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Introduction

These notes are slightly gdifferent in spirit from
most parts of undergraduate pure mathematics. Surfaces are
things which everyone can see, and the guestions we ask about
them ave very natural and interesting ones, which - roughly
at least - are easily explained to a layman. From the point
of view of the foundations of mathematics, however, a smooth
surface is a concept of a much higher order of complexity
and sophistication than, say, a group or a ring. A geometer
is no more concerned with this conceptual sophistication
than is a cock with biochemistry. He cannot completely
ignore the foundations of the subject without becoming
hopelessly imprecise and inaccurate; but if he is to do
geometry rather than something else he has to keep the
foundations firmly in the background. 1In a course of the
length of this one it would be very easy to devote the whole
space to the careful definition of smooth surfaces and smooth
maps, and not get teo geometry at all. To avoid that I have
decided resclutely not to follow £he prevailing style of
undergraduate exposition, which amounts to spelling out
explicitly every idea that is intended to pass through the
reader's mind. Although I realize that many students find
such a style reassuring I am not convinced that it is healthy,
or even that it serves the purpose of making the subject
clear and "easy":; 1 believe that questions of light and shade,
and perspective, are essential for real understanding. Thus
in these notes I never discuss such points as whether the

composite of smooth maps is smooth, and I have put the inverse



and implicit function thecorems at the end in an appendix

to emphasize that they are not themselves geometry. My
feeling is that if a reader is perceptive enough to be
disturbed when I define a smooth function on an open interval
and later speak of smcoth functions on closed intervals
without commenting on one-sided derivatives, then he will be
able to provide his own remedy; and if he does not notice

the point I think it is best to economize his powers by not

directing them tc diversionary issues,

Another feature of my style which some may not like is
that I have fregquently mentioned results which are not proved
in the course but which I think readers should be aware of:
the fact, for example, that every surface can be covered by

conformal charts.

The essential part of these notes cgnsists of the
local differential geometry of surfaces. Nevertheless I have
devoted the first four sections entirely to topology. A
number of motives influenced me to do thig. One was to show
the interplay between local and giobal properties, which I
regard as the most interesting aspect of differential
geometry, and which is beautifully exemplified in the
Gauss—-Bonnet theorem relating the topology of a surface to
its curvature. But a more basic metive was just to emphasize
that a topological space is an extemely natural concept. I
feel sure that the idea of a topology on a set comes as
readily to the mind as the idea of a set itself. Anyone who
is happy with the set of all colcours - I mean colours as one

finds them on colour charts in paint shops ~ will know what



.m3-.-
is meant by saving that a colour is changing continucusly
or discontinucusly. It has been one of the triumphs of
mathematical formalization to see that the intuitively
clear but nevertheless elusive idea of s topclogy on a set
amounts to the knowledge of when a subset is a "neighbour-
hood" of one of its points, or - less illuminatingly still -
the knowledge of which subsets are "open"; but experience
has shown me that the formal definition does the opposite of
giving undergraduates the right idea. I hope that thinking
explicitly about the topology of surfaces will do something

to redress the bhalance,

Considerations of the same kind led me Lo spend some
time discussing "abstract' surfaces - those which do not
arise as subsets of 323. The fact that abstractly defined
sets often have a significant geometry is, I believe, one
of the most valuable ideas that mathematics has to offer:
and at the same time it seems one of the hardest to make

clear. (Iteg importance has been shown most strikingly in

recent particle physics.)

In short, readers of these notes who want to do the
mininmum for the sake of examinatione can pass fleetingly over
587-5, and can ignore "abstract" surfaces and everything
concerned with complex numbers completely. The contents of
these sections are hardly referred to in the seguel. I hope,
all the same, that many readers will find them interesting

and profitable.

Finally, what is the resition of the theory of surfaces

in present-day mathematics? Most geometrical research



nowadays 1s concerned with manifolds of dimension greater
than two. From that point of view the role of the theory
of surfaces is as a useful simple prototype. But there are
a number of questions concerning surfaces in which interest
is still very alive. One such is the theory of minimal
surfaces (i.e. surfaces of minimal area spanning a given
curve in space). Another is concerned with the "ergodic"
aspects of geodesics: on many closed surfaces, but not on
all, almost all geodesics eventually pass arbitrarily close
to every point of the surface. The most important area of
active research, however, is concerned with the study of
the totality of possible metrics which a given surface can
have: it turns out that this reduces to studying the
surfaces from a holomorphic point of view, i.e. considering

them as Riemann surfaces.

There are many books about the clasgical differential
geometry of surfaces, all covering much the same ground.
An excellent account, which is very thorough and goes far
beyond the material here, can be found in

M.P. do Carmo, Differential Geometry of Curves and Surfaces
{Prentice Hall}

It contains in particular a very good supply of suitable

exercises.

I am most grateful to Glenys Luke and Wilson Sutherland

for helpful comments on the manuscript of these notes.



g1 The definition of a surface, and some exanples

Definition (1.1) A surface 1s a Hausdorff topological

S

space which is leccally homeocmorphic to R “.

This definition regquires some comments. First, to

say that a space X ig locally homecmorphic to 122 means

that each point x€ X is contained in an open set U which is

homeomorphic to an open set V of 3{2.

We agk for the space to be Hausdorff to eliminate
perverse examples which do not resemble our intuition of a
surface, A space whose topology is defined by a metric is
automatically Hausdorff. 1In all the examples of interest
to us the topology can be defined by a metric. But we
prefer to define a surface as a topological space rather
than as a metric space because for many purposes the metric
is irrelevant, and often there is no natural choice. (A

good illustration is provided by Example (1.2) below.)

According to our definition, the following are

surfaces {cf. BEx. 1.1):
. 2 .
(1) iy itself
{(iLi) any open set of R ¢
{iii)} the sphere {(x, v, 2)6113 ;%% 4 y2 v 2° = 1}, a

3
subspace of R 7,
(iv) the surface of a cube in }{3, and

- 3 2 2 2
{(v) the cone 1(x, v, 2)€ R~ : x° + y* = 2z° gnd z > 0}



The following, on the other hand, are not surfaces. -

{1} the closed disc {ix, y} € i x2 + y2 s 11, and

{(ii) the double cone {(x, y, 2z} € }{3 : xz + yz = zz};
for no neighbcurheod of a boundary peint of the disc, or
of the vertex of the doukle cone, is homeomorphic to an

open set of = Z. {(These facts are not 50 easy to prove., Cf. Ex.1.2).

So far we have mentioned only subsets of ordinary
2
Buclidean space R ~. But many examples of surfaces -
probably the most important ones in the end - arise more

abstractly.

Example (1.2}

Let X be the set of all straight lines in the plane
= ‘. Intuitively it is clear that X is a topclogical
space : we have no doubts deciding whether a moving line
is moving continucusly or not, and we feel sure that the
function X + 3} which associates to a line its distance
from the origin is continuous, whereas the function X -+ B
which associates to a line its slope (regarded as an angle in

kil

the half-open interval 5 s ]} is discontinuous.

[SIE]

Let us try to make a picture of the space of lines.

If we were content to leave out &ll the vertical lines then

the task would be easy. Let XO be the set of non~vertical

lines. An element of L9 is specified by its slope )
T

6 ¢ {-E-,%-) and its signed distance from the origin 0 -

taken positive if the line passes above 0, and negative if



it passes below 0. Thus it is wvery natural to identify XO

noom 2

with the open subset (-5-,3-) xR of R”. We now want to

add the vertical lines, with slope i%-, to the picture. we

can add them as the left-hand edge %-%} *x M or as the
right-hand edge {%} * R , ox {(preferably) as both, like

the International Date Line on a conventional map of the

world. But which point of {——121} x R or {—121} x R

should correspond to which vertical line? We can decide

as follows.

Consider the sequence of lines A, B, C, ... J,
&= D
F‘

. A
I Ny
all at unit distance from the origin, and all belonging to

X, . They are represented in L»% ,% } xR by :
e e o e B = e e B o o e -
A B C e E
=Ty <« glope —= T, & distance Hrom
Ongin
e e o W e wm o e o e ome ke e ar wn o e
F G H I T




Thus the vertical iine "between" E and F should he

represented by either ( %, 1! or by {- %, -1} on the

picture, and the vertical line between A and J should be

represented by { %, =1} oxr (- %, 1}. For any v € R the
points (%, vy} and b—%, -y} represent the same vertical

line. To get a proper picture of X we must take
[- %, %] * R and attach the boundary lines to each other
so that {—%, -y) is identified with (%, y) for all

y € R. This gives us not a cylinder but a M8bius band.

S0 far cur discussion has been heuristic. But we can
now see how to define a topology on the set X so that it is
indeed a surface. The preceding discussion showed us how tao
define a bijection a ¢o : Xoe- {n%—,%) x M. Let X.E be the
set of lines which are not horizental. We can define a
bijection ¢4 3 Xy > (0,71} x R in the same way that we
def ined ¢o' We now make the definition that a subset U of
X is open if ¢D(Uﬁxo} ig an open subset of {w% ,%-) *» TR and
¢4 {UNX,) an open subset of (0,x) x ] . We leave it to the
reader (Ex. 1.3} to check that this does define a topology
which makes ¥ a surface. This toepology can be defined by a
metric, but not in a very natural way. (Ex. 1.4}

Surfaces in E23

The most obvious surfaces are those defined by a

. . . 2 ;
single eqguation in R”, i.e. those wf the form

X = {{x, vy, z2) € RS> . fix, v, z} = 0},



where f : 3&3 + W 1is a continucusly differentiable map.

Not every f gives rise to a surface. We shall see in §5
that a sufficient condition for it to do sc is that f and

grad 1 do not vanish simulitanecusly.

Example

3
The three kinds of central guadric in B - are

2 2 2
eliipsoids, with equation {2 + X? * 52 -1 = 0,
B2
. . 2 2 2
hvperboloids of one sheet, X+ Yy -z -1 =29,
2 2 2
a b c
. 2 2
hyperboloids of two sheets, X oy -2 .1 = 0.
P 2 2
a b c

Where £ and grad f do vanish simultanecusly we
expect X to behave badly. Thus if f = x2 + y2 + 22 then f£
and grad f both wvanish at the origin, and X consists of
the origin aleone, and is not a surface. If f = x2 + yz -z
then f and dgrad £ again vanish at the origin, and the

surface is a doukle cone.

Twe classes of surfaces that will be useful for

illustrating results inp differential geometry are

'

{i) Surfaces of revolution, cobtained by taking a curve Yy

in the X& plane and rotating it about the %2 axis. (One
mist choose a curve v wnich either does not meet the Z-axis
or else is gymmetric about it.) An important case is the

torus, got by rotating the circle

o -
(x-b}2 + z° = a*

with centre {b,0} and radius a, where b > a.



(i) Ruled surfaces, which are swept out by a straight

il
line moving in R 7. The hyperboloid of one sheet is of
this kind; in fact 1t is a ruled surface in two different
' ‘ , (*)
ways, and is the conly surface with that property )’ {Cf.

Exercises 1.5, 1.6, 1.7.})

An important subclass cof the ruled surfaces are the

developables, which are swept cut by the tangent line to a

¥,

curve in space. We shall see in 87 that these are the most
general surfaces which can he cobhtained from a piece of a

plane by bending it without stretching it.

Note Cne usually has to exclude scme "bad" sei from the

locus of a moving line to obtain a surface. Thus the double
2 2 2 . .

cone X+ y  F 70 is swept cut by a line, but iz a surface

only if one omites the origin. The developable surface

swept out by the tangents teo & curve v has a sharp edge

{called a "cuspidal edge") along v itself, and one must

exclude that to have a suxrface,

Complex algebraic curves

A complex algebraic curve in €° ig a get of the form

it
¥
—
=
-
4
—
y
=
»s
i
.
b
s
LY
t
#
i

07,

where £ 1s a polynonial in two variables with complex
coefficisnts. Because f = (0 amounte to two real eguations
in four real variables we expect ¥ to be & surface. That
ig true providing £ and orad £ do not vanish simultaneously.

{See the Appendix.}

o]

(*) Apart from the hyperbelic paraboleid (e.g. 2z = xy)}, which
is & limiting case of the hyperboleoid.



Example {1.3)

. 2 2 ‘ . 2
The eguaticn x“ + yv° = 1 definas a surface ¥ in O°.
. 3y .
If we write the complex vector (YJ ag u + iv, where u
2 : . .
and v kelong te R 7, then the eguation becomes the pair of

equations

el 2~ vl % = q

83

<u, v>» = 0

(Thus v # 0.} Each solution of these sqgquations can be

written in the form

i = & cosh t

v = £T  sinh t, (1.4)

where £ is the unit vector ufﬂuﬁ in I&z, ¥ is the vector
obtained by rotating § through 7/2, and ¢t € R . Conversely,
for each £ on the unit circle in Hiz and each ¢+ £ R the
formulae {1.4) define @ point of X. Thus ¥ is topologically
a ecylinder, the cartesian product of the circle HgH = 1

and the line I .

Ancther way to see the topological type is to

parametrize X by

2w Ziw

where w = {x+iv) € Cc - {0

[

» "This shows that X is
homeomorphic to & - {0} , which is topologically a cylinder
because each w € T ~ {0} can be written uniguely

etu with + € R , e, and | o= 1,
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The following rather vague remark is designed to
help introduce some future ideas. In complex variable
Ltheory it is often convenient to adjoin to the complex plane
cne extra point called « : the set € U {«] is called the

Riemann sphere. In the same way it is natural to adjoin

two "points at infinity" to the surface X. We can call them
P1 = {=, ie } and P2

parameter values w = « and w = 0. Thus X U {P1,P2} is in

fl

{# , =i« } . They correspond to the
1-1 correspondence with the Riemann sphere. Geometrically

P1 and P2 are the "ends" of the two asymptotes x + iy = (

of the complex curve x2 + y2 = 1 : these asymptotes are
exactly analogous to the usual real asymptotes x + y = 0

: 2
of the hyperbola x2 - yz = 1T in B . If x2 + y2 = 1 and |[x|

is large then y = i¥x?-1 is either very close to ix or very

close to —ix.

Exercises

1.1 Prove that the examples (iii}, (iv), (v} of surfaces
on page 5 really are surfaces.

[In case (iv} it is helpful to begin by proving the
following lemma. If a space X is the union of a finite
number of closed subsets L.+ then a map £ : X » Y is
continucous if the restriction of f to Xi is continuous

for each i.}

1.2 Prove that the double cone

3 2 Z 2}

X ={(x, ¥y, 20 € R” 1 x° + y° = 2 is not a surface.

[Observe that X becomes disconnected if the origin is deleted.]



1.2 Prove that the definition of open sets given on page
& does define a topelogy con the set of lines in 312, and

makes it a surface.

i.4 ta} TFind a metric on the set X of lines in E{z which
defines its topology.

()} Preove that there is no metric d on X which
defines its topology and has the property that
d(21,£2} =d(T(£1}, Tifz)} for alil 21, £2 € X and every

Y
rigid motion T : R “ - 122. [If such a metric existed then

the distance between twe lines which intersect at an angle
6 would depend only on &. Czll the distance £(8). Prove
£(8}) ~ 0 as § -+ 0. Then contradict the triangle inequality
by considering a pair of parallel lines and a third line

which intewrsects them both at a small angle.]

1.5. Show that for every ncon—zerc A < JR the straight line with
equations -z = A{l-y}j,  Et2 = k—1(?*y) lies on the
nyperboloid xz + yz - Z° = 1. Deduce that every hyperboloid

of one sheet is a ruled surface. Find another family of

lines on xz + yz - 22 = 1, and show that lines of the same

family do not intersect, but that each line of the first

family meets each line of the second.



4 -
1.6 Prove that if a straicht line is rotated rigidly about
a line not in the same pPlane, then it sweeps out a hyperboloigd

of one shest.

- ., ) . . . . o 3
1.7. Let £., £, ¢, be three lines in R ; Do two
i d 3

Lo 3

coplanar. FProve that through each point P of 23 there

ig a unique line U, which msets both £. and £ Prove

¥ 1 2°
that as P varies on E3 the line CP sweeps out &
hyperboloid of one sheet. Deduce that this surface is
the only surface which is ruled in two different WAYS.
{1t reguires ingenulty to do this guestion from first
principles. We shall encounter better methods in the
second half of this course. The eguation of any line in
EEB can be written in the form a ~ ¥ = h. Prove that

a *» ¥ = b intersects ¢ x r = d if and only if

<a,d>» + <b,er» = 0. Deduce that there is a line cxr = ¢

*h

throuch r which meets each of 2, ®¥ r = L, for i =1, 2, 3

i

1f and only if the scalar triple product

{a?xr - b?, a2Xr - bE’ P b3]

%]

vanishes. Show that this is the equation of a guadric

surface, necessarily a hyperkboloid of one sheet.]

1.8 A ruled surface X is swept out by the line through

the peoint yit} in the direction of the unit vector aft),
where vy and & are continuously differentiable maps

(W, B = }%3. Assuming that & = da/dt does not vanish

for ¢t € {u,8}), prove that X is developable if and only

if the scalar triple product <;, a ®x a> is zero.

{The problem is to find a curve pit) = vit) + fi{tla(t) on X

such that the tangent 5 is parallel to a. If ¢ = ga

one must find f and g from ga = % + fa + fa.}



82 bBbstract surfaces

The surfaces which are important in mathematics mostly
do not appear as objects in space. In this section, we shall
give some examples of ways in which surfaces arise
abstractly. Nothing in this section ig essential to the
course, and it will not be referred to again, so readers who

find it confusing can simply omit it.

A, The torus and the Klein bottle as gquotient spaces.

A typical way in which a torus arises is as the set of
positiens of the hands of a clock. A position of the hands
is a pair (x,y},where each of x and v 1s a real number
modulo 12. Thus the set X of positions is obtained from

the plane 312 by introducing the eqguivalence relation -~ such

that {xz,y1)q;(x2,y2} if and only if

i

Xy T O E, ot 12.n
for some integers n,m. (2.1}

Y9 T Y, * T2.m

We want to think of the set of positions as a topological
2 .

space. We know the topclogy of R™, and there ig an obvious

pJ . . . 2., .
map R~ + X which assigns to sach {(x,y} € R ” its egquivalence
class in X. We define an open set of X as one whose inverse-
image in R is open. A little reflection convinces one
that this agrees with cur intuitive idea of what an open set
in ¥ cught to be. We can now prove that X is homeomorphic

K3
to a standard torus in R ~. {(Ex. 2.1}



What we have Just described is a method which gives
us a topology on any set which is the set of equivalence

classes ¢of an eguivalence relation on another topelogical

space. The topolagy constructed 1is called the guotient
topology.

