
� → X , and let Y = ∂� and γ = �|Y . Then there are two irreducible
(left) C(γ )-modules in the same isomorphism class, namely F(�) and
S(γ ). The string connection on � is a unitary isometry of left C(γ )-
modules

S(�) : F(�) ∼= S(γ )

such that for each conformal spin diffeomorphism φ : (�, �) →
(�′, �′) the following diagram commutes

F(�)

F(φ)

��

S(�)

∼=
�� S(γ )

S(φ|∂γ )

��
F(�′)

S(�′)
∼=

�� S(γ ′)

The module maps S(�) fit together to continuous sections of the re-
sulting bundles over the relevant moduli spaces. The irreducibility of
the modules in question implies that there is only a circle worth of
possibilities for each S(�). This is the conformal anomaly.

Finally, there are gluing laws for surfaces which meet along a part Y of their
boundary. If Y is closed this can be expressed as the composition of Hilbert–
Schmidt operators. If Y has itself boundary one uses Connes fusion, see Propo-
sition 4.12.

Note that the irreducible C(γ )-module S(γ ) for γ ∈ L M plays the role of
the spinor bundle on loop space L M . We explain in Section 4.4 how the vac-
uum vectors for conformal surfaces lead to a ‘conformal connection’ of this
spinor bundle. All of Section 5.2 is devoted to discuss the motivation behind
our above definition of a string connection. This definition can also be given in
the language of gerbes with 1- and 2-connection, see e.g. [Bry]. But the gerbe
in question needs to be defined on the total space of the principal Spin(n)-
bundle, restricting to the Chern–Simons gerbe on each fiber. We feel that such
a definition is at least as complicated as ours, and it lacks the beautiful connec-
tion to von Neumann algebras and Connes fusion.

5.1 Spin connections and Stiefel–Whitney theory

We first explain a 2-dimensional field theory based on the second Stiefel–
Whitney class. We claim no originality and thus skip most proofs. Stiefel–
Whitney theory is defined on manifolds with the geometric structure (or
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classical field) given by an oriented vector bundle with inner product, and
hence is a functor

SW : BSO
2 −→ HilbR

where BSO
2 is the category explained in Section 2.1, where the geometric struc-

ture is an oriented vector bundle with inner product. In the following definitions
we could used Z/2 instead of R as the values, but it will be convenient for fur-
ther use to stay in the language of (real) Hilbert spaces. We use the embedding
Z/2 = {±1} ⊂ R and note that these are the numbers of unit length. Note also
that a Z/2-torsor is the same thing as a 1-dimensional real Hilbert space, also
called a real line below.

Definition of Stiefel–Whitney theory. Stiefel–Whitney theory SW associates
to a closed geometric 2-manifold E → � the second Stiefel–Whitney number

SW(E → �)
def= 〈w2(E), [�]〉 ∈ Z/2 = {±1} ⊂ R.

To a closed geometric 1-manifold E → Y it associates the real line

SW(E → Y )
def= {(F, r) | r ∈ R, F → Y × I, F |Y×{0,1} = E ∪ Rdim(E)}/ ∼

where Rn denotes the trivial bundle and (F1, r1) ∼ (F2, r2) if and only if
w2(F1∪F2 → Y ×S1)·r1 = r2. If ∂� = Y and E ′ → � extends E → Y , then
the equivalence class of (F, w2(E ∪ F ∪ Rdim(E))) is a well-defined element

SW(E ′ → �) ∈ SW(E → ∂�).

It is independent of the choice of the bundle F by additivity of w2. This theory
by itself is not very interesting but we shall make several variations, and ulti-
mately generalize it to Chern–Simons theory. The first observation is that one
can also define the value SW(E → Z) for a 0-manifold Z . According to the
usual field theory formalism we expect that this is a category whose morphism
spaces are real lines (which can then be used to calculated the value of the field
theory on 1-manifolds). In the spirit of the above definition, we start with vec-
tor bundles F → Z × I which extend the bundle E ∪ Rdim(E) on Z × {0, 1}.
These are the objects in a category SW(E → Z) with morphisms defined by

Mor(F1, F2)
def= SW(F1 ∪ F2 → Z × S1) = Mor(F2, F1).

To complete the description of the theory, we need to associate something to a
bundle E ′ → Y over a 1-manifold with boundary Z = ∂Y (with restricted bun-
dle E = E ′|Z ). It should be an ‘element’ in the category SW(E → Z) which
can then be used to formulate the appropriate gluing laws of the theory. There
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are various possible interpretations of such an ‘element’ but in the best case,
it would mean an object a in the category. In order to find such an object, we
slightly enlarge the above category, allowing as objects not just vector bundles
over Z × I but, more generally, vector bundles over Y with ∂Y = Z × {0, 1}.
The reader will easily see that this has the desired effect.

Definition 5.9. Stiefel–Whitney theory is the extended 2-dimensional field
theory described above, where the geometric structure on Y is given by an
oriented vector bundle. Here the word extended refers to the fact that SW
also assigns a small category to 0-manifolds, and objects of this category to
1-manifolds with boundary.

Relative, real Dirac theory. There is an interesting reformulation of the the-
ory which uses the fact that our domain manifolds � are equipped with a spin
structure and that the bundle E comes with a connection. Enhance for a mo-
ment the geometrical structure on � by a conformal structure. Then we have
the Dirac operator D� , as well as the twisted Dirac operator DE . If �2 is
closed, we get an index in K O2 ∼= Z/2. For a closed conformal 1-manifold
Y , the Dirac operator is just covariant differentiation in the spinor bundle from
Definition 2.15. Hence it comes equipped with a real Pfaffian line Pf(DY ), see
Definition 2.23. If Y = ∂� then the relative index of � is an element of unit
length in Pf(DY ). The same holds for the twisted case. Finally, for a bundle
with metric over a 0-manifold, we define the following relative, real Dirac
category. The objects are Lagrangian subspaces L in V ⊥ −Rn , where V is
again the orthogonal sum of the fibers and n is the dimension of V . These La-
grangians should be thought of as boundary conditions for the Dirac operator
on a bundle on Z × I which restricts to V ∪ Rn on the boundary. In particular,
the boundary values of harmonic sections of a bundle E over 1-manifold Y
define an object in the category for E |∂Y = V0 ∪ V1 by rewriting the spaces in
question as follows

−(V0 ⊥ −Rn) ⊥ (V1 ⊥ −Rn) = (−V0 ⊥ V1) ⊥ (Rn ⊥ −Rn).

This is in total analogy to the above rewriting of the isometry groups. The
morphisms in the category are given by the real lines

Mor(L1, L2)
def= HomC(V )−Cn (F(L1), F(L2))

where F(Li ) are the Fock spaces from Definition 2.9. They are irreducible
graded bimodules over the Clifford algebras C(V ) − Cn . Recall from
Remark 2.11 that the orientation of V specifies a connected component of such
Lagrangians L and we only work in this component.
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Lemma 5.10. There is a canonical isomorphism between the two extended
2-dimensional field theories, Stiefel–Whitney theory and relative, real Dirac
theory. For n = dim(E) this means the following statements in the various
dimensions:

dim 2: SW(E → �) = index(D� ⊗ E) − n · index(D�) ∈ Z/2,
dim 1: SW(E → Y ) ∼= Pf(DY ⊗ E) ⊗ Pf−n(DY ), such that for Y = ∂� the

element SW(E ′ → �) is mapped to the relative index.
dim 0: For an inner product space V , the category SW(V ) is equivalent to

the above relative Dirac category, in a way that the objects defined by
1-manifolds with boundary correspond to each other.

The extra geometric structure of bundles with connection is needed to define
the right-hand side theory, as well as for the isomorphisms above.

Proof. The 2-dimensional statement follows from index theory, and for the 1-
dimensional statement one uses the relative index on Y × I . In dimension zero,
recall from Remark 2.11 that a Lagrangian subspace L in V ⊥ −Rn is given
by the graph of a unique isometry V → Rn . Moreover, parallel transport along
a connection gives exactly the Lagrangian of boundary values of harmonic
spinors along an interval.

Spin structures as trivializations of Stiefel–Whitney theory. Fix a mani-
fold X and an n-dimensional oriented vector bundle E → X with metric con-
nection. One may restrict the Stiefel–Whitney theory to those bundles (with
connection) that are pull-backs of E via a piecewise smooth map Y → X .
Thus geometric structures on Y make up the set Maps(Y, X), and we call the
resulting theory SWE .

Lemma 5.11. A spin structure on E → X gives a trivialization of the Stiefel–
Whitney theory SWE in the following sense:

dim 2: SWE (� → X) = 0 if � is a closed 2-manifold.
dim 1: SWE (Y → X) is canonically isomorphic to R for a closed spin 1-

manifold and all elements SWE (� → X) with ∂� = Y are mapped
to 1.

dim 0: The set of objects ob(SWE (Ex )) = SO(Ex , Rn) of the category for
a point x ∈ X comes with a nontrivial real line bundle ξ and iso-
morphisms Mor(b1, b2) ∼= Hom(ξb1 , ξb2) which are compatible with
composition in the category.

Moreover, the last item is equivalent to the usual definition of a spin struc-
ture, and so all the other items follow from it.
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Proof. The 2-dimensional statement follows from the fact that w2(E) = 0,
and the isomorphism in dimension 1 is induced by the relative second Stiefel–
Whitney class. To see why the last item is the usual definition of a spin structure
on Ex , recall that the real line bundle is the same information as a double cov-
ering Spin(Ex , Rn), and that the isomorphisms between the morphism spaces
follow from the group structures on SO(n) and Spin(n).

Spin connections as trivializations of relative, real Dirac theory. For the
next lemma, we recall from Remark 2.11 that for a inner product space Ex of
dimension n, the isometries O(Ex , Rn) are homeomorphic to the space L(x)

of Lagrangians of Ex ⊥ −Rn .

Lemma 5.12. A spin connection S on an oriented bundle E → X with met-
ric and connection gives a trivialization of the relative, real Dirac theory on
Maps(· , X) in the following sense:

dim 2: index(D f ∗ E ) = n · index(D�) ∈ Z/2 if � is a closed 2-manifold and
f : � → X is used to twist the Dirac operator on � by E.

dim 1: For f : Y → X, Y a closed spin 1-manifold, there is an isomor-
phism S( f ) : Pf( f ∗E) ∼= Pfn(Y ), taking twisted to untwisted indices
of Dirac operators of surfaces � with ∂� = Y .

dim 0: For each x ∈ X, there is a graded irreducible C(Ex ) − Cn bimod-
ule S(x) = S(Ex ) which gives a nontrivial line bundle over the con-
nected component of L(x) (given by the orientation of Ex ). Here the
line over a Lagrangian L ∈ L(x) is HomC(x)(S(x), F(L)), where
C(x) = C(Ex ) ⊗ C−n (and hence S(x) is a left C(x)-module). More-
over, for each path γ from x1 to x2, the spin structure on E in-
duces an isomorphism between the following two left modules over
C(x1)

op ⊗ C(x2):

S(γ ) : F(γ )
∼=−→ HomR(S(x1), S(x2))

where F(γ ) is the relative Fock module from Definition 2.35. When
two paths are composed along one point, then the gluing laws from
Proposition 5.5 hold.

Note that the bimodules S(x) = S(Ex ) fit together to give the Cn-linear
spinor bundle S(E), so we have finally motivated our Definition 2.15 of spin
structures. The vacuum vectors in the Fock modules F(γ ∗E) define a parallel
transport in S(E). It is interesting to note that these vacuum vectors exist even
for an oriented vector bundle E (with metric and connection) but it is the spin
structure in the sense above which makes it possible to view them as a parallel
transport in the spinor bundle.
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Proof. The result follows directly from Lemmas 5.10 and 5.11. In dimension 0
one defines S(Ex ) in the following way: For a given Lagrangian L we have a
Fock space F(L) but also the line ξL from Lemma 5.11 (since L is the graph
of a unique isometry). Moreover, given two Lagrangians Li we have given
isomorphisms

F(L1) ⊗ ξL1
∼= F(L2) ⊗ ξL2

which are associative with respect to a third Lagrangian. Therefore, we may
define S(Ex ) as the direct limit of this system of bimodules. Note that S(Ex )

is then canonically isomorphic to each bimodule of the form F(L) ⊗ ξL and
so one can recover the line bundle ξ from S(Ex ). In fact, the bimodule and the
line bundle ξ contain the exact same information.

5.2 String connections and Chern–Simons theory

We want to explain the steps analogous to the ones in the previous section with
w2 ∈ H2(BSO(n); Z/2) replaced by a ‘level’ � ∈ H4(BG; Z). The most
interesting case for us is the generator p1/2 of H4(B Spin(n); Z) which will
lead to string structures. The analogue of Stiefel–Whitney theory is (classical)
Chern–Simons theory which we briefly recall, following [Fr1]. We shall re-
strict to the case where the domain manifolds are spin as this is the only case
we need for our applications.

Let G be a compact Lie group and fix a level � ∈ H4(BG; Z). For
d = 0, . . . , 4 we consider compact d-dimensional spin manifolds Md together
with connections a on a G-principal bundle E → M . The easiest invariant is
defined for a closed 4-manifold M4, and is given by the characteristic number
〈c∗

E (�), [M]〉 ∈ Z, where cE : M → BG is a classifying map for E . It is inde-
pendent of the connection and one might be tempted to view it as the analog of
SW(E → �) ∈ Z/2 of a closed surface �. However, this is not quite the right
point of view. In fact, Chern–Simons theory is a 3-dimensional field theory

CS = CS� : BG
3 −→ HilbC

in the sense of Section 2.1, with geometric structure being given by G-bundles
with connection. The value CS(M3, a) ∈ S1 for a closed 3-manifold is ob-
tained by extending the bundle and connection over a 4-manifold W with
boundary M , and then integrating the Chern–Weil representative of � over
W . By the integrality of � on closed 4-manifolds, it follows that one gets a
well-defined invariant in S1 = R/Z, viewed as the unit circle in C (just like
Z/2 = {±1} was the unit circle in R). Thus we think of this Chern–Simons in-
variant as the analogue of SW(E → �). One can then use the tautological
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definitions explained in the previous sections to get the following values
for the invariant CS(Md , a), leading to an extended 3-dimensional field
theory.

d Md closed ∂ Md �= ∅
4 element in Z element in R reducing to invariant of ∂ M
3 element in S1 point in the hermitian line for ∂ M
2 hermitian line object in the C-category for ∂ M
1 C-category

By a C-category we mean a category where all morphism spaces are hermitian
lines. In Stiefel–Whitney theory we associated an R-category to 0-manifolds.
So R has been replaced by C and all dimensions have moved up by one. It
will be crucial to understand the 0-dimensional case in Chern–Simons theory,
where von Neumann algebras enter the picture.

Relative, complex Dirac theory. First we stick to dimensions 1 to 4 as above
and explain the relation to Dirac operators.

Theorem 5.13. For G = Spin(n) at level � = p1/2, the above extended
Chern–Simons theory is canonically isomorphic to relative, complex Dirac
theory.

In Dirac theory one has conformal structures on the spin manifolds M ,
which enables one to define the Dirac operator DM , as well as the twisted
Dirac operator Da. Here we use the fundamental representation of Spin(n)

to translate a principal Spin(n)bundle into a spin vector bundle, including the
connections a. In the various dimensions d = 1, . . . , 4, relative, complex Dirac
theory is given by the following table of classical actions. It is a (well-known)
consequence of our theorem that the relative theory is metric independent. Let
M be a closed d-manifold and E an n-dimensional vector bundle E over M
with connection a.

d D(Md , a)
def=

4 indexrel(M, a)
def= 1

2 index(Da) − n
2 index(DM ) ∈ Z

3 ηrel(M3, a) ∈ S1

2 Pfrel(M2, a), a hermitian line
1 [F rel(M1, a)], a C-category of representations

Proof of Theorem 5.13. The statement in dimension 4 follows from the index
theorem (see below) which implies that the relative index in the above table
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equals the characteristic class 〈p1(E)/2, [M4]〉 on closed 4-manifolds. In di-
mension 3, we first need to explain the invariant ηrel . It is one half of the re-
duced η-invariant which shows up in the Atiyah–Patodi–Singer index theorem
for 4-manifolds with boundary (where we are using the Dirac operator twisted
by the virtual bundle E ⊕ −Rn)

index(DM4,a) − n · index(DM ) =
∫

M
Â(M)c̃h(E ⊗ C, a) − η̃(∂ M, a) ∈ R

Both indices above are even-dimensional because of a quaternion structure on
the bundles (coming from the fact that the Clifford algebra C4 is of quaternion
type). Applying this observation together with the fact that the Chern character
in degree 4 is given by p1(E ⊗ C)/2 = p1(E) one gets

∫
M

p1(E, a) ≡ η̃(∂ M, a) mod 2Z.

Since we are assuming that E is a spin bundle, the left-hand side is an even
integer for closed M . Therefore, we may divide both sides by 2 to obtain a
well-defined invariant ηrel(∂ M, a) in R/Z which equals CS(∂ M, a).

In dimension 2, one needs to understand the Pfaffian line of the skew-adjoint
operator D+

a , as well as the corresponding relative Pfaffian line

Pfrel(M, a) = Pf(a) ⊗ Pf(DM )⊗n

in the above table. The main point is that the relative η-invariant above can
be extended to 3-manifolds with boundary so that it takes values in this rela-
tive Pfaffian line. Therefore, one can define an isomorphism of hermitian lines
CS(M2, a) → Pfrel(M2, a) by associating this relative η-invariant to a con-
nection on M2 × I (extending a respectively the trivial connection).

Finally, for a closed 1-manifold, [F rel(M1, a)] is the isomorphism class of
twisted Fock spaces explained in Definition 2.23. They can be defined from
harmonic boundary values of twisted Dirac operators on M × I . The isomor-
phism class of the bimodule does not depend on the extension of bundle and
connection to M×I . Each of these Fock spaces is a complex graded irreducible
representation of the Clifford algebra

C rel(M, a) = C(E, a)op ⊗ C(M)⊗ dim(E)

the latter replacing Cn = C(pt)⊗n from Stiefel–Whitney theory. Given the iso-
morphism class of such a bimodule, there is an associated C-category whose
objects are actual representations in this isomorphism type, and whose mor-
phisms are intertwiners. The equivalence of categories from CS(M, a) to the
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C-category defined by [F rel(M, a)] is on objects given by sending a connec-
tion on M1 × I (extending a respectively the trivial connection) to the Fock
space defined from harmonic boundary values of twisted Dirac operators on
M × I . By definition, this is an object in the correct category. To define the
functor on morphisms, one uses the canonical isomorphism

Pfrel(M1 × S1, a) ∼= HomC rel(M×S1,a)(F rel(M × I, a0), F rel(M × I, a1))

where a is a connection on a bundle over M × S1 which is obtained by gluing
together two connections a0, a1 on M × I .

5.3 Extending Chern–Simons theory to points

Fix a compact, simply connected, Lie group G and a level � ∈ H4(BG).
Recall from Theorem 5.1 that there is a von Neumann algebra A = AG,� and
a G-kernel (see Remark 5.23)

�̃ : G −→ Out(A)
def= Aut(A)/ Inn(A)

canonically associated to (G, �). Moreover, �̃ defines the extension G� of G
by PU (A) = Inn(A) and lifts to a monomorphism � : G� → Aut(A). We
want to use these data to define the Chern–Simons invariant of a point.

On a G-bundle V over a point, we first pick a G�-structure. Recall from
Definition 5.4 that this is an algebra AV together with a G-equivariant map

αV : IsoG(G, V ) −→ Out(A, AV )
def= Iso(A, AV )/ Inn(A).

It turns out that the Out(A)-torsor Out(A, AV ) is actually defined indepen-
dently of the choice of such a G�-structure.

Definition 5.14. We define C S(V ) to be the Out(A)-torsor Out(A, AV ).

The above independence argument really shows that there is a map

IsoG(V1, V2) −→ Out(AV1 , AV2)

which is well defined without choosing G�-structures. In particular, without
knowing what the algebras AVi really are. When applying this map to the par-
allel transport of a G-connection a an interval I , we get the value C S(I, a).

To motivate why this definition really extends Chern–Simons theory to
points, we propose a whole new picture of the theory.

Chern–Simons theory revisited. We propose a rigidified picture of the
Chern–Simons actions motivated by our definition in dimension 0. For a given
(G, �), the Chern–Simons invariant C S(Md , a) for connected d-manifolds
would then take values in mathematical objects listed in the table below. Note



What is an elliptic object? 333

that the values for closed spin manifolds are special cases of manifolds with
boundary, i.e. the entries in the middle column are subsets of the entries in the
right-hand column.

d Md closed ∂ Md �= ∅
4 Z R

3 S1 U (A)
2 PU (A) Aut(A)
1 Out(A) Out(A)-equivariant maps
0 space of Out(A)-torsors

Here A = AG,� is the von Neumann algebra discussed in the previous sec-
tion. The guiding principle in the table above is that for closed connected
d-manifolds M , the Chern–Simons invariant C S(Md , a) should be a point in
a particular version of an Eilenberg-MacLane space K (Z, 4 − d) (whereas for
manifolds M with boundary one gets a point in the corresponding contractible
space). More precisely, for K (Z, 4 − d) we used the models

Z, S1 = R/Z, Inn(A) ∼= PU (A) = U (A)/S1,

Out(A) = Aut(A)/ Inn(A)

for d = 4, 3, 2, 1. Our model of a K (Z, 4) is the space of Out(A)-torsors.
This is only a conjectural picture of classical Chern–Simons theory but it
should be clear why it rigidifies the definitions in Section 5.2: Every point
in PU (A) defines a hermitian line via the S1-torsor of inverse images in
U (A). Moreover, every point in g ∈ Out(A) defines an isomorphism class
of [Fg] of A − A-bimodules by twisting the standard bimodule L2(A) by an
automorphism in Aut(A) lying above g. This defines the C-category of A − A-
bimodules isomorphic to [Fg].

Remark 5.16. The homomorphism �̃ : G −→ Out(A) should be viewed
as follows: An element in G gives a G-bundle with connection ag on S1 via
the clutching construction. Then �̃(g) = CS(S1, ag). In the previous section
we explained a similar construction which gives CS(I, a), and also the value
of CS on points. Thus we have not explained the definition of the rigidified
Chern–Simons invariant only for surfaces.

We will not seriously need the new picture of Chern–Simons theory in the
following because we really only want to explain what a ‘trivialization’ it is.
But we do spell out the basic results which are necessary to make this picture
precise. Since we could not find these statements in the literature (only the
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analogous results for II1-factors were known before), we originally formulated
them as conjectures. We recently learned from Antony Wassermann that they
are also true in the III1-context. His argument for the contractibility of U (A)

is a variation of the argument for type I given in [DD], for Aut(A) he reduces
the problem to the type II case.

Theorem 5.17 (Wassermann). If A is a hyperfinite type III1-factor then the
unitary group U (A) is contractible in the weak (or equivalently strong) oper-
ator topology. Moreover, the automorphism group Aut(A) is also contractible
in the topology of pointwise norm convergence in the predual of A.

It follows that PU (A) = U (A)/T is a K (Z, 2). One has to be more careful
with the topology on Out(A) = Aut(A)/PU (A) because with the quotient
topology this is not a Hausdorff space (using the above topologies, PU (A) is
not closed in Aut(A)). A possible strategy could be to define a continuous map
X → Out(A) to be any old map but together with local continuous sections to
Aut(A).

String connections as trivializations of Chern–Simons theory. Let E →
X be a principal G-bundle with connection. We get a Chern–Simons theory
for E by restricting to those bundles with connection on spin manifolds Md

which come from piecewise smooth maps M → X via pullback. Thus the new
geometric structures on M are Maps(M, X) and we get the Chern–Simons
theory CSE .

Definition 5.18. Let G� be the group extension of G at level � constructed
in Section 5.4. Then a geometric G�-structure S on E is a trivialization of
the extended Chern–Simons theory CSE . For a closed spin manifold M in
dimension d this amounts to the following ‘lifts’ of the Chern–Simons action
on piecewise smooth maps f : Md → X :

d values of S( f ) = S( f : Md → X)

4 the equation CS( f ) = 0, no extra structure!
3 S( f ) ∈ R reduces to CS( f ) ∈ R/Z

2 S( f ) is a point in the line CS( f )
1 S( f ) is an object in the C-category CS( f )
0 for x ∈ X , S(x) is a G� − Ex -pointed factor
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The last line uses Definition 5.4. There are also data associated for manifolds
M with boundary, and these data must fit together when gluing manifolds and
connections. Note that for d ≤ 3, S( f : Md → X) takes values in the same
objects as CS(F) if F : W d+1 → X extends f , i.e. ∂W = M . By construction,
they both project to the same point in the corresponding quotient given by
CS( f ). The geometric G�-structure on F : W d+1 → X gives by definition a
point in this latter group. For example, if d = 2 then S(F) is the element of S1

such that

S(F) · S( f ) = CS(F) ∈ CS( f ).

Finally, we assume that these data fit together to give bundles (respectively
sections in these bundles) over the relevant mapping spaces.

Note that the data associated to points combine exactly to a G�-structure
on E as explained in Definition 5.2. Thus a geometric G�-structure has an
underlying (topological) G�-structure.

Theorem 5.19. Every principal G-bundle with G�-structure admits a geomet-
ric G�-structure, unique up to isomorphism.

In fact, the ‘space’ of geometric G�-structures is probably contractible. The
proof of this theorem will appear elsewhere but it is important to note that the
construction uses a ‘thickening’ procedure at every level, i.e. one crosses all
manifolds Md with I and extends the bundle f ∗E with connection over M × I
in a way that it restricts to the trivial bundle on the other end. So one seriously
has to use the fact that all the structures explained above are really ‘relative’,
i.e. twisted tensor untwisted structures.

In the case G = Spin(n) and � = p1/2 we need a more geometric interpre-
tation. This is given by the following result which incorporates Definition 5.8.
There, a geometric String(n)p1/2 structure was called a string connection and
we stick to this name.

Corollary 5.20. Given an n-dimensional vector bundle E → X with spin con-
nection. Then a string connection S on E induces the following data for closed
conformal spin manifolds Md. In the table below, DM, f is the conformal Dirac
operator twisted by f ∗(E) for a piecewise smooth map f : M → X and the
data fit together to give bundles (respectively sections in these bundles) over
the relevant mapping spaces.
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d values of S( f ) = S( f : Md → X)

4 the equation index(D f ∗ E ) = n index(DM ), no extra structure!
3 S( f ) ∈ R reduces to ηrel(M, f ∗E) ∈ R/Z

2 an isomorphism S( f ) : Pf( f ∗E)∼= Pf(M)⊗n

1 a representation S( f ) isomorphic to [F( f )]
0 for x ∈ X , S(x) is a String(n) − Ex -pointed factor

Again, the last line uses Definition 5.4 and the data in dimension 0 give
exactly a string structure on E .

The precise gluing conditions in dimensions 0, 1, 2 were explained in Def-
inition 5.8 and that is all we shall need. The main point is that the von Neu-
mann algebras for 0-manifolds can be used to decompose the representations
of closed 1-manifolds into the Connes fusion of bimodules. That is the locality
condition we need for our purposes of constructing a cohomology theory in
the end. Note that by Theorem 5.19 such string connections exist and are up to
isomorphism determined by the topological datum of a string structure.

Remark 5.21. In Section 5.2 we have not taken care of the actions of diffeo-
morphisms of d-manifolds, d = 0, 1, 2, 3, 4. This is certainly necessary if one
wants the correct theory and we have formulated the precise conditions only
in Definition 5.8 (which is important for elliptic objects). However, we felt
that the theory just presented is complicated enough as it stands and that the
interested reader will be able to fill the gaps if necessary.

5.4 Type III1-factors and compact Lie groups

In this section we discuss canonical extensions of topological groups

1 −→ PU (Aρ) −→ Gρ −→ G −→ 1 (5.6)

one for each projective unitary representation ρ of the loop group LG of a
Lie group G. The above extensions were first found for G = Spin(n) and ρ

the positive energy vacuum representation at level � = p1/2. We used ‘lo-
cal fermions’ in the construction, and arrived at the groups String(n) = Gρ .
Antony Wassermann explained to us the more general construction (in terms
of ‘local loops’) which we shall discuss below.

In the extension above, Aρ is a certain von Neumann algebra, the ‘local loop
algebra’, and one can form the projective unitary group PU (Aρ) = U (Aρ)/T.
If U (Aρ) is contractible, the projective group has the homotopy type of a
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K (Z, 2). In that case one gets a boundary map

π3G −→ π2 PU (Aρ) ∼= Z

which we call the level of ρ. In the special case where G is compact and ρ is the
vacuum representation of LG at level � ∈ H4(BG), this leads to an extension
G� → G which was used in Theorem 5.1. By Wassermann’s Theorem 5.17,
the unitary group is contractible in this case.

Lemma 5.22. If G is simply connected and compact, then the two notions of
level above agree in the sense that

� ∈ H4(BG) ∼= Hom(π3G, Z)

gives the boundary map π3G → π2 PU (Aρ) ∼= Z in extension (5.6) if ρ is the
positive energy vacuum representation of LG at level �.