Now let us consider a more subtle eguivalence relation
2 . :
on R . We define (x,.y,) ~ {x,,v,) if and only if
o
X, = X., + n

1 Z .
for some integers n, m. (2.2}

!
t
-
g
+
3

¥

o
Then every point of R is eguivalent to a point in the square
[6,1] = [0,1}, and no two points of the sguare are equivalent

except that

{2, OF ~ {x, 1) for ¢ £ x € 1, angé

G, vy} ~ (1, i-y} for 0 € v < 1,

The space of equivalence classes X = R “/~ ig easily
checked to be a surface. {Ex. 2.2) It is called the
Klein bottie. (*1  Unlike the torus it cannot be realized

as a surface in K 7, although we can find a map £ : ¥ - }23
which is locally a homeomorphism on to £{¥} but which isg
not guite 1-1 : the space f{X}) is the usual picture of the

Klein bottle, complete with "self~intersecticn®.

(*} It is not hard to envisage a contrivance whose set of
positions is this surface. Suppese a device consists of g
Plane I in R~ free to rotate about the Z—-axis, together
with a iine 2 through the origin constrained +o lie in the
plane 1. Then the positions of {li, %) form a Klein bottle.



B. The projective plane

A very important abstract surface is the projective
plane, which will be studied in detail in the second half of
the course. The idea of its construction is as follows.
Imagine cone is at the origin in I23, looking at the plane I
whose eqguation is z = 1. There is almost a 1-1 correspendence
between the points of the plane II and the rays to one's evye,
i.e. between I and the set of lines through the origin in
ﬁ 3- But the correspondence is not perfect, because lines
parallel to I, i.e. those in the XY-plane, do not meet [ .
As a ray becomes more nearly parallel to I itse peint of
intersection moves away "towards infinity". It is therefore
tempting to adijoin to 1 a set I, of "ideal"™ points "at
infinity", one for each ray in the XY Fiane. The combined

~
set I = UM is called the projective plane.

The idea of introducing "points at infinity" originates
in perspective drawing, when one makes a picture of a plane
T in IlB on another plane I' which is not parallel to it.
Then the "points at infinity" of T are depicted by ordinary

points of ' - so-called "vanishing points® of families of



parallel lines in 0.

Ea..\{";- = -
infyt - T
“r . -
o T L“‘\t‘ et !’Q , " e
¥ "‘E-o(ij I rv:‘ o —_— . )
~ e
M Pﬂl‘-\'{
i
A T
- ‘__‘/‘\\\_.
(/Sf;[u.n.(f\\\
\\ in
\\\TT J//;b
\\\«//
A hande o '3 "
-’P‘- JM«Q l'-"c. = E:{}_(;\.gg \1 i 0y P[)_a,v.f; '.“ CT; lL‘ﬂ PQQIV“
If we add the "points at infinity" to both T and I'' then
there is an exact 1-1 correspondence between them.
The formal definition of the projective plane is
psychologically unilluminating.
Definition (2.3} 7he projective plane is the set of lines
through the origin in R 7,
A line through the origin is determined by giving a
single non-zerc vector v con it; and v and v' determine the
same line if and only if v* = lv for some non-zero scalar
A. Thus we can reformuiate the definitior ag follows.
Definition (2.4} The projective plane 1s the gset of
: 3 ! , . .
equivalence classes of R~ - {0} for the eguivalence relation

defined by

L N v' = v far some ) =

Cr

in R .
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&n edvantage of the second version of the definition
is that it makes clear that the projective plane is a
topological space.

According to the second definition, a point of the

~

projective plane 7 is described by homcgeneous coordinates

{(x, v, #z), not all zero, subject to the convention that
(x, y, z) and (ix, ).y, 2z) describe the same point if ) # 0.
To prove that it really is a surface we shall show that it is

the union of three open sets U Uz, US each of which is

1a
homeomorphic to m.z. We define U1 as the set of all points
whose hcmogenecus coordinates (x, vy, z) satisfy x = 0.
Similarly U2 and U3 consist of points such that y = 0 and

z = 0 respectively. We have already agreed to identify 03

with the plane z = 1 by

{2y ¥, 2} <—> | %i 11,

12

o A

r

r

and one can check that this is a homeomorphism, {(Ex. 2.3)
Similarly UT and 02 can be identified with the planes x = 1

and y = 1.

To visualize the projective plane it is best to start
fromanother topological description of 1t, whose validity

we leave as an exercise., (Bx. 2.4)

Theorem (2.5} The projective plane is the guotient space of

. - 2 2 .
the disc {(x,v} € ® o oxT 4 y2 & 1} by the equivalence

relaticn which identifies opposite points of the boundary:

(X, ¥y} Ax7,¥y") <=> x = x" and y = y'

or x = -=x', y = ~y', and x° + y* = 1.



Like the Klein hottle, the projective plane cannot be
realized as a surface in I23 without self-intersections.
Notice that the shaded part in the diagram ia a M8bius band.
The unshaded part fits together to form a disc; thus ﬁ is the

union of a disc and a M8bius band.
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B~ B
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N
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=

A

One possible self-intersecting representation of fi

in 113 is as a heptahedron, which is made from three squares

’

with unit sides intersecting perpendicularly along their
diagonals by adding four eguilateral triangles also with unit
sides. The most beautiful representation of the projective

pmlane, however, is as Boy's surface.
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C. Riemann surfacesg

Our last class of examples of abstract surfaces is

the hardest to motivate, but is ultimately the most important.

fon complex analysls one constantly encounters

; : . : ps ;
"many-valued functicns" such ag log z and'ﬂ/1~z - The most

elementary way of dealing with them is to restrict oneself

to an open set V of the complex plane in which one can define
& single-valued holomorphic function which at each point takes
"one of the values" of the jill-defined function one is
interested in. In the case of log z, for example, one can
take V to be € with the negative real axis removed, and in v
one can define

18

log {re™}) = log ©r + e 7,

with -7 < ¢ < n. This approach is adequate for many purposes,
but it has some disadvantages. One is that the cheoice of ¥
is rather arbitrary - we could have made the cut along the
negative imaginary axis, for example - and log z bhehaves

Just as wall or as badly at any point of € - {¢} as at any

other.

A simple example which shows the heginnings of the idea
of a Riemann surface is the £0llowing. The guickest way to

evaluate

SN

dx

T+xd

] SN
PR
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iz to integrate the function log z / (1+z3) around the



"key-hole" contour v

'RQAQ [~ % 1

C'i"'d? of ‘-‘?-’\3 Qﬁmae VM

We take the definition of log z, everywhere except on the
positive real axis, tc be loglz!i + i arg z , with 0 < arg z < 27.
But the contour involves integrating twice along the real axis,
once using the real values log izt , and once using loglz! + 2ni.
We can avold the problem by displacing the contour slightly

away from the cut and taking a limit, but that introduces an
unnecessary complication. A better, though more sophisticated,
approach is to introduce the Riemann surface on which the

4

function log z / (1+23} is defined. We take a stack {Xk} of

copies of the complex plane, each cut along the positive real
axis. Then we attack the lower lip of the cut in xk to the
upper lip of the cut in RS for each k, sc as to obtain a
surface X which is like an infinite spiral staircase squashed
flat. The function log z /{1+23} igs a genuine function on

X : on X, we have
2rk < Imilog z} < 27n{k+1}.
The contour v lies naturally on X : the two transits of the

real axis lie on distinct sheets of X.

How let us consider the Riemann surface for the function
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wﬂ1—22. Generically the function is two-valued, sec we take
. o+ - ,
two copies X and X of T, each cut from -1 o +1., Then we

attach the upper lip of X' to the lower Iip of X and the

F
- 2
lower 1lip of X' to the upper lip of X . We define “¥1~z“ on

X = X+LJX' 50 that 1m'¥/~z2 2 0 for =z € x+ and lmth;zE < 0

for z¢€ X . {Notice that w%ﬂmzz is real only if z € [-1,11).

In this case, unlike that of iog #, the function MJ:~22 takes

the well~defined value 0 at each of the kranch-points z = 1,
80 one can add these two points to X. The surface X is at
first hard to visualize, but it is homeomorphic to £ - {0] by

the map which takes ¢ € & -~ {0} to §€C+gm1} € X+ if i 2 1,

and to i(;wf") € X if {z} £ 1. (See Ex. Z2.5.1

The abstract surface which we call the Riemann surface
of the multivalued function f is the same thing as the graph
of £, i.e. the set of all pairs (z,w} € 52 such that w is one
of the values of f{z}. Thus the Riemann surface ofﬂV:lzz is

the same thing as the complex algebraic curve x2 + y2 = 1 which

’

we described in 81. It is a matter of taste whether one
prefers to regard il as a subse: of ¢° or as a collapsed
parachute lying on the complex plane, but it can be useful to

move hetween the two pictures in one's mind. We shall meet

an illustration of this at the end of 24,

Exercisgﬁ

In doing the following exercises it is useful to
remember the following obvious principle: to define a
continuous map £ : X * ¥, where the topological space X is

~

defined as the gquotient space of a space X by an eguivalence
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relation~, it is enough to define a continucus map

f : X » Y which is compatible with the eguivalence relation,

i.e. is such that f (%) = ¥(x'} whenever = ~ x'.

2.1 1If X is the guotient space of R by the equivalence
relation (2.1), prove that X is homeomorphic to & standard

torus Y in 113, and also homeomorphic to

{(z1,22)E EE : lZTi = jz.l = 11}

{(Define a continucus map Iiz + ¥ which induces a continuous
map £ : X - ¥ by the principle above. Prove that f is a
bijection. Prove that X is compact because it is the image
of a compact subspace of H{z. Finally, use the theorem

that a continuous bijection from a compact space to a

Hausdorff space is a howmeomorphism. ]

2.2 1If X is the quotient space of 322 by the equivalence
relation (2.2}, prove that ¥ is a surface.

[If x € X is the equivalence class of v € R “, and

v = {v' € 122 o lv'=-vll < $}, prove that the obvicus map

V + X is a homeomorphism between V and a neivhbourhcod of x.]

2.3 If U3 is the subset of the projective plane i described
on page 19, prove that Uy is an open subset of [, and that

the map (x, y, 2) v {x/z, y/z} defines a homeomorphism
2
e
U3 R -,

Ibefine the inverse map as a composite : }zz -r Et3 - {0} - ﬁ.}

2.4 Prove Thecorem (2.5}).

[Begin with the continuous map {{x,v)€ Ezz : x2 + yz < 1) = 1

defined by ({x,y) +—*» (x, y, 1 -~ x2 ~ y“}, and proceed as in

Ex. 2.1.]
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2.5 Justify the assertion on page 23 that the Riemann

surface X is homeomcrphic o € -~ {0} by showing

-

that ¢ §(C +7 '} 1s a bijection from inen

: oz 1)

+

+ - N . . ¥ I3 - : Y i
to X which takes the semicircle € = {€T : lzl= 1and Imz 2 Q!
. - .o - —_—
to the upper lip of the cut and the semicircle C = O to the
lower 1lip of the cut; while the same map is also a bijecticon

from {2€ € : 0 < {zi € 1) to X which takes ¢ to the lower

and C to the upper lip of the cut.
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§3 Charts, atlases, orientability

If X is a surface, a homeomorphism ¢ : U - V from

an open set U of X to an open set V of the plane F 2 is

called a chart (or coordinate system) for ¥X. A ccllection of

charts {¢u s Ua-*va} such that the sets U, cover X is called
an atlas for X. By definition, every surface possesses an

atlas.

If X is a surface in Ii3, the most obvious way te produce
charts for it is by projection on to the coordinate planes
of Et3. Thus if X is the unit sphere in ﬁlB, and U is the open
hemisphere defined by z > 0, the map (x, y, 2z) > (x, vy} from
U to the open unit disc in 1{2 is a chart, and X has an atlas
consisting of six such charts, each covering an open

hemisphere.

) Charts defined by projection are seldom the ones
which are useful in practice. Thus for the sphere the best
known chart is the one given by longitude and latitude. It

is defined on the open set U got by removing the Internatiocnal
Date Line from the sphere, and it is a homeomorphism between

U and the open set (-=w,m} x (-1, 1) of E{z. Even this chart,
however, is not usually found in i gecographical atlas.

Granted that one cannot make a chart for a region of the

earth which is exactly to scale {*) geographers want charts
which have some useful but weaker property. Three such
properties are (i) conformality, i.e. preserving angles,

(ii) preserving areas, and (iil) representing great circles

{which are the shortest routes on the sphere) by straight

lines. Let us mention examples of each kind.




{1} sterecgraphic projecticn is the chart ¢ : U -+ V given

by proijection from the north pole on to the equatorial plane,

™
// ~
//&“‘\ ®
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Thus, for the unit sphere x° + y* + z© = 1, the domain U

is X - {{0,0,1)}, and V is R “, and

${x, v, 2y = {x , v .
This is a conformal chart (Ex. 3.2}, as is well-known in
gomplex variable theory.

Mercator's projection is defined on the complement of the

Date Line. Tt takes the point with longitude ¢ and latitude

8 to
(¢, leg tan{ 6 + 31 £ {(=1,7) * R,
2 4

This is conformal (Ex. 3.4), and was especially useful
for navigation, and for depicting the British Ewpire in the

days of its glory.

(i1} The most obvicus area-preserving chart {Ex. 3.5} takes
{d.8) to {d, =zing). {Here (¢,6) are longitude and latitude

again) .}



A more popular one is Mollweide's projection, which takes

(v, to (pcos i8], 4w sin ¢{e)} , where 1§ : [- ]+ i—i,j]

2 2

I

rE

ra| =3

iz che bijection defined by

WAy o+ 4 sin 2¢{8Y = &7 sin 0.

{iii) Essentialily the only chart which takes great circles
to straight lines is projecticon from the centre of the earth
on to a tangent plane. Thus we can map the open northern

. Z
hemisphaere o IR ™ by

{¢,8) ¥» ({cot 8 cosé , cot 8 =zin ¢).

Orientability

It is a basic fact of nature that homecmorphisms
£ : v » VY from one connected open set of Iiz to another come
in two kinds: ovientaticn-preserving and orientation-reversing.
The first kind take <lockwise simple closed curves to clockwise
ones, the second kind take clockwise curves to anticlockwise
ones, For the moment we shall siﬁply accept the existence

of this dichotomy. (CE£. 5.9

We can now divide suvrfaces into two classes, orientable
and non-orientaple. To do this, first observe that if ¢ ¢ U » v
and ¢': U' - V' are two chartes for the same surface then we

have a homeomorphism,

nb‘”ab“i : 4 {UNUYY 4 (URDT)

between the two open sets of Iiz which are the maps of UAU',

This homeomorphism is called the transition map from the first

chart to the secaond.



befinition (3.1} A surfece is orvientahle if it possesses
an atlas tor which all the transition maps are orientation-
preserving 0

Of the surfaces we have encountered so far, all are

orientable oxcept the M8biu

projective plane. T

s band

, the Klein bottie, and the

prove the negative statements it is

enough to considor the MSbius band, for an open set of an
orvientakle surfzce is obviously orientable, and the Klein
bottle and the projective plane each conlain MBbius bands.
For the Mdhius band sec Ex. 2.7.

The guestion of orientability is very closely connected

with whether the surface has one or two sides. But the latter
guestion refers to a surface embedded in }{3 in a definite way,

whereas orieptability is an
as a topological space. We
85,

in

The definition of g surface

intrinsic property of the surface

shall

discuss one~ and two-sidedness

by weans of an atlas

The Ricmann sphere Y} is the set of complex numbers
together with another element which is called «. Thus
£ - iwj = &, and there is also a bijection ¢ : I - {0} » C

given by

Z o i if 7z = LI
e L

(%}

2 . , . .
A map between open sets of W is called orientation-
presarvimy if it is orientation-preserving con each connected
Compornant .



We define the topology of I by saving that U is an cpen set
of ¥ if both U - {e] and ¢{U -~ {6}) are open sets of . It
is then easy to prove that I 1s homeomorphic to the unit

. 3 1 : :
sphere in R by stereographic projection.

It will be secn that we have here a general methcecd for
defining surfaces, iWe have alveady used it for the M8bius
band in 5%.) If X ig a set which i3 the union of a family of
subsets {Uu] » and for each u we are given a bijection
o1 Ua > Vo where VH ig an open set in ﬁ?z, then we can

always define a toplogy on X by prescribing
U is open L= ¢W{UHUQ} is open for all o,

Then X is a surface {sce Ex. 3.9} providing

-1
{a) each transition map g (},ﬂ' : <pa(0qﬂ UE} -+ ¢8(ljanUB)

is a homeomorphism, and

(b {éfx,x} : »x € Uwﬂmﬁ} is & ciosed subset of qu u..

The classification of surface

i

A surface which is a compact topological space is

called a closed surface. It is a remarkable theorem tha
there are very few of them. We havée already met the sphere
and the torus, and it is easy to imagine a torus with g heles,

for any integer g 2 (:
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{We regard a sphere as a Lorus with O holesg .}

Theorem (3.2} Any orientable closed surface is homeomorphic

to a torus with g holes, for some g o2 0.,

Among non-orientable closed surfaces we have met the
projective plane and the Klein bottle. 2 general method for
constructing a non-orientable suvrface is rhe following.
Observe that a M#bius band is a surfece bounded by a single
circle, just as a disc is. Then take & sphere, remove from
it % disjoint discs, and replace cach disc with a M&bius

€

band. The resulting suxface is called a sphere with k cross-

CaAPS .

Theorem (3,3} Any non-orientable closed surface is

homeomerghic to a sphere with k creag-caps, for some k 2 1,

The case k = 1 i

i

the vrojective plane, as we have
seen. The Klein bottle is the case kx = 7. To see that,

imagine the bottle made fyrom & square by ddentifying edges:
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The hatched part is a Mdbius band; the dotted part is another
M8bius band; and the remaindery is a cylinder, i.e. a sphere

with two discs removed,

We shall not prove Theorems (3.2} and {(3.3) in the

course.

It is much more complicated to classify non~closed
surfaces. In particular it is not true that every surface
is homeomorphic tc an open set 0of a c¢losed surface: consider,

for instance, an infinite ladder made of tubular steel.

n
An atlas for the complex curve x° + yn = 1

Even the gimplest functions of ¢omplex variables lead
to surprisingly complicated surfaces. We shall take ag an
exanple the surface X in Ez defined by the equation x7 4 yn = 1,
where n is a positive integer. In §4 we shall prove (using
Thegrem {(3.2)} the striking result that this surface, together
with ite n "peints at infinity" is & torus with 3{n-1) (n-2)
holes. We shall now define an atlas for the surface: this is
fairly compliicated, and readers who find it confusing can
ignore it. We uwse 2n charts to cover X itself, and n more to

include the points at infinicy.
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For each x in the complex plane {except for the n

2nik/in
e

roots of unity } there avre n points {x,y} on X, for
¥ Y

S
X I .
can be any of the values of y1-x', In order to define
Y %

11 : .
1-x as a continuous function we have to cut the x-plane:
we let V be the complex plane cut radially outwards from

, th . . .
each of the n roots of unity to w, i.e.

V=0-1{x:x' € ®m and x" 2 11.

n . . .
If ®» € V then 1-x7 is not on the negative real axis, sc we
can define & holomorphic function f, : Vv » @€ by the

conditions

fatx)n I

and

-n/n < arg £,{x} < w/n.

1]
We can alsc define the other branches of "V1—xn, namely

£f. vV » I, where fk(x} ezﬂlk/n f.{x}, for o € k¥ ¢ n.

Let Uy be the graph of the function f i.e. the

k F

set
{ {x, £otx) € €° : =& V.

This 1s a subset of X, and there is a homecmorphism

¢y, * Uy = V defined by ¢k£x,fk(x)) = », Every point (x,y)

of ¥ such that x € V belongs tc one of the sets U and we

kl

therefore have n charts which cover most of ¥X. We must now

produce ancther n charts which cover the cracks. That is

. n n " T n
eagy to do, for if X7 + y = 1 ther ¥ and v cannot both be
real and 21, i.e. at lesast one of x and y belongs to V. So

we define
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Ul = {(F (v, vyl € €° ¢ y € v}
k R 3 ! : - d
and a homeomorphism ¢i : Ui + V by ¢£(fk(y),y) =y,

We now have an atlas for X.

Finally, we add the points at infinity. If (x,y}€ X

and 1zl is large then v is very near to wy X, for some k,
where Wiereood are the nth roots of -1. (For

gz (1ex )™

-
Y

l
= =" (L= Yen )
'/r-\ \\
s (=07 % (1m Vawn ¥ o)
Thus X has n asymptotes, given by y = WX, and it is

reascnahle to adjoin n points P1,..., Pn "at infinity",
cne at the end of each asvnptote. (We think of Pk as

"ty ) ") Let ¥ = XU {Py,eo. P}, and let
o o= {r, Y u {(x x f (x-1}) : x“1 € v}
k kJ r k # J .

{Note that (x, xfk(x_i)) does belong to X.} We have a

homeomorphism
n N gow - 1 —_
LI ; X {ka — v {c}

k(x_!}} to xT. We define a bijection

which takes ({(x,xf
Ll - " - : : " _ s .

by : U7 =+ ¥V by prescribing ¢k (Pk) = 0. This gives

us an atlas for X, and it is easy to check that the two

conditions on page 30 are satisfied, so that X acguires

a topology which makes it a surface. It is also easy to

check that the topology induced on the subset X by the atlas

is the same as its topology as a subset of Ez.



'

Exercises

1. Find an atlas of two charts for the torus, regarded as
a surface of revolution in 113. What is the transiticn mays

between the charts?

2. Find a single chart which covers the whole hyperboloid
0of cone sheet x2 + y2 - 22 = 1.
3. Prove that stereographic projection 52 - {north polel - HRZ

is conformal.

4. {1y Prove that a smocth orientation-preserving
homeomorphism £ from one open set of R2 to another is
conformal if and only if the matrix of derivatives Df
satisfies the Cauchy-Riemann equations, i.e. if and oniy if
f is holomorphic when 312 iz identified with ¢.

4

tii} Deduce the conformality of Mercator's projection

from that of stereographic projection.

. Prove that the chart {¢,8) 2> (¢, sin &} for the unit

sphere ( see page 27 ) is area-preserving.

6. Consider the atlas for the projective plane described in
£2, consisting of three charts ¢i : Uj - 312. Find the
transition maps between them, and check that they satisfy the
conditiong (a) and (b) on Page 30.

7. Define the MBbius band as the space X of lines in Iiz,

with the topology given by the atlas of two charts described

in &1. What is the transition map? Is it orientation~preserving?
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Let {¢® : U > V! be an arbitrary atlas for X.
Show that there is a continuous map (s,t) —= YS(t) from

[G,7} = [9,271 to X such that

(i} for each s € [0,7] the map € vr-> vy {ti is a simple
closed curve In X which is completely contained in at least

one of the sets Uu’ and.

(ii) the curves vy, and Tﬂ are the same but described in

opposite senses, i.e. vy {t) = yn{2ﬂ—t).
Deduce that X is not corientable.

[Take Yg to be a circle of small radius £ on X with centre

at the point (s, 0} in the standard chart. Acsume that if
(8,£) — Y_I(t} is a continuous map {a,b]l = {0, 2n] - =R °
such that ?S ig a simple closed curve for all s € [a,b], then
?a and ?b are either both clockwise or both anticlockwise.]
8. If a topology is defined on the set T = CU{=] by means
of the two charts described on page 29, prove that the
resulting space is homeomorphic to the unit sphere § in R 3.

[Define a bijection § + I by stereographic projection, and

prove it and its inverse are continuocus.]

9. If a topoloegy is defined on a set X by means of an atlas
{¢a 2 U, Vu}’ prove that X is a surface if the conditions
{a) and {(b) on page 30 are satigfied,.

[Show that (a) &> (% is locally homeomorphic to E22),and

{(b) & (X is Hausdorffh]



i

10. Describe the Riemann surface of the function plz} =,
where p is a polynomial of degree 2n with 2n distinct real
roots. Explain in general terms why the COmplex curve

y2 = p{x}, togethexr with its two points at infinity, is a

torus with n-1 holes,



84 Suhdivisions and the Buler number

A polyhedron, €.9. & cubg or a pyramid, is a solad
object bhounded by plang faces., Each face is a closed subset
-~ -

af the surface of the polyhedron, and is homeomorphic to a

closed disc in the plane. 1f two faces intersect then they

T

intersect in an edge, which is homeomorphic to the closed
unit interval (0,31, If two edges intersect then they
intersect in a single point, called a vertex. If£ V, E, and

F are the number of vertices, edges, and faces of the

polvhedron then the number
y = ¥ - L+ F

is called the Buler number cof the polvhedron. It is well

known that for a convex polyhedron y = 2,

Let us now consider a generalization of this situation.
Suppose that X is a closed surface. We shall define an edge

on ¥ as the imace of any continucus map.
£ {0,171 =+ X

which is 1-%1 except that posszibly £{0) = £{(1). The points

{0} and £{1}] are called the ends of the edge.

Suppose we are given & fLinite set of points of X which
we shall call vertices, and alsc a finite set of edges. We

shall say that these constitute a subdivision of X if

fi} gach edge begins and ends in a vertex, and passes

through no other wvertices,
{1i?} two edgss inlersect at most at their ends, and

{311} 1if T is the union of the edges then each connected
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component of X-U is homeomorphic
The cleosure of & connected
called a face.
Examples
The fellewing are exarmples

fa} 1 vertex at the north pole.
0 edges
1 face
ihl 1 vertex on the seqguator
1 edge, the eguator
2 faces, the hemispheres
{c) 2 vertices st the poles
T edge, the Greenwich meridi
7 face
{d) 2 verticges at the poles
2 edges, both meridians
2 facesg
(e} the usual subdivision
edges, and & faces.

Notice that in each W

CREe

it is a x

into octants, with 6§ vertices,

o an open gdisc in R
component of X-T is then

subdivisions of a sphere.

=333

5

1

2

E+ 7 = 2z,

remarkable theorem that for any surface the
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¥uler number ¥ = V - B + I of a2 subdivision depends only on
the surface as a topological space and not on the subdivision.
In fact ¥y = 2 for a sphere, ¥ = 0 for a torus, y = 2 - 29

for a torus with ¢ holes, and ¥y = 2 - k for a sphere with Kk

cross-caps.

¥ Fl

V- E+ F =0

N

1"

V- E s F e O

We shall not prove this theorem in full generality in this
course, but we shall sketch below an argument which applies
to any subdivision of the sphere, and in §10 we shall give a
proof which applies to all smooth subdivisions of any

surface.

Because the Euley number determines the topological type
of a surface (providing we know whether it is orientable or

not} it arises in very many situations. We shall mention three

here.

(i} Given a smocth function £ : X + R with isolated
non-~degenerate critical peoints ({the terminology will bhe
explained in &10} let Max, Min and Sad denote the number of

local wmaxima, local minima, and saddle-points of £. Then

Max ~ Sad + Min = ¥x.



Examples

In each case the function f is the height above some

fixed pilane.

Mox
oy e
M»DA“}.
"\.\\-
{ S \
\ \ Hax
N
Sad
\‘\\\I\ |
-k“_‘.& _t{x *’/.
Mmﬁ‘"’ﬁ)gﬁ&i:'l,mﬂ‘::\ . o M‘t\.y.:i_, =
K= 320 - ¥ oz - A o= O
{11} Suppose that a fluid is flowincg on the surface.

Then the number of staticnary points of the flow (counted

with multiplicities) is v.

We shall return to these guestions in §11.

o

(iii} Fermat's laat thecrem" is the still unproved
asgertion that if n is an integer greater than two then one
cannot f£ind integers x, y, z such that x= + y“ = 2", This

is equivalent to the statement that the algebraic curve

x7 4 yn = 1 contains ne points (x,y) with both coordinates
raticnal. One of the most important mathematical achievements
of the last few years has been the theorem of Faltings (1983}
which asserts that if f(x,y) is & pelynomial with rational
coefficients then the algebraic curve f£(x,v) = 0 has at most
finitely many points with rational coordinates providing the
corresponding gomplex equation £({x.v) = 0 defines a surface
for which yx is negative. We shall see presently that when

fix,yv} = x4 yn - 1 we get a surface with ¥ = n(3-n}). Sc



Faltings'’s theoren tells us that when n > 3 there are at most

finitely many counterexamples to Fermat's thecrem.

Sketch of proof that ¥y = 2 for a sphere

The procf is by inducticon on the number E of edges in
the subdivision. If E = 0 then we must have Vv = F = 7, for
a sphere with a finite number V of points removed is always
connected, and is homecmorphic to an open disc only if
vV = 1. The inductive step is carried out by observing that

given any subdivision we can reduce E by one of the following

steps:

(i) if there is a vertex contained in only one edge,

repove it and the edge;

(ii) if there is an edge contained in a closed cycle of

edges, remove it.

In both cases the simplification does not change
V- E + F. In filling in the details of thiz argument it
will be found that the essential ingredient is the Jordan

curve theorem, which asserts that the complement of a simple

closed curve on the sphere has exactly two connected
components. A complete proof, however, is guite long and
difficult.

We should mention that the relaztion V -« E + F = 2
for a subdivision of the sphere is a basic tool in graph

theory. As an example of its use, let us prove

Theorem (4.1) Given five points in a plane it is impossible

to connect each pair by paths which do not cross.
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Proof: We may as well replace the plane by a sphere. If we
could connect the points we should have a subdivision with
vV =5 and E = 10. Each face would be bounded by at least
three edges, and each edge would belong to exactly two faces.

Eence 2E # 3F. So F < 6, and V - B + F € 1, a contradiction.

The complex curve x" y =1

We return to the surface i defined by the equation
x" + y? = 1 cver the complex numbers, together with its n
points P, at infinity. (CL. the end of §3.) we shall prove
that its Euler number is n{3-n}. It is orientable (Ex. 5.4 1},

s0 by Theorem (3.Z} it must be a torus with % {n-1) (n-2)

holes.

The curve X = X U {PT""’Pn} maps continucusly to

the Riemann sphere S by

(xX,¥}) > X

Pk - o

The inverse-image of each point of $, except for the n

branch peints B, = ez'ﬁlk/n

" r consists of exactly n points

~

ofl X.

Now let us subdivide the sphere S by taking the points
Bk as vertices, and connecting them cyclically to form a
polygon. For the subdivision we have V = n, E = n, F = 2.
(Notice that n - n + 2 = 2.) The inverse-images in X of the
vertices and edges of the polygon in S provide a subdivision

of ﬁ, which has V = n (for there is only one point of X



-

“ " v R ] 1 -
above Bk)’ E=xn, and F = 2Zn. Sc the BEuler number is
z . .
n -n + 2n = n{3-n}.
Exercises

-+

i. Prove that a surface X is connected if and only if it
is path-connected, i.e. for every pair of points x, v in X

there is a path in X from i to y.

[Write x~y 1f there is a path from x to y. Show that this
is an equivalence relation, and consider its equivalence

classes. ]

2. Let T be a connected subset of 122 which is the union
of a finite number E of closed segments of straight lines
which intersect only at common end~points. Let V be the
toral number of end-points. Use the method of the sketch
procf on page 42 to give a complete proof that the number

of connected components of 132 - T is E -« Vv + 2,

3. Prove that on a connected surface any two points can be

Jjoined by a path which is an injective map.

[Proceed as in Ex. 1.]

4. Let Ay By Aji Bys By, B be six points on a sphere.
Prove that one cannot find nine pathe on the sphere which
link A, to Bj for each i, j and intersect only at their

end-points.
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5. Use the method employed for x4 yn = 1 to show that

the Riemann surface assoclated to the curve y° = pix),

where p is a polynomial of degree Zn with Jdistinct roots,

-k

is a torus with n~1 holes. {CE£. Ex., 3.10.)



Eh smooth surfaces

Up te this polint in the course we have bean

[y

concerned with topology. Thus in 51 we mentioned the

sphere and the cube as examples of surfaces:; but topologically
they are ildentical. From now on we shall be studying the

more traditional geometrical guesticns for which the

difference between a sphere and a cube is crucial. We must

therefore introcduce the concept of a smooth surface. There

are two different ways of approaching this: we can think
elther in terms of abstract surfaces or in terms of surfaces

contained in R °-. We shall describe both approaches, as in

the end both are needed.

Definition (5.1} A smooth surface is a surface tegether

with a smecceth atlas, a smooth atlas being one all of whose

transition maps are smooth.

We shall regard two smooth atlases for the same
surface as eguivalent if each transition map from a chart of

the one to a chart of the other is smooth.

Note Our terminclogy is that a map §f V1+~ v2 from an
open set of R"” to an open set of R™® is smooth if all its
partial derivatives of all orders exist and are continucus,

N L . m
We shall always think of elements of R > ang R as column

vectors, and shall write Df(v), for v € V_, for the
1
derivative of £, i.e. the mxn matrix whose ith colunmn is
1
cth
the 19

partial derivative Dif(v} of £ at v,



The important thing about 2 smooth surface X au

defined i (5.1} is that we knhow what we mean by a smooth

function £ @ X - &, By definition, £ is smooth if for

. . oo .
each chart ¢1 : UI-% ¥ oothe composite map fﬂ¢ﬂ : Vu@ R
0 ¥} [N % . A L

is smooth. We also know what we mean by, sav, a smooth curve

in X: a map vy : (a,b) » X is smooth if for each chart the

map ¢1hy from ymﬁiuu) to Vm is smooth. (Similarly, it

should be clear how to define a smooth map from one smooth

surface to another.)

For smooth surfaces the guesticn of orientability is

easlier that for topological surfaces in general. In fact a
smooth homeomcrphism £ v?m> V2 from one connected apen set
of ﬂ%z to ancther, with inverse g : V2-+ V1, is arvientation-—
preserving or reversing according as the Jacobian det DF (v}

1s pezitive or negative for all ve v {The Jacokian

1
canpet vanish, because the matrix Bf{v) is invertible with
inverse Dgi{w), where w = f{v).) We shall not prove this
theorem, Instead, as we shall only be interested in smooth
homeonmorphisms from now on, we sﬁall take the positivity of
the Jaccbian as the definiticon of an orientation-preserving

Map .
. 3
Now let us turn o concrete surfaces in ® 7,

s - X R . K .
Definition (5,2} & subset ¥ of R 18 a smooth surface if

Tor each x € X there is an cpen neighbourhood W of x in

}ag, and & smooth map £ : W » B such that

(1} X nw = £ 't0) , and

a1

{i1) Dfi{w) does not vanish for w € X N ow.



pvidently the definition needs to be justified by

a proot that such a subset X has an (gssentially canonicall

smooth atlas. That amounis to thoe img

Thecrem (5.3} Let £ @ W+ & bhoe a encoth map, where W is

. 3 o ;
an open set in R 7. Suppese that w,_o= (x , v

7 b oW is

such that f{w } = 0 and D E{w ) # 0. Then there is

iH

s Y.l in BT, and 4 smooth map

@

neighbourhood V of (x

a

g : Vv - R, such that
fl, v, giu, vt = O For all fx,yvr & WV,

Furthermore there is a nelghbourhood W, of w, in W such
that

-1 - . . . )
{®,v,2z) e £ (B0 w o <=2 u o= giw,v) for some (x,vie V.

L

Here qu ienotes the partial derivative of £ with

respect Lo its third varisble. 0f courses there are eguivalent

versions: of Theorem (5.3} with the roles of the variables

(2, v, =) permuted.

The procf of the thecrem 1

L]

given in the Appendix.

Using Theorem (5.3}, let ue show that a subset X of

el

3 e I
® satisfving the conditions of

2} possepsses & gmooth

atlas.

For any w € ¥ the definitior gives us a neighbourhacd

Wof w, and a map £ @ W » R such that (Bfii{w } = 0. Then

Dif€w°) = 0 for i T, 2, er 3. SHuppose L.fidw )} = 0, and

choose V, ¢, and W, as in Theorem {Z.3}. Let U = ¥V

A



O e
o

"
~3

and define ¢ : U -+ V by ${x, vy, 2z} = {=, ¥¥. 7%hen
2 ¢+ U= V is a homneomorphism, with inverse given by

Pty ¥l o= x, v, gix,vi).

The charts defined in this way clearly form an atlas
for X, and it is swmooth, for if ¢ : U+ V is another such
chart (got by projecting on to one of the three coordinate

planes) then

ded” (x, ¥ = (v, giz,¥1)  orx
(=, g{er)} a3y

tx, yi.

- s Tl B )
In each case the transition map ¢eog 1& smooth

At this point it is useful to introduce some more
terminology. If X is a smooth surface in R~ we shall say
that a chart ¢ : U + V for X is ailowable if the inverse map

-1 . o 3 . N
r o= i 18 a smooth map from V o B ~, and in addition the

derivative Dr{v) has rank 2 for all vEVY, (f.e. the two
vectors Dyr{v) and D,xiv} in R are linearly independent.)
We shall call the inverse map r of an allowable chart an

allowable paramelrization. The charts introduced in the

preceding proof were allowasble: we had

A

brivj = f 1 G
1

o .
\?1g{v} ngivajs

The set of the allowable charts is a gmoothh atlas for
X 3 a proof is given in the appendix. This atlas does not

depend on any choices.
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The tangent plane

iIf v 1 ta, b) + IR is

i

2 smooth curve in space, ibs

tangent vector at the point vit) is v (x).

PR , 3 i
Now guppose that X is a smooth surface in IR and
« F

that x & X.