The proof is given at the end of this section. It is interesting to remark that
the ‘local equivalence’ result in [Wa, p. 502] implies that the construction leads
to canonically isomorphic algebras Aρ and groups Gρ if one uses any other
positive energy representation of LG at the same level �.

Remark 5.23. The extension (5.6) is constructed as a pullback from a homo-
morphism G → Out(Aρ). Such homomorphisms are also called G-kernels
and they were first studied by Connes in [Co2]. He showed that for G a finite
cyclic group, G-kernels into the hyperfinite II1 factor are classified (up to con-
jugation) by an obstruction in H3(G; T) ∼= H4(BG). This result was extended
in Jones’ thesis to arbitrary finite groups [J1]. In a sense, the above construction
is an extension of this theory to compact groups (and hyperfinite III1 factors).
More precisely, Wassermann pointed out that the extensions 5.6 are extensions
of Polish groups and by a general theorem have therefore Borel sections. There
is then an obstruction cocycle in C. Moore’s [Mo] third Borel cohomology of
G which measures the nontriviality of the extension. By a result of D. Wigner
[Wig], one in fact has H4(BG) ∼= H3

Borel(G; T). In the simply connected case
(and for tori), Wassermann has checked that the obstruction cocycle in Borel
cohomology actually agrees with the level � ∈ H4(BG). This lead Wasser-
mann to a similar classification as for finite groups, using the unique minimal
action (cf. [PW]) of the constant loops on Aρ .

For our applications to homotopy theory, this Borel cocycle is not as im-
portant as the boundary map on homotopy groups in Lemma 5.22. However,
it might be an important tool in the understanding of non-simply connected
groups because the isomorphism H4(BG) ∼= H3

Borel(G; T) continues to hold
for all compact Lie groups (even non-connected).
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Remark 5.24. One drawback with this more general construction is that the
von Neumann algebras Aρ are not graded, whereas our original construction in
terms of local fermions gives graded algebras via the usual grading of Clifford
algebras. Whenever such a grading is needed, we shall revert freely to this
other construction.

Remark 5.25. The ‘free loop group’ LG is the group consisting of all piece-
wise smooth (and continuous) loops. The important fact is that the theory of
positive energy representations of smooth loop groups extends to these larger
groups (cf. [PS] and [J4]).

Let ρ be a projective unitary representation of LG, i.e., a continuous ho-
momorphism ρ : LG → PU (H) from LG to the projective unitary group

PU (H)
def= U (H)/T of some complex Hilbert space H . This group carries

the quotient topology of the weak (or equivalently strong) operator topol-
ogy on U (H). Note that by definition, we are assuming that ρ is defined
for all piecewise smooth loops in G. Pulling back the canonical circle group
extension

1 −→ T −→ U (H) −→ PU (H) −→ 1

via ρ, we obtain an extension T −→ L̃G −→ LG, and a unitary representa-
tion ρ̃ : L̃G → U (H).

Let I ⊂ S1 be the upper semi-circle consisting of all z ∈ S1 with non-
negative imaginary part. Let L I G ⊂ LG be the subgroup consisting of those
loops γ : S1 → G with support in I (i.e., γ (z) is the identity element of G for
z /∈ I ). Let L̃ I G < L̃G be the preimage of L I G. Define

Aρ
def= ρ̃(L̃ I G)′′ ⊂ B(H)

to be the von Neumann algebra generated by the operators ρ̃(γ ) with γ ∈
L̃ I G. Recall that von Neumann’s double commutant theorem implies that this
is precisely the weak operator closure (in the algebra B(H) of all bounded
operators on H ) of linear combinations of group elements L̃ I G.

To construct the group extension (5.6) we start with the group extension

1 −→ L I G −→ P I
11 G −→ G −→ 1 (5.7)

where P I
11 G = {γ : I → G | γ (1) = 11}, the left map is given by restric-

tion to I ⊂ S1 (alternatively we can think of L I G as maps γ : I → G with
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γ (1) = γ (−1) = 11), and the right map is given by evaluation at z = −1. The
idea is to modify this extension by replacing the normal subgroup L I G by the
projective unitary group PU (Aρ) of the von Neumann algebra Aρ (the unitary
group U (Aρ) ⊂ Aρ consists of all a ∈ Aρ with aa∗ = a∗a = 1), using the
homomorphism

ρ : L I G −→ PU (Aρ)

given by restricting the representation ρ to L I G ⊂ LG. We note that by defi-
nition of Aρ ⊂ B(H), we have ρ(L I G) ⊂ PU (Aρ) ⊂ PU (H).

We next observe that P I
11 G acts on L I G by conjugation and that this action

extends to a left action on PU (Aρ). In fact, this action exists for the group
P I G of all piecewise smooth path I → G (of which P I

11 G is a subgroup): to
describe how δ ∈ P I G acts on PU (Aρ), extend δ : I → G to a piecewise
smooth loop γ : S1 → G and pick a lift γ̃ ∈ L̃G of γ ∈ LG. We decree that
δ ∈ P I G acts on PU (Aρ) via

[a] �→ [ρ̃(γ̃ )aρ̃(γ̃ −1)].

Here a ∈ U (Aρ) ⊂ B(H) is a representative for [a] ∈ PU (Aρ). It is clear
that ρ̃(γ̃ )aρ̃(γ̃ −1) is a unitary element in B(H); to see that it is in fact in
Aρ , we may assume that a is of the form a = ρ̃(γ̃0) for some γ̃0 ∈ L̃ I G
(these elements generate Aρ as von Neumann algebra). Then ρ̃(γ̃ )aρ̃(γ̃ −1) =
ρ̃(γ̃ γ̃0γ̃

−1), which shows that this element is in fact in Aρ and that it is inde-
pendent of how we extend the path δ : I → G to a loop γ : S1 → G, since
γ0(z) = 1 for z /∈ I .

Lemma 5.26. With the above left action of P I G on PU (Aρ), the represen-
tation ρ : L I G → PU (Aρ) is P I G-equivariant. Therefore, there is a well-
defined monomorphism

r : L I G −→ PU (Aρ) � P I G, r(γ )
def= (ρ(γ −1), γ )

into the semi-direct product, whose image is a normal subgroup.

Before giving the proof of this Lemma, we note that writing the semi-direct
product in the order given, one indeed needs a left action of the right-hand
group on the left-hand group. This follows from the equality

(u1g1)(u2g2) = u1(g1u2g−1
1 )g1g2

because u �→ gug−1 is a left action on u ∈ U .
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Proof. The first statement is obvious from our definition of the action on
PU (Aρ). To check that r is a homomorphism, we compute

r(γ1)r(γ2) = (ρ(γ −1
1 ), γ1)(ρ(γ −1

2 ), γ2)

= (ρ(γ −1
1 )[ρ(γ1)ρ(γ −1

2 )ρ(γ −1
1 )], γ1γ2)

= (ρ(γ −1
2 )ρ(γ −1

1 ), γ1γ2) = (ρ(γ1γ2)
−1, γ1γ2)

= r(γ1γ2).

To check that the image of r is normal, it suffices to check invariance under the
two subgroups PU (Aρ) and P I G. For the latter, invariance follows directly
from the P I G-equivariance of ρ. For the former, we check

(u−1, 1)(ρ(γ −1), γ )(u, 1) = (u−1ρ(γ −1), γ )(u, 1)

= (u−1ρ(γ −1)ρ(γ )uρ(γ )−1, γ )

= (r(γ −1), γ )

This actually shows that the two subgroups r(L I G) and PU (Aρ) commute
in the semi-direct product group. Finally, projecting to the second factor P I G
one sees that r is injective.

Definition 5.27. We define the group Gρ to be the quotient of PU (Aρ)� P I
11 G

by the normal subgroup r(L I G), in short

Gρ
def= PU (Aρ) �L I G P I

11 G.

Then there is a projection on to G by sending [u, γ ] to γ (−1) which has kernel
PU (Aρ). This gives the extension in 5.6.

The representation of Gρ into Aut(Aρ). We observe that there is a group
extension

Gρ −→ PU (Aρ) �L I G P I G −→ G

where the right-hand map sends [u, γ ] to γ (1). This extension splits because
we can map g to [11, γ (g)], where γ (g) is the constant path with value g. This
implies the isomorphism

Gρ � G ∼= PU (Aρ) �L I G P I G

with the action of G on Gρ defined by the previous split extension. Note that
after projecting Gρ to G this action becomes the conjugation action of G on G
because the splitting used constant paths.
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Lemma 5.28. There is a homomorphism

� : PU (Aρ) �L I G P I G −→ Aut(Aρ) �([u], γ )
def= cu ◦ φ(γ )

where cu is conjugation by u ∈ U (Aρ) and φ(γ ) is the previously defined
action of P I G on Aρ (which was so far only used for its induced action on
PU (Aρ)).

Proof. The statement follows (by calculations very similar to the ones given
above) from the fact that

φ(γ ) ◦ cu = cρ(γ )uρ(γ )−1 ◦ φ(γ ).

We summarize the above results as follows.

Proposition 5.29. There is a homomorphism � : Gρ �G −→ Aut(Aρ) which
reduces to the conjugation action PU (Aρ) � Inn(Aρ) ⊂ Aut(Aρ) on

PU (Aρ) = ker(Gρ −→ G) = ker(Gρ � G −→ G � G).

The action of G on G in the right-hand semi-direct product is given by con-
jugation. This implies that the correct way to think about the homomorphism
� is as follows: It is a homomorphism �0 : Gρ → Aut(Aρ), together with a
lift to Aut(Aρ) of the conjugation action of G on Out(Aρ) (which is given via
�̃0 : G → Out(Aρ)).

Proof of Lemma 5.22. Since P I
11 G is contractible, the boundary maps in exten-

sion 5.7 are isomorphisms. Therefore, we need to show that ρ∗ : π2L I G →
π2 PU (Aρ) is the same map as the level � ∈ H4(BG). If G is simply connected
the latter can be expressed as the induced map ρ∗ : π2LG → π2 PU (H). Note
that we use the same letter ρ for the original representation ρ : LG → PU (H)

as well as for its restriction to L I G. Now the inclusion L I G ↪→ LG induces
an isomorphism on π2 and so does the inclusion PU (Aρ) ↪→ PU (H). For the
latter one has to know that U (Aρ) is contractible by Theorem 5.17 (which is
well known for U (H)). Putting this information together, one gets the claim of
our lemma.
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Open and closed string field theory interpreted
in classical algebraic topology

DENNIS SULLIVAN
SUNY at Stony Brook and CUNY Graduate Center

Abstract

There is an interpretation of open–closed string field theory in algebraic topol-
ogy. The interpretation seems to have much of the expected structure but no-
tably lacks the vacuum expectations. All the operations are defined by classi-
cal transversal intersection of ordinary cycles and homologies (derived from
chains in path spaces) inside finite-dimensional smooth manifolds. The closed
string theory can be deduced from the open string theory by the known equiv-
ariant chain or homology construction. One obtains the interpretation of open
and closed string field theory combined. The algebraic structures derived from
the first layer of open string interactions realize algebraic models discussed in
work of Segal and collaborators. For example Corollary 1 of §11.1 says that the
homology of the space of paths in any manifold beginning and ending on any
submanifold has the structure of an associative dialgebra satisfying the module
compatibility (equals Frobenius compatibility). See the appendix for the defi-
nition of six kinds of dialgebras. Corollary 2 gives another dialgebra structure
which is less known. Corollary 3 gives yet another, the Lie bialgebra of [3].

1 Open string states in M

The open string theory interpretation in topology takes place on the homology
or on the chain level–referred to respectively as ‘on-shell’ and ‘off-shell’. On-
shell there will be a linear category [ϑ M] for each ambient space M , a finite
dimensional oriented smooth manifold possibly with general singularities. A
morphism in this category is called an (on-shell) open string state. In Greg
Moore’s paper in this volume the idea to connect formal properties of open
string states in physics to morphisms of a category is credited to Graeme Segal.
Eventually the categories here become dicategories generalizing the dialgebras
of the appendix.

344
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The objects in the category [ϑ M] include the smooth oriented submanifolds
(without singularities) La, Lb, Lc, . . . of M . The set of morphisms [ϑab] be-
tween two such objects La and Lb is the graded homology (with coefficients in
Z/n, Z, or Q) of P(a, b), the space of smooth paths starting in La and ending
in Lb. The composition of morphisms [ϑab] ⊗ [ϑbc] →̂ [ϑac] is defined as
follows. Choose representative cycles x in P(a, b) and y in P(b, c). The end-
points of x and beginning points of y define respectively two cycles (of points)
in Lb. These cycles can be intersected transversally in Lb after small perturba-
tion in Lb to obtain a cycle z of dimension equal dim x + dim y − dim Lb.

Now z parametrizes a set of paths from La to Lb and a set of paths from
Lb to Lc which are composable along z. These are made out of the original
paths plus small pieces from the perturbation. After composition (joining and
parametrizing) z defines a cycle in the space of paths from La to Lc defining an
element in [ϑac]. The composition is well defined and associative on the level
of homology, namely on-shell, using familiar arguments (see the discussion
immediately following).

When M is an oriented manifold without singularities each of the submani-
folds La, Lb, . . . has an oriented normal bundle and the additional structure of
dicategory can be defined. By this we mean for each triple of objects La, Lb

and Lc there is a cocomposition or cutting operation [ϑac]
∨t→ [ϑab]⊗[ϑbc] de-

fined as follows. Choose a tε[0, 1] and a representative cycle z for an element
in [ϑac]. Evaluating each path labelled by z at time t yields a cycle (of points)
in M . After small perturbation one can transversally intersect in M this cycle
(of points in M) with Lb to obtain a cycle w in Lb of dimension equal to (di-
mension z–codimension Lb). The cycle w labels pairs of paths, one from La to
Lb (the part of z’s path from 0 to t) and one from Lb to Lc (the part of z’s path
from t to 1). Passing to homology classes and applying the Kunneth property
yields an element in [ϑab] ⊗ [ϑac] (at least with coefficients in Z/n or Q).

If t ′ is a different time in [0,1] we can evaluate z between t and t ′ to obtain
a chain W in M of dimension equal to dimension (z) + 1. Assuming z at t and
at t ′ is transversal to Lb, W will also be transversal to Lb near its boundary (at
t or t ′). A small relative perturbation can make W transversal to Lb without
changing it near the boundary. (This kind of argument is used often to show
that these transversally defined operations are well defined in homology.)

This provides a homology between the cycle w defining ∨t (z) and the cycle
w′ defining ∨t ′(z). Thus ∨t on homology is independent of t in [0,1]. A similar
argument shows ∨t is coassociative on the level of homology.

The independence of t allows two different computations of ∨t (x ∧ y). By
choosing t in x’s time we get on the cycle level ∨t (x) ∧ y (composing in the
right factor of the pair of paths). By choosing t in y’s time we get on the cycle
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level x∧∨t (y) (composing on the left factor of the pair of paths). Summarizing,
we have:

Theorem 1 (on shell Frobenius compatibility). For each oriented manifold
the sets of homology classes [ϑab] of the path spaces between arbitrary ori-
ented submanifolds La and Lb are the sets of morphisms of a dicategory satis-
fying module compatibility (equals Frobenius compatibility). By this phrase we
mean we have objects and morphisms and there are associative compositions

of morphisms [ϑab]⊗[ϑbc]
∧→ [ϑac] and coassociative cocompositions of mor-

phisms [ϑac]
∨t→ [ϑab] ⊗ [ϑbc] satisfying x ∧ ∨t (y) = ∨t (x ∧ y) = ∨t (x) ∧ y.

(In this formulation the coefficients are Z/n, Z, or Q for the composition and
Z/n or Q for the cocomposition.)

Corollary 1. For each object La ⊂ M, the on shell self morphisms of the
object La of the dicategory [ϑ M], the homology of paths in M beginning and
ending on La with coefficients in Z/n or Q, forms an associative dialgebra
satisfying the module compatibility (equals Frobenius compatibility). See the
appendix for a discussion of dialgebras.

Example 1 (manifolds). If La is taken to be all of M , the space of paths
from La to La is homotopy equivalent to M itself. Then ∧ is identified on
shell with ordinary intersection of homology in M . Also ∨t is identified on
shell with the diagonal map on homology of M . We recover the classical fact
that the homology of an oriented manifold has the structure of an associative
dialgebra with module compatibility (equals Frobenius compatibility). If M is
also closed the intersection multiplication and the diagonal comultiplication
are in hom duality via the Poincaré duality inner product and we have the
special case of a (graded) commutative Frobenius algebra.

Example 2 (free loop space). If the ambient space is M × M and the sub-
manifold is the diagonal M in M × M , then the space of paths in M × M
beginning and ending in M is homotopy equivalent to the free loop space of M
defined by smooth maps of the circle into M . The homology of the free loop
space receives a product ∧ and a coproduct ∨t . The product agrees (on shell)
with the loop product from ‘String Topology’ [2]. The coproduct is only non-
zero if M is a closed manifold with non-zero Euler characteristic. (Otherwise
M = La can be deformed in M × M off of itself to La′ . We can compute

[ϑaa]
∨t→ [ϑaa′ ] ⊗ [ϑa′a] for t = 0 (or t = 1) at the cycle level to see we get

zero. Then we identify [ϑaa] with [ϑaa′ ] and with [ϑa′a] using the deformation
of La to La′ .)
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Example 3 (based loop space). If La is a point in M the space of paths be-
ginning and ending on La is just �M the based loop space of M . The product
on the homology of �M defined above agrees (by definition) with the usual
Pontryagin product on the homology of the based loop space. The coproduct
defined above (when M is a manifold near La) is zero because La can be de-
formed in M off of itself (see example 2). The fact that the Pontryagin algebra
is a Hopf algebra (for the diagonal coproduct) and the fact that a (finite di-
mensional) Hopf algebra is a Frobenius algebra is only suggestive at this point
vis-à-vis the above theory.

Remark. There is an algebra homomorphism (on shell) of the free loop space
algebra to the base loop space algebra of degree − dim (ambient space). It is
defined by transversally intersecting the cycle of marked points from a cycle
of loops with the base point (compare [2]).

Remark. The readers comfortable with homology intersection defined by geo-
metric cycles and transversality will be able to add details they feel are needed
above and below to the proofs of Theorems 1 and 2 and Corollaries 1 and 2 ex-
cept possibly for orientations. Orientations are discussed in [3] along with spe-
cific information about the proof of Theorem 3 and Corollary 3 to be expanded
elsewhere. Otherwise the text should be regarded as an outline or sketch of the
proof of these results.

2 On-shell and off-shell

In the above constructions at the cycle or chain level the conclusions were
stated at the homology level. We refer to these two levels respectively as ‘off-
shell’ and ‘on-shell’. A remark about these expressions in terms of familiar
topology may be useful. If one tries to lift a homological structure to the geo-
metric level discrepancies often show up. For example one can associate har-
monic forms to cohomology classes. Harmonic forms are ‘on-shell’ for physi-
cists because they satisfy the critical point equations associated to the energy
action. The cohomological product is represented by the wedge product of
these harmonic forms which is (almost always) not harmonic and therefore
‘off-shell’.

One knows that putting in chain homotopies resolving this discrepancy of
the product (and continuing) constructs algebraic models of the real (or ratio-
nal) homotopy type [13] [15]. Recently a remarkable result [10] of Michael
Mandell shows similar chain homotopies for integral cochains and their cup
product when suitably organized determines the entire homotopy type for
simply connected spaces.



348 Sullivan

Bearing this in mind it seems worthwhile to also study the above string
theory at the cycle and chain level–namely off-shell. The idea is that an alge-
braic structure on-shell will be reflected in a more elaborate structure off-shell
made out of a hierarchy of chain homotopies. A further idea is that the off-
shell structure may be easier to work with in certain respects than the on-shell
structure. For example Quillen’s model of rational homotopy theory is a differ-
ential on a free Lie algebra which (we now know) is organizing the off-shell
strong homotopy commutative associative cup product structure. In some sense
the on-shell structure ‘graded commutative algebra’ is harder to classify and
understand than the off-shell structure, which is ‘free differential graded Lie
algebra’, because of the freeness.

Another idea comes up here. The notion of these hierarchical homotopies
or strong homotopy structures due to Stasheff is very intuitive but combinato-
rially complicated. However in a number of cases this complexity is absorbed
in a single operator of square zero on a free object for a dual structure (see
Ginzburg–Kapranov [7] for the definition and explanation of this property of
Koszul dual pairs of structures over operads and see [6] for algebras over di-
operads).

Let us return to the rational homotopy example and the graded Lie algebra of
homotopy groups of a space. The off-shell version of the Lie algebra of homo-
topy groups would be a strong homotopy Lie algebra which can be described
by a differential on a free graded commutative algebra (by Koszul duality be-
tween commutative algebra and Lie algebra). The latter differential may be
computed [15] inside the differential forms starting from harmonic forms (or
any other lift) and iteratively correcting the off-shell wedge products by chain
homotopies.

An early example of this on-shell–off-shell discussion in topology (and the
first exactly in this vein) was Stasheff’s notion of a strong homotopy associa-
tive algebra, or A∞ algebra. The latter may be described by a differential on
the free tensor algebra (of the dual space). An analogous notion of A∞ cate-
gory is also defined where composition is only associative up to homotopy etc.
(see [1]).

3 Open strings off shell

Now we work off-shell with the set of cycles and chains ϑab in the path spaces
P(a, b). For example, we can take ϑab to be linear combinations (over Z/n, Z

or Q) of smooth maps of standard simplices into P(a, b) (namely, (simplex) x
[0,1]→ M is smooth).

The discussion in §1 of operations defined by transversality can now be con-
sidered off-shell at the chain level. Intersection of ordinary chains in M was
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developed as an A∞ structure [1]. A similar discussion should show compo-
sition or joining of off-shell open string states (chains in P(a, b), . . . ) will
generate an A∞ category. Going further the off-shell analogue of Theorem 1
becomes.

Conjecture 1. The off-shell open string states, the chains ϑab on path spaces
(P(a, b), . . .) form the morphisms of a strong homotopy dicategory, satisfying
the module compatibility (equals Frobenius compatibility) between composi-
tion and cocomposition.

A special case of Conjecture 1 is that the chains on paths in M from La back
to La has the structure of a strong homotopy dialgebra satisfying the module
compatibility (equals Frobenius compatibility).

There is another structure beyond this we could mention now. Consider
cutting paths at any time and then use Eilenberg Zilber relating chains in a
Cartesian product to tensor product of chains to define a new cocomposition

ϑac
∨→ ϑab ⊗ ϑbc of one degree higher than ∨t . This operator does not com-

mute with the ∂ operator in general. In fact (as proved above) ∂ ∨ + ∨ ∂ =
∨1 − ∨0.

This operator satisfies a new compatibility with ∧ called derivation compat-
ibility.

Theorem 2 (off-shell derivation compatibility). For appropriately transver-
sal chains ∧ and ∨ are defined and satisfy ∨(x ∧ y) = ∨(x) ∧ y ± x ∧ ∨(y).

Corollary 2. When La is deformable in M off of itself the homology of the
space of paths in M beginning and ending on La has the structure of an asso-
ciative dialgebra satisfying derivation compatibility.

Remark. In the papers of Aguilar dialgebras with derivation compatibility
are called ‘infinitesimal bialgebras’. Aguilar attributes the concept to Gian
Carlo-Rota et al. who introduced it in the 1960s to study certain combinatorial
problems.

Proof of Theorem 2. x ∧ y is represented by paths of x joined to paths of y
(where the appropriate endpoints transversally intersect). Cutting along some
L transversally we get two terms where the cut belongs to the x part or to the
y part. This is the right-hand side of compatibility.

Proof of Corollary 2. As mentioned above when La is deformable off of itself
to La′ then with regard to cutting paths from La back to itself along La′ ∨0

and ∨1 are zero at the chain level. Then ∨ defined transversally commutes
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with ∂ and passes to homology. The required identity on-shell follows from
Theorem 2.

Remark. The structure of Corollary 2 may depend on the isotopy class of the
push off.

Corresponding to Theorem 2 there is:

Conjecture 2. The off-shell open strings states have a strong homotopy struc-
ture involving ∧, ∨0, ∨1, and ∨, the various associativities, the two compati-
bilities Frobenius and derivation, and ∂ ∨ + ∨ ∂ = ∨1 − ∨0.

Adding to the fun of formulating conjecture 2 exactly we note that in [6] it
is asserted that the algebraic structures associated to (∧, ∨t ) and to (∧, ∨) on-
shell in Corollary 1 and Corollary 2 are Koszul dual (for more see Appendix).

4 Closed strings

We have seen in example 2 of §1 above that open strings beginning and ending
on the diagonal in M × M gives the free loop space of M , namely smooth
maps of the circle into M . Now the free loop space also has a circle action
by rotating the domain. The closed string states in M on-shell or off-shell will
be defined as the equivariant homology or chains relative to this circle action.
There are several models for the equivariant theories. We will employ here a
geometric one called ‘closed string space’.

A point in closed string space S(M) is a pair (L , f ) where L is a complex
line in C∞ = {finite sequences of complex numbers} and f is a smooth map
of the unit circle in L into M .

Remark. Note that:

(1) S(M) fibres over CP∞ with fibre the free loop space of M .
(2) S(M) is the base of a circle fibration with total space equivariantly homo-

topy equivalent to the free loop space of M .

Proof. Projection onto the first factor of the pair (L , f ) proves 1. For 2 let the
total space be triples (v, L , f ) where v is a unit vector in a complex line L in
C∞ and f is a smooth map of the unit circle in L into M . Note the set of (v, L)

is contractible.

Definition. The homology classes of closed string space S(M) are the on-shell
closed string states. The chains on S(M) are the off-shell closed string states.
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Remark. The projection of the circle bundle (or the inclusion of the fibre of
S(M) over CP∞) defines E a degree zero chain or homology mapping from
the free loop space of M to the closed string space (E for erase the isometric
parametrization (or mark) of the circle). Taking the pre-image of the circle
bundle projection defines a degree one chain or homology mapping M in the
opposite direction (M for add a mark or isometric parametrization to a closed
string in all ways to get a circle of loops.) We hope the double use of ‘M’ here
does not cause a problem.

The composition E M produces a degenerate chain and may be regarded
as zero by working in the quotient by degenerate chains. The composition
M E is usually denoted �. It is the operator of degree +1 on chains or ho-
mology of the free loop space associated to the circle action. Since � · � =
(M E)(M E) = M(E M)E , we have �2 = 0 on-shell and even off-shell mod
degenerate chains.

In [2] it was shown the operator � on the homology of the free loops space
with the open string product defined a BV or Batalin Vilkovisky algebra.
Namely, the deviation of � from being a derivation of the open string prod-
uct is a Lie bracket (of degree + 1) compatible with the open string product
via the Leibniz identity.

Remark. (1) This bracket was also defined [2] from an off-shell operation ∗
by skew symmetrization just as Gerstenhaber did in the Hochshild complex of
an associative algebra. This fits with the idea that the Hochshild complex ⊕k

Hom (A⊗k, A) of the intersection algebra A of chains models the free loop
space of a simply connected closed manifold (cf [5][16]).

(2) We will discuss below a Lie product or bracket on the closed string
states which is compatible via the mapping M (adding a mark) with the BV or
Gerstenhaber Lie bracket mentioned in 1.

(3) This closed string product or bracket generalizes to all manifolds the
Goldman bracket on the vector space generated by conjugacy classes in the
fundamental group of oriented surfaces. The Goldman bracket is a universal
version of the Poisson structure on the moduli space of flat bundles over a
surface. We suppose the off-shell string bracket for S(M) bears a similar re-
lation to general bundles with general connections over M (compare Cattaneo
Frohlich et al.).

The string product on closed string states satisfying Jacobi (on the transver-
sal chain level [3]) may be defined by the formula [α, β] = E(Mα ∧ Mβ)

where ∧ is the open string product. Other closed string operations cn can be
defined by cn(α1, α2, . . . , αn) = E(Mα1 ∧ Mα2 ∧ . . . ∧ Mαn). These all
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commute with the ∂ operator and satisfy commutation identities transversally
[2].

The collision operators cn pass to the reduced equivariant complex or re-
duced closed string states which is defined to be the equivariant homology for
the S1 pair (free loop space, constant loops). This passage follows from the for-
mulae for cn because the marking operator M takes a chain of constant loops
to a degenerate chain of constant loops.

We can define a closed string cobracket s2 by the formula s2(α) = (E ⊗
E)(∨(Mα)). In the reduced complex s2 commutes with ∂ and passes to ho-
mology (but not so in the unreduced complex [3]).

Theorem 3 (closed string bracket and cobracket). The closed string bracket
c2(α, β) = E(Mα ∧ Mβ) where x ∧ y = ∧(x ⊗ y) and the closed string
cobracket s2(α) = (E ⊗ E)(∨Mα) satisfy respectively jacobi, cojacobi,
and derivation compatibility (equals Drinfeld compatibility). The term satisfy
means either on the level of Z/n or Q homology or for transversal chains on
the chain level (see appendix for discussion of compatibilities).

Proof. These formulae in terms of open strings are reinterpretations as in [2]
of the definitions given in ‘Closed string operators in topology leading to Lie
bialgebras and higher string algebra’ [3]. In [3] the identities at the transversal
chain level were considered.

Corollary 3. Homology of reduced closed string states forms a Lie bialgebra,
[3].

Remark. The corollary generalized Turaev’s discovery [17] of a Lie bialgebra
for surfaces to all manifolds. Questions in [17] motivated this work. See [4] for
some answers and further developments.

Conjecture 3. The off-shell closed string states (reduced) have the structure of
a strong homotopy Lie bialgebra.

Remark. Other cobracket or splitting operations s3, s4, . . . can be defined sim-
ilarly by iterations of ∨, sn(α) = E ⊗ . . . ⊗ E(. . . ∨ ⊗1 · ∨(Mα)). These also
commute with ∂ and pass to homology in the reduced equivariant theory. A
conjecture about c2, c3, . . . ; s2, s3, . . . generating genus zero closed string op-
erators and the algebraic form of this structure was proposed in [3] and relates
to [9].
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5 Interplay between open and closed string states

Let C denote the closed string states in M , a manifold of dimension d, and let
ϑ denote any of the complexes ϑab of open string states. Transversality yields
an action of closed strings on open strings

C ⊗ ϑ → ϑ degree = (−d + 2)

and a coaction of closed strings on open strings

ϑ → C ⊗ ϑ degree = (−d + 2).

The operations are defined off-shell for transversal chains. In the coaction
we let the open string hit itself transversally inside M of dimension d at any
two times and split the event into a closed string and an open string. In the
action we let a closed string combine with an open string to yield an open
string. We lose d dimensions by the intersection in M and gain two from the
possible positions on each string of the attaching points.

The action is a Lie action of the Lie algebra of closed strings by derivations
on the algebra of open strings. This is seen by looking directly at the con-
struction at the transversal chain level. Both the action and the coaction have
a non-trivial commutator with the boundary operator on chains. These bound-
ary terms are expressed by interactions between the closed string and the open
string at the endpoints of the open string.

For the action the individual boundary terms commute with the boundary
operator and pass to homology. For the coaction the individual boundary terms
have themselves additional boundary terms to be elucidated.

Problem and Conjecture 4. The action and coaction between open strings
and closed strings and their boundary interaction terms are described by a
strong homotopy structure to be elucidated.

6 Connection to work of Segal and collaborators

Dialgebras satisfying the module or Frobenius compatibility give examples
of 1 + 1 TQFT’s without vacuum expectations. In the commutative case we
associate the underlying vector space to a directed circle, its tensor prod-
ucts to a disjoint union of directed circles and to a connected 2D oriented
bordism between two non-empty collections the morphism obtained by de-
composing the bordism into pants and composing accordingly the algebra or
coalgebra map. The module compatibility (equals Frobenius compatibility) is
just what is required for the result to be independent of the choice of pants
decomposition.
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N.B. this description differs from the usual one because we do not have
disks to close up either end of the bordism. One knows these discs at both ends
would force the algebra to be finite dimensional and the algebra and coalgebra
to be related by a non-degenerate inner product. We refer to these generaliza-
tions of the Atiyah–Segal concepts as the positive boundary version of TQFT
(a name due to Ralph Cohen). The editor notes that Segal refers to the un-
derlying algebras of positive boundary 2D TQFT as non compact Frobenius
algebras.

An exactly similar discussion with non-commutative associative dialgebras
satisfying the Frobenius compatibility leads to a positive boundary version of
a TQFT using open intervals. Now the algebra and coalgebra are associated to
1/2 pants (a disc with ∂ divided into six intervals–three (1/2 seams) alternating
with two (1/2 cuffs) and one (1/2 waist)). Any planar connected bordism be-
tween two non-empty collections of intervals determines a mapping between
inputs and outputs.

The structures we have found (including ∂ labels La, Lb, . . .) for open
strings using the composition ∧ and fixed time cutting ∨t satisfies this Frobe-
nius compatiblity up to a chain homotopy and we can apply it at the homology
level in the relative TQFT scheme just mentioned.

Remark. One can show the on-shell structure of open and closed strings gives
an example of the structure described in Moore’s article of these proceedings.
This follows by showing cycles and homologies on the moduli space of open
closed string Riemann surfaces acts on open closed string states. For example,
there is an operation on pairs of open strings which combine and reconnect at
arbitrary interior points. A general operation is essentially a composition of the
latter with all the above.

7 Summary

We have described the part of the interpretation of open and closed string field
theory in topology associated to the basic product and coproduct (and in the
equivariant setting certain implied n-variable splitting and collision operators
as in [3]). The coproduct discussion has two levels involving a coproduct ∨t

and an associated chain homotopy coproduct ∨.
We found the open string product and the coproduct ∨t satisfied the mod-

ule compatibility (equals Frobenius compatibility) on the level of homology
namely on-shell. In a setting where ∨0 and ∨1 were zero or even deformable
to zero, ∨ emerges as or can be deformed to a coproduct commuting with
∂ and thus a coproduct ∨ on homology of one higher degree. Then a new



Open and closed string field theory 355

compatibility with the product is observed – the derivation or infinitesimal bial-
gebra compatibility (also true at the transversal chain level and therefore sug-
gesting a corresponding strong homotopy structure which was Conjecture 2).

Remark. The submanifolds which are the objects of the open string categories
here are called D-branes in the math physics literature. We are currently con-
sidering more general boundary conditions forced on us by 3D computations
which lead us to flat bundles along submanifolds and more general sheaves.

For closed strings in M we considered the equivariant theory associated to
open strings on the diagonal in M × M .

The higher genus interpretation of open closed string field theory in topol-
ogy involves full families of arbitrary cutting and reconnecting operations of a
string in an ambient space M . For closed curves some full families of these op-
erators were labelled combinatorially by decorated even valence ribbon graphs
obtained by collapsing chords in general chord diagrams in [3]. There is a
compactness issue for the full families discussed there for realizing these in
algebraic topology. The issue is a correct computation of the boundary. The
problem has a parallel with renormalization in Feynman graphs (see the Bott–
Taubes [18] treatment of configuration space integrals).

In both cases algebraic topology transversality and Feynman graphs the
loops in collapsing subgraphs cause the problems. We hope to address this
issue using Penner’s intriguing paper [12].

Appendix: (dialgebras and compatibilities)

Let us call a linear space V with two maps V ⊗ V
∧→ V and V

∨→ V ⊗ V a
dialgebra. Associative dialgebra means ∧ is associative and ∨ is coassociative.
Commutative dialgebra means besides being associative ∧ and ∨ are symmet-
ric. Lie dialgebra means both maps are skew symmetric and that jacobi and
cojacobi hold.

In all these cases V and V ⊗ V have module structures over V and there are
two kinds of compatibilities between ∧ and ∨ relative to these.

The compatibilities we consider here are:

derivation compatibility ∨(a · b) = (∨a) · b + a · ∨(b)and
module compatibility ∨(a · b) = ∨(a) · b = a · ∨(b)

Where the · refers to the algebra structure or the module structure (which
means in the associative case a · (b ⊗ c) = (a · b) ⊗ c, (a ⊗ b) · c = a ⊗ (b · c)
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and in the Lie case a · (b ⊗ c) = −(b ⊗ c) · a = [a, b] ⊗ c + b ⊗ [a, c] where
[x, y] = ∧(x ⊗ y)).

We get six kinds of structures (five appear in this paper, see table below)
which are examples of definitions of algebras over dioperads [6]. Algebras
over dioperads are structures whose generators and relations are described di-
agrammatically by trees.

The familiar example of a compatibility studied by Hopf that ∨ is a map
of algebras (associative or commutative case but not Lie) is described by a
non-tree diagram and is not an algebra over a dioperad.

Table with names of compatibility and/or structure and/or examples.

Module Derivation
compatibility compatibility

Associative
dialgebra

Frobenius compatibility
Special case = Frobenius
algebra = associative algebra
with non-degenerate invariant
inner product

These are called
infinitesimal bialgebras
by Aguilar

Commutative
dialgebra

Frobenius compatibility
Special case = Commutative
Frobenius algebra

commutative
cocommutative
infinitesimal bialgebra

Lie dialgebra Frobenius compatibility
Special case = Lie algebra
with non-degenerate invariant
inner product

Drinfeld compatibility
These are called Lie
bialgebras in the
literature

In [6] Koszul dual pairs are defined and there it is proved that upper left
and upper right are Koszul dual pairs and that middle left and lower right are
Koszul dual pairs. We suppose that the lower left and middle right are also
Koszul dual pairs.

We emphasize these Koszul relations because in several important situations
a strong homotopy algebraic structure of one kind is very naturally expressed
by freely generated diagrams decorated with tensors labeled by the Koszul dual
structure. Our main conjecture in the above discussion is that all the structures
that are true transversally will lead to strong homotopy versions on the entire
space of states. These might be usefully expressed in this graphical Koszul
dual way.
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K -theory of the moduli space of bundles on a
surface and deformations of the Verlinde algebra

CONSTANTIN TELEMAN
Cambridge University

Abstract

We conjecture that index formulas for K -theory classes on the moduli of holo-
morphic G-bundles over a compact Riemann surface � are controlled, in a pre-
cise way, by Frobenius algebra deformations of the Verlinde algebra of G. The
Frobenius algebras in question are twisted K -theories of G, equivariant under
the conjugation action, and the controlling device is the equivariant Gysin map
along the ‘product of commutators’ from G2g to G. The conjecture is com-
patible with naı̈ve virtual localization of holomorphic bundles, from G to its
maximal torus; this follows by localization in twisted K -theory.

1 Introduction

Let G be a compact Lie group and let M be the moduli space of flat G-
bundles on a closed Riemann surface � of genus g. By well-known results
of Narasimhan, Seshadri and Ramanathan [NS], [R], this is also the moduli
space of stable holomorphic principal bundles over � for the complexified
group GC; as a complex variety, it carries a fundamental class in complex K -
homology. This paper is concerned with index formulas for vector bundles over
M . The analogous problem in cohomology – integration formulas over M for
top degree polynomials in the tautological generators – has been extensively
studied [N], [K], [D], [Th], [W], and, for the smooth versions of M , the mod-
uli of vector bundles of fixed degree co-prime to the rank, it was completely
solved in [JK]. In that situation, the tautological classes generate the rational
cohomology ring H∗(M; Q). Knowledge of the integration formula leads to
the intersection pairing, and from here, Poincaré duality determines this ring
as the quotient of the polynomial ring in the tautological generators by the null
ideal of the pairing.

358
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For smooth M , index formulas result directly from the Riemann–Roch the-
orem and the integration formula. This breaks down in the singular case, and
no index formula can be so obtained, for groups other than SU (n). Follow-up
work [Kie] has extended the results of [JK] to the study of the duality pairing
in intersection cohomology, for some of the singular moduli spaces. Whether
a useful connection to K -theory can be made is not known; so, to that extent,
the formulas I propose here are new. But I should point out the novel features
of the new approach, even in the smooth case.

More than merely giving numbers, the conjecture posits a structure to these
indices; to wit, they are controlled by (finite-dimensional) Frobenius alge-
bras, in the way the Verlinde algebras control the index of powers of the
determinant line bundle D. The Frobenius algebras in question are formal
deformations of Verlinde algebras. This is best explained by the twisted K -
theory point of view, [FHT1], [FHT2], which identifies the Verlinde alge-
bra with a twisted equivariant K -theory τK ∗

G(G). The determinantal twist-
ings appearing in that theorem (cf. §3.2 below) correspond to powers of D.
Other K -theory classes, involving index bundles over � (see §2.iii), relate to
higher twistings in K -theory, and these effect infinitesimal deformations of the
Verlinde algebra. If ordinary (=determinantal) twistings can be represented
by gerbes [BCMMS], higher twistings are realized by what could be called
virtual gerbes, which generalize gerbes in the way one-dimensional virtual
bundles generalize line bundles. In this picture, K -theory classes over M of
virtual dimension one are automorphisms of virtual gerbes, and arise by com-
paring two trivializations of a twisting τ for KG(G) (§4.14). Relevant exam-
ples are the transgressions over � of delooped twistings for BG (§3.9).1 All
these K -classes share with D the property of being ‘multiplicative in a piece of
surface’.

The first formulation, §4.11 of the conjecture expresses the index of such
a K -class over the moduli of G-bundles as the partition function for the sur-
face �, in the 2D topological field theory defined by τK ∗

G(G). This is a sum
of powers of the structure constants of the Frobenius algebra, for which ex-
plicit formulas can be given (Theorem 4.7). There is a restriction on the al-
lowed twistings, but they are general enough to give a satisfactory set of
K -classes.

We can reformulate the conjectures in §4.15, §4.17 by encoding part of the
Frobenius algebra structure into the product of commutators map � : G2g →
G. This map has the virtue of lifting the transgressed twistings for KG(G)

1 For the expert, we mean G-equivariant B2 BU⊗-classes of a point.
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(§3.9) to trivializable ones, which allows one to identify K ∗
G(G2g) with its τ -

twisted version. In particular, we get a class τ 1 in τK ∗
G(G2g). The conjecture

then asserts that the index of the K -class associated to τ over the moduli of
G-bundles equals the Frobenius algebra trace of the Gysin push-forward of τ 1
along �.

Having (conjecturally) reduced this index to a map of compact manifolds,
ordinary localization methods allows us to express the answer in terms of the
maximal torus T and Weyl group of G. This reduction to T , it turns out, can be
interpreted as a virtual localization theorem from the moduli of holomorphic
GC-bundles to that of holomorphic TC-bundles. (The word ‘virtual’ reflects
the use of the virtual normal bundle, defined by infinitesimal deformations).
For this interpretation, however, it turns out that we must employ the moduli
M = MG , MT of all GC-and TC-bundles, not merely the semi-stable ones.
These moduli have the structure of smooth stacks, with an infinite descend-
ing stratification by smooth algebraic substacks. Even the simplest case, the
Verlinde formula, cannot be reduced to a single integral over the variety of
topologically trivial TC-bundles; the correct expression arises only upon sum-
ming over all topological T -types. (Recall that the non-trivial T -types define
unstable GC-bundles.)

Now is the right time to qualify the advertised statements. The fact that the
Verlinde formula, the simplest instance of our conjecture, expresses the indices
of positive powers D over M is a fortunate accident. It is an instance of the
‘quantization commutes with reduction’ conjecture of Guillemin and Sternberg
[GS], which in this case [T2] equates the indices of positive powers of D over
M and over the stack M of all holomorphic GC-bundles. This does not hold for
more general K -theory classes, for which there will be contributions from the
unstable Atiyah–Bott strata, and our deformed Verlinde algebras really control
not the index over M , but that over M. This incorporates information about the
moduli of flat G-bundles, and the moduli of flat principal bundles of various
subgroups of G. In other words, the index information which assembles to a
nice structure refers to the stack M and not to the space M .

Hence, the third formulation of the conjecture, §5.3, expresses the index of
any admissible K -class (Definition 2.7) over the moduli stack M of all holo-
morphic GC-bundles over � by virtual localization to the stack of holomorphic
TC-bundles. This involves integration over the Jacobians, summation over all
degrees, leading to a distribution on T , and, finally, integration over T (to ex-
tract the invariant part). In §5, these steps are carried out explicitly for the
group SU (2).

However, even if our interest lies in M (which, our approach suggests, it
should not), all is not lost, because a generalization of ‘quantization commutes
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with reduction’ (first proved in [TZ], for compact symplectic manifolds) as-
serts, in this case, the equality of indices over M and M, after a large D-power
twist, for the class of bundles we are considering.2 This follows easily from
the methods of [T2], but there is at present no written account. Because M is
projective algebraic, the index of E ⊗ D⊗n over M , for any coherent sheaf E,
is a polynomial in n; so its knowledge for large n determines it for all n, in-
cluding, by extrapolation, n = 0. Thus, the information contained in M, which
combines index information for the moduli of bundles of subgroups of G, can
be disassembled into its constituent parts; the leading contribution, as n → ∞,
comes from M itself. When M is smooth, the ‘E-derivatives’ of the n → ∞
asymptotics of the index of E⊗ D⊗n give integration formulas for Chern poly-
nomials of E over M ; and the author suggests that the Jeffrey–Kirwan residue
formulas for the integrals can be recovered in this manner. What one definitely
recovers in the large level limit are Witten’s conjectural formulas [W]. Indeed,
there is evidence that the relevant field theories are topological limits of Yang–
Mills theory coupled to the WZW model (in other words, the G/G coset model
with a Yang–Mills term); this would fit in nicely with the physical argument
of [W].

2 The moduli space M , the moduli stack M and admissible K -classes

In this section, we recall some background material; some of it is logically
needed for the main conjecture, but mostly, it sets the stage for my approach
to the question. This is anchored in Theorem 2.8.

2.1. Recall the set-up of [AB]: let A be the affine space of smooth connections,
and G the group of smooth gauge transformations on a fixed smooth principal
G-bundle P over �. The (0, 1)-component of such a connection defines a ∂̄-
operator, hence a complex structure on the principal GC-bundle PC associated
to P . We can identify A with the space of smooth connections of type (0, 1)

on PC; the latter carries an action of the complexification GC of G, and the
quotient A

/
GC is the set of isomorphism classes of holomorphic principal

GC-bundles on � with underlying topological bundle PC.

2.2. The space A carries a GC-equivariant stratification, according to the in-
stability type of the holomorphic bundle. The semi-stable bundles define the
open subset A0, whose universal Hausdorff quotient by GC is a projective al-
gebraic variety M , the moduli space of semi-stable holomorphic GC-bundles
over �. The complex structure is descended from that of A0, in the sense that

2 An explicit bound for the power can be given, linear in the highest weight.
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a function on M is holomorphic in an open subset if and only if its lift to A

is so. We can restate this, to avoid troubles relating to holomorphy in infinite
dimensions. The gauge transformations that are based at one point ∗ ∈ �

act freely on A0, with quotient a smooth, finite-dimensional algebraic vari-
ety M∗. This is the moduli of semi-stable bundles with a trivialization of the
fibre over ∗. Its algebro-geometric quotient under the residual gauge group
GC is M . The other strata Aξ are smooth, locally closed complex subman-
ifolds, of finite codimension; they are labeled by the non-zero dominant co-
weights ξ of G, which give the destabilizing type of the underlying holomor-
phic GC-bundle. The universal Hausdorff quotient of Aξ can be identified with
a moduli space of semi-stable principal bundles under the centralizer G(ξ) of ξ

in GC.

2.3. The stack M of all holomorphic GC-bundles over � is the homotopy
quotient A

/
GC . As such, it seems that we are using new words for an old

object, and so it would be, were our interest confined to ordinary cohomology,
H∗(M; Z). However, we will need to discuss its K -theory, and the index map
to Z. The abstract setting for this type of question is a homotopy category
of analytic spaces or algebraic varieties (see e.g. Simpsons work [Si], and,
with reference to M, [T1]). Fortunately, little of that general abstraction is
necessary here. It turns out that M is homotopy equivalent to the quotient,
by G-conjugation, of a principal �G-bundle over G2g . (This is the homotopy
fibre of � : G2g → G; cf. §4.13). This follows from Segal’s double coset
presentation of M ([PS], Ch. 8). As a result, there is a sensible topological
definition of K ∗(M), which makes it into an inverse limit of finite modules for
the representation ring RG of G.

2.4. As in the cohomological setting of Atiyah–Bott, this K ∗(M) can be shown
to surject on to the GC-equivariant K -theory of A0. The latter can be defined
as the G-equivariant version of K ∗(M∗), for the variety M∗ of §2.2. This is
as close as we can get to K ∗(M). When the action of G on M∗ is free, the
two groups coincide, but this only happens when G = PU (n) and the de-
gree of our bundle P is prime to n. However, some relation between K 0

G(M∗)
and M always exists. Namely, every holomorphic, GC-equivariant bundle E

over M∗ has an invariant direct image qG∗ (E), which is a coherent analytic
sheaf over M . (This is the sheaf of G-invariant holomorphic sections along
the fibres of the projection q : M∗ → M .) The coherent sheaf cohomol-
ogy groups of qG∗ (E) are finite-dimensional vector spaces, and the alternat-
ing sum of their dimensions is our definition of the G-invariant index of E

over M∗.
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2.5. A similar construction, applied to a stratum Aξ , allows us to define the
GC-invariant index of holomorphic vector bundles over it. Because A is strat-
ified by the Aξ , there is an obvious candidate for the GC-invariant index of
holomorphic vector bundles over A, as a sum over all ξ . (Contributions from
the normal bundle must be taken into account; see [T2], §9). This sum may
well be infinite. The task, therefore, is to identify a set of admissible K -theory
classes, for which the sum is finite; we then define that sum to be the index
over M. For a good class of bundles, this can be done, and shown to agree
with a more abstract global definition, as the coherent-sheaf cohomology Eu-
ler characteristic over the algebraic site of the stack M. I shall not prove
any of the assertions above, instead will take a low-brow approach and de-
fine directly the set of admissible K -theory classes. When G is simply con-
nected, they turn out to generate a dense subring of K ∗(M; Q), rather in
the way that a polynomial ring is dense in its power series completion; and
their restrictions to the semi-stable part generate K ∗

G(M∗) ⊗ Q. (This can be
deduced from the cohomological result of [AB], by using equivariant Chern
characters.)

2.6. Note, first, that the pull-back of the bundle PC to � × A carries a nat-
ural, GC-equivariant, holomorphic structure, as defined by the (0, 1)-part of
the universal connection along �. We might call this the universal bundle on
� × M. A representation V of G defines an associated holomorphic, GC-
equivariant vector bundle E∗V on � × A. (We think of E as the classifying
map of the universal bundle to BG.) Let π : � × A → A be the projec-
tion, and fix a square root K 1/2 of the canonical bundle on �. We now asso-
ciate the following objects to V , which we shall call the tautological classes in
K ∗(M).

(i) For a point x ∈ �, the restriction E∗
x V of E∗V to {x} × M;

(ii) The index bundle α(V ) := R∗π∗(E∗V ⊗ K 1/2) along � over A;

(iii) For any class C ∈ K1(�), its slant product with E∗V (the index of
E∗V along a 1-cycle).

Object (i) is an equivariant holomorphic vector bundle, objects (ii) and (iii) are
equivariant K 0 and K 1 classes over A, the misnomer ‘bundle’ in (ii) notwith-
standing. For example, we can represent (ii) by a GC-equivariant Fredholm
complex based on the relative ∂̄-operator. (The square root of K leads to the
Dirac, rather than ∂̄ index, and the notation α(V ) stems from the Atiyah in-
dex map, which we get when � is the sphere.) We shall not consider type (iii)
objects in this paper, so we refrain from analyzing them further. Note that the
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topological type of the bundles in (i) is independent of x ; we shall indeed see
that their index is so as well.

Any reasonable definition of K ∗(M) should include the tautological classes,
but another distinguished object plays a crucial role:

(iv) The determinant line bundle D(V ) := det R∗π∗(E∗V ) over A.

This is a holomorphic, GC-equivariant line bundle, or a holomorphic line bun-
dle over M. When G is semi-simple, such line bundles turn out to be classified
by their Chern classes in H2(M; Z) [T1]; in the case of D(V ), this is the trans-
gression along � of c2(V ) ∈ H4(BG). Not all line bundles are determinants,
but they are fractional powers thereof. The convex hull of the D(V ) define the
semi-positive cone in the group of line bundles; its interior is the positive cone.
In particular, when G is simple and simply connected, H2(M; Z) ∼= Z, and
the positive cone consists of positive powers of a single D; for G = SU (n),
this is D(Cn), for the standard representation.

Definition 2.7. An admissible class in K ∗(M) is a polynomial in the tauto-
logical classes and the semi-positive line bundles.

For simply connected G, an admissible K -class is a finite sum of terms
pn ⊗ D⊗n , where n ≥ 0 and pn is a polynomial in the objects (i)–(iii) above.
We can actually allow some small3 negative values of n, but the index of such
classes turns out to vanish, so little is gained. The following theorem allows
our approach to K ∗(M) to get off the ground. To simplify the statements, we
assume that G is semi-simple.

Theorem 2.8. (i) The coherent sheaf cohomology groups, over the alge-
braic site of the stack M, of any admissible class E ∈ K ∗(M), are finite-
dimensional, and vanish in high degrees.
(ii) The index Ind(M; E) over M, defined as the alternating sum of cohomology
dimensions, is also expressible as a sum of index contributions over the Atiyah–
Bott strata Aξ . Each contribution is the index of a coherent sheaf over a moduli
space of semi-stable G(ξ)-bundles. These contributions vanish for large ξ .
(iii) For sufficiently positive D, all ξ �= 0-contributions of E ⊗ D to the index
vanish.
(iv) Hence, for sufficiently positive D, Ind (M; E ⊗ D) =
Ind

(
M; qG∗ (E ⊗ D)

)
.

Proof. (Sketch) For a product of ‘evaluation bundles’ §2.6.i, the results were
proved in [T1] and [T2]. This generalizes immediately to a family of bundles,

3 Larger than the negative of the dual Coxeter number
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parametrized by a product of copies of �, and integration along the curves
leads to index bundles §2.6.ii. Slant products with odd K -homology classes
on that product of Riemann surfaces lead to the same conclusion for arbitrary
admissible E.

Remark 2.9. As noted in the introduction, the theorem allows us to deter-
mine the index of qG∗ (E) over M , for any admissible E, if index formulas over
M are known. Indeed, suitable positive line bundles D descend to M , and so
Ind

(
M; qG∗ (E ⊗ D⊗n)

)
is a polynomial in n. Its value at n = 0 can then be

determined from large n, where it agrees with Ind
(
M; E ⊗ D⊗n

)
.

3 Twistings and higher twistings in K -theory

We start with some background on twisted K -theory and its equivariant ver-
sions. The statements are of the ‘known to experts’ kind, but, unfortunately,
references do not always exist. They will be proved elsewhere.

3.1. Let X be a compact, connected space. Units in the ring K ∗(X), under
tensor product, are represented by the virtual vector bundles of dimension ±1 .
A distinguished set of units in the 1-dimensional part GL+

1 is the Picard group
Pic(X) of topological line bundles; it is isomorphic to H2(X; Z), by the Chern
class. In the other direction, the determinant defines a splitting

GL+
1

(
K ∗(X)

) ∼= Pic(X) × SL1
(
K ∗(X)

)
(3.1)

where the last factor denotes 1-dimensional virtual bundles with trivialized
determinant line.

We shall ignore here the twistings coming from the group {±1}. The splitting
(3.1) refines to a decomposition of the spectrum BU⊗ of 1-dimensional units
in the classifying spectrum for complex K -theory [MST]; in self-explanatory
notation, we have a factorization

BU⊗ ∼= K (Z; 2) × BSU⊗. (3.2)

3.2. A twisting of complex K -theory over X is a principal BU⊗-bundle over
that space. By (3.2), this is a pair τ = (δ, χ) consisting of a determinan-
tal twisting δ, which is a K (Z; 2)-principal bundle over X , and a higher
twisting χ , which is a BSU⊗-torsor. Twistings are classified, up to isomor-
phism, by a pair of classes [δ] ∈ H 3(X; Z) and [χ ] in the generalized coho-
mology group H1(X; BSU⊗). This last group has some subtle features over
Z; rationally, however, BSU⊗ is a topological abelian group, isomorphic to
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n≥2 K (Q; 2n) via the logarithm of the Chern character ch. We obtain the

following.

Proposition 3.3. Twistings of rational K -theory over X are classified, up to
isomorphism, by the group

∏
n>1 H2n+1(X; Q).

Remark 3.4. The usual caveat applies: if X is not a finite complex, we ratio-
nalize the coefficients before computing cohomologies.

The twistings in Proposition 3.3, of course, are also the twistings for ratio-
nal cohomology with coefficients in formal Laurent series Q((β)) in the Bott
element β of degree (−2). This is not surprising, as the classifying spectra
BU ⊗ Q and K (Q((β)), 0) for the two theories are equivalent under ch. The
isomorphism extends naturally to the twisted theories, by a twisted version of
the Chern character, as in §3 of [FHT1], where determinantal twistings were
considered:

Proposition 3.5. There is a natural isomorphism τch : τK ∗ (X; Q) →
τH∗ (X; Q((β))).

Remark 3.6. The strength of the proposition stems from computability of the
right-hand side. Let (A•, d) be a DGA model for the rational homotopy of
X , η = η(3) + η(5) + · · · a cocycle representing the twisting, decomposed
into graded parts. If we define η′ := βη(3) + β2η(5) + · · · , then it turns out
that τH∗ (X; Q((β))) is the cohomology of A•((β)) with modified differen-
tial d + η′∧. The latter can be computed by a spectral sequence, commenc-
ing at E2 with the ordinary H∗ (X; Q((β))), and with third differential βη(3)

(cf. [FHT1]).