Definition (5.4} The tangent space to ¥ at ¥ is the set of

. 5 . 3 :
all tangent vectors at x Lo all smooth curves in B ™ which

pass through x and are contained in X,

The tangent space is in fact & plane, a two-dimensional

L

vector subspace of BT, That follows from

]
‘g,
<
7

an allowable chart for X

Theorem (5.5) Let 4
such that €U, and r : V- R the associated paremetrization.
Then the tangent space at ¥ Ls the lmage space of the linear
transformation Driv), where v = ¢i{x}: in other words it is

the plane spanned by the vectors DTr{vs and Dorfv).

Proof: Let v {a,b)-*ﬁEB be a curve lving on ¥ such that
v{t} = x., We may as well suppose that v{{a,p}) « U, Then
Yy = refB , where B = ¢oy : la,bt~+ V is a curve in V such that

B{t) = v. By the chain rule the vector y'(&)} is the matrix

product

Conversely, an elemant of the image of Dri{v) is of



the fo

. 2 .
£ is a vector in R . Consider

rm Driv) ., where

the curve f in YV given by

o L v Ll
for |t “ €. Then v 7 reof ig a gurve in X sueh that
y €0 = m, oand V(O] = D dAvl.ot(0F = Drv).b.

ks

normal

[ A 4

normal

) Co ey 3 .
It ¥ is a smooth surface in M7, and | 1is its tangent
by

1]
at x, then the vectors in R ° which are perpendicular
are called normais to X at x. Thus X has two unit
vectors at sach point. If we have ar allowable chart

+ ¥V owith x € U then we can pick out one of the unit

3 a8 the positive one, namely ithe vector n such that

{Dﬁr(v), Dzr(v}, n} forms a right-handed frame. {Here
"

r o vV
v o= g

vector

+ R 7 1is the parametrization inverse +o ¢, and
x) .} TIn other words. the pasitive normal is the unit

in the direction of the vector product DTr(v)x Dzr(v).

Now suppese that x alse belengs to another chart

- -~ - ~ el - - - s
$ 2 U7V, with ¢ ' = ¥ and ¥ = §{x). Let the transition
. ; - > -1 . ~
map between the charts be § = §° 4 ', Then r = ref, so that

Ly the chain rule

where

Dordvy = o Dowivi + ~ D?r(v}

=z
It
.
“
)
I

DTV} + & DTV,

= DE{VI . Thus

O T

Doriévy » O

1 H¥ VY = {a8 -l DT DZ;(;;'

Because ¢b - By= det DF{v), we have proved



i
n
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I

Theorem (5.6} Twao charts containing x define the same

positive normal vector at x Lf and only if the transition

map is orientation-preserving.

Corcllary (5.7} T£ ¥ is an orientable smooth surface in

§t3 there is a smooth map n : X = I{B such that ni{x} is the

positive unit normal to X at =x.

In particular, X is two-sided.

Definition (5.8} 7The unit normal map n : X - IiB of (5.7)

is called the Gauss map of X.
We shall return to the Gauss map in §7.

Conversely, if one can choose a unit normal vector
ni{x) at each point x of X which varies continuously with
®x then X is orientakle, for we can restrict curselves to
allowable charts such that the frame (DTr{v), Dzrev}, nix)})

is right-handed, and these form an oriented atlas for X.

In other words

Theorem (5.9} A smooth suxface in E&B is orientable if and

only if it is two-sided.

Exercises

1. Let {@a T U

. 7 V,1 and {$a : ﬁa -+ ?a} be two smooth

atlases for a surface X. Let F and F dencte the sets of

smooth maps X » R defined using the first and second
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atlases respectively. Prove that F = F if the atlases are

eguivalent.

[In fact the converse result is also true. Thus a smooth
surface is completely described by giving X and F instead

of X and an atlas. [Even more is true: F is cbviously a ring
under pointwise addition and multiplication, and the
topological space X is completely determined by the ring F

alone.]

2. Let X be a smooth surface in 313. If two different
atlases are constructed for X by the method used on page 49,

prove that they are equivalent.

3. Let X and Y be smocth surfaces. What should be the
definition of a smooth map £ + X - ¥Y? If Y is a smooth
surface in HQB prove that £ : X -+ Y is smooth if and only
if ief : X » }23 is smooth, where i @ ¥ o 323 is the

inclusion.

4. Let £ : V, ~ V, be & homeomorphism between open sets
of Ilz which is helomorphic when Ilz is identified with .

Prove that f is orientation-preserving.

Prove that the transition maps of the atlas constructed
in §3 for the complex curve <™+ yn = 1, and of the atlas
constructed in Ex. 3.10 foxr the curve y2 = pi{x}, are

holomorphic, and deduce that these surfaces are orientable.

5. Let X be a smooth surface in E{3, and let £ = X » R

be a smooth function. Show that at each point x € X there



is a unigue tangent vector to X, dencted by (gradxf)(x),

such that

< fgradgf) (x) , ¥'(8) > = £ {E(y(r)))
for all smooth curves y on X such that v{t} = x. Deduce
that (gradxf){x} = 0 if £ has a local maximum or minimum
at x.

[The unigueness holds because every vector in the tangent
plane Hx at x is of the form v'{t) for some v. For the
existence, let r : V -~ Ii3 be an allowable parametrization
of X in a neighbourhood of x, and let g = fer +: V + R.
Then grad f = Diyg. e, + Dyg. e,, where {e1,ez} is the basis
of Hx such that <D.x ej> = éij.]

) 3
€. Let X be a smooth surface in R ~, and let F : 123 + R
be a smooth function. Let f = F/X. Prove that (gradx £} (x)

is the projecticn of i(grad F) (x) on to the tangent plane

M. to X at x.
X

Deduce "Lagrange's method of undetermined multipliers",
i.e. that statement that {grad F) (x)} is normal to X if
f has a logal maximum or minimum at x. (If ¥ = g“1(0), for
some smooth function g : EtB + IR, then grad F is normal to

X if and only if grad F = X grad g for some A.)
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§6 The first fundamental form

For the next five sections we shall be studying the
geometry 0f a smooth surface X in 1!3 which is covered by a
single chart ¢: X + V, where V is an open set in Iiz. Thus

X = r{v), where

r : V- ]13

is an injective smooth map such that the vectors D1r(v) and

Dzr(v) are linearly independent for each vE V.

For brevity we shall use the phrase "X is a patch of

surface" to refer to this situation.
Notation

We shall usually abbreviate the tangent vectors
D,r(v} to r,(v), and shall usually write just r, when it is
obvious which point of the surface we have in mind. The
same convention will also be used with other functions

defined in V.

We shall systematically write (u,v) for the coordinates
of a point of V : this conflicts, of course, .with our previous

use of v for a point of V.

' Finally, when we are being precise, a point of V is a
column vector (3) - But for typographical convenience we

mogtly write it {u,v) all the same.



Lengths of curves

A smooth curve v on X is a map of the form
t ‘—‘“’"Y(t) = r{u(t)r V{t))r

where t v (uit}, v(t}} is a smooth map [a,bl — V.
length of v is defined as
b -
Liy) = f iy{t)1 at,
a

where v{t)} denotes & /dt. By the chain rule

yit) = ult) ry + vig) o
g0
b .2 . 2. %
Liyy = f {Eu® + 2F uv + Gv°} at ,
a
where
E = <r1,r1> , F = <r1,r2> and G = <r2,r2>

The

(6.1}

are three functions V + R which in the formula {6.1) are

understood to be evaluated at (uit}), vit}) € V. These

functions depend only on the surface X and its parametrization,

and not on the particular curve : if we are given E,F,G

then we have all the information about the surface which we

need to calculate the length c¢f anv curve on it.



Definjition (6.7} The guadratic form
i duz + 2 F dudv o+ G dv2
is called the first fundamental form of the surface. (*)
Examples
{i} Thne unit sphere in 323 with one meridian removed can

be parametrized
u / CoOS U COSs W
v J7T U cos u osin w
rd .
sin u
where u and v are latitude and longitude. Then
r,o o= -sin u  cos v\ r, = -CCs u  sin v
~8in u  sin ﬁ/ : “ COS U COS V
* O0E u o

The first fundamental form is duZ + cosy qv? .

{ii) The surface o0f revolution formegd by rotating the curve

x = £z} in the X2 plane about the Z-axis can be parametrized

[ flu} cos «
\.v) ¥ (f{u} sin v
. .

The first fundamental form is

(1 + £°00) %) au? » £(ur? avl,

(*} The first fundamental form is simply a way of writing down
the three functions E,F,G and at the same time reminding

the reader of the formula {(6.1). Thus du and dv are

formal symbols which are not meant to have any independent

"meaning”. What we are really talking about is the
gquadratic form on the tangent plane to X at the point

r(u,v} which to the tangent vector Er, + nr, assigns its

length

ng1 + nr2§2 = B £2 + AP EN + G n2.
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The information contained in the first fundamental
form is partly about the surface and partly about the chart.
Thus the chart is conformal (i.e. angle-preserving) if and
only 1if F = 0 and E = G everywhere (see Ex. (6.4 )); and we
shall see presently that the chart is area-preserving 1if

EG - F2 = 1. All surfaces possess conformal charts and

area-preserving charts. One of ocur main tasks is to extract
from the first fundamental form the information which depends

only on the surface and not on the chart.

The first fundamental form does not change if the
surface 1is bent without stretching it. It is useful to

introduce the following terminology.

Definition {6.3) Two surfaces X, X in 113 are isometric

if there is a smooth homeomorphism f : X + X which takes each

curve to a curve of the same length.

Then we can state, for the moment without proof, the

basic fact about the first fundamental form.

Theorem (6.4} Two smooth patches of surface X and i in

B.3 are ilsometric if and only if they can be parametrized

3

r: V-+ R and ¥F : V- 113

so that they have the same first fundamental fornm.

Examgle

2 2

The upper half of the cone x° + y2 = 2z~ , s8lit along

the line x = -z, v = 0, can bhe parametrized

1)
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(V2 u cos v, ¥Z u sin v, V3? u)

with (u,v) € (0;») x (-n,7). The first fundamental form is

du2 + 2u2 dvz.

This is the same as the first fundamental form of the wedge-

shaped piece of 112, with angle 2%//Z , parametrized

(v cos (VZ v), u sin (vZ v)) .

Theorem (6.4) gives us a way in principle of deciding
when surfaces are isometric. But it is not very practical,
for it does not help us to decide when we can reparametrize
a surface s0 as to obtain a desired first fundamental form.
The most obvious question is when a given patch of surface
is isometric to part of a plane, i.e. when it possesses a
chart which is exactly to scale. The only surfaces for which
this is obviously true are pPieces of cylinders and cones. In

fact there is another class: the developable surfaces ({(cf. 51},

which are swept out by the tangent line to a curve in space.
We shall prove this now by using Theorem (6.4}, In 51 we shall
prove the more difficult result that no other surfaces beegides

cones, cylinders, and developables are isometric to the plane.

Suppose that v is a curve in 113 parametrized by

arc~length. (*) The associated developable surface X can be

{(*) A curve u > y(u) in r 3 is said to be parametrized by
arc-length if the length of the curve from Yyi0} to
y{u) 1§ u. The condition for this is clearly that

idy/daull = 1. 1It is also obvious that any smooth curve
can be parametrized by arc-length.



parametrized with
r{a,vl = y(u) + vy(u}, .

where }{u) = dy/du. Then r, = ? + v¥, and Yo = %. We have
<;’;> = 1, so that <y,¥> = 0. Recall that !¥f is the

curvature « of y.

The first fundamental form is

(1 + V2K2} du2 + 2 du dv + dv2
Now let us choose a plane curve ur> g{u) = (x{u}),y{u}),

again parametrized by arc-length, whose curvature is the same
function xf{u) as for y. {(We can find p by soiving the system

of two linear differential egquations

= k(u)y

3
¥ =—x (u)x.)
o 2 . .
Then part of R~ can be parametrized
(u,v) = p(u} + vo(u),
and it will have the same first fundamental form as the

developable surface X.

Proof of Theorem {(6.4)

The "if" half of the theorem is obvious. Conversely,

if X is parametrized by r 1 V = 323, and £ : X » i is a smooth

isometry, then we can define ¥ : V + R ° by ¥ = foxr. It
follows from the smoothness of f that r is a smooth map

{(cf. Ex.5.3) 50 we have



fPiEa? + 2pid « ovit g = PUER? ¢ 2Fav + & ae

a a
for all smooth curves (u{t}, v(t)} in V, where E = <f1,f1>,
etc. Let us apply this to the curve given by u(t) = u, + t
and v{t} = v_ for oxt < ¢, where (uo,vn) is some point of V.
we find

£ 1 £~
f EB(u +t, v )%t = [ Efu +t, v )%dt.
G =] ] 0 o o
Because
¢fu) = lim 1 f% o(u_ + t) dt
e+0 & O
for any continuous function ¢, we conclude that
E{u , v ) = E(uu, v ). S8imilarly we can show that
Glu,, v } = G(u r V_). Then we consider the curve
ult) = u_+ ot vit) = v o+ ot The same argument shows that
(E + 2F + G)? = (E + 2F + & ?

at (u_,, v,), and hence that F{u_, v_ )} = %(uo, v,). To

complete the procf of the theorem we need only to show that
¥ is an allowable parametrization, i.e. to show that the
vectors f1 and fz are linearly independent. PBut that is so
because the equations E = E, F = F, G = imply that the
angle between f1 and f2 is the same as that between r, and

1

rz.

Areas

Apart from the lengths of curves on the surface the

first fundamental form alsc enables us to calculate areas.
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Heuristically at least, the infinitesimal parallelogram on

X spanned by the tangent vectors r, du and r, dv has area

ur1 ® rzﬂ dudwv. Using the vector identity
<a X b, a » > = <a,a><b,bh> - <a,b>2
we find
ir, » x, 0 = (¢ - FA) Y. (6.5)

We therefore make

Definition (6.6} The area of the part of X = r{(V) corresponding

to V,o V is

f e - 7Y quav.
VO

For this to be a sensible definition we need to know

that it does not depend on the parametrization. Suppose that

X is described both by r : V » R> and by ¥ : V » R>, with
corresponding first fundamental formns E du2 + ZF dudv + G dv2
= w2 T omr o e .
E 4GT o+ ZF dudv + G dvz. Then there is a smooth biljection
£ : V>V, which we write

(u, v} ¥ {(llu,v), 9{u, V)},
such that F{{i, ¥} = riu, v} . We have



S0
{BEG - szé = Hr} " rdﬂ
= E(G1 GZ - ﬁz %1}{r? x %z)h
= 101 %h - ﬁz ﬁ1& “r1 % fzﬂ

Thus by the standard theorem about change of wvariables in

maltiple integrals we have

[ Ee - 9t auay -
v

Vv i

o

The guestion of realization

It is natural to ask the following guestion. If we
are given an open set V in 122 and three smooth functions
E, F, G : V~+ R, can we find a patch of surface r : V -+ IEB
whose first fundamental form is Edu2 + 2F dudv + G dvz? If

so, then
E>0, G>¢0C, a,ndEG——.F2>0. (6.7)

{In other words, the first fundamental form is positive definite.)

It these conditions are satisfied the answer to the question is:

locally yes, but globally no. Given E, F, G and a point P gV
3

we can find a neighbourhood vV, of F and a map r : V, > R
which leads to the desired E, P, G in V, . But usually we
cannot extend r to all of V. We shall not prove these

statements.

Let us notice, however, that if E, F, G are given

satlisfying (6.7) then we can assign a “"length" XLy} to every
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curve y in V by the formula (6.1), and then we can define

a metric on V by
d{p, Q) = inf {L(y) : v is a curve in V from P to Q}:

n §12 we shall study a very important example of a metric
defined in this way : the Poincaré metric on the unit disc in
ﬂlz. t cannot be realized (except in little patches) as the

. ; . 3
natural metric of a surface in W ~.

Exercises

1. The catenary is the plane curve with equation y = cosh x.
Why is it so called? The catenoid is the surface of revolution
obtained by rotating the catenarxy about the x-axis. Parametrize

it and find its first fundamental form.

2. The helicoid is the ruled surface swept out by a straight
line whic¢h moves like an aeroplane's propeller : the line is
always perpendicular to the z-axis, and at time t it passes
through the point (0, 0, t}) and mékes an angle t with the
X—-axis. Parametrize the helicoid and find its first

fundamental form.

3. If one meridian is removed from the catenoid prove that
the resulting surface is isometric to part of the helicoid,
in such a way that meridians of the catenoid map to rulings
on the helicoid. What curve on the helicoid corresponds to
the "waist” of the catenoid? [We shall in Ex.10.4 that there is

essentially only one possible isometry betwesen these surfaces,]
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4. Two curves on the same patch of surface are given
parametrically by t +—=* {u{t), vit)) and t += {a{t), Vit)).
Suppose that the curves intersect when t = 0, i,e. that
u(0) = u{0) and v{(C) = ¥{0)., Prove that the angle of

intersection % is given by

E ul + FAV + vi) + G o9

{(Eu2+2P&G+GG){EE + 2 F Gy o+« G 34 1Y.

Deduce that a chart is conformal if and only if the first
fundamental form satisfies E = G and F = 0 everywhere.

c. Let ¥ : {[a, b] = Eﬁ3

be a curve parametrized by
arc-length. TIts curvature and torsion at y(u) are denoted

by k{u) and t(u}; we suppose that bcoth are non-vanishing.

Let. Hu be the plane thrcugh y(u) normal to the curve, and let
Cu be the circle in Hu with centre y{u) and radius ¢. Let

X be the surface swept out by Cu. Prove that when X is

suitably parametrized its first fundamental form is

2

((1-xg cos w )2 + g T2) du2 + 2 52 Tdu dv + €2 dv2

Prove that the area of X is 2re times the length of Y.
[Why is this guestion not sensible unless £ < Min K(u)_1?]
6. Notice that the first fundamental form can be defined

for a patch of surface given by r : V - R> for any value
2

of n. The torus {(21’22) €€ = izgt = lz,0 = 1} - see Ex.
; ) iu iv , .
2.1 - can be parametrized (u, v} +—* (g r € }. Identifying
Ez with 124 in the usual way, prove that the corresponding
2. 2

first fundamental form is ﬁuz + gv.

{We shall see in §10C that a closed surface in }23 can never

have the firsgt fundamental form du2 + dvz.}
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§7 The curvature of a surface in IQB

We shall continue to study a patch of surface X in
113, given by a smooth map r : V + 113. Near a point
x = riu, v) the surface is approximated by its tangent
plane Hx at x, which is the plane spanned by the vectors
r1(u, v) and rz(u, v}. The curvature of X at x is the way

in which X diverges from . We use Taylor's series to

expand r(u',v') when (u',v') is near (u, v):

r{u',v') = riu,v) + {r1 {u,v) Au + r, (u,v) Av}

2

+ % {r11(u,v) Au® + 2r12(u,v)AuAv + r22(u,v)Av2}

+ { third-order terms },

where Au = u'~-u and Av = v'-v. If we neglect the third-order
terms then the distance of r(u',v') from the tangent plane

m is <n, r{ivu'v") - r(u,v)> =

> Aave ,  (7.1)

2
4 {<n, r11>-Au + 2<n,r12> Aulpv f <n,r22

where n = n{u,v) 1s the positive unit normal to X at x.