3.7. Thus far, the splitting (3.2) has not played a conspicuous role: rationally,
all twistings can be treated uniformly, with log ch playing the role that c1 plays
for determinantal twistings. Things stand differently in the equivariant world,
when a compact group G acts on X . There are equivariant counterparts to
§3.1 and (3.2), namely, a spectrum BU G⊗ of equivariant K -theory units, factor-
ing into the equivariant versions of K (Z; 2) and BSU⊗. However, the group,∏

n>1 H2n+1
G (X; Q), analogous to that in Proposition 3.3, no longer classifies

twistings for rational equivariant K -theory, but only for its augmentation com-
pletion. The reason is the comparative dearth of units in the representation ring
RG of G, versus its completion.

The easily salvaged part in (3.1) is the equivariant Picard group. Realizing
twistings in H3

G(X; Z) by equivariant projective Hilbert bundles allows a con-
struction of the associated twisted K -theory by Fredholm operators; see [F] for
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a relevant example.4 One method to include more units (hence more twistings)
is to localize in the representation ring. This is not an option here; one of our
operations for the index formula, the trace map, will be integration over G. In-
stead, we introduce the extra units by adjoining formal variables to RG . Thus,
we consider the formal power series ring RG[[t]], and the associated K -theory
K ∗

G(X)[[t]] of formal power series in t , with equivariant vector bundle coeffi-
cients. Any series

∑
tn Vn , where V0 is a 1-dimensional representation of G, is

now a unit. This realizes the G-spectrum

K G(Z; 2) ×
(

1 + t BU G[[t]]
)

⊗
(3.3)

within the G-spectrum of units in BU G[[t]].

Definition 3.8. An admissible twisting for KG(X)[[t]]-theory is a torsor under
the spectrum (3.3) over the G-space X .

Admissible twistings τ(t) = (δ, χ(t)) are classified, up to isomorphism, by a
pair of classes [δ] ∈ H3

G(X; Z) and a ‘higher’ class [χ(t)] in the generalized

equivariant cohomology group
[
X; B (1 + t BU [[t]])⊗

]G .

3.9. One way to define a higher admissible twisting over G, equivariant for
the conjugation action, uses a (twice deloopable) exponential morphism from
BU G[[t]] to 1+ t BU G[[t]] (taking sums to tensor products). Segal’s theory of
-spaces [S] shows that sufficiently natural exponential operations on the coef-
ficient ring RG[[t]] define such morphisms. An example is the total symmetric
power

V (t) �→ St [t · V (t)] =
∑
n≥0

tn · Sn [V (t)] . (3.4)

Allowing rational coefficients, the naı̈ve exponential

V (t) �→ exp [t · V (t)] =
∑
n≥0

tn/n! · V (t)⊗n (3.5)

is more closely related to the previous discussion, in the sense that com-
pleting at the augmentation ideal takes us to the ordinary K -theory of BG,
and applying ch to the right leads to the earlier identification §§3.2–3.3
of BSU⊗ ⊗ Q with

∏
n≥2 K (Q; 2n). Whichever exponential morphism we

choose, Bott periodicity permits us to regard BU G[[t]]⊕-classes of a point as

4 Even here, we meet a new phenomenon, in that integral twistings are required to define the
rational equivariant K -theory; for instance, the torsion part of a twisting in H3

G (X; Z) affects
the rational answer.
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B2 BU G[[t]]⊕-classes, and delooping our morphism produces classes in
B2(1 + t BU G[[t]]) of a point. Transgressing once gives higher twistings for
KG(G). In this paper, we shall pursue the exponential (3.5) in more detail.

4 The Index from Verlinde algebras

The Verlinde algebra and its deformations 4.1. Call a twisting τ(t) =
(τ0, χ(t)) non-degenerate if the invariant bilinear form h it defines on g, via
the restriction of [τ0] ∈ H3

G(G) to H2
T ⊗ H1(T ), is so; call it positive if this

same form is symmetric and positive definite. Integrality of τ0 implies that h
defines an isogeny from T to the Langlands dual torus, with kernel a finite,
Weyl-invariant subgroup F ⊂ T . Recall the following result from [FHT1],
[FHT2], referring to determinantal twisting τ = (τ0, 0). For simplicity, we
restrict to the simply connected case. Let σ be the twisting coming from the
projective cocycle of the Spin representation of the loop group; it restricts to
the dual Coxeter number on H3 for each simple factor.

Theorem 4.2. Let G be simply connected. For a positive determinantal twist-
ing τ , the twisted K-theory τK dim G

G (G) is isomorphic to the Verlinde algebra
VG(τ − σ) of G, at a shifted level τ − σ . It has the structure of an integral
Frobenius algebra; as a ring, it is the quotient of RG by the ideal of repre-
sentations whose characters vanish at the regular points of F. The trace form
τ Tr : RG → Z sends V ∈ RG to

τ Tr(V ) =
∑

f ∈F reg/W

chV ( f ) · �( f )2

|F | (4.1)

where chV is the character of V , �( f ) is the Weyl denominator, normalized to
have positive square on Tg and |F | is the order of F.

Remark 4.3. (i) The RG ⊗ C-algebra τK dim G
G (G) ⊗ C is supported at the

regular conjugacy classes of G which meet F , and has one-dimensional fibres.
(ii) The trace form (4.1) determines the Frobenius algebra: by non-degeneracy,
the kernel of the homomorphism from RG is the null subspace under the bilin-
ear form (V, W ) �→ τ T r(V ⊗ W ).
(iii) After complexifying RG , we can represent Tr by integration against an in-
variant distribution on G. The latter is the sum of δ-functions on the conjugacy
classes in (ii), divided by the order of F ; the factor |�( f )|2 is the volume of
the conjugacy class.
(iv) The result holds for connected groups with torsion-free π1, although some
care must be taken with the ring structure when the adjoint representation does
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not spin [FHT1]. When π1 has torsion or G is disconnected, τK dim G
G (G) is

still the Verlinde algebra, but it is larger than the quotient of RG described in
Theorem 4.2; so the trace form on RG no longer determines VG .

The complexified form of Theorem 4.2 was given a direct proof in [FHT1],
using the Chern character to compute the twisted K -theory. The trace form
was introduced ad hoc, using our knowledge of the Verlinde algebra (§7 of
loc. cit.). There is in fact no choice on the matter, and the entire Frobe-
nius structure is determined topologically (see the proof of Theorem 4.7
below).

We now incorporate higher twistings in Theorem 4.2. We tensor with C for
convenience.

Theorem 4.4. Let G be simply connected, τ(t) = (τ0, χ(t)) an admis-
sible twisting with positive determinantal part τ0. The twisted K -theory
τK dim G

G (G) ⊗ [[t]] is a Frobenius algebra, which is a quotient of RG[[t]] ⊗ C,
and a flat deformation of the Verlinde algebra at level σ .

Remark 4.5. The use of complex higher twistings forces us to tensor with C.
The use of integral twistings of the type (3.4) would lead to a similar result
over Z, but as our goal here is an index formula, nothing is lost over C.

Proof. (Idea) All statements follow by computing the Chern character, exactly
as in [FHT1]; the completions of τK dim G

G (G) ⊗ C[[t]] at conjugacy classes
in GC are calculable by spectral sequences as in (3.6). Away from F , the E2

term of this sequence is nil. At singular points of F , this is not so, but the
third differential, which stems from the determinant of the twisting, is exact;
so the limit is null again. At regular points of F , the same third differential
resolves one copy of C[[t]] in degrees of the parity dim G, and zero otherwise;
so the sequence collapses there, and the abutment is a free C[[t]]-module of
rank 1.

4.6. As explained in Remark 4.3.ii, the Frobenius algebra is completely deter-
mined by the trace form τ Tr : RG[[t]] → C[[t]]. At t = 0 , this is given by an
invariant distribution ϕ0 on G, specifically, 1/|F | times the sum of δ-functions
on the regular conjugacy classes meeting F . We must describe how this varies
with t . Recall that the determinantal part τ(0) = (τ0, 0) of the twisting de-
fines an invariant metric h on g. We will now associate to the unit exp(t · V )

a one-parameter family of conjugation-invariant coordinate changes on the
group G. More precisely, this is a (formal) path in the complexified (formal)
group of automorphisms of the variety G/G; or, even more precisely, a formal
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1-parameter family of automorphisms of the representation ring RG ⊗ C. Be-
cause G/G = T/W , it suffices to describe this on the maximal torus T . In flat
coordinates exp(ξ), where ξ ∈ t, this is

ξ �→ ξ + t · ∇ [
chV (exp(ξ))

]
(4.2)

the gradient being computed with respect to the metric h on t.

Theorem 4.7. The trace form τ Tr : RG[[t]] �→ C[[t]] is integration against
the invariant distribution ϕt on GC, obtained from ϕ0, the distribution asso-
ciated to τ0 = (τ0, 0), by the formal family of coordinate changes (4.2) on
GC.

Remark 4.8. It is no more difficult to give the formula for more general expo-
nential morphisms V �→ �t (V ). We assume �t compatible with the splitting
principle, via restriction to the maximal torus: in other words, its value on any
line L is a formal power series in t , with coefficients Laurent polynomials in
L . Then, log �t extends by linearity to an additive map t ⊗ RT → RT [[t]],
and the required change of coordinates is ξ �→ ξ + log �t [∇chV ], the metric
being used to define the gradient. For instance, the symmetric power twisting
(3.4) arises from �t (L) = (1 − t L)−1; when G = S1, chV (u) = ∑

cnun ,
and we take level h for the determinantal part, we get the change of variable
u �→ u · ∏

(1 − tun)−ncn/h .

Proof. (Sketch) The 2D field theory structure of τKG(G) requires the trace
form to be the inverse of the bilinear form which is the image of 1 ∈ KG(G)

in τKG(G)⊗2, under the anti-diagonal morphism of spaces G → G × G (and
the diagonal inclusion of the acting groups). By localization to the maximal
torus T , it suffices to check the proposition for tori. (The Euler class of the
inclusion T ⊂ G is responsible for the factor �2). Now, the twisting τ en-
ters the computation of this direct image only via the holonomy representation
π1(T ) → GL1(RT [[t]]) it defines. Via the metric h, the determinantal twist-
ing τ0 assigns to any p ∈ π1(T ) a weight of T , which gives a unit in RT ,
and this defines the holonomy representation for τ0. The change of coordinates
(4.2) has the precise effect of converting this holonomy representation to the
one associated to τ .

Index formulas 4.9. In the simply connected case, the class [τ0] ∈ H3
G(G; Z)

determines a unique holomorphic line bundle over M (cf. §2.6), which we call
O(τ0). The simplest relation between the Verlinde algebras and indices of bun-
dles over M is that Ind (M; O(τ0 − σ)) is the partition function of the surface
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�, in the 2D topological field theory defined by VG(τ0 − σ). Recall (4.2) that
VG ⊗ C is isomorphic, as an algebra, to a direct sum of copies of C, supported
on the regular Weyl orbits in F . The traces of the associated projectors are the
structure constants θ f ( f ∈ F reg/W ) of the Frobenius algebra; their values
here are |�( f )|2 /|F |. The partition function of a genus g surface is the sum∑

θ
1−g
f , which leads to one version of the Verlinde formula

Ind (M; O(τ0 − σ)) =
∑

f ∈F reg/W

�( f )2−2g · |F |g−1. (4.3)

Remark 4.10. The downshift by σ stems from our use of the ∂̄-index; the
Dirac index would refer to O(τ0). However, there is no definition of the Dirac
index in the singular case, and even less for the stack M.

The generalization of (4.3) to higher twistings is one form of the main con-
jecture. Recall the index bundle α(V ) over M associated to a representation
V of G, and call θ f (t), f ∈ F reg/W , the structure constants of the Frobenius
algebra τK dim G

G (G) ⊗ C[[t]] over C[[t]].

Conjecture 4.11. Ind (M;O(τ0 − σ) ⊗ exp[tα(V )]) =∑
f ∈F reg/W θ f (t)1−g .

Remark 4.12. (i) Expansion in t allows the computation of indices of O(τ0 −
σ)⊗α(V )⊗n from (4.2). More general expressions in the index bundles α(V ),
for various V , are easily obtained by the use of several formal parameters. One
can also extend the discussion to include odd tautological generators §2.6.iii,
but we shall not do so here.
(ii) The change in θ f (t) is due both to the movement of the point f under the
flow, and to the change in the volume form, under the change of coordinates
(4.2).

Transgressed twistings and the product of commutators 4.13. Let us move
to a more sophisticated version of the conjecture, which incorporates the eval-
uation bundles, §2.6.i. We refer to [FHT1], §7 for more motivation, in connec-
tion to loop group representations. Recall the ‘product of commutators’ map
� : G2g → G. If we remove a disk � from �, this map is realized by the re-
striction to the boundary of flat connections on � \�, based at some boundary
point; the conjugation G-action forgets the base-point. The homotopy fibre of
� is the �G-bundle over G2g mentioned in §2.3; the actual fibre over 1 ∈ G
is the variety of based flat G-bundles on �, and its quotient by G-conjugation
is M .
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4.14. The twistings τ of interest to us are transgressed from G-equivariant
B2 BU [[t]]⊗ classes of a point. For determinantal twistings, we are looking
at the transgression from H4(BG) to H3

G(G); and, if G is simply connected,
all determinantal twistings are so transgressed. In general, transgression is the
integration along S1 of the B2 BU⊗ class on the universal flat G-bundle over
S1, which is pulled back by the classifying map of the bundle. The relevant
feature of a transgressed twisting τ is that its (equivariant) pull-back to G2g ,
via �, is trivialized by the transgression over � − �. This trivialization gives
an isomorphism

K ∗
G(G2g) ∼= �∗τ K ∗

G(G2g) (4.4)

which allows us to define a class τ 1 ∈ �∗τK 0
G(G2g) without ambiguity.

Recall from §2.3 that the homotopy fibre of � over 1 ∈ G, when viewed
G-equivariantly, is represented by the stack M. Thereon, we have two triv-
ializations of the equivariant twisting �∗τ : one lifted from the base {1},
and one coming from transgression over � \ �. The difference of the two
is an element of K 0(M)[[t]]⊗. For the twisting τ0, this is the line bundle
O(τ0); for admissible twistings, it will be a formal power series in t , with
admissible K -class coefficients. For transgressed twistings based on the ex-
ponential morphism (3.5), we obtain the exponential exp[tα(V )] of the index
bundle α(V ).

Conjecture 4.15. Ind (M;O(τ0−σ) ⊗ exp[tα(V )]) = τ T r (�!
τ 1) ∈ C[[t]].

Remark 4.16. Equality of the right-hand sides of the conjectured formulae in
§§4.11 and 4.15 is part of the definition of the 2D field theory (Frobenius al-
gebra) structure on τK dim G

G (G). The only check there is has been incorporated
into Theorem 4.7, which describes the trace map.

The last formulation has the advantage of allowing us to incorporate the
evaluation bundles §2.6.i. Let W be another representation of G, and call [W ]
the image class in τK dim G

G (G).

Amplification 4.17. Ind
(
M; O(τ0 − σ) ⊗ exp[tα(V )] ⊗ E∗

x W
) =

τ T r ([W ] · �!
τ 1).

5 The index formula by virtual localization

In this section, we explain how the most naı̈ve localization procedure, from G
to its maximal torus, gives rise to an index formula for admissible K -classes,
which agrees with Conjecture 4.17. There is an intriguing similarity here with
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localization methods used by Blau and Thomas [BT] in their path-integral cal-
culations. We emphasize, however, that, in twisted K -theory, the localization
formula from G to its maximal torus is completely rigorous, and can be applied
to the Gysin map �! of §4.13 to prove the equivalence of Conjectures 4.17 and
5.3 below. The role of the δ-functions which appear in this section is played, on
the K -theory side, by the skyscrapers of the sheaf τK dim G

G (G), when localized
over the conjugacy classes. For clarity of the formulas we shall confine the cal-
culation to SU (2)-bundles; no new issues appear for other simply connected
groups.

5.1. The maximal torus T of G = SU (2) is S1, with coordinate u, and the
moduli stack MT of holomorphic TC-bundles is J (�) × Z × BT , where
J (�) denotes the Jacobian variety J0 of degree 0 line bundles and BT de-
notes the classifying stack of TC

∼= C×. A vector bundle over BT is a T -
representation, and its index is the invariant subspace; the allowable repre-
sentations, for which the index is well-defined, are finite-multiplicity sums of
irreducibles. We have a natural isomorphism H1(J0; Z) ∼= H1(�; Z), and the
class ψ := Id ∈ H1(�) ⊗ H1(J0) is the mixed � × J0 part of the first Chern
class of the universal (Poincaré) bundle P. More precisely, denoting by ω the
volume class in H2(�), by η the restriction of c1(P) to J0 and by λ ∈ H2(BT )

the Chern class of the standard representation of T , we have, for the universal
bundle on J (�) × {d} × BT

c1(Pd) = η + d · ω + ψ + λ. (5.5)

Note that eω = 1+ω, while eψ = 1+ψ −η∧ω, whence we get for the Chern
character

ch(Pd) = (1 + ψ + d · ω − η ∧ ω) ∧ eη · u (5.6)

having identified the Chern character of the standard representation with its
character u.

5.2. The ‘virtual normal bundle’ ν for the morphism MT → M is the complex
R∗π∗(ad g/t)[1]. Since ad g/t ∼= P2 + P−2, a small calculation from (5.5)
gives, on the dth component

chP2
d = (1 + 2ψ + 2d · ω − 4η ∧ ω) · e2ηu2,

chP−2
d = (1 − 2ψ − 2d · ω − 4η ∧ ω) · e−2ηu−2 (5.7)
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and integrating over �, while remembering the shift by 1, gives

ch[νd ] = u2e2η · (g − 1 − 2d) + u−2e−2η · (g − 1 + 2d)

+ 4η ∧ (u2e2η + u−2e−2η)

ch[ν∗
d ] = u−2e−2η · (g − 1 − 2d) + u2e2η · (g − 1 + 2d)

− 4η ∧ (u2e2η + u−2e−2η). (5.8)

In the same vein, note that the Chern character of the basic line bundle D, the
determinant of cohomology det H1 ⊗ det−1 H0 of P + P−1, is

ch(D) = e(2−2d)η · u−2d . (5.9)

The following conjecture describes the naive localization formula for the in-
dex, from M to MT .

Conjecture 5.3. The index of an admissible class over M is one-half the index
of its restriction to MT , divided by the equivariant K -theory Euler class of the
conormal bundle ν∗.

Remark 5.4. (i) The index over MT is defined as integration over each Jd ,
summation over degrees d ∈ Z, and, finally, selection of the T -invariant part.
At the third step, we shall see that the character of the T -representation ob-
tained from the first two steps is a distribution over T , supported at the regular
points of F (see §4.2). Miraculously, this corrects the problem which makes
Conjecture 5.3 impossible at first sight: the equivariant Euler class of ν∗ is
singular at the singular conjugacy classes of G, so there is no well-defined in-
dex contribution over an individual component Jd . The sum over d acquires a
meaning by extending the resulting distribution by zero, on the singular conju-
gacy classes.
(ii) The ‘one-half’ corrects for the double-counting of components in MT ,
since opposite T -bundles induce isomorphic G-bundles. In general, we divide
by the order of the Weyl group.

5.5. We need the Chern character of the equivariant K -Euler class of (5.8). The
first two terms are sums of line bundles, and they contribute a multiplicative
factor of

(
1 − u2e2η

)g−1+2d (
1 − u−2e−2η

)g−1−2d

= (−1)g−1
(

ueη − u−1e−η
)2g−2 · (

ueη
)4d

. (5.10)
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Now the log of the Euler class is additive, and we have

4η · u2e2η = 4
d

dx

(
exη · u2e2η

)∣∣∣∣
x=0

(5.11)

whence the Chern character of the Euler class of the remaining term is the
exponential of

−4
d

dx

[
log

(
1 − exη · u2e2η

)
+ log

(
1 − exη · u−2e−2η

)] ∣∣∣
x=0

= 4
η · u2e2η

1 − u2e2η
+ 4

η · u−2e−2η

1 − u−2e−2η
= −4η

(5.12)

and we conclude that the Chern character of the K -theory Euler class of ν∗ is

(−1)g−1
(

ueη − u−1e−η
)2g−2 · (

ueη
)4d · e−4η. (5.13)

5.6. We can now write the index formula asserted by Conjecture 5.3. For an
admissible K -class of the form D⊗h ⊗E, where E is a polynomial in the classes
§2.6.i–iii, this is predicted to be the u-invariant part in the sum

1

2

∑
d∈Z

(−1)g−1 ·
∫

Jd

ch(E) · u−2(h+2)d · e−2(h+2)(d−1)η

(ueη − u−1e−η)2g−2
. (5.14)

Noting, from (5.6), that ch(E) has a linear d-term for each factor α(V ), it is
now clear, as was promised in Remark (5.4.i), that (5.14) sums, away from the
singular points u = ±1, to a finite linear combination of δ-functions and their
derivatives, supported at the roots of unity of order 2(h + 2). Integration over
the torus is somewhat simplified by the formal change of variables u �→ ueη,
and the identification (u − u−1)2 = − |�(u)|2 in terms of the Weyl denomina-
tor leads to our definitive answer

Ind(M; D⊗h ⊗ E) = 1

4π i

∮ [∑
d∈Z

u2(h+2)d

|�(u)|2g−2
·
∫

Jd

ch(E) · e2(h+2)η

]
du

u

(5.15)

where the distribution in brackets is declared to be null at u = ±1.
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Example 1: Evaluation bundles 5.7. Let E be an evaluation bundle (2.6.i),
E = E∗

x V . Then∫
Jd

ch(E) · e−2(h+2)ζ = (2h + 4)g · chV (u), (5.16)

∑
d∈Z

u2(h+2)d = 1

2h + 4

∑
ζ 2h+4=1

δζ (u) (5.17)

and the index formula (5.15) reduces to the Verlinde formula for an evaluation
bundle

Ind(M; D⊗h ⊗ E∗
x V ) =

∑
ζ 2h+4=1
�ζ>0

(2h + 4)g−1

|�(ζ)|2g−2
· chV (ζ ). (5.18)

Example 2: Exponentials of index bundles 5.8. Let V be any representa-
tion of G, with character a Laurent polynomial f (u) = ∑

fnun . We define
ḟ (u) := ∑

n · fnun , f̈ (u) := ∑
n2 · fnun . For the index bundle α(V ), we

have

ch α(V ) = ch(R∗π∗V ) − (g − 1) · ch(E∗
x V ) = d · ḟ (ueη) − η · f̈ (ueη).

(5.19)

We compute the integral over Jd for insertion in (5.15) (after changing vari-
ables u �→ ueη)∫

Jd

exp
[
td · ḟ (u)

] · exp
[− (

2h + 4 + t f̈ (u)
)
η
]

= (
2h + 4 + t f̈ (u)

)g · exp
[
td · ḟ (u)

]
(5.20)

whereupon the sum in (5.15) becomes again a sum of δ-functions

∑
d∈Z

[
u · exp

(
t ḟ (u)

2h + 4

)](2h+4)d

=
∑

ζ 2h+4=1

δζ

(
u · exp

(
t ḟ (u)/(2h + 4)

))

(5.21)

The index formula becomes now a sum over the solutions ζt , with positive
imaginary part, of ζ 2h+4

t · exp
(
t ḟ (ζt )

) = 1:

Ind
(
M; D⊗h ⊗ exp [tα(V )]

)
=

∑
ζt

[
2h + 4 + t f̈ (ζt )

|�(ζt )|2
]g−1

. (5.22)

One power of the numerator was swallowed up by the change of variables in
the δ-function. This has precisely the form predicted by Conjecture 4.11; note
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that the numerator differs from (5.18) by the volume scaling factor in the co-
ordinate change

u �→ ut := u · exp
(
t ḟ (u)/(2h + 4)

)
.
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Cohomology of the stable mapping
class group

MICHAEL S. WEISS
University of Aberdeen

Abstract

The stable mapping class group is the group of isotopy classes of auto-
morphisms of a connected oriented surface of ‘large’ genus. The Mumford
conjecture postulates that its rational cohomology is a polynomial ring gener-
ated by certain classes κi of dimension 2i , for i > 0. Tillmann’s insight [38]
that the plus construction makes the classifying space of the stable mapping
class group into an infinite loop space led to a stable homotopy theory ver-
sion of Mumford’s conjecture, stronger than the original [25]. This stronger
form of the conjecture was recently proved by Ib Madsen and myself [26].
I will describe some of the ideas which led to the proof, and some retrospec-
tive thoughts, rather than trying to condense large portions of [26].

1 The stable mapping class group and stable homotopy theory

Let Fg,b be a connected, compact, oriented smooth surface of genus g with b
boundary circles (and no ‘punctures’). The topological group of smooth orien-
tation preserving automorphisms of Fg,b which restrict to the identity on ∂ Fg,b

will be denoted by Diff(Fg,b; ∂). The mapping class group of Fg,b is

�g,b = π0Diff(Fg,b; ∂) .

A fundamental result of Earle, Eells and Schatz [8][9] states that the discrete
group �g,b is homotopy equivalent to Diff(Fg,b; ∂) in most cases. More
precisely:

Theorem 1.1. If g > 1 or b > 0, then the identity component of Diff(Fg,b; ∂)

is contractible.

It is often convenient to assume that each boundary circle of Fg,b comes
equipped with a diffeomorphism to the standard circle S1. Where this is

379
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orientation preserving, the boundary circle is considered to be outgoing, other-
wise incoming. It is customary to write

b1 + b2

instead of b, to indicate that there are b1 incoming and b2 outgoing boundary
circles. A particularly important case is Fg,1+1. By gluing outgoing to incom-
ing boundary circles, we obtain homomorphisms

�g,1+1 × �h,1+1 −→ �g+h,1+1 . (1.1)

They determine a multiplication on the disjoint union of the classifying
spaces B�g,1+1 for g ≥ 0, so that the group completion

�B
( ∐

g

B�g,1+1
)

is defined. As is often the case, the group completion process can be replaced
by a plus construction [1]. Namely, taking h = 1 in display (1.1) and using only
the neutral element of �h,1+1 leads to stabilization homomorphisms �g,1+1 →
�g+1,1+1. We write �∞,1+1 = colimg �g,1+1. This is the stable mapping class
group of the title. It is a perfect group; in fact �g,b is perfect for g ≥ 3. Let
B�+∞ be the result of a plus construction on B�∞,1+1.

Proposition 1.2. �B
(∐

g B�g,1+1

)
� Z × B�+∞.

The proof uses the group completion theorem, see [1], which concerns the
effect of a group completion on homology. As the referee pointed out to me, the
verification of the hypotheses in the group completion theorem is not a trivial
matter in the present case. It relies on the homological stability theorem of
Harer [17] which we state next, with the improvements due to Ivanov [20][21].

Theorem 1.3. Let S be an oriented surface, S = S1 ∪ S2 where S1 ∩ S2 is
a union of finitely many smooth circles in the interior of S. If S1 ∼= Fg,b

and S ∼= Fh,c, then the inclusion-induced homomorphism H∗(B�g,b; Z) →
H∗(B�h,c; Z) is an isomorphism for ∗ < g/2 − 1.

The homological stability theorem is a very deep theorem with impressive
applications, some of them much more surprising than proposition 1.2. A par-
ticularly surprising application is Tillmann’s theorem [38]:

Theorem 1.4. Z × B�+∞ is an infinite loop space.

Theorems 1.1 and 1.3 imply that the cohomology of B�+∞ is a receptacle for
characteristic classes of surface bundles, with fibers of ‘large’ genus. Following
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Mumford, Miller and Morita we now use this point of view to construct ele-
ments in the cohomology of B�+∞.

With the hypotheses of theorem 1.1, let E → B be any Fg,b–bundle with
oriented fibers and trivialized boundary bundle ∂ E → B, that is, each fiber
of ∂ E → B is identified with a disjoint union of b standard circles. The ver-
tical tangent bundle TB E of E is a two-dimensional oriented vector bundle,
trivialized near ∂ E , with Euler class e = e(TB E) ∈ H2(E, ∂ E; Z). Let

κi ∈ H2i (B; Z)

be the image of ei+1 ∈ H2i+2(E, ∂ E; Z) under the Gysin transfer map, also
known as integration along the fibers

H2i+2(E, ∂ E; Z) −→ H2i (B; Z) . (1.2)

The κi are, up to a sign, Mumford’s characteristic classes [31] in the descrip-
tion of Miller [27] and Morita [28][29]. By theorem 1.1, the universal choice
of B is B�g,b and we may therefore regard the κi as classes in the cohomol-
ogy of B�g,b. For i > 0, they are compatible with respect to homomorphisms
�g,b → �h,c of the type considered in theorem 1.3 and we may therefore write

κi ∈ H2i (B�∞,1+1; Z) .

1.5. Mumford’s conjecture [31] (now a theorem)

H∗(B�∞,1+1; Q) = Q[κ1, κ2, . . . ]

i.e., the classes κi ∈ H2i (B�∞,1+1; Q) are algebraically independent and
generate H∗(B�∞,1+1; Q) as a Q-algebra.