3

The quadratic form (7.1), without the %, is called the

second fundamental form of the surface X. Tt is traditional

to write it as

L du2 + 2 M dudv + N dvz,

where L = <n,r11>, M= <n,r12>, and N = <n,rzé> are real-valued

functions of {(u,v) €V.

We shall now show that knowledge of the firet and second

fundamental forms enables one to calculate the curvature of



-67_

any curve on X, (In fact much more is true : the two
fundamental forms determine X completely up to a rigid

motion of 313. See Ex. 7.6}

let v : {(a,b) + 123 be a curve on X parametrized by
arc-length. We shall write y(t) = r{u(t), v{t)) as usual.
The curvature « of y at yi{t) is, by definition, the length

of the vector ¥(t). This vector can be decomposed
ol .l
Y = 'Ytgt * T,L

into a component ?tgt in the tangent plane and a conponent

?l normal to the surface. The length of ?tgt is called the

geodesic curvature Kg of vy =~ for we shall see in §8 that

Ytgt = 0 if and only if y is a geodesic - and the length of

Y, is called the normal curvature Kn of y. "Thus we have

K = Kg M Kl'l - ‘7-2)

We give signs to Kg and Kn by defiping

[T [r
Kg = <Y ,¥Yxn> a‘nd Kn = <y,n> .

»

The important thing about K is that at any point it

depends only on the direction of Y at that point, i.e. on

the unit tangent vector % = ﬁr1 + Grz. '

Theorem (7.3) If v is a curve on X parametrized by arc-

length, then its normal curvature is given by

Kn = Lﬁz + 2 MﬁG + NGz.

The geodesic curvature, on the other hand, depends on

» - [ ) .

u, v, u, v and the first fundamental form, but not on L, M, N.

(See Ex. 7,5)
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Proof of (7.3) By definition k_ = <n,¥ »>. But
-l d ~ L]
Y o= o= v+ vr,)
L L S TR
= fiir, 4 Vo) o+ (ﬁEr + 20vr + Gzr ).
t 2 1 12 22
This gives the desired formula, as <n,r1> = <n,r,> = 0.

From (7.2} we see that of all the curves on X passing
through a point x = xr{u,v) in the direction Er1 + nr, the

minimai possible curvature - iz that of the normal section,

i.e. the curve of intersection of X with the plane through

¥ spanned by n and the tangent vector £r1 + nr Let us

2
now consider how < varies if we rotate the unit vector

gr1 + nr, in the tangent plane at a fixed point. In other

words we consider the values of Ky = ng + 2ZMEn + an subject

to the constraint that ng1 + nr2ﬂ2 = Egz + 2FgEn + an is 1.
Yf we change from {rj,r?}to an orthonormal basis {e1,ez} in

the tangent plane, then the guadratic form ng + 2MEn + Nn2

will become, say, A£2 + 2BEN + an , while the constraint
becomes 52 + n2 = 1. We can then rotate the basig {e1,ez}

go that the form Agz + Z2BEn + an becomes diagonal, say

As £ and n vary subject to £2 + n2 = 1 the normal curvature

varies between K and Koy 1f Ky ® K, the eigendirections

{ei,ez} are uniguely determined.
We now introduce some standard terminology.

Definition (7.4}

{i) The extreme values Kqr Ky of the normal curvature at
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a point of a surface are called the principal curvatures

at that point.

(ii) The directions of the curves with curvatures k. ,x

1772

are called ths v -cipal directions at the point.

{iii) The prcaioct K = KqKy is called the Gaussian curvature

of the surface. \

{iv) The avarzge i(m1 + Kz) is called the mean curvature

of the surface. {*)

Remarks

{1} The principal directions are not defined at a point
where Ky = Koy but wiwy are perpendicular whenever they are

defined. (A poini with k,= Kk, is called an "umbilic".)

{iii) 1If K4 and Ko have the same sign - i.e. K > 0 - then
the surface locks convex or conéave, i.e. it stays on one
side of its tangent plane. If Ki and Koy have opposite

signs -~ i.e. K < 0 - the surface‘looks like a-saddle, and

crosses its tangent plahe.

Our next main task is to explain the geometric
significance of the Gaussian curvature and the mean curvature.

But first let us point out that the change of basis

e T a4xy + By,

M
H

2 T GpFy ¥+ BoT,

in the tangent plane which converts the fundamental forms

2 2 2

B2 + 2FEn + Gn? and LEZ -+ 2MEn + Nn? to £2 + 12 and

K152 + K2n2 can be done in one step. For

(*}) Many books deflne the mean curvature as Kqy * Kye



are the relative wigenvectors of the two forms, i.e. the

vectors such vhas

/
(L PALGY L R (E F\(ui\
n‘f

MONS2 F g/ \Bi/,

nermalized =0 “hat Eai + 2Fai8i + Gsi = 1. 50 we have

Theorem (7.5) (i) The principal curvatures g are the

1'%2

roots of the guadratic equation

T -
det SJL MA oLy (} F)K - 0.
M ow ) \F G

{(ii) The Gaussian curvature is K = (LN—Mz)/(EG—Fz)_

{iii) The mean curvature is

} LG - 2ZMF + NE

EG—F2

Interpretation of the Gaussian curvature

For a plane curve the curvature is defined as the
rate of change of direction per unit length, i.e. as dy/ds
where ¥ is the angle bhetween the tangent and a fixed
direction. We can equally well take ¢ to be the angle
between the normal and a fixed direction. The analogous

procedure for a surface is to define the curvature as the

rate at which the normal sweeps out sclid angle per unit
"
area of the surface. We shall now see that this is the

Gaussian curvature.



Recall from 45 that for an oriented surface X in
R 3 the Gauss map n : X + S is the map from X to the unit
sphere in }{3 which assigns to %€ X the unit normal vector

n{x}) at x. Let U be a small neighbourhood of x in X. We

shall consider the limit as U contracts to x of

area n(U) (7.6}

area U

where the area of the piece n{U) of § corresponding to U is
taken to be positive or negative accerding as the map n

preserves Or reverses orientation.

Theorem (7.7) The limit (7.6) exists, and is the Gaussian

curvature at x.

Proocf: Suppose that X is parametrized near x by r(u,v) in

the usual way, and that U = r{(V). The area of U is

| hey, » ro b dudv = (E:G—F?‘)i dudv,
v v
The corresponding area on S is hn, x n,l dudv. But the
\%

vector n; X n., is in the direction of n, and when we take

the sign into account we have

area n{(u) = <n,n, x n,> dudy.
v 2
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Now <n, n1x n2> = <r1x rz, n1;‘n2>
lly_-1 X rzﬂ
= <r1,n]><r2,n2> - <r1,n2><r2,n1>
li r, X r, i
S
(ec-r2) !,
because <r1,n1> = m<r11, n> = -L, etc.

Thus as U shrinks to a point the ratio of areas

becomes

LN-M°
3
EG-F

as we want.

Corecllary (7.8} For a convex closed surface X in 323 we
have

[ raa = am ,

X

where dA is the element of area of X.

Proof: For a convex surface the' ' Gauss map n : X - S is a
bijection, and we have just proved that KdA is the area of

n(4A) .

In 510 we shall prove that for any closed surface X

one has

{ RKda = 2my,
X

where y is the FRuler number of X.

Two other possible definitions of the Gaussian curvature

are given in Ex. 10.5.



Flat surfaces

A surface is called flat if its Gaussian curvature
vanishes. In §10 we shall prove that a surface is flat if
and only if it is locally isometric to a plane. It is a
different matter, however, to decide which concrete surfaces
in space are flat. Planes, cones, and cylinders are
easily seen to be flat, and s0 are developable ruled surfaces.
We shall now show that these are essentially the only ones.
This is slightly vague. The most general flat surface is a
patchwerk of pieces of planes, cones, cylinders, and

developables, all meeting each other along straight lines.

To avoid such messy statements we shall here prove only

Theorem {(7.9) Let X be a flat surface. Then in the

neighbourhood of a point x where the mean curvature does
not vanish X is a piece of a cone, a cylinder, or a

developable.

Proof: At each point in scme neighbourhocod of % one
principal curvature vanishes and the other d&ces not, so there
are two well-defined principal directions, corresponding to
orthogonal unit tangent vectors eT, e, - We shall suppose

that ¢, 1s the direction in which the principal curvature

vanishes. We can reparametrize X in a neighbourhood of x so
that r, and r, are parallel to e, and e, respectively. (See
Appendix.} The first and second fundamental forms then

reduce to Edu2 + de2 and Ldu”.

We shall first show that the curves u = constant are

striaght lines, i.e. that X is a ruled surface, and then we
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shall show that a ruled surface is flat if and only if it
ig developable. For the first, it is enough to show that
e, is constant when u is constant, i.e. that the partial

derivative e, 5 vanishes.
f

We begin with the derivatives of the unit normal n.

We have
n, = - E—éLe and
1 1
n2 = 0,
for <n e.>» = {r H"1<n r.,» = —E"§<n r,.» = -EbéL etc,
1 71 1 1 771 11 '
Hence
<e a,> = =~ E_%L <e n,>
2,27 1 2,2 1 1
= E—%L <e n,,”>
2! 12 {because <e, , n,> = 0)
= 0.
Furthermore <e2 5 ez> = 0 because e, is a unit wvector,
r
and <ez'2 , N> = - <e2 R n2> = 0. So ez’z = 0, as we want.

Now let us consider the general ruled surface in 123
swept out by the line through y({u) in the direction of the
unit vector af{u}, where y is a curve in I{B parametrized by

arc—-length. The surface is parametrized by
r{u, vi = vy{u} =+ wva(u),

so that r,, = Y + va, Tqg = a, and r,, = 0. Thus in the

second fundamental form N 0, and the Gaussian curvature

vanishes if and only if M = 0, i.e. if and only if

<y, x r., , a» = 0. But



<r,xr. , a» = <{y*va)xa , a>

i

L -
<y, axa>,

We have seen (Ex. 1.8) that <§,a:ﬁé>= 0 is the condition

that the surface is developable.

Exercises

1. Find the first and second fundamental forms for the
helicoid given parametrically by {(u cos v, u sin v, v).
Find the principal directions and the principal curvatures

at each point.

2. Find the principal directions and the principal curvatures
at a peint on a surface of revolution in terms of the
curvature x of the generating curve, the distance p from the
axis, and the angle ¢ between the axis and the tangent line
through the point. Prove that the Gaussian curvature is

K cos ¢/p.

Prove that the isometry found in Ex. 6.3 between the
catenoid and the helicoid takes each point to a point where
the Gaussian curvature has the same value. [In §10 we shall

prove that this is true for any isometry.]

3. A tractrix is the path of a heavy object which begins

at the point (0,1} in E{z and is dragged slowly by a rope of
length 1 held by a person who begins at the origin in 322
and walks with unit speed along the x~axis. Prdve that the

tractrix can be described parametricalily by
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x = —lcos u + 10(} fan % u)r y = sin u.

The surface obtained by rotating the tractrix about the
x—axis is called the tractoid. Prove that its Gaussian
curvature is everywhere -1. Prove that the area of the

complete surface is 2w,

Prove that when the tractrix is parametrized by

arc—length the first fundamental form of the tractoid is

au’ + e—2u av 2,
4, For a surface parametrized in the usual way, express
the six quantities <ri, rjk>’ where i, 3, X = 1, 2, in terms

of E, ¥, G.

5. If t k> (u{t), v(t)) describes a curve parametrized by
arc-length on a patch of surface, prove that its geodesic

curvature is given by

(BG - PO (V- 09 4+ (p a3 s g v +r avd o+ s v,

where p, g, ¥, s can be expressed in terms of E, F, G.

Prove that p = (EG -F2) % (EF, - } EE

5 = 3 FE1).

6. For a surface X parametrized in the usual way let P
be the {3 x 3)-matrix-valued function of (u, v} given by
P = (ri, Tor n). Prove that the function P determines X

up to a translation in E{B. Prove also that P satisfies

the differential equaticns

JF/0u = PA , d¥P/3v = PB

1 1

where A = C D and B = ¢ 'E, and
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EF O {8111 ®129 L\! /2912 3122 "My
Cc = F GO ) o = \az_[,] 6221 "M! E = {a212 6222 "‘N/

Y0001/, L M o/, M N 0/ .
and aijk = <ri, rjk>. Deduce that X is determined by the

first and second fundamental forms up to a rigid motion of

® 3.

[To obtain the differential equations, notice that

PtP = C. For the last part, observe that each row gt of P
satisfies the differential eguations df/3u = Atg and

98 /av = Bt £ . Use the fact that a first order system
of linear ordinary differential equations possesses a

unigque solution with a given initial condition.]



58 (Geodesics

Roughly speaking, a geodesic on a smooth surface ¥
is a smooth curve vy : [a, b} -+ X such that the length £ (y)
of y is minimal among all smooth curves on % joining y(a) to
y(b}). But we shall adopt a weaker definition, partly Jjust
fer convenience, and partly because we want, for example, to

count any segment of a great circle on a sphere as a geodesic,

even one which goes more than half-way round the sphere.

Cefinition (8.1) A smooth curve vy : [a,b] » X is a geodesic

if for every family {YS} of smooth curves in X such that

Yo = v and, for all s, ys(a) = yl{a}) and vg ik} = y{b), we
have

d ¢ (v ) = 0.

ds s | s=0

Here a "family of smecoth curves" means that Vg ot fa,b] + X
is a curve for each s in an interval {-~ec,e}), and that

(s,t) +—r ys(t} is a smooth map from {-c,c) = [a,b] to X.

In this section we shall derive the equations for a
geodesic by the standard method of the calculus of variations.
The equations are intrinsic to the surface, in the ssnse that
they invcolve only the first fundamental form : obviously the
geodesics 4o not change if one hends the surface. But we
shall find that gecdesics can alsc be characterized in a
completely different non-intrinsic way. This is intuitively
obvious : a geodesic 15 a curve on X whose direction changes

as little as possible, i.e. one such that the derivative of



its unit tangent vector is normal to the surface.

To derive the eguations we can assume that X is a
parametrized patch of surface, for any segment of a geodesic
is a geodesic. Let us assume that Yg 18 given parametrically by
tr—>» {u(s,t}, vis,t})), and differentiate the expression

{6.1) for ﬂ(ys) with respect to s.

oY
E(YS} = R% dt ,
a

EQ? + 2Fav + gul , and u and v denote 3u  and 3

where R = gu ov .
3 ot
Thus
{'b 3

d L (y.) = 3 R ¢ 3R

ds =) i ¥z dt.
But

N _ .2 L ae .2 .2 .

cR = (E_, u” + 2F, uv + G, v°) Ju + (E.u® + 2F uv + G,v) avw

oy 1 1 1 e 2 2

5 os oS
+ 2 (B0 + Fv) 30+ 2(F0 + Gv) 3v .
a8 s
Integrating by parts, and observing that
du = v = ¢ when t = a,b, we find
2s 3s
b
Qf; = V{{P Ju  + @ 3v} dt , (8.2)
ds' g=q 3s s
A

where

P = 3 R"%(E1ﬁ2 + 2F UV + G, w2y - {(R7H(ED + F)Y

L]
3t

(R rg o+ Gv)) .

i

and © = 3% R*%(Ezﬁz + 2FZQG £ G,

32,
ﬁk”
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In (8.2} the functions P and Q are evaluated at
s = O, They are then functions of t which depend only on
the original curve vy and not on the family iys} . The curve
Yy is a gecdesic if and only if the derivative given by
{8.2) vanishes for every family <f curves containing v.
The necessary and sufficient condition for this is that
P = Q = 0. The sufficiency is cbviocus; the necessity is
proved by the following argument. Suppose, for example,
that P does not vanish feor & = t ., where a < t_ < b. If
P(t,) > 0 then we can find an interval (t, =8 , £, + &)
in which P{t) > 4 P(t_ ) > 0. Choose a smooth positive-valued
function ¢ : [a, k] + R such that gt ) =1 but ¢(t) =0
when t is outside the interval (t,- &, t, + §). Then consider

the family of curves given by

uf{s, t) uit) + s¢(t}

vis, t) vi{t)

for iegl < €. 7The expressicn (8.2) takes the value

b
j B e(dar = P ) (Prumar > o,
a " a

a contradiction. So P = 0; and similarly Q = 0.

To put the result in more manageable form we can assume
that y is parametrized by arc-length, so¢ that R = 1. {Note
that for the preceding argument to work we must not assume
that the curves Yg of the family are parametrizéd by arc-length
for s # 0, for then 3u/ds and 3v/3s could not be arbitrary

functicons of t .}
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Thegrem (8.3) If v is parametrized by arc-length then it

is a geodesic if and only if

4 . . L2 . e .2
d}'{Eu + Fv} = } (}.,i u’ o+ 251 uv o+ G_l v7) and
d . - _ -2 + 2F ra N .2
&%(Fu + Gv)y = 4 (52 u 5 av G2 v

From these equations we can deduce the non-intrinsic

description of a geodesic.

Corollary (8.4} A curve on X is a geodesic if and only if

the derivative of its unit tangent vector is normal to X at

each point.

Proof of (8.4) Let y be a curve on X. We can assume it is

parametrized by arc-length. Its unit tangent vector is

y = nr, + Grz. Thus v is normal to X if and only if

d . - _ . _
< It (ur1 + vrz) y Ty > =0 for i = 1,2.

But these are precisely the equations of Thecrem (8.3). For

d » a _ é - - _ - - .
< d-t(u:c1 + Vrz}' r, > = g < ury + vr,, r1> <ur, + vrz,dr1/dt

d - [ .2 - .
gt (Bu + Fv) {u®<« TorTyq> + uv(<r1,r12> + <r,,ry,>)

+ %2<r2,r12>]

It

=3
dt

(Eq + Fv) - }{(Q%E. + 200 ¥, + o2

1 1 Gy)i

and similarly for the other equation.

Corollary (8.4) tells us that the geodesics on X are the
trajectories of particles which move freely on X, subject to no

forces except the constraint of remaining on X. This gives us
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a practical way of finding the geodesics con many surfaces.
(Cf. especially Ex. (8.3 } It also explains why the length
of the component Qrin the tangent plane is called the
"geodesic curvature": this component measures the extent

to which v fails to be a geodesic,

. 2 . .
Because the determinant ECG-F~ is non-zero the eguations

for a geodesic can be rewritten in the form

G = Afu, v; u, V)

B{u, v;: u, v),

o
y

where A and B are guadratic forms in u and v whose

coefficients are functions of u and v. The theory of ordinary
differential eguations tells us that if u{d), v{¢), a(0), and
v{0) are given then the equations have a solution {(uf{t), v(t)}
defined for t in a neighbourhood of 0. In other words, there
is always a geodesic passing through a given point in a given
direction. In fact if X is complete as a metric space the
geodesic can always be extended indefinitely in both directions

{i.e. yi{t) is defined for all t € R}, but we shall not prove

that here.