The algebraic independence part was very soon established by Miller [27]
and Morita [28][29]. About fifteen years later, after Tillmann had proved
theorem 1.4, it was noticed by Madsen and Tillmann [25] that the Miller–
Morita construction of the Mumford classes κi provides an important clue as
to ‘which’ infinite loop space Z × B�+∞ might be. Assume for simplicity that
b = 0 in the above and that B is finite-dimensional. A choice of a fiberwise
smooth embedding E → B × R2+n over B, with n 
 0, leads to a Thom–
Pontryagin collapse map of Thom spaces

Th (B × R2+n) −→ Th (T ⊥
B E) (1.3)

where T ⊥
B E is the fiberwise normal bundle of E in B × R2+n . It is well

known that (1.3) induces the Gysin transfer (1.2), modulo the appropriate
Thom isomorphisms. Let now Gr2(R

2+n) be the Grassmannian of oriented 2-
planes in R2+n and let Ln , L⊥

n be the canonical vector bundles of dimension 2
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and n on Gr2(R
2+n), respectively. Composing (1.3) with the tautological map

Th (T ⊥
B E) → Th (L⊥

n ) gives Th (B × R2+n) −→ Th (L⊥
n ) and hence by ad-

junction B → �2+nTh (L⊥
n ), and finally in the limit

B −→ �2+∞Th (L⊥
∞) (1.4)

where �2+∞Th (L⊥∞) = colimn �2+nTh (L⊥
n ). At this stage we can also allow

an infinite-dimensional B, in particular B = B�g with the universal Fg-bundle.
The case B�g,b can be dealt with by using a homomorphism �g,b → �g of
the type considered in theorem 1.3. In this way, (1.4) leads to a map

α∞ : Z × B�+
∞ −→ �2+∞Th (L⊥

∞). (1.5)

It is easy to recover the MMM characteristic classes κi by applying (1.5) to
certain classes κ̄i in the cohomology of �2+∞Th (L⊥∞). Namely, choose n 
 i
and let κ̄i be the image of (e(Ln))i+1 under the composition

H2i+2(Gr2(R
2+n); Z)

u−−−−→ H2i+2+n(Th (L⊥
n ); Z)

�2+n

−−−−→ H2i (�2+nTh (L⊥
n ); Z)

where u is the Thom isomorphism. Since n 
 i , we have

H2i (�2+nTh (L⊥
n ); Z) ∼= H2i (�2+∞Th (L⊥∞); Z).

1.6. Madsen’s integral Mumford conjecture [25], now a theorem: The map
α∞ is a homotopy equivalence.

Tillmann and Madsen noted in [25] that this would imply statement 1.5.
They showed that α∞ is a map of infinite loop spaces, with the �∞ structure
on Z× B�+∞ from theorem 1.4, and used this fact to prove a p-local refinement
of the Miller–Morita result on the rational independence of the classes κi , for
any prime p. In the meantime Galatius [11] made a very elegant calculation of
H∗(�2+∞Th (L⊥∞); Z/p).

2 Submersion theory and the first desingularization procedure

Let X be any smooth manifold. By Thom–Pontryagin theory, homotopy
classes of maps X → �2+∞Th (L⊥∞) are in bijective correspondence with
bordism classes of triples (M, q, q̂) where M is smooth, q : M → X is proper,
and

q̂ : T M × Rn → q∗T X × Rn
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is a vector bundle surjection with a 2-dimensional oriented kernel bundle,
for some n. (The correspondence is obtained by making pointed maps from
Th (X × Rn) to Th (L⊥

n ) transverse to the zero section of L⊥
n ; the inverse im-

age of the zero section is a smooth M equipped with data q and q̂ as above.)
The triples (M, q, q̂) are best memorized as commutative squares

T M × Rn q̂−−−−→ T X × Rn� �
M

q−−−−→ X

(2.1)

with q̂ written in adjoint form.
In particular, any bundle of closed oriented surfaces q : M → X determines

a triple (M, q, q̂) with q̂ equal to the differential of q, hence a homotopy class
of maps from X to �2+∞Th (L⊥∞). This is the fundamental idea behind (1.5).
From this angle, statement 1.6 is a ‘desingularization’ statement. More pre-
cisely, it is equivalent to the following:

For fixed i and sufficiently large g, every oriented i-dimensional bordism class
of the degree g component of �2+∞Th (L⊥∞) can be represented by an Fg-
bundle on a closed smooth oriented i-manifold; such a representative is unique
up to an oriented bordism of Fg-bundles.

The translation uses theorem 1.3 and the fact that a map between simply
connected spaces is a homotopy equivalence if and only if it induces an iso-
morphism in the generalized homology theory ‘oriented bordism’.

Let (M, q, q̂) be a triple as above, so that q : M → X is a proper smooth
map and q̂ : T M → q∗T X is a stable vector bundle surjection with 2-
dimensional oriented kernel. If q̂ happens to agree with the differential dq
of q, then q is a proper submersion, hence a surface bundle by Ehresmann’s
fibration theorem [4]. In general it is not possible to arrange this by deform-
ing the pair (q, q̂). One must settle for less. The approach taken in [26] is as
follows.

Suppose for simplicity that X is closed. Let E = M×R and let πE : E → X
be the composition E → M → X . By obstruction theory, q̂ deforms to an
honest surjection

π̂E : T E −→ π∗
E T X

of vector bundles on E , with kernel of the form V × R, where V is a
2-dimensional oriented vector bundle on E . Writing π̂E in adjoint form, we can
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describe the situation by a commutative square

T E
π̂E−−−−→ T X� �

E −−−−→ X.

(2.2)

By submersion theory [32], which is applicable here because E is an open
manifold, the pair (πE , π̂E ) deforms to a pair (π, π̂) where π : E → X is a
smooth submersion with differential dπ = π̂ . See also section 3 below. The
kernel of dπ : T E → π∗T X is still of the form V × R with 2-dimensional
oriented V . In addition, we have a proper map f : E → R, the projection.

The ‘first desingularization’ procedure (M, q, q̂) � (E, π, f ) is an impor-
tant conceptual step. If we forget or ignore the product structure E ∼= M × R,
we can still recover (M, q, q̂) from (E, π, f ) up to bordism by forming
(N , π |N , dπ | . . . ), where N = f −1(c) for a regular value c of f . Let us
now see how this reverse procedure reconstitutes the singularities.

Lemma 2.1. For z ∈ N with π(z) = x, the following are equivalent:

• π |N is nonsingular at z;
• f |Ex is nonsingular at z, where Ex = π−1(x).

The following are also equivalent:

• π |N has a fold singularity at z;
• f |Ex has a Morse singularity at z.

Proof. Let T, V and H be the (total spaces of the) tangent bundle of E , the
vertical subbundle (kernel of dπ ) and the horizontal quotient bundle, respec-
tively, so that H = T/V . Let K be the tangent bundle of N . We are assuming
that d f : Tz → R is onto, since f (z) = c is a regular value. Hence d f |Vz

is nonzero if and only if Kz is transverse to Vz in Tz , which means that the
projection Kz → Hz is onto. This proves the first equivalence.

Suppose now that d f |Vz is zero. By definition, π |N has a fold singularity
at z if the differential Kz → Hz has corank 1 and the ‘second derivative’ of
π |N , as a well-defined symmetric bilinear map Q from ker(Kz → Hz) to
coker(Kz → Hz), is nondegenerate. In our situation, ker(Kz → Hz) = Vz

and coker(Kz → Hz) is canonically identified, via dπ , with Tz/Kz and hence
via d f with R. Using local coordinates near z, it is not difficult to see that the
second derivative of f |Ex at z, regarded as a well-defined symmetric bilinear
map from Vz to R, is equal to −Q. Hence z is a nondegenerate critical point
for f |Ex if and only if π |N has a fold singularity at z.
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These ideas also steer us away from a bordism theoretic approach and to-
wards a description of �2+∞Th (L⊥∞) in terms of ‘families’ of 3-manifolds.

Proposition 2.2. The space �2+∞Th (L⊥∞) is a classifying space for
‘families’ of oriented 3-manifolds without boundary, equipped with a proper
smooth map to R and an everywhere nonzero 1-form.

To be more precise, the families in question are parametrized by a smooth
manifold without boundary, say X . They are smooth submersions π : E → X
with oriented 3-dimensional fibers. The additional data are: a smooth f : E →
R such that (π, f ) : E → X ×R is proper, and a vector bundle surjection from
ker(dπ), the vertical tangent bundle of E , to a trivial line bundle on E .

Two such families on X are concordant if their disjoint union, regarded as
a family on X × {0, 1}, extends to a family of the same type on X × R. The
content of proposition 2.2 is that the set of concordance classes is in natural
bijection with the set of homotopy classes of maps from X to �2+∞Th (L⊥∞).
Note that both sets depend contravariantly on X .

Remark 2.3. When using proposition 2.2, beware that most smooth submer-
sions are not bundles. For example, the inclusion of R � {0} in R and the first
coordinate projection from R2 � {0} to R are smooth submersions. Proposi-
tion 2.2 is therefore still rather far from being a description of �2+∞Th (L⊥∞)

in terms of manifold bundles. But it is a start, and we will complement in the
following sections with methods for improving submersions to bundles or de-
composing submersions into bundles.

Remark 2.4. There exists another formulation of proposition 2.2 in which all
3-manifolds in sight have a prescribed boundary equal to {0, 1} × R × S1.
This is more suitable where concatenation as in (1.1) matters. But since the
equivalence of the two formulations is easy to prove, there is much to be said
for working with boundariless manifolds until the concatenation issues need to
be addressed.

3 More h-principles and the second desingularization procedure

Let M, N be smooth manifolds without boundary, z ∈ M . A k-jet from M to
N at z is an equivalence class of smooth maps f : M → N , where two such
maps are considered equivalent if they agree to kth order at z. Let J k(M, N )z

be the set of equivalence classes and let

J k(M, N ) =
⋃

z

J k(M, N )z .
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This has the structure of a differentiable manifold. The projection
J k(M, N ) → M is a smooth bundle. Every smooth function f : M → N
determines a smooth section j k f of the jet bundle J k(M, N ) → M , the k-jet
prolongation of f . The value of j k f at z ∈ M is the k-jet of f at z.

A smooth section of J k(M, N ) → M is integrable or holonomic if it
has the form j k f for some smooth f : M → N . Most smooth sections of
J k(M, N ) → M are not integrable. Nevertheless there exists a highly devel-
oped culture of integrability theorems up to homotopy, so-called h-principles
[14], [10]. Such a theorem typically begins with the description of an open sub-
bundle A → M of J k(M, N ) → M , and states that the inclusion of the space
of integrable sections of A → M into the space of all sections of A → M is
a homotopy equivalence. (For us the cases where k = 1 or k = 2 are the most
important.)

The relevance of these notions to the Mumford–Madsen project is clear if
we adopt the bordism-free point of view developed in section 2. Consider a
single oriented smooth 3-manifold E with a proper smooth f : E → R and
an everywhere nonvanishing 1-form, as in proposition 2.2. The map f and the
1-form together define a section of the jet bundle J 1(E, R). If this is integrable,
then f is a proper submersion. Hence f : E → R is a bundle of oriented
surfaces, again by Ehresmann’s fibration theorem. The argument goes through
in a parametrized setting: a family as in 2.2, parametrized by X , is a surface
bundle on X × R provided it satisfies the additional condition of integrability.
From this point of view, statement 1.6 is roughly an h-principle ‘up to group
completion’. (It is unusual in that the source manifolds are allowed to vary.)

Examples 3.1 and 3.2 below are established h-principles. The h-principle
of theorem 3.4 is closely related to a special case of 3.2 and at the same time
rather similar to statement 1.6.

Example 3.1. An element in J 1(M, N ) can be regarded as a triple (x, y, g)

where (x, y) ∈ M × N and g is a linear map from the tangent space of M at
x to the tangent space of N at y. Let U1 ⊂ J 1(M, N ) consist of the triples
(x, y, g) where g is injective and let U2 ⊂ J 1(M, N ) consist of the triples
(x, y, g) where g is surjective. Let �(U1), �(U2) be the section spaces of the
bundles U1 → M and U2 → M , respectively. Let �itg be the space of inte-
grable (alias holonomic) sections of J 1(M, N ) → M . Note that �itg∩�(U1) is
identified with the space of smooth immersions from M to N , and �itg ∩�(U2)

is identified with the space of smooth submersions from M to N . One of the
main results of immersion theory [36], [18] is the statement that the inclusion

�itg ∩ �(U1) −→ �(U1)
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is a homotopy equivalence if dim(M) < dim(N ). The main result of submer-
sion theory [32] is that the inclusion

�itg ∩ �(U2) −→ �(U2)

is a homotopy equivalence if M is an open manifold. Gromov’s 1969 the-
sis, outlined in [15], develops a general method for proving these and related
h-principles using sheaf-theoretic arguments. This has become the standard.
Much of it is reproduced in [14, §2.2]. See also [16] and [10].

Example 3.2. Fix positive integers m, n, k. Let A be a closed semialgebraic
subset [3] of the vector space J k(Rm, Rn). Suppose that A is invariant under
the right action of the group of diffeomorphisms Rm → Rm , and of codimen-
sion ≥ m + 2 in J k(Rm, Rn). Fix a smooth m-manifold M and let A(M) ⊂
J k(M, Rn) consist of the jets which, in local coordinates about their source,
belong to A. Let � be the space of smooth sections of J k(M, Rn) → M , let
�itg ⊂ � consist of the integrable sections, and let �¬A ⊂ � consist of the
sections which avoid A(M). Note that �itg ∩ �¬A is identified with the space
of smooth maps from M to Rn having no singularities of type A. Vassiliev’s
h-principle [40, Thm 0.A], [39, III,1.1] states among other things that the
inclusion

�itg ∩ �¬A −→ �¬A

induces an isomorphism in integral cohomology. (There is also a relative ver-
sion in which M is compact with boundary.) If the codimension of A is at least
m + 3, then both �itg ∩ �¬A and �¬A are simply connected; it follows that in
this case the inclusion map is a homotopy equivalence.

Vassiliev’s proof of this h-principle is meticulously and admirably orga-
nized, but still not easy to read. As far as I can see, it is totally different from
anything described in [14] or [10]. An overview is given in Appendix.

In theorem 3.4 below, we will need an analogue of proposition 2.2. Let
GrW(R3+n) be the space of 3-dimensional oriented linear subspaces V ⊂
R3+n equipped with a certain type of map q+� : V → R. Here q is a quadratic
form, � is a linear form, and we require that q be nondegenerate if � = 0.
Denote by

UW,n , U⊥
W,n

the tautological 3-dimensional vector bundle on GrW(R3+n) and its n-
dimensional complement, respectively, so that UW,n ⊕U⊥

W,n is a trivial vector
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bundle with fiber R3+n . Let

�2+∞Th (U⊥
W,∞) = colimn �2+nTh (U⊥

W,n) .

Proposition 3.3. The space �2+∞Th (U⊥
W,∞) is a classifying space for

‘families’ of oriented smooth 3-manifolds Ex without boundary, equipped with
a section of J 2(Ex , R) → Ex whose values are all of Morse type, and whose
underlying map fx : Ex → R is proper.

Some details: An element of J 2(Ex , R) is, in local coordinates about its source
z ∈ Ex , uniquely represented by a function of the form q + � + c : R3 → R

where q is a quadratic form, � is a linear form and c is a constant. It is of Morse
type if either � �= 0 or q is nondegenerate.

The families in question are smooth submersions π : E → X where each
fiber Ex is a 3-manifold with the structure and properties described in propo-
sition 3.3. The content of proposition 3.3 is that the set of concordance classes
of such families on X is in natural bijection with the set of homotopy classes of
maps from X to �2+∞Th (U⊥∞). The proof mainly uses the Thom-Pontryagin
construction and submersion theory, just like the proof of proposition 2.2
sketched in section 2.

Theorem 3.4. The space �2+∞Th (U⊥
W,∞) is also a classifying space for

‘families’ of oriented smooth 3-manifolds without boundary, equipped with a
proper smooth Morse function.

Clearly the simultaneous validity of theorem 3.4 and proposition 3.3 im-
plies something like an h-principle for proper Morse functions on oriented
3-manifolds without boundary – the ‘second desingularization procedure’
which appears in the title of this section. (It can be applied to a family of
3-manifolds Ex as in proposition 2.2; the smooth function fx and the 1-form
together form a section of J 1(Ex , R) → Ex , which can also be regarded as a
section of J 2(Ex , R) → Ex after a choice of riemannian metric on Ex .) But
it must be emphasized that variability of the 3-manifolds is firmly built in. No
claim is made for the space of proper Morse functions on a single oriented
3-manifolds without boundary.

Here is an indication of how theorem 3.4 can be deduced from Vassiliev’s
h-principle (example 3.2) and proposition 3.3. It is not hard to show that the
concordance classification of the ‘families’ under consideration remains un-
changed if we impose the Morse condition only at level 0. This means that in
theorem 3.4 we may allow families of oriented smooth 3-manifolds Ex with-
out boundary, equipped with a proper smooth function Ex → R whose critical
points are nondegenerate if the critical value is 0. In proposition 3.3 we may
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allow families of oriented 3-manifolds Ex without boundary, equipped with
a section f̂x of J 2(Ex , R) → Ex whose values are of Morse type whenever
their constant term is zero, and whose underlying map fx : Ex → R is proper.
Thus the elements of J 2(Ex , R) to be avoided are those which, in local coor-
dinates about their source, are represented by polynomial functions R3 → R

of degree at most two which have constant term 0, linear term 0 and degener-
ate quadratic term. These polynomial functions form a subset A of J 2(R3, R)

which satisfies the conditions listed in 3.2; in particular, its codimension is
3 + 2. Unfortunately Ex is typically noncompact, and depends on x . Never-
theless, with an elaborate justification one can use Vassiliev’s h-principle here,
mainly on the grounds that the ‘integration up to homotopy’ of a section

f̂x : Ex → J (Ex , R)

satisfying the above conditions is easy to achieve outside the compact subset
f −1
x (0) of Ex . This leads to a statement saying that two abstractly defined clas-

sifying spaces, corresponding to the two types of “families” being compared,
are homology equivalent. Since the two classifying spaces come with a group-
like addition law, corresponding to the disjoint union of families, the homology
equivalence is a homotopy equivalence.

In the next statement, a variation on proposition 3.3, we identify Gr2(R
2+n)

with the closed subspace of GrW(R3+n) consisting of the oriented 3-
dimensional linear subspaces V ⊂ R3+n which contain the ‘first’ factor
R ∼= {(t, 0, 0, 0, . . . )}, with q + � : V → R equal to the corresponding projec-
tion. The restriction of U⊥

n to Gr2(R
2+n) is identified with L⊥

n . This leads to a
cofibration

Th (L⊥
n ) −→ Th (U⊥

n ).

In this way �2+n(Th (U⊥
n )/Th (L⊥

n )) acquires a meaning.
For a smooth Ex and a section of J 2(Ex , R) → Ex , let the formal singular-

ity set consist of the elements in Ex where the associated 2-jet is singular.

Proposition 3.5. The space �2+∞(Th (U⊥∞)/Th (L⊥∞)) is a classifying space
for ‘families’ of oriented smooth 3-manifolds Ex without boundary, equipped
with a section of J 2(Ex , R) → Ex whose values are all of Morse type, and
whose underlying map fx : Ex → R is proper on the formal singularity set.

The proof is similar to the proofs of propositions 2.2 and 3.3.

Theorem 3.6. The space �2+∞(Th (U⊥∞)/Th (L⊥∞)) is also a classifying
space for ‘families’ of oriented smooth 3-manifolds without boundary,
equipped with a smooth Morse function which is proper on the singularity
set.
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Again, the simultaneous validity of theorem 3.6 and proposition 3.5 implies
something like an h-principle for Morse functions which are proper on their
singularity set, and defined on oriented 3-manifolds without boundary. But this
is much easier than the h-principle implicit in theorem 3.4.

Namely, let π : E → X with f : E → R be a family of the type described
in theorem 3.6. Thus π is a smooth submersion, f |Ex is Morse for each x ∈ X
and (π, f ) : E → X × R is proper on �, where � ⊂ E is the union of the
singularity sets of all f |Ex . The stability of Morse singularities implies that
� is a codimension 3 smooth submanifold of E , transverse to each fiber Ex

of π . Hence π |� is an étale map from � to X , that is, a codimension zero
immersion. Choose a normal bundle N of � in E , in such a way that each
fiber of N → � is contained in a fiber of π . It is easy to show that the family
given by π and f is concordant to the family given by π |N and f |N . This fact
leads to a very neat concordance classification for such families, and so leads
directly to theorem 3.6.

4 Strategic thoughts

For each k ≥ 0, the functor �k+∞ converts homotopy cofiber sequences of
spectra into homotopy fiber sequences of infinite loop spaces. Applied to our
situation, this gives a homotopy fiber sequence

�2+∞Th (L⊥
∞) −→ �2+∞Th (U⊥

∞) −→ �2+∞(Th (U⊥
∞)/Th (L⊥

∞))

leading to a long exact sequence of homotopy groups for the three spaces.
Combining this with the main results of the previous section, we obtain a ho-
motopy fiber sequence

�2+∞Th (L⊥
∞) −→ |W| ↪→ |Wloc| (4.1)

where |W| and |Wloc| classify (up to concordance) certain families of oriented
smooth 3-manifolds without boundary, equipped with Morse functions. In the
case of |W|, we insist on proper Morse functions; in the case of |Wloc|, Morse
functions whose restriction to the singularity set is proper. The details are as
in theorems 3.4 and 3.6. The spaces |W| and |Wloc| can, incidentally, be con-
structed directly in terms of the contravariant functors W and Wloc which to a
smooth X associate the appropriate set of ‘families’ parametrized by X .

There is an entirely different approach to |W| and |Wloc|, which eventually
leads to a homotopy fiber sequence

Z × B�+
∞ −→ |W| ↪→ |Wloc| (4.2)
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and so, in combination with (4.1), to a proof of (1.6). In this approach, |W| and
|Wloc| are seen as stratified spaces. The reasons for taking such a point of view
are as follows.

Let a family of 3-manifolds Ex and proper Morse functions fx : Ex → R as
in theorem 3.4 be given, where x ∈ X . For x ∈ X let Sx be the finite set of criti-
cal points of fx with critical value 0. It comes with a map Sx → {0, 1, 2, 3}, the
Morse index map. We therefore obtain a partition of the parameter manifold X
into locally closed subsets X〈S〉, indexed by the isomorphism classes of finite
sets S over {0, 1, 2, 3}. Namely, X〈S〉 consists of the x ∈ X with Sx ∼= S. If
the family is sufficiently generic, the partition is a stratification (definition 5.1
below) and X〈S〉 is a smooth submanifold of X , of codimension |S|. At the
other extreme we have the case where X〈S〉 = X for some 〈S〉; then the family
is pure of class 〈S〉.

A careful elaboration of these matters results in a stratified model of |W|,
with strata |W〈S〉| indexed by the isomorphism classes 〈S〉 of finite sets over
{0, 1, 2, 3}, where |W〈S〉| classifies families (as above) which are pure of class
〈S〉. There is a compatibly stratified model of |Wloc|. It turns out, and it is not
all that hard to understand, that the strata |W〈S〉| and |Wloc,〈S〉| are also classi-
fying spaces for certain genuine bundle types. More importantly, the homotopy
fibers of the forgetful map |W〈S〉| → |Wloc,〈S〉| are classifying spaces for bun-
dles of compact oriented smooth surfaces with a prescribed boundary which
depends on the reference point in |Wloc,〈S〉|. It is this information, coupled
with the Harer stability result, which then leads to a description of the homo-
topy fiber of |W| → |W|loc in bundle-theoretic terms, i.e., to the homotopy
fiber sequence (4.2).

5 Stratified spaces and homotopy colimit decompositions

This section is about a general method for extracting homotopy theoretic
information from a stratification. In retrospective, the homotopy fiber se-
quence (4.2) can be regarded as an application of that general method.

Definition 5.1. A stratification of a space X is a locally finite partition of X
into locally closed subsets, the strata, such that the closure of each stratum in
X is a union of strata.

Example 5.2. Let Y be a nonempty Hausdorff space, S a finite set and X =
Y S . Then X is canonically stratified, with one stratum Xη for each equivalence
relation η on S. Namely, u ∈ X belongs to the stratum Xη if sηt ⇔ (us = ut )

for (s, t) ∈ S × S. The closure of Xη is the union of all Xω with ω ⊃ η.
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Example 5.3. Let X be the space of Fredholm operators H → H of index 0,
where H is a separable Hilbert space. See e.g. [2]. Then X is stratified, with
one stratum Xn for each integer n ≥ 0. Namely, Xn consists of the Fredholm
operators f having dim(ker( f )) = dim(coker( f )) = n. Here the closure of
Xn is the union of all Xm with m ≥ n.

Definition 5.4. Let X be a stratified space. The set of strata of X becomes
a poset, with Xi ≤ X j if and only if the closure of Xi in X contains X j .
(Warning: This is the opposite of the obvious ordering.)

The main theme of this section is that stratifications often lead to homotopy
colimit decompositions. I am therefore obliged to explain what a homotopy
colimit is. Let C be a small category and let

F : C → Spaces

be a functor. The colimit of F is the quotient of the disjoint union
∐

c F(c)
obtained by identifying x ∈ F(c) with g∗(x) ∈ F(d), for any morphism
g : c → d in C and x ∈ F(c). In general, the homotopy type of colim F is
somewhat unpredictable. As a protection against that one may impose a con-
dition on F .

Definition 5.5. A functor F : C → Spaces is cofibrant if, given functors G, G ′

from C to spaces and natural transformations

F
u−−−−→ G

e←−−−− G ′

where e : G ′(c) → G(c) is a homotopy equivalence for all c in C, there exists
a natural transformation u′ : F → G ′ and a natural homotopy h from eu′ to u.

If F, G : C → Spaces are both cofibrant and u : F → G is a natural trans-
formation such that u : F(c) → G(c) is a homotopy equivalence for each c in
C, then the induced map colim F → colim G is a homotopy equivalence. This
follows immediately from definition 5.5. In this sense, colimits are well be-
haved on cofibrant functors. With standard resolution techniques, one can show
that an arbitrary F from C to spaces admits a cofibrant resolution; i.e., there
exist a cofibrant F ′ from C to spaces and a natural transformation F ′ → F
such that F ′(c) → F(c) is a homotopy equivalence for every c.

Definition 5.6. For F : C → Spaces with a cofibrant resolution F ′ → F , the
homotopy colimit of F is the colimit of F ′.
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Definition 5.6 is unambiguous in the following sense: if F ′ → F and
F ′′ → F are two cofibrant resolutions, then F ′ and F ′′ can be related by
natural transformations v : F ′ → F ′′ and w : F ′′ → F ′ such that vw and
wv are naturally homotopic to the appropriate identity transformations. Hence
colim F ′ � colim F ′′. Of course, there is always a standard choice of a cofi-
brant resolution F ′ → F , and this depends naturally on F . With the standard
choice, the following holds:

Proposition 5.7. The homotopy colimit of F is naturally homeomorphic to the
classifying space of the transport category C∫F of F. This has object space∐

c F(c) and morphism space∐
c,d

F(c) × morC(c, d)

so that a morphism from x ∈ F(c) to y ∈ F(d) is an element g ∈ morC(c, d)

for which g∗(x) = y.

In particular, if F(c) is a singleton for every c in C, then the transport cate-
gory determined by F is identified with C itself, and so the homotopy colimit
of F is identified with the classifying space of C.

Another special case worth mentioning, because it is well known, is the
Borel construction. Let Y be a space with an action of a group G. The group is
a category with one object, and the group action determines a functor from that
category to spaces. In this case the homotopy colimit is the Borel construction
alias homotopy orbit space, EG ×G Y .

In [34], where Segal introduced classifying spaces of arbitrary (topologi-
cal) categories, homotopy colimits also made their first appearance, namely as
classifying spaces of transport categories. The derived functor approach in def-
inition 5.6 was developed more thoroughly in [5], now the standard reference
for homotopy colimits and homotopy limits, and later in [7].

Our theme is that most stratifications lead to homotopy colimit decompo-
sitions. Let us first note that many homotopy colimits are stratified. Compare
[35].

Example 5.8. Let C be a small EI-category (all Endomorphisms in C are
Isomorphisms). For each isomorphism class [C] of objects in C, we define
a locally closed subset BC[C] of the classifying space BC, as follows. A point
x ∈ BC is in BC[C] if the unique cell of BC containing x corresponds to a
diagram

C0 ← C1 ← · · · ← Ck



394 Weiss

without identity arrows, where C0 is isomorphic to C . (Remember that BC is a
CW-space, with one cell for each diagram C0 ← C1 ← · · · ← Ck as above.)
Then BC is stratified, with one stratum BC[C] for each isomorphism class [C].