For the present we shall make only one application of
the existence of geodesics. It is to construct a very useful
local parametrization of an arbitrary surface X in the

neighbourhood of a chosen point x,. We begin by choosing a
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gecdesic segment y, parametrized by arc-length, such that
Yy{0} = X - Then for all sméll § we construct a gecdesic Yv'
again parametrized by arc-length, orthogonal to Y and such
that YV(O) = y{v). Let r{u,v) = yv(u). Then r1(0,0) ;nd
r2(0,0) are orthogonal unit vectors, so r is an allowable

parametrization.

Let us calculate the first fundamental form in this
parametrization. We have E = 1 because the curves v = constant
are parametrized by arc-length; and because these curves are
geodesics we find that F, = 0 from the equations (8.3).

Thus F is independent of u. But F = 0 when u = 0 because Yy
meets vy crthogonally. So F = 0 everywhere, and the first

fundamental form is

au? ¢+ Gu,v) av?. (8.5)

Example

If we carry out the preceding construction at a point
of the equator of the unit sphere, taking y to be the equator, -
then u is latitude and v is longitude, and the first

fundamental form is

du2 ¥ coszu dvz.
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In this section we have only scratched the surface
of the theory of geodesics. We have not mentioned the

following natural gquestions.

Is there a geodesic joining any two points of the
surface?

When is there more than one?

When is a geodesic the shortest path between two of
its points?

What can be saild about the existence of closed

geodesics on a surface?

When does a pencil of geodesics emanating from one

point come to a focus at another? -

In fact the theory of geodesics is one of the most

beautiful and well worked~out parts of differential geometry.

Exercises .

1. What are the geodesics on a cylinder? vVerify directly
that the principal normal to a‘geodesic is normal to the

cylinder.

[Preferably do not assume that the base of the cylinder is

a circle.}

2. Prove that a meridian on a surface of revolution is a
geodesic. When is a parallel of latitude a geodesic on such

a surface?
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3. Prove that along a geodésic Y on a surface of revolution
the product p sin ¥ is constant, where p is the distance
of y(t} from the axis of the surface, and y is the angle
between y(t) and the meridian through y(t). This is called

Clairault's relation. What does it have to do with the

conservation of angular momentum in mechanics?

Prove that on a spheroid (i.e. the curve obtained by
rotating an ellipse about one of its axes) every geodesic
which is not a meridian remains always between two parallels

of latitude.

4. Let X be the hyperboloid of one sheet xz + y2 - z2 =1,
and let v : R + X be a geodesic parametrized by arc-length.
Let h be the constant value of the "angularhﬁomentum“ p-8in y
along y. (See Ex. 3.) Prove that unless y is either a
meridian or the "waist® of X (L.e. the curve z = 0) then

yi{t) is asymptotic to either a meridian or the waist as

t + + =, and that the la?ter case occurs if and only if

h = #1. Prove that y remains completely in either the top
half or the bottom half of the hyperboloid if |h! > 1, while
if |hl < 1 1t goes right through.

[Describe y in cylindrical polar coordinates (p, 8, 2). Show
that p28 = h. Show that Z cannot vanish unless p = |hl.

Consider what can be said about g and 8 if Z+ L as t+ + w,]

5. Let X be an ellipsoid in 113. If v is a geodesic on X
let d(t) be the length of the diameter of X parallel to ?(t),
and let p(t) be the distance of the tangent plane at y(t) from

the centre of the ellipscid. Prove that the curvature of Y
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1s p(t)/d(t)?, and that the product p(t)d(t) is independent
of t.

6. Let P be a point on a patch of surface X in 123, and

let e be a tangent vector to X at P. Let Yo be the geodesic
on X parametrized by arc-length such that YG(O) = P and
;B{O) makes the angle 6 with e, Let r(u,8) = Yg(u). Assume
that (u,8)v—> r(u,8) is an allowable parametrization of X
for 0 < u < Rand 0 < @ < 2n. (This is called the

geodesic polar coordinate system on X at 0.) Prove that the

corresponding first fundamental form is du2 + u2 a(u,6)2 dez,
where a : (-R, R) x B - R ia a smooth function such that
al0,8) = 1 and a(~u,8) = a(u, 8+ 7). Let Cp and Ap denote
the circumference and area of the geodesic circle on X with

centre P and radius p (1.e. the circle u = p). Prove that

Cp = 27p (1-+kkpz +.0(p4)) , and
Ap = ﬂpz (1 + %kp2 + 0(04))r
where
2n
k = 1
5= S a11 {0,8) dg.
0

(In Ex. 10.5 we shall see that -6k is the Gaﬁssian curvature

of X at P.)

[Observe that (u,8) v—» r(u,0) is actually a smooth map defined
for (u,8) € (~-R,R) x R and satisfying r{0,6) = P and
r{-u,6) = xrl{u, ¢ + u). _Thus‘rz (0,0) = 0. Observe also

that ﬁr21 {o,0} = 1.1
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§9 Mean curvature and minimal surfaces

In this section we shall explain the geometrical .
significance of the mean curvature. Suppose that a patch
of surface is described by r : V » 113, where V is an open
set of 112. Let R be a compact region inside V. The

area of r(R) is given by

A = y ﬂr1 x xr, I dudv = f(EG-Fz)5 dudv.
R R
Now suppose that the surface is moving in such a way

that each point travels with unit speed in a direction
normal to the surface. We shall prove that the rate of

change of A is

A = 25 c. (e6~-F%)? auav,
R

where C is the mean curvature. If we consider a very small
region R in which the mean curvature is roughly constant,

this means that the proportional rate of change of area

A-1i is roughly C; and’ letting R contract to a point we have

exactly

Theorem (9.1) The mean curvature at a peint of a surface

is half the rate of change of area, per unit area, at
that point when the surface moves perpendicularly to

itself with unit speed.

We shall actually prove a slightly more general
result. Suppose that we have a one-parameter family of

patches of surface, parametrized by t ¢ (—e,ei. The
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surface at time t is given by
{(u,v) v> x{u,v:t), A

where * = V x (=-g,g) - 13 is a smooth map. We shall
suppose that the motion is perpendicular to the surface,

i.e. that r = D3r is orthogonal to ry = D1r and r, = D.x

2
at each point. Let A(t) denote the area at time t. We

have

Theorem (9.2) Aft) = 25 ﬂill.c.(EG—lei dudv,
R
Here all the quantities 1in the integral refer to the

surface at time t.

Proof: By definition

At} 5 i ry % rzﬂ dudv

il

j' <n,r1 X ry>. dudv,

so we must show that

3 <myry xxy> = drd . hr,x 0 .C.
ot
But %£<n,r1x r2> = <n,r1xrr2> + <n,r1x r2> + <n,r1x r2>.

Now <ﬁ,r1x r,> = lr,xr,l <n,n> = 0 because n is

a unit vector, and

Ilr1xr2Il <n,1':.| xr2> Ly KTy, 1.:'1x1.‘2>

- »
= <r1,r1><r2,r2> = ST, Ly><E T,
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Because r = Irln we have
r, = (3 0El) n + drln,,
1 T 1
so that <r,,r,> = Il <xjyn,> = - Lirl,
and <r2,f1> = Urn<r2p1> = - M ﬂéﬂ .
Thus
bryx r,l <a,f,x ry> = IZl  (MF-LG),
and similarly
beyxx,b <n, r,x £2> = lxl (MF-NE)

Putting everything together we have

Il

3 <n,x x> = k2§ (2MF - LG - NE)/(EG-F?)?

&

21zt .c. (Ec-r2)
by Theorem (7.5). i

The importance of Theorem (9.2) is in connection
with minimal surfaces. The problem of findiﬁg a surface of
minimal area with a prescribed boundary curve is called
Plateau's problem, and a solution is called a minimal surface.

“

The best example is a scap film spanning a2 curve of wire.

A minimal surface must have the property that its area is
stationary to first order when one makes displacements of
the surface which vanish at the boundary. Theorem

(9.2) tells us that a necessary and sufficient condition for
this is that the mean curvature vanishes everywhere. (There
is no loss of generaiity in considering only displacements
normal to the surface, for any family of surfaces can be
parametrized in such a way that the displacement is normal:

one defines the point r{u,v;t) to be the point obktained



from rilu,v;0) by travelling from‘the surface at time 0

to the surface at time t along a trajectory which is

orthogonal to the family of surfaces.)

Alongside soap films one can study soap bubbles, which
are films separating regions of space in which the pressure
takes different constant values. If we assume that the
surface~tension energy possessed by a film is proportional
to its area then Theorem (9%.2) tells us that the pressure-
difference across a film is proportional to its mean
curvature, for the change in energy caused by a small
displacement is equal to the work done by the pressure. We

conclude that a soap bubble is a surface of constant mean

curvature.

Exercises

1. Prove that the catenoid (see Ex. 6.1) is a minimal surface,
and that it is the only{surface of reveolution which is a

minimal surface. .

2. Prove that the helicoid (see Ex. 6.2) is a minimal surface.
[In faet it is the only ruled minimal surface: to prove that
is a possible but not so easy exercise for the reader.]

3

3. Suppose that r : V +- R~ 1is a conformal parametrization

of a patch of surface X (i.e. E Gand F = 0 : cf. Ex. 6.3 )
Prove that X 1s a minimal surface if and only if r is harmonic,

i.e. r.‘1 + r22 = 0.
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4. If r : V->» R> is a conformal parametrization of a

minimal surface X prove that r is the real part of a

3

holomorphic map £ : V » €% such that lidf/dzﬂ2 = 0 for all

ZEV.

[For € = (§,, £,, £;) € €

2 _ 2 2 2
we write [EE® = 51 + 52 + 53 .
Recall that a real-valued harmonic function on V is always

the real part of a holomorphic function.]

If X is the catenoid, prove that Im(f) is a parametrization
of the helicoid.
5. Conversely, if £ : V » ¢3 is a holomorphic map such that
ﬂf'(z)ﬂ2 = 0 for all z€V, prove that Rel(f) is a conformél

parametrization of a ruled surface.

Deduce from Exercises 1 and 4 a new pioof that the

helicoid is a minimal surface.
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10 Gauss's "theorema egreéium"

In this section we shall prove the fundamental
theorem that the Gaussian curvature is an intrinsic propexty
of a surface, i.e. that it can be expressed in terms of the
first fundamental form alone, and is therefo;e invariant
under bending. More concretely expressed, however one
bends a patch of surface the s0lid angle swept out by its
normals does not change. Gauss called this result a
"remarkable theorem” - "theorema egregium” - and the name

has remained popular.

We suppose as usual that a patch of surface is defined

by r : V==R>. Let us choose at each point of the surface

an orthonormal basis e1,e2 for the tangent plane, in such

a way that ey and €, are smooth maps V -+ 113. Cne way to
choose €4r€, is to apply the éram-Schmidt procedure to the
standard basis T, .r, of the tangent plane: we shall do this

in detail presently.. Then €,,€,5,0 is an orthonormal basis

-

for 113, and we can express the partial derivatives

D.e, = e : in terms of it. We write
j 4 i,3

€1,1 = ' e, + A1n
€q,2 a8z *  Apm \
2,1 % ™% 4+ uyn
€2,2 7 T%& T Hphy

where Ogr Qo A1, Az, Uyr B, are all real-valued functions

cn V.

(We have used the facts that (ei j"ei> = 0 because ey is
r .

a unit vector, and <e1 L e2> = - (ez i’ e1> because
F r
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(el,e2> =0.)

The crucial step towards Gauss's theorem is

Lemma (10.1) <e1’1, e2,2> - <e1’2, e2'1>
= Ay = Ay
= 04,2 T %24

(LN-M?) / (EG-F2)

Proof: The first equality is immediate from the definitions.

For the second, we have

Gq9,2 T %3 4 5% <eyr €y 5> - g% <eqr &y

™

1,1 * e2,2> + (e1, e >

<e 2,21

<e1'2, 92'1> - <e1, ez,tz}

<e1'1 v e2r2> - <e > .

1,2' ©2,1

To obtain the third equality, recall that we proved
on page 7.6 that (LN—M )}/ (EG-F )i = <IH Xxn,, n>, But

n=e1xe2,so

it

<n1><n2,n> <n1xn2. e1xe2>

< n,ey ><n,e2'2> - {n,ez'.l}(n,e.l >

' 2

= AgMa T Agug.

-To deduce from the Lam&ttha; the Gmuﬁﬁam.curmﬂann.(LN—N?)/UI}@Z)
can be expressed in temis of E, F,Gwehavea'xlytos}mthat
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when the basis {e1,e2} is suitably chosen the quantities a,
and o, can be expressed in terms of E,F,G. Let us construct

{e1,e2} from {r1,r2} by the Gram-Schmidt process. Then

e1 = ar1

ez = br.‘ + crzl‘

where a, b, ¢ can be expressed in terms of E, ¥, G. (In
fact a = Ewi, b =-E—§F'A*§, and c = Eiﬁ’*, where A = EG—FE.)

So

j»3
-
]

<e1'1, e2>

a<r11, ez> + a1<r1, e2>

= +
ab<r11, r1> ac<r >

117 *2
tab E, + ac(F1 - <r1, r21>)

$ab E; *+ ac(F, - iE,), -

while
2 1,2¢ ©2°
= adry,, ey> + andr,, ey

= ab<r12, r1> + ac<r >

' 12 F2
= 4ab Ez + & ac G1.

These formulae are messy, but they prove Gauss's theorem.
The formulae are much more manageable when F=0, i.e,

when the parameter lines on the surface are orthogonal.

In ;hat case a = E-*, b =0, and ¢ = G-i, 80 that we have

E2 : G
01 = —i _“ and uz = & _1 .
vEG vEG

Substituting thisg in the formula (uI 2 G, 1)(EG)-* for
' r r .

the Gaussian curvature gives us
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Theorem (10.2) If F = 0 thenthe Gaussian curvature is

given by

e () 2 (=)

This is still rather complicated. But when the first
fundamental form takes the especially nice form
du2 + G dv2 = which we discuesed in §8 - it becomes much

simpler.

Corollary (10.3) IfE=1and F = 0 then

K =-g? (/0w 2 k.

-

From this last version of the theorem we can deduce
some very important geometrical facts about surfaces with
constant Gaussian curvature. In 88 we showed that any
surface possesses a local parametrization for which the
first fundamental form is du2 + G de_ Indeed we showed a
little more, for the parametrization we found had the
additional property that the curve u = 0 was a geodesic
parametrized by arc-length. From Theorem (8.3) we find that
this implies that G(0, v) = 1 and G4(0, v) = 0 for all v.

We can now prove \

.

Theorem (10,4) (1) A surface with Gaussian curvature zero

is locally isometric to a plane.
(i1) A surface with constant positive {resp. negative)
Gausslan curvature is locally isometric to a sphere (resp.

to a tractoid).
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Proof: (i) Write g = G!, If K = 0 then 32g/3u? = o )
from (10.3), so that g{u, v) is of the form A{v)u + B(v).
But we have the boundary conditions that G(0, v) = 1 and
G1(0,v) = 0. 8o g{u, v} = 1, and the first fundamental
form is du2 + dv?, which proves that the surface is

locally isometric to a plane.

{ii) In the same way, if K = a2 > 0 then

azg/auz = 'azgr

s0 that g(u, v} = A(v) cos au + B(v) sin au. This time the
boundary conditions show that A(v) = 1 and B(v) = 0, s0 that

the first fundamental form is

du2 + 0032 au.dvz.

This is the first fundamental form of a sphere of radius a,

with au = latitude and av = longitude.

Finally, if K = :az < 0 the same argument leads to

du2 + coshzau. dvz.

This is the first fundamental form of the spool-shaped

surface obtained by rotating the curve (f(u) , cosh au),

1 -1

where u < iqsinh_ a , about the x-axis, where

u
flu) = -S {1 - a’ sinh? at }* dat.
0

AN

We shall see in Ex. 12.10 that this surface is locally

isometric to the tractoid.
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Exercises

1. If the first fundamental form of a surface is R
ezf(du2 + dvz), prove that the Gaussian curvature is

w2f
e Ty, v £y
2. If the situation of Ex. 1 prove that the second fundamental

form satisfies the Mainardi-Codazzi relations

e
§
=
i

fz (L + N" M

-fl(L + N) .

. . =f : -
[Take e, = e "ry, and express the condition 31,12 e1,21.]
3. Prove that no torus in 113 is isometric-to the torus

lz,1 = iz,] =1 in €2, (See Ex. 6.6.)

4, Let X be the catenold with one meridian rémoved, and
let ¥ be the helicoid. (See Ex. 6.3.) Prove that any two

isometries X + ¥ differ'by a rigid screwing movement of the

helicoid along itself,

5. Let Cp and Ap denote the length and the area of the
geodesic circle with centre P and radius p on a surface X.

Prove that the Gaussian curvature K of X at.P is equal to

each of the following two limits as p +.0: -
(1) K=-2 1im (c, - 2m0)/03,
p
(1) K = =12 149 (a, - mp?)/p8.

[Use geodesic polar coordinates as in Ex. 8.6.]
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8§11 The Gauss-Bonnet theorem

The most striking and beautiful theorem about .
surfaces is the Gauss-Bonnet theorem. In this course,
however, we cannot explain its true importance, which is as
the prototype of a whole class of theorems which apply in

more general higher-dimensional situations.

There are several versions of the theorem. We shall

begin with

Theorem {(11.1) Let vy be a smooth simple closed curve on

a patch of surface X, enclosing a region R. Then

S xg ds = 2w - S KdAa,
Y R ;
is the geodesic cutvature of vy, ds is the element

K
wherg g

of arc-~length of v, K is the Gaussian curvature of X, and

dA is the element of area of X. The curve y is supposed

to be described anticlockwise.

ExamEles

{1) If ¥ is the plane then Kg ig the usual. curvature
d¥/ds {where Y is the slope of y), and we.have the obvious
fact that .E(dW/ds)ds = 27.

tii) On the unit sphere X = 1, sgo j;ﬁdh is just the area
of R. If y is the equator then Kg = 0, and the theorem

tells us that the area of the northern hemisphere is 2t.

iii) Any simple closed curve on the unit sphere can be

regarded as the boundary of either of two regions, but Kg
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changes sign when one changeg one's point of view.
2pplying (11.1) to each region and adding, we find that

the area of the sphere is 47.