Example 5.9. Let F : C → Spaces be a functor, where C is a small EI-
category. Then C∫F is a topological EI-category; hence

B(C∫F) = hocolim F

is stratified as in example 5.8, with one stratum for each isomorphism class [C]
of objects in C. (This stratification can also be pulled back from the stratifica-
tion of BC defined above, by means of the projection B(C∫F) → BC.)

In order to show that ‘most’ stratified spaces can be obtained by the proce-
dure described in example 5.8, we now associate to each stratified space X a
topological category.

Definition 5.10. Let X be a stratified space with strata Xi . A path γ : [0, c] →
X , with c ≥ 0, is nonincreasing if the induced map from [0, c] to the poset of
strata of X is nonincreasing. The nonincreasing path category CX of a stratified
space X has object set X (made discrete). The space of morphisms from x ∈ X
to y ∈ X is the space of nonincreasing paths starting at x and ending at y.
Composition of morphisms is Moore composition of paths.

Each diagram of the form x0 ← x1 ← · · · ← xk in CX determines real
numbers c1, c2, . . . , ck ≥ 0 and a nonincreasing path γ : [0, c1 + · · · ck] → X
with γ (0) = xk and γ (c1 + · · · ck) = x0. Composing γ with the linear map
k → [0, c1 +· · · ck] taking the i th vertex to ci+1 +· · ·+ ck , we obtain a map
k → X ; and by ‘integrating’ over all such diagrams, we have a canonical
map

BCX −→ X . (5.1)

Definition 5.11. The stratified space X is decomposable in the large if (5.1)
is a weak homotopy equivalence. It is everywhere decomposable if each open
subset of X , with the stratification inherited from X , is decomposable in the
large.

If X is decomposable in the large, we can think of (5.1) as a homotopy col-
imit decomposition of X , since BCX = hocolim F for the functor F given by
F(x) = ∗, for all objects x . Note that CX is an EI-category ‘up to homotopy’.
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That is, for any object y of CX , the space of endomorphisms of y is a grouplike
topological monoid

morCX (y, y) = �(Xi , y)

where Xi is the stratum containing y. More to the point, the category π0(CX ),
with the same object set as CX and morphism sets

morπ0(CX )(y, z) = π0morCX (y, z)

is an EI-category.
More useful homotopy colimit decompositions of X can often be con-

structed from the one above by choosing a continuous functor p : CX → D,
where D is a discrete EI-category, and using

hocolim
CX

F � hocolim
D

p∗F. (5.2)

Here p∗F is the ‘pushforward’ of F along p, also known as the left homotopy
Kan extension. It associates to an object d of D the homotopy colimit of F◦ϕd ,
where ϕd is the forgetful functor from the ‘over’ category p/d to CX . An object
of p/d consists of an object x in CX and a morphism p(x) → d in D. Consult
the last pages of [6] for formula (5.2) and other useful tricks with homotopy
colimits and homotopy limits.

Keeping the notation in (5.2), let x ∈ X and let g : p(x) → d be a mor-
phism in D. A lift of (x, g) consists of a morphism γ : x → y in CX and an
isomorphism u : p(y) → d in D such that u ◦ p(γ ) = g. If X is locally 1-
connected, then the set of lifts of (x, g) has a canonical topology which makes
it into a covering space of a subspace of the space of all (Moore) paths in X .

Definition 5.12. Assume that X is locally 1-connected. We will say that p
has contractible chambers if the space of lifts of (x, g) is weakly homotopy
equivalent to a point, for each (x, g) as above.

Proposition 5.13. Suppose that X is locally 1-connected and p has con-
tractible chambers. Then for d in D, the value (p∗F)(d) is weakly homotopy
equivalent to a covering space of a union of strata of X ; namely, the space of
pairs (y, u) where y ∈ X and u : p(y) → d is an isomorphism.

Example 5.14. Let X = |W| with the stratification discussed in the previous
section. This is decomposable in the large. We can think of a point x ∈ |W|
as a smooth oriented 3-manifold Ex without boundary, with a proper map
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fx : Ex → R. A path from x to y in |W| amounts to a family of smooth
oriented 3-manifolds Eγ (t), each without boundary and with a proper map
fγ (t) : Eγ (t) → R; the parameter t runs through an interval [0, c] and
γ (0) = x , γ (c) = y. For each t ∈ [0, c] let Sγ (t) be the set of critical points
of fγ (t) with critical value 0; this comes with a map to {0, 1, 2, 3}, the Morse
index map. If the path is nonincreasing, then it is easy to identify each Sγ (t)

with a subset of Sγ (0) = Sx , in such a way that we have a nonincreasing fam-
ily of subsets Sγ (t) of the finite set Sx , parametrized by t ∈ [0, c]. With every
z ∈ Sx = Sγ (0) which is not in the image of Sy = Sγ (c), we can associate an
element ε(z) ∈ {−1, +1}, as follows. There is a largest t ∈ [0, c] such that
z ∈ Sγ (t); call it t (z). The stability property of nondegenerate critical points
ensures that for t just slightly larger than t (z), the element z viewed as a point
in Sγ (t (z)) ⊂ Eγ (t (z)) is close to a unique critical point of fγ (t) : Eγ (t) → R.
The latter has critical value either greater than 0, in which case ε(z) = +1, or
less than 0, in which case ε(z) = −1. Summarizing, a morphism γ : x → y in
CX determines an injective map γ ∗ : Sy → Sx over {0, 1, 2, 3} and a function
from Sx � u(Sy) to the set {+1, −1}.

These considerations lead us to a certain category K. Its objects are the
finite sets over {0, 1, 2, 3}; a morphism from S to T in K is an injective map
u from S to T over {0, 1, 2, 3}, together with a function ε from T � u(S) to
{−1, +1}. The composition of two composable morphisms (u1, ε1) : R → S
and (u2, ε2) : S → T in K is (u2u1, ε3), where ε3 agrees with ε2 on T �u2(S)

and with ε1u2
−1 on u2(S � u1(R)). The rule x �→ Sx described above is a

functor p from CX to Kop. This functor has contractible chambers. For S in K,
the space (p∗F)(S) is therefore, by proposition 5.13, a classifying space for
families of 3-manifolds Ex equipped with fx : Ex → R as in theorem 3.4 and
with a specified isomorphism Sx → S in K. Consequently, it can be identified
with a finite-sheeted covering space of the stratum |W〈S〉| of |W|; see section 4.
It is convenient to write |WS| for (p∗F)(S).

Proposition 5.13 does not say anything very explicit about the map |WS| →
|WR | induced by a morphism (u, ε) : R → S in K, but this is easily described
up to homotopy. Namely, suppose given a family of smooth 3-manifolds Ex

with Morse functions fx and isomorphisms ax : Sx → S, as above. Now per-
turb each fx slightly by adding a small smooth function gx : Ex → R with
support in a small neighborhood of Sx , locally constant in a smaller neighbor-
hood of Sx , and such that for z ∈ Sx we have

gx (z)




= 0 if ax (z) ∈ u(R)

> 0 if ε(ax (z)) = +1
< 0 if ε(ax (z)) = −1 .
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(The gx should also depend smoothly on the parameter x , like the fx .) The
set of critical points of fx + gx having critical value 0 is then identified with
u(R) ∼= R. Therefore, by keeping the Ex and substituting the fx + gx for the
fx , we obtain a family of the type which is classified by maps to |WR |. Letting
the parameter manifold approximate |WS|, we obtain a well-defined homotopy
class of maps |WS| → |WR |.

For fixed S, the characterization of |WS| as a classifying space for families
of oriented 3-manifolds Ex with proper Morse functions fx : Ex → R and
isomorphisms Sx ∼= S can be simplified. It turns out that we need only allow
Morse functions fx having no other critical points than those in Sx ; that is, no
critical values other than, possibly, 0. When this extra condition is imposed,
the families considered are automatically bundles of 3-manifolds over the pa-
rameter space – not just submersions with 3-dimensional fibers. This is an easy
consequence of Ehresmann’s fibration theorem. Equally important is the fact
that each of the 3-manifolds Ex in such a bundle can be reconstructed from
the closed oriented surface fx

−1(−1) and certain surgery data. These data are
instructions for disjoint oriented surgeries [41, §1] on the surface, one for each
element of Sx ∼= S.

In this way, we end up with a description of |WS| as a classifying space for
bundles of closed oriented surfaces, where each surface comes with data for
disjoint oriented surgeries labelled by elements of S.

The stratification of |Wloc| sketched in the previous section can be taken to
pieces in a similar fashion. The result is a homotopy colimit decomposition

|Wloc| � hocolim
S

|Wloc,S|

where S runs through K. Here |Wloc,S| should be thought of as the space of
S-tuples of oriented surgery instructions on an oriented surface – but without a
specified surface! See [26] for details. The homotopy colimit decompositions
for |W| and |Wloc| are related via obvious forgetful maps.

Now, in order to obtain information about the homotopy fibers of |W| →
|Wloc|, one can ask what the homotopy fibers of

|WS| → |Wloc,S|

are, for each S in K, and then how they vary with S. The first question is easy
to answer: the homotopy fibers of |WS| → |Wloc,S| are classifying spaces for
bundles of compact oriented surfaces with a prescribed boundary depending
on the chosen base point in |Wloc,S|. The dependence on S can be seen in
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commutative squares of the form

|WS| −−−−→ |Wloc,S|� �
|WR | −−−−→ |Wloc,R |

where the vertical arrows are induced by a morphism R → S in K. With the
above geometric description, the induced maps from the homotopy fibers of
the top horizontal arrow to the homotopy fibers of the bottom horizontal arrow
are maps of the kind considered in Harer’s stability theorem 1.3. Unfortunately
the stability theorem cannot be used here without further preparation: there is
no reason to suppose that all surfaces in sight are connected and of large genus.
Fortunately, however, the homotopy colimit decomposition of |W| described
in 5.14 can be rearranged and modified in such a way that this objection can no
longer be made. (At this point, concatenation matters must be taken seriously
and consequently some of the main results obtained so far must be reworded,
as explained in remark 2.4.) The stability theorem 1.3 can then be applied and
the homotopy fiber sequence (4.2) is a formal consequence.

To conclude, it seems worthwhile to stress that the Harer stability theo-
rem 1.3 is an enormously important ingredient in the proof of Madsen’s con-
jecture 1.6. But in contrast to Vassiliev’s h-principle (example 3.2), which is
an equally important ingredient, the stability theorem only makes a very brief
and decisive appearance at the end of the proof. There it is used almost exactly
as in Tillmann’s proof of 1.4.

Appendix Vassiliev’s h-principle: An outline of the proof

This outline covers only the case where the manifold M is closed. It follows
[40] in all essentials. I have made some minor rearrangements in the overall
presentation, emphasizing the way in which transversality theory and interpo-
lation theory shape the proof. I am indebted to Thomas Huettemann for sug-
gesting this change in emphasis. Any errors and exaggerations which may have
resulted from it should nevertheless be blamed on me. Besides, it is not a big
change: plus ça change, plus c’est la même chose.

Let Z be the topological vector space of all smooth maps M → Rn , with
the Whitney C∞ topology [13]. Let ZA ⊂ Z be the closed subset consisting
of those f : M → Rn which have at least one singularity of type A. Then
Z � ZA is identified with �itg ∩ �¬A. As our starting point, we take the idea
to approximate Z � ZA by subspaces of the form D � ZA where D can be
any finite dimensional affine subspace of Z ; in other words, D is a translate
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of a finite-dimensional linear subspace. To be more precise, let r be a positive
integer; we will look for finite-dimensional affine subspaces D of Z such that
the inclusion-induced map in integer cohomology

H∗(Z � ZA) −→ H∗(D � ZA) (A.1)

is an isomorphism for ∗ < r .
Vassiliev’s method for solving this important approximation problem is to

impose a general position condition (c1) and an interpolation condition (c2,r)

on D. The two conditions are described just below. Further down there is a
sketch of Vassiliev’s argument showing that (A.1) is indeed an isomorphism
for ∗ < r if D satisfies both (c1) and (c2,r). The h-principle then ‘falls out’ as
a corollary.

Condition (c1) requires, roughly, that the finite-dimensional affine subspace
D ⊂ Z be in general position relative to ZA.

Vassiliev is not very precise on this point, but I understand from [23] that
every semialgebraic subset S of a finite-dimensional real vector space V has
a preferred regular stratification. This is a partition of S into smooth subman-
ifolds of V which satisfies the conditions for a stratification and, in addition,
Whitney’s regularity conditions [42]. In particular, the portion of A lying over
0 ∈ Rm has a preferred regular stratification; it follows that A(M) has a pre-
ferred regular stratification as a subset of the smooth manifold J k(M, Rn).

Definition A.1. Let D be a finite-dimensional affine subspace of Z . We say
that D satisfies condition (c1) if:

• the map u : D×M −→ J k(M, Rn) given by u( f, x) = j k f (x) is transverse
to each stratum of A(M), so that u−1(A(M)) is regularly stratified in D×M ;

• the projection from u−1(A(M)) to D is generic.

The second item in definition A.1 amounts to a condition on the multijets [13]
of the evaluation map D × M → Rn at finite subsets of u−1(A(M)). The
condition implies local injectivity of the projection from u−1(A(M)) to D,
and self-transversality in a stratified setting. More precision would take us too
far.

The content of the much more striking condition (c2,r) is that D must con-
tain at least one solution for each interpolation problem on M of a certain type
depending on r .

Definition A.2. Let dkmn be the dimension of the real vector space of
degree ≤ k polynomial maps from Rm to Rn . Let D be a finite-dimensional
affine subspace of Z . We say that D satisfies condition (c2,r) if, for every
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C∞(M, R)-submodule Y of Z with dimR(Z/Y ) ≤ r · dkmn , the projection
D → Z/Y is onto.

To see what this has to do with interpolation, fix distinct points z1, z2, . . . , zs

in M , with s ≤ r , and k-jets u1, u2, . . . , us ∈ J k(M, Rn) so that zi is the
source of ui . Let Y consist of the f ∈ Z whose k–jets at z1, z2, . . . , zs vanish.
If D satisfies (c2,r), then D → Z/Y must be onto and so there exists g ∈ D
with j k g(zi ) = ui for i = 1, 2, . . . , s.

Let Lr be the collection of all finite-dimensional affine subspaces D of Z
satisfying (c1) and (c2,r). Then we have Lr+1 ⊂ Lr for all r ≥ 0.

Lemma A.3. There exists an increasing sequence of finite-dimensional affine
subspaces D1, D2, D3, D4, . . . of Z such that Di ∈ Li and the union

⋃
i Di

is dense in the space Z.

The proof of this is an application of transversality theory as in [13] and in-
terpolation theory as in [12]. The fact that the set of all C∞(M, R)-submodules
Y of Z satisfying the conditions in definition A.2 has a canonical topology
making it into a compact Hausdorff space is an essential ingredient.

Theorem A.4. The map (A.1) is an isomorphism if D ∈ Lr and ∗ < r .

Sketch proof. Write DA = D ∩ ZA. In the notation of definition A.1, this is
the image of u−1(A(M)) under the projection D × M → D. Condition (c1) on
D ensures that DA is a well-behaved subset of D, so that there is an Alexander
duality isomorphism

H∗(D � ZA)
∼=−−−−→ Hlf

dim(D)−∗−1(DA) (A.2)

where the superscript lf indicates that locally finite chains are used. To investi-
gate DA, Vassiliev introduces a resolution RDA of DA, as follows. Let (M)

be the simplex spanned by M , in other words, the set of all functions w from
M to [0, 1] such that {x ∈ M | w(x) > 0} is finite and

∑
x∈M w(x) = 1.

The standard topology of (M) as a simplicial complex is not of interest here,
since it does not reflect the topology of M . Instead, we endow (M) with
the smallest topology such that, for each continuous g : M → R, the map
w �→ ∑

x w(x)g(x) is continuous on (M). We write (M)t to indicate this
topology. Now R DA can be defined as the subspace of DA×(M)t consisting
of all ( f, w) such that the support of w is contained in the set of A-singularities
of f . Because D satisfies condition (c1), the projection

RDA −→ DA

is a proper map between locally compact spaces. Each of its fibers is a simplex,
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and it is not difficult to deduce that it induces an isomorphism in locally finite
homology

Hlf
∗ (RDA)

∼=−−−−→ Hlf
∗ (DA). (A.3)

For an integer p, let RD p
A

⊂ RDA consist of the pairs ( f, w) where the
support of w has at most p elements. The filtration of RDA by the closed
subspaces RD p

A
leads in the usual manner to a homology spectral sequence of

the form

E1
p,q = Hlf

p+q+dim(D)(RD p
A
, RD p−1

A
) �⇒ Hlf

p+q+dim(D)(RDA) (A.4)

where p, q ∈ Z. There are three vanishing lines: E1
p,q = 0 for p < 0 and for

p + q < − dim(D) by construction, but also

E1
p,q = 0 when 2p + q > 0. (A.5)

To understand (A.5), note that by the general position condition (c1) on D,
the codimension of the image of RD p

A
in D is at least p(codim(A) − m);

here codim(A) denotes the codimension of A in J k(Rm, Rn). Since the fibers
of the projection RD p

A
→ D are at most p-dimensional, it follows that the

dimension of RD p
A

is not greater than p + dim(D) − p(codim(A) − m). With
our hypothesis codim(A) ≥ m + 2 this implies

dim(RD p
A
) ≤ dim(D) − p

and (A.5) follows.
Now comes the crucial observation that E1

p,q does not depend on our choice
of D ∈ Lr , as long as p ≤ r . To see this, we use the multi-jet prolongation
map

RDA −→ (A(M))t (A.6)

which takes ( f, w) ∈ RDA to w̄ with w̄(u) = w(x) if u = j k f (x) and
w̄(u) = 0 otherwise. Here (A(M))t is the simplex spanned by the set
A(M) ⊂ J k(M, Rn), but again topologized so that the topology of A(M)

is reflected; cf. the definition of (M)t . Note that each fiber of (A.6) is identi-
fied with an affine subspace of D; but the fiber dimensions can vary and some
fibers may even be empty. But restricting (A.6), we have

RD p
A

� RD p−1
A

−→ (A(M))
p
t � (A(M))

p−1
t (A.7)

where (A(M))
p
t consists of the w ∈ (A(M))t whose support has at most

p elements, with distinct tabels in M . Now the interpolation condition (c2,r)

on D and our assumption p ≤ r imply that the fibers of (A.7) are nonempty
affine spaces, and all of the same dimension; in other words, (A.7) is a bundle
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of affine spaces. Its base space obviously does not depend on D, and it can
be shown that its first Stiefel–Whitney class, too, is independent of D. Conse-
quently the locally finite homology of the total space

Hlf
∗ (RD p

A
� RD p−1

A
) ∼= Hlf

∗ (RD p
A
, RD p−1

A
) = E1

p,∗−p−dim(D)

is identified with the locally finite homology of the base space, with twisted in-
teger coefficients, and so is independent of D except for the obvious dimension
shift. (Note the strong excision property of locally finite homology groups.) To
state the independence result more precisely, the spectral sequence (A.4) de-
pends contravariantly on D, and for C, D ∈ Lr with C ⊂ D, the induced
map from the D-version of E1

p,q to the C-version of E1
p,q is an isomorphism

whenever p ≤ r .
Remembering (A.5) now, we can immediately deduce that Em

p,q is also in-
dependent of D ∈ Lr , in the same sense, for any m ≥ 0 and p, q with
p + q ≥ −r . Remembering the isomorphisms (A.3) and (A.2) also, we then
conclude that for C, D ∈ Lr with C ⊂ D, the inclusion C � ZA → D � ZA

induces an isomorphism

H∗(D � ZA) −→ H∗(C � ZA)

for ∗ < r . With lemma A.3, this leads us finally to the statement that (A.1) is
an isomorphism for ∗ < r and D ∈ Lr . (First suppose that D is one of the Di

in lemma A.3; then for the general case, approximate D by affine subspaces of
the Di for i 
 0.)

But we have achieved much more. Letting r tend to ∞, we have a well
defined spectral sequence converging to

H∗(Z � ZA) = H∗(�itg ∩ �¬A)

independent of r . (Convergence is a consequence of (A.5), and again
lemma A.3 is needed to show that the spectral sequence is independent of all
choices.) Similar but easier reasoning leads to an analogous spectral sequence
converging to the cohomology of �¬A. By a straightforward inspection, the
inclusion of �itg ∩ �¬A in �¬A induces an isomorphism of the E1-pages. This
establishes Vassiliev’s h-principle in the case where M is closed.
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Conformal field theory in four and six
dimensions

EDWARD WITTEN
Institute for Advanced Study

Princeton

1 Introduction

In this paper, I will be considering conformal field theory (CFT) mainly in four
and six dimensions, occasionally recalling facts about two dimensions. The
notion of conformal field theory is familiar to physicists. From a mathematical
point of view, we can keep in mind Graeme Segal’s definition [1] of conformal
field theory. Instead of just summarizing the definition here, I will review how
physicists actually study examples of quantum field theory, as this will make
clear the motivation for the definition.

When possible (and we will later consider examples in which this is not
possible), physicists make models of quantum field theory using path integrals.
This means first of all that, for any n-manifold Mn , we are given a space of
fields on Mn ; let us call the fields �. The fields might be, for example, real-
valued functions, or gauge fields (connections on a G-bundle over Mn for some
fixed Lie group G), or p-forms on Mn for some fixed p, or they might be maps
� : Mn → W for some fixed manifold W . Then we are given a local action
functional I (�). ‘Local’ means that the Euler–Lagrange equations for a critical
point of I are partial differential equations. If we are constructing a quantum
field theory that is not required to be conformally invariant, I may be defined
using a metric on Mn . For conformal field theory, I should be defined using
only a conformal structure. For a closed Mn , the partition function Z(Mn) is
defined, formally, as the integral over all � of e−I (�)

Z(Mn) =
∫

D� exp(−I (�)). (1.1)

If Mn has a boundary Mn−1, the integral depends on the boundary conditions.
If we let ϕ denote the restriction of � to Mn−1, then it formally makes sense
to consider a path integral on a manifold with boundary in which we integrate
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over all � for some fixed ϕ. This defines a function

�(ϕ) =
∫

�|Mn−1=ϕ

D� exp(−I (�)). (1.2)

We interpret the function �(ϕ) as a vector in a Hilbert space H(Mn−1) of L2

functions of ϕ. From this starting point, one can motivate the sort of axioms
for quantum field theory that Segal considered. I will not go into detail, as we
will not need them here. In fact, to keep things simple, we will mainly consider
closed manifolds Mn and the partition function Z(Mn).

Before getting to the specific examples that we will consider, I will start
with a general survey of conformal field theory in various dimensions. Two-
dimensional conformal field theory plays an important role in string theory
and statistical mechanics and is also relatively familiar mathematically.1 For
example, rational conformal field theory is studied in detail using complex
geometry. More general conformal field theories underlie, for example, mirror
symmetry.

Three- and four-dimensional conformal field theory is also important for
physics. Three-dimensional conformal field theory is used to describe second-
order phase transitions in equilibrium statistical mechanics, and a four-
dimensional conformal field theory could conceivably play a role in models
of elementary particle physics.

Physicists used to think that four was the maximum dimension for non-
trivial (or non-Gaussian) unitary conformal field theory. Initially, therefore,
little note was taken of a result by Nahm [2] which implies that six is the
maximum possible dimension in the supersymmetric case. (A different result
proved in the same paper – eleven is the maximal possible dimension for super-
gravity – had a large impact right away.) Nahm’s result follows from an alge-
braic argument and I will explain what it says in section 3. String theorists have
been quite surprised in the last few years to learn that the higher-dimensional
superconformal field theories, whose existence is suggested by Nahm’s theo-
rem, apparently do exist. Explaining this, or at least giving a few hints, is the
goal of this article.

One of the surprises is that the new theories suggested by Nahm’s theorem
are theories for which there is apparently no Lagrangian – at least none that
can be constructed using classical variables of any known sort. Yet these new
theories are intimately connected with fascinating mathematics and physics of
more conventional theories in four dimensions.

1 In counting dimensions, we include time, so a two-dimensional theory, if formulated in Lorentz
signature, is a theory in a world of one space and one time dimension. Here, we will mostly
work with Euclidean signature.
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In section 2, we warm up with some conventional and less conventional
linear theories. Starting with the example of abelian gauge theory in four di-
mensions, I will describe some free or in a sense linear conformal field theories
that can be constructed in arbitrary even dimensions. The cases of dimension
4k and 4k + 2 are rather different, as we will see. The most interesting lin-
ear theory in 4k + 2 dimensions is a self-dual theory that does not have a
Lagrangian, yet it exists quantum mechanically and its existence is related to
subtle modular behavior of the linear theories in 4k dimensions.

In section 3, I will focus on certain nonlinear examples in four and six di-
mensions and the relations between them. These examples will be supersym-
metric. The importance for us of supersymmetry is that it gives severe con-
straints that have made it possible to get some insight about highly nonlinear
theories. After reviewing Nahm’s theorem, I will say a word or two about su-
persymmetric gauge theories in four dimensions that are conformally invariant
at the quantum level, and then about how some of them are apparently related
to nonlinear superconformal field theories in six dimensions.

2 Gauge theory and its higher cousins

First let us review abelian gauge theory, with gauge group U (1). (For general
references on some of the following discussion of abelian gauge fields and
self-dual p-forms, see [3].) The connection A is locally a one-form. Under a
gauge transformation, it transforms by A → A + dε, with ε a zero-form. The
curvature F = d A is invariant.

For the action, we take

I (A) = 1

2e2

∫
M

F ∧ ∗F + iθ

2

∫
M

F

2π
∧ F

2π
. (2.3)

Precisely in four dimensions, the Hodge ∗ operator on two-forms is confor-
mally invariant and so I (A) is conformally invariant. If M is a closed man-
ifold without boundary the second term in I (A) is a topological invariant,
i(θ/2)

∫
M c1(L)2. In general, c1(L)2 is integral, and on a spin manifold it is

actually even. So the integrand exp(−I (A)) of the partition function is always
invariant to θ → θ+4π , while on a spin manifold it is invariant to θ → θ+2π .
In general, even when M is not closed, this is a symmetry of the theory (but in
case M has a boundary, the discussion becomes a little more elaborate).

Now let us look at the partition function Z(M) = ∑
L

∫
D A exp(−I (A)),

where we understand the sum over all possible connections A as including a
sum over the line bundle L on which A is a connection. We can describe the
path integral rather explicitly, using the decomposition A = A′ + AL

h , where
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A′ is a connection on a trivial line bundle O, and AL
h is (any) connection on L

of harmonic curvature FL
h . The action is I (A) = I (A′)+ I (AL

h ), and the path
integral is

∑
L

∫
D A exp(−I (A)) =

∫
D A′ exp(−I (A′))

∑
L

exp(−I (AL
h )). (2.4)

Here, note that I (AL
h ) depends on L, but I (A′) does not.

Let us look first at the second factor in eqn. (2.4), the sum over L. On the
lattice H2(M; Z), there is a natural, generally indefinite quadratic form given,
for x an integral harmonic two-form, by (x, x) = ∫

M x ∧ x . There is also a
positive-definite but metric-dependent form 〈x, x〉 = ∫

M x ∧ ∗x , with ∗ being
the Hodge star operator. The indefinite form (x, x) has signature (b2,+, b2,−),
where b2,± are the dimensions of the spaces of self-dual and anti-self-dual
harmonic two-forms.

Setting x = FL
h /2π , the sum over line bundles becomes

∑
x∈H2(M;Z)

exp
(

− 4π2

e2 〈x, x〉 + i θ
2 (x, x)

)
. (2.5)

If I set τ = θ
2π

+ 4π i
e2 , then this function has modular properties with respect

to τ . It is the non-holomorphic theta function of C.L. Siegel, which in the mid-
1980s was introduced in string theory by K.S. Narain to understand toroidal
compactification of the heterotic string. The Siegel–Narain function has a sim-
ple transformation law under the full modular group SL(2, Z) if M is spin, in
which case (x, x)/2 is integer-valued. In general, it has modular properties for
a subgroup �0(2) of SL(2, Z). In any case, it transforms as a modular function
with holomorphic and anti-holomorphic weights (b2,+, b2,−).

The other factor in eqn. (2.4), namely the integral over A′,∫
D A′ exp(−I (A′)), is essentially a Gaussian integral that can be defined

by zeta functions. Its dependence on the metric of M is very complicated,
but its dependence on τ is very simple – just a power of Im τ . Including
this factor, the full path-integral transforms as a modular function of weights
(1 − b1 + b2,+/2, 1 − b1 + b2,−/2) = ((χ + σ)/2, (χ − σ)/2), where b1, χ ,
and σ are respectively the first Betti number, the Euler characteristic, and the
signature of M .

The fact that the modular weights are linear combinations of χ and σ has an
important consequence, which I will not be able to explain fully here. Because
χ and σ can be written as integrals over M of quadratic polynomials in the
Riemann curvature (using for example the Gauss–Bonnet–Chern formula for
χ ), it is possible to add to the action I a ‘c-number’ term – the integral of
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a local expression that depends on τ and on the metric of M but not on the
integration variable A of the path integral – that cancels the modular weight
and makes the partition function completely invariant under SL(2, Z) or �0(2).
The appropriate c-number terms arise naturally when, as we discuss later, one
derives the four-dimensional abelian gauge theory from a six-dimensional self-
dual theory.

2.1 p-form analog

Now I want to move on to the p-form analog, for p > 2. For our purposes, we
will be informal in describing p-form fields. A ‘p-form field’ Ap is an object
that locally is a p-form, with gauge invariance Ap → Ap + dεp−1 (with εp−1

a (p − 1)-form) and curvature H = d Ap. But globally there can be non-trivial
periods

∫
D

H
2π

∈ Z for every (p + 1)-cycle D. More precisely, H is the de
Rham representative of a characteristic class x of Ap; this class takes values in
H p+1(M; Z) and can be an arbitrary element of that group. The Lagrangian,
for a p-form field on an n-manifold Mn , is

I (H) = 1

2π t

∫
Mn

H ∧ ∗H (2.6)

with t a positive constant. In a more complete and rigorous description,
the Ap are ‘differential characters’, for example A0 is a map to S1, A1 an
abelian gauge field, etc. There is also a mathematical theory, not yet much
used by physicists, in which a two-form field is understood as a connection
on a gerbe, and the higher p-forms are then related to more sophisticated
objects.

We can compute the partition function as before. We write Ap = A′
p +

Ap,h , where A′
p is a globally defined p-form and Ap,h is a p-form field with

harmonic curvature. The curvature of Ap,h is determined by the characteristic
class x of Ap. This leads to a description of the partition function in which the
interesting factor (for our purposes) come from the sum over x . It is2

� =
∑

x∈H p+1(Mn;Z)

exp
(
−π

t
〈x, x〉

)
. (2.7)

As before 〈x, x〉 = ∫
Mn

x ∧ ∗x . The ∗ operator that is used in this definition is
only conformally invariant in the middle dimension, so conformal invariance
only holds if n is even and p + 1 = n/2. Let us focus on this case.

2 � is a function of the metric on Mn , which enters through the induced metric 〈x, x〉 on the
middle-dimensional cohomology.
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If n = 4k, then, as we have already observed for k = 1, another term
θ

(2π)2

∫
Mn

H ∧ H can be added to the action. This leads to a modular function,
similar to what we have already described for k = 1.

If n = 4k + 2, then (H being a (2k + 1)-form)
∫

H ∧ H = 0, so we cannot
add a θ -term to the action. But something else happens instead.

To understand this properly, we should at least temporarily return to the
case that Mn is an n-manifold with Lorentz signature, − + + + · · · +, which
is the real home of physics. (In Lorentz signature we normally restrict Mn to
have a global Cauchy hypersurface, and no closed timelike curves; normally,
in Lorentz signature, we take Mn to have the topology R × Mn−1, where
R parametrizes the ‘time’ and Mn−1 is ‘space’.) In 4k + 2 dimensions with
Lorentz signature, a self-duality condition H = ∗H is possible for real H .
In 4k dimensions, self-duality requires that H be complex. (In Euclidean sig-
nature, the conditions are reversed: a self-duality condition for a real middle-
dimensional form is possible only in dimension 4k rather than 4k + 2. This
result may be more familiar than the corresponding Lorentzian statement.)

At any rate, in 4k + 2 dimensions with Lorentz signature, a middle-
dimensional classical H -field, obeying the Bianchi identity d H = 0 and the
Euler–Lagrange equation d ∗ H = 0, can be decomposed as H = H+ + H−,
where H± are real and

∗H± = ±H±
d H± = 0. (2.8)

Since classically it is consistent to set H− = 0, one may suspect that there
exists a quantum theory with H− = 0 and only H+. It turns out that this is true
if we choose the constant t in the action eqn. (2.6) properly.

The lowest dimension of the form 4k + 2, to which this discussion is perti-
nent, is of course dimension two. The self-dual quantum theory in dimension
two has been extensively studied; it is important in the Segal–Frenkel–Kac
vertex construction of representations of affine Lie algebras, in bosonization
of fermions and its applications to statistical mechanics and representation
theory, and in string theory. In these applications, it is important to consider
generalizations of the theory we have considered to higher rank (by introduc-
ing several H fields). The generalization of picking a positive number t is to
pick a lattice with suitable properties. After dimension two, the next possibil-
ity (of the form 4k + 2) is dimension six, and very interesting things, which
we will indicate in section 3 below, do occur in dimension six. To understand
these phenomena, it is simplest and most useful to set t = 1. However, theo-
ries with interesting (and in general more complicated) properties can also be
constructed for other rational values of t .
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There is no way to write a Lagrangian for the theory with H+ only – since
for example

∫
M4k+2

H+ ∧ H+ = 0. This makes the quantum theory sub-
tle, but nevertheless it does exist, if we slightly relax our axioms. From the
viewpoint that we have been developing, this can be seen by writing the non-
holomorphic Siegel–Narain theta function of the lattice � = Hn/2(M; Z),
which appears in eqn. (2.7), in terms of holomorphic theta functions. For di-
mension n = 4k + 2, the lattice � has a skew form (x, y) = ∫

x ∧ y. It also, of
course, just as in any other dimension, has the metric 〈x, x〉 = ∫

M4n+2
x ∧ ∗x .

The skew form plus metric determine a complex structure on the torus T =
Hn/2(M; U (1))/torsion.

Another important ingredient is a choice of ‘quadratic refinement’ of the
skew form. A quadratic refinement of an integer-valued skew form (x, y) is a
Z2-valued function φ : � → Z2 such that φ(x + y) = φ(x) + φ(y) + (x, y)

mod 2. There are 2bn/2(M) choices of such a φ. Given a choice of φ, by classical
formulas one can construct a unitary line bundle with connection Lφ → T
whose curvature is the two-form determined by the skew form (x, y). This
turns T into a ‘principally polarized abelian variety’, which has an associated
holomorphic theta function ϑφ .

It can be shown (for a detailed discussion, see [4]) that the non-holomorphic
theta function � of eqn. (2.7) which determines the partition function of the
original theory without self-duality can be expressed in terms of the holomor-
phic theta functions ϑφ

� =
∑
φ

ϑφϑφ. (2.9)

The sum runs over all choices of φ. If we could pick a φ in a natural way,
we would interpret ϑφ as the difficult part, the ‘numerator’, of the partition
function of the self-dual theory. In fact, roughly speaking, a choice of a spin
structure on M determines a φ (for more detail, see the last two papers in
[3], as well as [5] for an interpretation in terms of the Kervaire invariant).
So we modify the definition of conformal field theory to allow a choice of
spin structure and set the partition function Zsd of the self-dual theory to be
Zsd = ϑφ

det+ . Here det+ is the result of projecting the determinant that comes
from the integral over topologically trivial fields on to the self-dual part. (Even
in the absence of a self-dual projection, we did not discuss in any detail this
determinant, which comes from the Gaussian integral over the topologically
trivial field A′

p. For a discussion of it and an explanation of its decomposition
in self-dual and anti-self-dual factors to get det+, see [4].)

Many assertions we have made depend on having set t = 1. For other values
of t , to factorize � in terms of holomorphic objects, we would need to use theta
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functions at higher level; they would not be classified simply by a choice of
quadratic refinement; and the structure needed to pick a particular holomorphic
theta function would be more than a spin structure.

2.2 Relation between 4k and 4k + 2 dimensions

My last goal in discussing these linear theories is to indicate, following [6],
how the existence of a self-dual theory in 4k + 2 dimensions implies SL(2, Z)

(or �0(2)) symmetry in 4k dimensions.
First let us look at the situation classically. We formulate the (4k + 2)-

dimensional self-dual theory on the manifold M4k+2 = M4k × T2, where M4k

is a (4k)-manifold, and T2 a two-torus. We take T2 = R2/L , where L is a
lattice in the u − v plane R2. On R2 we take the metric ds2 = du2 + dv2. So
E = T2 is an elliptic curve with a τ parameter τE , which depends in the usual
way on L .

Keeping the metric fixed on T2, we scale up the metric g on M4k by g → λg,
where we take λ to become very large. Any middle-dimensional form H on
M4k × T2 can be expanded in Fourier modes on T2. In our limit with T2 much
smaller than any characteristic radius of M4k , the important modes (which, for
example, give the main contribution to the theta function) are constant, that is,
invariant under translations on the torus. So we can write H = F ∧ du + F̃ ∧
dv + G + K ∧ du ∧ dv, where F, F̃, G, and K are pullbacks from M4k .

Self-duality of H implies that K = ∗G and that F̃ = ∗F (where here ∗ is
the duality operator on M4k). The SL(2, Z) symmetry of T2 acts trivially on G
and K ; for that reason we have not much of interest to say about them. Instead,
we will concentrate on F and F̃ .

The fact that H is closed, d H = 0, implies that d F = d F̃ = 0. As F̃ = ∗F ,
it follows that d F = d ∗ F = 0. These are the usual conditions (along with
integrality of periods) for F to be the curvature of a (2k − 1)-form field in 4k
dimensions. So, for example, if k = 1, then F is simply the curvature of an
abelian gauge field.

So in the limit that the elliptic curve E is small compared to M4k , the self-
dual theory on M4k × E , which I will call (a), is equivalent to the theory of
a (2k − 1)-form on M4k (plus less interesting contributions from G and K ),
which I will call (b).

Suppose that this is true quantum mechanically. The theory (a) depends on
the elliptic curve E , while (b) depends on τ = θ/2π + 4π i/e2, which modulo
SL(2, Z) determines an elliptic curve E ′.

A natural guess is that E ∼= E ′, and if so (since theory (a) manifestly de-
pends only on E and not on a contruction of E using a specific basis of the
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lattice L or a specific τ -parameter) this makes obvious the SL(2, Z) symmetry
of theory (b).

The relation E = E ′ can be established by comparing the theta functions.
But instead, I will motivate this relation in a way that will be helpful when we
study nonlinear theories in the next section.

Instead of reducing from 4k +2 to 4k dimensions, let us first compare 4k +2
to 4k + 1 dimensions, and then take a further step down to 4k dimensions. So
we formulate the self-dual theory on M4k+2 = M4k+1 × S1, with S1 described
by an angular variable v, 0 ≤ v ≤ R. We fix the metric dv2 on S1, and scale
up the metric on M4k+1 by a large factor. In the limit, just as in the previous
case, we can assume H = F ∧ dv + G, where F and G are pullbacks from
M4k+1. Moreover, G = ∗F and dG = d F = 0, so F obeys the conditions
0 = d F = ∗d F to be the curvature of an ‘ordinary’ (2k − 1)-form theory on
M4k+1.3

Unlike the self-dual theory on M4k+2, the ‘ordinary’ theory on M4k+1 does
have a Lagrangian. This Lagrangian depends on a free parameter (called t in
eqn. (2.6)). Conformal invariance on M4k+1 × S1 implies that t must be a
constant multiple of R, so that the action (apart from a constant that can be
fixed by comparing the theta functions) is

I = 1

4π R

∫
M4k+1

F ∧ ∗F. (2.10)

The point of this formula is that if we rescale the metric of both factors of
M4k+2 = M4k+1 × S1 by the same factor, then R (the circumference of S1)
and ∗ (the Hodge ∗ operator of M4k+1 acting from (2k)-forms to (2k + 1)-
forms) scale in the same way, so the action in eqn. (2.10) is invariant.

The formula of eqn. (2.10) has the very unusual feature that R is in the
denominator. If we had a Lagrangian in 4k + 2 dimensions, then after spe-
cializing to M4k+2 = M4k+1 × S1, we would deduce what the action must
be in 4k + 1 dimensions by simply ‘integrating over the fiber’ of the projec-
tion M4k+2 → M4k+1. For fields that are pullbacks from M4k+1, this would
inevitably give an action on M4k+1 that is proportional to R – the volume of
the fiber – and not to R−1, as in eqn. (2.10). But there is no classical action in
4k + 2 dimensions, and the ‘integration over the fiber’ is a quantum operation
that gives a factor of R−1 instead of R.

Now let us return to the problem of comparing 4k +2 to 4k dimensions, and
arguing that E ′ is isomorphic to E . We specialize to the case that the lattice L
is ‘rectangular’, generated by the points (S, 0) and (0, R) in the u − v plane.

3 2k − 1 is the degree of the potential, while the curvature F is of degree 2k.
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Accordingly, the torus E ∼= T2 has a decomposition as S × S′, where S and S′

are circles of circumference, respectively, S and R.
We apply the previous reasoning to the decomposition M4k+2 = M4k+1×S′,

with M4k+1 = M4k × S. Since S′ has circumference R, the induced theory on
M4k+1 has action given by eqn. (2.10). Now, let us look at the decomposi-
tion M4k+1 = M4k × S. Taking the length scale of M4k to be large com-
pared to that of S, we would like to reduce to a theory on M4k . For this step,
since we do have a classical action on M4k+1, the reduction to a classical ac-
tion on M4k is made simply by integrating over the fibers of the projection
M4k+1 → M4k . As the fibers have volume S, the result is the following action
on M4k

I = 1

4π

S

R

∫
M4k

F ∧ ∗F. (2.11)

We see from eqn. (2.11) that the τ parameter of the theory on M4k is τ ′ =
i S/R. But this in fact is the same as the τ parameter of the elliptic curve E =
S × S′, so we have demonstrated, for this example, that E ∼= E ′.

In our two-step procedure of reducing from M4k × S × S′, we made an
arbitrary choice of reducing on S′ first. Had we proceeded in the opposite order,
we would have arrived at τ ′ = i R/S instead of i S/R; the two results differ by
the expected modular transformation τ → −1/τ .

One can extend the above arguments to arbitrary E with more work; it is not
necessary in this two-step reduction for S and S′ to be orthogonal. Of course,
one can also make the arguments more precise by study of the theta function
of the self-dual theory on M4k+2.

3 Superconformal field theories in four and six dimensions

In n dimensions, the conformal group of (conformally compactified)
Minkowski spacetime is SO(2, n). A superconformal field theory, that is a
conformal field theory that is also supersymmetric, should have a supergroup
G of symmetries whose bosonic part is SO(2, n) × K , with K a compact Lie
group. The fermionic part of the Lie algebra of G should transform as a sum of
spin representations of SO(2, n). A priori, the spinors may appear in the Lie
algebra with any multiplicity, and for n even, where SO(2, n) has two distinct
spinor representations, these may appear with unequal multiplicities.

Nahm considered the problem of classifying supergroups G with these prop-
erties. The result is that such groups exist only for n ≥ 6. For n = 6, the al-
gebraic solution can be described as follows. The group G is O Sp(2, 6|r) for
some positive integer r . Thus K = Sp(r). To describe the fermionic generators
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of G, first consider G ′ = O Sp(2, n|r) for general n. The fermionic gener-
ators of this group transform not as spinors but as the vector representation
of O(2, n) (tensored with the fundamental representation of Sp(r)). Thus for
general n, the group G ′ does not solve our algebraic problem. However, pre-
cisely for n = 6, we can use the triality symmetry of O(2, 6); by an outer
automorphism of this group, its vector representation is equivalent to one
of the two spinor representations. So modulo this automorphism, the group
G = O Sp(2, 6|r) does obey the right algebraic conditions and is a possible
supergroup of symmetries for a superconformal field theory in six dimensions.

The algebraic solutions of Nahm’s problem for n < 6 are similarly related
to exceptional isomorphisms of Lie groups and supergroups of low rank. (We
give the example of n = 4 presently.) Triality is in some sense the last of
the exceptional isomorphisms, and the role of triality for n = 6 thus makes it
plausible that n = 6 is the maximum dimension for superconformal symmetry,
though I will not give a proof here.

As I remarked in the introduction, this particular result by Nahm had little
immediate impact, since it was believed at the time that the correct bound was
really n ≤ 4. But in the mid-1990s, examples were found with n = 5, 6. The
known examples in dimension 6 have r = 1 and r = 2. My goal in what
follows will be to convey a few hints about the r = 2 examples. A reference
for some of what I will explain is [7].

3.1 Superconformal gauge theories in four dimensions

We will need to know a few more facts about gauge theories in four dimen-
sions. The basic gauge theory with the standard Yang–Mills action I (A) =

1
4e2

∫
TrF ∧∗F is conformally invariant at the classical level, but not quantum

mechanically. There are many ways to introduce additional fields and achieve
quantum conformal invariance.

We will focus on superconformal field theories. The superconformal sym-
metries predicted by Nahm’s analysis are SU (2, 2|N) for arbitrary positive in-
teger N, as well as an exceptional possibility P SU (2, 2|4). Note that SU (2, 2)

is isomorphic to SO(2, 4), and that the fermionic part of the super Lie algebra
of SU (2, 2|N) (or of P SU (2, 2|4)) transforms as N copies of V ⊕ V , where
V is the defining four-dimensional representation of SU (2, 2). V and V are
isomorphic to the two spinor representations of SO(2, 4), so SU (2, 2|N) and
P SU (2, 2|4) do solve the algebraic problem posed by Nahm. The supergroups
SU (p, q|N) exist for all positive integers p, q, N, but it takes the exceptional
isomorphism SU (2, 2) ∼= SO(2, 4) to get a solution of the problem considered
by Nahm.
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Examples of superconformal field theories in four dimensions exist for
N = 1, 2, and 4. For N = 1, there are myriads of possibilities – though much
more constrained than in the absence of supersymmetry – while the examples
with N = 2 and N = 4 are so highly constrained that a complete classification
is possible. In particular, for N = 4, the fields that must be included are com-
pletely determined by the choice of the gauge group G. For N = 2, one also
picks a representation of G that obeys a certain condition on the trace of the
quadratic Casimir operator (there are finitely many choices for each given G).
We will concentrate on the examples with N = 4; they have the exceptional
P SU (2, 2|4) symmetry.

3.2 N = 4 super Yang–Mills theory

The fields of N = 4 super Yang–Mills theory are the gauge field A plus
fermion and scalar fields required by the supersymmetry. The Lagrangian is

I (A, . . . ) =
∫

M4

Tr

(
1

4e2
F ∧ ∗F + iθ

8π2
F ∧ F + . . .

)
(3.1)

where the ellipses refer to terms involving the additional fields.
If we set τ = θ

2π
+ 4π i

e2 , then the Montonen–Olive duality conjecture [8]
asserts an SL(2, Z) symmetry acting on τ . Actually, the element(

0 1
−1 0

)
(3.2)

of SL(2, Z) is conjectured to map the N = 4 theory with gauge group G to the
same theory with the Langlands dual group, while also mapping τ to −1/τ .
So in general the precise modular properties are a little involved, somewhat
analogous to the fact that in section 2, we found in general �0(2) rather than
full SL(2, Z) symmetry. By around 1995, many developments in the study of
supersymmetric gauge theories and string theories gave strong support for the
Montonen–Olive conjecture.

If we formulate the N = 4 theory on a compact four-manifold M , endowed
with some metric tensor g, the partition function Z(M, g; τ) is, according to
the Montonen–Olive conjecture, a modular function of τ . It is not in general
holomorphic or anti-holomorphic in τ , and it depends non-trivially on g, so it
is not a topological invariant of M .

However [9], there is a ‘twisted’ version of the theory that is a topolog-
ical field theory and still SL(2, Z)-invariant. For a four-manifold M with
b2,+(M) > 1, the partition function is holomorphic (with a pole at the ‘cusp’)
and a topological invariant of M . In fact, setting q = exp(2π iτ), the partition
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function can be written

Z(M; τ) = q−c
∞∑

n=0

anqn (3.3)

where, assuming a certain vanishing theorem holds, an is the Euler character-
istic of the moduli space of G-instantons of instanton number n. In general, an

is the ‘number’ of solutions, weighted by sign, for a certain coupled system of
equations for the connection plus certain additional fields. These more elabo-
rate equations, which are somewhat analogous to the Seiberg–Witten equations
and have similarly nice Bochner formulas (related in both cases to supersym-
metry), were described in [9].

3.3 Explanation from six dimensions

So if the SL(2, Z) conjecture of Montonen and Olive holds, the functions de-
fined in eqn. (3.3) are modular. But why should the N = 4 supersymetric gauge
theory in four dimensions have SL(2, Z) symmetry?

Several explanations emerged from string theory work in the mid-1990s. Of
these, one [7] is in the spirit of what we discussed for linear theories in section
2. In its original form, this explanation only works for simply laced G, that
is for G of type A, D, or E . I will limit the following discussion to this case.
(For simply laced G, G is locally isomorphic to its Langlands dual, and the
statement of Montonen–Olive duality becomes simpler.)

The surprise which leads to an insight about Montonen–Olive duality is
that in dimension n = 6, there is for each choice of simply laced group G
a superconformal field theory that is a sort of nonlinear (and supersymmet-
ric) version of the self-dual theory that we discussed in section 2. This exotic
six-dimensional theory was found originally [7] by considering Type IIB su-
perstring theory at an A − D − E singularity.

The superconformal symmetry of this theory is the supergroup O Sp(2, 6|2).
When it is formulated on a six-manifold M6 = M4 × E , with E an elliptic
curve, the resulting behavior is quite similar to what we have discussed in
section 2 for the linear self-dual theory. Taking a product metric on M4 × E ,
in the limit that M4 is much larger than E , the six-dimensional theory reduces
to the four-dimensional N = 4 theory with gauge group G and τ parameter
determined by E . Just as in section 2, this makes manifest the Montonen–
Olive symmetry of the N = 4 theory. From this point of view, Montonen–
Olive symmetry reflects the fact that the six-dimensional theory on M4 × E
depends only on E and not on a specific way of constructing E using a τ

parameter.
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Further extending the analogy with what we discussed in section 2 for linear
theories, if we formulate this theory on M5 × S, where S is a circle of circum-
ference R, we get at distances large compared to R a five-dimensional gauge
theory, with gauge group G, and action proportional to R−1 rather than R. As
in section 2, this shows that the five-dimensional action cannot be obtained
by a classical process of ‘integrating over the fiber’; it gives an obstruction to
deriving the six-dimensional theory from a Lagrangian.

The six-dimensional theory that comes from Type IIB superstring theory
at the A − D − E singularity might be called a ‘nonabelian gerbe theory’,
as it is an analog for A − D − E groups of the linear theory discussed in
section 2 with a two-form field and a self-dual three-form curvature. Under a
certain perturbation (to a vacuum with spontaneous symmetry breaking in six
dimensions), the six-dimensional A − D − E theory reduces at low energies to
a theory that can be described more explicitly; this theory is a more elaborate
version of the theory with self-dual curvature that we considered in section 3.
In this theory, the gerbe-like field has a characteristic class that takes values
not in H3(M; Z), but in H3(M; Z) ⊗ �, where � is the root lattice of G.
Physicists describe this roughly by saying that, if r denotes the rank of G,
there are r self-dual two-form fields (i.e., two-form fields whose curvature is a
self-dual three-form).

The basic hallmark of the six-dimensional theory is that on the one hand it
can be perturbed to give something that we recognize as a gerbe theory of rank
r ; on the other hand, it can be perturbed to give nonabelian gauge theory with
gauge group G. Combining the two facts, this six-dimensional theory is a sort
of quantum nonabelian gerbe theory. I doubt very much that this structure is
accessible in the world of classical geometry; it belongs to the realm of quan-
tum field theory. But it has manifestations in the classical world, such as the
modular nature of the generating function (eqn. (3.3)) of Euler characteristics
of instanton moduli spaces.
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Part II

The definition of conformal field theory

Graeme Segal





Foreword and postscript

The manuscript that follows was written fifteen years ago. On balance, though,
conformal field theory has evolved less quickly than I expected, and to my
mind the difficulties which kept me from finishing the paper are still not alto-
gether elucidated.

My aim when I began the work was fairly narrow. I was not trying to
motivate the study of conformal field theory: I simply wanted to justify my
proposed definition, on the one hand by showing that it did encode the usual
structure of local field operators and their vacuum expectation values, and on
the other hand by checking that all the known examples of conformal theories
did fit the definition. As far as the first task is concerned, the crucial part of the
paper is §9, where local fields are defined and studied. It was the second task
that held me up. The known theories are

1. the σ -model of a torus, or ‘free bosons compactified on a torus’,

2. free fermions,

3. the Wess–Zumino–Witten theory for a compact Lie group,

4. theories obtained from WZW theories by the ‘coset’ construction of
Goddard, Kent, and Olive,

5. theories obtained from the preceding ones by the ‘orbifold’ construc-
tion.

(I should stress that this is a list of explicit constructions, not a classification
of theories. It ignores supersymmetry, and also what I would now call ‘non-
compact’ theories.) The crucial case is the WZW theory, which reduces to the
representation theory of loop groups. In my formulation, one must construct
a ‘modular functor’, and prove that it is unitary. I was unable to do this. The
task has since been carried out in the book [BK]∗ of Bakalov and Kirillov, but

∗ The references are to the list at the end of the original manuscript (page 576).
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their method is very long and indirect – the book is highly non-selfcontained –
resting heavily on the equivalence of categories between representations of
loop groups and representations of quantum groups at roots of unity. I still
hope that a more direct treatment of this beautiful subject will be found.

Another deficiency of my approach is discussed in §9: the axioms do not
seem to imply that the infinitesimal deformations of a theory are given by
local fields, and so I could not say anything rigorous about the moduli spaces
of theories. One way to deal with this problem is by extending the two-tier
structure of my definition to a three-tier structure which includes axioms about
cutting a circle into intervals. The paper by Stolz and Teichner in this volume
goes some way towards carrying out this programme.

I shall make some more detailed comments section by section.

Section 4

I no longer like the emphasis I placed on the operation of sewing an outgoing
to an incoming boundary circle of a cobordism. The associated ‘trace axiom’
follows readily from the other properties of a conformal field theory. The defi-
nition I would give now is as follows.

A (not necessarily unitary) conformal field theory (H, U ) consists of two
pieces of data:

1. A projective functor S �→ HS from the category of closed oriented
smooth 1-manifolds to locally convex complete topological vector
spaces, which takes disjoint unions to tensor products, and

2. For each oriented cobordism X , with conformal structure, from S0 to S1

a ray UX in the space of trace-class linear maps HS0 → HS1 , subject to

(a) UX ′◦X = UX ′ ◦ UX when cobordisms are composed, and
(b) UX�X ′ = UX ⊗ UX ′ .

Furthermore, UX must depend smoothly on the conformal structure of X .

Given the data (H, U ), it follows from the representation theory of the semi-
group A that the vector space HS = HS,L is honestly – not just projectively –
associated to a rigged 1-manifold (S, L) (see page 30), and that a specific op-
erator UX,ξ : HS0,L0 → HS1,L1 is associated to a cobordism X together with
a point ξ in the determinant line DetX (which in turn depends on the rigging
of ∂ X ).

It also follows from the definition that HS̄ is canonically dual to HS (and
that UX : HS̄1

→ HS̄0
is the transpose of UX ). More precisely, because we
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have a trace-class semigroup {UT = US×[0,T ]}T >0 acting on each vector space
HS we can define complete topological vector spaces ȞS and ĤS with maps

ȞS → HS → ĤS

which are injective with dense images and make HS into a rigged vector space
in the sense of Gelfand [GV]. In particular, ȞS and ĤS are nuclear. It is
easy to see that ȞS and ĤS̄ are canonically dual (for details, see page 15 of
Lecture 1 of [S4]). In the light of these remarks the missing Appendix A is not
needed.

A theory (H, U ) is unitary if there is given a natural isomorphism H̄S → HS̄
which makes ȞS into a pre-Hilbert space with HS as its completion. (‘Natural’
here means that ŪX = UX̄ .) In the manuscript the ‘positive’ part of the
reflection-positivity condition was accidentally omitted.

I would now put the remarks about Minkowski space at the end of §4 in a
different context. The theories axiomatized in the paper are compact ones: they
correspond to loops moving in a compact target manifold, and the Hamiltonian
operator H such that UT = e−H T has discrete spectrum. One can also define
non-compact theories, for which H has continuous spectrum and the opera-
tor UT is not of trace-class. Such a theory is a vector-space-valued functor
on a subcategory C+ of the basic cobordism category C, where C+ consists
of cobordisms every connected component of which has a non-empty out-
going boundary. If one thinks of a conformal field theory as a generalized
commutative Frobenius algebra, then a theory based on C+ is a generalized
‘non-compact commutative Frobenius algebra’. The basic example of such a
structure is the cohomology algebra of a non-compact manifold. (The category
C+ was introduced by Tillmann in [T], and also occurs in the papers of Cohen
and Sullivan in this volume.)