Proof of (11.1) Let us recall Green's theorem, which

asserts that if P, Q : V » R are two smooth functions
defined in an open set V of 312, and y is a piecewise-

smooth simple closed curve in V bounding a region S, then

j‘(Pdu + Qdv} = j-(Q1 - le dudv.
Y S

Now suppose that X is parametrized by r : v -+ IlB,

and, as in §10, choose smooth tangent vector fields
e,, €5 3 V> R3 such that {e1, ez} is an orthonormal basis
for the tangent space at each point. We shall apply Green's

theorem to the line integral
I = L( e1, ez> ds,

where B is the curve in V such that Y = ref. (We can

assume that y is parametrized by arc-length.) Then

3‘2 = uez’.l + Ve2,2l
so P = <eje;,q> and Q= <eq,e, 5>, and
Qp = Py = <@y q4r ©2,2> " <€y 5r &y >y

. which, by Lemma {10.1) , is (LN*M2)/(EGGF?)§. Thus

I = S Kda.
R

On the other hand, let 8(s} be the angle between the

unit tangent vector %(B) to vy and the unit vector e, at the

same point y(s). Thus
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- e

= e, cosb + €, s8inb,

n x % be the unit vector in the tangent plane

i

Let 1

which is perpendicular to {. Then
no= -ey singd + e, cosb
and .

Y = 8n+ e, cosé + é2 sinb.

The geodesic curvature is therefore given by

= < : .>
Kg n Y
= § - <e ., e,> . (11.2)
So I = j (6 - Kg)da, which completes the proof of (11.1)
for gé = 2.

If the.curve v in Theorem {(131.1) is only piecewise
smooth, i.e. R is a curvilinear pPolygon, then we can stil)]
apply Green's theorem. The only difference ig that the
function 6 has a jump discontiqpity at each corner of
the polygon, the jump Gi at the ith corner being the

external angle of the polygon there. Instead of

g'é = 271 in the preceding proof we have
Sé = 2m - 1§, .
In terms of the internal angles @y = ®1 = 61 of the

pelygon, this gives us

Theorem (11.3) If y is the boundary of a amaoth curvilinear
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polygon with n sides and tinternal) angles Uyyoee @ ON

a smeoth surface, then

~
La, = {n-=2¥n + H Kda 4
o

In particular, if the polygon is bounded by geodesics
then Zui exceeds {n-Z}w by { KdA. We recall that the sum

of the angles of a plane n-gon isg (n=2)n .
g ! 2

Example

The sum of the angles of a spherical triangie
exceeds 7 by the area of the triangle. Thus an oatant

has three angles of 7/2, and area n/2.

Let us now consider a closed surface X which is
subdivided by smooth curves intc curvilinear polygons, in
the sense explained in 54. We apply Theorem (11.3) o each
polygon, and add the resulting cguations. The sum of z1l.
the angles of all the polygons is 21V, where V is the
number of vaertices, for the angies at any vertex add to
Zn. Begause each edge belongs to two polygons, the sum of
the contributicns "{n=-2)}w" is 2% (E-F}, where E and F are
the numbers of edges and faces respectively. The sum of
the contributions ©f the geodesic curvatures is zero, for
each edge occurs twice in opposite senseg, and Ko changes
sign if we reverse the direction of the curve. {See
remark (iii} below.) As ¥ = V - E + F is the Euler

number of X, we have proved



- 102 -

Theorem {(1%1.4) If ¥ is a smooth closed surface, then
g Kda = Zuay,
X
where y is the Buler number of X.
Remarks
{i) We proved the resuit for a convex surface by a much
more cbvious argument in §7.
(ii) We are accepting without proof that every smooth

surface does possess a suitable subdivision.

{iii} The proof we have given applies only to orientable

surfaces. For if the surface is not orientable the

contributions to the sum from (“Kgds 4d¢ not occur in

J

oppesite pairs. But in fact the theorem is true
cases, as cne can see by subdividing the surface
which are piecewise geodesics.

;s . . 3
{iv) The procf was given for a surface in R ",

in all

by edges

The

statement, however, only invelves the first fundamental

form, i.e. the metric of the surface., The theorem 1s

really a2 statement about an abstract surface with a metric,

and the proof we have given, when properly interpreted,

applies to that situation.

Flows on a closed surface

Suppese that we are given a tangent vector EX at

each point % of a smooth closed surface X in 1R3

We can

think of ix asg the velocity at x of some fiuid which is

flowing on the surface. A point where Ex vanishes is a



stationary point of the flow. It is well known that on

a sphere, for example, any flow has a2t least one staticnary

peint. We shall now prove

—

Theorem (11.5% 1i the flow £ on X has only a finite

number of staticnary peints then the number of stationary
points, when they are counted with their appropriste

maitiplicities, is the Buler number of ¥.

The c¢rucial idea here is the definition of the
multiplicity of a stationary point. If x € X is a
stationary point of I then we can find a small neighbour-
hoocd U of X in X such that £{y} = 0 for ye U-{x}.

Now let n ke another smooth tangent vecktor field defined,
and newhere-vanishing, in U. {(Think of n as providing a
reference-direction in U, e.g. n = ¥, if U is parametrized
in the usual way.} Let v be a small simple closed curve in
U which encircles x anticlockwise. Then E and n are both
non-vanishing on y , and we define the maltiplicity as the
winding-number of { with respect to n as y is transversed

once, i.e.

multiplicity = 1 ! ¥ as,
2 J as
i
where ¢ is the angle between £ and 1 oat yisy, {(Note that
although ¢ is indeterminate th to multiples of 2%, the

derivative d¢/ds is well-defined.) We leave it to *he
reader to show that the multiplicity is indspendent of the

choice of n.



Examples

The most common types of stationary points are
gsources, sinks, vortices, and bifurcations. Their

multiplicities are

. .
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Proof of Theorem (11.5}

Let {xi} be the stationary points. Choose a small
simple closed curve Y; around each x,. Let R; be the small
region enclosed by e and let Y be the part of X outside

all the curves Yy

At each point v € Y we can choose an orthonormal
basis {ET(Y)’ ez(y}} for the tangent plane =6 that eT(y)
is in the direction of Z{y). Applying the argument of
the proof of Theorem (11.1} to the region Y bounded by

the curves Ty gives

S Kda = ""Z S! <e1ré2> ds (11-6)
Y R 43

{The minus sign is because the boundary of Y consists of

the Y5 oriented clockwise.)

Now let us choose a similar orthonormal basis
{f1,f2} for the tangent planes at the points of the regions

Ri' We find

( XKda = j <t,,f,> as. (11.7)
TR, 7.

L A

Adding (11.6} and (11.7}) gives

S Kda = 25 {<f ,f > - <g, e >} ds.,
¥ 7 172 1172
Y.

But from {11.2}) we have

where 0 and ¢ are the angles between % and e, and f1

respectively. Thus
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1 - 1 ( e
2 g;bKdA - %i 2m wds,

Y:

where ¢ is the angle between e, and f i.e. between

1 17
and f1. This proves Theorem (11.5}, for the left-hand
side is the Euler number by (11.4), while the right-hand
side 1is the sum of the multiplicities of the stationary

points.

Critical points

Suppose that X is a smooth surface in I§3, and
f : X > R is a smooth function. We say that f has a

critical point at x€ X if the gradient of the composite

map g = f ° r vanishes at v, where r : Vv - 113 is an
allowable parametrization of X such that r(v) = x. It is
easy to check that the definition of a critical point does
not depend on the chosen parametrization: in fact % is a
critical point of £ if and only if the gradient

(gradX f)} (x) wvanishes. (See Ex. 5.5 and Ex. 11.6.)
Clearly any point at which f has a local maximum or

minimum is a critical point.

A critical point is called nondegenerate if the

symmetric 2 x 2 matrix of second derivatives (Ding(v}) is
nonsinguiar. If this matrix is positive-definite or
negative~definite then f has a local minimum or maximum

If it is nonsingular but indefinite then f has a

saddle~point. At points of these three kinds the tangent

vector field gradxf has a source, a sink, and a bifurcation



respectively. This is intuitively obvious, but we shall
not give a detailed procf. If we accept it then we can

state

Thecorem (11.8) Let £ : X=* R be a smooth function on a

closed surface X of Euler “umberﬂi‘ Suppose that f has
only a finite number of critical peints, all nondegenerate.

Then
Max ~ Sad + Min = ¥y

where Max, Sad, and Min are the numbers of local maxima,

saddle-points, and local minima respectively.

Exerxcises

1. Calculate
| |
| K _ds and Kda
J g )
Y R

directly when =+ isg the-boundary cf the region R of &
surface of revoluticn bounded by two parallels of latitude,
Can you guess a generalization of Theorem {11.1) which
applies to an arbitrary region-on a surface bounded by a

smooth curve?

Z. Verify Theorem (11.4) by explicit calculation for the
torus in 1R3 obtained by rotating the circle (x-a)2 + y2 = b2

about the y-axis.

3. Prove that the definition of the miltiplicity of a
stationary point of a tangent vector field € given on

page 103 does not depend on the auxiliary vector field .

[If ¥ is another vector field in U, and ¥ is the angle
between § and n, then df:/ds = -{1~f2}”% f, where

f = cos @. This can be expressed as Pu + QG, where
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P2 = 01.

4, {i} Draw a diagram of the vector field £ on liz given
2 P, - . , . -
by £(x,v) = (=27 - yz, ~2xy). What is the multiplicity

of the stationary point at the crigin?

2 3
{ii) Do the same for the vector field (x3 - 3xy"©, y3 - 3xy).

5. Prove that the definitions of a critical peoint and of a
nondegenerate critical peint of a function on a surface do

not depend on the chart which is used.

6. Suppose that a patch of surface X is given by r : V + R
in the usual way, and that ri{v) = x. If f ; X - R is a

smooth function, prove that

*
Dr{v) {lgrad.f)(x)} = (grad g)(v),
*
where g = fe°r, and Dr(v}) is the adjoint of the
isomorphism Dr(v): 312 - Hx. {Here HX is the tangent

plane to X at x.)

Deduce that f has a eritical point at » if and only

if (gradxf){x) = 0,
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§ 12 The hyperbolic plane

In this section we shall define a metric, called the

Poincaré metric, on the Open unit disc in the plane. The

resulting metric space is called the hyperbolic plane. Its

geometry resembles Euclidean plane geometry, with
geodesics playing the role of straight lines. In fact all
of Buclid's axioms hold except the so-called “parallel
postulate” - the assertion that if a point P is not on a
line § there is a unique line through P which does net
meet £. The hyperbolic plane was of importance historic-
ally, as its discovery ended many centuriés of attempts

to deduce the parallel postulate from the other axioms,
and, more significantly, because it provided the first

example of an interesting geometry different from Euclid's.

Buclid's starting point in developing plane geometry
was a collection of axioms about the POssibility of
moving things around. Thus the basis cf the definition
of length is that the distance AB is equal to the distance
A'B' if "when we apply the line AB to the line A'B' so
that A falls on A' then the point B falls on BR'™. 1In
modern language, we assume we are given a group of
transformations of the plane which will take any point to
any other point and any given line through the first
point to a desired line through the secondg point; and then
we prove that the plane possesses a unigque metric which is

invariant under +these transformations.

We shall build up Poincaré's model of the hyperbolic
plane in exactly the same way. As our set of points we

take the open unit disc D = {z€ € : }z] <1 }. We observe
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that there is a natural three-parameter group of
transformations of D which will take any point to any
other and any given direction at the first point to a
desired direction at the second. This group is the group

G of 2ll holeomerphic bijections f : D + D, It is

familiar from complex variable theory that for any a€b

the map

Z—a £12.1)

is a bijection D -+ D which takes a tc 0: and the most
general element of G which takes a to 0 is got by

following (12.1) by a rotation:

for some o € {0,2n). It is natural, therefore, toc look for
a metric d on P which is invariant under G, 1.e. is such

that d(a,b}) = d(£(a),f(b)) for all f ¢ q.

If such a metric exists, then the distance d(0,a}
depends only on |al, for we can take the pair {0,a}l to
{0, 1al} by an element of G. Let us write d{t,al=pijal).
Then we must have
1-ab|
for any a, b € D, as the map (12.1) takes {a, b} to

{0, (b-a)/1~ab) }.

We can determine the function p if we add the
requirement that distance is to be additive along

geodesics. It is reasonable to guess that the real axis
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in D will turn eut to be a geodesic, so we try to find

p so that if a and b are real, with o<a<b<?, we have

pla) + p[?:zl = pibt.

Differentiating this with respect to b and then putting

b=a gives
p'la) = p'(2)/(1-a?).

We can take any value we like for p'(0), for it makes no

essential difference if all distances are multiplied by a

constant, but the choice p'{0} = 2 is traditional, and leads
to the simplest formulas. Then
. -1
pla) = 2 tanh "a.
We adopt

Definition {(12.2) For a, b € D, let

dfa, b) = 2 tann”! ( iBzal )y
| 1-ab} 7~
Thus d{a, b} is a positive symmetric function of a
and b which vanishes only if a = b. To Justify the
definition we must prove that d satisfies the triangle
ineguality. Because it was constructed to be invariant
under the acticon of G (see Ex 12.1, 12.2) it is enough to

prove

Theorem (12.3} If a, b € D then

d(O, a.) + d(@, b) = d(ar b}l

with equality if and only if a/b is real and negative.



This, in turn, follows from "the cosine rule for

hyperbolic triangles":

Theorem {(12.4) If a, b € D and o = d4(C, a),
g = d(g, bi, ¥y = dla, b}, then

cosh vy = cosh a cosh 8 ~ sinh a sinh § cos &,
where 0 = argtbh/a}.

This theorem is called the "cosine rule" because when
a, B, ¥y are small, and we use the approximations sinh o = o
cosh a« = 1 + % az, etc., the formila becomes the usual
cosine rule for a Euclidean triangle:

Y2 = az + 52 - 2aB cos 8.

Furthermore (12.4) implies (12.3) because cos 8 2 - 1,

sc that

cosh v € cosh o cosh B + sinh o sinh B

= cosh (o + B),

with equality only if 8 = 7 .
Proof of Theorem {12.4) By the G-invariance of d we can
assume that a is real and pesitive, so that a = tanh % a and

b = eie tanh #3 . Then

cosha = 1 + ja 2 and coshf = 1 +

1T - |af 1 - |{b]
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By definition tanh 4 v = |b-al|/|1-3b!, so
™ — 2 | |2
cosh v = {i-abk|” + |b-al
i o :2 12
;1—ab; - }b—a]
= {1+ 1al®) 1+ {B]%) -~ 2 (Fb + ab)
>
Ci=jal") (1 - |ph)
= cosh o cosh B - sinh o sin 8 cos §
Geodesics

In any metric space X the length of a continuous

curve y: [a, b] » X is defined as the supremum of

n
bX d(Y(aiui)’ Y(ai))
i=i

when a = 8, 2y < ... < 4, = b runs through all
partitions of the interval [a, bl. It follows that v is

a geodesic if its length is egual to d{y{a), y(b)).

For the metric defined on D by {12.2) we conclude
from (12.3) that any segment of the real axis is a
geodesic, and alsc is the only curve of minimal length
joining any two of its points. But we can move any two
points of D on to the real axis by an element of G, so we

have proved

Theorem (12.5) There is g unigue geodesic joining any

two points of D.
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Let us now recall from complex variable theory that
MObius transformations
(i) take gtraight lines and circles to straight lines
or circles, and
(ii) are coniormal, l.e. preserve the angles of inter-

section of curves.

Hence we have

Theorem (12.%) The geodesics in D are the diameters of

D and the segments of circles which intersect the boundary

of D at right angles.

We have already said that if we take "line" to
mean "geodesic" then the geometry of D satisfies all the
axioms of Euclidean plane geometry except for the parallel
postulate. In particular we can define the angle between
two lines, which {because all the isometries of b are
conformal maps in the usual sense) turns out to have the
Euclidean meaning. {(*) To invesﬁigate the parallel postulate

we consider the following situation.

Let £ be a line (i.e. gecdesic) in D, and P a
point not on £. There is a unigue point O on £ whose
distance a from P is minimal, and the line OP meets £ at
right angles. {(To see this, it is enough to consider the
case when £ is the real axis and P is on the imaginary

axis.)

(*) It is clear from "symmetry" that angles at the centre
of D must have their usual values: but any point can
be moved to the centre without changing either the
hyperbolic or the usual anglies.
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Let us calculate the angle 6 between the lines PO and
FQ, where Q is a variable peint of £ at a distance x
from 0. By the sine rule (See Ex. 3 ) for the triangle
POQ we have sin @ = sinh x / sinh b, where b = a(P,Q).

But cosh b = cosh a cosh x by the cosine rule, so that

sin 8 = {cosh®a coth® x - cosech® x 1 -1

As x + « we have coth x -+ 1 and cosech x -+ 0, 80

sin & » sech a < 1. We have proved

Theorem (12.7) A line through P meets £ if and only

if its angle with PO is less than sinmT sech a.

The angle sin"1 sech a is sometimes called the

"angle of parallelism at distance a".

Lengths of curvesg

If two points z and z + Az of D are very close,
i.e. 1f [Az| is very small, then the Poincaré distance

di{z,z + Az) is approximately

2jaz] ‘
1~ fz]?
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So if y: [a,b] » D is a smooth curve the Poincaré length

of v is
b o]
- -2 -2, %
; = v |
Liv) f 2l ae = 2l = v g
1 \aﬂ 2 2
-1y T - ut- v '
a a
where y(t}) = u(t) + iv(t). Thus L(y) is given by our

standard formula ({6.1), where for the first fundamental

form we take

2 2
4(du2 + dg ; (12.8)
{(1-u™ - «7)

This is an abstract first fundamental form which, as far
as we know at this point, does not come from any embedding
r : b~ 113 of D as a surface in space. If it did come
from a surface in 123 we could calculate its Gaussian

curvature K by Theorem (10.2). 1In the case when E = G

and F

0 the formula of (10.2) simplifies to
~ -1

where A is the Laplace operator (a/au}2 + (8/3v12. For
the form (12.8) we have E = 4(1—u2—v2}2, and one readily

checks that K = ~1.

In 5§10 we proved that any surface with X = -1 is
locally isometric to a tractoid. It can be shown ({see

Ex. 9 ) that the shaded region
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s

is isometric to the complete tractoid, except that the
boundary curves 8 and v become the same meridian on the

tractoid. The boundary curve g becomes the cuspidal edge
of the tractoid. It can be proved that the whole of D
cannot be realized by a surface in 323: any attempt leads

to a surface which "curls up" in some way.