I now feel more confident than I did that the framework of the manuscript
is appropriate for describing quantum field theories which are not conformally
invariant, and not necessarily 2-dimensional. But the remarks on pages 27–28
should be modified. For a d-dimensional theory Cmetric should be the cate-
gory whose objects are germs Ŝ of oriented Riemannian d-manifolds along
compact (d − 1)-manifolds S (i.e. equivalence classes of neighbourhoods of
S in a d-manifold), and whose morphisms are oriented Riemannian cobor-
disms. When one has a theory based on this category the vector space HŜ will
depend only on a finite jet of the Riemannian structure normal to S: e.g. in
[S4] page 33 it is shown that the jet of order [(d − 1)/2] is needed for free
fermions.
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Section 5

I would now (roughly following suggestions of Deligne) think of a modular
functor as a category-valued topological field theory. Such a theory associates
a C-linear category RS to each closed oriented 1-manifold S, and an additive
functor

EX : RS0 → RS1

to each cobordism X from S0 to S1. (No conformal structure is involved here,
but we should require the manifolds to be rigged in the sense of (5.10) and
page 30.) The functor S �→ RS must take disjoint unions to tensor products of
categories: the axioms ensure that each RS is a semisimple category with only
finitely many irreducible objects. More details of this approach can be found
in Lecture 3 of [S4]. The main example is the representation theory of loop
groups, when RS1 is the category of positive-energy representations of a loop
group LG at a definite level k ∈ H4(BG; Z).

This perspective is, nevertheless, just a reformulation of what is in the
present manuscript. The set �S = �k of labels for a 1-manifold S =
S1 � · · · � Sk is the set of irreducible objects of RS , while the functor
EX : RS0 → RS1 associated to a cobordism X is given by

EX (ϕ) =
⊕
ψ

E(Xϕψ) ⊗ ψ

in the notation of the manuscript, where ϕ ∈ �S0 and ψ ∈ �S1 , and on
the right-hand side the object ψ is tensored with the finite-dimensional vec-
tor space E(Xϕψ).

In terms of the category-valued theory (R, E) what I called a ‘weakly con-
formal’ field theory assigns to each 1-manifold S an additive functor HS from
RS to topological vector spaces, and to each cobordism X from S0 to S1 a
transformation of functors

UX : HS0 → HS1 ◦ EX .

(The functors HS must have coherent equivalences HS ⊗ HS′ → HS�S′ , and
the transformations UX must be compatible, as usual, with concatenation and
disjoint union of cobordisms.)

Kontsevich’s argument from [K] shows that a category-valued theory ex-
tends to a ‘3-tier’ theory in which a 3-dimensional cobordism W between
two cobordisms X, X ′ from S0 to S1 defines a transformation of functors
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US : EX → EX ′ . Restricting this structure to closed surfaces X and their
cobordisms gives a 3-dimensional topological field theory, which in the loop
group example is Chern–Simons theory.

Unfortunately there is a gap in the proof of the crucial Proposition (5.4) –
the existence of a projectively flat connection in the modular functor – for I
referred to a non-existent appendix for a proof that the Lie algebra Vect(X) of
holomorphic vector fields on a non-closed surface X has no finite-dimensional
projective representations. To fill the gap, notice that if X has genus zero
then Vect(X) contains the Virasoro algebra, which certainly has no finite-
dimensional representations. So in that case Vect(X) acts trivially on E(X).
But in general we can cut X into pieces of genus zero – say X = X1∪· · ·∪Xk –
and write

E(X) =
⊕

E(X1,ϕ1) ⊗ · · · ⊗ E(Xk,ϕk ),

where the sum is over appropriate labellings ϕi . This decomposition is com-
patible with the action of Vect(X). But Vect(X) acts on E(Xi,ϕi ) via Vect(Xi ),
which must act trivially. So Vect(X) acts trivially on E(X).

A more illuminating account of the flat connection, though from a quite dif-
ferent point of view, has been given by Hitchin [H1]. Unfortunately his method,
like mine, is not helpful in establishing unitarity.

Section 7

In retrospect, this section does not seem properly motivated. The part con-
cerned with finite groups was put in to lead up to a discussion – unfortunately
never written – in §12 of the orbifold construction of theories.

The material fits into the general framework of gauge theories. If a compact
Lie group G acts on a quantum field theory (H, U ) – i.e. G acts on each vector
space HS and the maps UX are G-equivariant – we say ‘the symmetry can be
gauged’ if the functor (H, U ) can be extended from the usual cobordism cat-
egory C to the category CG whose objects (S, P) are 1-manifolds S equipped
with a principal G-bundle P with a connection, and whose morphisms (X, Q)

are conformal cobordisms X also equipped with principal G-bundles with con-
nection. If P0 is the trivial G-bundle on S then HS,P0 should be the original HS ,
and the action of G as a group of automorphisms of (S, P0) should induce the
given G-action on HS .

As a generic example, one can think of a sigma-model whose target space M
has a G-action. Then HS is the space of L2 functions on the mapping space
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Map(S; M), while HS,P is the space of L2 functions on the mapping space
MapG(P; M) of G-equivariant maps, or equivalently, on the space of sections
of the bundle on S with fibre M associated to the principal bundle P .

When the action can be gauged one can hope to construct a ‘quotient’ theory
(H G , U G). An element of H G

S is a function ψ which associates to each G-
bundle P on S an element ψP ∈ HS,P , and is gauge-invariant in the sense
that an isomorphism P → P ′ takes ψP to ψP ′ . The operator U G

X should in
principle be an integral operator whose kernel U G

X (P0; P1) is the integral of
UX,Q over the isomorphism classes of bundles Q on X which restrict to P0, P1

on ∂ X .
If G is a finite group any bundle has a unique connection, and there are only

finitely many G-bundles on any manifold. Thus we find

H G
S1 =

⊕
[g]

(HS1,Pg
)Zg

where Pg is the bundle on S1 with holonomy g ∈ G, and Zg is the centralizer
of g in G, while the sum is over the conjugacy classes of elements g. In this
case U G

X (P0, P1) is simply a finite sum.
In the case of conformal field theories, however, we must be careful that

each operator UX,Q = UX,Q,ξ will depend on a choice of a point ξ of a line
L X,Q associated to (X, Q), and we can make the quotient construction only if
we can identify the lines L X,Q for different bundles Q on X .

The passage from CG to the modular functor does not look interesting as it
is presented. Its significance is that a chiral theory with a group action, aris-
ing, say, from an even unimodular lattice with a finite symmetry group G,
gives us a theory based on an extension of CG by determinant lines L X,Q

which do depend on Q as well as X . If one shows that the associated mod-
ular functor is unitary one can tensor the chiral theory with its conjugate to
obtain a genuine conformal theory by the method of §5. In practice it is easier
to show the modular functor is unitary than to deal with the individual lines
L̄ X,Q ⊗ L X,Q .

The same remarks apply to the discussion of spin structures. In (8.16) I
describe the theory F of a free chiral fermion, which is based on the cat-
egory Cspin. The standard theory of free fermions, also based on Cspin, is
F̄ ⊗ F. This has a quotient theory, formed by summing over spin structures,
which has

HS1 = (F̄A ⊗ FA)even ⊗ (F̄P ⊗ FP )even
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(for the mod 2 grading of the fermionic Fock space expresses the action of the
automorphisms of the spin bundles on S1). The quotient theory turns out to
be equivalent to the sigma-model whose target is a circle of a specific length
(which is

√
2 in the notation of this paper): this is the basic boson-fermion

correspondence of 2-dimensional field theory. But the relevant point at the mo-
ment is that the line

Det∂̄L
⊗ Det∂̄L

where Det∂̄L
is the determinant line of the ∂̄-operator of a spin bundle L on

X , is independent of L and is a square-root of DetX ⊗ DetX . The only way I
know of proving this is by showing that the modular functor

EX =
⊕

L

Det∂̄L

is unitary.
Finally, I should like to make a few remarks concerning Propositions 7.7

and 7.8. As it stands, Proposition 7.7 is almost trivial, for the set S(X, ∂0 X)

of spin structures on X trivialized at the base-points ∂0 X is an affine space of
H1(X, ∂0 X; F2), and so the vector space H̃X of affine-linear functions from
S(X, ∂0 X) to F2 is an extension of HX = H1(X, ∂0 X; F2) by F2 whose set of
splittings is S(X, ∂0 X). The point is that H̃X – which depends of course on the
choice of ∂0 X – can be constructed from HX by means of an intersection form.
This is straightforward when ∂ X has one component, but more complicated
otherwise. The closed surface X∗ is canonically associated to X , but both the
isomorphisms H1(X, ∂0 X) ∼= H1(X∗) and S(X, ∂0 X) ∼= S(X∗) depend on
the choice of the tree y, which can be fixed by choosing a cyclic order of the
components of ∂ X .

Turning to 7.8, a more conceptual proof of the existence of the extension
of C×

X by F2 should be as follows. The basic extension of C×
X by C× arises

by lifting the action of C×
X on the restricted Grassmannian Gr of �

1
2 (∂ X; L)

to the determinant bundle on Gr. A spin structure on X gives us a fixed
point of the action on Gr, and hence a splitting of the extension. But the
fibre of Det at any one of these fixed points is a square-root of the determi-
nant line of X , and so the basic extension contains a subextension consist-
ing of the elements which act trivially on DetX . I do not see, unfortunately,
how to relate this argument to the one using cocycles which can be extracted
from §12.
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Section 8

Although the alternative description of the fermionic Fock space on page 92
is often useful, to call it a ‘bosonic’ description is misleading, as the chiral
theories in question do not correspond to anything described by a recognizable
bosonic Lagrangian. They are at best chiral fragments of bosonic theories.

Section 10

The parameter space Mp,q described on page 129 is usually called the Narain
moduli space. It is believed to be a complete component of the moduli space
of conformal theories (in the sense of algebraic geometry: it intersects other
components). The 2-form ω arising in the sigma-model description of the the-
ories is called the B-field (cf. [S5]). The relation between different pairs (T, ω)

which give rise to the same field theory is called T-duality.

Section 12

I intended this section to be considerably longer, though – unlike §11 – it was
not held up by any mathematical difficulties. The missing material was in two
parts. The first would have described the WZW model when the compact group
is a torus T = t/	. The central extension L̃T of the loop group LT – called
the level of the theory – is determined by an inner product on t for which the
lattice 	 is integral and even. The commutator pairing is given by (12.1), but
with products replaced by the inner product of t. To construct L̃T one needs
its cocycle, obtained by choosing a bilinear form B on t, integral on 	, such
that

B(x, y) + B(y, x) = 〈x, y〉.
This can be done because 	 is an even lattice, and, up to isomorphism, the
choice of B is immaterial.

The centre of L̃T is T × A, where A is the finite subgroup 	0/	 of the
group T of constant loops. (Here

	0 = {µ ∈ t : 〈µ, λ〉 ∈ Z for all λ ∈ 	}.)
In any irreducible representation of L̃T the subgroup A acts by a character,
and there is precisely one irreducible positive-energy representation Eϕ with
the given cocycle for each character ϕ ∈ Â.

The character group Â is thus the set of labels for the modular functor de-
fined as follows. If S is an oriented 1-manifold let us write TS for the com-
plexification of the group of smooth maps S → T , and T̃S for the central



Foreword and postscript 431

extension by C× corresponding to the chosen level. If X is a Riemann sur-
face with (outgoing) boundary, write TX for the group of holomorphic maps
X → TC, which can be identified with a subgroup of T∂ X , and even of T̃∂ X

as the cocycle vanishes identically on it. If ϕ = (ϕ1, ..., ϕk) is a labelling of
the components of ∂� we define the modular functor, as explained on pages
37–40, by

E(Xϕ) = {Eϕ1 ⊗ · · · ⊗ Eϕk }TX .

From the representation theory of Heisenberg groups we know that this space
is an irreducible representation of T̃ ⊥

X /TX , where T̃ ⊥
X is the centralizer of TX

in T̃∂ X . One easily shows that T̃ ⊥
X /TX is the Heisenberg group made from the

finite group H1(X; A) with its non-degenerate cup-product pairing. This gives
us a very explicit description of the modular functor from which all desired
properties, including unitarity, can be read off.

The other topic of §12 was to be the chiral factorization of the sigma-model
of a rational torus T = t/	, i.e. one for which the inner product is rational on
	, or, equivalently, such that 	0 = 	 ∩ 	0 has finite index in 	 and 	0. Let
T0 be the torus t/	0. We have an exact sequence

0 → A → LleftT0 × LrightT0 → LT × LT ∗ → A → 0

where the middle map is ( f, g) �→ ( f + g, f − g), and now

A =
(

1

2
	 + 1

2
	0

) /
	0.

The standard cocycle on LT × LT ∗ pulls back to a product cocycle on
LleftT0 × LrightT0, and each factor acquires a central extension with cen-
tre A. (One should think of T0 as t0/	0, where t0 = t, but with its inner
product multiplied by 2.) The projective irreducible representation HS1 of
LT × LT ∗ which is the Hilbert space of the sigma-model of T decomposes
under LleftT0 ×LrightT0 as

⊕
Ēϕ ⊗ Eϕ , where ϕ runs through the characters of

A, and Eϕ is the corresponding irreducible representation of LrightT0. It is easy
to check that the sigma-model of T is thereby identified as the WZW model
of T0.

The best-known case is when T = R/RZ is a circle of circumference R.
This is rational if R2 is rational. If R2 = p/q , where p and q are coprime
integers. Then 	0 = (pq)1/2Z, and A is a cyclic group of order 2pq: the
WZW model is that of T at level 2pq .



CU1518/Tillmann 20th November 2003 16:16

4322



CU1518/Tillmann 20th November 2003 16:16

The Definition of Conformal Field Theory 433431

[2]

433



CU1518/Tillmann 10th February 2004 14:22

434 Contents

CONTENTS

§1 Introduction 5

§2 Diff+(S1) and the semigroup A of annuli 9

§3 Wick rotation, and representations of A 16

§4 The category C and the definition of a field theory 21
The category C 21
The definition: first version 23
The conformal anomaly 27
An improved version of the definition 29
Minkowski space, ghosts, and BRS cohomology 31

§5 Modular functors 33
Definitions and main properties 33
Verlinde’s algebra 36
Loop groups 37
An example 40
Extensions of A 41
Modular functors from a topological viewpoint 44
Topological field theories 48
Mumford’s theorem 52
Unitarity 55

§6 The determinant line 56
Definition and basic properties 56
The central extension of Diff+(S1) 61
Modularity and the η-function 63

§7 Spin structures: discrete coverings of C 69
The categories Cspin and CG 69
The associated modular functors 70
The homological description of spin structures 74
Spin structures and extensions of loop groups 76

§8 The Grassmannian category: chiral fermions 78
Linear algebra 78
Polarized vector spaces and Fock spaces 81
Chiral fermion theories 84
Field operators 87
The bosonic description of F(�α) 92
Even spin structures and the real chiral fermion 93

434

[3]



CU1518/Tillmann 10th February 2004 14:22

Contents 435

§9 Field operators 97
Primary fields 97
The energy-momentum tensor 101
Infinitesimal automorphisms 104
Infinitesimal deformations 109
Examples 110
BRST cohomology 114

§10 The σ -model for a torus 120
The Hilbert space 120
The ray associated to a surface 124
Generalized toral theories and their 128

parameter space

§11 The WZW model for a compact group NOT WRITTEN

§12 The loop group of a torus 132
The circle 132

Appendix A NOT WRITTEN

Appendix B Determinant lines 137
The determinant of a Fredholm operator 137
The determinant line, the restricted Grassmannian, 140

and the central extension of GL res

Riemann surfaces 142

435

[4]



CU1518/Tillmann 20th November 2003 16:16

436 Segal434

[5]

436



CU1518/Tillmann 20th November 2003 16:16

The Definition of Conformal Field Theory 437435

[6]

437



CU1518/Tillmann 20th November 2003 16:16

438 Segal436

[7]

438



CU1518/Tillmann 20th November 2003 16:16

The Definition of Conformal Field Theory 439437

[8]

439



CU1518/Tillmann 20th November 2003 16:16

440 Segal438

[9]

440



CU1518/Tillmann 20th November 2003 16:16

The Definition of Conformal Field Theory 441439

[10]

441



CU1518/Tillmann 20th November 2003 16:16

442 Segal440

[11]

442



CU1518/Tillmann 20th November 2003 16:16

The Definition of Conformal Field Theory 443441

[12]

443



CU1518/Tillmann 20th November 2003 16:16

444 Segal442

[13]

444



CU1518/Tillmann 20th November 2003 16:16

The Definition of Conformal Field Theory 445443

[14]

445



CU1518/Tillmann 20th November 2003 16:16

446 Segal444

[15]

446



CU1518/Tillmann 20th November 2003 16:16

The Definition of Conformal Field Theory 447445

[16]

447



CU1518/Tillmann 20th November 2003 16:16

448 Segal446

[17]

448



CU1518/Tillmann 20th November 2003 16:16

The Definition of Conformal Field Theory 449447

[18]

449



CU1518/Tillmann 20th November 2003 16:16

450 Segal448

[19]

450



CU1518/Tillmann 20th November 2003 16:16

The Definition of Conformal Field Theory 451449

[20]

451



CU1518/Tillmann 20th November 2003 16:16

452 Segal450

[21]

452



CU1518/Tillmann 20th November 2003 16:16

The Definition of Conformal Field Theory 453451

[22]

453



CU1518/Tillmann 20th November 2003 16:16

454 Segal452

[23]

454



CU1518/Tillmann 20th November 2003 16:16

The Definition of Conformal Field Theory 455453

[24]

455



CU1518/Tillmann 20th November 2003 16:16

456 Segal454

[25]

456



CU1518/Tillmann 20th November 2003 16:16

The Definition of Conformal Field Theory 457455

[26]

457



CU1518/Tillmann 20th November 2003 16:16

458 Segal456

[27]

458



CU1518/Tillmann 20th November 2003 16:16

The Definition of Conformal Field Theory 459457

[28]

459



CU1518/Tillmann 20th November 2003 16:16

460 Segal458

[29]

460



CU1518/Tillmann 20th November 2003 16:16

The Definition of Conformal Field Theory 461459

[30]

461



CU1518/Tillmann 20th November 2003 16:16

462 Segal460

[31]

462



CU1518/Tillmann 20th November 2003 16:16

The Definition of Conformal Field Theory 463461

[32]

463



CU1518/Tillmann 20th November 2003 16:16

464 Segal462

[33]

464



CU1518/Tillmann 20th November 2003 16:16

The Definition of Conformal Field Theory 465463

[34]

465



CU1518/Tillmann 20th November 2003 16:16

466 Segal464

[35]

466



CU1518/Tillmann 20th November 2003 16:16

The Definition of Conformal Field Theory 467465

[36]

467



CU1518/Tillmann 20th November 2003 16:16

468 Segal466

[37]

468



CU1518/Tillmann 20th November 2003 16:16

The Definition of Conformal Field Theory 469467

[38]

469



CU1518/Tillmann 20th November 2003 16:16

470 Segal468

[39]

470



CU1518/Tillmann 20th November 2003 16:16

The Definition of Conformal Field Theory 471469

[40]

471



CU1518/Tillmann 20th November 2003 16:16

472 Segal470

[41]

472



CU1518/Tillmann 20th November 2003 16:16

The Definition of Conformal Field Theory 473471

[42]

473



CU1518/Tillmann 20th November 2003 16:16

474 Segal472

[43]

474



CU1518/Tillmann 20th November 2003 16:16

The Definition of Conformal Field Theory 475473

[44]

475



CU1518/Tillmann 20th November 2003 16:16

476 Segal474

[45]

476



CU1518/Tillmann 20th November 2003 16:16

The Definition of Conformal Field Theory 477475

[46]

477



CU1518/Tillmann 20th November 2003 16:16

478 Segal476

[47]

478



CU1518/Tillmann 20th November 2003 16:16

The Definition of Conformal Field Theory 479477

[48]

479



CU1518/Tillmann 20th November 2003 16:16

480 Segal478

[49]

480



CU1518/Tillmann 20th November 2003 16:16

The Definition of Conformal Field Theory 481479

[50]

481



CU1518/Tillmann 20th November 2003 16:16

482 Segal480

[51]

482



CU1518/Tillmann 20th November 2003 16:16

The Definition of Conformal Field Theory 483481

[52]

483



CU1518/Tillmann 20th November 2003 16:16

484 Segal482

[53]

484



CU1518/Tillmann 20th November 2003 16:16

The Definition of Conformal Field Theory 485483

[54]

485



CU1518/Tillmann 20th November 2003 16:16

486 Segal484

[55]

486



CU1518/Tillmann 20th November 2003 16:16

The Definition of Conformal Field Theory 487485

[56]

487



CU1518/Tillmann 20th November 2003 16:16

488 Segal486

[57]

488



CU1518/Tillmann 20th November 2003 16:16

The Definition of Conformal Field Theory 489487

[58]

489



CU1518/Tillmann 20th November 2003 16:16

490 Segal488

[59]

490



CU1518/Tillmann 20th November 2003 16:16

The Definition of Conformal Field Theory 491489

[60]

491



CU1518/Tillmann 20th November 2003 16:16

492 Segal490

[61]

492



CU1518/Tillmann 20th November 2003 16:16

The Definition of Conformal Field Theory 493491

[62]

493



CU1518/Tillmann 20th November 2003 16:16

494 Segal492

[63]

494



CU1518/Tillmann 20th November 2003 16:16

The Definition of Conformal Field Theory 495493

[64]

495



CU1518/Tillmann 20th November 2003 16:16

496 Segal494

[65]

496



CU1518/Tillmann 20th November 2003 16:16

The Definition of Conformal Field Theory 497495

[66]

497



CU1518/Tillmann 20th November 2003 16:16

498 Segal496

[67]

498



CU1518/Tillmann 20th November 2003 16:16

The Definition of Conformal Field Theory 499497

[68]

499



CU1518/Tillmann 20th November 2003 16:16

500 Segal498

[69]

500



CU1518/Tillmann 20th November 2003 16:16

The Definition of Conformal Field Theory 501499

[70]

501



CU1518/Tillmann 20th November 2003 16:16

502 Segal500

[71]

502



CU1518/Tillmann 20th November 2003 16:16

The Definition of Conformal Field Theory 503501

[72]

503



CU1518/Tillmann 20th November 2003 16:16

504 Segal502

[73]

504



CU1518/Tillmann 20th November 2003 16:16

The Definition of Conformal Field Theory 505503

[74]

505



CU1518/Tillmann 20th November 2003 16:16

506 Segal504

[75]

506



CU1518/Tillmann 20th November 2003 16:16

The Definition of Conformal Field Theory 507505

[76]

507



CU1518/Tillmann 20th November 2003 16:16

508 Segal506

[77]

508



CU1518/Tillmann 20th November 2003 16:16

The Definition of Conformal Field Theory 509507

[78]

509



CU1518/Tillmann 20th November 2003 16:16

510 Segal508

[79]

510



CU1518/Tillmann 20th November 2003 16:16

The Definition of Conformal Field Theory 511509

[80]

511



CU1518/Tillmann 20th November 2003 16:16

512 Segal510

[81]

512



CU1518/Tillmann 20th November 2003 16:16

The Definition of Conformal Field Theory 513511

[82]

513



CU1518/Tillmann 20th November 2003 16:16

514 Segal512

[83]

514



CU1518/Tillmann 20th November 2003 16:16

The Definition of Conformal Field Theory 515513

[84]

515



CU1518/Tillmann 20th November 2003 16:16

516 Segal514

[85]

516



CU1518/Tillmann 20th November 2003 16:16

The Definition of Conformal Field Theory 517515

[86]

517



CU1518/Tillmann 20th November 2003 16:16

518 Segal516

[87]

518



CU1518/Tillmann 20th November 2003 16:16

The Definition of Conformal Field Theory 519517

[88]

519



CU1518/Tillmann 20th November 2003 16:16

520 Segal518

[89]

520



CU1518/Tillmann 20th November 2003 16:16

The Definition of Conformal Field Theory 521519

[90]

521



CU1518/Tillmann 20th November 2003 16:16

522 Segal520

[91]

522



CU1518/Tillmann 20th November 2003 16:16

The Definition of Conformal Field Theory 523521

[92]

523



CU1518/Tillmann 20th November 2003 16:16

524 Segal522

[93]

524



CU1518/Tillmann 20th November 2003 16:16

The Definition of Conformal Field Theory 525523

[94]

525



CU1518/Tillmann 20th November 2003 16:16

526 Segal524

[95]

526



CU1518/Tillmann 20th November 2003 16:16

The Definition of Conformal Field Theory 527525

[96]

527



CU1518/Tillmann 20th November 2003 16:16

528 Segal526

[97]

528



CU1518/Tillmann 20th November 2003 16:16

The Definition of Conformal Field Theory 529527

[98]

529



CU1518/Tillmann 20th November 2003 16:16

530 Segal528

[99]

530



CU1518/Tillmann 20th November 2003 16:16

The Definition of Conformal Field Theory 531529

[100]

531



CU1518/Tillmann 20th November 2003 16:16

532 Segal530

[101]

532



CU1518/Tillmann 20th November 2003 16:16

The Definition of Conformal Field Theory 533531

[102]

533



CU1518/Tillmann 20th November 2003 16:16

534 Segal532

[103]

534



CU1518/Tillmann 20th November 2003 16:16

The Definition of Conformal Field Theory 535533

[104]

535



CU1518/Tillmann 20th November 2003 16:16

536 Segal534

[105]

536



CU1518/Tillmann 20th November 2003 16:16

The Definition of Conformal Field Theory 537535

[106]

537



CU1518/Tillmann 20th November 2003 16:16

538 Segal536

[107]

538



CU1518/Tillmann 20th November 2003 16:16

The Definition of Conformal Field Theory 539537

[108]

539



CU1518/Tillmann 20th November 2003 16:16

540 Segal538

[109]

540



CU1518/Tillmann 20th November 2003 16:16

The Definition of Conformal Field Theory 541539

[110]

541



CU1518/Tillmann 20th November 2003 16:16

542 Segal540

[111]

542



CU1518/Tillmann 20th November 2003 16:16

The Definition of Conformal Field Theory 543541

[112]

543



CU1518/Tillmann 20th November 2003 16:16

544 Segal542

[113]

544



CU1518/Tillmann 20th November 2003 16:16

The Definition of Conformal Field Theory 545543

[114]

545



CU1518/Tillmann 20th November 2003 16:16

546 Segal544

[115]

546



CU1518/Tillmann 20th November 2003 16:16

The Definition of Conformal Field Theory 547545

[116]

547



CU1518/Tillmann 20th November 2003 16:16

548 Segal546

[117]

548



CU1518/Tillmann 20th November 2003 16:16

The Definition of Conformal Field Theory 549547

[118]

549



CU1518/Tillmann 20th November 2003 16:16

550 Segal548

[119]

550



CU1518/Tillmann 20th November 2003 16:16

The Definition of Conformal Field Theory 551549

[120]

551



CU1518/Tillmann 20th November 2003 16:16

552 Segal550

[121]

552



CU1518/Tillmann 20th November 2003 16:16

The Definition of Conformal Field Theory 553551

[122]

553



CU1518/Tillmann 20th November 2003 16:16

554 Segal552

[123]

554



CU1518/Tillmann 20th November 2003 16:16

The Definition of Conformal Field Theory 555553

[124]

555



CU1518/Tillmann 20th November 2003 16:16

556 Segal554

[125]

556



CU1518/Tillmann 20th November 2003 16:16

The Definition of Conformal Field Theory 557555

[126]

557



CU1518/Tillmann 20th November 2003 16:16

558 Segal556

[127]

558



CU1518/Tillmann 20th November 2003 16:16

The Definition of Conformal Field Theory 559557

[128]

559



CU1518/Tillmann 20th November 2003 16:16

560 Segal558

[129]

560



CU1518/Tillmann 20th November 2003 16:16

The Definition of Conformal Field Theory 561559

[130]

561



CU1518/Tillmann 20th November 2003 16:16

562 Segal560

[131]

562



CU1518/Tillmann 20th November 2003 16:16

The Definition of Conformal Field Theory 563561

[132]

563



CU1518/Tillmann 20th November 2003 16:16

564 Segal562

[133]

564



CU1518/Tillmann 20th November 2003 16:16

The Definition of Conformal Field Theory 565563

[134]

565



CU1518/Tillmann 20th November 2003 16:16

566 Segal564

[135]

566



CU1518/Tillmann 20th November 2003 16:16

The Definition of Conformal Field Theory 567565

[136]

567



CU1518/Tillmann 20th November 2003 16:16

568 Segal566

[137]

568



CU1518/Tillmann 20th November 2003 16:16

The Definition of Conformal Field Theory 569567

[138]

569



CU1518/Tillmann 20th November 2003 16:16

570 Segal568

[139]

570



CU1518/Tillmann 20th November 2003 16:16

The Definition of Conformal Field Theory 571569

[140]

571



CU1518/Tillmann 20th November 2003 16:16

572 Segal570

[141]

572



CU1518/Tillmann 20th November 2003 16:16

The Definition of Conformal Field Theory 573571

[142]

573



CU1518/Tillmann 20th November 2003 16:16

574 Segal572

[143]

574



CU1518/Tillmann 20th November 2003 16:16

The Definition of Conformal Field Theory 575573

[144]

575



References

[A1] Atiyah, M.F., Riemann surfaces and spin structures. Ann. Sci. Éc. Norm.
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