The upper half-plane

The map zw» i

is a holomorphic bijection
T+z

D-»U, where U is the half-plane {ze (T ; Im{z})> O}. It
is often convenient to use this map to identify the
hyperbolic plane with U. The geodesics are then the
circles orthogonal to the real axis together with all

vertical straight lines, and the metric is given by

d {a, b) = 2 tanh—1 b-a
b~z

The first fundamental form is

The group G of isometries in this realization is the

group of ail M8bius transformations



zv¥ laz+b) /{cz+d)

with a, b, ¢, d real. We leave the verification of all

the preceding facts as exercises.
Areas:

With the first fundamental form (12.8) in mind,

we define the hyperbolic area of a region R in D as

4 dude
(1=uley?) 2

In this section we shall calculate the areas of hyperbolic

triangles in D.

As well as triangles proper one can also consider
triangles which have one or more vertices at infinity, i.e.
on the boundary of D. Such triangles are called asymptotic,

biasymptcotic, or triasymptotic, according to the number of

vertices at infinity.

Any two triasymptotic triangles are congruent, for
the group of iscmetries G will move any three points of
the circle |z| = 1 to any other two points. Two
biasymptotic triangles are congruent if they have the same
angle {(at their one genuine vertex}, for by an isometry
we can move any two lines meeting at an angle o to any
cther two lines meeting at the same angle. Surprisingly
enough, the areas of all these infinite "triangles” are

finite. We shall prove
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Theorem (12.730}

{i) The area of a triasymptotic triangle is =,

(ii) The area of

[s1]

biasymptotic triangle with angle a
is u-~-ga.
{(1ii) The area of a triangle with angles o,f,v is

Ti "‘d‘“ﬁ"“y .

Remark
All three results follow from the Gauss-Bonnet theorem:

but we have proved that theorem only for surfaces in 113.

Proof: We shall prove that (i) <> (ii) => (iii), and

then we shall prove (i) by direct calculation.

Fzg.(a) Fiq. (b) Fig. (¢)

Let Aa be the area of a biasymptotic triangle with
angle o. From Fig. (a) we see that A& is a decreasing

function of a. From fig.({b) we see that
By =

assuming that the area of a triasymptotic triangle is m.

If Flg) = W~Au it follows that



Fla) + F(B} = Fla+B). -

Because F is increasing and additive we conclude that
Fla} = ko for some X > 0 which does not depend on «a,
and hence that Aa = w=iz. But fig. {c) shows that

Aa + A _, = ™ and from this it follows that X = 1, as

desired.

To prove that (ii) = (iii) we consider fig. (d)

Fig. (d) A

We see that

o

area (ABC) + area(A’CB') + area (A'B'C') = area(AB'C') + area (A'BCY).
S50

area (ABC) + (n-(w-~v}) + 7 = {n-a) + {(w-8),
and

area (ABC) =W =0 - B - v .

Finally, to calculate the area of a triasymptotic
triangle it is easiest to work in the upper half-plane. i

Consider the triangle
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bounded by vy = -1, y = +1, and the semicircle x2 + y2= 1.

From the first fundamental form (dx2 + dyz)/y2 we see that

the element of area is dxdy/yz. 5o the triasymptotic

triangle has area

1 a
adx dy
2
-1 ViE
1
= dx = m™ .

Exercises

t. (a) Prove that any MBbius transformation which Preserves the

circle |z| = 1 and its interior is of the form stated on page 110.

(b} Prove by direct calculation that any such
transformation f is an isometry of the Poincare metric,

i.e. that d{f(a),f(b)) = d(a,b) for all a, b € D.

(c} Prove the same result without calculation by using
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the facts that (i) the transformations f form a group G,

and (ii) the only elements of G which leave 0 fixed are of

.l
the form z —»e” "z.

2. Prove that any isometry of the Poincare metric is
either a MObius transformation or else a M8bius transformation

followed by complex conjugation.

[Prove that the only isometries which preserve the origin and

also the positive real axis are z ¢ » z and z % z.]
3. Let ABC be a triangle in the hyperbolic plane which has
a right angle at . Prove the "sine rule"

sin A . sinh ¢ = sinh a,

where a = d{(B,C) and ¢ = d(A,B).

[Apply the cosine rule te ABC in two different ways.]

2. Deduce the sine rule
sin A - sin B - sin C
sinh a sinh b sinh ¢

for an arbitrary hyperbolic triangle from the result of Ex. 3.

5. If a, 8,y arepositive, and o +8+y < w , prove that

there is a hyperbolic trianglie with angles a, 8, Y.

6. 1In the situation of Ex. 3 prove that

sinhza + sinhzb < sinhzc p

and deduce that A + B < § 7. Use this to prove that the



sum of the angles of any hyperbolic triangle is less than

e

7. Prove that a hyperbolic circle is simply an ordinary
circle in D, but that its hyperbolic centre isg usually not
its ordinary centre. Prove that a hyperbolic circle of

. . . .2
radius a has circumference 27 sinh a and area 47 sinh ta.

8. Use Theorem (8.3) to determine the geodesics of the

first fundamental form (dx2 + dyz)/y2 on the upper half-plane.

9. Let X be the open set {x + iy € € : -n < x < 7w and y > 1}
of the upper half-plane. Observe that X corxresponds tc the
part of D depicted on page 117. Find a smooth bijection

u : (1,«})-— (0,%7}) such that
X + iy f—=

( —cos u(y) + log cot }ju(y) , sin uly) cos x , 8in u(ly) sin x )

is an isometry between X with the Poincare metric and the
tractoid described in Ex. 7.3, with one meridian of the tracteoid

removed.

10. Let X be the open set
27 s
{z € : 1< lz! < e and 37 -~ a < arg z < 7T + a}
of the upper half-plane. Prove that for suitable a the map

(a, v) p—== e’ {tanh v + i sech u)

defines an isometry from the spocl-shaped surface described

on page 96 {with the parametrization used there) to X with
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the Poincare metric.

[In particular the tractold is locally isometric to the

spool~shaped surface.}
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Appendix

In this appendix we shall first recall some definitionsg
and basic facts of differential calculus, then we shall prove
the inverse and implicit function theorems, and finally we
shall consider four situations in the preceding notes where

the thecrems were used,

Preliminaries

Let £ : U~ R" be a map defined in an open set U of | ™.

We shall say that f is continuously differentiable if each

partial derivative D,f (%) exists and is continuous for all
X € U. The mxn matrix Df(x) whose ith column is the vector

Dif (2} is called the derivative of f at x.

L2t us recall the "chain rule", which asserts that if
f:U0U-Vand g : V =+ Eik are continucusly differentiable maps,
where U and V are open sets of R and R ™ respectively, then

g e f is continucusly differentiakle, and

Dilg e £} {x} = Dg(f(x)).Df(x)

for all € 0.

The derivative DFf(x} is a linear map ®r? + Ilm. Let

us recall that the norm of a linear transformation 2 : R? r™

is defined bv

LAl = sup { la Yy - el = 13},



Then A £1 < HAl.¥g) for all &£ € R®. Notice that

IAl < @ {A | , where A.. is the (i,7)™ entry of a.
i,3 %] 13

The mean value theorem asserts that if f jis continuously

differentiable then we have
Tf{x+h) - f(x)}l <€ K thit,

where K = sup { IDf(x+6h} Il : 0 < 6 s 1}. This is proved
by applying the single-variable mean value theorem to the

function F [0, 1] + R defined by

Fit) < u, f{x + th) >,

1l

where u 1s a unit vector parallel to fi{x+h} - f(x), and

observing that

F'{t) = < u, Df{x+th).h>,

50 that IF'(t)! € K Ih!.

The inverse function theorem

We now suppose that £ : U » R"” is a continuously
differentiable map, where U is an open set of R'. We
shall prove that locally £ is a bijection providing that the

linear transformation Df(x) is invertible. More precisely,

Theorem Suppose that Df{a) is invertible for scme a€ U. Then
there is a neighbourhood V of b = f{a) in Iln, and a

continuously differentiable map g : V - U such that



(i) g(b)} = a,
(ii) flgly)) =y for all yev,

(iii) g(V} 1is a neighbourhood of a in R".
In particular, f is a bijection in a neighbourhood of a.
Proof: Without loss of generality we can assume that

a =hb =0, and alsoc that DFf{0} = 1. (For we can replace f by

x pdérafif(x), where A = Df(0).) Because Df is continuous we

can choose ¢ > 0 so that IDf(x) - 11 < % when fxl < e¢.
Let us define X = {x € R” : | x| € ¢}
and ve= {yve R®™ : Iy il< 4.
For a fixed y€ V we @efine ¢ ; U + R® by
& {x) = x +y - £(x).
Notice that f(x} = y &®» ¢ (x) = x. Furthermore Nod (2}l < 4

for all x€¢ X, so P(X) < ¥.

Define a sequence {xk} in X by x, = 0 and
X ¢(xk_1). By the mean value -theorem we have
- < -
! 2, Xp_q | *_&II:-{IK_.i xk_zli,

so that { X, } is a Cauchy sequence. Let its limit be called

gly) €X. Thus g is a map V + X. From X = ¢(xk_1) we obtain

gly) = 9(g{y}), and hence
figly)) = y.
It is obvicus that g0} = 0,

To prove that g is continuously differentiable let us
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write gly}) = x and g{y+k} = x + h, so that

£(x+h) - f(x) =k,
and
fix+h}) - {x+h) -~ £(x)}) + x = k - h.
Because IDf{x+6h} - 1 I < % this gives
'k - h | < 3 lhi. (1)

We ghall now prove that

1

I gly+rk) - giy) - Df(x)} '.ki/lIkl » 0 (2)

as k » 0. Applying this when k = tei, where e; is the ith

basis wvector of Iln, we find that Dig(y) exists and is the

ith column of Df(x]_1. Thus g is continuously differentiable,

and bgly) = Df{x) .

To prove (2) we observe

gly+k) - gy} =~ Df(x)_1

So, applying the mean value theorem to the function
t > £{x + th) ~ t Df(x).h

on the interval [0,1] we find

1

I gly+k) - gly) - DF(x) 'k 1 < & DE(x)""

I .ihl. R(h),

where R{h) = sup {l Df(x+th) - DE(x}} 0st< 1},

But R(h}) - 0 as h + 0 because Df is continuous, and

Ihi < 28kl from (1), so (2) is proved.

k= -DE(x)”'. {£(x+h) - £(x) - DE(x}.h}

-
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Firally, the restriction of ¥ to X is injective, for

if f(x) = f{x') with x = x' then
(£(x) = =) ~ {(£({x*'}) - =) = ~{x-x"'}),
which contradicts the fact that | Df - 1 1 < i, It follows

that g(V) = XNf ' (V), which is a neighbourhood of the origin.

The implicit function theorem

We now suppose that F : U - R is a continuously
differentiable map, where iI is an open set of Iln, and

X x r ™. Suppose that

n =k +m>m, We identify R"™ with ®
F(a, b) = c, where a € R" and b,c € R™. The implicit

function theorem gives a condition under which one can solve
the equation F(x, y)} = z for y as a function of x and 2z for

(x,z) in a neighbourhood of (a,c).

Theorem In the preceding situation, suppose that the
derivative at b of the map y +>» Fla,y) 1s invertible. Then
there is a neighbourhood A of a in Izk, and a neighbourhocd ¢
of ¢ in rzm, and a continuously differentiable map

2 : AxC> R™ such that ¢(a,c) = b, and

tx, ®(x,2)} € U for all (x,2) € A x C, and

Fi{x, ¢(x,2) = z.

Furthermore there is a neighbourhood W of {a,b) in
1{k+m such that if (x,y} € W and z€ C and Fi{x,y) = z, then

Y = ¢lx,z).

Proof: Consider the map £ : U + R " defined by



f (x, v} = ix, Flx, v}}.

The derivative Dff{a, b) is the (k + m) % (k +m) matrix

1 0 \
Fi(a,b)  F,{a,b)/ ,

where F1(a,lﬂ is the derivative of x = F{x, b} at a, and

Fz{a,b) is the derivative of y = Fl(a, v) at b. The

hypotheses imply that Df{a, b) is invertible. By the inverse
function theorem we can find a neighbourhood of fla,b) = (a,c),
which we can suppose to ke of the form Ax C, and a continuously
differential map g : Ax C ~ U, such that f o g is the identity.

If g(x, z) = (B({x,z}, ¢(x, 2)) then

il

flglx, z)) (B(x, 2z} , FlO(x, 2}, ¢(x,2))). 8o 8(x,z) =x;

and (x, ¢{=x,2z)) = =z,

Finally, f is injective in a neighbourhood W of (a, b) ,
€0 in this neighbourhood there can be at most one solution ¥

of F(x,y) = z, and it must be v = ¢{x, z) .

Applications

1. Complex algebraic curves (See page 10)

We were given a polynomial function of f m2 -~ &,

and we wanted to sclve f{z,w) = 0 for w as a function of z.

Let us write

Z = Z, + 12
1 i

w = + 1w
Wy 27
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37 f2 all real. The implicit function

theorem tells us the condition we used is that the matrix

with Zir Zgy Wao wz, £

3f1/aw1 8f1/8w2

\3f2/3w1 3f2/8w2
is invertible. But the Cauchy~-Riemann conditions tell us that
8f1/3w2 = - sz/aw1 and Bf2/3w2 = 8f1/3w1. S0 the determinant

of the matrix is
(3£,/0w )% + (3f, /0w )% = laf/owi?.
1 1 2 i
Thus the condition is simply that af/3w = 0, looking just

like the real case.

2. Allowable parametrizations (See page 49)

Suppose that r : V+ R> and £ : ¥ » | 3 are allowable
parametrizations of a smooth surface X in 323. This means
that r and ¥ are smooth maps, and that Dr(v) and DF (V) have
rank 2 for veV and ¥€ V. We wish to prove that the transition
map r” ¥ is smooth in the open subset of V where it is
defined: this implies that the allowable charts form an atlas

for X.

It is enough to prove that r '°F is smooth in a
neighbourhood@ of each relevant point v € V. Suppose that

X = £{V) = r(v). Because the linear transformation

Dr{v) : ]{2 -+ 1{3 has rank 2, the composite P o Driv) is

ibvertible when P : 313 > 112 is the projection on to one of

the coordinate planes. From the inverge functiqn theorem we

conclude that the map P sy has a smooth inverse (P o r)_~1
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defined in a neighbourhood of Px. But then
=1

_10'- = (P r)

r P F in a neighbourhood of ¥, and se it

is smooth.

3. ZThe parametrization of a surface by lines of curvature

(See page 73)

We suppose that at each point of a patch of surface
X = r{V} in IIB there are two well-defined principal directions,
corresponding to orthogonal unit tangent vectors {e1,e2}. We
wish to reparametrize the surface locally so that r, is
parallel to e, and ¥, to e,. A cuxve on X whose tangent vector
at each point is in a principal direction is called a line of
curvature. It is intuitively obvious that one can find a chart

such that the coordinate curves are lines of curvature, but

the detailed argument we shall give is surprisingly cumbersome.

Let us first observe that when a smooth tangent vector
field {£(x}} is given on a surface X then one can find a curve
Yy ¢ (-, e) ~ X, with any desired starting point y(0) = x,€ X,
such that y'(t) = £{v(t)) for allkt. For if £ is expressed in

>

terms of the basis {r1, r2} by
(r{u, v}} = a(u, v) r, lu,v) + bilu, v) v, {u, v),

and vy is described parametrically by ({(u(t), v{(t), then finding

¥ is eguivalent to solving the differential equations
u = alu,v) v = biu, v}

with a given initial condition (u(0), v(0). Locally such

equations can always he solved, and the solution depends
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smoothly on (u{0), v{0) ; %).

To construct the desired chart in a neighbourhood of

X, = r{u ,v )}, first choose a curve o« on X such that

a({d) = x, and a = e, . Then for each small s choose a curve

t v a(s, t) such that awis,0) = a(s) and da/5t = e, . Thus

{s, ) +—» d(s, t}) is a smooth map defined in a neighbourhood

of the origin in 3{2, and at the origin we have o, = e, and

a, = e Define {u, v) as functions of (s, t) = r {u, vi .

2 2°
Then the derivative of (s, £t) —> (u, v} at the origin is

a e
()
b da./,

where
e1 = ar.i + br2
ez = cr1 + er
at x . Because this matrix is invertible we can use the

inverse function thecrem to express (s, £) in terms of {u, v)
locally, and so (s, t) is an allowable parametrization of the
surface. It has the property that a4, = e, everywhere, but

=a

oy 1 only when t = 0,
Now let us define a curve s —» 8{z2, t} such that
B(O, £} = {0, t) and 81 = e, everywhere. Just as before we

find that (s, t) »—> B(s, t) is an allowable parametrization,
and we can define a smooth map (u, v) +——s (c,7) in a

neighbourhood of (u,, vy} by Bl(g,T) = riu, v) .

The parametrization we want is the one that takes (s, k)

to the point of intersection of the curve n +— af{s,n) and



and the curve £ b+ 8(fL, t} . To obtain it, consider the map
{u, v} —> (5,7} , where xr{u, v} = ol(s,t) = flog,7) . At

{uy;, vy) the derivative of this map is the invertible matrix

a e\
o) a3 ’

S0 as usual we can express {u, v} locally in terms of (s, 1),
and {s, T) b—== r{u,v) 1is an allowable parametrization.

Furthermore from r{u,v) = B{v,1) we obtain

3r/as

iao‘/’as)ﬁ1 = (30/33}&1

by regarding ¢ as a function of s and t ; and similarly

f

or/aT {at/BT)a2 = (Bt/at}ez.

This is what we want.

4. Geodesic pclar coordinates (See page 86)

At a point r(u,, vy} of a surface let us define a
geodesic {ult), v{t)) by solving the equations (8.3) with the

initial conditions

uf{o)

1
=

0 v {0}

I
<

a(o) = v{0)

A
B}
o

{The equations (8.3) were derived for a geodesic parametrized
by arc-length. They imply. however, that Eﬁz + 2FUV + G%z is
constant, and so any curve which satisfies them is automatically

parametrized proportionally to arc-length, and is a geodesic.

Notice also that if {(u{t), vi{t)) is a solution then soc is

{ui{ct), vict}) for any constant c.}
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Having found the geodesic (uft), v(t)}, let us regard
the point (u{1), v{1¥) = (u{1:E,n), v(1;£,n) as a function
of (£, n) . The derivative of (£, n) 3= (u{i), vi1}) at the

origin is the identity matrix, for

u{1; &, 0) = ulg; 1, 0),
u{l; ¢, n) = u{n; 0, 1),
and similarly for v. Thus {{, n) —* (u(1), v(1)) is an

allowable parametrization when (£, n}) 1s in a suitable

neighbourhood of the origin.

Gecdesic polar coordinates are obtained from the chart
just found by choosing an orthonormal basis {91,e27 for the
tangent plane at r(u,, v,} and composing the previous map

with the map (p, ) ——= (&, n) , where

sind) = Er. + nr..

p.{e1 cos B8 + e 1 2

2






